WO2024093614A1 - 设备输入方法、系统、电子设备及存储介质 - Google Patents

设备输入方法、系统、电子设备及存储介质 Download PDF

Info

Publication number
WO2024093614A1
WO2024093614A1 PCT/CN2023/123377 CN2023123377W WO2024093614A1 WO 2024093614 A1 WO2024093614 A1 WO 2024093614A1 CN 2023123377 W CN2023123377 W CN 2023123377W WO 2024093614 A1 WO2024093614 A1 WO 2024093614A1
Authority
WO
WIPO (PCT)
Prior art keywords
event
input
native
user
proxy
Prior art date
Application number
PCT/CN2023/123377
Other languages
English (en)
French (fr)
Inventor
张创
唐繁
李刚
张斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024093614A1 publication Critical patent/WO2024093614A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72445User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality for supporting Internet browser applications
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72466User interfaces specially adapted for cordless or mobile telephones with selection means, e.g. keys, having functions defined by the mode or the status of the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72484User interfaces specially adapted for cordless or mobile telephones wherein functions are triggered by incoming communication events

Definitions

  • the present application relates to the field of communications, and in particular to a device input method, system, electronic device and storage medium.
  • the present application provides a device input method, system, electronic device and storage medium, which can effectively realize the combined input of users on multiple devices.
  • the present application provides a device input method, applied to a first device, comprising:
  • a service corresponding to the multi-device combined input event is executed.
  • the determining whether the user input is a multi-device combined input based on the native event of the first device and the proxy event includes:
  • the preset multi-device combination input scene set includes one or more preset multi-device combination input scenes, and each preset multi-device combination input scene includes multiple events.
  • the method further includes:
  • the device identification of the second device is used to represent the identity of the second device, and the device identification of the second device corresponds to a native event of the second device.
  • the method further includes:
  • the event type and/or event coordinates of the second device correspond to the native event of the second device
  • the event type of the second device is used to characterize the input method of the user on the second device
  • the event coordinates of the second device are used to characterize the coordinates corresponding to the user input on the second device.
  • the method further includes:
  • a native event of the first device is broadcasted.
  • the method further includes:
  • Broadcasting a device identification of the first device wherein the device identification of the first device is used to represent the identity of the first device, and the device identification of the first device corresponds to a native event of the first device.
  • the method further includes:
  • the event type and/or event coordinates of the first device Broadcast the event type and/or event coordinates of the first device, where the event type and/or event coordinates of the first device correspond to the native event of the first device, the event type of the first device is used to characterize the input method of the user on the first device, and the event coordinates of the first device are used to characterize the coordinates corresponding to the user input on the first device.
  • the present application provides a device input method, applied to a second device, comprising:
  • the native event of the second device is broadcasted.
  • the peer device by broadcasting the user's input events, the peer device can make decisions based on its own input events and received input events to determine multi-device input events, thereby realizing operations in multi-device input event scenarios.
  • the method further includes:
  • Broadcasting a device identification of the second device wherein the device identification of the second device is used to represent the identity of the second device, and the device identification of the second device corresponds to a native event of the second device.
  • the method further includes:
  • the event type and/or event coordinates of the second device Broadcast the event type and/or event coordinates of the second device, where the event type and/or event coordinates of the second device correspond to the native event of the second device, the event type of the second device is used to characterize the input method of the user on the second device, and the event coordinates of the second device are used to characterize the coordinates corresponding to the user input on the second device.
  • the method further includes:
  • a service corresponding to the multi-device combined input event is executed.
  • the determining whether the user input is a multi-device combined input based on the native event of the second device and the proxy event includes:
  • the preset multi-device combination input scene set includes one or more preset multi-device combination input scenes, and each preset multi-device combination input scene includes multiple events.
  • the present application provides a device input apparatus, applied to a first device, comprising:
  • an acquisition module configured to acquire a native event of the first device in response to an input operation of the user on the first device
  • a receiving module configured to receive a native event broadcasted by a second device, wherein the native event of the second device is generated by an input operation of a user on the second device, and the second device and the first device are in the same distributed system;
  • a virtualization module used for virtualizing a native event of the second device into a proxy event
  • an identification module configured to determine whether the user input is a multi-device combined input based on the native event of the first device and the proxy event;
  • the execution module is used to determine whether the first device is an execution device if it is determined that the user input is a multi-device combination input; if it is determined that the first device is an execution device, execute the service corresponding to the multi-device combination input event.
  • the above-mentioned identification module is specifically used to match the combination of the native event of the first device and the proxy event with a preset multi-device combination input scene set to determine whether the user's input is a multi-device combination input, wherein the preset multi-device combination input scene set includes one or more preset multi-device combination input scenes, and each preset multi-device combination input scene includes multiple events.
  • the receiving module is further configured to receive a device identification broadcast by the second device, wherein: The device identifier of the second device is used to represent the identity of the second device, and the device identifier of the second device corresponds to a native event of the second device.
  • the above-mentioned receiving module is also used to receive the event type and/or event coordinates broadcast by the second device, the event type and/or event coordinates of the second device correspond to the native event of the second device, the event type of the second device is used to characterize the input method of the user on the second device, and the event coordinates of the second device are used to characterize the coordinates corresponding to the user's input on the second device.
  • the device further includes:
  • the broadcast module is used to broadcast the native event of the first device.
  • the broadcast module is further used to broadcast a device identifier of the first device, wherein the device identifier of the first device is used to characterize an identity of the first device, and the device identifier of the first device corresponds to a native event of the first device.
  • the above-mentioned broadcast module is also used to broadcast the event type and/or event coordinates of the first device, the event type and/or event coordinates of the first device correspond to the native event of the first device, the event type of the first device is used to characterize the input method of the user on the first device, and the event coordinates of the first device are used to characterize the coordinates corresponding to the user's input on the first device.
  • the present application provides a device input apparatus, applied to a second device, comprising:
  • an acquisition module configured to acquire a native event of the second device in response to an input operation of the user on the second device
  • the broadcast module is used to broadcast the native event of the second device.
  • the broadcast module is further used to broadcast a device identifier of the second device, wherein the device identifier of the second device is used to characterize an identity of the second device, and the device identifier of the second device corresponds to a native event of the second device.
  • the above-mentioned broadcast module is also used to broadcast the event type and/or event coordinates of the second device, the event type and/or event coordinates of the second device correspond to the native event of the second device, the event type of the second device is used to characterize the input method of the user on the second device, and the event coordinates of the second device are used to characterize the coordinates corresponding to the user's input on the second device.
  • the device further includes:
  • a receiving module configured to receive a native event broadcasted by a first device, wherein the native event of the first device is generated by an input operation of a user on the first device, and the first device and the second device are in the same distributed system;
  • a virtualization module used for virtualizing a native event of the first device into a proxy event
  • an identification module configured to determine whether the user input is a multi-device combined input based on the native event of the second device and the proxy event;
  • the execution module is used to determine whether the second device is an execution device if it is determined that the user input is a multi-device combination input; if it is determined that the second device is an execution device, execute the service corresponding to the multi-device combination input event.
  • the above-mentioned identification module is specifically used to match the combination of the native event of the second device and the proxy event with a preset multi-device combination input scene set to determine whether the user's input is a multi-device combination input, wherein the preset multi-device combination input scene set includes one or more preset multi-device combination input scenes, and each preset multi-device combination input scene includes multiple events.
  • the present application provides a first device, comprising: a processor and a memory, wherein the memory is used to store a computer program; the processor is used to run the computer program to implement the device input method as described in the first aspect.
  • the present application provides a second device, comprising: a processor and a memory, wherein the memory is used to store a computer program; the processor is used to run the computer program to implement the device input method as described in the second aspect.
  • the present application provides a computer-readable storage medium, which stores a computer program.
  • the computer-readable storage medium When executed on a computer, the computer implements the device input method as described in the first aspect or the second aspect.
  • the present application provides a computer program, which, when running on a processor of a first device, enables the first device to execute the device input method described in the first aspect, or when running on a processor of a second device, enables the second device to execute the device input method described in the second aspect.
  • the program in the eighth aspect may be stored in whole or in part in a storage device packaged with the processor.
  • the processor may be stored in a storage medium, or partially or completely stored in a memory that is not packaged with the processor.
  • the present application provides a device input system, comprising the first device as described in the fifth aspect and the second device as described in the sixth aspect.
  • FIG1 is a schematic diagram of the hardware structure of an electronic device provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the software structure of an electronic device provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of an event broadcast process provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of an application scenario architecture provided by an embodiment of the present application.
  • FIG5 is a schematic diagram of a flow chart of an embodiment of a device input method provided by the present application.
  • FIG6 is a schematic diagram of a global coordinate system provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of an event recognition process provided in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of an embodiment of a device input device provided by the present application.
  • FIG. 9 is a schematic structural diagram of another embodiment of the device input apparatus provided in the present application.
  • the character "/" indicates that the objects before and after the association are in an or relationship.
  • A/B can represent A or B.
  • "And/or" describes the association relationship of the associated objects, indicating that three relationships can exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • At least one refers to one or more
  • plural refers to two or more
  • at least one of the following” or similar expressions refers to any combination of these items, which may include any combination of single items or plural items.
  • at least one of A, B, or C may represent: A, B, C, A and B, A and C, B and C, or A, B and C.
  • each of A, B, and C may be an element itself, or a set containing one or more elements.
  • transmission can include sending and/or receiving, which can be a noun or a verb.
  • the equal to involved in the embodiments of the present application can be used in conjunction with greater than, and is applicable to the technical solution adopted when greater than, and can also be used in conjunction with less than, and is applicable to the technical solution adopted when less than. It should be noted that when equal to is used in conjunction with greater than, it cannot be used in conjunction with less than; when equal to is used in conjunction with less than, it cannot be used in conjunction with greater than.
  • the electronic device can be a fixed terminal, for example, a laptop computer, a desktop computer, a large screen, a smart screen, a mouse, a keyboard, a remote sensor, a touchpad, etc.
  • the electronic device can also be a mobile terminal, which can also be called a user equipment (UE), a terminal device, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent or a user device.
  • UE user equipment
  • the mobile terminal may be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA) device, a handheld device with a wireless communication function, a computing device or other processing device connected to a wireless modem, a vehicle-mounted device, a vehicle networking terminal, a computer, a laptop computer, a handheld communication device, a handheld computing device, a satellite wireless device, a wireless modem card, a TV set-top box (STB), a customer premises equipment (CPE) and/or other devices for communicating on a wireless system and a next generation communication system, for example, a mobile terminal in a 5G network or a mobile terminal in a future evolved Public Land Mobile Network (PLMN) network, etc.
  • the electronic device may also be a wearable device. Wearable devices can also be called wearable smart devices. They are a general term for the
  • FIG. 1 firstly shows a schematic structural diagram of an electronic device 100 by way of example.
  • the electronic device 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, a mobile communication module 150, a wireless communication module 160, an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, a sensor module 180, a button 190, a motor 191, an indicator 192, a camera 193, a display screen 194, and a subscriber identification module (SIM) card interface 195, etc.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, a bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than shown in the figure, or combine some components, or split some components, or arrange the components differently.
  • the components shown in the figure may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (AP), a modem processor, a graphics processor (GPU), an image signal processor (ISP), a controller, a video codec, a digital signal processor (DSP), a baseband processor, and/or a neural-network processing unit (NPU), etc.
  • AP application processor
  • GPU graphics processor
  • ISP image signal processor
  • DSP digital signal processor
  • NPU neural-network processing unit
  • Different processing units may be independent devices or integrated in one or more processors.
  • the controller can generate operation control signals according to the instruction operation code and timing signal to complete the control of instruction fetching and execution.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in the processor 110 is a cache memory.
  • the memory may store instructions or data that the processor 110 has just used or cyclically used. If the processor 110 needs to use the instruction or data again, it may be directly called from the memory. This avoids repeated access, reduces the waiting time of the processor 110, and thus improves the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an inter-integrated circuit (I2C) interface, an inter-integrated circuit sound (I2S) interface, a pulse code modulation (PCM) interface, a universal asynchronous receiver/transmitter (UART) interface, a mobile industry processor interface (MIPI), a general-purpose input/output (GPIO) interface, a subscriber identity module (SIM) interface, and/or a universal serial bus (USB) interface, etc.
