WO2024092787A1 - 一种电池包的气密性检测方法、装置、系统及电池包 - Google Patents
一种电池包的气密性检测方法、装置、系统及电池包 Download PDFInfo
- Publication number
- WO2024092787A1 WO2024092787A1 PCT/CN2022/130068 CN2022130068W WO2024092787A1 WO 2024092787 A1 WO2024092787 A1 WO 2024092787A1 CN 2022130068 W CN2022130068 W CN 2022130068W WO 2024092787 A1 WO2024092787 A1 WO 2024092787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery pack
- gas
- concentration
- gas source
- preset condition
- Prior art date
Links
- 238000012360 testing method Methods 0.000 title abstract description 39
- 238000010438 heat treatment Methods 0.000 claims abstract description 41
- 230000004044 response Effects 0.000 claims abstract description 22
- 238000007789 sealing Methods 0.000 claims abstract description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 75
- 238000001514 detection method Methods 0.000 claims description 47
- 235000011089 carbon dioxide Nutrition 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 28
- 230000008859 change Effects 0.000 claims description 19
- 238000004590 computer program Methods 0.000 claims description 12
- 239000000523 sample Substances 0.000 claims description 10
- 238000004891 communication Methods 0.000 claims description 6
- 239000007789 gas Substances 0.000 description 95
- 229910002092 carbon dioxide Inorganic materials 0.000 description 23
- 239000001569 carbon dioxide Substances 0.000 description 23
- 238000010586 diagram Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 238000000859 sublimation Methods 0.000 description 5
- 230000008022 sublimation Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000033764 rhythmic process Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/20—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
Definitions
- the present disclosure relates to the technical field of battery testing, and in particular to a method, device, system and battery pack for detecting air tightness of a battery pack.
- the power battery pack (Battery Pack) is the source of power for new energy vehicles, and its sealing is crucial to the performance and safety of new energy vehicles.
- the "GB/T 4208-2017 Shell Protection Level (IP Code)" managed by the National Electrical Safety Standardization Technical Committee has made specific requirements for the test standards of the shell protection level of the battery pack of new energy vehicles. Using a fast, efficient and safe method to detect the sealing of the battery pack has become a more important link.
- the present disclosure aims to solve at least one of the technical problems existing in the background technology.
- one object of the present disclosure is to provide a method, device, system and battery pack for detecting air tightness of a battery pack.
- An embodiment of the first aspect of the present disclosure provides a method for detecting the air tightness of a battery pack, the method comprising the following steps: placing a gas source device in the battery pack; sealing the battery pack; in response to meeting a preset condition, detecting the concentration of the gas source gas in the battery pack to determine whether the battery pack meets the air tightness standard; wherein the gas source device is used to release the gas source gas; the preset condition includes placing the battery pack for a first preset time period.
- the step of detecting the concentration of the gas source gas in the battery pack in response to meeting the preset conditions to determine whether the battery pack meets the air-tightness standard includes the following sub-steps: in response to meeting the preset conditions, recording the time when the gas source gas in the battery pack reaches the maximum concentration; after a second preset time has passed from the time of the maximum concentration, detecting the first gas source gas concentration in the battery pack, and determining whether the battery pack meets the air-tightness standard based on the first gas source gas concentration.
- the step of detecting the concentration of the gas source gas in the battery pack in response to meeting the preset conditions and determining whether the battery pack meets the air-tightness standard includes the following sub-steps: determining the rate of change of the concentration of the gas source gas in the battery pack in response to meeting the preset conditions; and determining whether the battery pack meets the air-tightness standard based on the rate of change of the concentration of the gas source gas.
- the step of determining the rate of change of the concentration of the aforementioned gas source gas in the aforementioned battery pack in response to meeting the preset conditions includes the following sub-steps: in response to meeting the preset conditions, detecting the second gas source gas concentration in the aforementioned battery pack; after a second preset time period, detecting the third gas source gas concentration in the aforementioned battery pack; and determining the rate of change of the aforementioned gas source gas in the aforementioned battery pack based on the aforementioned second gas source gas concentration and the aforementioned third gas source gas concentration.
