WO2024093620A1 - 波束测量方法、装置及系统 - Google Patents
波束测量方法、装置及系统 Download PDFInfo
- Publication number
- WO2024093620A1 WO2024093620A1 PCT/CN2023/123537 CN2023123537W WO2024093620A1 WO 2024093620 A1 WO2024093620 A1 WO 2024093620A1 CN 2023123537 W CN2023123537 W CN 2023123537W WO 2024093620 A1 WO2024093620 A1 WO 2024093620A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- measurement resource
- terminal
- measurement
- network device
- beams
- Prior art date
Links
- 238000000691 measurement method Methods 0.000 title claims abstract description 26
- 238000005259 measurement Methods 0.000 claims abstract description 796
- 230000005540 biological transmission Effects 0.000 claims abstract description 179
- 238000004891 communication Methods 0.000 claims abstract description 167
- 238000000034 method Methods 0.000 claims abstract description 119
- 238000012545 processing Methods 0.000 claims description 42
- 230000015654 memory Effects 0.000 claims description 33
- 238000004590 computer program Methods 0.000 claims description 19
- 230000006870 function Effects 0.000 description 44
- 230000000694 effects Effects 0.000 description 31
- 238000013461 design Methods 0.000 description 27
- 230000008569 process Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 16
- 238000007726 management method Methods 0.000 description 12
- 238000013507 mapping Methods 0.000 description 12
- 238000005516 engineering process Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 6
- 230000005670 electromagnetic radiation Effects 0.000 description 5
- 238000010295 mobile communication Methods 0.000 description 5
- 230000005855 radiation Effects 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 3
- 238000003491 array Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000013139 quantization Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 102100029651 Arginine/serine-rich protein 1 Human genes 0.000 description 1
- 101000728589 Homo sapiens Arginine/serine-rich protein 1 Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000000191 radiation effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/046—Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
Definitions
- the present application relates to the field of communications, and in particular to a beam measurement method, device and system.
- the specific beams used by the network device and the terminal can be determined by the beam management process.
- the network device can use the beam of the network device to send the corresponding measurement resources in sequence, and the terminal can use the beam of the terminal to receive the measurement resources to determine the terminal's best beam corresponding to the measurement resources.
- the terminal can report the information of the measurement resources corresponding to the terminal's best beam to the network device, so that the network device can determine which beam the network device uses for transmission and which beam the terminal uses for reception.
- the current standard is discussing how to achieve multi-beam simultaneous transmission through the terminal's multi-antenna panels.
- Embodiments of the present application provide a beam measurement method, device, and system to enable a network device to determine a beam for simultaneously transmitting multiple beams.
- a beam measurement method comprising: a terminal receives configuration information from a network device, and sends information of a first measurement resource pair to the network device according to the configuration information.
- the configuration information is used to instruct the terminal to send information of a measurement resource pair to the network device, the measurement resource pair includes two measurement resources, and two beams of the terminal corresponding to the two measurement resources can be used for uplink transmission at the same time.
- the first measurement resource pair includes a first measurement resource and a second measurement resource, and two beams of the terminal corresponding to the first measurement resource and the second measurement resource can be used for uplink transmission at the same time.
- the terminal can report the measurement resource pair to the network device according to the indication of the configuration information, so that the network device can determine, based on the measurement resource pair, that the terminal has two beams that can be used for the terminal to simultaneously perform uplink transmission, that is, the network device can determine the beams used for simultaneous transmission of multiple beams, thereby realizing effective scheduling of simultaneous transmission of multiple beams.
- the configuration information is also used to indicate multiple measurement resources, and the terminal sends information of a first measurement resource pair to the network device according to the configuration information, including: the terminal receives multiple measurement resources from the network device according to the configuration information, and sends information of a first measurement resource pair among the multiple measurement resources to the network device according to the configuration information.
- the network device does not need to specify which two resources the terminal specifically reports, and the terminal can select the corresponding two measurement resources for reporting according to actual needs to meet actual needs. For example, the terminal can report the two resources with the strongest average signal quality.
- the first measurement resource is a measurement resource whose signal quality is greater than a preset quality among the measurement resources received by the terminal using the first beam of the terminal
- the second measurement resource is a measurement resource whose signal quality is greater than a quality threshold among the measurement resources received by the terminal using the second beam of the terminal.
- the information of the first measurement resource pair includes at least one of the following: an identifier of the first measurement resource, a reference signal received power RSRP of the first measurement resource, an identifier of the second measurement resource, or RSRP of the second measurement resource, to accurately indicate the quality of the first measurement resource and the second measurement resource, or the quality of the two measurement resources may also be indicated by other possible information, without limitation.
- the method of the first aspect may further include: the terminal receives instruction information from the network device.
- the instruction information is used to instruct: the terminal uses two beams of the terminal corresponding to the first measurement resource and the second measurement resource to perform uplink transmission simultaneously.
- whether the terminal uses multi-beam simultaneous transmission can be flexibly adjusted by the network device through the instruction information. degrees to enable on-demand multi-beam simultaneous interpretation.
- first measurement resource and the second measurement resource can be the same or different measurement resources.
- the first measurement resource can correspond to the first beam of the terminal
- the second measurement resource can correspond to the second beam of the terminal, that is, the same measurement resource can correspond to two different beams of the terminal, or two different measurement resources can correspond to two different beams of the terminal respectively, without specific limitation.
- the indication information may include an identifier of the first measurement resource and an identifier of the second measurement resource. It can be understood that, through beam measurement, the terminal can maintain a mapping relationship between the measurement resource pair and the beam. In this way, even if the network device indicates a measurement resource pair, the terminal can determine the corresponding two beams, thereby reducing the indication overhead.
- the configuration information is also used to indicate a measurement resource set.
- the method described in the first aspect may also include: the terminal determines the terminal transmit power backoff amount corresponding to the third measurement resource in the measurement resource set according to the configuration information, and sends the terminal transmit power backoff amount corresponding to the third measurement resource to the network device, so that the network device can timely adjust the terminal's uplink transmission mode to ensure the efficiency and reliability of the uplink transmission.
- the terminal device determines the terminal transmit power backoff amount corresponding to the third measurement resource in the measurement resource set according to the configuration information, including: if the identifier of the first measurement resource and the identifier of the second measurement resource are the same as the identifier of the third measurement resource, then the terminal determines the terminal transmit power backoff amount corresponding to the third measurement resource according to the transmit power backoff amount of the first beam of the terminal corresponding to the first measurement resource, and the transmit power backoff amount of the second beam of the terminal corresponding to the second measurement resource.
- the signal sent by the network device through a beam corresponding to the measurement resource can be received by the two beams of the terminal at the same time.
- the two beams should be regarded as a whole, and no matter which beam has the terminal transmit power backoff, the terminal needs to report the terminal transmit power backoff amount of the two beams combined to ensure that the network device can accurately evaluate the overall transmission quality of the two beams.
- a beam measurement method comprising: a network device sends configuration information to a terminal, and receives information of a first measurement resource pair from the terminal.
- the configuration information is used to instruct the terminal to send information of a measurement resource pair to the network device, the measurement resource pair includes two measurement resources, and two beams of the terminal corresponding to the two measurement resources can be used for uplink transmission at the same time.
- the first measurement resource pair includes a first measurement resource and a second measurement resource, and two beams of the terminal corresponding to the first measurement resource and the second measurement resource can be used for uplink transmission at the same time.
- the configuration information is also used to indicate multiple measurement resources
- the network device receives information about a first measurement resource pair from the terminal, including: the network device sends multiple measurement resources to the terminal according to the configuration information, and receives information about a first measurement result pair from the terminal.
- the information of the first measurement resource pair includes at least one of the following: an identifier of the first measurement resource, a reference signal received power RSRP of the first measurement resource, an identifier of the second measurement resource, or RSRP of the second measurement resource.
- the method described in the second aspect may further include: the network device sends indication information to the terminal, wherein the indication information is used to instruct: the terminal to use two beams of the terminal corresponding to the first measurement resource and the second measurement resource to perform uplink transmission simultaneously.
- the indication information includes an identifier of the first measurement resource and an identifier of the second measurement resource.
- the configuration information is also used to indicate a measurement resource set
- the method described in the second aspect may also include: the network device receives a terminal transmit power fallback amount corresponding to a third measurement resource from the terminal.
- the third measurement resource belongs to the measurement resource set, and the identifier of the first measurement resource and the identifier of the second measurement resource are the same as the identifier of the third measurement resource.
- a beam measurement method comprising: a network device sends configuration information to a terminal, and the terminal receives the configuration information from the network device.
- the terminal sends information of a first measurement resource pair to the network device, and the network device receives information of the first measurement resource pair from the terminal.
- the configuration information is used to instruct the terminal to send information of a measurement resource pair to the network device, the measurement resource pair includes two measurement resources, and the two beams of the terminal corresponding to the two measurement resources can be used for uplink transmission at the same time.
- the first measurement resource pair includes a first measurement resource and a second measurement resource, and the two beams of the terminal corresponding to the first measurement resource and the second measurement resource can be used for uplink transmission at the same time.
- the configuration information is further used to indicate a plurality of measurement resources.
- the terminal sends information about the first measurement resource pair to the network device according to the configuration information, and the network device receives the information about the first measurement resource pair from the terminal, including: the network device The device sends multiple measurement resources to the terminal according to the configuration information.
- the terminal receives multiple measurement resources from the network device according to the configuration information, and sends information of a first measurement resource pair among the multiple measurement resources to the network device according to the configuration information.
- the network device receives information of a first measurement result pair from the terminal.
- the first measurement resource is a measurement resource whose signal quality is greater than a preset quality among the measurement resources received by the terminal using the first beam of the terminal
- the second measurement resource is a measurement resource whose signal quality is greater than a quality threshold among the measurement resources received by the terminal using the second beam of the terminal.
- the quality information of the first measurement resource includes at least one of the following: an identifier of the first measurement resource, a reference signal received power RSRP of the first measurement resource, an identifier of the second measurement resource, or RSRP of the second measurement resource.
- the method described in the third aspect may also include: the network device sends indication information to the terminal, and the terminal receives the indication information from the network device.
- the indication information is used to indicate: the terminal uses two beams of the terminal corresponding to the first measurement resource and the second measurement resource to perform uplink transmission at the same time.
- the indication information may include an identifier of the first measurement resource and an identifier of the second measurement resource.
- the configuration information is also used to indicate a measurement resource set
- the method described in the third aspect may also include: the terminal determines, according to the configuration information, a terminal transmit power backoff amount corresponding to a third measurement resource in the measurement resource set, and sends the terminal transmit power backoff amount corresponding to the third measurement resource to the network device.
- the network device receives the terminal transmit power backoff amount corresponding to the third measurement resource from the terminal.
- the terminal device determines the terminal transmit power backoff amount corresponding to the third measurement resource in the measurement resource set based on the configuration information, including: if the identifier of the first measurement resource and the identifier of the second measurement resource are the same as the identifier of the third measurement resource, then the terminal determines the terminal transmit power backoff amount corresponding to the third measurement resource based on the transmit power backoff amount of the first beam of the terminal corresponding to the first measurement resource, and the transmit power backoff amount of the second beam of the terminal corresponding to the second measurement resource.
- the technical effect of the method described in the third aspect may be the technical effect of the method described in any one of the implementation methods of the first aspect or the second aspect, and will not be repeated here.
- a beam measurement method comprising: a terminal receiving configuration information from a network device, and performing beam measurement according to the configuration information.
- the configuration information is used to indicate that during the beam measurement process, the terminal needs to send a measurement result of a measurement resource pair to the network device, and the measurement resource pair includes two measurement resources.
- the two beams used by the terminal to receive the two measurement resources can be used by the terminal to perform uplink transmission simultaneously.
- the configuration information is also used to indicate a first measurement resource set
- the two beams of the terminal include a first beam and a second beam.
- the terminal performs beam measurement according to the configuration information, including: the terminal uses the first beam and the second beam to receive multiple measurement resources in a first measurement resource set from a network device, so as to send a first measurement result to the network device according to the configuration information.
- the first measurement result is used to indicate quality information of the first measurement resource and quality information of the second measurement resource, and the first measurement resource and the second measurement resource are a first measurement resource pair among multiple measurement resources, and the first measurement resource pair is used for the terminal to simultaneously perform uplink transmission.
- the first measurement resource is a measurement resource whose quality is greater than a preset quality among the measurement resources received by the terminal using the first beam
- the second measurement resource is a measurement resource whose quality is greater than a quality threshold among the measurement resources received by the terminal using the second beam.
- the quality information of the first measurement resource includes at least one of the following: an identifier of the first measurement resource, and a reference signal received power RSRP of the first measurement resource.
- the quality information of the second measurement resource includes at least one of the following: an identifier of the second measurement resource, and an RSRP of the second measurement resource.
- the method described in the fourth aspect may also include: the terminal receives indication information from the network device, and according to the indication information, uses the first beam and the second beam to send an uplink signal to the network device simultaneously.
- the indication information is used to instruct the terminal to use the first beam and the second beam to perform uplink transmission simultaneously.
- the indication information may include an identifier of the first measurement resource and an identifier of the second measurement resource.
- the configuration information is also used to indicate a second measurement resource set including the first measurement resource and the second measurement resource.
- the method described in the fourth aspect may also include: the terminal determines the terminal transmit power backoff amount corresponding to the third measurement resource in the second measurement resource set according to the configuration information, and sends the terminal transmit power backoff amount corresponding to the third measurement resource to the network device.
- the terminal device determines the terminal transmit power backoff amount corresponding to the third measurement resource in the first resource set based on the configuration information, including: if the first measurement resource and the second measurement resource are both third measurement resources, the terminal determines the terminal transmit power backoff amount corresponding to the third measurement resource based on the terminal transmit power backoff amounts of the first beam and the second beam.
- the technical effect of the method described in the fourth aspect may be the technical effect of the method described in any one of the implementation methods of the first aspect to the third aspect, and will not be repeated here.
- a beam measurement method comprising: a network device sends configuration information to a terminal, and performs beam measurement according to the configuration information.
- the configuration information is used to indicate that during the beam measurement process, the terminal needs to send a measurement result of a measurement resource pair to the network device, and the measurement resource pair includes two measurement resources.
- the terminal receives two beams used by the two measurement resources for the terminal to perform uplink transmission simultaneously.
- the configuration information is also used to indicate a first measurement resource set
- the network device performs beam measurement according to the configuration information, including: the network device sends multiple measurement resources in the first measurement resource set to the terminal according to the configuration information, and receives a first measurement result from the terminal.
- the first measurement result is used to indicate quality information of the first measurement resource and quality information of the fifth measurement resource
- the first measurement resource and the fifth measurement resource are a first measurement resource pair among multiple measurement resources
- the first measurement resource pair is used for the terminal to simultaneously perform uplink transmission.
- the quality information of the first measurement resource includes at least one of the following: an identifier of the first measurement resource and a reference signal received power RSRP of the first measurement resource; and the quality information of the fifth measurement resource includes at least one of the following: an identifier of the fifth measurement resource and RSRP of the fifth measurement resource.
- the method described in the fifth aspect may further include: the network device sends indication information to the terminal to receive an uplink signal sent simultaneously by the terminal using two beams, wherein the indication information is used to instruct the terminal to perform uplink transmission simultaneously using two beams.
- the indication information includes an identifier of the first measurement resource and an identifier of the fifth measurement resource.
- the configuration information is also used to indicate a fifth measurement resource set including the first measurement resource and the fifth measurement resource
- the method described in the fifth aspect may also include: the network device receives the terminal transmit power backoff amount corresponding to the third measurement resource from the terminal.
- the first measurement resource and the fifth measurement resource are the third measurement resource.
- the method described in the fifth aspect may also include: the network device schedules the uplink transmission of the terminal according to the terminal transmit power backoff amount corresponding to the third measurement resource to ensure the uplink transmission quality.
- the technical effect of the method described in the fifth aspect may be the technical effect of the method described in any one of the implementation methods of the first aspect to the third aspect, and will not be repeated here.
- a beam measurement method comprising: a network device sends configuration information to a terminal, and the terminal receives the configuration information from the network device.
- the network device and the terminal perform beam measurement according to the configuration information.
- the configuration information is used to indicate that during the beam measurement process, the terminal needs to send a measurement result of a measurement resource pair to the network device, and the measurement resource pair includes two measurement resources.
- the two beams used by the terminal to receive the two measurement resources can be used for the terminal to perform uplink transmission simultaneously.
- the configuration information is also used to indicate a first measurement resource set
- the two beams of the terminal include a first beam and a second beam.
- the network device and the terminal perform beam measurement according to the configuration information, including: the network device configures the information to send multiple measurement resources in the first measurement resource set to the terminal, and the terminal uses the first beam and the second beam to receive multiple measurement resources in the first measurement resource set from the network device.
- the terminal sends a first measurement result to the network device according to the configuration information, and the network device receives the first measurement result from the terminal.
- the first measurement result is used to indicate quality information of the first measurement resource and quality information of the second measurement resource, and the first measurement resource and the second measurement resource are a first measurement resource pair among multiple measurement resources, and the first measurement resource pair is used for the terminal to simultaneously perform uplink transmission.
- the first measurement resource is a measurement resource whose quality is greater than a preset quality among the measurement resources received by the terminal using the first beam
- the second measurement resource is a measurement resource whose quality is greater than a quality threshold among the measurement resources received by the terminal using the second beam.
- the quality information of the first measurement resource includes at least one of the following: an identifier of the first measurement resource, and a reference signal received power RSRP of the first measurement resource.
- the quality information of the second measurement resource includes at least one of the following: an identifier of the second measurement resource, and an RSRP of the second measurement resource.
- the method described in aspect 6 may further include: the network device sends indication information to the terminal, and the terminal receives the indication information from the network device. According to the indication information, the terminal uses the first beam and the second beam to simultaneously send an uplink signal to the network device. The indication information is used to instruct the terminal to use the first beam and the second beam to simultaneously perform uplink transmission.
- the indication information may include an identifier of the first measurement resource and an identifier of the second measurement resource.
- the configuration information is also used to indicate a second measurement resource set including the first measurement resource and the second measurement resource.
- the method described in the sixth aspect may also include: the terminal determines, according to the configuration information, a terminal transmit power fallback amount corresponding to a sixth measurement resource in the second measurement resource set, so as to send the terminal transmit power fallback amount corresponding to the sixth measurement resource to the network device.
- the network device receives Receive the terminal transmit power backoff amount corresponding to the sixth measurement resource from the terminal.
- the terminal device determines the terminal transmit power backoff amount corresponding to the sixth measurement resource in the first resource set based on the configuration information, including: if the first measurement resource and the second measurement resource are both the sixth measurement resources, the terminal determines the terminal transmit power backoff amount corresponding to the sixth measurement resource based on the terminal transmit power backoff amounts of the first beam and the second beam.
- the method described in the sixth aspect may also include: the network device schedules the uplink transmission of the terminal according to the terminal transmit power backoff amount corresponding to the sixth measurement resource.
- the technical effect of the method described in the sixth aspect may be the technical effect of the method described in any one of the implementation methods of the first aspect to the third aspect, and will not be repeated here.
- a communication device in a seventh aspect, includes: a module for executing the method described in the first aspect or the fourth aspect, such as a transceiver module and a processing module.
- a transceiver module is used to indicate the transceiver function of the communication device
- the processing module is used to execute functions of the communication device other than the transceiver function.
- the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the seventh aspect, and the receiving module is used to implement the receiving function of the communication device described in the seventh aspect.
- the communication device described in the seventh aspect may further include a storage module, wherein the storage module stores a program or an instruction.
- the processing module executes the program or the instruction
- the communication device may execute the method described in the first aspect or the fourth aspect.
- the communication device described in the seventh aspect can be a terminal, or a chip (system) or other parts or components that can be set in the terminal, or a device including a terminal, and this application does not limit this.
- the technical effects of the communication device described in the seventh aspect can refer to the technical effects of the method described in the first aspect, and will not be repeated here.