  • I2C inter-integrated circuit
  • I2S inter-integrated circuit sound
  • PCM pulse code modulation
  • UART universal asynchronous receiver/transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may include multiple I2C buses.
  • the processor 110 can be coupled to the touch sensor 180K, the charger, the flash, the camera 193, etc. through different I2C bus interfaces.
  • the processor 110 can be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to realize the touch function of the electronic device 100.
  • the I2S interface can be used for audio communication.
  • the processor 110 can include multiple I2S buses.
  • the processor 110 can be coupled to the audio module 170 via the I2S bus to achieve communication between the processor 110 and the audio module 170.
  • the audio module 170 can transmit an audio signal to the wireless communication module 160 via the I2S interface to achieve the function of answering a call through a Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 can be coupled via a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 via the PCM interface to realize the function of answering calls via a Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • the UART interface is generally used to connect the processor 110 and the wireless communication module 160.
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit an audio signal to the wireless communication module 160 through the UART interface to implement the function of playing music through a Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193.
  • the MIPI interface includes a camera serial interface (CSI), a display serial interface (DSI), etc.
  • the processor 110 and the camera 193 communicate via the CSI interface to implement the shooting function of the electronic device 100.
  • the processor 110 and the display screen 194 communicate via the DSI interface to implement the display function of the electronic device 100.
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193, the display 194, the wireless communication module 160, the audio module 170, the sensor module 180, etc.
  • the GPIO interface can also be configured as an I2C interface, an I2S interface, a UART interface, a MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and specifically can be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and a peripheral device. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other terminal devices, such as AR devices, etc.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration and does not constitute a structural limitation on the electronic device 100.
  • the electronic device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charging management module 140 is used to receive charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from a wired charger through the USB interface 130.
  • the charging management module 140 may receive wireless charging input through a wireless charging coil of the electronic device 100. While the charging management module 140 is charging the battery 142, it may also power the terminal device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle number, battery health status (leakage, impedance), etc.
  • the power management module 141 can also be set in the processor 110.
  • the power management module 141 and the charging management module 140 can also be set in the same device.
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve the utilization of antennas.
  • antenna 1 can be reused as a diversity antenna for a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide solutions for wireless communications including 2G/3G/4G/5G, etc., applied to the electronic device 100.
  • the mobile communication module 150 may include at least one filter, a switch, a power amplifier, a low noise amplifier (LNA), etc.
  • the mobile communication module 150 may receive electromagnetic waves from the antenna 1, and perform filtering, amplification, and other processing on the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 may also amplify the signal modulated by the modulation and demodulation processor, and convert it into electromagnetic waves for radiation through the antenna 1.
  • at least some of the functional modules of the mobile communication module 150 may be arranged in the processor 110.
  • at least some of the functional modules of the mobile communication module 150 may be arranged in the same device as at least some of the modules of the processor 110.
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal.
  • the demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the application processor outputs a sound signal through an audio device (not limited to a speaker 170A, a receiver 170B, etc.), or displays an image or video through a display screen 194.
  • the modem processor may be an independent device.
  • the modem processor may be independent of the processor 110 and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless communication solutions including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (BT), global navigation satellite system (GNSS), frequency modulation (FM), near field communication (NFC), infrared (IR) and the like applied to the electronic device 100.
  • WLAN wireless local area networks
  • BT wireless fidelity
  • GNSS global navigation satellite system
  • FM frequency modulation
  • NFC near field communication
  • IR infrared
  • the wireless communication module 160 can be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, modulates the frequency of the electromagnetic wave signal and performs filtering processing, and sends the processed signal to the processor 110.
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110, modulate the frequency of the signal, amplify the signal, and convert it into electromagnetic waves for radiation through the antenna 2.
  • the antenna 1 of the electronic device 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), wideband code division multiple access (WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC, FM, and/or IR technology.
  • the GNSS may include a global positioning system (GPS), a global navigation satellite system (GLONASS), a Beidou navigation satellite system (BDS), a quasi-zenith satellite system (QZSS) and/or a satellite based augmentation system (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation system
  • the electronic device 100 implements the display function through a GPU, a display screen 194, and an application processor.
  • the GPU is a microprocessor for image processing, which connects the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • the processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos, etc.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (AMOLED), a flexible light-emitting diode (FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diodes (QLED), etc.
  • the electronic device 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the electronic device 100 can realize the shooting function through ISP, camera 193, video codec, GPU, display screen 194 and application processor.
  • the ISP is used to process the data fed back by the camera 193. For example, when taking a photo, the shutter is opened, and the light is transmitted to the camera photosensitive element through the lens. The light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing and converts it into an image visible to the naked eye.
  • the ISP can also perform algorithm optimization on the noise, brightness, and skin color of the image. The ISP can also optimize the exposure, color temperature and other parameters of the shooting scene. In some embodiments, the ISP can be set in the camera 193.
  • the camera 193 is used to capture static images or videos.
  • the object is projected onto the photosensitive element through the lens to generate an optical image.
  • the device can be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to be converted into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • the DSP converts the digital image signal into an image signal in a standard RGB, YUV or other format.
  • the electronic device 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • the digital signal processor is used to process digital signals, and can process not only digital image signals but also other digital signals. For example, when the electronic device 100 is selecting a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital videos.
  • the electronic device 100 may support one or more video codecs. In this way, the electronic device 100 may play or record videos in a variety of coding formats, such as Moving Picture Experts Group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG Moving Picture Experts Group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural network (NN) computing processor.
  • NN neural network
  • applications such as intelligent cognition of electronic device 100 can be realized, such as image recognition, face recognition, voice recognition, text understanding, etc.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the electronic device 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to implement a data storage function. For example, files such as music and videos can be stored in the external memory card.
  • the internal memory 121 can be used to store computer executable program codes, which include instructions.
  • the internal memory 121 may include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the data storage area may store data created during the use of the electronic device 100 (such as audio data, a phone book, etc.), etc.
  • the internal memory 121 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one disk storage device, a flash memory device, a universal flash storage (UFS), etc.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by running instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the electronic device 100 can implement audio functions such as music playing and recording through the audio module 170, the speaker 170A, the receiver 170B, the microphone 170C, the headphone jack 170D, and the application processor.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signals.
  • the audio module 170 can also be used to encode and decode audio signals.
  • the audio module 170 can be arranged in the processor 110, or some functional modules of the audio module 170 can be arranged in the processor 110.
  • the speaker 170A also called a "speaker" is used to convert an audio electrical signal into a sound signal.
  • the electronic device 100 can listen to music or listen to a hands-free call through the speaker 170A.
  • the receiver 170B also called a "earpiece" is used to convert audio electrical signals into sound signals.
  • the voice can be received by placing the receiver 170B close to the human ear.
  • Microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals. When making a call or sending a voice message, the user can speak by putting their mouth close to microphone 170C to input the sound signal into microphone 170C.
  • the electronic device 100 can be provided with at least one microphone 170C. In other embodiments, the electronic device 100 can be provided with two microphones 170C, which can not only collect sound signals but also realize noise reduction function. In other embodiments, the electronic device 100 can also be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify the sound source, realize directional recording function, etc.
  • the earphone interface 170D is used to connect a wired earphone.
  • the earphone interface 170D may be the USB interface 130, or may be a 3.5 mm open mobile terminal platform (OMTP) standard interface or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense pressure signals and can convert pressure signals into electrical signals.
  • the pressure sensor 180A can be set on the display screen 194.
  • pressure sensors 180A such as resistive pressure sensors, inductive pressure sensors, capacitive pressure sensors, etc.
  • a capacitive pressure sensor can be a device including at least two parallel plates with conductive materials. When a force acts on the pressure sensor 180A, the capacitance between the electrodes changes. The electronic device 100 determines the intensity of the pressure based on the change in capacitance. When a touch operation is applied to the display screen 194, the electronic device 100 detects the intensity of the touch operation based on the pressure sensor 180A.
  • the electronic device 100 can also calculate the position of the touch based on the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation strengths may correspond to different operation instructions. For example, when a touch operation with a touch operation strength less than the first pressure threshold acts on the short message application icon, an instruction to view the short message is executed. When a touch operation with a touch operation strength greater than or equal to the first pressure threshold acts on the short message application icon, an instruction to create a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the electronic device 100.
  • the angular velocity of the electronic device 100 around three axes i.e., x, y, and z axes
  • the gyro sensor 180B can be used for anti-shake shooting. For example, when the shutter is pressed, the gyro sensor 180B detects the angle of the electronic device 100 shaking, calculates the distance that the lens module needs to compensate based on the angle, and allows the lens to offset the shaking of the electronic device 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist in positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the electronic device 100 can use the magnetic sensor 180D to detect the opening and closing of the flip leather case.
  • the electronic device 100 when the electronic device 100 is a flip phone, the electronic device 100 can detect the opening and closing of the flip cover according to the magnetic sensor 180D. Then, according to the detected opening and closing state of the leather case or the opening and closing state of the flip cover, the flip cover can be automatically unlocked.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the electronic device 100 in all directions (generally three axes). When the electronic device 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of the terminal device and is applied to applications such as horizontal and vertical screen switching and pedometers.
  • the distance sensor 180F is used to measure the distance.
  • the electronic device 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 can use the distance sensor 180F to measure the distance to achieve fast focusing.
  • the proximity light sensor 180G may include, for example, a light emitting diode (LED) and a light detector, such as a photodiode.
  • the light emitting diode may be an infrared light emitting diode.
  • the electronic device 100 emits infrared light outward through the light emitting diode.
  • the electronic device 100 uses a photodiode to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it can be determined that there is an object near the electronic device 100. When insufficient reflected light is detected, the electronic device 100 can determine that there is no object near the electronic device 100.
  • the electronic device 100 can use the proximity light sensor 180G to detect that the user holds the electronic device 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode and pocket mode to automatically unlock and lock the screen.
  • the ambient light sensor 180L is used to sense the brightness of the ambient light.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the electronic device 100 is in a pocket to prevent accidental touches.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the electronic device 100 can use the collected fingerprint characteristics to implement fingerprint unlocking, access application locks, fingerprint photography, fingerprint call answering, etc.
  • the temperature sensor 180J is used to detect temperature.
  • the electronic device 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold, the electronic device 100 reduces the performance of a processor located near the temperature sensor 180J to reduce power consumption and implement thermal protection. In other embodiments, when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to avoid abnormal shutdown of the electronic device 100 due to low temperature. In other embodiments, when the temperature is lower than another threshold, the electronic device 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • the touch sensor 180K is also called a "touch control device”.
  • the touch sensor 180K can be set on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a "touch control screen”.
  • the touch sensor 180K is used to detect touch operations acting on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194.
  • the touch sensor 180K can also be set on the surface of the electronic device 100, which is different from the position of the display screen 194.
  • the bone conduction sensor 180M can obtain a vibration signal. In some embodiments, the bone conduction sensor 180M can obtain a vibration signal of a vibrating bone block of the vocal part of the human body. The bone conduction sensor 180M can also contact the human pulse to receive a blood pressure beat signal. In some embodiments, the bone conduction sensor 180M can also be set in an earphone and combined into a bone conduction earphone.
  • the audio module 170 can parse out a voice signal based on the vibration signal of the vibrating bone block of the vocal part obtained by the bone conduction sensor 180M to realize a voice function.
  • the application processor can parse the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 180M to realize a heart rate detection function.
  • the buttons 190 include a power button, a volume button, etc.
  • the buttons 190 may be mechanical buttons or touch buttons.
  • the device 100 can receive key input and generate key signal input related to user settings and function control of the electronic device 100.
  • Motor 191 can generate vibration prompts.
  • Motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations acting on different applications can correspond to different vibration feedback effects.
  • touch operations acting on different areas of the display screen 194 can also correspond to different vibration feedback effects.