- the step of determining the rate of change of the concentration of the aforementioned gas source gas in the aforementioned battery pack in response to meeting the preset conditions includes the following sub-steps: in response to meeting the preset conditions, recording the maximum concentration reached by the gas source gas in the aforementioned battery pack; detecting the fourth gas source gas concentration in the aforementioned battery pack after a second preset time has passed since the aforementioned maximum concentration was reached; and determining the rate of change of the concentration of the aforementioned gas source gas in the battery pack based on the aforementioned maximum concentration and the aforementioned fourth gas source gas concentration.
- the gas source device includes dry ice.
- the aforementioned preset conditions also include: heating the aforementioned air source device.
- the second preset duration is greater than 2 hours.
- An embodiment of the second aspect of the present disclosure provides an airtightness detection device for a battery pack, comprising: a first module, which places an air source device in the battery pack; a second module, which seals the aforementioned battery pack; a third module, which detects the concentration of the air source gas in the battery pack in response to meeting a preset condition, and determines whether the aforementioned battery pack meets the airtightness standard; wherein the aforementioned air source device is used to release the aforementioned air source gas; the aforementioned preset condition includes placing the aforementioned battery pack for a first preset time period.
- An embodiment of the third aspect of the present disclosure provides a sealing head for airtightness detection of a battery pack, comprising: an outer shell; a sealing body, which is arranged in the outer shell and covers an explosion-proof valve of the battery pack, wherein the sealing body is provided with a connecting hole; a detection member, at least a part of which is arranged in the outer shell, wherein the detection member includes a main body and a probe part, the probe part is provided with a gas sensor for detecting gas source gas, the probe part is configured to protrude from the main body and pass through the connecting hole; the detection member also includes a processor and a memory, the memory stores a computer program, and when the computer program is executed by the processor, the processor implements the steps of the method of the embodiment of the first aspect of the present disclosure.
- the embodiment of the fourth aspect of the present disclosure provides a gas tightness detection system for a battery pack, which includes: a gas source device, which is used to release gas source gas; a first heating component, which is used to heat the aforementioned battery pack; a second heating component, which is used to heat the aforementioned gas source device; a gas concentration sensor, which is used to detect the concentration of the aforementioned gas source gas; wherein the processor is electrically coupled to the aforementioned first heating component, the aforementioned second heating component and the aforementioned gas concentration sensor.
- the aforementioned battery management system also includes a memory, and the aforementioned memory stores a computer program. When the aforementioned computer program is executed by the aforementioned processor, the steps of the method of the embodiment of the first aspect of the present disclosure are performed.
- An embodiment of the fifth aspect of the present disclosure provides a battery pack, which includes the airtightness detection device of the embodiment of the second aspect of the present disclosure or the airtightness detection system of the embodiment of the third aspect.
- FIG1 is a schematic structural diagram of a vehicle according to some embodiments of the present disclosure.
- FIG2 is a schematic diagram of an exploded structure of a battery according to some embodiments of the present disclosure.
- FIG3 is a flow chart of an airtightness detection method according to some embodiments of the present disclosure.
- FIG4 is a circuit block diagram of an airtightness detection system provided in some embodiments of the present disclosure.
- FIG5 is a graph showing the change of the concentration of a gas source over time provided in some embodiments of the present disclosure.
- FIG6 is a graph showing the change of the concentration of a gas source over time according to some embodiments of the present disclosure.
- FIG. 7 is a graph showing the change of the concentration of a gas source over time according to some embodiments of the present disclosure.
- FIG8 is a circuit block diagram of an airtightness detection system provided in some embodiments of the present disclosure.
- FIG9 is a hardware schematic diagram of an airtightness detection head provided in some embodiments of the present disclosure.
- FIG10 is a circuit block diagram of an airtightness detection seal head provided in some embodiments of the present disclosure.
- the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
- a and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone.
- the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
- multiple refers to more than two (including two).
- multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
- orientations or positional relationships indicated by technical terms such as “center”, “longitudinal”, “lateral”, “length”, “width”, “thickness”, “up”, “down”, “front”, “back”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom”, “inside”, “outside”, “clockwise”, “counterclockwise”, “axial”, “radial”, and “circumferential” are based on the orientations or positional relationships shown in the accompanying drawings, which are only for the convenience of describing the embodiments of the present disclosure and simplifying the description, and do not indicate or imply that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be understood as limiting the embodiments of the present disclosure.
- Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but also widely used in electric vehicles such as electric bicycles, electric motorcycles, electric vehicles, as well as military equipment and aerospace and other fields. With the continuous expansion of the application field of power batteries, the market demand is also constantly expanding.
- the current production line mainly uses positive pressure testing or negative pressure testing to test the waterproof and airtightness of battery packs.
- an air tightness test tooling that is compatible with the explosion-proof valve or the balancing valve is made, and the air tightness test tooling is installed on the explosion-proof valve or the balancing valve.
- the explosion-proof valve or the balancing valve is used to press the gas into the battery pack or suck the gas out of the battery pack, so that the inside of the battery pack presents a short-term positive pressure or negative pressure as a whole, and by detecting the degree of pressure difference attenuation in the battery pack over a period of time, it is judged whether the air tightness performance of the battery pack meets the requirements.
- the gas passes through the breathable membrane of the explosion-proof valve or the balancing valve during the test, it is blocked by the breathable membrane, and the air permeability is significantly reduced, resulting in a long test time, affecting the production rhythm.
- the applicant has provided a method, device and system for detecting the air tightness of a battery pack, in which an air source device is disposed inside the battery pack box.
- the battery cells disclosed in the embodiments of the present disclosure can be used, but not limited to, in electrical devices such as vehicles, ships or aircraft.
- a power supply system comprising the battery cells and batteries disclosed in the present disclosure can be used to form the electrical device.
- the disclosed embodiment provides a thermal management control method and device for a vehicle battery, wherein the vehicle includes but is not limited to a passenger car, a commercial vehicle, an engineering vehicle, an automated guided vehicle (AGV), etc.
- vehicle battery may be a non-replaceable battery that supports charging of the entire vehicle, or a replaceable battery that supports charging after being separated from the vehicle body.
- FIG. 1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present disclosure.
- Vehicle 1000 may be a pure electric vehicle, a hybrid electric vehicle, or an extended-range vehicle, etc. (hereinafter referred to as an electric vehicle).
- a battery pack 100 is disposed inside vehicle 1000, and battery pack 100 may be disposed at the bottom, head, or tail of vehicle 1000. Battery pack 100 may be used to power vehicle 1000, for example, battery pack 100 may be used as an operating power source for vehicle 1000.
- the battery pack 100 can not only serve as the operating power source of the vehicle 1000, but also serve as the driving power source of the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
- the battery pack 100 includes a box body 10 and a battery cell 20, and the battery cell 20 is contained in the box body 10.
- the box body 10 is used to provide a storage space for the battery cell 20, and the box body 10 can adopt a variety of structures.
- the box body 10 may include a first part 11 and a second part 12, and the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a storage space for accommodating the battery cell 20.
- the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure, and the first part 11 covers the open side of the second part 12, so that the first part 11 and the second part 12 jointly define a storage space; the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 covers the open side of the second part 12.
- the box body 10 formed by the first part 11 and the second part 12 may be in a variety of shapes, such as a cylinder, a cuboid, a blade, etc.
- the box body 11 is provided with an explosion-proof valve 11 a , and the explosion-proof valve 11 a has a waterproof and breathable membrane inside for allowing gas to pass through.
- the battery pack 100 there may be multiple battery cells 20, and the multiple battery cells 20 may be connected in series, in parallel, or in a mixed connection.
- the mixed connection means that the multiple battery cells 20 are both connected in series and in parallel.