- a communication device in an eighth aspect, includes: a module for executing the method described in the second aspect or the fifth aspect, such as a transceiver module and a processing module.
- a transceiver module is used to indicate the transceiver function of the communication device
- the processing module is used to execute functions of the communication device other than the transceiver function.
- the transceiver module may include a sending module and a receiving module, wherein the sending module is used to implement the sending function of the communication device described in the eighth aspect, and the receiving module is used to implement the receiving function of the communication device described in the eighth aspect.
- the communication device described in the eighth aspect may further include a storage module, wherein the storage module stores a program or an instruction.
- the processing module executes the program or the instruction
- the communication device may execute the method described in the second aspect or the fifth aspect.
- the communication device described in the eighth aspect can be a network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, and this application does not limit this.
- a communication device comprising: a processor, the processor being configured to execute a computer program or instruction in a memory so that the communication device executes the method described in any possible implementation of the first aspect, the second aspect, the fourth aspect, or the fifth aspect.
- the communication device described in the ninth aspect may further include a transceiver.
- the transceiver may be a transceiver circuit or an interface circuit.
- the transceiver may be used for the communication device described in the ninth aspect to communicate with other communication devices.
- the communication device described in the ninth aspect may also include a memory.
- the memory may be integrated with the processor or may be separately provided.
- the memory may be used to store the computer program and/or data involved in the method described in any one of the first aspect, the second aspect, the fourth aspect, or the fifth aspect.
- the communication device described in aspect nine may be the terminal described in aspect one or aspect four or the network device described in aspect two or aspect five, or may be a chip (system) or other parts or components that may be arranged in the terminal or network device, or may be a device that includes the terminal or network device.
- the technical effects of the communication device described in the ninth aspect can refer to the technical effects of the method described in any one of the implementation methods of the first aspect, the second aspect, the fourth aspect or the fifth aspect, and will not be repeated here.
- a communication device in a tenth aspect, includes: a processor, the processor is coupled to a memory, and the processor is used to execute a computer program stored in the memory, so that the communication device executes the method described in any possible implementation of the first aspect, the second aspect, the fourth aspect, or the fifth aspect.
- the communication device described in the tenth aspect may further include a transceiver.
- the transceiver can be used for the communication device described in the tenth aspect to communicate with other communication devices.
- the communication device described in the tenth aspect may be the terminal described in the first aspect or the fourth aspect or the network device described in the second aspect or the fifth aspect, or a chip (system) or other parts or components that may be arranged in the terminal or the network device, or a device including the terminal or the network device.
- the technical effects of the communication device described in the tenth aspect can refer to the technical effects of the method described in any one of the implementation methods of the first aspect, the second aspect, the fourth aspect or the fifth aspect, and will not be repeated here.
- a communication device comprising: a processor and a memory; the memory is used to store a computer program, and when the processor executes the computer program, the communication device executes the method described in any one of the implementation methods of the first aspect, the second aspect, the fourth aspect or the fifth aspect.
- the communication device described in the eleventh aspect may further include a transceiver.
- the transceiver may be a transceiver circuit or an interface circuit.
- the transceiver may be used for the communication device described in the eleventh aspect to communicate with other communication devices.
- the communication device described in the eleventh aspect may be the terminal described in the first aspect or the fourth aspect, or the network device described in the second aspect or the fifth aspect, or a chip (system) or other parts or components that can be set in the terminal or network device, or an apparatus including the terminal or network device.
- the technical effects of the communication device described in the eleventh aspect can refer to the technical effects of the method described in any one of the implementation methods of the first aspect, the second aspect, the fourth aspect or the fifth aspect, and will not be repeated here.
- a communication system includes: a terminal for executing the method described in the first aspect, and a network device for executing the method described in the second aspect; or the communication system includes: a terminal for executing the method described in the fourth aspect, and a network device for executing the method described in the fifth aspect.
- a computer-readable storage medium comprising: a computer program or instructions; when the computer program or instructions are executed on a computer, the computer executes the method described in any possible implementation method of the first to sixth aspects.
- a computer program product comprising a computer program or instructions, which, when executed on a computer, enables the computer to execute the method described in any possible implementation of aspects one to six.
- FIG1 is a schematic diagram of the structure of a multi-antenna panel of a terminal
- FIG2 is a schematic diagram of a power fallback scenario 1
- FIG3 is a schematic diagram of a second power fallback scenario
- FIG4 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
- FIG5 is a second schematic diagram of the architecture of the communication system provided in an embodiment of the present application.
- FIG6 is a schematic diagram of a flow chart of a beam measurement method provided in an embodiment of the present application.
- FIG7 is a first structural diagram of a communication device provided in an embodiment of the present application.
- FIG8 is a second schematic diagram of the structure of the communication device provided in an embodiment of the present application.
- Beam refers to a special directional transmission or reception effect formed by the transmitter or receiver of a network device or terminal through an antenna array, similar to the beam formed by a flashlight converging light in one direction. Sending and receiving signals in the form of beams can effectively increase the transmission distance of signals.
- the beam may be a wide beam, a narrow beam, or other types of beams.
- the beam forming technology may be a beam forming technology or other technologies.
- the beam forming technology may specifically be a digital beam forming technology, an analog beam forming technology, or a hybrid digital/analog beam forming technology.
- Beams generally correspond to resources. For example, when performing beam measurement, the network device measures different beams through different resources, and the terminal feeds back the measured resource quality, so that the network device can know the quality of the corresponding beam. During data transmission, beams can also be indicated by their corresponding resources. For example, the network device indicates a transmission configuration indication-state through the transmission configuration index (TCI) field in the downlink control information (DCI), and the terminal indicates the state according to the TCI-state. The reference resource contained in the state is used to determine the beam corresponding to the reference resource.
- TCI transmission configuration index
- DCI downlink control information
- the beam can be specifically characterized as a digital beam, an analog beam, a spatial domain filter, a spatial filter, a spatial parameter, TCI, a TCI-state, etc.
- the beam used to send a signal can be called a transmission beam (or Tx beam), a spatial domain transmission filter, a spatial transmission filter, a spatial domain transmission parameter, a spatial transmission parameter, etc.
- the beam used to receive a signal can be called a reception beam (or Rx beam), a spatial domain reception filter, a spatial reception filter, a spatial domain reception parameter, a spatial reception parameter, etc.
- reference signals are configured in the form of resources.
- Network equipment will configure each reference signal to the terminal in the form of resources.
- a resource is a configuration information unit, which usually includes parameters related to a reference signal, such as the time-frequency resource location of the reference signal, the number of ports, the time domain type (periodic/semi-static/aperiodic), etc.
- the resource may be an uplink signal resource or a downlink signal resource.
- Uplink signals include, but are not limited to, a sounding reference signal (SRS) and a demodulation reference signal (DMRS).
- Downlink signals include, but are not limited to, a channel state information reference signal (CSI-RS), a cell specific reference signal (CS-RS), a user equipment specific reference signal (US-RS), a demodulation reference signal (DMRS), and a synchronization system/physical broadcast channel block (SS/PBCH block).
- CSI-RS channel state information reference signal
- CS-RS cell specific reference signal
- US-RS user equipment specific reference signal
- DMRS demodulation reference signal
- SS/PBCH block synchronization system/physical broadcast channel block
- the SS/PBCH block may be referred to as a synchronization signal block (SSB).
- SSB synchronization signal block
- Resources can be configured through radio resource control (RRC) messages.
- RRC radio resource control
- a resource is a data structure, including relevant parameters of its corresponding uplink/downlink signal. For example, the type of uplink/downlink signal, the resource element carrying the uplink/downlink signal, the transmission time and period of the uplink/downlink signal, the number of ports used to send the uplink/downlink signal, etc.
- Each resource of the uplink/downlink signal has a unique identifier to identify the resource of the downlink signal. It can be understood that the identification of a resource can also be referred to as the identification of a resource, and the embodiments of the present application do not impose any restrictions on this.
- the fifth generation (5G) mobile communication system can use high-frequency communication, that is, use higher frequency bands, such as 28 GHz signals to transmit data.
- a major problem with high-frequency communication is that the signal energy decreases rapidly with the transmission distance, resulting in a short signal transmission distance.
- high-frequency communication uses analog beam technology, which concentrates the signal energy within a smaller angle range by weighting the antenna array to form a signal similar to a light beam (called an analog beam, or beam for short), thereby increasing the transmission distance.
- Both network devices and terminals use beams for transmission.
- the beam used by network devices is called a downlink transmit beam
- the beam used by terminals is called a downlink receive beam.
- the beam used by terminals is called an uplink transmit beam
- the beam used by network devices is called an uplink receive beam.
- the specific beams used by network devices and terminals can be determined through the beam management process.
- the network device has M beams and the terminal has N beams.
- the downlink beam management process is as follows:
- Beam management configuration The network device sends a configuration message to the terminal to configure the parameters related to downlink beam management for the terminal, such as M measurement resources, measurement period, etc.
- the measurement resource can be a reference signal (RS) used for beam measurement.
- the M measurement resources correspond one-to-one to the M beams of the network device.
- the network device uses each beam to send the corresponding measurement resource.
- the terminal measures the measurement resource to determine the quality of the beam corresponding to the measurement resource. It can be understood that the beam of the network device is invisible to the terminal.
- the terminal can determine the quality of each measurement resource, but the terminal does not know which beam the measurement resource corresponds to.
- Beam measurement The channel quality corresponding to the beam of each network device and the beam of each terminal is different.
- the terminal needs to measure the channel quality between the beam of each network device and the beam of each terminal, so as to determine which beam the network device uses to send and which beam the terminal uses to receive.
- the network device uses the above-mentioned M beams to send the corresponding measurement resources in turn, and the terminal uses one of the N beams to receive and measure to determine the channel quality between the beam used by the terminal this time and the above-mentioned M beams, for example, the reference signal receiving power (RSRP).
- RSRP reference signal receiving power
- the terminal uses different beams to receive and measure in turn. Through N measurement cycles, it can be determined whether the N beams of the terminal are related to the network. Channel quality between the M beams of the device.
- the terminal can determine the best beam of the terminal corresponding to each measurement resource, or the best receiving beam of the terminal or the best receiving beam according to the channel quality.
- the terminal can report the information of the measurement resource corresponding to the best beam of the terminal to the network device so that the network device can determine which beam the network device uses for transmission and which beam the terminal uses for reception. For example, if the network device uses the beam corresponding to a certain measurement resource for downlink transmission, the terminal will use the corresponding best beam for reception.
- the information result of the measurement resource reported by the terminal may include the identifier and RSRP of up to 4 measurement resources corresponding to the best beams of the terminal.
- the network device can determine the beam of the network device corresponding to the measurement resource identifier reported by the terminal based on the correspondence between M beams and M measurement resources. For example, the terminal can determine that the four measurement resources with the best quality are RS#1, RS#2, RS#3, and RS#4 through beam measurement, and the best beams of the terminal corresponding to the four measurement resources are beam B1, beam B2, beam B2, and beam B3, respectively. That is, among the four measurement resources received by the terminal using beam B1, RS#4 has the best quality. Among the four measurement resources received by the terminal using beam B2, RS#2 and RS#3 have the best quality. Among the four measurement resources received by the terminal using beam B3, RS#1 has the best quality.
- the terminal can report RS#1, RSRP1 corresponding to RS#1, RS#2, RSRP2 corresponding to RS#2, RS#3, RSRP3 corresponding to RS#3, RS#4, and RSRP4 corresponding to RS#4 to the network device.
- Terminal receiving beam maintenance After the terminal reports the measurement result corresponding to the terminal's best beam to the network device, the terminal can maintain the mapping relationship between the terminal's best beam and the measurement resource corresponding to the terminal's best beam. For example, the mapping relationship can be shown in Table 1 below.
- the beam used by the network device needs to be informed to the terminal so that the terminal can determine which beam to use for reception.
- the network device can indicate a measurement resource identifier to the terminal to inform the terminal that it uses the beam corresponding to the measurement resource for downlink transmission, so that the terminal can use the terminal's optimal beam corresponding to the measurement resource for reception.
- the network device informs the terminal that it uses the beam corresponding to RS#2 for downlink transmission, and the terminal uses beam B2 for downlink reception.
- the beam used by the terminal for transmission is also indicated by the network device.
- the network device can indicate a measurement resource identifier to the terminal, indicating that the terminal is required to use the terminal's optimal beam corresponding to the measurement resource for uplink transmission. For example, the network device instructs the terminal to use the beam corresponding to RS#2 for uplink transmission, and the terminal uses beam B2 for uplink transmission.
- the antenna panel may refer to the antenna panel of a network device or the antenna panel of a terminal.
- An antenna panel generally has one or more antennas, which are arranged into an antenna array to perform beamforming to form a simulated beam.
- the antenna array can generate simulated beams pointing in different directions. In other words, multiple simulated beams can be formed on each antenna panel, and beam measurement can be used to determine which simulated beam is best for the antenna panel.
- the antenna panel refers to the antenna panel of the terminal.
- the antenna panel may be represented by a panel, or a panel index, or the antenna panel may be implicitly represented by other means.
- the antenna panel may also be represented by an antenna port (such as a CSI-RS port, an SRS port, a DMRS port, a phase-tracking reference signal (PTRS) port, a cell-specific reference signal (CRS) port, a tracking reference signal (TRS) port, or an SSB port, or an antenna port group, or by a resource (such as a CSI-RS resource, an SRS resource, a DMRS resource, a PTRS resource, a CRS resource, a TRS resource, an SSB resource, or a resource group, or by a channel (such as a physical uplink control channel (PUCCH), a physical uplink sharing channel (PUSCH), a physical random access channel (PRACH), a PDSCH, a physical downlink control channel (PDCCH), or a physical broadcast channel (PDCCH).
- a terminal capability parameter set includes the relevant terminal capabilities corresponding to an antenna panel. For example, it includes the maximum number of transmission layers, the maximum number of SRS ports, and the maximum transmission power corresponding to an antenna panel. That is, the antenna panel mentioned in the embodiment of the present application can also be replaced by the above content.
- the terminal can be equipped with multiple antenna panels. These antenna panels can be distributed in different positions and facing different directions, which can ensure that no matter which direction the terminal faces, at least one antenna panel is facing the network device and can transmit data with the network device.
- FIG1 is a schematic diagram of the structure of a terminal's multi-antenna panel.
- the terminal is equipped with two antenna panels, each facing a different direction, and each antenna panel can generate multiple beams in different directions, thereby forming a more comprehensive beam coverage.
- the uplink transmission of the terminal usually adopts a single beam.
- the disadvantages of a single beam are that the number of supported transmission streams is low, the transmission power is limited, and the transmission reliability is low. For example, when a single beam is blocked, the transmission will fail.
- the R18 standard is discussing how to realize the simultaneous transmission of uplink beams, referred to as multi-beam simultaneous transmission.
- multi-beam simultaneous transmission can also be called multi-antenna panel simultaneous transmission.
- the current reporting mechanism that is, reporting the identification of the measurement resource, makes it impossible for the network device to determine whether the beam of the terminal corresponding to the measurement resource is one or more, that is, it is impossible to determine whether the terminal can use multi-antenna panel simultaneous transmission, thereby failing to achieve effective scheduling of the multi-antenna panel simultaneous transmission of the terminal.
- MPE is the maximum amount of electromagnetic radiation that the human body can receive as stipulated by the regulations.
- the terminal When the terminal is used, the user will be affected by the electromagnetic radiation of the terminal, which mainly comes from the terminal's transmission signal. When the transmission signal strength of the terminal is too high, it will generate excessive electromagnetic radiation to the user, even exceeding the maximum amount of electromagnetic radiation allowed by the regulations. In this case, the terminal needs to reduce its transmission power, that is, perform power backoff to reduce electromagnetic radiation to the human body, so as to meet the MPE regulatory requirements.
- the terminal uses different beams to transmit signals in different directions. The radiation effects of different beams on the human body are different. Some beams will radiate the human body, while some beams will not. Some beams generate strong radiation, while some beams generate weak radiation.
- the terminal transmission power backoff amount corresponding to different beams is also different. Some beams need power backoff, while some beams do not need power backoff. Some beams have a large terminal transmission power backoff amount, while some beams have a small terminal transmission power backoff amount.
- the terminal can sense whether there is a human body in each beam direction through the terminal's sensor, and determine whether the radiation to the human body in each beam direction exceeds the standard, and how much terminal transmission power backoff amount needs to be backed off if the radiation exceeds the standard.
- the 3rd Generation Partnership Project (3GPP) standard stipulates that after the terminal performs power backoff to meet the MPE regulatory requirements, it is necessary to report the terminal transmit power backoff amount of the terminal's best beam to the network device so that the network device can refer to it when selecting the terminal's uplink transmit beam.
- the terminal can report the terminal transmit power backoff amount of up to 4 terminal best beams.
- FIG2 is a schematic diagram of the power backoff scenario 1.
- the terminal reports the RSRP of RS#2 and RS#4 as -80 decibel relative to one milliwatt (dBm) and -81dBm respectively. Since the RSRP of RS#2 is greater than the RSRP of RS#4, the network device usually instructs the terminal to use the beam B2 corresponding to RS#2 for uplink transmission. However, if the terminal determines that the beam B2 corresponding to RS#2 and RS#3 has a 3dB power backoff, the signal quality when using beam B2 for uplink transmission is not as good as the signal quality when using beam B3 corresponding to RS#4 for uplink transmission. Therefore, the terminal can report that the beam B2 corresponding to RS#2 and RS#3 has a 3dB power backoff, as shown in Table 2.
- the network device can instruct the terminal to use beam B3 corresponding to RS#4 for uplink transmission based on the 3dB power backoff of beam B2 corresponding to RS#3 and RS#2 reported by the terminal.
- the method in which the terminal only reports the terminal transmit power backoff amount of the terminal's best beam may cause uplink transmission performance loss.
- Figure 3 is a second schematic diagram of the power backoff scenario.
- the terminal sends beam B1 and beam B2 respectively through two antenna panels, and beam B1 and beam B2 are both sent in the beam direction of the network device corresponding to RS#3.
- Beam B1 is the optimal beam for the terminal corresponding to RS#3. If the terminal transmit power backoff occurs for beam B2 and the terminal transmit power backoff does not occur for beam B1, then because beam B2 is not the optimal beam for the terminal corresponding to RS#3, the terminal will not report the terminal transmit power backoff amount for beam B2.
- the embodiments of the present application propose the following technical solutions to achieve effective scheduling of multi-beam simultaneous transmission while avoiding affecting the uplink transmission performance.
- Wi-Fi wireless network
- V2X vehicle to everything
- D2D device-to-device
- Internet of Vehicles communication systems fourth generation (4G) mobile communication systems, such as long term evolution (LTE) systems, worldwide interoperability for microwave access (WiMAX) communication systems
- 5G systems such as new radio (NR) systems, and future communication systems.
- the network architecture and business scenarios described in the embodiments of the present application are intended to more clearly illustrate the technical solutions of the embodiments of the present application, and do not constitute a limitation on the technical solutions provided in the embodiments of the present application.
- a person of ordinary skill in the art can appreciate that with the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
- Fig. 4 is a schematic diagram of the architecture of a communication system applicable to the beam measurement method provided in an embodiment of the present application.
- the communication system includes: a terminal and a network device.
- the terminal may be a terminal with transceiver functions, or a chip or chip system that can be set in the terminal.
- the terminal may also be called user equipment (UE), access terminal, subscriber unit, user station, mobile station (MS), mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device.
- UE user equipment
- MS mobile station
- remote station remote terminal
- mobile device user terminal
- terminal wireless communication device
- wireless communication device user agent or user device.
- the terminal in the embodiments of the present application can be a mobile phone, a cellular phone, a smart phone, a tablet computer, a wireless data card, a personal digital assistant (PDA), a wireless modem, a handheld device (handset), a laptop computer, a machine type communication (MTC) terminal, a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, a wireless terminal in industrial control, a wireless terminal in self driving, a wireless terminal in remote medical, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, a wireless terminal in smart home, a vehicle-mounted terminal, a road side unit (RSU) with terminal function, etc.