  • Different application scenarios for example: time reminders, receiving messages, alarm clocks, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 may be an indicator light, which may be used to indicate the charging status, power changes, messages, missed calls, notifications, etc.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be connected to and separated from the electronic device 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195.
  • the electronic device 100 can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM cards, Micro SIM cards, SIM cards, and the like. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards can be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 can also be compatible with external memory cards.
  • the electronic device 100 interacts with the network through the SIM card to implement functions such as calls and data communications.
  • the electronic device 100 uses an eSIM, i.e., an embedded SIM card.
  • the eSIM card can be embedded in the electronic device 100 and cannot be separated from the electronic device 100.
  • FIG. 2 is a schematic diagram of the software architecture of the electronic device 100 provided in an embodiment of the present application.
  • the software system of the electronic device 100 may adopt a layered architecture, an event-driven architecture, a micro-core architecture, a micro-service architecture, or a cloud architecture.
  • the embodiment of the present application takes the Android system of the layered architecture as an example to exemplify the software architecture of the electronic device 100.
  • the layered architecture divides the software into several layers, each with clear roles and division of labor.
  • the layers communicate with each other through software interfaces.
  • the Android system is divided into three layers, from top to bottom, namely the application layer (referred to as the application layer), the application framework layer (referred to as the service layer), and the kernel layer (also referred to as the driver layer).
  • the application layer may include a series of application packages.
  • the application package can include applications such as camera, gallery, calendar, call, map, navigation, WLAN, Bluetooth, music, short message and collaborative assistant.
  • the application layer may perform business processing corresponding to the multi-device combination input event.
  • the service layer provides application programming interface (API) and programming framework for the application programs in the application layer.
  • API application programming interface
  • the service layer includes some predefined functions.
  • the service layer may include an input subsystem and a distributed subsystem, etc.
  • the service layer may also include a content provider, a view system, a phone manager, a resource manager, a notification manager, etc. (not shown in the figure).
  • the distributed subsystem includes a master unit and a controlled unit.
  • the electronic device 100 collects events input by the user through the controlled unit.
  • the electronic device 100 receives events sent by the controlled device through the master unit.
  • the controlled unit includes an event broadcast subunit and an event collection subunit.
  • the event collection subunit can be used to collect native events of the controlled terminal device, and the event broadcast subunit is used to broadcast the native events of the controlled terminal device.
  • the main control unit includes an event receiving subunit, a global coordinate management subunit and an event injection subunit.
  • the event receiving subunit can be used to receive native events broadcast by the controlled terminal device
  • the global coordinate management subunit is used to form a peer global coordinate system for input events between multiple devices, thereby enabling the main control terminal device to perform global event recognition.
  • the event injection subunit is used to inject the native events broadcast by the controlled terminal device into the proxy node of the driver layer, thereby virtualizing the native events broadcast by the controlled terminal device into proxy events, wherein the proxy node can be a node used to virtualize other electronic devices.
  • the input subsystem includes a global event management unit, an event identification unit and an event decision unit.
  • the global event management unit can be used to collect native events and proxy events in the master control terminal device, the event identification unit is used to identify native events and proxy events, and the event decision unit is used to determine whether it is a multi-device combined input event based on native events and proxy events.
  • the driver layer is the layer between hardware and software.
  • the driver layer includes at least display driver, camera driver, audio driver, and sensor driver.
  • the driver layer also includes node drivers, wherein the node drivers include native node drivers and proxy node drivers.
  • the native node driver is the driver of the native node.
  • the native node is the node of the electronic device itself.
  • the native node is used to generate native Event, native event can be an event generated when the user inputs on the electronic device. It can be understood that when the native event is generated by the user on the controlled device, the native event generated on the controlled device can be sent to the event collection subunit of the service layer; when the native event is generated by the user on the master device, the native event generated on the master device can be sent to the global event management subunit of the service layer.
  • the proxy node driver is a driver of the proxy node.
  • the proxy node is used to generate a proxy event.
  • the proxy event can be obtained by the master device virtualizing the native event generated when inputting on the controlled device.
  • the master device can receive the native event broadcast by the controlled device, virtualize the native event of the controlled device into a proxy event, and send the generated proxy event to the global event management subunit of the service layer.
  • the master device and the controlled device are relative.
  • device A and device B as an example, when the user inputs on device A and device B at the same time, device A can be the master device and device B can be the controlled device, or device A can be the controlled device and device B can be the master device.
  • a native event can be generated.
  • the native event generated by the native node in device B can be collected through the event collection subunit in device B, and the native event of device B can be broadcast through the event broadcast subunit.
  • device A can receive the native event broadcasted by device B through the event receiving subunit.
  • the native events of device B and device A are unified in coordinate system through the global coordinate management subunit, and the native events of device B are injected into the proxy node of device A through the event injection subunit, so that the native events of device B can be virtualized into proxy events.
  • the above embodiment is only illustrative of the example of virtualizing the native events of device B into proxy events in device A, but does not constitute a limitation on the embodiments of the present application.
  • device B can also virtualize the native events broadcast by device A into proxy events.
  • the method of virtualizing the native events of device A into proxy events in device B can be specifically referred to the method of virtualizing the native events of device B into proxy events in device A, which will not be repeated here.
  • Fig. 4 is an application scenario architecture diagram provided by an embodiment of the present application. As shown in Fig. 4, the above application scenario may include multiple electronic devices 100 (eg, device A, device B, device C, etc.). Multiple electronic devices 100 may form a distributed system.
  • multiple electronic devices 100 eg, device A, device B, device C, etc.
  • FIG. 3 only exemplarily shows an application scenario of three electronic devices, but does not constitute a limitation on the embodiments of the present application. In some embodiments, application scenarios of two electronic devices or more than three electronic devices may also be included.
  • the above-mentioned multiple electronic devices 100 can be in a distributed environment through a soft bus, so that multiple electronic devices 100 can discover and interconnect each other.
  • the soft bus can be understood as a bus technology.
  • commonly used buses may include, for example, Peripheral Component Interconnect (PCI) bus, Controller Area Network (CAN) bus, Mobile Industry Processor Interface (MIPI) bus, Integrated Circuit (IIC) bus and other buses.
  • PCI Peripheral Component Interconnect
  • CAN Controller Area Network
  • MIPI Mobile Industry Processor Interface
  • IIC Integrated Circuit
  • the soft bus can also be called a distributed soft bus, which is the communication base for distributed devices such as mobile phones, tablets, smart wearables, smart screens, and car machines, providing a unified distributed communication capability for interconnection between devices.
  • the main functions of the soft bus may include: discovery, connection, networking/topology management, task bus and data bus.
  • the "discovery” function refers to searching for related devices around;
  • the "connection” function refers to establishing a connection with the discovered device;
  • the "networking/topology management” function refers to the network topology management of the discovered devices, such as forming a star network topology or a mesh network topology;
  • the "task bus” function refers to the path for transmitting small amounts of data based on the established network topology;
  • the "data bus” function refers to the path for transmitting larger amounts of data.
  • Multiple electronic devices 100 can share the same system account. Taking Huawei's Hongmeng system as an example, multiple electronic devices 100 can share the same Huawei account.
  • multiple electronic devices 100 may also be in a local area network environment, wherein the connection mode of the local area network may be a wired connection or a wireless connection, which is not specifically limited in the embodiments of the present application.
  • the connection mode of the local area network may be a wired connection or a wireless connection, which is not specifically limited in the embodiments of the present application.
  • multiple electronic devices 100 may communicate with each other.
  • any electronic device 100 in the distributed system can register the proxy node of other electronic devices 100.
  • any electronic device 100 can broadcast the native event.
  • FIG 5 it is a flow chart of an embodiment of the device input method provided by the present application.
  • the user can perform multi-device combined input operations on the first device and the second device at the same time. For example, the user performs a tap operation on the first device and a click operation on the second device, wherein the first device and the second device can be any two electronic devices in Figure 4 above.
  • first device and the second device can be the master device and the controlled device of each other, that is, when the first device acts as the master device, the second device can act as the controlled device; and when the second device acts as the master device, the first device can act as the controlled device.
  • this article takes the first device as the master device and the second device as the controlled device as an example for exemplary explanation. It can be understood that the device input mode of the first device as the controlled device and the second device as the master device can specifically refer to the device input mode of the first device as the master device and the second device as the controlled device, which can specifically include the following steps:
  • Step 501 In response to an input operation of a user on a first device, the first device collects a native event of the first device.
  • the user may perform an input operation on the first device, for example, the user performs a tap operation on the first device.
  • the first device may first generate a native event of the first device through a native node driver of the driver layer.
  • the native event of the first device may be the tap event.
  • the first device may collect native events generated by native nodes in the first device through an event collection subunit of a service layer in the first device.
  • Step 502 In response to an input operation of a user on a second device, the second device collects a native event of the second device.
  • the user can also perform input operations on the second device.
  • the user can perform a click operation on the second device, thereby triggering a multi-device combined input event.
  • the second device can first generate a native event of the second device through the native node driver of the driver layer.
  • the native event of the second device can be the above-mentioned click event.
  • the second device may collect native events generated by native nodes in the second device through an event collection subunit of a service layer in the second device.
  • step 502 may be performed after step 501, or may be performed before step 501, or may be performed simultaneously with step 501, and the embodiments of the present application do not impose any special limitation on this.
  • Step 503 The second device broadcasts the native event of the second device.
  • the first device receives the native event of the second device broadcast by the second device.
  • the second device when it collects the native event, it can broadcast the native event, wherein the broadcasting method may include but is not limited to soft bus, Bluetooth, wireless fidelity (wireless fidelity, WI-FI), and distributed data synchronization, etc., and the embodiments of the present application do not specifically limit this.
  • the broadcasting method may include but is not limited to soft bus, Bluetooth, wireless fidelity (wireless fidelity, WI-FI), and distributed data synchronization, etc., and the embodiments of the present application do not specifically limit this.
  • the second device when the second device broadcasts the native event, it can also carry the event type and device identification.
  • the event type can be used to characterize the user input method, for example, the user inputs through the mouse, or the user inputs through the keyboard, or the user inputs through the touch screen, etc.
  • the device identification is used to characterize the identity of the electronic device 100, for example, the device identification can be a device ID.
  • the second device may also carry event coordinates when broadcasting the native event. For example, if the user inputs through a touch screen or other means, the user's input event will generate event coordinates. Since the user will refer to their own coordinate system when inputting on different electronic devices 100, it is necessary to unify the reference coordinate systems of different electronic devices 100 into a global coordinate system.
  • the second device After the second device broadcasts the native event, other devices in the distributed system can receive the native event of the second device.
  • the first device can receive the native event broadcast by the second device through the event receiving subunit in the service layer.
  • Step 504 The first device virtualizes the native event of the second device into a proxy event.
  • the native event of the second device can be injected into the proxy node through the event injection subunit of the service layer, thereby virtualizing the native event of the second device into a proxy event.
  • the native events of the second device are managed with global coordinates, so that the native events of the second device and the native events of the first device share the same coordinate system, so that it can be determined in the same coordinate system whether it is a multi-device combined input according to the user input.
  • coordinate system 1 is the coordinate system of the first device, and the size of the first device in coordinate system 1 is 100*100.
  • Coordinate system 2 is the coordinate system of the second device, and the size of the second device in coordinate system 2 is 50*50.
  • the coordinates of the native event of the second device in coordinate system 2 are P(10,10).
  • the event coordinates in each device can be converted into a unified coordinate in the global coordinate system.
  • the native event P of the second device is converted from the coordinate (10,10) in coordinate system 2 to the coordinate (110,10) in coordinate system 3.
  • Step 505 The first device identifies the native event and the proxy event of the first device to determine whether the user input is a multi-device combined input.
  • the first device can obtain the native events and proxy events of the first device through the global event management subunit of the service layer.
  • the native events of the first device are sent by the native nodes of the driver layer to the global event management subunit, wherein the first device, when sending the native events to the global event management subunit, can also carry the event type and device identification corresponding to the native events, and in some embodiments, can also include the corresponding event coordinates.
