WO2024093180A1 - 一种全双工卫星通信自干扰的抑制方法 - Google Patents

一种全双工卫星通信自干扰的抑制方法 Download PDF

Info

Publication number
WO2024093180A1
WO2024093180A1 PCT/CN2023/093396 CN2023093396W WO2024093180A1 WO 2024093180 A1 WO2024093180 A1 WO 2024093180A1 CN 2023093396 W CN2023093396 W CN 2023093396W WO 2024093180 A1 WO2024093180 A1 WO 2024093180A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
duplex
full
interference
solar panel
Prior art date
Application number
PCT/CN2023/093396
Other languages
English (en)
French (fr)
Inventor
焦秉立
李文瑶
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Publication of WO2024093180A1 publication Critical patent/WO2024093180A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems

Definitions

  • the present invention relates to the field of satellite communication technology, and in particular to the combination of satellite communication and co-frequency simultaneous full-duplex technology to improve the utilization rate of frequency band resources.
  • a method for improving the self-interference of full-duplex communication is designed to effectively improve the transmission quality.
  • self-interference elimination technology can be divided into airspace, analog and digital domains according to the location where signal cancellation occurs.
  • the purpose of airspace isolation technology is to block the propagation of electromagnetic waves between the transmit and receive links.
  • the analog domain refers to suppressing self-interference in the analog receive chain circuit before the received signal passes through the ADC.
  • the digital domain eliminates self-interference after passing through the ADC by applying complex DSP technology to the received signal.
  • the present invention provides a method for suppressing self-interference in full-duplex satellite communications, which utilizes the structural characteristics of the satellite to design the deployment position of the microstrip antenna, increases the isolation between the transmitting and receiving antennas, effectively suppresses the self-interference signals in the airspace, and improves the spectrum efficiency.
  • a method for suppressing self-interference in full-duplex satellite communication A receiving and transmitting antenna is arranged on a satellite platform for full-duplex satellite communication.
  • the method is characterized in that the receiving and transmitting antennas are respectively placed at the ends of both sides of a solar panel of the satellite platform, and are respectively connected to the solar panel through a rotation axis.
  • the rotation angles of the receiving and transmitting antennas are calculated according to the satellite attitude, and the rotation angle of the solar panel is compensated, so as to realize self-interference suppression in the same frequency and full-duplex mode in the airspace.
  • the transmitting and receiving antennas adopt a microstrip antenna structure. If the solar panel rotates at an angle of ⁇ , the microstrip antenna at its end will produce a deflection of the same angle. To ensure that the rotation of the solar panel does not change the relative angle of the antenna with respect to the cabin, the antenna should actively rotate at an angle of - ⁇ . On this basis, the microstrip antenna can be adjusted in a traditional way according to the satellite attitude.
  • the microstrip antenna is folded together with the solar panel.
  • the solar panel usually has a long flat structure. When folded, it is divided into small sections in length and folded up in sequence.
  • the microstrip antenna is also a flat structure, similar to the solar panel, and is folded together with the panel to facilitate satellite carrying.
  • the transmit and receive signals share the same time-frequency resources, thereby reducing the frequency or time slot resource overhead in the half-duplex mode and achieving the purpose of improving spectrum efficiency.
  • the key to its technical implementation lies in the elimination of the same-frequency self-interference (SI) generated by the transmitter at the same node by the receiver. If the SI between the transmit and receive can be ideally eliminated, then the spectrum efficiency can be doubled in theory.
  • SI self-interference
  • the size is usually much larger than that of ground communication equipment, especially the solar panels located on both sides of the satellite platform.
  • their surface area is usually tens of square meters, and the length can usually reach several meters to tens of meters.
  • the receiving and transmitting antennas of the present invention are located at both ends of the solar panels, which can obtain a larger isolation degree.
  • the installation of the antenna will not cause a load-bearing burden on the solar panels.
  • the antenna In order for the satellite antenna to obtain a larger gain, the antenna needs to be pointed in the same direction as the communication target. Therefore, the antenna is connected to the solar panel through a rotating shaft to meet its directional adjustability.
  • the present invention can effectively reduce the residual power of the self-interference signal reaching the receiving antenna.
  • the antenna direction can be flexibly adjusted to ensure consistency with the communication target direction
  • Microstrip antennas can be folded in the same way as solar panels, making them easy to carry on satellites.
  • FIG. 1 is a diagram showing the theoretical relationship between electromagnetic wave path loss, the distance between the transmitting and receiving antennas, and the signal frequency.
  • FIG. 2 is a schematic diagram of antenna placement and connection in a specific implementation manner of the present invention.
  • FIG. 3 is a schematic diagram of a folding method of a microstrip antenna in a specific implementation manner of the present invention.
  • the satellite structure is usually composed of a main structure (platform cabin structure, payload cabin structure) and a secondary structure (deployable antenna side panel mounting frame, solar array mounting frame).
  • a main structure platform cabin structure, payload cabin structure
  • a secondary structure deploymentable antenna side panel mounting frame, solar array mounting frame.
  • the transmitted signal of the satellite node will cause strong self-interference to the target received signal.
  • the self-interference elimination technology in the analog and digital domains inevitably requires the support of the hardware system, which brings additional burden to the entire satellite system.
  • the spatial isolation technology does not require the transceiver hardware to accurately process the signal with a large dynamic range.
  • the present invention is based on the theory of spatial self-interference elimination and realizes the suppression of self-interference signals through the reasonable deployment of antennas.
  • the path loss caused by the self-interference signal generated by the satellite transmission to the receiving antenna due to antenna isolation is:
  • the above formula shows that the magnitude of the path loss is mainly related to the distance between the antennas and the frequency of the signal, as shown in Figure 1.
  • the transmitting and receiving antennas of the present invention adopt a microstrip antenna structure, and the microstrip antennas are respectively placed at both ends of the solar sail panel of the satellite platform.
  • the strip structure of the solar sail panel provides a natural advantage for the distance between the transmitting and receiving antennas, and the transmitting and receiving antennas are connected to the solar sail panel through a rotatable axis, so as to achieve real-time adjustment of the antenna pointing, as shown in Figure 2.
  • the rotation angle of the sail panel must be compensated. The angle is calculated by the solar sail rotation control system according to the vector position of the satellite relative to the sun. It is a known quantity for the antenna rotation control system, and the angle compensation does not consume additional computing resources.
  • the transceiver antenna of the present invention adopts a microstrip antenna, which has a flat plate-like structure similar to the solar panel, and can be folded in the same way as the solar panel, as shown in Figure 3. Its volume will be greatly reduced after it is folded, which is convenient for satellite loading.
  • the unfolded size of the single-wing solar panel of its 1.0 version satellite is 4 ⁇ 15 meters, using the Ku (12 ⁇ 18GHz) frequency band and the Ka (27 ⁇ 40GHz) frequency band. Ignoring the width of the satellite's central cabin and only considering the spatial isolation brought by the length of the two solar panels, for 40GHz signals, the isolation brought by path loss alone can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)

