WO2024093544A1 - 电子设备 - Google Patents

电子设备 Download PDF

Info

Publication number
WO2024093544A1
WO2024093544A1 PCT/CN2023/118804 CN2023118804W WO2024093544A1 WO 2024093544 A1 WO2024093544 A1 WO 2024093544A1 CN 2023118804 W CN2023118804 W CN 2023118804W WO 2024093544 A1 WO2024093544 A1 WO 2024093544A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
nfc
electronic device
excitation current
electrically connected
Prior art date
Application number
PCT/CN2023/118804
Other languages
English (en)
French (fr)
Inventor
蔡国胤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2024093544A1 publication Critical patent/WO2024093544A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/44Details of, or arrangements associated with, antennas using equipment having another main function to serve additionally as an antenna, e.g. means for giving an antenna an aesthetic aspect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present application relates to the field of communication technology, and in particular to an electronic device.
  • NFC Near Field Communication
  • NFC antennas stimulate magnetic fields through NFC coils, and the magnetic fields are concentrated inside and outside the coils.
  • the embodiment of the present application provides an electronic device, which can form a surrounding NFC communication area to increase the communication range of NFC.
  • An embodiment of the present application provides an electronic device, including:
  • NFC chip used to provide NFC excitation current
  • An NFC radiator electrically connected to the NFC chip
  • a frame wherein the frame is provided with a first radiator and a second radiator, the first radiator and the second radiator are arranged on different sides of the frame, and the first radiator and the second radiator are both electrically connected to the NFC chip;
  • the NFC radiator, the first radiator, and the second radiator are all used to transmit the NFC excitation current to support transmission and/or reception of NFC signals.
  • FIG1 is a schematic diagram of a first structure of an electronic device provided in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a second structure of an electronic device provided in an embodiment of the present application.
  • FIG. 3 is a third structural schematic diagram of the electronic device provided in an embodiment of the present application.
  • FIG. 4 is a fourth structural schematic diagram of an electronic device provided in an embodiment of the present application.
  • FIG5 is a fifth structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a structure of an NFC radiator in an electronic device provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of an electronic device generating an NFC radiation field provided by an embodiment of the present application.
  • FIG8 is a sixth structural diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 9 is a seventh structural schematic diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a frame of an electronic device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a foldable electronic device provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the foldable electronic device shown in FIG. 11 in a folded state.
  • FIG. 13 is a schematic rear view of the foldable electronic device shown in FIG. 12 .
  • the embodiment of the present application provides an electronic device.
  • the electronic device may be a smart phone, a tablet computer, or a gaming device, an AR (Augmented Reality) device, a car, a data storage device, an audio player, a video player, a laptop, a desktop computing device, etc.
  • FIG. 1 is a schematic diagram of a first structure of an electronic device 100 provided in an embodiment of the present application.
  • the electronic device 100 includes an NFC (Near Field Communication) chip 10, an NFC radiator 20, and a frame 30.
  • the electronic device 100 also includes a camera module 40 and a battery 50.
  • the NFC chip 10 is used to provide an NFC excitation current.
  • the frequency of the NFC excitation current is generally 13.56 MHz. It is understandable that the electronic device 100 may include a mainboard, and the NFC chip 10 may be disposed on the mainboard. In some other embodiments, the NFC chip 10 may also be disposed on a separate circuit board.
  • the NFC radiator 20 can be in the form of a FPC (Flexible Printed Circuit)
  • the NFC radiator 20 is electrically connected to the NFC chip 10.
  • the NFC radiator 20 is used to transmit the NFC excitation current provided by the NFC chip 10 to support the transmission and/or reception of the NFC signal and realize the NFC communication function.
  • the NFC radiator 20 can also increase the self-inductance. It can be understood that in practical applications, the NFC radiator 20 can also be a radiator in other forms such as a coil, a conductor, etc., and the embodiments of the present application are not specifically limited to this.
  • the shape of the NFC radiator 20 can be set according to the requirements and the overall layout of the electronic device 100.
  • the shape of the NFC radiator 20 can be "L" shaped, as shown in Figure 1.
  • the NFC radiator 20 can also be a long strip.
  • the frame 30 forms the outer periphery of the electronic device 100.
  • the frame 30 is provided with a first radiator 31 and a second radiator 32.
  • the first radiator 31 and the second radiator 32 are arranged on different sides of the frame 30, for example, they can be arranged on opposite sides, or they can be arranged on adjacent sides.
  • the first radiator 31 and the second radiator 32 can be radiators formed by conductors such as metal structures and metal traces.
  • the first radiator 31 and the second radiator 32 are both electrically connected to the NFC chip 10.
  • the first radiator 31 and the second radiator 32 are both used to transmit the NFC excitation current provided by the NFC chip 10 to support the transmission and/or reception of the NFC signal.
  • the camera module 40 may be a rear camera module.
  • the camera module 40 includes one or more cameras, for example, a main camera, a telephoto camera, a macro camera, etc., to achieve different photographing effects.
  • the camera module 40 usually includes metal devices, and metal devices will affect the NFC signal.
  • metal devices will affect the NFC signal.
  • the camera module 40 and the NFC radiator 20 are both arranged on the upper part of the electronic device 100. Therefore, in order to reduce the impact of the camera module 40 on the NFC signal and take into account the overall spatial layout, the NFC radiator 20 can be arranged adjacent to the camera module 40, and a certain distance can be maintained between the two. The size of the distance can be determined according to the needs of the actual application. For example, in a feasible example, the distance can be 10cm.
  • the battery 50 is used to provide power to the electronic device 100.
  • the battery 50 also includes metal components, so in the stacking layout of the electronic device 100, it is also necessary to keep a certain distance between the NFC radiator 20 and the battery 50 to reduce the impact of the battery 50 on the NFC signal.
  • the NFC radiator 20, the first radiator 31, and the second radiator 32 can all support the transmission and/or reception of NFC signals, and because the first radiator 31,
  • the second radiator 32 is arranged on different sides of the frame 30, so the NFC radiator 20, the first radiator 31, and the second radiator 32 can form a surround antenna, thereby forming a surround NFC communication area, which can increase the communication range of NFC compared to conventional NFC antenna solutions.
  • FIG. 2 is a second structural schematic diagram of the electronic device 100 provided in an embodiment of the present application
  • FIG. 3 is a third structural schematic diagram of the electronic device 100 provided in an embodiment of the present application.
  • the NFC chip 10 includes a first differential signal terminal 111 and a second differential signal terminal 112.
  • the first differential signal terminal 111 may be a positive (+) port of the NFC chip 10
  • the second differential signal terminal 112 may be a negative (-) port of the NFC chip 10.
  • the NFC excitation current provided by the NFC chip 10 is a differential signal, which is a balanced signal
  • the differential signal includes a first NFC excitation current and a second NFC excitation current.
  • the first NFC excitation current and the second NFC excitation current have the same amplitude and opposite phase, or are understood to be 180 degrees different in phase.
  • the first differential signal terminal 111 is used to provide the first NFC excitation current
  • the second differential signal terminal 112 is used to provide the second NFC excitation current.
  • the first radiator 31 is electrically connected to the first differential signal terminal 111 and grounded, as shown in FIG2 .
  • the first radiator 31 can be electrically connected to the first differential signal terminal 111 through a metal spring.
  • the first radiator 31 can be grounded through a rib 33.
  • the portion where the first radiator 31 is electrically connected to the first differential signal terminal 111 can be located at the end of the first radiator 31 or a portion outside the end, and the grounding portion of the first radiator 31 can also be located at the end or a portion outside the end, and the two are located at different portions. Therefore, the first NFC excitation current provided by the first differential signal terminal 111 can be fed into the first radiator 31, and the first NFC excitation current is transmitted through the first radiator 31, thereby supporting the transmission and/or reception of NFC signals.
  • the electronic device 100 may include a mainboard 60, and a system ground may be provided on the mainboard 60.
  • the first radiator 31 may be electrically connected to the system ground on the mainboard 60 through the ribs 33, so that the first radiator 31 is grounded.
  • the NFC radiator 20 and the second radiator 32 are both electrically connected to the second differential signal terminal 112. Therefore, the second NFC excitation current provided by the second differential signal terminal 112 can be fed to the NFC radiator 20 and the second radiator 32, and the second NFC excitation current is transmitted through the NFC radiator 20 and the second radiator 32, thereby supporting the transmission and/or reception of NFC signals.
  • the second radiator 32 is connected in series with the NFC radiator 20 and is electrically connected to the second differential signal terminal 112. Specifically, one end of the NFC radiator 20 is connected to the second differential signal terminal 112. The signal terminal 112 is electrically connected, the other end of the NFC radiator 20 is electrically connected to the second radiator 32, and the second radiator 32 is grounded.
  • the part where the second radiator 32 is electrically connected to the NFC radiator 20 can be located at the end of the second radiator 32 or a part outside the end, and the grounding part of the second radiator 32 can also be located at the end or a part outside the end, and the two are located at different parts.