- PDA personal digital assistant
- MTC machine type communication
- VR virtual reality
- AR augmented reality
- the terminal of the present application may also be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip or a vehicle-mounted unit built into a vehicle as one or more components or units.
- the terminal may also be a customer-premises equipment (CPE).
- CPE customer-premises equipment
- the network device may be an access network (AN) device, or may be referred to as a radio access network (RAN) device.
- the RAN device may provide access functions for the terminal, and is responsible for functions such as radio resource management, quality of service (QoS) management, data compression and encryption on the air interface side.
- the RAN device may include 5G, such as a gNB in an NR system, or one or a group of antenna panels (including multiple antenna panels) of a base station in a 5G system, or may also be a network node constituting a gNB, a transmission point (TRP or transmission point, TP) or a transmission measurement function (TMF), such as a building base band unit (BBU), or a centralized unit (CU).
- 5G such as a gNB in an NR system, or one or a group of antenna panels (including multiple antenna panels) of a base station in a 5G system, or may also be a network node constituting a gNB, a transmission point (
- the RAN device may also include an access point (AP) in a wireless fidelity (WiFi) system, a wireless relay node, a wireless backhaul node, various forms of macro base stations, micro base stations (also called small stations), relay stations, access points, wearable devices, vehicle-mounted devices, etc.
- AP access point
- WiFi wireless fidelity
- the RAN device may also include a next-generation mobile communication system, such as a 6G access network device, such as a 6G base station, or in the next-generation mobile communication system, the network device may also have other naming methods, which are all covered within the scope of protection of the embodiments of the present application, and the present application does not impose any limitation on this.
- a next-generation mobile communication system such as a 6G access network device, such as a 6G base station
- the network device may also have other naming methods, which are all covered within the scope of protection of the embodiments of the present application, and the present application does not impose any limitation on this.
- FIG4 is a simplified schematic diagram for ease of understanding, and the communication system may also include other network devices and/or other terminal devices, which are not shown in FIG4 .
- FIG5 is a schematic diagram of the architecture of a communication system applicable to the beam measurement method provided in an embodiment of the present application.
- the terminal 10 includes: a processor 101, a memory 102 and a transceiver 103, and the transceiver 103 includes: a transmitter 1031, a receiver 1032 and multiple antennas 1033 (antenna panels).
- the network device 20 includes a processor 201, a memory 202 and a transceiver 203, and the transceiver 203 includes: a transmitter 2031, a receiver 2032 and at least one antenna 2033 (antenna panel).
- the transmitter 2031 can be used to send transmission control information to the terminal 10 via the antenna 2033, such as an indication information for indicating frequency division simultaneous transmission of multiple antenna panels.
- the receiver 1032 can be used to receive transmission control information via the antenna 1033.
- the transmitter 1031 can be used to send transmission feedback information, that is, uplink data, to the network device 20 through multiple antennas 1033 (multiple antenna panels) in a frequency division simultaneous transmission manner.
- the receiver 2032 can be used to receive the transmission feedback information sent by the terminal 10 through the antenna 2033.
- the network device sends configuration information to the terminal, and the terminal can report a measurement resource pair to the network device according to the instruction of the configuration information, such as including a first measurement resource and a second measurement resource, so that the network device can determine, based on the measurement resource pair, that the terminal has two beams that can be used for the terminal to simultaneously perform uplink transmission, that is, the network device can determine the beams used for simultaneous transmission of multiple beams, thereby realizing effective scheduling of simultaneous transmission of multiple beams.
- the configuration information such as including a first measurement resource and a second measurement resource
- the configuration information is also used to indicate a measurement resource set. If the first measurement resource and the second measurement resource are the same resource, such as the third measurement resource in the measurement resource set, the terminal can also determine the terminal transmit power backoff amount corresponding to the third measurement resource based on the transmit power backoff amount of the first beam of the terminal corresponding to the first measurement resource and the transmit power backoff amount of the second beam of the terminal corresponding to the second measurement resource. In this way, the network device can accurately evaluate the overall transmission quality of the two beams corresponding to the third measurement resource, thereby scheduling the uplink transmission of the terminal to avoid affecting the uplink transmission performance.
- Fig. 6 is a flow chart of a beam measurement method provided in an embodiment of the present application. The method can be applied to the communication between the network device and the terminal in the above communication system.
- the process of the beam measurement method is as follows:
- a network device sends configuration information to a terminal, and the terminal receives the configuration information from the network device.
- the configuration information may be used to instruct the terminal to send information about a measurement resource pair to the network device.
- the measurement resource pair may include two measurement resources, and the two beams of the terminal corresponding to the two measurement resources can be used for uplink transmission at the same time.
- the configuration information may be used to indicate that during the beam measurement process, the terminal needs to send the measurement result of the measurement resource pair to the network device.
- the measurement resource pair may include two measurement resources, and the two beams used by the terminal to receive the two measurement resources can be used by the terminal to perform uplink transmission at the same time.
- the configuration information may include configuration parameters related to beam management, which are recorded as first configuration parameters.
- the first configuration parameter may include a first reporting criterion.
- the first reporting criterion may be used by default to indicate: the terminal sends information about the measurement resource pair to the network device, or in other words, during the beam measurement process, the terminal needs to send the measurement result of the measurement resource pair to the network device, and the two beams used by the terminal to receive the measurement resource pair can be used by the terminal to perform uplink transmission simultaneously.
- the first configuration parameter can instruct the terminal to perform multi-beam uplink simultaneous transmission by carrying the first reporting criterion. If the first reporting criterion is not carried in the first configuration parameter, it means that the terminal can perform processing according to the existing logic.
- the first configuration parameter may always carry the first reporting criterion, and different values of the first reporting criterion may indicate different behaviors of the terminal.
- the first reporting criterion is a one-bit information element, and one value of the bit can be used to indicate that the terminal performs multi-beam uplink simultaneous transmission; or another value of the bit can be used to indicate that the terminal can perform processing according to the existing logic.
- the first reporting criterion is an exemplary naming and can be replaced by any other possible naming, such as the first criterion, the first rule, the first reporting rule, etc.
- the "simultaneous" mentioned in the embodiments of the present application does not mean that the time is exactly the same, even if there is a certain error in the time, it can be considered “simultaneous”.
- the embodiment of the present application takes the measurement resource pair as an example, and the measurement resource pair can also be replaced by multiple measurement resources, such as 2 The above measurement resources.
- Multiple measurement resources can also be understood as measurement resource groups, or measurement resource sets, etc., without limitation.
- Multiple beams of the terminal corresponding to multiple measurement resources can be used for uplink transmission at the same time. That is, the first reporting criterion can also be used by default to indicate: the terminal sends information about multiple measurement resources to the network device, and the multiple beams used by the terminal to receive these multiple measurement resources can be used by the terminal to perform uplink transmission at the same time.
- the following is an introduction taking two measurement resources, namely, a measurement resource pair, as an example.
- the configuration information may be used to instruct the terminal to send information about a measurement resource pair to the network device.
- the measurement resource pair may include two measurement resources, and two beams of the terminal corresponding to the two measurement resources may be used for uplink transmission at the same time.
- the configuration information may also be used to indicate multiple measurement resources, or a first measurement resource set.
- the multiple measurement resources may correspond one-to-one to multiple beams of the network device, that is, each beam of the network device may be used to send a corresponding measurement resource to implement beam measurement.
- the first configuration parameter may include at least one of the following: identifiers of multiple measurement resources, a measurement period, and a first resource quantity.
- the measurement period may be used to indicate at which periodic time points the network device can send the multiple measurement resources so that the terminal can receive them in a targeted manner.
- the first resource quantity may be used to indicate the maximum number of measurement resources that the terminal can report, such as 2, 4, 6, etc., without limitation.
- the measurement resource reported by the terminal may be an identifier of the reported measurement resource, and the details may refer to the relevant introduction in S602 below, which will not be repeated here.
- the terminal sends information about a first measurement resource pair to a network device according to configuration information, and the network device receives the information about the first measurement resource pair from the terminal.
- the first measurement resource pair may include a first measurement resource and a second measurement resource.
- the first measurement resource and the second measurement resource may be two measurement resources among the above-mentioned multiple measurement resources.
- the two beams of the terminal corresponding to the first measurement resource and the second measurement resource can be used for uplink transmission at the same time.
- the first measurement resource is a measurement resource whose signal quality is greater than a preset quality among the measurement resources received by the terminal using the first beam of the terminal
- the second measurement resource is a measurement resource whose signal quality is greater than a quality threshold among the measurement resources received by the terminal using the second beam of the terminal
- the first beam and the second beam can be used for uplink transmission of the terminal at the same time. It can be understood that since both the first measurement resource and the second measurement resource can be measurement resources with relatively strong signal quality, the network device can ensure the transmission quality by scheduling the first measurement resource and the second measurement resource to instruct the terminal to perform uplink simultaneous transmission.
- the information of the first measurement resource pair may be used to indicate the signal quality of the first measurement resource and the second measurement resource, such as RSRP, or any other information that may be used to characterize the signal quality of the measurement resource, without limitation.
- the information of the first measurement resource pair may include at least one of the following: the reference signal received power RSRP of the first measurement resource, the identifier of the second measurement resource, or the RSRP of the second measurement resource, to accurately indicate the quality of the first measurement resource and the second measurement resource.
- the network device may send multiple measurement resources to the terminal according to the configuration information. For example, the network device may periodically send multiple measurement resources to the terminal according to the measurement period.
- the network device may use multiple beams of the network device to send the multiple measurement resources, that is, each beam may be used to send a measurement resource corresponding to the beam.
- the terminal may receive multiple measurement resources from the network device according to the configuration information.
- the terminal may include a first antenna panel and a second antenna panel.
- the terminal may use the first antenna panel to receive multiple measurement resources.
- Each beam of the first antenna panel may be used to receive at least part of the measurement resources among the multiple measurement resources, so that the terminal can determine the signal quality of the measurement resources received by the beam.
- the terminal may use the first beam to receive multiple measurement resources to determine the quality of each of the multiple measurement resources received by the first beam.
- the terminal may also use the second antenna panel to receive multiple measurement resources.
- Each beam of the second antenna panel may be used to receive at least part of the measurement resources among the multiple measurement resources, so that the terminal can determine the quality of the measurement resources received by the beam.
- the terminal may use the second beam to receive multiple measurement resources to determine the signal quality of each of the multiple measurement resources received by the second beam.
- the network device includes 4 beams, namely beam A to beam D, and the 4 beams corresponding to the 4 beams are RS#1 to RS#4.
- the network device can use beam A to send RS#1, beam B to send RS#2, beam C to send RS#3, and beam D to send RS#4.
- the terminal includes antenna panel 1 and antenna panel 2, antenna panel 1 includes beam B1 and beam B2, and antenna panel 2 includes beam B3 and beam B4.
- the terminal can use beam B1 to receive RS#1-RS#4 to determine RSRP11 of RS#1, RSRP12 of RS#2, RSRP13 of RS#3, and RSRP14 of RS#4.
- the terminal can use beam B2 to receive RS#1-RS#4 to determine RSRP21 of RS#1, RSRP22 of RS#2, RSRP23 of RS#3, and RSRP24 of RS#4.
- the terminal may receive RS#1-RS#4 using beam B3 to determine RSRP31 of RS#1, RSRP32 of RS#2, RSRP33 of RS#3, and RSRP34 of RS#4.
- the terminal may receive RS#1-RS#4 using beam B4 to determine RSRP41 of RS#1, RSRP42 of RS#2, RSRP43 of RS#3, and RSRP44 of RS#4.
- the terminal can use multiple antenna panels of the terminal to receive multiple measurement resources simultaneously or in time-sharing, without limitation.
- the terminal can send information about the first measurement resource pair among multiple measurement resources to the network device according to the configuration information, and correspondingly, the network device can receive information about the first measurement result pair from the terminal. That is to say, during the beam measurement process, the network device does not need to specify which two resources the terminal specifically reports, and the terminal can select the corresponding two measurement resources for reporting according to actual needs to meet actual needs. For example, the terminal can report the two resources with the strongest average signal quality.
- the terminal can combine the beams of multiple antenna panels according to the signal quality of the received measurement resources, and the combined beams can be used for the terminal to perform uplink transmission simultaneously.
- the terminal can determine the measurement resources with signal quality greater than the preset quality from the measurement resources received using the beam of the first antenna panel, which can be understood as the best measurement resources, so as to determine the best beams of the terminal corresponding to these best measurement resources, such as the set of beams of the first antenna panel used to receive these best measurement resources, which is recorded as the first beam set.
- the first measurement resource can be the measurement resource with the best signal quality, and the terminal can determine that the first beam is the best beam of the terminal, that is, the first beam set can include the first beam. Similarly, the terminal can determine the best beam of the terminal corresponding to these best measurement resources from the best measurement resources received using the beam of the second antenna panel, such as the set of beams of the second antenna panel used to receive these best measurement resources, which is recorded as the second beam set.
- the second measurement resource can be the measurement resource with the best signal quality, and the terminal can determine that the second beam is also the best beam of the terminal, that is, the second beam set can include the second beam.
- a beam in the first beam set can be combined with a beam in the second beam set to form a beam pair, and the two beams contained in the beam pair can be used for the terminal to perform uplink transmission simultaneously.
- the beams in the first beam set and the beams in the second beam set can be combined arbitrarily, or can be combined in the order of signal quality of the measurement resource from high to low or from low to high, without limitation.
- the terminal can determine at least one beam pair and maintain a mapping relationship between each beam pair and the two best measurement resources received using the beam pair, and these two best measurement resources can be referred to as a measurement resource pair.
- At least one beam pair can correspond to at least one measurement resource pair.
- the first beam and the second beam can form a first beam pair, and the first measurement resource and the second measurement resource can form a first measurement resource pair, for the terminal to perform uplink transmission simultaneously.
- the terminal can maintain a mapping relationship between the first beam pair and the first measurement resource pair.
- the two measurement resources included in a measurement resource pair can be the same measurement resource, such as the first measurement resource and the second measurement resource can be the same measurement resource; or, the two measurement resources included in a measurement resource pair can also be different measurement resources, such as the first measurement resource and the second measurement resource can be different measurement resources, without limitation.
- the terminal can also maintain the corresponding relationship between the multiple beams.
- the terminal determines that RSRP11 and RSRP12 have the best quality, RSRP11 corresponds to beam B1, and RSRP12 corresponds to beam B2, that is, the first beam set includes beam B1 and beam B2.
- the terminal determines that RSRP31 has the best quality, RSRP31 corresponds to beam B3, that is, the second beam set includes beam B3.
- the terminal can combine beam B1 and beam B3 into beam pair 1, and beam B2 and beam B3 into beam pair 2.
- the two best measurement resources received using beam pair 1 are the same measurement resource, that is, RS#1.
- the terminal can maintain the mapping relationship between beam pair 1 and RS#1, as shown in Table 3 below.
- the two best measurement resources received using beam pair 2 are different measurement resources, that is, RS#1 and RS#2.
- the terminal can maintain the mapping relationship between RS#1 and RS#2 and beam pair 2, as shown in Table 3 below.
- mapping relationship between beam pair 1 and RS#1 can also be maintained separately through different table entries without limitation.
- the terminal may send the information of the first measurement resource pair to the network device according to the configuration information, such as the first reporting criterion.
- the network device receives the information of the first measurement resource pair from the terminal.
- the terminal may send information on measuring resource pair 1 to the network device, including: two RS#1s, RSRP11 and RSRP31. Furthermore, the terminal may also send information on measuring resource pair 2 to the network device, including: RS#1 and RS#2, and RSRP11 and RSRP12.
- the embodiment of the present application takes the example of the terminal reporting the measurement resource pair corresponding to the best beam of the terminal as an example, but it is not limited to this.
- the terminal can also report the measurement resource pair corresponding to any beam of the terminal.
- S602 can also be understood as the network device and the terminal root According to the configuration information, beam measurement is performed, and the information of the first measurement resource pair can also be understood as the first measurement result.
- the terminal can report the measurement resource pair to the network device according to the instructions of the configuration information, so that the network device can determine, based on the measurement resource pair, that the terminal has two beams that can be used for the terminal to simultaneously perform uplink transmission, that is, the network device can determine the beams used for simultaneous transmission of multiple beams, thereby realizing effective scheduling of simultaneous transmission of multiple beams.
- the method provided in the embodiments of the present application may further include the following steps:
- the network device sends instruction information to the terminal, and the terminal receives the instruction information from the network device.
- the indication information can be used to instruct the terminal to use two measurement resources, such as the two beams of the terminal corresponding to the first measurement resource and the second measurement resource, to perform uplink transmission at the same time, or the indication information can be used to instruct the terminal to use two specified beams, such as the first beam and the second beam to perform uplink transmission at the same time.
- the indication information may include an identifier of the first measurement resource and an identifier of the second measurement resource.
- the indication information may be carried in two TCI-states or two spatial relationships, one TCI-state or spatial relationship may include an identifier of the first measurement resource, and the other TCI-state or spatial relationship may include an identifier of the second measurement resource.
- the network device can send 2 RS#1s to the terminal to indicate that the terminal needs to use beam B1 and beam B3 to perform uplink simultaneous transmission.
- the terminal can determine, based on the mapping relationship maintained locally, that the two measurement resources indicated by the indication information belong to the same measurement resource pair, such as the first measurement resource and the second measurement resource belong to the first measurement resource pair, thereby determining the two beams corresponding to the measurement resource pair, such as the first beam and the second beam need to be used for performing uplink simultaneous transmission. In this way, the terminal can use the first beam and the second beam to simultaneously send an uplink signal to the network device to achieve uplink simultaneous transmission.
- the terminal can maintain the mapping relationship between the measurement resource pair and the beam. In this way, even if the network device indicates the measurement resource pair, the terminal can determine the corresponding two beams, thereby reducing the indication overhead.
- S603 is an optional step.
- the network device may not send the indication information, and the terminal may use two beams by default to perform uplink simultaneous transmission.
- the indication information may also indicate multiple measurement resources to schedule the terminal to use multiple beams of the terminal corresponding to the multiple measurement resources to perform uplink transmission simultaneously.
- the method provided in the embodiments of the present application may further include the following steps:
- the terminal determines, according to the configuration information, a terminal transmit power backoff amount corresponding to a third measurement resource in the measurement resource set.
- the configuration information is also used to indicate a measurement resource set, such as a second measurement resource set, which can be used by the terminal to detect whether the beam corresponding to the measurement resource in the second measurement resource set has terminal transmit power fallback.
- the second measurement resource set can be the same as the first measurement resource set, or the second measurement resource set can be different from the first measurement resource set, such as the second measurement resource set can be a subset of the first measurement resource set, such as a subset including the first measurement resource and the second measurement resource.
- the configuration information may also include a configuration parameter for reporting the terminal transmit power backoff, recorded as a second configuration parameter.
- the second configuration parameter may include at least one of the following: an identifier of multiple measurement resources in the second measurement resource set, a power backoff quantization step, or a second resource quantity.
- the power backoff quantization step may be used to indicate the granularity at which the terminal determines the terminal transmit power backoff amount.
- the second resource quantity may be used to indicate how many beams the terminal can report the terminal transmit power backoff amount, such as 2, 4, 6, etc., without limitation.
- the terminal may detect whether the beam corresponding to the measurement resource in the second measurement resource set has terminal transmit power fallback according to the configuration information. If the beam corresponding to the measurement resource in the second measurement resource set has terminal transmit power fallback, the terminal may report the terminal transmit power fallback to the network device.
- the terminal can send the terminal transmit power backoff amount corresponding to the first measurement resource and/or the second measurement resource to the network device according to the existing processing logic, and no further details are given.