- the multiple battery cells 20 may be directly connected in series, in parallel, or in a mixed connection, and then the whole formed by the multiple battery cells 20 is accommodated in the box 10; of course, the battery pack 100 may also be a battery module formed by connecting multiple battery cells 20 in series, in parallel, or in a mixed connection, and then the multiple battery modules are connected in series, in parallel, or in a mixed connection to form a whole, and accommodated in the box 10.
- the battery pack 100 may also include other structures.
- the battery pack 100 may also include a confluence component for realizing electrical connection between the multiple battery cells 20.
- Each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery, or a magnesium-ion battery, but is not limited thereto.
- the battery cell 20 may be cylindrical, flat, rectangular, or in other shapes.
- the tester first connects the vacuum pump's exhaust pipe to the explosion-proof valve 11a of the box 11, and pumps the inside of the box 11 into a negative pressure state through the explosion-proof valve 11a.
- the pressure inside the box 11 reaches -10000Pa
- the box 11 is stopped from being evacuated, and the pressure inside the box 11 is tested again after 10 minutes of placement, and the pressure changes before and after placement are compared to determine whether the battery pack 100 meets the airtightness requirements.
- the air permeability of the waterproof breathable membrane is generally small, the air extraction speed is slow, and the detection efficiency is low. If the power of the vacuum pump is increased and a higher negative pressure is used to accelerate the air extraction, the waterproof breathable membrane may rupture, resulting in damage to the explosion-proof valve 11a. The detection speed is difficult to meet the requirements of industrial production.
- the pressure it can withstand is relatively small, and it can usually only withstand an airtight test pressure of more than ten kPa. During the test, the vacuum pump cannot be separated from the battery pack. In order not to affect the production rhythm, the airtightness test cycle is usually set to 3-15 minutes.
- the air pressure in the battery pack changes little, and is easily affected by environmental factors such as temperature and humidity, and cannot meet the requirements of high-precision airtightness detection.
- the vacuum pump's exhaust pipe needs to be repeatedly plugged and unplugged from the explosion-proof valve interface during long-term testing, and the pipe mouth is easily worn and deformed, resulting in large errors in the test results.
- Some embodiments of the present disclosure provide a method for detecting the air tightness of a battery pack.
- the battery pack of this embodiment can refer to FIG. 2 .
- the detection method includes the following steps: inserting an air source device into the box 10 of the battery pack 100; sealing the box 10; and when the preset conditions are met, detecting the concentration of the air source gas in the box 10 to determine whether the battery pack 100 meets the air tightness standard.
- the air source device is used to release the air source gas, and the preset conditions include placing the battery pack 100 for a preset time.
- the gas source device is dry ice, or a container containing dry ice. Dry ice sublimates into carbon dioxide gas at normal temperature and pressure. By detecting the change in the concentration of carbon dioxide in the battery pack 100, it can be determined whether the air tightness of the battery pack 100 meets the standard.
- Figure 5 is a graph of the change in the concentration of the gas source gas over time provided in some embodiments of the present disclosure. Referring to Figure 5, since the space in the battery pack 100 is known, a preset weight of dry ice is placed, and after a longer placement period t1 (for example, 10 hours), the carbon dioxide concentration C1 in the box is detected by the carbon dioxide concentration sensor built into the box 10.
- the battery pack 100 meets the air tightness standard; if the carbon dioxide concentration C1 is lower than the preset concentration value, the battery pack 100 does not meet the air tightness standard.
- the preset concentration value can be obtained by the tester through multiple experiments.
- the "placement for a preset period of time" mentioned in the present disclosure should be understood as maintaining the airtightness of the box 10 for a period of time.
- the battery pack can be subjected to high temperature and high pressure testing, electrical function testing, transportation and storage, etc.
- the natural sublimation of dry ice can be waited for by taking advantage of the fact that the sublimation point of dry ice is higher than room temperature.
- the dry ice in order to speed up the sublimation rate of dry ice, the dry ice can also be heated by a heating element.
- the order of the tests can also be adjusted, and the dry ice can also be heated by a heating element such as a thermistor. The specific details will be described in detail in subsequent embodiments.