  • the second radiator 32 can be electrically connected to the system ground on the mainboard 60 through the rib 34, so that the second radiator 32 is grounded. Therefore, the second radiator 32, the NFC radiator 20 and the NFC chip 10 can form a loop, so that the NFC radiator 20 and the second radiator 32 can transmit the second NFC excitation current provided by the second differential signal terminal 112.
  • the second radiator 32 is connected in series with the NFC radiator 20 , so when transmitting the second NFC excitation current, the current in the second radiator 32 is the same as the current in the NFC radiator 20 , and is also the same as the second NFC excitation current provided by the second differential signal terminal 112 .
  • FIG. 4 is a fourth structural diagram of the electronic device 100 provided in the embodiment of the present application
  • FIG. 5 is a fifth structural diagram of the electronic device 100 provided in the embodiment of the present application.
  • the second radiator 32 is connected in parallel with the NFC radiator 20 and is electrically connected to the second differential signal terminal 112 respectively. Specifically, one end of the NFC radiator 20 is electrically connected to the second differential signal terminal 112, and the other end of the NFC radiator 20 is grounded, for example, electrically connected to the system ground on the mainboard 60 through a metal spring to achieve grounding. Therefore, the NFC radiator 20 and the NFC chip 10 can form a loop, so that the NFC radiator 20 can transmit the second NFC excitation current provided by the second differential signal terminal 112.
  • the second radiator 32 is electrically connected to the second differential signal terminal 112 and is grounded.
  • the second radiator 32 can be electrically connected to the system ground on the mainboard 60 through the rib position 34 to achieve grounding.
  • the portion where the second radiator 32 is electrically connected to the second differential signal terminal 112 can be located at the end of the second radiator 32 or a portion other than the end, and the grounding portion of the second radiator 32 can also be located at the end or a portion other than the end, and the two are located at different portions. Therefore, the second radiator 32 and the NFC chip 10 can also form a loop, so that the second radiator 32 can transmit the second NFC excitation current provided by the second differential signal terminal 112 .
  • the second NFC excitation current provided by the second differential signal terminal 112 can be fed into the NFC radiator 20 and the second radiator 32 respectively through devices such as a power divider and a multiplexer. Therefore, in this embodiment, when the second NFC excitation current is transmitted, the current magnitude in the second radiator 32 is The magnitude of the current in the NFC radiator 20 may be the same as or different from that in the NFC radiator 20 , and both are smaller than the magnitude of the second NFC excitation current provided by the second differential signal terminal 112 .
  • the second radiator 32 and the NFC radiator 20 when the second radiator 32 and the NFC radiator 20 are connected in series, the current in the second radiator 32 and the NFC radiator 20 is relatively large, which can generate a stronger magnetic field and cover a larger communication area, thereby increasing the communication range of NFC.
  • the second radiator 32 and the NFC radiator 20 are connected in parallel, since the second radiator 32 and the NFC radiator 20 are relatively independent, the second radiator 32 and the NFC radiator 20 can each perform impedance matching separately, which is convenient for impedance matching and adjustment, thereby simplifying the overall antenna design.
  • FIG. 6 is a schematic diagram of the structure of an NFC radiator 20 in an electronic device provided in an embodiment of the present application.
  • the NFC radiator 20 includes a first strip portion 21 and a second strip portion 22.
  • the first strip portion 21 and the second strip portion 22 are both long strips.
  • the first strip portion 21 is connected to the second strip portion 22 and is perpendicular to each other.
  • the first strip portion 21 is electrically connected to the second differential signal terminal 112 of the NFC chip 10
  • the second strip portion 22 is connected to the second radiator 32 (as shown in FIG. 2 and FIG. 3) or grounded (as shown in FIG. 4 and FIG. 5).
  • the first strip portion 21 is parallel to the second radiator 32.
  • the second strip portion 22 is located between the second radiator 32 and the first strip portion 21. Therefore, in practical applications, the portion of the NFC radiator 20 parallel to the second radiator 32, that is, the first strip portion 21, can be away from the second radiator 32, so as to avoid the first strip portion 21 and the second radiator 32 from forming a reverse current and generating a reverse NFC radiation field, resulting in reduced NFC performance.
  • first radiator 31 and the second radiator 32 are arranged on opposite sides of the frame 30, for example, the first radiator 31 is arranged on the right side of the frame 30, and the second radiator 32 is arranged on the left side of the frame 30, then when the first strip portion 21 is away from the second radiator 32, it will approach the first radiator 31. At this time, a reverse current will also be formed in the first strip portion 21 and the first radiator 31 to generate a reverse NFC radiation field, thereby reducing the NFC performance.
  • the first radiator 31 and the second radiator 32 can be arranged at adjacent sides of the frame 30.
  • the first radiator 31 can be arranged at the top of the frame 30, and the second radiator 32 can be arranged at the left side of the frame 30.
  • FIG. 7 is a schematic diagram of an electronic device 100 generating an NFC radiation field provided by an embodiment of the present application.
  • the NFC radiator 20 When transmitting the NFC excitation current provided by the NFC chip 10, the NFC radiator 20 supports The NFC signal is transmitted and/or received to generate a first NFC radiation field A1, the first radiator 31 supports the transmission and/or reception of the NFC signal to generate a second NFC radiation field A2, and the second radiator 32 supports the transmission and/or reception of the NFC signal to generate a third NFC radiation field A3.
  • the first NFC radiation field A1, the second NFC radiation field A2, and the third NFC radiation field A3 shown in FIG7 are only for illustration and do not represent the actual radiation field range and form, and therefore do not constitute a limitation on the actual radiation field range, form, etc.
  • the position, shape, size, etc. of the NFC radiator 20, the first radiator 31, and the second radiator 32 can be designed during the design stage of the electronic device 100 to adjust the area and range of the first NFC radiation field A1, the second NFC radiation field A2, and the third NFC radiation field A3.
  • the first NFC radiation field A1 can be at least partially overlapped with the second NFC radiation field A2 and the third NFC radiation field A3 to enhance the NFC field strength in the overlapping area. Therefore, the NFC communication range of the electronic device 100 can be increased and the NFC communication stability of the electronic device 100 can be improved.
  • the overlapping area of the first NFC radiation field A1 and the second NFC radiation field A2 and the third NFC radiation field A3 can be located in the area where the display screen of the electronic device 100 is located. Therefore, the NFC communication range of the area where the display screen and the battery cover (the battery cover is opposite to the display screen, and the battery cover can also be called the back cover) is increased, the card swiping area and card swiping distance of the NFC function are increased, and the stability of NFC communication is improved.
  • the second NFC radiation field A2 and the third NFC radiation field A3 may be at least partially overlapped, and the NFC field strength in the overlapping area may be enhanced, thereby increasing the NFC communication range and communication stability.
  • the overlapping area of the second NFC radiation field A2 and the third NFC radiation field A3 can also be located in the area where the display screen of the electronic device 100 is located, thereby increasing the NFC communication range of the display screen and the battery cover area and improving the NFC communication stability.
  • the NFC radiator 20 can be located in the mainboard area of the electronic device 100 and close to the battery 50; the first radiator 31 can be located at one end of the electronic device 100, such as the top; the second radiator 32 can be located at one side of the electronic device 100, such as the left side.
  • the first NFC radiation field A1 and the third NFC radiation field A3 can be the main radiation field, and the second NFC radiation field A2 can be the secondary radiation field, so that two main and secondary NFC radiation fields can be formed.
  • the first NFC radiation field A1 can effectively increase the communication range of the display area, the battery cover area and the right side of the electronic device.
  • the third NFC radiation field A3 can effectively increase the communication range of the display area, the battery cover area, the left side and the bottom of the electronic device.
  • the second NFC radiation field A2 can effectively increase the communication range of the display area, the battery cover area and the top of the electronic device. Therefore, a surrounding NFC communication area can be formed around the electronic device 100, which greatly increases the communication range and improves the user experience.
  • FIG. 8 is a sixth structural diagram of the electronic device 100 provided in an embodiment of the present application.
  • the electronic device 100 also includes a first communication module 70, which can be set on the mainboard 60, for example.
  • the first communication module 70 is used to provide a first non-NFC excitation current.
  • the first non-NFC excitation current is an excitation current of other communication modes other than NFC, for example, it can include any one of a cellular communication excitation current, a Wi-Fi communication excitation current, a GPS communication excitation current, and a Bluetooth communication excitation current.
  • the first communication module 70 can be a cellular communication module, a Wi-Fi communication module, a GPS communication module, a Bluetooth communication module, etc.
  • the first radiator 31 is electrically connected to the first communication module 70.
  • the first radiator 31 is also used to transmit a first non-NFC excitation current to support the transmission and/or reception of a first non-NFC signal.
  • the first non-NFC excitation current may be a cellular communication excitation current, and the first radiator 31 can transmit and/or receive a cellular signal when transmitting the cellular communication excitation current to realize a cellular communication function.