  • the proxy events are sent by the proxy nodes of the driver layer to the global event management subunit, wherein the first device, when sending the proxy events to the global event management subunit, can also carry the event type and device identification corresponding to the proxy events, and in some embodiments, can also include the corresponding event coordinates.
  • the first device may identify the native event and the proxy event of the first device through the event identification subunit to determine whether the user's input this time is a multi-device combined input.
  • the first device may identify the native event and the proxy event of the first device in the following manner:
  • the first device determines whether the user's current input is a multi-device combination input according to a preset multi-device combination input scenario.
  • a plurality of multi-device combination input scenarios may be preset in the first device, and each multi-device combination input scenario includes a combination of multiple events.
  • Table 1 exemplarily shows the preset multi-device combination input scenarios.
  • a multi-device combination input scenario can be composed of a combination of 2 or more device events.
  • the user can perform input operations on 2 or more devices at the same time, thereby triggering a multi-device combination input event.
  • the first device obtains the native event and the proxy event, it can combine the operation of the native event and the operation of the proxy event, and then query in Table 1. If the corresponding multi-device combination input scenario is found, it can be determined that the user's input this time is a multi-device combination input; if the corresponding multi-device combination input scenario is not found, it can be determined that the user's input this time is not a multi-device combination input.
  • the above operations of the user can determine that the user's input operation this time is a multi-device multi-touch event, that is, a multi-device combination input event.
  • the first device may determine whether the input event of the current user is a multi-device event based on the device identifier, and may perform matching of the multi-device combination input scenarios after determining that the input event of the current user is a multi-device event. That is to say, after determining that the input event of the current user is not a multi-device event, matching of the multi-device combination input scenarios is not performed, thereby reducing the amount of computation.
  • the device identifier of the native event of the first device corresponds to the device identifier of the first device
  • the device identifier of the proxy event corresponds to the device identifier of the second device. From the device identifier of the first device and the device identifier of the second device, it can be seen that the user is inputting on multiple devices, and thus it can be determined that the user's input event this time is a multi-device event.
  • the first device may also determine whether the input event of the user is a multi-device event by event type. For example, if the user operates the touch screen on the first device and the user operates the mouse on the second device, it can be determined that the input event of the user is a multi-device event.
  • the multi-device combination input scenario can also be determined based on the event coordinates.
  • the user's input operations on the two electronic devices are both touch operations.
  • the first device can determine the coordinates of native events and proxy events in the global coordinate system, and can determine the multi-device combination input scenario based on the coordinates of native events and proxy events and the user's operations, thereby more accurately determining the multi-device combination input scenario.
  • the multi-device combination input scenario is to splice the picture in the first device with the picture in the second device, or to send the file in the second device to a folder in the first device, or to send the file in the second device to the display interface of the application currently running on the first device, etc.
  • Step 506 The first device determines whether the event input by the combination of multiple devices is executed on the first device.
  • the event decision subunit can determine whether the event of the multi-device combination input is executed on the first device.
  • the event decision subunit determines whether the event of the above-mentioned multi-device combination input is executed on the first device in a manner that is based on a preset execution mechanism.
  • the preset execution mechanism is used to characterize any device in the event combination corresponding to the multi-device combination input as an execution device.
  • the electronic device corresponding to the input event a1 can be preset as an execution device.
  • the electronic device on which the user performs a preset tap operation is an execution device.
  • the first device is an execution device, that is, the event of the above-mentioned multi-device combination input is executed on the first device.
  • the user performs a click operation on the second device, that is, the second device is a non-execution device, and therefore, the event of the above-mentioned multi-device combination input is not executed on the second device.
  • the event decision subunit of the first device determines that the execution device is the first device
  • the event of the combined input of multiple devices can be sent to the application layer of the first device, so that the application layer can execute the business corresponding to the event of the combined input of multiple devices.
  • the native node in the first device driver layer sends the native event to the global event management subunit of the service layer
  • the proxy node in the first device driver layer sends the proxy event to the global event management subunit of the service layer.
  • the global event management subunit of the first device service layer receives the native event and the proxy event, it is identified through the event identification subunit, thereby determining whether the user's input this time is a multi-device combination input.
  • the event decision subunit can be used to determine whether the first device is an execution device. If the first device is determined to be an execution device, the event of the multi-device combination input can be sent to the application layer, and the application layer performs business processing corresponding to the event of the multi-device combination input.
  • the embodiments of the present application are only illustrative of the user performing input operations on two electronic devices at the same time, but this does not constitute a limitation on the embodiments of the present application.
  • the user can also perform input operations on more than two electronic devices at the same time.
  • the specific manner in which the user performs input operations on more than two electronic devices at the same time can refer to the manner in which the user performs input operations on two electronic devices at the same time in the above embodiment, and will not be repeated here.
  • any electronic device in a distributed environment, after a user performs an input operation, any electronic device will broadcast a native event corresponding to the user's input operation, and generate a virtual corresponding proxy event in other devices. This allows the electronic devices in the distributed environment to determine whether the user's input is a multi-device combined input based on their own native events and proxy events, thereby effectively realizing the user's combined input on multiple devices.
  • FIG8 is a schematic diagram of the structure of an embodiment of the device input device of the present application. As shown in FIG8, the device input device 80 is applied to the first device.
  • the device input device 80 may include: an acquisition module 81, a receiving module 82, a virtual module 83, and a recognition module 84.
  • An acquisition module 81 configured to acquire a native event of the first device in response to an input operation of the user on the first device
  • a receiving module 82 configured to receive a native event broadcasted by a second device, wherein the native event of the second device is generated by an input operation of a user on the second device, and the second device and the first device are in the same distributed system;
  • a virtualization module 83 configured to virtualize the native event of the second device into a proxy event
  • An identification module 84 configured to determine whether the user input is a multi-device combined input based on the native event of the first device and the proxy event;
  • the execution module 85 is used to determine whether the first device is an execution device if it is determined that the user input is a multi-device combination input; if it is determined that the first device is an execution device, execute the service corresponding to the multi-device combination input event.
  • the identification module 84 is specifically used to match the combination of the native event of the first device and the proxy event with a preset multi-device combination input scene set to determine whether the user's input is a multi-device combination input, wherein the preset multi-device combination input scene set includes one or more preset multi-device combination input scenes, and each preset multi-device combination input scene includes multiple events.
  • the receiving module 82 is further used to receive a device identifier broadcast by the second device, wherein the device identifier of the second device is used to characterize the identity of the second device, and the device identifier of the second device corresponds to a native event of the second device.
  • the above-mentioned receiving module 82 is also used to receive the event type and/or event coordinates broadcast by the second device, the event type and/or event coordinates of the second device correspond to the native event of the second device, the event type of the second device is used to characterize the input method of the user on the second device, and the event coordinates of the second device are used to characterize the coordinates corresponding to the user's input on the second device.
  • the device 80 further includes:
  • the broadcast module is used to broadcast the native event of the first device.
  • the broadcast module is further used to broadcast a device identifier of the first device, wherein the device identifier of the first device is used to characterize an identity of the first device, and the device identifier of the first device corresponds to a native event of the first device.
  • the above-mentioned broadcast module is also used to broadcast the event type and/or event coordinates of the first device, the event type and/or event coordinates of the first device correspond to the native event of the first device, the event type of the first device is used to characterize the input method of the user on the first device, and the event coordinates of the first device are used to characterize the coordinates corresponding to the user's input on the first device.
  • the device input device 80 provided in the embodiment shown in FIG8 can be used to execute the technical solution of the method embodiment shown in the present application. Its implementation principle and technical effects can be further referred to the relevant description in the method embodiment.
  • FIG9 is a schematic diagram of the structure of another embodiment of the device input device of the present application. As shown in FIG9 , the device input device 90 is applied to a second device.
  • the device input device 90 may include: an acquisition module 91 and a broadcast module 92; wherein,
  • An acquisition module 91 is used to acquire a native event of the second device in response to an input operation of the user on the second device;
  • the broadcast module 92 is configured to broadcast the native event of the second device.
  • the broadcast module 92 is further used to broadcast a device identifier of the second device, wherein the device identifier of the second device is used to represent the identity of the second device, and the device identifier of the second device corresponds to a native event of the second device.
  • the broadcast module 92 is also used to broadcast the event type and/or event coordinates of the second device, where the event type and/or event coordinates of the second device correspond to the native event of the second device, and the event type of the second device is used to characterize the input method of the user on the second device, and the event coordinates of the second device are used to characterize the coordinates corresponding to the user's input on the second device.
  • the device 90 further includes:
  • a receiving module configured to receive a native event broadcasted by a first device, wherein the native event of the first device is generated by an input operation of a user on the first device, and the first device and the second device are in the same distributed system;
  • a virtualization module used for virtualizing a native event of the first device into a proxy event
  • An identification module is used to determine whether the user's input is multi-device based on the native event of the second device and the proxy event Combination input;
  • the execution module is used to determine whether the second device is an execution device if it is determined that the user input is a multi-device combination input; if it is determined that the second device is an execution device, execute the service corresponding to the multi-device combination input event.
  • the above-mentioned identification module is specifically used to match the combination of the native event of the second device and the proxy event with a preset multi-device combination input scene set to determine whether the user's input is a multi-device combination input, wherein the preset multi-device combination input scene set includes one or more preset multi-device combination input scenes, and each preset multi-device combination input scene includes multiple events.
  • the device input device 90 provided in the embodiment shown in FIG. 9 can be used to execute the technical solution of the method embodiment shown in the present application. Its implementation principle and technical effects can be further referred to the relevant description in the method embodiment.
  • the division of the various modules of the device input device 80 shown in FIG. 8 and the device input device 90 shown in FIG. 9 is only a division of logical functions. In actual implementation, they can be fully or partially integrated into one physical entity, or they can be physically separated. And these modules can all be implemented in the form of software calling through processing elements; they can also be all implemented in the form of hardware; some modules can also be implemented in the form of software calling through processing elements, and some modules can be implemented in the form of hardware.
  • the detection module can be a separately established processing element, or it can be integrated in a chip of an electronic device. The implementation of other modules is similar. In addition, all or part of these modules can be integrated together, or they can be implemented independently. In the implementation process, each step of the above method or each of the above modules can be completed by an integrated logic circuit of hardware in a processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as one or more application specific integrated circuits (ASIC), or one or more microprocessors (DSP), or one or more field programmable gate arrays (FPGA).
  • ASIC application specific integrated circuit
  • DSP microprocessors
  • FPGA field programmable gate arrays
  • these modules may be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the processor involved may include, for example, a CPU, a DSP, a microcontroller or a digital signal processor, and may also include a GPU, an embedded neural network processor (Neural-network Process Units; hereinafter referred to as: NPU) and an image signal processor (Image Signal Processing; hereinafter referred to as: ISP).
  • the processor may also include necessary hardware accelerators or logic processing hardware circuits, such as ASIC, or one or more integrated circuits for controlling the execution of the program of the technical solution of the present application.
  • the processor may have the function of operating one or more software programs, and the software programs may be stored in a storage medium.
  • the embodiment of the present application also provides a computer-readable storage medium, in which a computer program is stored.
  • the computer-readable storage medium is run on a computer, the computer executes the method provided by the embodiment shown in the present application.
  • An embodiment of the present application also provides a computer program product, which includes a computer program.
  • a computer program product which includes a computer program.
  • the computer program When the computer program is run on a computer, it enables the computer to execute the method provided by the embodiment shown in the present application.
  • “at least one” refers to one or more, and “more than one” refers to two or more.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent the existence of A alone, the existence of A and B at the same time, and the existence of B alone. Among them, A and B can be singular or plural.
  • the character “/” generally indicates that the previous and next associated objects are in an "or” relationship.
  • “At least one of the following” and similar expressions refer to any combination of these items, including any combination of single or plural items.