Abstract

一种全双工卫星通信自干扰的抑制方法,将收、发天线分别放置在卫星平台的太阳能帆板的两侧末端,并通过旋转轴与太阳能帆板连接,根据卫星姿态计算收、发天线旋转角度,对太阳能帆板的旋转角度进行补偿。该方法在无需借助额外软硬件资源的情况下,通过利用卫星自身结构特点对收、发天线进行优化部署,保证天线指向性、便携性的同时增加收、发天线之间的隔离度,在空域实现同频同时全双工模式下的自干扰抑制,提高频谱效率。

Description

一种全双工卫星通信自干扰的抑制方法 技术领域
本发明涉及卫星通信技术领域,特别是涉及卫星通信与同频同时全双工技术的结合以提高频带资源利用率,并结合卫星自身结构特点,设计一种改善全双工通信自干扰的方法,有效提高传输质量。
背景技术
卫星接入与传统地面网络的融合是未来移动通信技术发展的重要方向,而随着业务量的增大,频带资源的日趋紧张也将随之而来。同时同频全双工技术是一种非常有效的解决方案,理论上可以使频谱效率扩大两倍,卫星通信与全双工技术的结合,将成为缓解频谱资源问题的有效手段。
收发频带的共享必然会导致自干扰问题,需要设计合适的消除方案。在地面蜂窝网络中,根据信号抵消发生的位置不同,自干扰消除技术可分为空域、模拟域和数字域。空域隔离技术的目的是在发射与接收链路之间阻断电磁波的传播,模拟域指在接收信号经过ADC之前在模拟接收链电路中抑制自干扰,数字域则是通过对接收信号应用复杂的DSP技术来消除通过ADC后的自干扰。然而,如何结合卫星通信的特点,针对性设计自干扰消除方案,尚缺乏足够的研究。
发明内容
为了克服上述现有技术的不足,本发明提供了一种全双工卫星通信自干扰的抑制方法,利用卫星的结构特点设计微带天线部署位置,增大收发天线之间的隔离度,在空域实现对自干扰信号的有效抑制,提高频谱效率。
本发明所采用的技术方案是:
一种全双工卫星通信自干扰的抑制方法,卫星平台上设置收、发天线,用于全双工卫星通信,其特征在于,将收、发天线分别放置在卫星平台的太阳能帆板的两侧末端,分别通过旋转轴与太阳能帆板连接,根据卫星姿态计算收、发天线旋转角度,并对太阳能帆板的旋转角度进行补偿,在空域实现同频同时全双工模式下的自干扰抑制。
其中,所述收、发天线采用微带天线结构,若太阳能帆板发生角度为Δ θ的旋转,位于其末端的微带天线将产生同样角度的偏转。为保证太阳能帆板的旋转不改变天线关于舱体的相对角度,天线应主动旋转-Δ θ角度。在此基础上,微带天线针对卫星姿态的指向调整即可按传统模式进行。
所述微带天线与太阳能帆板共同折叠,太阳能帆板通常具有长条形平板结构,折叠时在长度上分割成小段,依次折起,微带天线同样为平板状结构,与太阳能帆板相似,与帆板共同折起,便于卫星搭载。
同频同时全双工模式中,收发信号共享相同的时频资源,从而减少半双工模式中频率或时隙资源开销,达到提高频谱效率的目的。其技术实现的关键在于接收机对同节点发射机产生的同频自干扰(SI)的消除,如果收发之间的SI能够被理想地消除,那么理论上可以将频谱效率提高一倍。
对于全双工卫星通信节点,其尺寸通常远大于地面通信设备,特别是位于卫星平台两侧的太阳能帆板,为了获得足够的能量供应,其表面积通常为数十平方米,长度通常可达数米至十数米,本发明收、发天线位于太阳能帆板的两端,可以获得较大的隔离度,同时在太空失重环境下,天线的搭载不会给太阳能帆板造成承重负担。为了使卫星天线获得较大增益,需要天线指向与通信目标所在方向保持一致。因此将天线与太阳能帆板通过旋转轴连接,满足其方向可调性。本发明可以有效降低到达接收天线的自干扰信号残余功率。