  • the first non-NFC excitation current is a medium and high band (MHB) excitation current of cellular communication, for example, it may be an excitation current of a frequency band such as B40 (2.3 GHz to 2.4 GHz) and B41 (2.496 GHz to 2.69 GHz).
  • MBB medium and high band
  • the first radiator 31 can transmit NFC excitation current to realize NFC function, and can also transmit the first non-NFC excitation current to realize corresponding communication function, such as realizing medium and high frequency cellular communication function. Therefore, the first radiator 31 can be reused, and the total number of antennas can be reduced when realizing different communication functions, thereby simplifying the overall antenna design of the electronic device 100.
  • the electronic device 100 also includes a second communication module 80, and the second communication module 80 can also be set on the mainboard 60.
  • the second communication module 80 is used to provide a second non-NFC excitation current.
  • the second non-NFC excitation current is also an excitation current for other communication methods besides NFC, for example, it can include any one of a cellular communication excitation current, a Wi-Fi communication excitation current, a GPS communication excitation current, and a Bluetooth communication excitation current.
  • the second communication module 80 can be a cellular communication module, a Wi-Fi communication module, a GPS communication module, a Bluetooth communication module, etc.
  • the second communication module 80 and the first communication module 70 can be different types of communication modules, They may also be communication modules of the same type, for example, they may all be cellular communication modules.
  • the second radiator 32 is electrically connected to the second communication module 80.
  • the second radiator 32 is also used to transmit a second non-NFC excitation current to support the transmission and/or reception of a second non-NFC signal.
  • the second non-NFC excitation current may also be a cellular communication excitation current, so when the second radiator 32 transmits the cellular communication excitation current, it can transmit and/or receive a cellular signal to achieve a cellular communication function.
  • the second non-NFC excitation current is a low-frequency (Low band, LB) excitation current of cellular communication, for example, it may be an excitation current of a frequency band such as B5 (uplink frequency 824MHz ⁇ 849MHz, downlink frequency 869MHz ⁇ 894MHz), B20 (uplink frequency 832MHz ⁇ 862MHz, downlink frequency 791MHz ⁇ 821MHz).
  • B5 uplink frequency 824MHz ⁇ 849MHz, downlink frequency 869MHz ⁇ 894MHz
  • B20 uplink frequency 832MHz ⁇ 862MHz, downlink frequency 791MHz ⁇ 821MHz.
  • the second radiator 32 can transmit NFC excitation current to realize NFC function, and can also transmit a second non-NFC excitation current to realize corresponding communication function, such as realizing low-frequency cellular communication function. Therefore, the second radiator 32 can be reused, and the total number of antennas can be reduced when realizing different communication functions. Therefore, the overall antenna design of the electronic device 100 can be further simplified.
  • FIG. 9 is a seventh structural diagram of an electronic device 100 provided in an embodiment of the present application.
  • NFC IC represents the NFC chip 10
  • IC1 represents the first communication module 70
  • IC2 represents the second communication module 80.
  • the electronic device 100 further includes a first inductor L1 and a first capacitor C1.
  • the first inductor L1 is connected in series between the NFC chip 10 and the first radiator 31, and the first capacitor C1 is connected in parallel with the first inductor L1 and grounded.
  • the first inductor L1 and the first capacitor C1 can form a first isolation circuit for isolating the NFC excitation current from the first non-NFC excitation current, ensuring that the NFC excitation current and the first non-NFC excitation current do not interfere with each other, thereby improving the communication stability of NFC and the communication stability of the first communication module 70.
  • the first inductor L1 is a loss device for the NFC excitation current, so the smaller the better. However, if it is too small, the isolation effect will be poor, which will cause the first radiator 31 to transmit the first non-NFC excitation current with noise or even unable to tune. If the first inductor L1 is too large, the NFC excitation current will be too lost and overcurrent will occur. Therefore, it is very important to select a suitable first inductor L1. In addition, the selection of the first inductor L1 is related to the specific frequency band of the first non-NFC excitation current. In a feasible example, the size of the first inductor L1 can be 10nH.
  • the size of the first capacitor C1 is 100 pF.
  • the electronic device 100 further includes a second inductor L2 and a second capacitor C2.
  • the second inductor L2 is connected in series between the NFC chip 10 and the NFC radiator 20.
  • the capacitor C2 is connected in parallel with the second inductor L2 and is grounded.
  • the second inductor L2 and the second capacitor C2 can form a second isolation circuit for isolating the NFC excitation current from the second non-NFC excitation current, ensuring that the NFC excitation current and the second non-NFC excitation current do not interfere with each other, thereby improving the communication stability of NFC and the communication stability of the second communication module 80.
  • the selection of the second inductor L2 is related to the specific frequency band of the second non-NFC excitation current.
  • the second inductor L2 may be 10 nH.
  • the size of the second capacitor C2 is 100 pF.
  • FIG. 10 is a schematic diagram of the structure of a frame 30 of an electronic device provided in an embodiment of the present application.
  • the frame 30 is a metal frame, for example, it can be a frame made of aluminum alloy, magnesium alloy and the like.
  • the metal frame 30 is provided with a plurality of slits to form a first metal branch 34 and a second metal branch 35 on the metal frame 30.
  • the lengths of the first metal branch 34 and the second metal branch 35 can be set according to actual needs and the overall layout of the electronic device 100.
  • the first metal branch 34 forms a first radiator 31, and the second metal branch 35 forms a second radiator 32. Therefore, the metal frame 30 can be reused to form the first radiator 31 and the second radiator 32, without the need to set up independent radiators, thereby simplifying the overall antenna design.
  • the metal frame 30 includes a first side 301, a second side 302, and a third side 303.
  • the first side 301 is opposite to the second side 302, and the third side 303 is connected between the first side 301 and the second side 302.
  • the first side 301 and the second side 302 may be long sides, and the third side 303 may be a short side.
  • the first metal branch 34 is formed on the third side 303.
  • a first slit 331 and a second slit 332 may be formed on the third side 303, and the portion between the first slit 331 and the second slit 332 forms the first metal branch 34.
  • the second metal branch 35 is formed on the first side 301 or the second side 302.
  • a third slit 333 and a fourth slit 334 may be formed on the first side 301, and the portion between the third slit 333 and the fourth slit 334 forms the second metal branch 35.
  • first radiator 31 and the second radiator 32 may also be other types of radiators, for example, the first radiator 31 and the second radiator 32 may be radiators in the form of FPC.
  • the electronic device 100 is a foldable electronic device.
  • Figure 11 is a schematic diagram of the structure of the foldable electronic device 100 provided in an embodiment of the present application
  • Figure 12 is a schematic diagram of the foldable electronic device 100 shown in Figure 11 in a folded state.
  • the foldable electronic device 100 includes a first portion 101, a second portion 102, and a rotating shaft 103.
  • the first portion 101 is connected to the second portion 102 via the rotating shaft 103.
  • the first portion 101 and the second portion 102 can be relatively rotated to a folded state or an unfolded state, so that the electronic device 100 is folded or unfolded.
  • FIG12 is a schematic diagram showing that the electronic device 100 is rotated along the rotating shaft 103 to a folded state.
  • the NFC chip 10, the NFC radiator 20, the first radiator 31, and the second radiator 32 can all be arranged in the first part 101 or the second part 102.
  • the frame 30 is located in the first part 101
  • the first radiator 31 and the second radiator 32 are both formed in the frame 30 of the first part 101
  • the NFC chip 10 and the NFC radiator 20 can also be arranged in the first part 101.
  • the battery 50 can be arranged in the second part 102.
  • FIG. 13 is a rear view schematic diagram of the foldable electronic device 100 shown in FIG. 12.
  • the electronic device 100 further includes a secondary display screen 90.
  • the secondary display screen 90 can be used to display information when the electronic device 100 is in a folded state.
  • the secondary display screen 90 and the NFC chip 10, the NFC radiator 20, the first radiator 31, and the second radiator 32 are arranged in different parts of the electronic device 100.
  • the secondary display screen 90 is arranged in the second part 102, as shown in FIG. 13.
  • the secondary display screen 90 is arranged in the first part 101.
  • the shape and size of the NFC radiator 20 may be adapted according to the size of the secondary display screen 90 .
  • the antenna design method of the embodiment of the present application can improve the NFC performance of the foldable electronic device 100 by 60% to 70% when the electronic device 100 is in the unfolded state, and can improve the NFC performance by 90% to 100% when the electronic device 100 is in the folded state, compared to the conventional NFC antenna solution.
  • the top, bottom, left, right, side where the secondary display screen 90 is located, and the side opposite to the secondary display screen 90 of the electronic device 100 can all achieve NFC communication, and can support the six-sided NFC card swiping function, thereby realizing 360° NFC card swiping. Therefore, the NFC performance of the electronic device 100 can be greatly improved, and the performance is better. Excellent, when the user swipes the NFC card with the handheld electronic device 100, the direction and angle of the handheld device are not restricted, so the user is more convenient and flexible to use.
  • electrical connection can be achieved by direct connection between two electrical components to achieve electrical connection, or it can be achieved by indirect connection to achieve electrical connection.
  • a and B are electrically connected, which can be achieved by direct connection between A and B, or it can be achieved by indirect connection between A and B through one or more other electrical components.