  • At least one of a, b and c can be represented by: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • any function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including several instructions for enabling a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory; hereinafter referred to as: ROM), random access memory (Random Access Memory; hereinafter referred to as: RAM), disk or optical disk, etc., which can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

本申请提供一种设备输入方法、系统、电子设备及存储介质,该方法包括:响应于用户对第一设备的输入操作,获取第一设备的原生事件;接收第二设备广播的原生事件,其中,第二设备的原生事件由用户对第二设备的输入操作生成,第二设备与第一设备在同一个分布式系统内;将第二设备的原生事件虚拟成代理事件;基于第一设备的原生事件及代理事件判断用户的输入是否是多设备组合输入;若确定用户的输入是多设备组合输入,判断第一设备是否是执行设备;若确定第一设备是执行设备,则执行与多设备组合输入事件对应的业务。本申请提供的方法,可以有效实现用户在多设备上的组合输入。

Description

设备输入方法、系统、电子设备及存储介质
本申请要求于2022年10月31日提交中国专利局、申请号为202211345200.1、申请名称为“设备输入方法、系统、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种设备输入方法、系统、电子设备及存储介质。
背景技术
随着通信技术的快速发展,越来越多的电子设备丰富了人们的生活。在日常生活中,一个用户通常会拥有多种类型的电子设备,例如,手机、平板、可穿戴设备等。而随着电子设备的外设协同互联的应用场景的增多,各种电子设备的输入方式也变的越来越多,例如,可以通过鼠标进行输入,或者通过键盘进行输入,或者通过触摸屏进行输入,或者通过触摸板进行输入等。
然而,目前用户通过外设在电子设备上进行输入时,只能在单个设备上实现设备输入,无法同时在多个设备上实现设备输入。例如,若用户期望将设备A中的文件传输到设备B,则目前用户只能先操作设备A,再操作设备B,从而实现设备A与设备B之间的文件传输,无法通过同时操作设备A和设备B实现设备A与设备B之间的文件传输。
发明内容
本申请提供了一种设备输入方法、系统、电子设备及存储介质,可以有效实现用户在多设备上的组合输入。
第一方面,本申请提供了一种设备输入方法,应用于第一设备,包括:
响应于用户对所述第一设备的输入操作,获取所述第一设备的原生事件;
接收第二设备广播的原生事件,其中,所述第二设备的原生事件由用户对所述第二设备的输入操作生成,所述第二设备与所述第一设备在同一个分布式系统内;
将所述第二设备的原生事件虚拟成代理事件;
基于所述第一设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入;
若确定用户的输入是多设备组合输入,判断所述第一设备是否是执行设备;
若确定所述第一设备是执行设备,则执行与所述多设备组合输入事件对应的业务。
本申请中,通过接收对端设备广播的输入事件,基于自身的输入事件及接收到的对端设备的输入事件进行决策,确定多设备输入事件,由此可以实现在多设备输入事件场景下的操作。
其中一种可能的实现方式中,所述基于所述第一设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入包括:
将所述第一设备的原生事件及所述代理事件的组合与预设多设备组合输入场景集合进行匹配,以判断用户的输入是否是多设备组合输入,其中,所述预设多设备组合输入场景集合包括一个或多个预设多设备组合输入场景,每个预设多设备组合输入场景包括多个事件。
其中一种可能的实现方式中,所述方法还包括:
接收所述第二设备广播的设备标识,其中,所述第二设备的设备标识用于表征所述第二设备的身份,所述第二设备的设备标识与所述第二设备的原生事件对应。
其中一种可能的实现方式中,所述方法还包括:
接收所述第二设备广播的事件类型和/或事件坐标,所述第二设备的事件类型和/或事件坐标与所述第二设备的原生事件对应,所述第二设备的事件类型用于表征用户在第二设备上的输入方式,所述第二设备的事件坐标用于表征用户在第二设备上输入时对应的坐标。
其中一种可能的实现方式中,所述方法还包括:
广播所述第一设备的原生事件。
其中一种可能的实现方式中,所述方法还包括:
广播所述第一设备的设备标识,其中,所述第一设备的设备标识用于表征所述第一设备的身份,所述第一设备的设备标识与所述第一设备的原生事件对应。
其中一种可能的实现方式中,所述方法还包括:
广播所述第一设备的事件类型和/或事件坐标,所述第一设备的事件类型和/或事件坐标与所述第一设备的原生事件对应,所述第一设备的事件类型用于表征用户在第一设备上的输入方式,所述第一设备的事件坐标用于表征用户在第一设备上输入时对应的坐标。
第二方面,本申请提供了一种设备输入方法,应用于第二设备,包括:
响应于用户对所述第二设备的输入操作,获取所述第二设备的原生事件;
将所述第二设备的原生事件进行广播。
本申请中,通过广播用户的输入事件,使得对端设备可以基于自身的输入事件及接收到的输入事件进行决策,确定多设备输入事件,由此可以实现在多设备输入事件场景下的操作。
其中一种可能的实现方式中,所述方法还包括:
广播所述第二设备的设备标识,其中,所述第二设备的设备标识用于表征所述第二设备的身份,所述第二设备的设备标识与所述第二设备的原生事件对应。
其中一种可能的实现方式中,所述方法还包括:
广播所述第二设备的事件类型和/或事件坐标,所述第二设备的事件类型和/或事件坐标与所述第二设备的原生事件对应,所述第二设备的事件类型用于表征用户在第二设备上的输入方式,所述第二设备的事件坐标用于表征用户在第二设备上输入时对应的坐标。
其中一种可能的实现方式中,所述方法还包括:
接收第一设备广播的原生事件,其中,所述第一设备的原生事件由用户对所述第一设备的输入操作生成,所述第一设备与所述第二设备在同一个分布式系统内;
将所述第一设备的原生事件虚拟成代理事件;
基于所述第二设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入;
若确定用户的输入是多设备组合输入,判断所述第二设备是否是执行设备;
若确定所述第二设备是执行设备,则执行与所述多设备组合输入事件对应的业务。
其中一种可能的实现方式中,所述基于所述第二设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入包括:
将所述第二设备的原生事件及所述代理事件的组合与预设多设备组合输入场景集合进行匹配,以判断用户的输入是否是多设备组合输入,其中,所述预设多设备组合输入场景集合包括一个或多个预设多设备组合输入场景,每个预设多设备组合输入场景包括多个事件。
第三方面,本申请提供了一种设备输入装置,应用于第一设备,包括:
获取模块,用于响应于用户对所述第一设备的输入操作,获取所述第一设备的原生事件;
接收模块,用于接收第二设备广播的原生事件,其中,所述第二设备的原生事件由用户对所述第二设备的输入操作生成,所述第二设备与所述第一设备在同一个分布式系统内;
虚拟模块,用于将所述第二设备的原生事件虚拟成代理事件;
识别模块,用于基于所述第一设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入;
执行模块,用于若确定用户的输入是多设备组合输入,判断所述第一设备是否是执行设备;若确定所述第一设备是执行设备,则执行与所述多设备组合输入事件对应的业务。
其中一种可能的实现方式中,上述识别模块具体用于将所述第一设备的原生事件及所述代理事件的组合与预设多设备组合输入场景集合进行匹配,以判断用户的输入是否是多设备组合输入,其中,所述预设多设备组合输入场景集合包括一个或多个预设多设备组合输入场景,每个预设多设备组合输入场景包括多个事件。
其中一种可能的实现方式中,上述接收模块还用于接收所述第二设备广播的设备标识,其中, 所述第二设备的设备标识用于表征所述第二设备的身份,所述第二设备的设备标识与所述第二设备的原生事件对应。
其中一种可能的实现方式中,上述接收模块还用于接收所述第二设备广播的事件类型和/或事件坐标,所述第二设备的事件类型和/或事件坐标与所述第二设备的原生事件对应,所述第二设备的事件类型用于表征用户在第二设备上的输入方式,所述第二设备的事件坐标用于表征用户在第二设备上输入时对应的坐标。
其中一种可能的实现方式中,上述装置还包括:
广播模块,用于广播所述第一设备的原生事件。
其中一种可能的实现方式中,上述广播模块还用于广播所述第一设备的设备标识,其中,所述第一设备的设备标识用于表征所述第一设备的身份,所述第一设备的设备标识与所述第一设备的原生事件对应。
其中一种可能的实现方式中,上述广播模块还用于广播所述第一设备的事件类型和/或事件坐标,所述第一设备的事件类型和/或事件坐标与所述第一设备的原生事件对应,所述第一设备的事件类型用于表征用户在第一设备上的输入方式,所述第一设备的事件坐标用于表征用户在第一设备上输入时对应的坐标。
第四方面,本申请提供了一种设备输入装置,应用于第二设备,包括:
获取模块,用于响应于用户对所述第二设备的输入操作,获取所述第二设备的原生事件;
广播模块,用于将所述第二设备的原生事件进行广播。
其中一种可能的实现方式中,上述广播模块还用于广播所述第二设备的设备标识,其中,所述第二设备的设备标识用于表征所述第二设备的身份,所述第二设备的设备标识与所述第二设备的原生事件对应。
其中一种可能的实现方式中,上述广播模块还用于广播所述第二设备的事件类型和/或事件坐标,所述第二设备的事件类型和/或事件坐标与所述第二设备的原生事件对应,所述第二设备的事件类型用于表征用户在第二设备上的输入方式,所述第二设备的事件坐标用于表征用户在第二设备上输入时对应的坐标。
其中一种可能的实现方式中,上述装置还包括:
接收模块,用于接收第一设备广播的原生事件,其中,所述第一设备的原生事件由用户对所述第一设备的输入操作生成,所述第一设备与所述第二设备在同一个分布式系统内;
虚拟模块,用于将所述第一设备的原生事件虚拟成代理事件;
识别模块,用于基于所述第二设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入;
执行模块,用于若确定用户的输入是多设备组合输入,判断所述第二设备是否是执行设备;若确定所述第二设备是执行设备,则执行与所述多设备组合输入事件对应的业务。
其中一种可能的实现方式中,上述识别模块具体用于将所述第二设备的原生事件及所述代理事件的组合与预设多设备组合输入场景集合进行匹配,以判断用户的输入是否是多设备组合输入,其中,所述预设多设备组合输入场景集合包括一个或多个预设多设备组合输入场景,每个预设多设备组合输入场景包括多个事件。
第五方面,本申请提供了一种第一设备,包括:处理器和存储器,所述存储器用于存储计算机程序;所述处理器用于运行所述计算机程序,实现如第一方面所述的设备输入方法。
第六方面,本申请提供了一种第二设备,包括:处理器和存储器,所述存储器用于存储计算机程序;所述处理器用于运行所述计算机程序,实现如第二方面所述的设备输入方法。
第七方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机实现如第一方面或第二方面所述的设备输入方法。
第八方面,本申请提供了一种计算机程序,当上述计算机程序在第一设备的处理器上运行时,使得所述第一设备执行第一方面所述的设备输入方法,或当上述计算机程序在第二设备的处理器上运行时,使得所述第二设备执行第二方面所述的设备输入方法。
在一种可能的设计中,第八方面中的程序可以全部或者部分存储在与处理器封装在一起的存 储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
第九方面,本申请提供了一种设备输入系统,包括如第五方面所述的第一设备及如第六方面所述的第二设备。
附图说明
图1为本申请实施例提供的电子设备的硬件结构示意图;
图2为本申请实施例提供的电子设备的软件结构示意图;
图3为本申请实施例提供的事件广播流程示意图;
图4为本申请实施例提供的应用场景架构示意图;
图5为本申请提供的设备输入方法一个实施例的流程示意图;
图6为本申请实施例提供的全局坐标系示意图;
图7为本申请实施例提供的事件识别流程示意图;
图8为本申请提供的设备输入装置一个实施例的结构示意图;
图9为本申请提供的设备输入装置另一个实施例的结构示意图。
具体实施方式
本申请实施例中,除非另有说明,字符“/”表示前后关联对象是一种或的关系。例如,A/B可以表示A或B。“和/或”描述关联对象的关联关系,表示可以存在三种关系。例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
需要指出的是,本申请实施例中涉及的“第一”、“第二”等词汇,仅用于区分描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,也不能理解为指示或暗示顺序。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。此外,“以下至少一项(个)”或者其类似表达,是指的这些项中的任意组合,可以包括单项(个)或复数项(个)的任意组合。例如,A、B或C中的至少一项(个),可以表示:A,B,C,A和B,A和C,B和C,或A、B和C。其中,A、B、C中的每个本身可以是元素,也可以是包含一个或多个元素的集合。
本申请实施例中,“示例的”、“在一些实施例中”、“在另一实施例中”等用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中的“的(of)”、“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,所要表达的含义是一致的。本申请实施例中,通信、传输有时可以混用,应当指出的是,在不强调其区别时,其所表达的含义是一致的。例如,传输可以包括发送和/或接收,可以为名词,也可以是动词。
本申请实施例中涉及的等于可以与大于连用,适用于大于时所采用的技术方案,也可以与小于连用,适用于小于时所采用的技术方案。需要说明的是,当等于与大于连用时,不能与小于连用;当等于与小于连用时,不与大于连用。
随着通信技术的快速发展,越来越多的电子设备丰富了人们的生活。在日常生活中,一个用户通常会拥有多种类型的电子设备,例如,手机、平板、可穿戴设备等。而随着电子设备的外设协同互联的应用场景的增多,各种电子设备的输入方式也变的越来越多,例如,可以通过鼠标进行输入,或者通过键盘进行输入,或者通过触摸屏进行输入,或者通过触摸板进行输入等。