- test results of the gas concentration detection method are more accurate than those of the pressure difference method. After being placed for a long time, the gas concentration changes greatly, and the test accuracy is higher. In addition, after the battery pack is sealed, it can still be used for subsequent functional testing and storage and transportation, which improves the production cycle.
- Some embodiments of the present disclosure also provide a method for detecting the air tightness of a battery pack.
- the battery pack of this embodiment can refer to FIG. 2.
- the box 10 of the battery pack 100 is equipped with a battery cell 20 and an air tightness detection system composed of a battery management system (Battery Management System, hereinafter referred to as BMS), an air source device and other peripheral circuits (not shown in the figure).
- BMS Battery Management System
- the air source device is dry ice.
- the battery pack 100 includes a box body 10 and a battery cell 20, and the battery cell 20 is accommodated in the box body 10.
- the box body 10 is used to provide a storage space for the battery cell 20, and the box body 10 includes a first part 11 and a second part 12.
- the first part 11 and the second part 12 cover each other, and the explosion-proof valve 11a is sealed with a head or the like to achieve the sealing of the box body 10.
- a space for accommodating the air source device is formed in the box body 10.
- a cavity is formed between the battery cell 20 and the inner wall of the box body 10, and the shape of the cavity corresponds to the air source device, so as to prevent the air source device from moving in the box body, forming local condensation, and damaging the internal structure of the battery pack.
- a buckle for fixing the air source device is provided on the first part 11 and/or the second part 12.
- a groove for accommodating the air source device is provided on the first part 11 and/or the second part 12.
- the airtightness detection system is arranged inside the battery pack 100 and is composed of peripheral circuits such as BMS, temperature and humidity sensor (temperature sensor), carbon dioxide concentration sensor, driving module for driving high-voltage relay, heater for heating battery cells, and heating unit for heating gas source device.
- the aforementioned heater can be composed of a positive temperature coefficient heating resistor element or a silicone heating film, or a charging and discharging circuit that uses DC-DC charging and discharging between multiple strings of battery cells to heat.
- the aforementioned heating unit is a small heating device independent of the heater and is used to heat the gas source device.
- the airtightness detection system is electrically coupled to a host computer arranged outside the battery pack 100 through the BMS.
- the BMS receives the airtightness detection command from the host computer and sends the rate of change of the carbon dioxide concentration to the host computer.
- the host computer can be a computer, a programmable logic controller (PLC), etc., and determines whether the airtightness meets the requirements through communication with the BMS.
- PLC programmable logic controller
- a) Assembly stage Place the gas source device in the battery pack. Specifically, before installing the upper cover of the battery pack, the tester uses a robotic arm to take out the gas source device from the cold storage room, and places the gas source device in the cavity of the battery pack 100, and then plugs the low-voltage wiring harness of the heating unit into the main control box of the BMS, and finally installs the upper cover and seals the battery pack.
- a dry ice block is used as the gas source device, and the dry ice block is attached with a heating unit (for example, a PTC ceramic heating sheet) for heating the dry ice.
- the heating unit is connected to the BMS through a low-voltage wiring harness, and the heating of the dry ice is started and stopped according to the control signal sent by the BMS.
- the dry ice is placed in the middle of the battery pack 100 to ensure that the carbon dioxide concentration distribution in the battery pack 100 is uniform.
- the dry ice can also be placed directly on the heater for heating the battery cell 20 or the battery cell 20. After the battery pack 100 is sealed, the dry ice in the battery pack 100 is heated by the heating unit. By heating the dry ice, not only the speed of dry ice sublimation is increased, but also the dry ice is prevented from absorbing a large amount of heat during sublimation and damaging the internal structure of the battery pack.
- the dry ice can be heated using a heater for heating battery cells.
- the BMS detects the temperature of each battery cell 20 through a temperature sensor and controls the heater to avoid the local temperature of the battery cell 20 close to the dry ice being too low, accelerating the aging of some battery cells 20 and affecting the consistency of the performance of the battery cell 20.
- other test items such as shockproof tests can be performed on the battery pack.
- the wear of the head of the vacuum pump tooling due to repeated plugging and unplugging and the problem of the explosion-proof valve not closing are avoided.