- the terminal can determine the terminal transmit power backoff amount corresponding to the third measurement resource based on the transmit power backoff amount of the first beam of the terminal corresponding to the first measurement resource and the transmit power backoff amount of the second beam of the terminal corresponding to the second measurement resource, or the terminal can determine the terminal transmit power backoff amount corresponding to the third measurement resource based on the terminal transmit power backoff amount of the first beam and the second beam.
- the terminal may associate the first beam and the second beam with the same measurement resource, such as the third measurement resource, in a mapping relationship, to determine the terminal transmit power of the first beam and/or the second beam.
- the rate backoff needs to be processed jointly, such as the terminal transmit power backoff of the first beam and/or the second beam needs to be averaged to the two beams as the overall terminal transmit power backoff of the two beams, that is, the terminal transmit power backoff corresponding to the third measurement resource.
- the two beams should be regarded as a whole. No matter which beam has terminal transmit power backoff, it will affect the overall uplink transmission performance of the two beams. In this case, the terminal needs to report the overall terminal transmit power backoff amount of the two beams to ensure that the network device can accurately evaluate the overall transmission quality of the two beams.
- the terminal can determine that beam B1 has a 3dB terminal transmit power backoff, and beam B3 has no terminal transmit power backoff.
- the terminal can determine the overall terminal transmit power backoff of beams B1 and B3 based on the fact that both beams B1 and B3 are associated with RS#1.
- the terminal transmit power backoff of beams B1 and B3 can be half of the terminal transmit power backoff of beam B1, such as 1.2dB, to send a signal to the network device that the terminal transmit power backoff of RS#1 is 1.2dB.
- the configuration parameters reported by the terminal for transmit power backoff and the configuration parameters related to beam management are carried in the same configuration information.
- the configuration parameters reported by the terminal for transmit power backoff and the configuration parameters related to beam management may also be carried in different configuration information respectively.
- the embodiment of the present application takes two beams as an example, and the two beams may also be replaced by multiple beams, that is, if multiple beams of the terminal are used for uplink simultaneous transmission, the terminal may also combine the terminal transmit power backoff amounts of the multiple beams to determine the terminal transmit power backoff amount corresponding to the measurement resource.
- the terminal sends the terminal transmit power backoff amount corresponding to the third measurement resource to the network device, and the network device receives the terminal transmit power backoff amount corresponding to the third measurement resource from the terminal.
- the terminal may send the identifier of the third measurement resource and the terminal transmit power backoff amount to the network device to jointly indicate the terminal transmit power backoff amount corresponding to the third measurement resource.
- the network device may timely adjust the uplink transmission mode of the terminal according to the terminal transmit power backoff amount corresponding to the third measurement resource reported by the terminal, such as instructing the terminal to perform uplink simultaneous transmission using other beams where the terminal transmit power backoff has not occurred, so as to ensure the efficiency and reliability of uplink transmission.
- the network device can send RS#2 and RS#3 to the terminal based on the terminal transmission power backoff of RS#1 of 1.2dB to indicate that the terminal needs to use beam B2 and beam B3 to perform uplink simultaneous transmission in the future to ensure the efficiency and reliability of uplink transmission.
- S604-S605 are optional steps, for example, the terminal may not report the power backoff amount.
- the beam measurement method provided in the embodiment of the present application is described in detail above in conjunction with Figure 6.
- the following describes in detail a communication device for executing the beam measurement method provided in the embodiment of the present application in conjunction with Figures 7-8.
- Fig. 7 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
- the communication device 700 includes: a transceiver module 701 and a processing module 702.
- the transceiver module 701 is used to indicate the transceiver function of the communication device 700
- the processing module 702 is used to perform functions of the communication device 700 other than the transceiver function.
- FIG7 only shows the main components of the communication device.
- the communication device 700 may be applicable to the communication system shown in FIG. 5 to perform the functions of the terminal in the method shown in FIG. 6 .
- the transceiver module 701 is used to receive configuration information from a network device, and the processing module 702 is used to send information about a first measurement resource pair to the network device according to the configuration information.
- the configuration information is used to instruct the communication device 700 to send information about a measurement resource pair to the network device, and the measurement resource pair includes two measurement resources, and two beams of the communication device 700 corresponding to the two measurement resources can be used for uplink transmission at the same time.
- the first measurement resource pair includes a first measurement resource and a second measurement resource, and two beams of the communication device 700 corresponding to the first measurement resource and the second measurement resource can be used for uplink transmission at the same time.
- the configuration information is also used to indicate multiple measurement resources
- the processing module 702 is also used to control the transceiver module 701 to receive multiple measurement resources from the network device according to the configuration information, and to control the transceiver module 701 to send information of the first measurement resource pair among the multiple measurement resources to the network device according to the configuration information.
- the first measurement resource is a measurement resource received by the communication device 700 using the first beam of the communication device 700, and the signal quality of the measurement resource is greater than a preset quality;
- the second measurement resource is a measurement resource received by the communication device 700 using the second beam of the communication device 700, and the signal quality of the measurement resource is greater than a quality threshold.
- the information of the first measurement resource pair includes at least one of the following: an identifier of the first measurement resource, a reference to the first measurement resource
- the signal received power RSRP, the identifier of the second measurement resource, or the RSRP of the second measurement resource is used to accurately indicate the quality of the first measurement resource and the second measurement resource.
- the transceiver module 701 is further configured to receive indication information from a network device, wherein the indication information is used to indicate that the communication device 700 uses two beams of the communication device 700 corresponding to the first measurement resource and the second measurement resource to perform uplink transmission simultaneously.
- the indication information may include an identifier of the first measurement resource and an identifier of the second measurement resource.
- the configuration information is also used to indicate a measurement resource set
- the processing module 702 is also used to determine the terminal transmit power backoff amount corresponding to the third measurement resource in the measurement resource set based on the configuration information, and control the transceiver module 701 to send the terminal transmit power backoff amount corresponding to the third measurement resource to the network device.
- the processing module 702 is also used to determine the terminal transmit power backoff amount corresponding to the third measurement resource based on the transmit power backoff amount of the first beam of the communication device 700 corresponding to the first measurement resource and the transmit power backoff amount of the second beam of the communication device 700 corresponding to the second measurement resource if the identifier of the first measurement resource and the identifier of the second measurement resource are the same as the identifier of the third measurement resource.
- the transceiver module 701 may include a sending module (not shown in FIG. 7 ) and a receiving module (not shown in FIG. 7 ).
- the sending module is used to implement the sending function of the communication device 700
- the receiving module is used to implement the receiving function of the communication device 700 .
- the communication device 700 may further include a storage module (not shown in FIG. 7 ) storing a program or instruction.
- the processing module 702 executes the program or instruction, the communication device 700 may perform the functions of the terminal in the method of FIG. 6 .
- the communication device 700 can be a terminal, or a chip (system) or other parts or components that can be set in the terminal, or a device including a terminal, which is not limited in this application.
- the technical effects of the communication device 700 can refer to the technical effects of the beam measurement method shown in Figure 6, and will not be repeated here.
- the communication device 700 may be applicable to the communication system shown in FIG. 5 to perform the functions of the network device in the method shown in FIG. 6 .
- the processing module 702 is used to control the transceiver module to send configuration information to the terminal, and the transceiver module 701 is used to receive information about a first measurement resource pair from the terminal.
- the configuration information is used to instruct the terminal to send information about a measurement resource pair to the communication device 700, and the measurement resource pair includes two measurement resources, and the two beams of the terminal corresponding to the two measurement resources can be used for uplink transmission at the same time.
- the first measurement resource pair includes a first measurement resource and a second measurement resource, and the two beams of the terminal corresponding to the first measurement resource and the second measurement resource can be used for uplink transmission at the same time.
- the configuration information is further used to indicate multiple measurement resources
- the processing module 702 is further used to control the transceiver module 701 to send the multiple measurement resources to the terminal according to the configuration information.
- the transceiver module 701 is further used to receive information of the first measurement result pair from the terminal.
- the information of the first measurement resource pair includes at least one of the following: an identifier of the first measurement resource, a reference signal received power RSRP of the first measurement resource, an identifier of the second measurement resource, or RSRP of the second measurement resource.
- the transceiver module 701 is further configured to send indication information to the terminal, wherein the indication information is used to instruct the terminal to use two beams of the terminal corresponding to the first measurement resource and the second measurement resource to perform uplink transmission simultaneously.
- the indication information includes an identifier of the first measurement resource and an identifier of the second measurement resource.
- the configuration information is also used to indicate a measurement resource set
- the transceiver module 701 is also used to receive a terminal transmit power fallback amount corresponding to a third measurement resource from the terminal.
- the third measurement resource belongs to the measurement resource set, and the identifier of the first measurement resource and the identifier of the second measurement resource are the same as the identifier of the third measurement resource.
- the transceiver module 701 may include a sending module (not shown in FIG. 7 ) and a receiving module (not shown in FIG. 7 ).
- the sending module is used to implement the sending function of the communication device 700
- the receiving module is used to implement the receiving function of the communication device 700 .
- the communication device 700 may further include a storage module (not shown in FIG. 7 ) storing a program or instruction.
- the processing module 702 executes the program or instruction, the communication device 700 may perform the function of the network device in the method of FIG. 6 .
- the communication device 700 can be a network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, which is not limited in this application.
- the technical effects of the communication device 700 can refer to the technical effects of the beam measurement method shown in Figure 6, and will not be repeated here.
- the communication device 700 may also be applicable to the communication system shown in FIG. 5 to perform the functions of the terminal in the method shown in FIG. 6 .
- the transceiver module 701 is used to receive configuration information from the network device, and the processing module 702 is used to perform beam measurement according to the configuration information.
- the configuration information is used to indicate that during the beam measurement process, the communication device 700 needs to send the measurement result of the measurement resource pair to the network device, and the measurement resource pair includes two measurement resources. Among them: the two beams used by the communication device 700 to receive the two measurement resources can be used for the communication device 700 to perform uplink transmission simultaneously.
- the configuration information is also used to indicate a first measurement resource set, and the two beams of the communication device 700 include a first beam and a second beam.
- the processing module 702 is also used to control the transceiver module 701 to receive multiple measurement resources in a first measurement resource set from a network device using the first beam and the second beam.
- the processing module 702 is also used to control the transceiver module 701 to send a first measurement result to the network device according to the configuration information.
- the first measurement result is used to indicate quality information of the first measurement resource and quality information of the second measurement resource.
- the first measurement resource and the second measurement resource are a first measurement resource pair among multiple measurement resources, and the first measurement resource pair is used for the communication device 700 to simultaneously perform uplink transmission.
- the first measurement resource is a measurement resource whose quality is greater than a preset quality among the measurement resources received by the communication device 700 using the first beam
- the second measurement resource is a measurement resource whose quality is greater than a quality threshold among the measurement resources received by the communication device 700 using the second beam.
- the quality information of the first measurement resource includes at least one of the following: an identifier of the first measurement resource, and a reference signal received power RSRP of the first measurement resource.
- the quality information of the second measurement resource includes at least one of the following: an identifier of the second measurement resource, and an RSRP of the second measurement resource.
- the transceiver module 701 is further used to receive indication information from the network device, and the processing module 702 is further used to send an uplink signal to the network device using the first beam and the second beam at the same time according to the indication information.
- the indication information is used to instruct the communication device 700 to use the first beam and the second beam to perform uplink transmission at the same time.
- the indication information may include an identifier of the first measurement resource and an identifier of the second measurement resource.
- the configuration information is also used to indicate a second measurement resource set including a first measurement resource and a second measurement resource.
- the processing module 702 is further used to determine, based on the configuration information, the transmit power backoff amount of the communication device 700 corresponding to a third measurement resource in the second measurement resource set.
- the transceiver module 701 is further used to send the transmit power backoff amount of the communication device 700 corresponding to the third measurement resource to the network device.
- the processing module 702 is also used to determine the transmission power backoff amount of the communication device 700 corresponding to the third measurement resource according to the transmission power backoff amount of the communication device 700 of the first beam and the second beam if both the first measurement resource and the second measurement resource are third measurement resources.
- the transceiver module 701 may include a sending module (not shown in FIG. 7 ) and a receiving module (not shown in FIG. 7 ).
- the sending module is used to implement the sending function of the communication device 700
- the receiving module is used to implement the receiving function of the communication device 700 .
- the communication device 700 may further include a storage module (not shown in FIG. 7 ) storing a program or instruction.
- the processing module 702 executes the program or instruction, the communication device 700 may perform the functions of the terminal in the method of FIG. 6 .
- the communication device 700 can be a terminal, or a chip (system) or other parts or components that can be set in the terminal, or a device including a terminal, which is not limited in this application.
- the technical effects of the communication device 700 can refer to the technical effects of the beam measurement method shown in Figure 6, and will not be repeated here.
- the transceiver module 701 is used to send configuration information to the terminal, and the processing module 702 is used to perform beam measurement according to the configuration information.
- the configuration information is used to indicate that during the beam measurement process, the terminal needs to send a measurement result of a measurement resource pair to the communication device 700, and the measurement resource pair includes two measurement resources.
- the terminal receives two beams used by the two measurement resources for the terminal to perform uplink transmission simultaneously.
- the configuration information is further used to indicate a first measurement resource set
- the processing module 702 is used to control the transceiver module 701 to send multiple measurement resources in the first measurement resource set to the terminal according to the configuration information, and receive a first measurement result from the terminal.
- the first measurement result is used to indicate quality information of the first measurement resource and quality information of the fifth measurement resource
- the first measurement resource and the fifth measurement resource are a first measurement resource pair in the multiple measurement resources
- the first measurement resource pair is used for the terminal to simultaneously perform uplink transmission.
- the quality information of the first measurement resource includes at least one of the following: an identifier of the first measurement resource and a reference signal received power RSRP of the first measurement resource; and the quality information of the fifth measurement resource includes at least one of the following: an identifier of the fifth measurement resource and RSRP of the fifth measurement resource.
- the transceiver module 701 is further configured to send indication information to the terminal to receive an uplink signal sent simultaneously by the terminal using two beams, wherein the indication information is used to instruct the terminal to perform uplink transmission simultaneously using two beams.
- the indication information includes an identifier of the first measurement resource and an identifier of the fifth measurement resource.
- the configuration information is further used to indicate a fifth measurement resource set including the first measurement resource and the fifth measurement resource, and the transceiver module 701, further configured to receive a terminal transmit power backoff amount corresponding to a third measurement resource from the terminal, wherein the first measurement resource and the fifth measurement resource are the third measurement resources.
- processing module 702 is further configured to schedule uplink transmission of the terminal according to the terminal transmit power backoff amount corresponding to the third measurement resource.
- the transceiver module 701 may include a sending module (not shown in FIG. 7 ) and a receiving module (not shown in FIG. 7 ).
- the sending module is used to implement the sending function of the communication device 700
- the receiving module is used to implement the receiving function of the communication device 700 .
- the communication device 700 may further include a storage module (not shown in FIG. 7 ) storing a program or instruction.
- the processing module 702 executes the program or instruction, the communication device 700 may perform the function of the network device in the method of FIG. 6 .
- the communication device 700 can be a network device, or a chip (system) or other parts or components that can be set in the network device, or a device that includes a network device, which is not limited in this application.
- the technical effects of the communication device 700 can refer to the technical effects of the beam measurement method shown in Figure 6, and will not be repeated here.
- FIG8 is a second schematic diagram of the structure of a communication device provided in an embodiment of the present application.
- the communication device may be a terminal, or a chip (system) or other parts or components that can be set in a terminal.
- a communication device 800 may include a processor 801.
- the communication device 800 may also include a memory 802 and/or a transceiver 803.
- the processor 801 is coupled to the memory 802 and the transceiver 803, such as being connected via a communication bus.
- the communication device 800 may also be a chip, such as including a processor 801, in which case the transceiver may be the output and input interface of the chip.
- the processor 801 is the control center of the communication device 800, which can be a processor or a general term for multiple processing elements.
- the processor 801 is one or more central processing units (CPUs), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).
- CPUs central processing units
- ASIC application specific integrated circuit
- integrated circuits configured to implement the embodiments of the present application, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).
- the processor 801 may execute various functions of the communication device 800 , such as executing the beam measurement method shown in FIG. 6 , by running or executing a software program stored in the memory 802 and calling data stored in the memory 802 .
- the processor 801 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 8 .
- the communication device 800 may also include multiple processors, such as the processor 801 and the processor 804 shown in FIG8.
- processors may be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
- the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (such as computer programs or instructions).
- the memory 802 is used to store the software program for executing the solution of the present application, and the execution is controlled by the processor 801.
- the specific implementation method can refer to the above method embodiment, which will not be repeated here.
- the memory 802 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto.
- the memory 802 may be integrated with the processor 801, or may exist independently and be coupled to the processor 801 through an interface circuit (not shown in FIG. 8 ) of the communication device 800, which is not specifically limited in the embodiments of the present application.
- the transceiver 803 is used for communication with other communication devices. For example, if the communication device 800 is a terminal, the transceiver 803 can be used to communicate with a network device, or with another terminal device. For another example, if the communication device 800 is a network device, the transceiver 803 can be used to communicate with a terminal, or with another network device.
- the transceiver 803 may include a receiver and a transmitter (not shown separately in FIG8 ), wherein the receiver is used to implement a receiving function, and the transmitter is used to implement a sending function.
- the transceiver 803 may be integrated with the processor 801, or may exist independently and communicate with the processor 801 through the interface of the communication device 800.
- the circuit (not shown in FIG. 8 ) is coupled to the processor 801 , which is not specifically limited in the embodiment of the present application.
- the structure of the communication device 800 shown in FIG. 8 does not constitute a limitation on the communication device, and an actual communication device may include more or fewer components than shown in the figure, or combine certain components, or arrange the components differently.
- the technical effects of the communication device 800 can refer to the technical effects of the method described in the above method embodiment, which will not be repeated here.
- processors in the embodiments of the present application may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
- DSP digital signal processor
- ASIC application-specific integrated circuits
- FPGA field programmable gate arrays
- a general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
- the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories.
- the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
- the volatile memory may be a random access memory (RAM), which is used as an external cache.
- RAM random access memory
- SRAM static RAM
- DRAM dynamic random access memory
- SDRAM synchronous DRAM
- DDR SDRAM double data rate SDRAM
- ESDRAM enhanced SDRAM
- SLDRAM synchronous link DRAM
- DR RAM direct rambus RAM
- the above embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware or any other combination.
- the above embodiments can be implemented in whole or in part in the form of a computer program product.
- the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, the process or function described in the embodiment of the present application is generated in whole or in part.
- the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
- the computer program or instruction can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- the computer program or instruction can be transmitted from one website site, computer, server or data center to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
- the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center containing one or more available media sets.
- the available medium can be a magnetic medium (for example, a floppy disk, a hard disk, a tape), an optical medium (for example, a DVD), or a semiconductor medium.
- the semiconductor medium can be a solid-state hard disk.
- At least one means one or more, and “more than one” means two or more.
- At least one of the following” or similar expressions refers to any combination of these items, including any combination of single or plural items.
- at least one of a, b, or c can mean: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple.
- the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
- the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.
- the disclosed systems, devices and methods can be implemented in other ways.
- the device embodiments described above are only illustrative, for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system. Or some features may be ignored or not performed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, which may be electrical, mechanical or other forms.