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

一种电子设备,包括:NFC芯片,用于提供NFC激励电流;NFC辐射体,与NFC芯片电连接;边框,设置有第一辐射体和第二辐射体,第一辐射体、第二辐射体设置于边框的不同侧边,第一辐射体、第二辐射体均与NFC芯片电连接;NFC辐射体、第一辐射体、第二辐射体均用于传输NFC激励电流,以支持NFC信号的发射和/或接收。

Description

电子设备
本申请要求于2022年10月31日提交中国专利局、申请号为202211351598.X、发明名称为“电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别涉及一种电子设备。
背景技术
诸如智能手机等电子设备中通常都设置有NFC(Near Field Communication,近场通信)天线,来实现NFC功能。常规的NFC天线是通过NFC线圈来激发出磁场,磁场集中在线圈内部与外侧边缘。
发明内容
本申请实施例提供一种电子设备,可以形成环绕式的NFC通信区域,增大NFC的通信范围。
本申请实施例提供一种电子设备,包括:
NFC芯片,用于提供NFC激励电流;
NFC辐射体,与所述NFC芯片电连接;
边框,所述边框设置有第一辐射体和第二辐射体,所述第一辐射体、所述第二辐射体设置于所述边框的不同侧边,所述第一辐射体、所述第二辐射体均与所述NFC芯片电连接;
其中,所述NFC辐射体、所述第一辐射体、所述第二辐射体均用于传输所述NFC激励电流,以支持NFC信号的发射和/或接收。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的电子设备的第一种结构示意图。
图2为本申请实施例提供的电子设备的第二种结构示意图。
图3为本申请实施例提供的电子设备的第三种结构示意图。
图4为本申请实施例提供的电子设备的第四种结构示意图。
图5为本申请实施例提供的电子设备的第五种结构示意图。
图6为本申请实施例提供的电子设备中NFC辐射体的一种结构示意图。
图7为本申请实施例提供的电子设备产生NFC辐射场的示意图。
图8为本申请实施例提供的电子设备的第六种结构示意图。
图9为本申请实施例提供的电子设备的第七种结构示意图。
图10为本申请实施例提供的电子设备的边框的结构示意图。
图11为本申请实施例提供的可折叠电子设备的结构示意图。
图12为图11所示可折叠电子设备处于折叠状态的示意图。
图13为图12所示可折叠电子设备的后视示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种电子设备。该电子设备可以是智能手机、平板电脑等设备,还可以是游戏设备、AR(Augmented Reality,增强现实)设备、汽车、数据存储装置、音频播放装置、视频播放装置、笔记本电脑、桌面计算设备等。
参考图1,图1为本申请实施例提供的电子设备100的第一种结构示意图。电子设备100包括NFC(Near Field Communication,近场通信)芯片10、NFC辐射体20以及边框30。在一些实施例中,电子设备100还包括摄像头模组40以及电池50。
其中,NFC芯片10用于提供NFC激励电流。NFC激励电流的频率通常为13.56MHz。可以理解的,电子设备100可以包括主板,NFC芯片10可以设置于主板上。在其他一些实施方式中,NFC芯片10也可以设置于单独的电路板上。
NFC辐射体20可以为FPC(Flexible Printed Circuit,柔性电路板)形式 的辐射体。NFC辐射体20与NFC芯片10电连接。NFC辐射体20用于传输NFC芯片10提供的NFC激励电流,以支持NFC信号的发射和/或接收,实现NFC通信功能。此外,NFC辐射体20还可以增加自电感。可以理解的,在实际应用中,NFC辐射体20也可以为诸如线圈、导体等其他形式的辐射体,本申请实施例对此不作具体限定。
实际应用中,NFC辐射体20的形状可以根据需求以及电子设备100的整机布局来设置。例如,在一个可行的示例中,NFC辐射体20的形状可以呈“L”型,如图1所示。在另一个可行的示例中,NFC辐射体20也可以为长条型。
边框30形成电子设备100的外周缘。边框30设置有第一辐射体31和第二辐射体32。第一辐射体31、第二辐射体32设置于边框30的不同侧边,例如可以设置于相对的侧边,或者设置于相邻的侧边。第一辐射体31、第二辐射体32可以为金属结构、金属走线等导体形成的辐射体。
其中,第一辐射体31、第二辐射体32均与NFC芯片10电连接。第一辐射体31、第二辐射体32均用于传输NFC芯片10提供的NFC激励电流,以支持NFC信号的发射和/或接收。
摄像头模组40可以为后置摄像头模组。摄像头模组40包括一个或多个摄像头,例如可以包括主摄像头、长焦摄像头、微距摄像头等多个摄像头,以实现不同的拍照效果。
可以理解的,通常摄像头模组40包括金属器件,而金属器件会对NFC信号造成影响。同时,为了兼顾电子设备100的整体轻薄化、小型化,需要合理利用电子设备100内部的布局空间,通常是将摄像头模组40和NFC辐射体20都设置在电子设备100的上部。因此,为了降低摄像头模组40对NFC信号的影响,同时兼顾整体的空间布局,可以使NFC辐射体20与摄像头模组40相邻设置,两者之间保持一定的间距,该间距的大小可以根据实际应用中的需求来确定,例如在一个可行的示例中,该间距可以为10cm。
电池50用于为电子设备100提供电能。电池50也包括金属器件,因此在电子设备100的整机堆叠布局中,也需要使NFC辐射体20与电池50之间保持一定的间距,以降低电池50对NFC信号的影响。
本申请实施例的电子设备100中,NFC辐射体20、第一辐射体31、第二辐射体32都可以支持NFC信号的发射和/或接收,并且由于第一辐射体31、 第二辐射体32设置于边框30的不同侧边,因此NFC辐射体20、第一辐射体31、第二辐射体32能够形成环绕式天线,从而形成环绕式的NFC通信区域,相比于常规的NFC天线方案,能够增大NFC的通信范围。
在一些实施例中,参考图2和图3,图2为本申请实施例提供的电子设备100的第二种结构示意图,图3为本申请实施例提供的电子设备100的第三种结构示意图。
NFC芯片10包括第一差分信号端111和第二差分信号端112。例如,第一差分信号端111可以为NFC芯片10的正(+)端口,第二差分信号端112可以为NFC芯片10的负(-)端口。NFC芯片10提供的NFC激励电流为差分信号,该差分信号为平衡信号,该差分信号包括第一NFC激励电流和第二NFC激励电流。第一NFC激励电流与第二NFC激励电流的振幅相同,并且相位相反,或者理解为相位相差180度。其中,第一差分信号端111用于提供该第一NFC激励电流,第二差分信号端112用于提供该第二NFC激励电流。
第一辐射体31与第一差分信号端111电连接并接地,如图2所示。例如,第一辐射体31可以通过金属弹片实现与第一差分信号端111电连接电连接。在一种可行的实施方式中,如图3所示,第一辐射体31可以通过筋位33实现接地。实际应用中,第一辐射体31与第一差分信号端111电连接的部位可以位于第一辐射体31的端部或者端部之外的部位,第一辐射体31的接地部位也可以位于端部或者端部之外的部位,并且两者位于不同的部位。因此,第一差分信号端111提供的第一NFC激励电流可以馈入至第一辐射体31,通过第一辐射体31传输该第一NFC激励电流,从而支持NFC信号的发射和/或接收。
在实际应用中,如图3所示,电子设备100可以包括主板60,主板60上可以设置系统地。第一辐射体31可以通过筋位33与主板60上的系统地电连接,以使第一辐射体31实现接地。