- the robotic arm fixes the dry ice to a fixed groove or fixed bracket in the battery pack 100 when placing the dry ice.
- the tester connects the BMS of the battery pack through an external device (host computer), and starts the heating unit of the gas source device through the BMS to cause the dry ice to sublime quickly.
- the carbon dioxide concentration in the battery pack 100 first increases significantly at t0 until it reaches the peak concentration C0, and the change in carbon dioxide concentration corresponding to the time of this stage is recorded.
- the vertical axis represents the concentration, the unit is ppm (Parts Per Million), that is, the volume of the gas source gas (carbon dioxide) contained in one million volumes of air, and the horizontal axis represents time, the unit is min (minute).
- the gas source gas concentration inside the battery pack is detected through the carbon dioxide sensor connected to the BMS, and the first time t1 and the first concentration C1 are recorded; the battery pack is then placed for a second preset time (the placement time is ⁇ t), and finally the pack is tested for concentration, and the second time t2 and the second concentration C2 are recorded.
- the concentration difference between the first concentration and the second concentration ⁇ C C1-C2.
- the placement time of ⁇ t is greater than 2 hours, thereby avoiding the problem of inaccurate airtightness test results caused by excessive test time.
- the placement time of ⁇ t is between 30 minutes and 1 hour, thereby speeding up the detection.
- the leakage rate of the battery pack 100 can be calculated based on the difference between the peak value of the measured carbon dioxide concentration and the measured carbon dioxide concentration after the placement time ⁇ t.
- the air tightness of the battery pack can be detected more accurately, meeting the requirements of higher precision sealing test grading. It also overcomes the shortcomings of the positive pressure method and the negative pressure method, which are easily caused by improper installation of the plug, repeated plugging and pulling and wear of the plug seal, and other factors that cause inaccurate test results. It can also reduce the overall air tightness detection time.
- Some embodiments of the present disclosure also provide a seal for detecting the air tightness of a battery pack.
- Figure 9 is a hardware schematic diagram of the seal for detecting air tightness
- Figure 10 is a circuit block diagram of the seal for detecting air tightness.
- the seal for detecting air tightness is used to be installed on the explosion-proof valve or the balancing valve of the battery pack, and provides air tightness for the battery pack while judging based on the concentration of the gas source gas in the battery pack.
- the seal includes: an outer shell 81 for connecting to the battery pack case, a sealing body 82 and a detection member 83 arranged in the outer shell.
- the sealing body 82 is used to be inserted into the explosion-proof valve hole (for example, 11a of Figure 2) to provide sealing for the explosion-proof valve hole.
- the sealing body 82 is usually made of a material with a certain ductility such as rubber.
- a connecting hole 82a is provided on the sealing body 82; at least a part of the detection member 83 is arranged in the outer shell, and the detection member includes a probe part 83a and a main body 83b.
- the probe part 83a is provided with a gas sensor for detecting the gas source gas.
- the probe part 83a is configured to protrude from the main body 83b and pass through the connecting hole 82a, so as to detect the carbon dioxide concentration in the explosion-proof valve hole 11a while ensuring the airtightness of the sealing body 83.
- the detection member 83 also includes a processor and a memory, and the memory stores a computer program. When the computer program is executed by the processor, the processor implements the steps of the method of the embodiment of the present disclosure.
- the detection member 83 also includes a display module such as an LED digital tube, which is used to display the result information of the carbon dioxide concentration or whether the airtightness test is qualified.
- the outer shell 81 is provided with a through hole at the display module so that the tester can see the above result information.
- the detection member 83 also includes a wireless communication module, and the airtightness detection head transmits the carbon dioxide concentration information to the upper computer through the wireless communication module, and the processor of the upper computer determines whether the battery pack corresponding to the head meets the airtightness requirements.
- the wireless communication module can be a RFID (Radio Frequency Identification) transmitter module.