- the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
- the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in each embodiment of the present application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), disk or optical disk, and other media that can store program codes.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种波束测量方法、装置及系统,属于通信技术领域,用以实现网络设备能够确定用于多个波束同发的波束。在该方法中,终端可以根据配置信息的指示,向网络设备上报测量资源对,以便网络设备能够根据测量资源对,确定终端有两个波束能用于终端同时执行上行传输,也即,实现网络设备能够确定用于多个波束同发的波束,从而实现对多波束同传的有效调度。
Description
本申请要求于2022年11月04日提交国家知识产权局、申请号为202211379589.1、申请名称为“波束测量方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及通信领域,尤其涉及一种波束测量方法、装置及系统。
在第五代(5th generation,5G)移动通信系统的在下行传输和上行传输中,网络设备和终端具体采用什么波束可以通过波束管理流程确定。例如,网络设备可以采用网络设备的波束依次发送对应的测量资源,终端可以采用终端的波束接收测量资源,以确定测量资源对应的终端最佳波束。终端可以将终端最佳波束对应的测量资源的信息上报给网络设备,以便网络设备确定网络设备采用什么波束进行发送,终端采用什么波束进行接收是较佳的。
为提高上行传输可靠性,目前标准正在讨论如何通过终端的多天线面板实现多波束同传。此时,一个测量资源对应的终端的波束可能有多个,网络设备如何确定这多个波束,以实现对多波束同传的有效调度,是目前研究的热点问题。
发明内容
本申请实施例提供一种波束测量方法、装置及系统,用以实现网络设备能够确定用于多个波束同发的波束。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种波束测量方法,该方法包括:终端接收来自网络设备的配置信息,并根据配置信息,向网络设备发送第一测量资源对的信息。配置信息用于指示终端向网络设备发送测量资源对的信息,测量资源对包括两个测量资源,两个测量资源对应的终端的两个波束能同时用于上行传输。第一测量资源对包括第一测量资源和第二测量资源,第一测量资源和第二测量资源对应的终端的两个波束能同时用于上行传输。
基于第一方面所述的方法可知,终端可以根据配置信息的指示,向网络设备上报测量资源对,以便网络设备能够根据测量资源对,确定终端有两个波束能用于终端同时执行上行传输,也即,实现网络设备能够确定用于多个波束同发的波束,从而实现对多波束同传的有效调度。
一种可能的设计方案中,配置信息还用于指示多个测量资源,终端根据配置信息,向网络设备发送第一测量资源对的信息,包括:终端根据配置信息,接收来自网络设备的多个测量资源,并根据配置信息,向网络设备发送多个测量资源中第一测量资源对的信息。可以看出,在波束测量过程中,网络设备可以不用指定终端具体上报哪两个资源,终端可以根据实际需求选择对应的两个测量资源进行上报,以满足实际需求。例如,终端可以上报平均信号质量最强的两个资源。
可选地,第一测量资源是终端使用终端的第一波束接收的测量资源中,信号质量大于预设质量的测量资源,第二测量资源是终端使用终端的第二波束接收的测量资源中,信号质量大于质量阈值的测量资源。可以理解,由于第一测量资源和第二测量资源都可以是信号质量比较强的测量资源,网络设备通过调度第一测量资源和第二测量资源来指示终端执行上行同传,可以保障传输质量。
进一步的,第一测量资源对的信息包括如下至少一项:第一测量资源的标识、第一测量资源的参考信号接收功率RSRP、第二测量资源的标识,或第二测量资源的RSRP,用以准确指示第一测量资源和第二测量资源的质量,或者也可以通过其他可能的信息指示这两个测量资源的质量,不做限定。
一种可能的设计方案中,第一方面所述的方法还可以包括:终端接收来自网络设备的指示信息。其中,指示信息用于指示:终端使用第一测量资源和第二测量资源对应的终端的两个波束,同时进行上行传输。也就是说,终端是否采用多波束同传可以由网络设备通过指示信息来灵活调
度,以实现按需执行多波束同传。
可以理解,第一测量资源和第二测量资源可以是相同,或者不同的测量资源。第一测量资源可以对应的终端的第一波束,第二测量资源可以对应的终端的第二波束,也即,同一个测量资源可以对应终端的两个不同的波束,或者不同的两个测量资源分别对应终端的两个不同的波束,具体不做限定。
可选地,指示信息可以包括第一测量资源的标识和第二测量资源的标识。可以理解,通过波束测量,终端可以维护测量资源对和波束的映射关系。这样,即使网络设备指示测量资源对,终端也可以确定对应的两个波束,从而可以降低指示开销。
一种可能的设计方案中,配置信息还用于指示测量资源集合,第一方面所述的方法还可以包括:终端根据配置信息,确定测量资源集合中第三测量资源对应的终端发射功率回退量,并向网络设备发送第三测量资源对应的终端发射功率回退量,以便网络设备能够及时调整终端的上行传输方式,保障上行传输的效率和可靠性。
可选地,终端设备根据配置信息,确定测量资源集合中第三测量资源对应的终端发射功率回退量,包括:如果第一测量资源的标识和第二测量资源的标识,与第三测量资源的标识相同,则终端根据第一测量资源对应的终端的第一波束的发射功率回退量,以及第二测量资源对应的终端的第二波束的发射功率回退量,确定第三测量资源对应的终端发射功率回退量。也就是说,在终端的两个波束对应同一个测量资源的情况下,网络设备通过该测量资源对应的一个波束发送的信号能够被终端的两个波束同时接收。因此,这两个波束应当被看做是一个整体,无论哪一个波束有终端发射功率回退,终端都需要上报这两个波束联合的终端发射功率回退量,以确保网络设备能够准确评估这两个波束的整体传输质量。
第二方面,提供一种波束测量方法,该方法包括:网络设备向终端发送配置信息,并接收来自终端的第一测量资源对的信息。其中,配置信息用于指示终端向网络设备发送测量资源对的信息,测量资源对包括两个测量资源,两个测量资源对应的终端的两个波束能同时用于上行传输。第一测量资源对包括第一测量资源和第二测量资源,第一测量资源和第二测量资源对应的终端的两个波束能同时用于上行传输。
一种可能的设计方案中,配置信息还用于指示多个测量资源,网络设备接收来自终端的第一测量资源对的信息,包括:网络设备根据配置信息,向终端发送多个测量资源,并接收来自终端的第一测量结果对的信息。
可选地,第一测量资源对的信息包括如下至少一项:第一测量资源的标识、第一测量资源的参考信号接收功率RSRP、第二测量资源的标识,或第二测量资源的RSRP。
一种可能的设计方案中,第二方面所述的方法还可以包括:网络设备向终端发送指示信息。其中,指示信息用于指示:终端使用第一测量资源和第二测量资源对应的终端的两个波束,同时进行上行传输。
可选地,指示信息包括第一测量资源的标识和第二测量资源的标识。
一种可能的设计方案中,配置信息还用于指示测量资源集合,第二方面所述的方法还可以包括:网络设备接收来自终端的第三测量资源对应的终端发射功率回退量。其中,第三测量资源属于测量资源集合,第一测量资源的标识和第二测量资源的标识与第三测量资源的标识相同。
此外,第二方面所述的方法的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第三方面,提供一种波束测量方法,该方法包括:网络设备向终端发送配置信息,终端接收来自网络设备的配置信息。终端根据配置信息,向网络设备发送第一测量资源对的信息,网络设备接收来自终端的第一测量资源对的信息。其中,配置信息用于指示终端向网络设备发送测量资源对的信息,测量资源对包括两个测量资源,两个测量资源对应的终端的两个波束能同时用于上行传输。第一测量资源对包括第一测量资源和第二测量资源,第一测量资源和第二测量资源对应的终端的两个波束能同时用于上行传输。
一种可能的设计方案中,配置信息还用于指示多个测量资源。终端根据配置信息,向网络设备发送第一测量资源对的信息,网络设备接收来自终端的第一测量资源对的信息,包括:网络设
备根据配置信息,向终端发送多个测量资源。终端根据配置信息,接收来自网络设备的多个测量资源,并根据配置信息,向网络设备发送多个测量资源中第一测量资源对的信息。网络设备接收来自终端的第一测量结果对的信息。
可选地,第一测量资源是终端使用终端的第一波束接收的测量资源中,信号质量大于预设质量的测量资源,第二测量资源是终端使用终端的第二波束接收的测量资源中,信号质量大于质量阈值的测量资源。
进一步的,第一测量资源的质量信息包括如下至少一项:第一测量资源的标识、第一测量资源的参考信号接收功率RSRP、第二测量资源的标识,或第二测量资源的RSRP。
一种可能的设计方案中,第三方面所述的方法还可以包括:网络设备向终端发送指示信息,终端接收来自网络设备的指示信息。其中,指示信息用于指示:终端使用第一测量资源和第二测量资源对应的终端的两个波束,同时进行上行传输。
可选地,指示信息可以包括第一测量资源的标识和第二测量资源的标识。
一种可能的设计方案中,配置信息还用于指示测量资源集合,第三方面所述的方法还可以包括:终端根据配置信息,确定测量资源集合中第三测量资源对应的终端发射功率回退量,并向网络设备发送第三测量资源对应的终端发射功率回退量。网络设备接收来自终端的第三测量资源对应的终端发射功率回退量。
可选地,终端设备根据配置信息,确定测量资源集合中第三测量资源对应的终端发射功率回退量,包括:如果第一测量资源的标识和第二测量资源的标识,与第三测量资源的标识相同,则终端根据第一测量资源对应的终端的第一波束的发射功率回退量,以及第二测量资源对应的终端的第二波束的发射功率回退量,确定第三测量资源对应的终端发射功率回退量。
此外,第三方面所述的方法的技术效果可以第一方面或第二方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第四方面,提供一种波束测量方法,该方法包括:终端接收来自网络设备的配置信息,并根据配置信息,执行波束测量。配置信息用于指示:在波束测量过程中,终端需要向网络设备发送测量资源对的测量结果,测量资源对包括两个测量资源。其中:终端接收两个测量资源所使用两个波束能用于终端同时执行上行传输。
一种可能的设计方案中,配置信息还用于指示第一测量资源集合,终端的两个波束包括第一波束和第二波束。终端根据配置信息,执行波束测量,包括:终端使用第一波束和第二波束,接收来自网络设备的第一测量资源集合中的多个测量资源,以根据配置信息向网络设备发送第一测量结果。其中,第一测量结果用于指示第一测量资源的质量信息以及第二测量资源的质量信息,第一测量资源和第二测量资源为多个测量资源中的第一测量资源对,第一测量资源对用于终端同时执行上行传输。
可选地,第一测量资源是终端使用第一波束接收的测量资源中质量大于预设质量的测量资源,第二测量资源是终端使用第二波束接收的测量资源中质量大于质量阈值的测量资源。
进一步的,第一测量资源的质量信息包括如下至少一项:第一测量资源的标识、第一测量资源的参考信号接收功率RSRP。第二测量资源的质量信息包括如下至少一项:第二测量资源的标识,以及第二测量资源的RSRP。
可选地,第四方面所述的方法还可以包括:终端接收来自网络设备的指示信息,并根据指示信息,使用第一波束和第二波束同时向网络设备发送上行信号。其中,指示信息用于指示终端使用第一波束和第二波束同时执行上行传输。
进一步的,指示信息可以包括第一测量资源的标识和第二测量资源的标识。
可选地,配置信息还用于指示包括第一测量资源和第二测量资源的第二测量资源集合,第四方面所述的方法还可以包括:终端根据配置信息,确定第二测量资源集合中第三测量资源对应的终端发射功率回退量,以向网络设备发送第三测量资源对应的终端发射功率回退量。
进一步的,终端设备根据配置信息,确定第一资源集合中第三测量资源对应的终端发射功率回退量,包括:如果第一测量资源和第二测量资源都为第三测量资源,则终端根据第一波束和第二波束的终端发射功率回退量,确定第三测量资源对应的终端发射功率回退量。
此外,第四方面所述的方法的技术效果可以第一方面至第三方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第五方面,提供一种波束测量方法,该方法包括:网络设备向终端发送配置信息,并根据配置信息,执行波束测量。配置信息用于指示:在波束测量过程中,终端需要向网络设备发送测量资源对的测量结果,测量资源对包括两个测量资源。其中:终端接收两个测量资源所使用的两个波束用于终端同时执行上行传输。
一种可能的设计方案中,配置信息还用于指示第一测量资源集合,网络设备根据配置信息,执行波束测量,包括:网络设备根据配置信息,向终端发送第一测量资源集合中的多个测量资源,并接收来自终端的第一测量结果。其中,第一测量结果用于指示第一测量资源的质量信息以及第五测量资源的质量信息,第一测量资源和第五测量资源为多个测量资源中的第一测量资源对,第一测量资源对用于终端同时执行上行传输。
可选地,第一测量资源的质量信息包括如下至少一项:第一测量资源的标识、第一测量资源的参考信号接收功率RSRP,第五测量资源的质量信息包括如下至少一项:第五测量资源的标识,以及第五测量资源的RSRP。
可选地,第五方面所述的方法还可以包括:网络设备向终端发送指示信息,以接收终端使用两个波束同时发送的上行信号。其中,指示信息用于指示终端使用两个波束同时执行上行传输。
进一步的,指示信息包括第一测量资源的标识和第五测量资源的标识。
可选地,配置信息还用于指示包括第一测量资源和第五测量资源的第五测量资源集合,第五方面所述的方法还可以包括:网络设备接收来自终端的第三测量资源对应的终端发射功率回退量。其中,第一测量资源和第五测量资源为第三测量资源。
进一步的,第五方面所述的方法还可以包括:网络设备根据第三测量资源对应的终端发射功率回退量,调度终端的上行传输,以保障上行传输质量。
此外,第五方面所述的方法的技术效果可以第一方面至第三方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第六方面,提供一种波束测量方法,该方法包括:网络设备向终端发送配置信息,终端接收来自网络设备的配置信息。网络设备和终端根据配置信息,执行波束测量。配置信息用于指示:在波束测量过程中,终端需要向网络设备发送测量资源对的测量结果,测量资源对包括两个测量资源。其中:终端接收两个测量资源所使用两个波束能用于终端同时执行上行传输。
一种可能的设计方案中,配置信息还用于指示第一测量资源集合,终端的两个波束包括第一波束和第二波束。网络设备和终端根据配置信息,执行波束测量,包括:网络设备配置信息,向终端发送第一测量资源集合中的多个测量资源,终端使用第一波束和第二波束,接收来自网络设备的第一测量资源集合中的多个测量资源。终端根据配置信息向网络设备发送第一测量结果,网络设备接收来自终端的第一测量结果。其中,第一测量结果用于指示第一测量资源的质量信息以及第二测量资源的质量信息,第一测量资源和第二测量资源为多个测量资源中的第一测量资源对,第一测量资源对用于终端同时执行上行传输。
可选地,第一测量资源是终端使用第一波束接收的测量资源中质量大于预设质量的测量资源,第二测量资源是终端使用第二波束接收的测量资源中质量大于质量阈值的测量资源。
进一步的,第一测量资源的质量信息包括如下至少一项:第一测量资源的标识、第一测量资源的参考信号接收功率RSRP。第二测量资源的质量信息包括如下至少一项:第二测量资源的标识,以及第二测量资源的RSRP。
可选地,第六方面所述的方法还可以包括:网络设备向终端发送指示信息,终端接收来自网络设备的指示信息。终端根据指示信息,使用第一波束和第二波束同时向网络设备发送上行信号。其中,指示信息用于指示终端使用第一波束和第二波束同时执行上行传输。
进一步的,指示信息可以包括第一测量资源的标识和第二测量资源的标识。
可选地,配置信息还用于指示包括第一测量资源和第二测量资源的第二测量资源集合,第六方面所述的方法还可以包括:终端根据配置信息,确定第二测量资源集合中第六测量资源对应的终端发射功率回退量,以向网络设备发送第六测量资源对应的终端发射功率回退量。网络设备接
收来自终端的第六测量资源对应的终端发射功率回退量。
进一步的,终端设备根据配置信息,确定第一资源集合中第六测量资源对应的终端发射功率回退量,包括:如果第一测量资源和第二测量资源都为第六测量资源,则终端根据第一波束和第二波束的终端发射功率回退量,确定第六测量资源对应的终端发射功率回退量。
进一步的,第六方面所述的方法还可以包括:网络设备根据第六测量资源对应的终端发射功率回退量,调度终端的上行传输。
此外,第六方面所述的方法的技术效果可以第一方面至第三方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第七方面,提供一种通信装置。该通信装置包括:用于执行第一方面或第四方面所述的方法的模块,例如收发模块和处理模块。例如,收发模块,用于指示该通信装置的收发功能,处理模块,用于执行该通信装置除收发功能以外的功能。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第七方面所述的通信装置的发送功能,接收模块用于实现第七方面所述的通信装置的接收功能。
可选地,第七方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第一方面或第四方面所述的方法。
可以理解的是,第七方面所述的通信装置可以是终端,也可以是可设置于终端中的芯片(系统)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,第七方面所述的通信装置的技术效果可以参考第一方面所述的方法的技术效果,此处不再赘述。
第八方面,提供一种通信装置。该通信装置包括:用于执行第二方面或第五方面所述的方法的模块,例如收发模块和处理模块。例如,收发模块,用于指示该通信装置的收发功能,处理模块,用于执行该通信装置除收发功能以外的功能。
可选地,收发模块可以包括发送模块和接收模块。其中,发送模块用于实现第八方面所述的通信装置的发送功能,接收模块用于实现第八方面所述的通信装置的接收功能。
可选地,第八方面所述的通信装置还可以包括存储模块,该存储模块存储有程序或指令。当该处理模块执行该程序或指令时,使得该通信装置可以执行第二方面或第五方面所述的方法。
可以理解的是,第八方面所述的通信装置可以是网络设备,也可以是可设置于网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,第八方面所述的通信装置的技术效果可以参考第二方面所述的方法的技术效果,此处不再赘述。
第九方面,提供一种通信装置。该通信装置包括:处理器,该处理器用于执行存储器中的计算机程序或指令,以使该通信装置执行第一方面、第二方面、第四方面或第五方面中任意一种可能的实现方式所述的方法。
在一种可能的设计方案中,第九方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第九方面所述的通信装置与其他通信装置通信。
在一种可能的设计方案中,第九方面所述的通信装置还可以包括存储器。该存储器可以与处理器集成在一起,也可以分开设置。该存储器可以用于存储第一方面、第二方面、第四方面或第五方面中任一方面所述的方法所涉及的计算机程序和/或数据。
在本申请实施例中,第九方面所述的通信装置可以为第一方面或第四方面所述的终端或第二方面或第五方面所述的网络设备,或者可设置于该终端或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第九方面所述的通信装置的技术效果可以参考第一方面、第二方面、第四方面或第五方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第十方面,提供一种通信装置。该通信装置包括:处理器,该处理器与存储器耦合,该处理器用于执行存储器中存储的计算机程序,以使得该通信装置执行第一方面、第二方面、第四方面或第五方面中任意一种可能的实现方式所述的方法。
在一种可能的设计方案中,第十方面所述的通信装置还可以包括收发器。该收发器可以为收
发电路或接口电路。该收发器可以用于第十方面所述的通信装置与其他通信装置通信。
在本申请实施例中,第十方面所述的通信装置可以为第一方面或第四方面所述的终端或第二方面或第五方面所述的网络设备,或者可设置于该终端或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第十方面所述的通信装置的技术效果可以参考第一方面、第二方面、第四方面或第五方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第十一方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机程序,当该处理器执行该计算机程序时,以使该通信装置执行第一方面、第二方面、第四方面或第五方面中的任意一种实现方式所述的方法。
在一种可能的设计方案中,第十一方面所述的通信装置还可以包括收发器。该收发器可以为收发电路或接口电路。该收发器可以用于第十一方面所述的通信装置与其他通信装置通信。
在本申请实施例中,第十一方面所述的通信装可以为第一方面或第四方面所述的终端,或第二方面或第五方面所述的网络设备,或者可设置于该终端或网络设备中的芯片(系统)或其他部件或组件,或者包含该终端或网络设备的装置。
此外,第十一方面所述的通信装置的技术效果可以参考第一方面、第二方面、第四方面或第五方面中任意一种实现方式所述的方法的技术效果,此处不再赘述。
第十二方面,提供一种通信系统。该通信系统包括:用于执行第一方面所述的方法的终端,以及用于执行第二方面所述的方法的网络设备;或者,该通信系统包括:用于执行第四方面所述的方法的终端,以及用于执行第五方面所述的方法的网络设备。