NFC辐射体20、第二辐射体32均与第二差分信号端112电连接。因此,第二差分信号端112提供的第二NFC激励电流可以馈入至NFC辐射体20和第二辐射体32,通过NFC辐射体20和第二辐射体32传输该第二NFC激励电流,从而支持NFC信号的发射和/或接收。
在一些实施方式中,如图2所示,第二辐射体32与NFC辐射体20串联并与第二差分信号端112电连接。具体地,NFC辐射体20的一端与第二差分 信号端112电连接,NFC辐射体20的另一端与第二辐射体32电连接,第二辐射体32接地。其中,第二辐射体32与NFC辐射体20电连接的部位可以位于第二辐射体32的端部或者端部之外的部位,第二辐射体32的接地部位也可以位于端部或者端部之外的部位,并且两者位于不同的部位。在实际应用中,如图3所示,第二辐射体32可以通过筋位34与主板60上的系统地电连接,以使第二辐射体32实现接地。因此,第二辐射体32、NFC辐射体20以及NFC芯片10能够形成回路,使NFC辐射体20、第二辐射体32能够传输第二差分信号端112提供的第二NFC激励电流。
这种实施方式中,第二辐射体32与NFC辐射体20串联,因此在传输第二NFC激励电流时,第二辐射体32中的电流大小与NFC辐射体20中的电流大小是相同的,并且与第二差分信号端112提供的第二NFC激励电流的大小是相同的。
在另一些实施方式中,参考图4和图5,图4为本申请实施例提供的电子设备100的第四种结构示意图,图5为本申请实施例提供的电子设备100的第五种结构示意图。
其中,如图4所示,第二辐射体32与NFC辐射体20并联,并分别与第二差分信号端112电连接。具体地,NFC辐射体20的一端与第二差分信号端112电连接,NFC辐射体20的另一端接地,例如通过金属弹片与主板60上的系统地电连接以实现接地。因此,NFC辐射体20与NFC芯片10能够形成回路,使NFC辐射体20能够传输第二差分信号端112提供的第二NFC激励电流。第二辐射体32与第二差分信号端112电连接并接地。例如,如图5所示,第二辐射体32可以通过筋位34与主板60上的系统地电连接以实现接地。其中,第二辐射体32与第二差分信号端112电连接的部位可以位于第二辐射体32的端部或者端部之外的部位,第二辐射体32的接地部位也可以位于端部或者端部之外的部位,并且两者位于不同的部位。因此,第二辐射体32与NFC芯片10也能够形成回路,使第二辐射体32能够传输第二差分信号端112提供的第二NFC激励电流。
在实际应用中,第二差分信号端112提供的第二NFC激励电流可以通过诸如功分器、多工器等器件分别馈入NFC辐射体20和第二辐射体32。因此,这种实施方式中,在传输第二NFC激励电流时,第二辐射体32中的电流大小 与NFC辐射体20中的电流大小可以是相同的,也可以是不同的,并且都小于第二差分信号端112提供的第二NFC激励电流的大小。
因此,在实际应用中,采用第二辐射体32与NFC辐射体20串联的方式时,第二辐射体32与NFC辐射体20中的电流较大,能够产生更强的磁场,覆盖更大的通信区域,从而增大NFC的通信范围。而采用第二辐射体32与NFC辐射体20并联的方式时,由于第二辐射体32与NFC辐射体20是相对独立的,因此第二辐射体32与NFC辐射体20能够各自单独进行阻抗匹配,便于阻抗的匹配和调节,因此能够简化整体的天线设计。
在一些实施例中,一并参考图6,图6为本申请实施例提供的电子设备中NFC辐射体20的一种结构示意图。NFC辐射体20包括第一条形部21和第二条形部22。第一条形部21、第二条形部22都呈长条形。第一条形部21与第二条形部22连接并相互垂直。其中,第一条形部21与NFC芯片10的第二差分信号端112电连接,第二条形部22与第二辐射体32连接(如图2、图3所示)或者接地(如图4、图5所示)。第一条形部21平行于第二辐射体32。第二条形部22位于第二辐射体32与第一条形部21之间。因此,在实际应用中,NFC辐射体20与第二辐射体32平行的部分,也即第一条形部21,能够远离第二辐射体32,避免第一条形部21和第二辐射体32形成反向电流而产生反向NFC辐射场,导致NFC性能降低。
可以理解的,若第一辐射体31、第二辐射体32设置于边框30的相对侧边,例如第一辐射体31设置于边框30的右侧,第二辐射体32设置于边框30的左侧,那么当第一条形部21远离第二辐射体32时,则会靠近第一辐射体31,此时同样会在第一条形部21和第一辐射体31中形成反向电流而产生反向NFC辐射场,使NFC性能降低。
因此,实际应用中,在采用如图6所示结构的NFC辐射体20时,可以使第一辐射体31、第二辐射体32设置于边框30的相邻侧边。例如,在一个示例中,第一辐射体31可以设置于边框30的顶部,第二辐射体32可以设置于边框30的左侧。
在一些实施例中,参考图7,图7为本申请实施例提供的电子设备100产生NFC辐射场的示意图。
其中,在传输NFC芯片10提供的NFC激励电流时,NFC辐射体20支持 NFC信号的发射和/或接收以产生第一NFC辐射场A1,第一辐射体31支持NFC信号的发射和/或接收以产生第二NFC辐射场A2,第二辐射体32支持NFC信号的发射和/或接收以产生第三NFC辐射场A3。需要说明的是,图7所示第一NFC辐射场A1、第二NFC辐射场A2、第三NFC辐射场A3仅仅为示意,并不表示实际的辐射场范围和形态,因此不构成对实际的辐射场范围、形态等的限定。
实际应用中,可以在电子设备100的设计阶段对NFC辐射体20、第一辐射体31、第二辐射体32的位置、形状、尺寸等进行设计,以调整第一NFC辐射场A1、第二NFC辐射场A2、第三NFC辐射场A3的区域及范围。
在一些实施方式中,可以使第一NFC辐射场A1与第二NFC辐射场A2、第三NFC辐射场A3均至少部分重叠,以增强重叠区域的NFC场强。因此,既可以增大电子设备100的NFC通信范围,又可以提高电子设备100的NFC通信稳定性。
例如,在实际应用中,第一NFC辐射场A1与第二NFC辐射场A2、第三NFC辐射场A3的重叠区域可以位于电子设备100的显示屏所在区域,因此能够增大显示屏以及电池盖(电池盖与显示屏相对,电池盖也可以称为后盖)所在区域的NFC通信范围,增大NFC功能的刷卡面积和刷卡距离,并提升NFC通信的稳定性。
在另一些实施方式中,还可以使第二NFC辐射场A2与第三NFC辐射场A3至少部分重叠,也可以增强重叠区域的NFC场强,从而增大NFC通信范围和通信稳定性。
例如,在实际应用中,第二NFC辐射场A2与第三NFC辐射场A3的重叠区域也可以位于电子设备100的显示屏所在区域,从而能够增大显示屏以及电池盖所在区域的NFC通信范围,并提升NFC通信稳定性。
在实际应用的一个示例中,NFC辐射体20可以位于电子设备100的主板区域,并靠近电池50;第一辐射体31可以位于电子设备100的一个端部,例如顶部;第二辐射体32可以位于电子设备100的一个侧边,例如左侧。其中,第一NFC辐射场A1、第三NFC辐射场A3可以为主辐射场,第二NFC辐射场A2可以为副辐射场,因此能够形成两主一副的NFC辐射场。第一NFC辐射场A1能够有效增加显示屏区域、电池盖区域以及电子设备右侧的通信范围。 第三NFC辐射场A3能够有效增加显示屏区域、电池盖区域、电子设备左侧及底部的通信范围。第二NFC辐射场A2能够有效增加显示屏区域、电池盖区域以及电子设备顶部的通信范围。因此,能够在电子设备100的周围形成环绕式的NFC通信区域,大面积增加通信范围,进而提升用户体验。
在一些实施例中,参考图8,图8为本申请实施例提供的电子设备100的第六种结构示意图。