然而,目前用户通过外设在电子设备上进行输入时,只能在单个设备上实现设备输入,无法同时在多个设备上实现设备输入。例如,若用户期望将设备A中的文件传输到设备B,则目前用户只能先操作设备A,再操作设备B,从而实现设备A与设备B之间的文件传输,无法通过同时操作设备A和设备B实现设备A与设备B之间的文件传输。
基于上述问题,本申请实施例提出了一种设备输入方法,应用于电子设备。电子设备可以是固定终端,例如,笔记本电脑、台式机电脑、大屏、智慧屏、鼠标、键盘、遥感、触摸板等,电子设备也可以是移动终端,移动终端也可以称为用户设备(User Equipment,UE)、终端设备,接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。移动终端可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、车联网终端、电脑、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡、电视机顶盒(set top box,STB)、用户驻地设备(customer premise equipment,CPE)和/或用于在无线系统上进行通信的其它设备以及下一代通信系统,例如,5G网络中的移动终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的移动终端等。该电子设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。
图1首先示例性的示出了电子设备100的结构示意图。
电子设备100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处 理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现电子设备100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现电子设备100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现电子设备100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子设备100充电,也可以用于电子设备100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他终端设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子设备100的结构限定。在本申请另一些实施例中,电子设备100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子设备100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为终端设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子设备100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。电子设备100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在电子设备100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,电子设备100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得电子设备100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子设备100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子设备100可以包括1个或N个显示屏194,N为大于1的正整数。
电子设备100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元 件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,电子设备100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子设备100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子设备100可以支持一种或多种视频编解码器。这样,电子设备100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子设备100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展电子设备100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子设备100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行电子设备100的各种功能应用以及数据处理。
电子设备100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。电子设备100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当电子设备100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。电子设备100可以设置至少一个麦克风170C。在另一些实施例中,电子设备100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动终端设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。电子设备100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,电子设备100根据压力传感器180A检测所述触摸操作强度。电子设备100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例 中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定电子设备100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定电子设备100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测电子设备100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子设备100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,电子设备100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。电子设备100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当电子设备100是翻盖机时,电子设备100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测电子设备100在各个方向上(一般为三轴)加速度的大小。当电子设备100静止时可检测出重力的大小及方向。还可以用于识别终端设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。电子设备100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子设备100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。电子设备100通过发光二极管向外发射红外光。电子设备100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定电子设备100附近有物体。当检测到不充分的反射光时,电子设备100可以确定电子设备100附近没有物体。电子设备100可以利用接近光传感器180G检测用户手持电子设备100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。电子设备100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测电子设备100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。电子设备100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,电子设备100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,电子设备100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,电子设备100对电池142加热,以避免低温导致电子设备100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子设备100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于电子设备100的表面,与显示屏194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。电子设 备100可以接收按键输入,产生与电子设备100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和电子设备100的接触和分离。电子设备100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。电子设备100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,电子设备100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在电子设备100中,不能和电子设备100分离。
图2为本申请实施例提供的电子设备100的软件架构示意图。
电子设备100的软件系统可以采用分层架构,事件驱动架构,微核架构,微服务架构,或云架构。本申请实施例以分层架构的Android系统为例,示例性说明电子设备100的软件架构。
分层架构将软件分成若干个层,每一层都有清晰的角色和分工。层与层之间通过软件接口通信。在一些实施例中,将Android系统分为三层,从上至下分别为应用程序层(简称应用层),应用程序框架层(简称服务层),以及内核层(也可以称为驱动层)。
应用层可以包括一系列应用程序包。
其中,应用程序包可以包括相机,图库,日历,通话,地图,导航,WLAN,蓝牙,音乐,短信息和协同助手等应用程序。
应用层可以在接收到服务层的多设备组合输入事件后,进行与多设备组合输入事件对应的业务处理。
服务层为应用层的应用程序提供应用编程接口(application programming interface,API)和编程框架。服务层包括一些预先定义的函数。
如图2所示,服务层可以包括输入子系统及分布式子系统等。可选地,服务层还可以包括内容提供器,视图系统,电话管理器,资源管理器,通知管理器等(附图未示出)。
其中,分布式子系统包括主控单元和被控单元,当电子设备100为被控端设备时,电子设备100通过被控单元采集用户输入的事件。当电子设备100为主控端设备时,电子设备100通过主控单元接收被控端设备发送的事件。
被控单元包括事件广播子单元及事件采集子单元。事件采集子单元可以用于采集被控端设备的原生事件,事件广播子单元用于将被控端设备的原生事件进行广播。
主控单元包括事件接收子单元、全局坐标管理子单元及事件注入子单元。事件接收子单元可以用于接收被控端设备广播的原生事件,全局坐标管理子单元用于对多个设备之间的输入事件形成对等的全局坐标系,由此可以使得主控端设备进行全局事件识别。事件注入子单元用于将被控端设备广播的原生事件注入驱动层的代理节点,由此可以将被控端设备广播的原生事件虚拟成代理事件,其中,代理节点可以是用于虚拟其他电子设备的节点。
输入子系统包括全局事件管理单元、事件识别单元及事件决策单元。全局事件管理单元可以用于采集主控端设备中的原生事件及代理事件,事件识别单元用于对原生事件及代理事件进行识别,事件决策单元用于基于原生事件及代理事件确定是否是多设备组合输入事件。
驱动层是硬件和软件之间的层。驱动层至少包含显示驱动,摄像头驱动,音频驱动,传感器驱动。
此外,驱动层还包括节点驱动,其中,节点驱动包括原生节点驱动及代理节点驱动。
原生节点驱动为原生节点的驱动,原生节点为电子设备本身的节点,原生节点用于生成原生 事件,原生事件可以是用户在电子设备上输入时产生的事件。可以理解的是,当原生事件由用户在被控端设备上生成后,可以将在被控端设备上生成的原生事件发送给服务层的事件采集子单元;当原生事件由用户在主控端设备上生成后,可以将在主控端设备上生成的原生事件发送给服务层的全局事件管理子单元。
代理节点驱动为代理节点的驱动,代理节点用于生成代理事件,代理事件可以是由主控端设备将在被控端设备上输入时产生的原生事件虚拟后获得。示例性的,主控端设备可以接收被控端设备广播的原生事件,将被控端设备的原生事件虚拟成代理事件,并将生成的代理事件发送给服务层的全局事件管理子单元。
可以理解的是,主控端设备与被控端设备是相对的,以设备A和设备B为例,当用户同时在设备A和设备B上进行输入时,设备A可以为主控端设备,设备B为被控端设备,或者,设备A为被控端设备,设备B为主控端设备。
现以设备A和设备B为例,并结合图3对电子设备100之间的原生事件的广播进行示例性说明。参考图3,设备B中的原生节点检测到用户的输入操作后,可以生成原生事件,通过设备B中的事件采集子单元可以采集设备B中的原生节点生成的原生事件,并可以通过事件广播子单元将设备B的原生事件进行广播。接着,设备A可以通过事件接收子单元,接收设备B广播的原生事件。然后,通过全局坐标管理子单元将设备B的原生事件和设备A的原生事件统一坐标系,并通过事件注入子单元将设备B的原生事件注入至设备A的代理节点中,由此可以将设备B的原生事件虚拟成代理事件。
可以理解的是,上述实施例仅以将设备B的原生事件在设备A中虚拟成代理事件为例进行了示例性说明,但并不构成对本申请实施例的限定,当设备A将设备B的原生事件虚拟成代理事件时,设备B也可以将设备A广播的原生事件虚拟成代理事件,将设备A的原生事件在设备B中虚拟成代理事件的方式,具体可以参考将设备B的原生事件在设备A中虚拟成代理事件的方式,在此不再赘述。
图4为本申请实施例提供的应用场景架构图。如图4所示,上述应用场景可以包括多个电子设备100(例如,设备A、设备B、设备C等)。多个电子设备100可以组成分布式系统。
可以理解的是,上述图3仅示例性的示出了3个电子设备的应用场景,但并不构成对本申请实施例的限定,在一些实施例中,还可以包括2个电子设备或大于3个电子设备的应用场景。