第十三方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面至第六方面中任意一种可能的实现方式所述的方法。
第十四方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得该计算机执行第一方面至第六方面中任意一种可能的实现方式所述的方法。
图1为终端的多天线面板的结构示意图;
图2为功率回退的场景示意图一;
图3为功率回退的场景示意图二;
图4为本申请实施例提供的通信系统的架构示意图一;
图5为本申请实施例提供的通信系统的架构示意图二;
图6为本申请实施例提供的波束测量方法的流程示意图;
图7为本申请实施例提供的通信装置的结构示意图一;
图8为本申请实施例提供的通信装置的结构示意图二。
方便理解,下面先介绍本申请实施例所涉及的技术术语。
1、波束:
波束是指网络设备或终端的发射机或接收机通过天线阵列形成的具有指向性的特殊的发送或接收效果,类似于手电筒将光收敛到一个方向形成的光束。通过波束的形式进行信号的发送和接收,可以有效提升信号的传输据距离。
波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束一般和资源对应。例如,进行波束测量时,网络设备通过不同的资源来测量不同的波束,终端反馈测得的资源质量,网络设备可以知道对应的波束的质量。在数据传输时,波束也可以通过其对应的资源指示。例如,网络设备通过下行控制信息(downlink control information,DCI)中的传输配置编号(transmission configuration index,TCI)字段指示一个传输配置指示-状态(state),终端根据该TCI-状
态中包含的参考资源来确定该参考资源对应的波束。
在通信协议中,波束可以具体表征为数字波束,模拟波束,空域滤波器(spatial domain filter),空间滤波器(spatial filter),空间参数(spatial parameter),TCI,TCI-状态等。用于发送信号的波束可以称为发送波束(transmission beam,或Tx beam),空域发送滤波器(spatial domain transmission filter),空间发送滤波器(spatial transmission filter),空域发送参数(spatial domain transmission parameter),空间发射参数(spatial transmission parameter)等。用于接收信号的波束可以称为接收波束(reception beam,或Rx beam),空域接收滤波器(spatial domain reception filter),空间接收滤波器(spatial reception filter),空域接收参数(spatial domain reception parameter),空间接收参数(spatial reception parameter)等。
可以理解,本申请实施例统一采用波束进行表述,但波束可以替换理解为其他等同的概念,且不限于上述提到的概念。
2、资源:
在通信协议中,参考信号是以资源的形式进行配置的。网络设备会将各个参考信号以资源的形式配置给终端,一个资源即为一个配置信息单元,通常包括一个参考信号相关的参数,如参考信号的时频资源位置,端口数,时域类型(周期性/半静态/非周期)等等。
资源可以是上行信号资源,也可以是下行信号资源。上行信号包括但不限于探测参考信号(sounding reference signal,SRS),解调参考信号(demodulation reference signal,DMRS)。下行信号包括但不限于:信道状态信息参考信号(channel state information reference signal,CSI-RS)、小区专用参考信号(cell specific reference signal,CS-RS)、UE专用参考信号(user equipment specific reference signal,US-RS)、解调参考信号(demodulation reference signal,DMRS)、以及同步信号/物理广播信道块(synchronization system/physical broadcast channel block,SS/PBCH block)。其中,SS/PBCH block可以简称为同步信号块(synchronization signal block,SSB)。
资源可以通过无线资源控制(radio resource control,RRC)消息配置。在配置结构上,一个资源是一个数据结构,包括其对应的上行/下行信号的相关参数。例如,上行/下行信号的类型、承载上行/下行信号的资源粒、上行/下行信号的发送时间和周期、发送上行/下行信号所采用的端口数等。每一个上行/下行信号的资源具有唯一的标识,以标识该下行信号的资源。可以理解的是,资源的标识也可以称为资源的标识,本申请实施例对此不作任何限制。
3、波束管理:
第五代(5th generation,5G)移动通信系统可以采用高频通信,即采用较高频段,如28吉赫兹(GHz)信号传输数据。高频通信的一个主要问题是信号能量随传输距离下降较快,导致信号传输距离短。为了克服这个问题,高频通信采用模拟波束技术,通过对天线阵列进行加权处理,将信号能量集中在一个较小的角度范围内,形成一个类似于光束一样的信号(称为模拟波束,简称波束),从而提高传输距离。
网络设备和终端都要采用波束进行传输。在下行传输中,网络设备采用的波束称为下行发送波束,终端采用的波束称为下行接收波束。在上行传输中,终端采用的波束称为上行发送波束,网络设备采用的波束称为上行接收波束。在下行传输和上行传输中,网络设备和终端具体采用什么波束可以通过波束管理流程确定。
例如,网络设备有M个波束,终端有N个波束,下行波束管理过程如下:
1)波束管理配置:网络设备向终端发送配置消息,用以为终端配置下行波束管理相关的参数,如包括M个测量资源,测量周期等。测量资源可以为用于波束测量的参考信号(reference signal,RS)。M个测量资源与网络设备的M个波束一一对应,网络设备采用各个波束发送对应的测量资源,终端测量该测量资源即可确定该测量资源对应的波束的质量。可以理解,网络设备的波束对终端是不可见的,终端可以确定各个测量资源的质量,但该测量资源对应的是哪个波束,终端不感知。
2)波束测量:每个网络设备的波束与每个终端的波束对应的信道质量是不同的,终端需要测量每个网络设备的波束与每个终端的波束之间的信道质量,从而确定网络设备采用什么波束进行发送,终端采用什么波束进行接收是较佳的。具体的,在每个测量周期,网络设备采用上述M个波束依次发送对应的测量资源,终端采用N个波束中的一个进行接收和测量,以确定终端本次采用的波束与上述M个波束之间的信道质量,例如,参考信号接收功率(reference signal receiving power,RSRP)。在各个测量周期,终端依次采用不同的波束进行接收和测量,通过N个测量周期可以确定终端的N个波束与网络
设备的M个波束之间的信道质量。
3)测量结果上报:终端通过上述波束测量,可以根据信道质量,确定每个测量资源对应的终端最佳波束,或者说终端最佳接收波束或者最佳接收波束。终端可以将终端最佳波束对应的测量资源的信息上报给网络设备,以便网络设备确定网络设备采用什么波束进行发送,终端采用什么波束进行接收是较佳的。例如,如果网络设备采用某个测量资源对应的波束进行下行传输,终端会采用对应的最佳波束进行接收。其中,终端上报的测量资源的信息果可以包括至多4个终端最佳波束对应的测量资源的标识和RSRP。网络设备能够根据M个波束和M个测量资源的对应关系,确定终端上报的测量资源标识对应的网络设备的波束。例如,终端通过波束测量可以确定质量最好的4个测量资源为RS#1,RS#2,RS#3,RS#4,4个测量资源对应的终端最佳波束分别为波束B1,波束B2,波束B2,波束B3。也即,终端使用波束B1接收的4个测量资源中,RS#4的质量最好。终端使用波束B2接收的4个测量资源中,RS#2和RS#3的质量最好。终端使用波束B3接收的4个测量资源中,RS#1的质量最好。终端可以向网络设备上报RS#1,RS#1对应的RSRP1,RS#2,RS#2对应的RSRP2,RS#3,RS#3对应的RSRP3,RS#4,RS#4对应的RSRP4。
4)终端接收波束维护:终端向网络设备上报终端最佳波束对应的测量结果后,终端可以维护终端最佳波束与终端最佳波束对应的测量资源之间的映射关系。例如,映射关系可以如下表1所示。
表1
4、波束指示:
在下行传输中,网络设备采用的波束需要告知给终端,用以终端确定采用什么波束进行接收。具体的,网络设备可以向终端指示一个测量资源的标识,用于告知终端其采用了该测量资源对应的波束进行下行发送,这样终端可以采用该测量资源对应的终端最佳波束进行接收。例如,网络设备告知终端其采用的是RS#2对应的波束进行下行发送,终端采用波束B2进行下行接收。在上行传输中,终端采用的波束进行发送也是由网络设备指示的。具体的,网络设备可以向终端指示一个测量资源的标识,表示要求终端采用该测量资源对应的终端最佳波束进行上行传输。例如,网络设备向终端指示采用RS#2对应的波束进行上行传输,终端采用波束B2进行上行传输。
5、天线面板:
天线面板可以指网络设备的天线面板,也可以指终端的天线面板。一个天线面板上一般有一个或多个天线,这些天线排列成天线阵列,进行波束赋形,从而形成模拟波束。天线阵列可以生成指向不同方向的模拟波束。也就是说,每个天线面板上都可以形成多个模拟波束,可以通过波束测量来确定该天线面板采用哪个模拟波束是最好的。在本申请实施例中,若未做出特别说明,天线面板均指终端的天线面板。
在通信协议中,天线面板可以用面板(panel)、或者面板标识(panel index)等来表示,或者,也可以通过其他方式来隐含表示天线面板。例如,天线面板也可以通过天线端口(如CSI-RS端口、SRS端口、DMRS端口、相位追踪参考信号(phase-tracking reference signal,PTRS)端口、小区参考信号(cell-specific reference signal,CRS)端口、跟踪参考信号(tracking reference signal,TRS)端口、或SSB端口等)或天线端口组等来表征,也可以通过资源(如CSI-RS资源、SRS资源、DMRS资源、PTRS资源、CRS资源、TRS资源、SSB资源等)或资源组来表征,也可以通过某个信道表征(如物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink sharing channel,PUSCH)、物理随机接入信道(physical random access channel,PRACH)、PDSCH、物理下行控制信道(physical downlink control channel,PDCCH)、或物理广播信道(physical broadcast channel,PBCH)等),也可以通过波束,如准同位(quasi-co-location,QCL)、TCI-状态、空间关系、或者配置在QCL、TCI-state、空间关系中的某个标识来表征,也可以通过波束组,如QCL组、TCI-状态组、或空间关系组等来表征,也可以通过终端上报的终端能力参数集合来表征(终端能力参数集合与天线面板存在对应关
系)。一个终端能力参数集合包括一个天线面板对应的相关终端能力。例如,包括一个天线面板对应的最大传输层数、最大SRS端口数、以及最大传输功率等。也就是说,本申请实施例中提到的天线面板也可以替换为上述内容。
终端可以配备多个天线面板。这些天线面板可以分布在不同的位置,朝向不同的方向,这可以保证不论终端朝向哪个方向,都至少有一个天线面板是朝向网络设备的,可以与网络设备进行数据传输。
图1为终端的多天线面板的结构示意图,如图1所示,终端配备了2个天线面板,每个天线面板朝向不同的方向,每个天线面板可以生成多个不同方向的波束,从而构成较为全面的波束覆盖。在现有通信协议中,终端的上行传输通常采用单个波束。单个波束的缺点是支持的传输流数低,传输功率受限,传输可靠性低,如单个波束被遮挡时传输会失败。为了克服上述问题,R18标准正在讨论如何实现上行波束同时发送,简称多波束同传,由于每个波束通过一个天线面板生成,因此多波束同传也可称为多天线面板同传。但是,在多天线面板的情况下,一个测量资源对应的终端的波束可以有多个,但目前的上报机制,即上报该测量资源的标识,使得网络设备无法确定该测量资源对应的终端的波束是一个还是多个,也即无法确定终端是否可以采用多天线面板同传,从而无法实现对终端的多天线面板同传进行有效调度。
6、最大允许辐射量(maximum permissible exposure,MPE):
MPE是法规规定的人体可以接收的最大电磁辐射量。用于在适用终端时,会受到终端的电磁辐射,该电磁辐射主要来源于终端的发射信号。当终端的发射信号强度太高时,会对用于产生过高的电磁辐射,甚至超过法规允许的最大电磁辐射量。在这种情况下,终端需要降低其发射功率,即进行功率回退来减少对人体的电磁辐射,从而满足MPE法规要求。终端采用不同的波束朝不同的方向发射信号,不同波束对人体产生的辐射效果是不一样的,有的波束会对人体产生辐射,有的波束不会,有的波束产生的辐射较强,有的波束产生的辐射较弱,因此不同波束对应的终端发射功率回退量也不一样,有的波束需要功率回退,有的波束不需要功率回退,有的波束的终端发射功率回退量较大,有的波束的终端发射功率回退量较小。例如,终端可以通过终端的传感器感应各个波束方向上是否有人体,并确定各个波束方向对人体的辐射是否超标,以及在辐射超标的情况下,需要回退多少终端发射功率回退量。第三代合作伙伴计划(3rd generation partnership project,3GPP)标准中规定,终端为了满足MPE法规要求进行功率回退后,需要将终端最佳波束的终端发射功率回退量上报给网络设备,以便网络设备在选择终端的上行发送波束时进行参考。在3GPP标准中,出于上报开销的考虑,终端可以上报至多4个终端最佳波束的终端发射功率回退量。
图2为功率回退的场景示意图一,如图2所示,通过波束管理流程,终端上报RS#2和RS#4的RSRP分别为-80分贝毫瓦(decibel relative to one milliwatt,dBm)和-81dBm。由于RS#2的RSRP大于RS#4的RSRP,网络设备通常会指示终端采用RS#2对应的波束B2进行上行传输。但是,如果终端确定RS#2和RS#3对应的波束B2存在3dB的功率回退,则导致采用波束B2进行上行传输时信号质量,反而不如采用RS#4对应的波束B3进行上行传输时信号质量。因此,终端可以上报RS#2和RS#3对应的波束B2存在3dB的功率回退,如表2所示。
表2
此时,网络设备可以根据终端上报的RS#3和RS#2对应的波束B2存在3dB的功率回退,指示终端采用RS#4对应的波束B3进行上行传输。
但是,针对多波束同传场景,终端只上报终端最佳波束的终端发射功率回退量的方式可能导致上行传输性能损失。
图3为功率回退的场景示意图二,如图3所示,在多波束同场景下,终端通过2个天线面板分别发送波束B1和波束B2,且波束B1和波束B2都对着RS#3对应的网络设备的波束方向进行发送。波束B1是RS#3对应的终端最佳波束。如果波束B2发生终端发射功率回退,波束B1未发生终端发射功率回退,则因为波束B2不是RS#3对应的终端最佳波束,终端不会上报波束B2的终端发射功率回退量。此时,由于终端实际已经将波束B2的终端发射功率回退,波束B1和波束B2的上行传输性能降低,但
网络设备因为不知道波束B2的终端发射功率回退,仍调度波束B1和波束B2执行上行传输,导致上行传输性能不佳。
针对上述技术问题,本申请实施例提出如下技术方案,用以实现对多波束同传的有效调度的同时,还能够避免上行传输性能受到影响。
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如无线网络(Wi-Fi)系统,车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-todevie,D2D)通信系统、车联网通信系统、第四代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G),如新空口(new radio,NR)系统,以及未来的通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“信息(information)”,“信号(signal)”,“消息(message)”,“信道(channel)”、“信令(singaling)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是匹配的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是匹配的。此外,本申请提到的“/”可以用于表示“或”的关系。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图4中示出的通信系统为例详细说明适用于本申请实施例的通信系统。
图4为本申请实施例提供的波束测量方法所适用的一种通信系统的架构示意图一。如图4所示,该通信系统包括:终端和网络设备。
其中,终端可以为具有收发功能的终端,或为可设置于该终端的芯片或芯片系统。该终端也可以称为用户设备(uesr equipment,UE)、接入终端、用户单元(subscriber unit)、用户站、移动站(mobile station,MS)、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、蜂窝电话(cellular phone)、智能电话(smart phone)、平板电脑(Pad)、无线数据卡、个人数字助理电脑(personal digital assistant,PDA)、无线调制解调器(modem)、手持设备(handset)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、车载终端、具有终端功能的路边单元(road side unit,RSU)等。本申请的终端还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元。或者,终端也可以是客户终端设备(customer-premises equipment,CPE)。
网络设备可以为接入网(access network,AN)设备,或可以称为无线接入网设备(radio access network,RAN)设备。RAN设备可以为终端提供接入功能,负责空口侧的无线资源管理、服务质量(quality of service,QoS)管理、数据压缩和加密等功能。RAN设备可以包括5G,如NR系统中的gNB,或,5G中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB、传输点(transmission and reception point,TRP或者transmission point,TP)或传输测量功能(transmission measurement function,TMF)的网络节点,如基带单元(building base band unit,BBU),或,集中单元(centralized unit,CU)
或分布单元(distributed unit,DU)、具有基站功能的RSU,或者有线接入网关,或者5G的核心网网元。或者,RAN设备还可以包括无线保真(wireless fidelity,WiFi)系统中的接入点(access point,AP),无线中继节点、无线回传节点、各种形式的宏基站、微基站(也称为小站)、中继站、接入点、可穿戴设备、车载设备等等。或者,RAN设备可以也可以包括下一代移动通信系统,例如6G的接入网设备,例如6G基站,或者在下一代移动通信系统中,该网络设备也可以有其他命名方式,其均涵盖在本申请实施例的保护范围以内,本申请对此不做任何限定。
可以理解,图4为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他终端设备,图4未予以画出。
图5本申请实施例提供的波束测量方法所适用的一种通信系统的架构示意图二。如图5示,该通信系统中网络设备和终端之间的通信还可以用另一种形式来表示。终端10包括:处理器101、存储器102和收发器103,收发器103包括:发射机1031、接收机1032和多个天线1033(天线面板)。网络设备20包括处理器201、存储器202和收发器203,收发器203包括:发射机2031、接收机2032和至少一个天线2033(天线面板)。发射机2031可以用于通过天线2033向终端10发送传输控制信息,如用于指示多天线面板频分同传的指示信息。相应的,接收机1032可以用于通过天线1033接收传输控制信息。如此,发射机1031可以用于通过多个天线1033(多个天线面板),以频分同传的方式,向网络设备20发送传输反馈信息,也即上行数据。相应的,接收机2032可以用于通过天线2033接收终端10发送的传输反馈信息。
本申请实施例中,网络设备向终端发送配置信息,终端可以根据配置信息的指示,向网络设备上报测量资源对,如包括第一测量资源和第二测量资源,以便网络设备能够根据测量资源对,确定终端有两个波束能用于终端同时执行上行传输,也即,实现网络设备能够确定用于多个波束同发的波束,从而实现对多波束同传的有效调度。
可选地,配置信息还用于指示测量资源集合,如果第一测量资源和第二测量资源为同一个资源,如测量资源集合中的第三测量资源,则终端还可以根据第一测量资源对应的终端的第一波束的发射功率回退量,以及第二测量资源对应的终端的第二波束的发射功率回退量,确定第三测量资源对应的终端发射功率回退量。如此,网络设备能够准确评估第三测量资源对应的两个波束的整体传输质量,从而对终端的上行传输进行调度,以避免上行传输性能受到影响。
方便理解,下面将结合图6本申请实施例提供的波束测量方法进行具体阐述。