电子设备100还包括第一通信模组70,第一通信模组70例如可以设置在主板60上。第一通信模组70用于提供第一非NFC激励电流。第一非NFC激励电流为除了NFC之外的其他通信方式的激励电流,例如可以包括蜂窝通信激励电流、Wi-Fi通信激励电流、GPS通信激励电流、蓝牙通信激励电流中的任一种。相应的,第一通信模组70可以为蜂窝通信模组、Wi-Fi通信模组、GPS通信模组、蓝牙通信模组等。
其中,第一辐射体31与第一通信模组70电连接。第一辐射体31还用于传输第一非NFC激励电流,以支持第一非NFC信号的发射和/或接收。例如,第一非NFC激励电流可以为蜂窝通信激励电流,那么第一辐射体31在传输该蜂窝通信激励电流时,能够发射和/或接收蜂窝信号,实现蜂窝通信功能。
在实际应用的一个示例中,第一非NFC激励电流为蜂窝通信的中高频(Medium and high band,MHB)激励电流,例如可以为B40(2.3GHz~2.4GHz)、B41(2.496GHz~2.69GHz)等频段的激励电流。
第一辐射体31既能够传输NFC激励电流来实现NFC功能,又能够传输第一非NFC激励电流来实现对应的通信功能,例如实现中高频蜂窝通信功能,因此能够实现对第一辐射体31的复用,在实现不同通信功能时可以减少总的天线数量,因此能够简化电子设备100的整体天线设计。
在一些实施例中,继续参考图8,电子设备100还包括第二通信模组80,第二通信模组80例如也可以设置在主板60上。第二通信模组80用于提供第二非NFC激励电流。第二非NFC激励电流也为除了NFC之外的其他通信方式的激励电流,例如可以包括蜂窝通信激励电流、Wi-Fi通信激励电流、GPS通信激励电流、蓝牙通信激励电流中的任一种。相应的,第二通信模组80可以为蜂窝通信模组、Wi-Fi通信模组、GPS通信模组、蓝牙通信模组等。需要说明的是,第二通信模组80与第一通信模组70可以为不同类型的通信模组, 也可以为相同类型的通信模组,例如可以都为蜂窝通信模组。
其中,第二辐射体32与第二通信模组80电连接。第二辐射体32还用于传输第二非NFC激励电流,以支持第二非NFC信号的发射和/或接收。例如,第二非NFC激励电流也可以为蜂窝通信激励电流,那么第二辐射体32在传输该蜂窝通信激励电流时,能够发射和/或接收蜂窝信号,实现蜂窝通信功能。
在实际应用的一个示例中,第二非NFC激励电流为蜂窝通信的低频(Low band,LB)激励电流,例如可以为B5(上行频率824MHz~849MHz,下行频率869MHz~894MHz)、B20(上行频率832MHz~862MHz,下行频率791MHz~821MHz)等频段的激励电流。
第二辐射体32既能够传输NFC激励电流来实现NFC功能,又能够传输第二非NFC激励电流来实现对应的通信功能,例如实现低频蜂窝通信功能,因此能够实现对第二辐射体32的复用,在实现不同通信功能时可以减少总的天线数量,因此能够进一步简化电子设备100的整体天线设计。
在一些实施例中,参考图9,图9为本申请实施例提供的电子设备100的第七种结构示意图,图9中以NFC IC表示NFC芯片10,以IC1表示第一通信模组70,以IC2表示第二通信模组80。
电子设备100还包括第一电感L1和第一电容C1。第一电感L1串联在NFC芯片10与第一辐射体31之间,第一电容C1与第一电感L1并联并接地。其中,第一电感L1和第一电容C1可以形成第一隔离电路,用于隔离NFC激励电流与第一非NFC激励电流,保证NFC激励电流与第一非NFC激励电流互不干扰,从而提高NFC的通信稳定性以及第一通信模组70的通信稳定性。
实际应用中,第一电感L1对于NFC激励电流而言是损耗器件,故越小越好,但过小会导致隔离效果差,从而导致第一辐射体31传输第一非NFC激励电流时有杂波甚至无法调谐,而第一电感L1过大又会导致NFC激励电流损耗过大以及过流的问题。因此,选择合适的第一电感L1至关重要。此外,第一电感L1的选取与第一非NFC激励电流的具体频段有关。在一个可行的示例中,第一电感L1的大小可以为10nH。
在一个可行的示例中,第一电容C1的大小为100pF。
在一些实施例中,继续参考图9,电子设备100还包括第二电感L2和第二电容C2。第二电感L2串联在NFC芯片10与NFC辐射体20之间,第二电 容C2与第二电感L2并联并接地。其中,第二电感L2和第二电容C2可以形成第二隔离电路,用于隔离NFC激励电流与第二非NFC激励电流,保证NFC激励电流与第二非NFC激励电流互不干扰,从而提高NFC的通信稳定性以及第二通信模组80的通信稳定性。
实际应用中,第二电感L2的选取与第二非NFC激励电流的具体频段有关。在一个可行的示例中,第二电感L2的大小可以为10nH。
在一个可行的示例中,第二电容C2的大小为100pF。
在一些实施例中,参考图10,图10为本申请实施例提供的电子设备的边框30的结构示意图。
边框30为金属边框,例如可以为铝合金、镁合金等材质的边框。金属边框30开设有多个缝隙,以在金属边框30上形成第一金属枝节34和第二金属枝节35。第一金属枝节34、第二金属枝节35的长度都可以根据实际需求以及电子设备100的整机布局来设置。其中,第一金属枝节34形成第一辐射体31,第二金属枝节35形成第二辐射体32。因此,能够复用金属边框30来形成第一辐射体31和第二辐射体32,无需设置独立的辐射体,因此能够简化整体的天线设计。
在一些实施方式中,如图10所示,金属边框30包括第一侧边301、第二侧边302以及第三侧边303。第一侧边301与第二侧边302相对,第三侧边303连接于第一侧边301和第二侧边302之间。在实际应用中,第一侧边301、第二侧边302可以为长侧边,第三侧边303可以为短侧边。
其中,第一金属枝节34形成于第三侧边303。例如,可以在第三侧边303开设第一缝隙331和第二缝隙332,第一缝隙331与第二缝隙332之间的部分形成第一金属枝节34。
第二金属枝节35形成于第一侧边301或第二侧边302。例如,可以在第一侧边301开设第三缝隙333和第四缝隙334,第三缝隙333与第四缝隙334之间的部分形成第二金属枝节35。
需要说明的是,上述形成第一辐射体31、第二辐射体32的方式仅仅为一种可行的示例。在其他一些实施方式中,第一辐射体31、第二辐射体32也可以为其他类型的辐射体,例如第一辐射体31、第二辐射体32可以为FPC形式的辐射体。
在一些实施例中,电子设备100为可折叠电子设备。参考图11和图12,图11为本申请实施例提供的可折叠电子设备100的结构示意图,图12为图11所示可折叠电子设备100处于折叠状态的示意图。
可折叠电子设备100包括第一部分101、第二部分102以及转轴103。第一部分101通过转轴103与第二部分102连接。第一部分101与第二部分102能够相对转动至折叠状态或展开状态,以使电子设备100折叠或展开。如图12所示为电子设备100沿转轴103转动至折叠状态的示意图。
其中,NFC芯片10、NFC辐射体20、第一辐射体31、第二辐射体32都可以设置于第一部分101或第二部分102。例如,在图11的示例中,边框30位于第一部分101,第一辐射体31、第二辐射体32均形成于第一部分101的边框30,并且NFC芯片10、NFC辐射体20也都可以设置于第一部分101。电池50可以设置于第二部分102。各个部分的具体实现细节,可以参考上述电子设备100的各个实施例中的描述,在此不再赘述。