本发明提出的方法与现有技术相比的优点在于:
1)利用卫星自身结构特点实现空域自干扰信号消除,复杂度低,易于实现,几乎不存在额外的资源消耗;
2)天线指向可以灵活调整,保证与通信目标方向一致性;
3)微带天线可与太阳能帆板以相同方式折叠,易于实现卫星搭载。
附图说明
图1为电磁波路径损耗与收发天线之间的距离以及信号频率之间的理论关系图。
图2为本发明具体实施方式中的天线摆放及连接方式示意图。
图3为本发明具体实施方式中微带天线折叠方式示意图。
具体实施方式
下面结合附图,通过实施例进一步描述本发明,但不以任何方式限制本发明的范围。
在卫星通信中,卫星结构通常由主结构(平台舱结构、有效载荷舱结构)、次结构(展开式天线侧板安装框架、太阳电池阵安装框架)组成。在传统的半双工通信模式下,由于接收和发送信号分别占用正交的通信资源,不会对彼此构成干扰,因此收发天线通常均部署在主结构之上,其指向可根据卫星姿态实时调整,使通信获得较大的增益。
对于全双工通信,卫星节点的发射信号将对目标接收信号构成很强的自干扰。模拟及数字域的自干扰消除技术不可避免的需要硬件系统的支持,给整个卫星系统带来额外负担。而空域隔离技术则不需要收发硬件对大动态范围的信号进行精确处理。考虑到地球轨道卫星、特别是当前广泛采用的小型低轨地球卫星资源有限,本发明以空域自干扰消除理论为基础,通过对天线的合理部署实现自干扰信号抑制。
基于自由空间损耗模型,卫星发射对接收天线产生的自干扰信号由于天线隔离所产生的路径损耗为:
Los = 32.44 + 20lg + 20lg f
上式中, d表示两天线之间的距离,单位为km; f表示传输信号的频率,单位为MHz;Los表示路径损耗,单位为dB。上式表明,路径损耗的大小主要与天线之间的距离以及信号的频率有关,如图1所示。当信号频率固定不变时,增大收发天线之间的距离,产生的路径损耗就会相应地变大,对于自干扰信号来说,其衰减量就会有所增加。
对于传统的地面通信设备,由于其尺寸有限,收发天线无法拉远,因此通过该方式获得的隔离度十分有限。
本发明收、发天线采用微带天线结构,将微带天线分别放置在卫星平台的太阳能帆板的两端,太阳能帆板的条状结构给收发天线的拉远提供了天然优势,且收发天线通过可旋转轴与太阳能帆板相连,从而实现天线指向的实时调整,如图2所示。在天线方向调整时,除了考虑传统方式中卫星的轨迹及姿态外,还要对帆板的旋转角度进行补偿,该角度由太阳帆旋转控制系统根据卫星相对于太阳的矢量位置计算得到,对于天线旋转控制系统来说是已知量,角度的补偿不会消耗额外的计算资源。
本发明收发天线采用微带天线,具有与太阳能帆板相似的平板状外形结构,可以跟随太阳能帆板一起以相同方式折叠,如图3所示。其收起后体积将大大减小,便于卫星搭载。以Starlink系统为例,其1.0版本卫星单翼太阳能帆板展开尺寸为4×15米,采用Ku(12~18GHz)频段,Ka(27~40GHz)频段。忽略卫星中心舱体的宽度,仅考虑两太阳能帆板长度所带来的空间隔离,对于40GHz的信号,仅通过路径损耗带来的隔离度便可达到。
Los = 32.44 + 20lg 0.03 + 20lg (4×10 4) ≈ 94dB
随着未来对于更高频段的开发和利用,自干扰信号的衰减还将继续增大。
需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (4)