- Some embodiments of the present disclosure also provide an air tightness detection device for a battery pack, comprising: a first module, which places an air source device in the battery pack; a second module, which seals the aforementioned battery pack; a third module, which detects the concentration of the air source gas in the battery pack in response to meeting a preset condition, and determines whether the aforementioned battery pack meets the air tightness standard; wherein the aforementioned air source device is used to release the aforementioned air source gas; the aforementioned preset condition includes placing the aforementioned battery pack for a first preset time period.
- the air tightness detection system includes: a gas source device for releasing carbon dioxide; a heating unit for heating a battery pack heater for heating carbon dioxide, a gas concentration sensor for detecting the concentration of the aforementioned gas source gas, and a BMS.
- the BMS includes a processor and a memory.
- the processor is electrically coupled to the aforementioned first heating component, the aforementioned second heating component, and the aforementioned gas concentration sensor.
- the aforementioned memory stores a computer program, and when the aforementioned computer program is executed by the aforementioned processor, the steps of the method of other embodiments of the present disclosure.
- Some embodiments of the present disclosure further provide a battery pack, which includes the airtightness detection device of an embodiment of the present disclosure or the airtightness detection system of an embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
提供一种电池包(100)的气密性检测方法、装置、系统及电池包(100)。检测方法包括:在电池包(100)内放置气源装置;密封电池包箱体(10);响应于符合预设条件,检测电池包(100)内的气源气体浓度,确定电池包(100)是否满足气密性标准。气密性检测系统包括处理器、气源装置、气体传感器、用于加热电池单体(20)的第一加热组件和用于加热气源气体的第二加热组件。电池管理系统通过检测气源气体的浓度,可以得到更准确的气密性结果。
Description
本公开涉及电池测试技术领域,尤其涉及一种电池包的气密性检测方法、装置、系统及电池包。
近年来,随着新能源汽车的高速发展,电动汽车的安全性也日益受到人们的重视。动力电池包(Battery
Pack)是新能源汽车的动力之源,其密封性对新能源汽车的性能和安全至关重要。由全国电气安全标准化技术委员会归口的《GB/T
4208-2017外壳防护等级(IP 代码)》中对新能源汽车的电池包外壳防护等级的测试标准做出了具体要求,采用快速、高效且安全的方法来检测电池包的密封性成为了一项更为重要的环节。
本公开旨在至少解决背景技术中存在的技术问题之一。为此,本公开的一个目的在于提供一种电池包的气密性检测方法、装置、系统及电池包。
本公开第一方面的实施例提供一种电池包的气密性检测方法,该方法包括以下步骤:在电池包内放置气源装置;密封前述电池包;响应于符合预设条件,检测电池包内的气源气体浓度,确定前述电池包是否满足气密性标准;其中,前述气源装置用于释放前述气源气体;前述预设条件包括将电池包放置第一预设时长。
在本公开一个或多个实施例中,前述响应于符合预设条件,检测电池包内的气源气体浓度,确定前述电池包是否满足气密性标准的步骤包括以下子步骤:响应于符合预设条件,记录前述电池包体内的前述气源气体达到最大浓度的时间;从前述最大浓度的时间起经过第二预设时长后,检测前述电池包内的第一气源气体浓度,根据前述第一气源气体浓度,确定前述电池包是否满足气密性标准。