以华为的鸿蒙系统为例,上述多个电子设备100可以通过软总线的方式处于分布式环境中,由此可以使得多个电子设备100之间互相发现以及互联。其中,软总线可以理解为一种总线技术,目前常用的总线可以包括例如外设组件互联(Peripheral Component Interconnect,PCI)总线、控制域网络(Controller Area Network,CAN)总线、移动产业处理器接口(Mobile Industry Processor Interface,MIPI)总线、集成电路(Inter-Integrated Circuit,IIC)总线等总线。软总线也可以称之为分布式软总线,其为手机、平板、智能穿戴、智能屏、车机等分布式设备的通信基座,为设备之间的互联互通提供了统一的分布式通信能力。软总线的主要功能可以包括:发现、连接、组网/拓扑管理、任务总线和数据总线。其中,“发现”功能指的是搜索周围是否有相关设备;“连接”功能指的是与所发现的设备建立连接;“组网/拓扑管理”功能指的是对所发现的设备进行网络拓扑管理,比如组成星状网络拓扑,或者组成Mesh网络拓扑;“任务总线”功能指的是在所建立的网络拓扑基础上,用于传输小数据量信息的通路;“数据总线”功能指的是用于传输较大数据量信息的通路。多个电子设备100之间可以共用同一系统账号,以华为的鸿蒙系统为例,多个电子设备100之间可以共用同一个华为账号。
在一些可选的实施例中,多个电子设备100也可以处于局域网环境中,其中,局域网的连接方式可以是有线连接,也可以是无线连接,本申请实施例对此不作特殊限定。当多个电子设备100处于同一个本地局域网时,多个电子设备100之间可以进行通信。
当多个电子设备100组成分布式系统后,该分布式系统中的任意一个电子设备100可以注册其他电子设备100的代理节点。在上述分布式系统中,任意一个电子设备100都可以将原生事件进行广播。
现结合图5-图7对本申请实施例提供的设备输入方法进行说明。
如图5所示为本申请提供的设备输入方法一个实施例的流程示意图,在图5所示的实施例中,用户可以同时在第一设备和第二设备上进行多设备组合输入操作,例如,用户在第一设备上进行点按操作,在第二设备上进行点击操作,其中,第一设备和第二设备可以是上述图4中的任意两个电子设备。
可以理解的是,第一设备和第二设备可以互为主控端设备和被控端设备,也就是说,当第一设备作为主控端设备时,第二设备可以作为被控端设备;而当第二设备作为主控端设备时,第一设备可以作为被控端设备。
为说明方便,本文以第一设备为主控端设备,以及第二设备为被控端设备为例进行示例性说明,可以理解的是,第一设备为被控端设备以及第二设备为主控端设备的设备输入方式具体可以参考第一设备为主控端设备以及第二设备为被控端设备的设备输入方式,具体可以包括以下步骤:
步骤501,响应于用户在第一设备上的输入操作,第一设备采集第一设备的原生事件。
具体地,用户可以在第一设备上进行输入操作,例如,用户在第一设备上进行点按操作。响应于用户在第一设备上的输入操作,第一设备可以首先通过驱动层的原生节点驱动生成第一设备的原生事件。其中,第一设备的原生事件可以为上述点按事件。
接着,第一设备可以通过第一设备中的服务层的事件采集子单元采集第一设备中原生节点生成的原生事件。
步骤502,响应于用户在第二设备上的输入操作,第二设备采集第二设备的原生事件。
具体地,用户在第一设备上进行输入操作的同时,也可以在第二设备上进行输入操作,例如,用户可以在第二设备上进行点击操作,由此可以触发多设备组合输入事件。响应于用户在第二设备上的输入操作,第二设备可以首先通过驱动层的原生节点驱动生成第二设备的原生事件。其中,第二设备的原生事件可以为上述点击事件。
接着,第二设备可以通过第二设备中的服务层的事件采集子单元采集第二设备中原生节点生成的原生事件。
可以理解的是,本步骤502可以在步骤501之后执行,或者可以在步骤501之前执行,或者可以与步骤501同时执行,本申请实施例对此不作特殊限定。
步骤503,第二设备将第二设备的原生事件进行广播。相应的,第一设备接收第二设备广播的第二设备的原生事件。
具体地,当第二设备采集到原生事件后可以将该原生事件进行广播,其中,上述广播的方式可以包括但不限于软总线、蓝牙、无线保真(wireless fidelity,WI-FI)、以及分布式数据同步等方式,本申请实施例对此不作特殊限定。
可以理解的是,第二设备在将原生事件进行广播时,还可以携带事件类型、设备标识。其中,事件类型可以用于表征用户输入的方式,例如,用户通过鼠标的方式输入,或者用户通过键盘的方式输入,或者用户通过触摸屏的方式输入等。设备标识用于表征电子设备100的身份,例如,该设备标识可以是设备ID。
在一些可选的实施例中,第二设备在将原生事件进行广播时,还可以携带事件坐标。示例性的,若用户通过触摸屏等方式进行输入时,用户的输入事件会生成事件坐标,由于用户在不同电子设备100上进行输入时会参照各自的坐标系,因此,需要将不同电子设备100的参考坐标系统一成一个全局坐标系。
可以理解的是,用户在使用鼠标、键盘等方式进行输入时,由于未生成事件坐标,因此,无需将事件坐标进行广播。
当第二设备将原生事件进行广播后,分布式系统中的其他设备可以接收到第二设备的原生事件。以第一设备为例,第一设备可以通过服务层中的事件接收子单元接收第二设备广播的原生事件。
步骤504,第一设备将第二设备的原生事件虚拟成代理事件。
具体地,第一设备接收到第二设备的原生事件后,可以通过服务层的事件注入子单元将第二设备的原生事件注入代理节点,由此可以将第二设备的原生事件虚拟成代理事件。
在一些可选的实施例中,在第一设备将第二设备的原生事件虚拟成代理事件之前,还可以对 第二设备的原生事件进行全局坐标管理,使得第二设备的原生事件与第一设备的原生事件共用同一个坐标系,从而可以在该同一个坐标系中根据用户的输入确定是否是多设备组合输入。
现结合图6对全局坐标管理的处理方式进行示例性说明。
参考图6,坐标系1为第一设备的坐标系,坐标系1中第一设备的尺寸为100*100,坐标系2为第二设备的坐标系,坐标系2中第二设备的尺寸为50*50。其中,第二设备的原生事件在坐标系2中的坐标为P(10,10)。通过第一设备与第二设备之间的相对位置,可以将第一设备和第二设备放置于一个全局坐标系中,由此可以得到坐标系3,其中,第一设备与第二设备之间的相对位置可以通过用户配置或方位感知获得,本申请对此不作特殊限定。通过将第一设备的坐标系和第二设备的坐标系合成一个全局的坐标系,可以将各设备中的事件坐标转换为全局坐标系中的统一坐标。示例性的,第二设备的原生事件P由坐标系2中的坐标(10,10)转换为坐标系3中的坐标(110,10)。
步骤505,第一设备对第一设备的原生事件及代理事件进行识别,确定用户的输入是否是多设备组合输入。
具体地,第一设备可以通过服务层的全局事件管理子单元获取第一设备的原生事件及代理事件。可以理解的是,第一设备的原生事件由驱动层的原生节点发送给全局事件管理子单元,其中,第一设备在将原生事件发送给全局事件管理子单元时,还可以携带与原生事件对应的事件类型、设备标识,在一些实施例中,还可以包括对应的事件坐标。代理事件由驱动层的代理节点发送给全局事件管理子单元,其中,第一设备在将代理事件发送给全局事件管理子单元时,还可以携带与代理事件对应的事件类型、设备标识,在一些实施例中,还可以包括对应的事件坐标。
接着,第一设备可以通过事件识别子单元对第一设备的原生事件及代理事件进行识别,以确定用户本次的输入是否是多设备组合输入。
示例性的,第一设备对第一设备的原生事件及代理事件进行识别的方式可以是:
第一设备根据预设多设备组合输入场景,确定用户当前的输入是否是多设备组合输入。
第一设备中可以预设多个多设备组合输入场景,每个多设备组合输入场景包括多个事件的组合。以设备A、设备B及设备C为例,表1示例性的示出了预设多设备组合输入场景。
表1
由表1可以看出,多设备组合输入场景可以由2个或2个以上的设备事件组合构成。也就是说,用户可以在2个或2个以上的设备上同时进行输入操作,从而触发多设备组合输入事件。当第一设备获取到原生事件和代理事件后,可以进行原生事件的操作和代理事件的操作进行组合后,在表1中进行查询,若查询到对应的多设备组合输入场景,则可以确定用户本次的输入是多设备组合输入;若未查询到对应的多设备组合输入场景,则可以确定用户本次的输入不是多设备组合输入。
示例性的,以用户在第一设备上进行点按操作,以及在第二设备上进行点击操作为例,假设预设的多设备组合输入场景中包括点按操作和点击操作的组合,则由用户的上述操作可以确定用户本次的输入操作为多设备多点触控事件,也就是多设备组合输入事件。
在一些可选的实施例中,由于多设备组合输入场景的匹配需要较大的运算量,因此,在匹配之前,第一设备可以根据设备标识,确定本次用户的输入事件是否是多设备事件,并可以在确定本次用户的输入事件是多设备事件之后,执行多设备组合输入场景的匹配,也就是说,在确定本次用户的输入事件不是多设备事件之后,不执行多设备组合输入场景的匹配,从而可以减少运算量。
可以理解的是,第一设备的原生事件的设备标识对应的是第一设备的设备标识,代理事件的设备标识对应的第二设备的设备标识,从第一设备的设备标识和第二设备的设备标识可以看出,用户是在多个设备上进行输入,从而可以确定用户本次的输入事件是多设备事件。
在一些可选的实施例中,第一设备还可以通过事件类型,确定本次用户的输入事件是否是多设备事件。例如,用户在第一设备上是触摸屏操作,而用户在第二设备可以是鼠标操作,从而可以确定本次用户的输入事件是多设备事件。
在一些可选的实施例中,为了更准确的确定多设备组合输入场景,还可以根据事件坐标确定多设备组合输入场景。示例性的,对于两个同为触摸屏的电子设备来说,用户在两个电子设备上的输入操作同为触摸操作,以第一设备和第二设备同为触摸屏为例,第一设备可以在全局坐标系中确定原生事件和代理事件的坐标,并可以根据原生事件和代理事件的坐标以及用户的操作确定多设备组合输入场景,由此可以更准确的确定多设备组合输入场景,例如,可以确定该多设备组合输入场景是将第一设备中的图片与第二设备中的图片进行拼接,或者将第二设备中的文件发送至第一设备中的文件夹中,或者将第二设备中的文件发送至第一设备当前运行的应用的显示界面中等。
步骤506,第一设备确定多设备组合输入的事件是否在第一设备执行。
具体地,当第一设备中的事件识别子单元确定多设备组合输入后,可以通过事件决策子单元确定上述多设备组合输入的事件是否在第一设备执行。
其中,事件决策子单元确定上述多设备组合输入的事件是否在第一设备执行的方式可以是:基于预设的执行机制。示例性的,该预设执行机制用于表征多设备组合输入对应的事件组合中的任一设备为执行设备。以表1中的多设备组合输入场景1为例,可以预设输入事件a1对应的电子设备为执行设备。结合本申请实施例,假设用户进行预设点按操作的电子设备为执行设备,由于用户在第一设备上进行点按操作,因此,可以确定第一设备为执行设备,也就是说,上述多设备组合输入的事件在第一设备执行。而用户在第二设备上是点击操作,也就是说,第二设备为非执行设备,因此,上述多设备组合输入的事件不在第二设备执行。
可以理解的是,当第一设备的事件决策子单元确定执行设备为第一设备后,可以将多设备组合输入的事件发送给第一设备的应用层,由此可以使得应用层可以执行与多设备组合输入的事件对应的业务。
现以第一设备为例,并结合图7对多设备组合输入的识别进行示例性说明。参考图7,第一设备驱动层中的原生节点将原生事件发送给服务层的全局事件管理子单元,第一设备驱动层中的代理节点将代理事件发送给服务层的全局事件管理子单元。第一设备服务层的全局事件管理子单元接收到原生事件和代理事件后,通过事件识别子单元进行识别,由此可以确定用户本次的输入是否是多设备组合输入。当确定用户本次的输入是多设备组合输入后,可以通过事件决策子单元确定第一设备是否是执行设备,若确定第一设备为执行设备,则可以将多设备组合输入的事件发送给应用层,由应用层执行与多设备组合输入的事件对应的业务处理。
可以理解的是,本申请实施例仅以用户在第一设备上进行点按以及在第二设备上进行点击为例进行了示例性说明,但并不构成对本申请实施例的限定,在一些实施例中,用户还可以进行其他类型的多设备组合输入操作。
此外,本申请实施例仅以用户在两个电子设备上同时进行输入操作为例进行了示例性说明,但并不构成对本申请实施例的限定,在一些实施例中,用户还可以在两个以上的电子设备上同时进行输入操作。用户在两个以上的电子设备上同时进行输入操作的方式具体可以参考上述实施例中用户在两个电子设备上同时进行输入操作的方式,在此不再赘述。
本申请实施例中,在分布式环境中,任一电子设备在用户进行输入操作后,将与用户输入操作对应的原生事件进行广播,并在其他设备中生成虚拟成对应的代理事件,由此可以使得分布式环境的电子设备可以根据自身的原生事件及代理事件判断用户的输入是否是多设备组合输入,从而可以有效实现用户在多设备上的组合输入。
图8为本申请设备输入装置一个实施例的结构示意图,如图8所示,上述设备输入装置80应用于第一设备,该设备输入装置80可以包括:获取模块81、接收模块82、虚拟模块83、识 别模块84及执行模块85;其中,
获取模块81,用于响应于用户对所述第一设备的输入操作,获取所述第一设备的原生事件;
接收模块82,用于接收第二设备广播的原生事件,其中,所述第二设备的原生事件由用户对所述第二设备的输入操作生成,所述第二设备与所述第一设备在同一个分布式系统内;
虚拟模块83,用于将所述第二设备的原生事件虚拟成代理事件;
识别模块84,用于基于所述第一设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入;
执行模块85,用于若确定用户的输入是多设备组合输入,判断所述第一设备是否是执行设备;若确定所述第一设备是执行设备,则执行与所述多设备组合输入事件对应的业务。
其中一种可能的实现方式中,上述识别模块84具体用于将所述第一设备的原生事件及所述代理事件的组合与预设多设备组合输入场景集合进行匹配,以判断用户的输入是否是多设备组合输入,其中,所述预设多设备组合输入场景集合包括一个或多个预设多设备组合输入场景,每个预设多设备组合输入场景包括多个事件。
其中一种可能的实现方式中,上述接收模块82还用于接收所述第二设备广播的设备标识,其中,所述第二设备的设备标识用于表征所述第二设备的身份,所述第二设备的设备标识与所述第二设备的原生事件对应。
其中一种可能的实现方式中,上述接收模块82还用于接收所述第二设备广播的事件类型和/或事件坐标,所述第二设备的事件类型和/或事件坐标与所述第二设备的原生事件对应,所述第二设备的事件类型用于表征用户在第二设备上的输入方式,所述第二设备的事件坐标用于表征用户在第二设备上输入时对应的坐标。
其中一种可能的实现方式中,上述装置80还包括:
广播模块,用于广播所述第一设备的原生事件。
其中一种可能的实现方式中,上述广播模块还用于广播所述第一设备的设备标识,其中,所述第一设备的设备标识用于表征所述第一设备的身份,所述第一设备的设备标识与所述第一设备的原生事件对应。
其中一种可能的实现方式中,上述广播模块还用于广播所述第一设备的事件类型和/或事件坐标,所述第一设备的事件类型和/或事件坐标与所述第一设备的原生事件对应,所述第一设备的事件类型用于表征用户在第一设备上的输入方式,所述第一设备的事件坐标用于表征用户在第一设备上输入时对应的坐标。