  1. 一种全双工卫星通信自干扰的抑制方法,卫星平台上设置收、发天线,用于全双工卫星通信,其特征在于,将收、发天线分别放置在卫星平台的太阳能帆板的两侧末端,分别通过旋转轴与太阳能帆板连接,根据卫星姿态计算收、发天线旋转角度,并对太阳能帆板的旋转角度进行补偿,在空域实现同频同时全双工模式下的自干扰抑制。
  2. 如权利要求1所述的全双工卫星通信自干扰的抑制方法,其特征在于,所述收、发天线为微带天线结构。
  3. 如权利要求2所述的全双工卫星通信自干扰的抑制方法,其特征在于,所述收、发天线采用与太阳能帆板相似的平板状结构,随太阳能帆板共同折起,便于卫星搭载。
  4. 如权利要求3所述的全双工卫星通信自干扰的抑制方法,其特征在于,当太阳能帆板发生角度为Δ θ的旋转时,位于其末端的收、发天线主动旋转-Δ θ角度。
PCT/CN2023/093396 2022-10-31 2023-05-11 一种全双工卫星通信自干扰的抑制方法 WO2024093180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211342869.5 2022-10-31
CN202211342869.5A CN115801047A (zh) 2022-10-31 2022-10-31 一种全双工卫星通信自干扰的抑制方法

Publications (1)

Publication Number Publication Date
WO2024093180A1 true WO2024093180A1 (zh) 2024-05-10