示例性的,图6本申请实施例提供的波束测量方法的流程示意图。该方法可以适用于上述通信系统中网络设备与终端之间的通信。
如图6所示,该波束测量方法的流程如下:
S601,网络设备向终端发送配置信息,终端接收来自网络设备的配置信息。
配置信息可以用于指示终端向网络设备发送测量资源对的信息。该测量资源对可以包括两个测量资源,两个测量资源对应的终端的两个波束能同时用于上行传输。或者说,配置信息可以用于指示在波束测量过程中,终端需要向网络设备发送测量资源对的测量结果。测量资源对可以包括两个测量资源,终端接收这两个测量资源所使用的两个波束能用于终端同时执行上行传输。
具体的,配置信息可以包括波束管理相关的配置参数,记为第一配置参数。第一配置参数可以包括第一上报准则。第一上报准则可以默认用于指示:终端向网络设备发送测量资源对的信息,或者说在波束测量过程中,终端需要向网络设备发送测量资源对的测量结果,以及终端接收测量资源对所使用的两个波束能用于终端同时执行上行传输。也就是说,第一配置参数可以通过携带第一上报准则来指示终端执行多波束上行同传。如果第一配置参数中没有携带第一上报准则,则表示终端可以按照现有逻辑执行处理。或者,第一配置参数可以始终携带第一上报准则,第一上报准则的不同取值可以指示终端的不同行为。例如,第一上报准则为一个比特的信元,该比特的一种取值可以用于指示终端执行多波束上行同传;或者,该比特的另一种取值可以用于指示终端可以按照现有逻辑执行处理。
可以理解,第一上报准则为一种示例性的命名,也可以替换为其他任何可能的命名,如第一准则、第一规则、第一上报规则等。此外,本申请实施例提到的“同时”并不是指时间完全相同,即使时间存在一定的误差也可以认为是“同时”。
还可以理解,本申请实施例是以测量资源对为例,测量资源对也可以替换为多个测量资源,如2个
以上的测量资源。多个测量资源也可以理解为测量资源组、或者测量资源集合等,不做限定。多个测量资源对应的终端的多个波束能同时用于上行传输。也即,第一上报准则也可以默认用于指示:终端向网络设备发送多个测量资源的信息,以及终端接收这多个测量资源所使用的多个波束能用于终端同时执行上行传输。方便理解,下文是以2个测量资源,即测量资源对为例进行介绍。
配置信息可以用于指示终端向网络设备发送测量资源对的信息。该测量资源对可以包括两个测量资源,两个测量资源对应的终端的两个波束能同时用于上行传输。
配置信息还可以用于指示多个测量资源,或者说第一测量资源集合。这多个测量资源可以与网络设备的多个波束一一对应,也即,网络设备的每个波束都可以用于发送对应的一个测量资源,用以实现波束测量。
具体的,第一配置参数可以包括如下至少一项:多个测量资源的标识,测量周期,以及第一资源数量。测量周期可以用于指示网络设备具体可以在哪些周期性的时间点发送这多个测量资源,以便终端可以针对性地进行接收。第一资源数量可以用于指示终端至多能够上报测量资源的数量,如2、4、6等,不做限定。其中,终端上报测量资源可以是上报测量资源的标识,具体可以参考下述S602中的相关介绍,不再赘述。
S602,终端根据配置信息,向网络设备发送第一测量资源对的信息,网络设备接收来自终端的第一测量资源对的信息。
第一测量资源对可以包括第一测量资源和第二测量资源。第一测量资源和第二测量资源路可以是上述多个测量资源中的两个测量资源。第一测量资源和第二测量资源对应的终端的两个波束能同时用于上行传输。例如,第一测量资源是终端使用终端的第一波束接收的测量资源中,信号质量大于预设质量的测量资源,第二测量资源是终端使用终端的第二波束接收的测量资源中,信号质量大于质量阈值的测量资源,第一波束和第二波束能同时用于终端的上行传输。可以理解,由于第一测量资源和第二测量资源都可以是信号质量比较强的测量资源,网络设备通过调度第一测量资源和第二测量资源来指示终端执行上行同传,可以保障传输质量。
第一测量资源对的信息可以用于指示第一测量资源和第二测量资源的信号质量,如RSRP,或者其他任何可能被用于表征测量资源的信号质量的信息,不做限定。例如,第一测量资源对的信息可以包括如下至少一项:第一测量资源的参考信号接收功率RSRP、第二测量资源的标识,或第二测量资源的RSRP,用以准确指示第一测量资源和第二测量资源的质量。
具体的,网络设备可以根据配置信息,向终端发送多个测量资源。例如,网络设备可以根据测量周期,周期性地向终端发送多个测量资源。其中,网络设备可以使用网络设备的多个波束,发送这多个测量资源,也即,每个波束可以被用于发送该波束对应的一个测量资源。
终端可以根据配置信息,接收来自网络设备的多个测量资源。例如,终端可以包括第一天线面板和第二天线面板。终端可以使用第一天线面板接收多个测量资源。其中,第一天线面板的每个波束可以被用于接收多个测量资源中的至少部分测量资源,用以终端确定该波束接收的测量资源的信号质量。以第一天线面板的第一波束为例,终端可以使用第一波束接收多个测量资源,以确定第一波束接收的多个测量资源各自的质量。类似的,终端也可以使用第二天线面板接收多个测量资源。其中,第二天线面板的每个波束可以被用于接收多个测量资源中的至少部分测量资源,用以终端确定该波束接收的测量资源的质量。以第二天线面板的第二波束为例,终端可以使用第二波束接收多个测量资源,以确定第二波束接收的多个测量资源各自的信号质量。
方便理解,下面通过一个示例说明:
网络设备包括4个波束分别为波束A-波束D,4个波束对应的4分别为RS#1-RS#4。网络设备可以使用波束A发送RS#1,波束B发送RS#2,波束C发送RS#3,以及波束D发送RS#4。终端包括天线面板1和天线面板2,天线面板1包括波束B1和波束B2,天线面板2包括波束B3和波束B4。终端可以使用波束B1接收RS#1-RS#4,以确定RS#1的RSRP11,RS#2的RSRP12,RS#3的RSRP13,以及RS#4的RSRP14。终端可以使用波束B2接收RS#1-RS#4,以确定RS#1的RSRP21,RS#2的RSRP22,RS#3的RSRP23以及RS#4的RSRP24。终端可以使用波束B3接收RS#1-RS#4,以确定RS#1的RSRP31,RS#2的RSRP32,RS#3的RSRP33以及RS#4的RSRP34。终端可以使用波束B4接收RS#1-RS#4,以确定RS#1的RSRP41,RS#2的RSRP42,RS#3的RSRP43以及RS#4的RSRP44。
可以理解,终端可同时或分时使用终端的多个天线面板接收多个测量资源,不做限定。
终端可以根据配置信息,向网络设备发送多个测量资源中第一测量资源对的信息,相应的,网络设备可以接收来自终端的第一测量结果对的信息。也就是说,在波束测量过程中,网络设备可以不用指定终端具体上报哪两个资源,终端可以根据实际需求选择对应的两个测量资源进行上报,以满足实际需求。例如,终端可以上报平均信号质量最强的两个资源。
例如,终端可以根据接收的测量资源的信号质量,将多个天线面板的波束组合,组合的波束可以用于终端同时执行上行传输。以第一天线面板和第二天线面板为例,终端可以从使用第一天线面板的波束接收的测量资源中确定信号质量大于预设质量的测量资源,可以理解为最佳测量资源,从而确定这些最佳测量资源对应的终端最佳波束,如接收这些最佳测量资源使用的第一天线面板的波束的集合,记为第一波束集合。此时,第一测量资源可以是信号质量最好的测量资源,终端可以确定第一波束为终端最佳波束,也即,第一波束集合可以包括第一波束。类似的,终端可以从使用第二天线面板的波束接收的测量资源中的最佳测量资源,从而确定这些最佳测量资源对应的终端最佳波束,如接收这些最佳测量资源使用的第二天线面板的波束集合,记为第二波束集合。此时,第二测量资源可以是信号质量最好的测量资源,终端可以确定第二波束也为终端最佳波束,也即第二波束集合可以包括第二波束。第一波束集合中的一个波束可以与第二波束集合中的一个波束组合为一个波束对,该波束对包含的两个波束可以被用于终端同时执行上行传输。其中,第一波束集合中的波束与第二波束集合中的波束可以任意组合,或者也可以按照测量资源的信号质量从高到低或从低到高的顺序组合,不做限定。如此,终端可以确定至少一个波束对,并维护每个波束对与使用该波束对接收的两个最佳测量资源的映射关系,这两个最佳测量资源可以被称为测量资源对。至少一个波束对可以对应至少一个测量资源对。例如,第一波束和第二波束可以组成第一波束对,第一测量资源和第二测量资源可以组成第一测量资源对,用以终端同时执行上行传输。终端可以维护第一波束对与第一测量资源对的映射关系。
可以理解,一个测量资源对包含的两个测量资源可以是同一个测量资源,如第一测量资源与第二测量资源可以是同一个测量资源;或者,一个测量资源对包含的两个测量资源也可以是不同的测量资源,如第一测量资源与第二测量资源可以是不同的测量资源,不做限定。
还可以理解,如果是多个测量资源的情况,也即终端的多个波束能同时用于上行传输,则终端还可以维护这多个波束的对应关系。
方便理解,继续对上述示例进行说明:
针对天线面板1接收的RS#1-RS#4,终端确定RSRP11和RSRP12的质量最好,RSRP11对应波束B1,RSRP12对应的波束B2,也即第一波束集合包括波束B1和波束B2。针对天线面板2接收的RS#1-RS#4,终端确定RSRP31的质量最好,RSRP31对应波束B3,也即第二波束集合包括波束B3。终端可以将波束B1与波束B3组合为波束对1,波束B2与波束B3组合为波束对2。使用波束对1接收的两个最佳测量资源是同一个测量资源,也即RS#1,终端可以维护波束对1与RS#1的映射关系,具体如下表3所示。使用波束对2接收的两个最佳测量资源是不同的测量资源,也即RS#1和RS#2,终端可以维护RS#1和RS#2与波束对2的映射关系,具体如下表3所示。
表3
可以理解,波束对1与RS#1的映射关系,以及RS#1和RS#2与波束对2的映射关系,也可以通过不同的表项来分别维护,不做限定。
终端可以根据配置信息,如第一上报准则,向网络设备发送第一测量资源对的信息。相应的,网络设备接收来自终端的第一测量资源对的信息。
方便理解,继续对上述示例进行说明:
终端可以向网络设备发送测量资源对1的信息,包括:2个RS#1,以及RSRP11和RSRP31。以及,终端还可以向网络设备发送测量资源对2的信息,包括:RS#1和RS#2,以及RSRP11和RSRP12。
还可以理解,本申请实施例是以终端上报终端最佳波束对应的测量资源对为例,但不作为限定,例如,终端也可以上报终端的任意波束对应的测量资源对。此外,S602也可以理解为网络设备和终端根
据配置信息,执行波束测量,第一测量资源对的信息也可以理解为第一测量结果。
综上,终端可以根据配置信息的指示,向网络设备上报测量资源对,以便网络设备能够根据测量资源对,确定终端有两个波束能用于终端同时执行上行传输,也即,实现网络设备能够确定用于多个波束同发的波束,从而实现对多波束同传的有效调度。
可选地,结合上述实施例,本申请实施例提供的方法还可以包括如下步骤:
S603,网络设备向终端发送指示信息,终端接收来自网络设备的指示信息。
指示信息可以用于指示终端使用两个测量资源,如第一测量资源和第二测量资源对应的终端的两个波束,同时进行上行传输,或者说,指示信息可以用于指示终端使用指定的两个波束,如第一波束和第二波束同时执行上行传输。也就是说,终端是否采用多波束同传,可以由网络设备通过指示信息来灵活调度,以实现按需采用多波束同传。以第一波束和第二波束为例,指示信息可以包括第一测量资源的标识和第二测量资源的标识。例如,指示信息可以携带在两个TCI-状态或两个空间关系中,一个TCI-状态或空间关系可以包括第一测量资源的标识,另一个TCI-状态或空间关系可以包括第二测量资源的标识。
方便理解,继续对上述示例进行说明:网络设备可以向终端发送2个RS#1,用以指示终端需要使用波束B1和波束B3执行上行同传。
终端可以根据本地维护的映射关系,确定指示信息指示的两个测量资源属于同一个测量资源对,如第一测量资源和第二测量资源属于第一测量资源对,从而确定该测量资源对对应的两个波束,如第一波束和第二波束需要用于执行上行同传。如此,终端可以使用第一波束和第二波束,同时向网络设备发送上行信号,以实现上行同传。
可以理解,通过波束测量,终端可以维护测量资源对和波束的映射关系。这样,即使网络设备指示测量资源对,终端也可以确定对应的两个波束,从而可以降低指示开销。
还可以理解,S603为可选步骤,例如,网络设备可以不发送指示信息,终端可以默认使用两个波束执行上行同传。此外,在多个测量资源的情况下,指示信息也可以指示多个测量资源,以调度终端使用这多个测量资源对应的终端的多个波束,同时进行上行传输。
可选地,结合上述实施例,本申请实施例提供的方法还可以包括如下步骤:
S604,终端根据配置信息,确定测量资源集合中第三测量资源对应的终端发射功率回退量。
配置信息还用于指示测量资源集合,如第二测量资源集合,第二测量资源集合可以用于终端检测第二测量资源集合中测量资源对应的波束是否有终端发射功率回退。第二测量资源集合与第一测量资源集合可以相同,或者第二测量资源集合与第一测量资源集合也可以不同,如第二测量资源集合可以是第一测量资源集合的子集,如包括第一测量资源和第二测量资源的子集。
具体的,配置信息还可以包括终端发射功率回退上报的配置参数,记为第二配置参数。第二配置参数可以包括如下至少一项:第二测量资源集合中多个测量资源的标识、功率回退量量化步长、或第二资源数量。功率回退量量化步长可以用于指示终端以什么粒度来确定终端发射功率回退量。第二资源数量可以用于指示终端至多能够上报多少波束的终端发射功率回退量,如2、4、6等,不做限定。
终端可以根据配置信息,检测第二测量资源集合中测量资源对应的波束是否有终端发射功率回退。如果第二测量资源集合中测量资源对应的波束有终端发射功率回退,则终端可以向网络设备上报该终端发射功率回退。
具体的,以第二测量资源集合包括第一测量资源和第二测量资源为例。如果第一测量资源和第二测量资源是不同的测量资源,如第一测量资源的标识和第二测量资源的标识不同,则终端可以按照现有处理逻辑,向网络设备发送第一测量资源和/或第二测量资源对应的终端发射功率回退量,不再赘述。或者,如果第一测量资源和第二测量资源是同一个测量资源,记为第三测量资源,或者说第一测量资源的标识和第二测量资源的标识,第三测量资源的标识相同,则终端可以根据第一测量资源对应的终端的第一波束的发射功率回退量,以及第二测量资源对应的终端的第二波束的发射功率回退量,联合确定第三测量资源对应的终端发射功率回退量,或者说,终端可以根据第一波束和第二波束的终端发射功率回退量,确定第三测量资源对应的终端发射功率回退量。
例如,在第一波束和/或第二波束有终端发射功率回退的情况下,终端可以根据第一波束和第二波束在映射关系中关联到同一个测量资源,如第三测量资源,确定第一波束和/或第二波束的终端发射功
率回退需要被联合处理,如第一波束和/或第二波束的终端发射功率回退量需要平均到这两个波束,作为这两个波束的整体终端发射功率回退量,也即第三测量资源对应的终端发射功率回退量。
也就是说,在第一波束和第二波束对应同一个测量资源,如第三测量资源的情况下,网络设备通过该第三测量资源对应的一个波束发送的信号能够被第一波束和第二波束同时接收。因此,这两个波束应当被看做是一个整体,无论哪一个波束发生终端发射功率回退,都会影响这两个波束整体的上行传输性能。这种情况下,终端需要上报这两个波束的整体终端发射功率回退量,以确保网络设备能够准确评估这两个波束的整体传输质量。
方便理解,继续对上述示例进行说明:
终端可以确定波束B1有3dB的终端发射功率回退量,波束B3没有终端发射功率回退。终端可以根据波束B1和波束B3都关联到RS#1,确定波束B1和波束B 3的整体终端发射功率回退量,如波束B1和波束B 3的终端发射功率回退量可以是波束B1的终端发射功率回退量的一半,如为1.2dB,以向网络设备发送RS#1的终端发射功率回退量为1.2dB。
可以理解,上述是以终端发射功率回退上报的配置参数与波束管理相关的配置参数承载在同一配置信息为例,例如,终端发射功率回退上报的配置参数与波束管理相关的配置参数承载也可以分别承载在不同的配置信息中。此外,本申请实施例是以2个波束为例,2个波束也可以替换为多个波束,也即,如果终端的多个波束用于上行同传,则终端也可以联合这多个波束的终端发射功率回退量,确定测量资源对应的终端发射功率回退量。
S605,终端向网络设备发送第三测量资源对应的终端发射功率回退量,网络设备接收来自终端的第三测量资源对应的终端发射功率回退量。
终端可以向网络设备发送第三测量资源的标识,以及终端发射功率回退量,用以联合指示第三测量资源对应的终端发射功率回退量。网络设备可以根据终端上报的第三测量资源对应的终端发射功率回退量,及时调整终端的上行传输方式,如指示终端采用其他未发生终端发射功率回退的波束执行上行同传,以保障上行传输的效率和可靠性。
方便理解,继续对上述示例进行说明:
网络设备可以根据RS#1的终端发射功率回退量为1.2dB,向终端发送RS#2和RS#3,用以指示终端后续需要采用波束B2和波束B3执行上行同传,以保障上行传输的效率和可靠性。
还可以理解,S604-S605为可选步骤,例如,终端也可以不上报功率回退量。
以上结合图6详细说明了本申请实施例提供的波束测量方法。以下结合图7-图8详细说明用于执行本申请实施例提供的波束测量方法的通信装置。
图7是本申请实施例提供的通信装置的结构示意图一。示例性的,如图7所示,通信装置700包括:收发模块701和处理模块702。收发模块701,用于指示该通信装置700的收发功能,处理模块702,用于执行该通信装置700除收发功能以外的功能。
为了便于说明,图7仅示出了该通信装置的主要部件。
一些实施例中,通信装置700可适用于图5中所示出的通信系统中,执行上述图6所示的方法中的终端的功能。
收发模块701,用于接收来自网络设备的配置信息,处理模块702,用于根据配置信息,向网络设备发送第一测量资源对的信息配置信息用于指示通信装置700向网络设备发送测量资源对的信息,测量资源对包括两个测量资源,两个测量资源对应的通信装置700的两个波束能同时用于上行传输。第一测量资源对包括第一测量资源和第二测量资源,第一测量资源和第二测量资源对应的通信装置700的两个波束能同时用于上行传输。
一种可能的设计方案中,配置信息还用于指示多个测量资源,处理模块702,还用于根据配置信息,控制收发模块701接收来自网络设备的多个测量资源,并根据配置信息,控制收发模块701向网络设备发送多个测量资源中第一测量资源对的信息。
可选地,第一测量资源是通信装置700使用通信装置700的第一波束接收的测量资源中,信号质量大于预设质量的测量资源,第二测量资源是通信装置700使用通信装置700的第二波束接收的测量资源中,信号质量大于质量阈值的测量资源。
进一步的,第一测量资源对的信息包括如下至少一项:第一测量资源的标识、第一测量资源的参考
信号接收功率RSRP、第二测量资源的标识,或第二测量资源的RSRP,用以准确指示第一测量资源和第二测量资源的质量。
一种可能的设计方案中,收发模块701,还用于接收来自网络设备的指示信息。其中,指示信息用于指示:通信装置700使用第一测量资源和第二测量资源对应的通信装置700的两个波束,同时进行上行传输。
可选地,指示信息可以包括第一测量资源的标识和第二测量资源的标识。
一种可能的设计方案中,配置信息还用于指示测量资源集合,处理模块702,还用于根据配置信息,确定测量资源集合中第三测量资源对应的终端发射功率回退量,并控制收发模块701向网络设备发送第三测量资源对应的终端发射功率回退量。
可选地,处理模块702,还用于如果第一测量资源的标识和第二测量资源的标识,与第三测量资源的标识相同,则根据第一测量资源对应的通信装置700的第一波束的发射功率回退量,以及第二测量资源对应的通信装置700的第二波束的发射功率回退量,确定第三测量资源对应的终端发射功率回退量。
可选地,收发模块701可以包括发送模块(图7中未示出)和接收模块(图7中未示出)。其中,发送模块用于实现通信装置700的发送功能,接收模块用于实现通信装置700的接收功能。
可选地,通信装置700还可以包括存储模块(图7中未示出),该存储模块存储有程序或指令。当该处理模块702执行该程序或指令时,使得该通信装置700可以执行上述图6的方法中终端的功能。
可以理解,通信装置700可以是终端,也可以是可设置于终端中的芯片(系统)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,通信装置700的技术效果可以参考图6所示的波束测量方法的技术效果,此处不再赘述。
另一些实施例中,通信装置700可适用于图5中所示出的通信系统中,执行上述图6所示的方法中的网络设备的功能。
处理模块702,用于控制收发模块向终端发送配置信息,收发模块701,用于接收来自终端的第一测量资源对的信息。其中,配置信息用于指示终端向通信装置700发送测量资源对的信息,测量资源对包括两个测量资源,两个测量资源对应的终端的两个波束能同时用于上行传输。第一测量资源对包括第一测量资源和第二测量资源,第一测量资源和第二测量资源对应的终端的两个波束能同时用于上行传输。
一种可能的设计方案中,配置信息还用于指示多个测量资源,处理模块702,还用于根据配置信息,控制收发模块701向终端发送多个测量资源。收发模块701,还用于接收来自终端的第一测量结果对的信息。
可选地,第一测量资源对的信息包括如下至少一项:第一测量资源的标识、第一测量资源的参考信号接收功率RSRP、第二测量资源的标识,或第二测量资源的RSRP。
一种可能的设计方案中,收发模块701,还用于向终端发送指示信息。其中,指示信息用于指示:终端使用第一测量资源和第二测量资源对应的终端的两个波束,同时进行上行传输。
可选地,指示信息包括第一测量资源的标识和第二测量资源的标识。
一种可能的设计方案中,配置信息还用于指示测量资源集合,收发模块701,还用于接收来自终端的第三测量资源对应的终端发射功率回退量。其中,第三测量资源属于测量资源集合,第一测量资源的标识和第二测量资源的标识与第三测量资源的标识相同。
可选地,收发模块701可以包括发送模块(图7中未示出)和接收模块(图7中未示出)。其中,发送模块用于实现通信装置700的发送功能,接收模块用于实现通信装置700的接收功能。
可选地,通信装置700还可以包括存储模块(图7中未示出),该存储模块存储有程序或指令。当该处理模块702执行该程序或指令时,使得该通信装置700可以执行上述图6的方法中网络设备的功能。