图8所示实施例提供的设备输入装置80可用于执行本申请所示方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述。
图9为本申请设备输入装置另一个实施例的结构示意图,如图9所示,上述设备输入装置90应用于第二设备,该设备输入装置90可以包括:获取模块91及广播模块92;其中,
获取模块91,用于响应于用户对所述第二设备的输入操作,获取所述第二设备的原生事件;
广播模块92,用于将所述第二设备的原生事件进行广播。
其中一种可能的实现方式中,上述广播模块92还用于广播所述第二设备的设备标识,其中,所述第二设备的设备标识用于表征所述第二设备的身份,所述第二设备的设备标识与所述第二设备的原生事件对应。
其中一种可能的实现方式中,上述广播模块92还用于广播所述第二设备的事件类型和/或事件坐标,所述第二设备的事件类型和/或事件坐标与所述第二设备的原生事件对应,所述第二设备的事件类型用于表征用户在第二设备上的输入方式,所述第二设备的事件坐标用于表征用户在第二设备上输入时对应的坐标。
其中一种可能的实现方式中,上述装置90还包括:
接收模块,用于接收第一设备广播的原生事件,其中,所述第一设备的原生事件由用户对所述第一设备的输入操作生成,所述第一设备与所述第二设备在同一个分布式系统内;
虚拟模块,用于将所述第一设备的原生事件虚拟成代理事件;
识别模块,用于基于所述第二设备的原生事件及所述代理事件判断用户的输入是否是多设备 组合输入;
执行模块,用于若确定用户的输入是多设备组合输入,判断所述第二设备是否是执行设备;若确定所述第二设备是执行设备,则执行与所述多设备组合输入事件对应的业务。
其中一种可能的实现方式中,上述识别模块具体用于将所述第二设备的原生事件及所述代理事件的组合与预设多设备组合输入场景集合进行匹配,以判断用户的输入是否是多设备组合输入,其中,所述预设多设备组合输入场景集合包括一个或多个预设多设备组合输入场景,每个预设多设备组合输入场景包括多个事件。
图9所示实施例提供的设备输入装置90可用于执行本申请所示方法实施例的技术方案,其实现原理和技术效果可以进一步参考方法实施例中的相关描述。
应理解以上图8所示的设备输入装置80和图9所示的设备输入装置90的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,检测模块可以为单独设立的处理元件,也可以集成在电子设备的某一个芯片中实现。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit;以下简称:ASIC),或,一个或多个微处理器(Digital Signal Processor;以下简称:DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array;以下简称:FPGA)等。再如,这些模块可以集成在一起,以片上系统(System-On-a-Chip;以下简称:SOC)的形式实现。
以上各实施例中,涉及的处理器可以例如包括CPU、DSP、微控制器或数字信号处理器,还可包括GPU、嵌入式神经网络处理器(Neural-network Process Units;以下简称:NPU)和图像信号处理器(Image Signal Processing;以下简称:ISP),该处理器还可包括必要的硬件加速器或逻辑处理硬件电路,如ASIC,或一个或多个用于控制本申请技术方案程序执行的集成电路等。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储介质中。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请所示实施例提供的方法。
本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请所示实施例提供的方法。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
本领域普通技术人员可以意识到,本文中公开的实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出 来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory;以下简称:ROM)、随机存取存储器(Random Access Memory;以下简称:RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (16)

  1. 一种设备输入方法,其特征在于,应用于第一设备,所述方法包括:
    响应于用户对所述第一设备的输入操作,获取所述第一设备的原生事件;
    接收第二设备广播的原生事件,其中,所述第二设备的原生事件由用户对所述第二设备的输入操作生成,所述第二设备与所述第一设备在同一个分布式系统内;
    将所述第二设备的原生事件虚拟成代理事件;
    基于所述第一设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入;
    若确定用户的输入是多设备组合输入,判断所述第一设备是否是执行设备;
    若确定所述第一设备是执行设备,则执行与所述多设备组合输入事件对应的业务。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述第一设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入包括:
    将所述第一设备的原生事件及所述代理事件的组合与预设多设备组合输入场景集合进行匹配,以判断用户的输入是否是多设备组合输入,其中,所述预设多设备组合输入场景集合包括一个或多个预设多设备组合输入场景,每个预设多设备组合输入场景包括多个事件。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    接收所述第二设备广播的设备标识,其中,所述第二设备的设备标识用于表征所述第二设备的身份,所述第二设备的设备标识与所述第二设备的原生事件对应。
  4. 根据权利要求1-3中任一所述的方法,其特征在于,所述方法还包括:
    接收所述第二设备广播的事件类型和/或事件坐标,所述第二设备的事件类型和/或事件坐标与所述第二设备的原生事件对应,所述第二设备的事件类型用于表征用户在第二设备上的输入方式,所述第二设备的事件坐标用于表征用户在第二设备上输入时对应的坐标。
  5. 根据权利要求1-4中任一所述的方法,其特征在于,所述方法还包括:
    广播所述第一设备的原生事件。
  6. 根据权利要求1-5中任一所述的方法,其特征在于,所述方法还包括:
    广播所述第一设备的设备标识,其中,所述第一设备的设备标识用于表征所述第一设备的身份,所述第一设备的设备标识与所述第一设备的原生事件对应。
  7. 根据权利要求1-6中任一所述的方法,其特征在于,所述方法还包括:
    广播所述第一设备的事件类型和/或事件坐标,所述第一设备的事件类型和/或事件坐标与所述第一设备的原生事件对应,所述第一设备的事件类型用于表征用户在第一设备上的输入方式,所述第一设备的事件坐标用于表征用户在第一设备上输入时对应的坐标。
  8. 一种设备输入方法,其特征在于,应用于第二设备,所述方法包括:
    响应于用户对所述第二设备的输入操作,获取所述第二设备的原生事件;
    将所述第二设备的原生事件进行广播。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    广播所述第二设备的设备标识,其中,所述第二设备的设备标识用于表征所述第二设备的身份,所述第二设备的设备标识与所述第二设备的原生事件对应。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    广播所述第二设备的事件类型和/或事件坐标,所述第二设备的事件类型和/或事件坐标与所述第二设备的原生事件对应,所述第二设备的事件类型用于表征用户在第二设备上的输入方式,所述第二设备的事件坐标用于表征用户在第二设备上输入时对应的坐标。
  11. 根据权利要求8-10中任一所述的方法,其特征在于,所述方法还包括:
    接收第一设备广播的原生事件,其中,所述第一设备的原生事件由用户对所述第一设备的输入操作生成,所述第一设备与所述第二设备在同一个分布式系统内;
    将所述第一设备的原生事件虚拟成代理事件;
    基于所述第二设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入;
    若确定用户的输入是多设备组合输入,判断所述第二设备是否是执行设备;
    若确定所述第二设备是执行设备,则执行与所述多设备组合输入事件对应的业务。
  12. 根据权利要求11所述的方法,其特征在于,所述基于所述第二设备的原生事件及所述代理事件判断用户的输入是否是多设备组合输入包括:
    将所述第二设备的原生事件及所述代理事件的组合与预设多设备组合输入场景集合进行匹配,以判断用户的输入是否是多设备组合输入,其中,所述预设多设备组合输入场景集合包括一个或多个预设多设备组合输入场景,每个预设多设备组合输入场景包括多个事件。
  13. 一种第一设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序;所述处理器用于运行所述计算机程序,实现如权利要求1-7任一项所述的设备输入方法。
  14. 一种第二设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序;所述处理器用于运行所述计算机程序,实现如权利要求8-12任一项所述的设备输入方法。
  15. 一种设备输入系统,其特征在于,包括如权利要求13所述的第一设备及如权利要求14所述的第二设备。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,实现如权利要求1-12任一所述的设备输入方法。
PCT/CN2023/123377 2022-10-31 2023-10-08 设备输入方法、系统、电子设备及存储介质 WO2024093614A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211345200.1A CN117991954A (zh) 2022-10-31 2022-10-31 设备输入方法、系统、电子设备及存储介质
CN202211345200.1 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024093614A1 true WO2024093614A1 (zh) 2024-05-10

Family

ID=90899497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123377 WO2024093614A1 (zh) 2022-10-31 2023-10-08 设备输入方法、系统、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN117991954A (zh)
WO (1) WO2024093614A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190066060A1 (en) * 2014-07-08 2019-02-28 Google Llc Event scheduling
CN115033295A (zh) * 2022-04-28 2022-09-09 华为技术有限公司 外设控制方法、电子设备及系统
CN115185441A (zh) * 2021-04-02 2022-10-14 华为技术有限公司 控制方法、装置、电子设备及可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190066060A1 (en) * 2014-07-08 2019-02-28 Google Llc Event scheduling
CN115185441A (zh) * 2021-04-02 2022-10-14 华为技术有限公司 控制方法、装置、电子设备及可读存储介质
CN115033295A (zh) * 2022-04-28 2022-09-09 华为技术有限公司 外设控制方法、电子设备及系统

Also Published As

Publication number Publication date
CN117991954A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
WO2020168965A1 (zh) 一种具有折叠屏的电子设备的控制方法及电子设备
WO2021000807A1 (zh) 一种应用程序中等待场景的处理方法和装置
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
WO2022257977A1 (zh) 电子设备的投屏方法和电子设备
WO2021036585A1 (zh) 一种柔性屏显示方法和电子设备
CN113923230B (zh) 数据同步方法、电子设备和计算机可读存储介质
WO2021185141A1 (zh) Wi-Fi Aware的建链方法、系统、电子设备和存储介质
EP4084486A1 (en) Cross-device content projection method, and electronic device
WO2021047567A1 (zh) 一种回调流的处理方法及设备
WO2022033320A1 (zh) 蓝牙通信方法、终端设备及计算机可读存储介质
WO2021036785A1 (zh) 一种消息提醒方法及电子设备
WO2021190344A1 (zh) 多屏幕显示电子设备和电子设备的多屏幕显示方法
WO2022100610A1 (zh) 投屏方法、装置、电子设备及计算机可读存储介质
WO2021052204A1 (zh) 基于通讯录的设备发现方法、音视频通信方法及电子设备
WO2022042637A1 (zh) 一种蓝牙数据传输方法及相关装置
WO2021197071A1 (zh) 无线通信系统及方法
WO2022262492A1 (zh) 数据下载方法、装置和终端设备
WO2020134868A1 (zh) 一种连接建立方法及终端设备
EP4293997A1 (en) Display method, electronic device, and system
WO2022152167A1 (zh) 一种网络选择方法及设备
WO2022152174A1 (zh) 一种投屏的方法和电子设备
WO2021218544A1 (zh) 一种提供无线上网的系统、方法及电子设备
WO2024093614A1 (zh) 设备输入方法、系统、电子设备及存储介质
WO2023160177A1 (zh) 测距方法、装置、系统及可读存储介质
WO2024055881A1 (zh) 时钟同步方法、电子设备、系统及存储介质