在一些实施例中,参考图13,图13为图12所示可折叠电子设备100的后视示意图。电子设备100还包括副显示屏90。副显示屏90可以用于在电子设备100处于折叠状态时显示信息。其中,副显示屏90与NFC芯片10、NFC辐射体20、第一辐射体31、第二辐射体32设置于电子设备100的不同部分。例如,在一个示例中,NFC芯片10、NFC辐射体20、第一辐射体31、第二辐射体32都设置于第一部分101时,副显示屏90设置于第二部分102,如图13所示。在另一个示例中,NFC芯片10、NFC辐射体20、第一辐射体31、第二辐射体32都设置于第二部分102时,副显示屏90设置于第一部分101。
实际应用中,为了避免NFC辐射体20影响副显示屏90的显示性能,可以根据副显示屏90的大小对NFC辐射体20的形态和尺寸进行适配。
本申请实施例的天线设计方式,对于可折叠电子设备100,相比于常规的NFC天线方案,在电子设备100处于展开状态时能够使NFC性能提升60%~70%,在电子设备100处于折叠状态时能够使NFC性能提升90%~100%。并且,在电子设备100处于折叠状态时,如图12、图13所示,电子设备100的顶部、底部、左侧、右侧、副显示屏90所在的一面、与副显示屏90相对的一面都能够实现NFC通信,能够支持六面NFC刷卡功能,进而实现360°NFC刷卡。因此,能够使电子设备100的NFC性能得到大幅提升,性能表现更加 优秀,用户在手持电子设备100进行NFC刷卡时,手持设备的方向和角度无限制,因此用户使用更加方便灵活。
在本申请的描述中,需要理解的是,诸如“第一”、“第二”等术语仅用于区分类似的对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
需要指出的是,本申请实施例中“电连接”可以是两个电学元件之间直接连接以实现电连接,也可以是间接连接以实现电连接。例如,A与B电连接,既可以是A与B直接连接来实现电连接,也可以是A与B之间通过一个或多个其它电学元件间接连接来实现电连接。
以上对本申请实施例提供的电子设备进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请。同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种电子设备,包括:
    NFC芯片,用于提供NFC激励电流;
    NFC辐射体,与所述NFC芯片电连接;
    边框,所述边框设置有第一辐射体和第二辐射体,所述第一辐射体、所述第二辐射体设置于所述边框的不同侧边,所述第一辐射体、所述第二辐射体均与所述NFC芯片电连接;
    其中,所述NFC辐射体、所述第一辐射体、所述第二辐射体均用于传输所述NFC激励电流,以支持NFC信号的发射和/或接收。
  2. 根据权利要求1所述的电子设备,其中:
    所述NFC芯片包括第一差分信号端和第二差分信号端,所述第一差分信号端用于提供第一NFC激励电流,所述第二差分信号端用于提供第二NFC激励电流;
    所述第一辐射体与所述第一差分信号端电连接并接地,以使所述第一辐射体传输所述第一NFC激励电流;
    所述NFC辐射体、所述第二辐射体均与所述第二差分信号端电连接,以传输所述第二NFC激励电流。
  3. 根据权利要求2所述的电子设备,其中,所述NFC辐射体的一端与所述第二差分信号端电连接,所述NFC辐射体的另一端与所述第二辐射体电连接,所述第二辐射体接地,以使所述NFC辐射体、所述第二辐射体均传输所述第二NFC激励电流。
  4. 根据权利要求2所述的电子设备,其中:
    所述NFC辐射体的一端与所述第二差分信号端电连接,所述NFC辐射体的另一端接地,以使所述NFC辐射体传输所述第二NFC激励电流;
    所述第二辐射体与所述第二差分信号端电连接并接地,以使所述第二辐射体传输所述第二NFC激励电流。
  5. 根据权利要求1所述的电子设备,其中:
    所述NFC辐射体产生第一NFC辐射场,所述第一辐射体产生第二NFC辐射场,所述第二辐射体产生第三NFC辐射场;
    其中,所述第一NFC辐射场与所述第二NFC辐射场、所述第三NFC辐 射场均至少部分重叠。
  6. 根据权利要求5所述的电子设备,其中,所述第二NFC辐射场与所述第三NFC辐射场至少部分重叠。
  7. 根据权利要求1所述的电子设备,其中,所述NFC辐射体为FPC形式的辐射体。
  8. 根据权利要求7所述的电子设备,其中,所述NFC辐射体为长条型或者L型。
  9. 根据权利要求2所述的电子设备,其中:
    所述第一辐射体、所述第二辐射体设置于所述边框的相邻侧边;
    所述NFC辐射体包括第一条形部和第二条形部,所述第一条形部与所述第二条形部连接并互相垂直,所述第一条形部与所述第二差分信号端电连接,所述第一条形部平行于所述第二辐射体,所述第二条形部位于所述第二辐射体与所述第一条形部之间。
  10. 根据权利要求1所述的电子设备,其中,还包括:
    第一通信模组,用于提供第一非NFC激励电流;
    所述第一辐射体与所述第一通信模组电连接,所述第一辐射体还用于传输所述第一非NFC激励电流,以支持第一非NFC信号的发射和/或接收。
  11. 根据权利要求10所述的电子设备,其中,所述第一非NFC激励电流为MHB激励电流。
  12. 根据权利要求10所述的电子设备,其中,还包括第一电感和第一电容,所述第一电感串联在所述NFC芯片与所述第一辐射体之间,所述第一电容与所述第一电感并联并接地。
  13. 根据权利要求1所述的电子设备,其中,还包括:
    第二通信模组,用于提供第二非NFC激励电流;
    所述第二辐射体与所述第二通信模组电连接,所述第二辐射体还用于传输所述第二非NFC激励电流,以支持第二非NFC信号的发射和/或接收。
  14. 根据权利要求13所述的电子设备,其中,所述第二非NFC激励电流为LB激励电流。
  15. 根据权利要求13所述的电子设备,其中,还包括第二电感和第二电容,所述第二电感串联在所述NFC芯片与所述NFC辐射体之间,所述第二电 容与所述第二电感并联并接地。
  16. 根据权利要求1所述的电子设备,其中,所述边框为金属边框,所述金属边框开设有多个缝隙,以在所述金属边框上形成第一金属枝节和第二金属枝节,所述第一金属枝节形成所述第一辐射体,所述第二金属枝节形成所述第二辐射体。
  17. 根据权利要求16所述的电子设备,其中:
    所述金属边框包括第一侧边、第二侧边及第三侧边,所述第一侧边与所述第二侧边相对,所述第三侧边连接于所述第一侧边和所述第二侧边之间;
    所述第一金属枝节形成于所述第三侧边,所述第二金属枝节形成于所述第一侧边或所述第二侧边。
  18. 根据权利要求1所述的电子设备,其中,还包括摄像头模组,所述NFC辐射体与所述摄像头模组相邻设置。
  19. 根据权利要求1所述的电子设备,其中,所述电子设备为可折叠电子设备,所述可折叠电子设备包括第一部分和第二部分,所述第一部分与所述第二部分能够相对转动至折叠状态或展开状态;
    所述NFC辐射体、所述第一辐射体、所述第二辐射体都设置于所述第一部分或所述第二部分。
  20. 根据权利要求19所述的电子设备,其中,还包括副显示屏;
    所述NFC辐射体、所述第一辐射体、所述第二辐射体都设置于所述第一部分,所述副显示屏设置于所述第二部分;或者
    所述NFC辐射体、所述第一辐射体、所述第二辐射体都设置于所述第二部分,所述副显示屏设置于所述第一部分。
PCT/CN2023/118804 2022-10-31 2023-09-14 电子设备 WO2024093544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211351598.XA CN117996410A (zh) 2022-10-31 2022-10-31 电子设备
CN202211351598.X 2022-10-31