可以理解,通信装置700可以是网络设备,也可以是可设置于网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,通信装置700的技术效果可以参考图6所示的波束测量方法的技术效果,此处不再赘述。
或者,一些实施例中,通信装置700也可适用于图5中所示出的通信系统中,执行上述图6所示的方法中的终端的功能。
收发模块701,用于接收来自网络设备的配置信息,处理模块702,用于根据配置信息,执行波束测量。配置信息用于指示:在波束测量过程中,通信装置700需要向网络设备发送测量资源对的测量结果,测量资源对包括两个测量资源。其中:通信装置700接收两个测量资源所使用两个波束能用于通信装置700同时执行上行传输。
一种可能的设计方案中,配置信息还用于指示第一测量资源集合,通信装置700的两个波束包括第一波束和第二波束。处理模块702,还用于使用第一波束和第二波束,控制收发模块701接收来自网络设备的第一测量资源集合中的多个测量资源。处理模块702,还用于根据配置信息,控制收发模块701向网络设备发送第一测量结果。其中,第一测量结果用于指示第一测量资源的质量信息以及第二测量资源的质量信息,第一测量资源和第二测量资源为多个测量资源中的第一测量资源对,第一测量资源对用于通信装置700同时执行上行传输。
可选地,第一测量资源是通信装置700使用第一波束接收的测量资源中质量大于预设质量的测量资源,第二测量资源是通信装置700使用第二波束接收的测量资源中质量大于质量阈值的测量资源。
进一步的,第一测量资源的质量信息包括如下至少一项:第一测量资源的标识、第一测量资源的参考信号接收功率RSRP。第二测量资源的质量信息包括如下至少一项:第二测量资源的标识,以及第二测量资源的RSRP。
可选地,收发模块701,还用于接收来自网络设备的指示信息,处理模块702,还用于根据指示信息,使用第一波束和第二波束同时向网络设备发送上行信号。其中,指示信息用于指示通信装置700使用第一波束和第二波束同时执行上行传输。
进一步的,指示信息可以包括第一测量资源的标识和第二测量资源的标识。
可选地,配置信息还用于指示包括第一测量资源和第二测量资源的第二测量资源集合,处理模块702,还用于根据配置信息,确定第二测量资源集合中第三测量资源对应的通信装置700发射功率回退量,收发模块701,还用于向网络设备发送第三测量资源对应的通信装置700发射功率回退量。
进一步的,处理模块702,还用于如果第一测量资源和第二测量资源都为第三测量资源,则根据第一波束和第二波束的通信装置700发射功率回退量,确定第三测量资源对应的通信装置700发射功率回退量。
可选地,收发模块701可以包括发送模块(图7中未示出)和接收模块(图7中未示出)。其中,发送模块用于实现通信装置700的发送功能,接收模块用于实现通信装置700的接收功能。
可选地,通信装置700还可以包括存储模块(图7中未示出),该存储模块存储有程序或指令。当该处理模块702执行该程序或指令时,使得该通信装置700可以执行上述图6的方法中终端的功能。
可以理解,通信装置700可以是终端,也可以是可设置于终端中的芯片(系统)或其他部件或组件,还可以是包含终端的装置,本申请对此不做限定。
此外,通信装置700的技术效果可以参考图6所示的波束测量方法的技术效果,此处不再赘述。
另一些实施例中,收发模块701,用于向终端发送配置信息,处理模块702,用于根据配置信息,执行波束测量。配置信息用于指示:在波束测量过程中,终端需要向通信装置700发送测量资源对的测量结果,测量资源对包括两个测量资源。其中:终端接收两个测量资源所使用的两个波束用于终端同时执行上行传输。
一种可能的设计方案中,配置信息还用于指示第一测量资源集合,处理模块702,用于根据配置信息,控制收发模块701向终端发送第一测量资源集合中的多个测量资源,并接收来自终端的第一测量结果。其中,第一测量结果用于指示第一测量资源的质量信息以及第五测量资源的质量信息,第一测量资源和第五测量资源为多个测量资源中的第一测量资源对,第一测量资源对用于终端同时执行上行传输。
可选地,第一测量资源的质量信息包括如下至少一项:第一测量资源的标识、第一测量资源的参考信号接收功率RSRP,第五测量资源的质量信息包括如下至少一项:第五测量资源的标识,以及第五测量资源的RSRP。
可选地,收发模块701,还用于向终端发送指示信息,以接收终端使用两个波束同时发送的上行信号。其中,指示信息用于指示终端使用两个波束同时执行上行传输。
进一步的,指示信息包括第一测量资源的标识和第五测量资源的标识。
可选地,配置信息还用于指示包括第一测量资源和第五测量资源的第五测量资源集合,收发模块
701,还用于接收来自终端的第三测量资源对应的终端发射功率回退量。其中,第一测量资源和第五测量资源为第三测量资源。
进一步的,处理模块702,还用于根据第三测量资源对应的终端发射功率回退量,调度终端的上行传输。
可选地,收发模块701可以包括发送模块(图7中未示出)和接收模块(图7中未示出)。其中,发送模块用于实现通信装置700的发送功能,接收模块用于实现通信装置700的接收功能。
可选地,通信装置700还可以包括存储模块(图7中未示出),该存储模块存储有程序或指令。当该处理模块702执行该程序或指令时,使得该通信装置700可以执行上述图6的方法中网络设备的功能。
可以理解,通信装置700可以是网络设备,也可以是可设置于网络设备中的芯片(系统)或其他部件或组件,还可以是包含网络设备的装置,本申请对此不做限定。
此外,通信装置700的技术效果可以参考图6所示的波束测量方法的技术效果,此处不再赘述。
图8为本申请实施例提供的通信装置的结构示意图二。示例性地,该通信装置可以是终端,也可以是可设置于终端的芯片(系统)或其他部件或组件。如图8所示,通信装置800可以包括处理器801。可选地,通信装置800还可以包括存储器802和/或收发器803。其中,处理器801与存储器802和收发器803耦合,如可以通过通信总线连接。此外,通信装置800也可以是芯片,如包括处理器801,此时,收发器可以是芯片的输出输入接口。
下面结合图8对通信装置800的各个构成部件进行具体的介绍:
其中,处理器801是通信装置800的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器801是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
可选地,处理器801可以通过运行或执行存储在存储器802内的软件程序,以及调用存储在存储器802内的数据,执行通信装置800的各种功能,例如执行上述图6所示的波束测量方法。
在具体的实现中,作为一种实施例,处理器801可以包括一个或多个CPU,例如图8中所示出的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置800也可以包括多个处理器,例如图8中所示的处理器801和处理器804。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序或指令)的处理核。
其中,所述存储器802用于存储执行本申请方案的软件程序,并由处理器801来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。
可选地,存储器802可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器802可以和处理器801集成在一起,也可以独立存在,并通过通信装置800的接口电路(图8中未示出)与处理器801耦合,本申请实施例对此不作具体限定。
收发器803,用于与其他通信装置之间的通信。例如,通信装置800为终端,收发器803可以用于与网络设备通信,或者与另一个终端设备通信。又例如,通信装置800为网络设备,收发器803可以用于与终端通信,或者与另一个网络设备通信。
可选地,收发器803可以包括接收器和发送器(图8中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。
可选地,收发器803可以和处理器801集成在一起,也可以独立存在,并通过通信装置800的接口
电路(图8中未示出)与处理器801耦合,本申请实施例对此不作具体限定。
可以理解的是,图8中示出的通信装置800的结构并不构成对该通信装置的限定,实际的通信装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
此外,通信装置800的技术效果可以参考上述方法实施例所述的方法的技术效果,此处不再赘述。
应理解,在本申请实施例中的处理器可以是中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,
或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (21)
- 一种波束测量方法,其特征在于,所述方法包括:终端接收来自网络设备的配置信息,其中,所述配置信息用于指示所述终端向所述网络设备发送测量资源对的信息,所述测量资源对包括两个测量资源,所述两个测量资源对应的所述终端的两个波束能同时用于上行传输;所述终端根据所述配置信息,向所述网络设备发送第一测量资源对的信息,其中,所述第一测量资源对包括第一测量资源和第二测量资源,所述第一测量资源和所述第二测量资源对应的所述终端的两个波束能同时用于上行传输。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:所述终端接收来自所述网络设备的指示信息,其中,所述指示信息用于指示:所述终端使用所述第一测量资源和所述第二测量资源对应的所述终端的两个波束,同时进行上行传输。
- 根据权利要求2所述的方法,其特征在于,所述指示信息包括所述第一测量资源的标识和所述第二测量资源的标识。
- 根据权利要求1-3中任一项所述的方法,其特征在于,所述配置信息还用于指示测量资源集合,所述方法还包括:所述终端根据所述配置信息,确定所述测量资源集合中第三测量资源对应的终端发射功率回退量;所述终端向所述网络设备发送所述第三测量资源对应的终端发射功率回退量。
- 根据权利要求4所述的方法,其特征在于,所述终端根据所述配置信息,确定所述测量资源集合中第三测量资源对应的终端发射功率回退量,包括:如果所述第一测量资源的标识和所述第二测量资源的标识,与所述第三测量资源的标识相同,则所述终端根据所述第一测量资源对应的所述终端的第一波束的发射功率回退量,以及所述第二测量资源对应的所述终端的第二波束的发射功率回退量,确定所述第三测量资源对应的终端发射功率回退量。
- 一种波束测量方法,其特征在于,所述方法包括:网络设备向终端发送配置信息,其中,所述配置信息用于指示所述终端向所述网络设备发送测量资源对的信息,所述测量资源对包括两个测量资源,所述两个测量资源对应的所述终端的两个波束能同时用于上行传输;所述网络设备接收来自终端的第一测量资源对的信息,其中,所述第一测量资源对包括第一测量资源和第二测量资源,所述第一测量资源和所述第二测量资源对应的所述终端的两个波束能同时用于上行传输。
- 根据权利要求6所述的方法,其特征在于,所述方法还包括:所述网络设备向所述终端发送指示信息,其中,所述指示信息用于指示:所述终端使用所述第一测量资源和所述第二测量资源对应的所述终端的两个波束,同时进行上行传输。
- 根据权利要求7所述的方法,其特征在于,所述指示信息包括所述第一测量资源的标识和所述第二测量资源的标识。
- 根据权利要求6-8中任一项所述的方法,其特征在于,所述配置信息还用于指示测量资源集合,所述方法还包括:所述网络设备接收来自所述终端的第三测量资源对应的终端发射功率回退量,其中,所述第三测量资源属于所述测量资源集合,所述第一测量资源的标识和所述第二测量资源的标识,与所述第三测量资源的标识相同。
- 一种通信装置,其特征在于,包括:收发模块和处理模块;其中,所述收发模块,用于接收来自网络设备的配置信息,其中,所述配置信息用于指示所述终端向所述网络设备发送测量资源对的信息,所述测量资源对包括两个测量资源,所述两个测量资源对应的所述终端的两个波束能同时用于上行传输;所述处理模块,用于根据所述配置信息,向所述网络设备发送第一测量资源对的信息,其中,所述第一测量资源对包括第一测量资源和第二测量资源,所述第一测量资源和所述第二测量资源 对应的所述终端的两个波束能同时用于上行传输。
- 根据权利要求10所述的装置,其特征在于,所述收发模块,还用于接收来自所述网络设备的指示信息,其中,所述指示信息用于指示:所述终端使用所述第一测量资源和所述第二测量资源对应的所述终端的两个波束,同时进行上行传输。
- 根据权利要求11所述的装置,其特征在于,所述指示信息包括所述第一测量资源的标识和所述第二测量资源的标识。
- 根据权利要求10-12中任一项所述的装置,其特征在于,所述配置信息还用于指示测量资源集合,所述处理模块,还用于根据所述配置信息,确定所述测量资源集合中第三测量资源对应的终端发射功率回退量;所述收发模块,还用于向所述网络设备发送所述第三测量资源对应的终端发射功率回退量。
- 根据权利要求13所述的装置,其特征在于,所述收发模块,还用于如果所述第一测量资源的标识和所述第二测量资源的标识,与所述第三测量资源的标识相同,则根据所述第一测量资源对应的所述终端的第一波束的发射功率回退量,以及所述第二测量资源对应的终端的第二波束的发射功率回退量,确定所述第三测量资源对应的终端发射功率回退量。
- 一种通信装置,其特征在于,包括:收发模块和处理模块;其中,所述处理模块,用于控制收发模块向终端发送配置信息,其中,所述配置信息用于指示所述终端向网络设备发送测量资源对的信息,所述测量资源对包括两个测量资源,所述两个测量资源对应的所述终端的两个波束能同时用于上行传输;所述收发模块,用于接收来自终端的第一测量资源对的信息,其中,所述第一测量资源对包括第一测量资源和第二测量资源,所述第一测量资源和所述第二测量资源对应的所述终端的两个波束能同时用于上行传输。
- 根据权利要求15所述的装置,其特征在于,所述处理模块,还用于控制收发模块向所述终端发送指示信息,其中,所述指示信息用于指示:所述终端使用所述第一测量资源和所述第二测量资源对应的所述终端的两个波束,同时进行上行传输。
- 根据权利要求16所述的装置,其特征在于,所述指示信息包括所述第一测量资源的标识和所述第二测量资源的标识。
- 根据权利要求15-17中任一项所述的装置,其特征在于,所述配置信息还用于指示测量资源集合,所述收发模块,还用于接收来自所述终端的第三测量资源对应的终端发射功率回退量,其中,所述第三测量资源属于所述测量资源集合,所述第一测量资源的标识和所述第二测量资源的标识,与所述第三测量资源的标识相同。
- 一种通信系统,其特征在于,所述通信系统包括:用于执行如权利要求1-5中任一项所述的方法的终端,以及用于执行如权利要求6-9中任一项所述的方法的网络设备。
- 一种通信装置,其特征在于,所述通信装置包括:处理器,所述处理器用于执行存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1-9中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得所述计算机执行如权利要求1-9中任一项所述的方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211379589.1A CN117998654A (zh) | 2022-11-04 | 2022-11-04 | 波束测量方法、装置及系统 |
CN202211379589.1 | 2022-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024093620A1 true WO2024093620A1 (zh) | 2024-05-10 |
Family
ID=90894993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/123537 WO2024093620A1 (zh) | 2022-11-04 | 2023-10-09 | 波束测量方法、装置及系统 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN117998654A (zh) |
TW (1) | TW202420761A (zh) |
WO (1) | WO2024093620A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018206017A1 (zh) * | 2017-05-11 | 2018-11-15 | 中兴通讯股份有限公司 | 信号的传输方法和装置 |
CN111200872A (zh) * | 2018-11-19 | 2020-05-26 | 华为技术有限公司 | 波束上报的方法和通信装置 |
CN115088339A (zh) * | 2020-02-19 | 2022-09-20 | 华为技术有限公司 | 一种波束对训练方法及通信装置 |
-
2022
- 2022-11-04 CN CN202211379589.1A patent/CN117998654A/zh active Pending
-
2023
- 2023-10-09 WO PCT/CN2023/123537 patent/WO2024093620A1/zh unknown
- 2023-10-31 TW TW112141854A patent/TW202420761A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018206017A1 (zh) * | 2017-05-11 | 2018-11-15 | 中兴通讯股份有限公司 | 信号的传输方法和装置 |
CN111200872A (zh) * | 2018-11-19 | 2020-05-26 | 华为技术有限公司 | 波束上报的方法和通信装置 |
CN115088339A (zh) * | 2020-02-19 | 2022-09-20 | 华为技术有限公司 | 一种波束对训练方法及通信装置 |
Non-Patent Citations (1)
Title |
---|
VIVO: "Discussion on beam measurement, beam reporting and beam indication", 3GPP DRAFT; R1-1717472_DISCUSSION ON BEAM MEASUREMENT, BEAM REPORTING AND BEAM INDICATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051340660 * |
Also Published As
Publication number | Publication date |
---|---|
CN117998654A (zh) | 2024-05-07 |
TW202420761A (zh) | 2024-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110932820B (zh) | 发送和接收上行控制信息的方法以及通信装置 | |
WO2021000680A1 (zh) | 一种协作传输方法及通信装置 | |
CN111586858A (zh) | 信号传输方法和通信装置 | |
WO2022001241A1 (zh) | 一种波束管理方法及装置 | |
EP3917178A1 (en) | Wireless communication method and apparatus | |
WO2020248101A1 (zh) | 上报csi的方法和终端设备 | |
WO2018126448A1 (zh) | 基于动态时分双工的传输装置、方法以及通信系统 | |
US12022541B2 (en) | Communication method and communications apparatus | |
WO2020134261A1 (en) | Methods and devices for operating with dual connectivity | |
CN116017751A (zh) | 随机接入方法和通信装置 | |
WO2018059470A1 (zh) | 传输信息的方法和设备 | |
US20220272668A1 (en) | Wireless communication resource allocation method and apparatus, and communication device | |
US20240348395A1 (en) | Downlink transmission method and apparatus | |
WO2024032246A1 (zh) | 一种能力上报的方法和通信装置 | |
WO2021134682A1 (zh) | 一种定向测量方法及设备 | |
WO2025002104A1 (zh) | 通信方法及装置 | |
WO2020156514A1 (zh) | 测量上报方法和通信装置 | |
WO2024093620A1 (zh) | 波束测量方法、装置及系统 | |
WO2023273969A1 (zh) | 资源测量方法和通信装置 | |
CN114731544B (zh) | 一种基于网络切片的数据传输方法、装置和系统 | |
WO2024149042A1 (zh) | 通信方法和通信装置 | |
WO2024146368A1 (zh) | 通信方法和通信装置 | |
WO2024169430A1 (zh) | 通信方法及装置 | |
WO2023202530A1 (zh) | 一种功率确定方法、装置、芯片及模组设备 | |
WO2024000156A9 (zh) | 信息收发方法与装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23884552 Country of ref document: EP Kind code of ref document: A1 |