Family

ID=85434416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093396 WO2024093180A1 (zh) 2022-10-31 2023-05-11 一种全双工卫星通信自干扰的抑制方法

Country Status (2)

Country Link
CN (1) CN115801047A (zh)
WO (1) WO2024093180A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115801047A (zh) * 2022-10-31 2023-03-14 北京大学 一种全双工卫星通信自干扰的抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120325974A1 (en) * 2010-12-23 2012-12-27 Thales Deployable Structure Forming an Antenna Equipped with a Solar Generator for a Satellite
CN106848558A (zh) * 2017-02-08 2017-06-13 耿歌 航天器太阳能帆板共形天线
US20200361635A1 (en) * 2019-05-15 2020-11-19 Ast & Science, Llc Low earth orbit mechanical deployable structure
CN114735238A (zh) * 2022-03-25 2022-07-12 哈尔滨工业大学 一种由太阳帆板和天线组成的卫星组件及卫星
CN115801047A (zh) * 2022-10-31 2023-03-14 北京大学 一种全双工卫星通信自干扰的抑制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120325974A1 (en) * 2010-12-23 2012-12-27 Thales Deployable Structure Forming an Antenna Equipped with a Solar Generator for a Satellite
CN106848558A (zh) * 2017-02-08 2017-06-13 耿歌 航天器太阳能帆板共形天线
US20200361635A1 (en) * 2019-05-15 2020-11-19 Ast & Science, Llc Low earth orbit mechanical deployable structure
CN114735238A (zh) * 2022-03-25 2022-07-12 哈尔滨工业大学 一种由太阳帆板和天线组成的卫星组件及卫星
CN115801047A (zh) * 2022-10-31 2023-03-14 北京大学 一种全双工卫星通信自干扰的抑制方法

Also Published As

Publication number Publication date
CN115801047A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2024093180A1 (zh) 一种全双工卫星通信自干扰的抑制方法
Braun Satellite Communications payload and system
US8976072B2 (en) Flat scanning antenna for a terestrial mobile application, vehicle having such an antenna, and satellite telecommunication system comprising such a vehicle
WO2020015386A1 (zh) 一种波束重构方法、天线、微波设备和网络系统
US10644385B1 (en) Wideband antenna system components in rotary aircraft rotors
KR102110862B1 (ko) 위성 통신 시스템에서 반사기의 비이상적인 표면에 대한 보상
BR102014023331A2 (pt) supressão de interferência em um sistema de comunicação via satélite utilizando formação de feixe embutida e processamento com base em solo
US4145658A (en) Method and apparatus for cancelling interference between area coverage and spot coverage antenna beams
ITRM990561A1 (it) Perfezionato sistema di comunicazione satellitare con antenna a fascio zonale.
CN104092485A (zh) 分布式动中通轻质赋形天线
CN112260749B (zh) 一种毫米波卫星自回传的波束赋型方法
US11652525B2 (en) Systems and methods for beamforming in hybrid beamforming antennas
US9407008B2 (en) Multi-beam multi-radio antenna
CN114513237B (zh) 一种面向大规模阵列通信的子阵结构设计方法
ITRM990562A1 (it) Perfezionato sistema di comunicazione satellitare con controllo di potenza rf di molteplici stazioni di terra in un singolo fascio discenden
CN109037968B (zh) 一种宽窄波束结合的低轨卫星接入天线系统
CN113346940B (zh) 一种适用于低轨卫星间的太赫兹通信系统
Zeng et al. Networked satellite telemetry resource allocation for mega constellations
Wang et al. On the beamforming design of millimeter wave UAV networks: Power vs. capacity trade-offs
CN113873536A (zh) 基于干扰规避的低轨卫星波束设计方法及系统
WO2023088446A1 (zh) 一种天线及通信系统
CN113950065A (zh) 一种基于保护区和定向天线的同频干扰抑制方法
Tan et al. Modern Low-Cost Phased Array Technologies and Accompanying Fixed Satellite Service (FSS) Regulatory Requirements
Cao et al. RIS-Assisted Coverage Extension for LEO Satellite Communication in Blockage Scenarios
JP7486086B2 (ja) 通信装置およびアンテナ