Publications (1)

Publication Number Publication Date
WO2024093544A1 true WO2024093544A1 (zh) 2024-05-10

Family

ID=90891573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118804 WO2024093544A1 (zh) 2022-10-31 2023-09-14 电子设备

Country Status (2)

Country Link
CN (1) CN117996410A (zh)
WO (1) WO2024093544A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170324147A1 (en) * 2016-05-03 2017-11-09 Samsung Electronics Co., Ltd. Antenna module having metal frame antenna segment and electronic device including the same
CN212874746U (zh) * 2020-07-23 2021-04-02 Oppo广东移动通信有限公司 电子设备
CN112952358A (zh) * 2021-01-28 2021-06-11 Oppo广东移动通信有限公司 天线装置及电子设备
CN113131196A (zh) * 2019-12-31 2021-07-16 Oppo广东移动通信有限公司 天线装置及电子设备
CN113725592A (zh) * 2020-05-26 2021-11-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN114243272A (zh) * 2021-12-15 2022-03-25 深圳市锐尔觅移动通信有限公司 天线装置、电路板组件及电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170324147A1 (en) * 2016-05-03 2017-11-09 Samsung Electronics Co., Ltd. Antenna module having metal frame antenna segment and electronic device including the same
CN113131196A (zh) * 2019-12-31 2021-07-16 Oppo广东移动通信有限公司 天线装置及电子设备
CN113725592A (zh) * 2020-05-26 2021-11-30 Oppo广东移动通信有限公司 天线装置及电子设备
CN212874746U (zh) * 2020-07-23 2021-04-02 Oppo广东移动通信有限公司 电子设备
CN112952358A (zh) * 2021-01-28 2021-06-11 Oppo广东移动通信有限公司 天线装置及电子设备
CN114243272A (zh) * 2021-12-15 2022-03-25 深圳市锐尔觅移动通信有限公司 天线装置、电路板组件及电子设备

Also Published As

Publication number Publication date
CN117996410A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
CN113013593B (zh) 天线组件和电子设备
US9466871B2 (en) Antenna device and electronic apparatus including antenna device
JP6282653B2 (ja) 印刷回路基板アンテナ及び端末
WO2011102143A1 (ja) アンテナ装置及びこれを搭載した携帯無線端末
CN210838090U (zh) 天线装置及电子设备
US9653813B2 (en) Diagonally-driven antenna system and method
US9058152B2 (en) Wireless communication module, portable device using the same and method for manufacturing the same
JP2013051644A (ja) アンテナ装置とこのアンテナ装置を備えた電子機器
JP2009077440A (ja) 無線装置
CN107317096B (zh) 一种电子设备
JP2008072382A (ja) アンテナ装置及び無線装置
WO2013182160A2 (zh) 一种无线多功能装置及电子设备
JPWO2011142135A1 (ja) アンテナ装置及びこれを搭載した携帯無線端末
EP3806238B1 (en) Mobile terminal
WO2020216241A1 (zh) 紧凑型天线及移动终端
US20230170617A1 (en) Antenna assembly and electronic device
WO2013189280A1 (zh) 便携终端及其缝隙天线
US20230163463A1 (en) Electronic device
EP2628208B1 (en) Antenna pair for mimo/diversity operation in the lte/gsm bands
US11942702B2 (en) Wireless communication apparatus
WO2015014200A1 (zh) 一种印制天线和终端设备
WO2024088118A1 (zh) 电子设备
WO2024093544A1 (zh) 电子设备
CN110829023B (zh) 天线模组及终端
JP5789777B2 (ja) 携帯端末装置