在本公开一个或多个实施例中,前述响应于符合预设条件,检测电池包内的气源气体浓度,确定前述电池包是否满足气密性标准的步骤,包括以下子步骤:响应于符合预设条件,确定前述电池包内的前述气源气体的浓度变化率;根据前述气源气体的前述浓度变化率,确定前述电池包是否满足气密性标准。
在本公开一个或多个实施例中,前述响应于符合预设条件,确定前述电池包内的前述气源气体浓度的变化率的步骤,包括以下子步骤:响应于符合预设条件,检测前述电池包内的第二气源气体浓度;经过第二预设时长后,检测前述电池包内的第三气源气体浓度;根据前述第二气源气体浓度和前述第三气源气体浓度,确定前述电池包内的前述气源气体的前述变化率。
在本公开一个或多个实施例中,前述响应于符合预设条件,确定前述电池包内的前述气源气体浓度的变化率的步骤,包括以下子步骤:响应于符合预设条件,记录前述电池包体内气源气体达到的最大浓度;从到达前述最大浓度起经过第二预设时长后,检测前述电池包内第四气源气体浓度;根据前述最大浓度和前述第四气源气体浓度,确定电池包内的前述气源气体的浓度变化率。
在本公开一个或多个实施例中,前述气源装置包括干冰。
在本公开一个或多个实施例中,前述预设条件还包括:加热前述气源装置。
在本公开一个或多个实施例中,前述第二预设时长大于2小时。
本公开第二方面的实施例,提供了一种电池包的气密性检测装置,包括:第一模块,其在电池包内放置气源装置;第二模块,其密封前述电池包;第三模块,其响应于符合预设条件,检测电池包内的气源气体浓度,确定前述电池包是否满足气密性标准;其中,前述气源装置用于释放前述气源气体;前述预设条件包括将前述电池包放置第一预设时长。
本公开第三方面的实施例,提供了一种电池包的气密性检测用封头,包括:外壳体;密封体,其设置在外壳体内,并罩设电池包的防爆阀,其中前述密封体上设有连通孔;检测件,其至少一部分设置在外壳体内,其中前述检测件包括主体部和探头部,前述探头部设有用于检测气源气体的气体传感器,前述探头部被配置为突出于主体部,并穿过前述连通孔;检测件还包括处理器和存储器,前述存储器存储有计算机程序,前述计算机程序在由前述处理器执行时,使得前述处理器实现本公开第一方面实施例的方法的步骤。
本公开第四方面的实施例,提供了一种电池包的气密性检测系统,其包括:气源装置,其用于释放气源气体;第一加热组件,其用于加热前述电池包;第二加热组件,其用于加热前述气源装置;气体浓度传感器,其用于检测前述气源气体的浓度;其中,处理器与前述第一加热组件、前述第二加热组件和前述气体浓度传感器电耦合。前述电池管理系统还包括存储器,前述存储器存储有计算机程序,前述计算机程序在由前述处理器执行时,本公开第一方面实施例的方法的步骤。
本公开第五方面的实施例,提供了一种电池包,该电池包包括本公开第二方面实施例的气密性检测装置或者第三方面实施例的气密性检测系统。
上述说明仅是本公开技术方案的概述,为了能够更清楚了解本公开的技术手段,而可依照说明书的内容予以实施,并且为了让本公开的上述和其它目的、特征和优点能够更明显易懂,以下特举本公开的具体实施方式。
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本公开公开的一些实施方式,而不应将其视为是对本公开范围的限制。
图1为本公开一些实施例的车辆的结构示意图;
图2为本公开一些实施例的电池的分解结构示意图;
图3为本公开一些实施例的气密性检测方法的流程图;
图4为本公开一些实施例提供的气密性检测系统的电路框图;
图5为本公开一些实施例提供的气源气体浓度随时间变化的曲线图;
图6为本公开一些实施例提供的气源气体浓度随时间变化的曲线图;
图7为本公开一些实施例提供的气源气体浓度随时间变化的曲线图;
图8为本公开一些实施例提供的气密性检测系统的电路框图;
图9为本公开一些实施例提供的气密性检测封头的硬件示意图;
图10为本公开一些实施例提供的气密性检测封头的电路框图;
附图标记说明:
1000 车辆;100 电池包;200 控制器;300 马达;
10 箱体;11 第一部分;11a 防爆阀孔,12 第二部分;20 电池单体;
80 封头;81 外壳体;82 密封体;82a 连通孔;83检测组件;83a 检测主体;83b 探头部。
下面将结合附图对本公开技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本公开的技术方案,因此只作为示例,而不能以此来限制本公开的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本公开;本公开的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本公开实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本公开实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本公开的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本公开实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本公开实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本公开实施例的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为根据附图所示的方位或位置关系,仅是为了便于描述本公开实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开实施例的限制。
在本公开实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动车辆等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
在工业生产环境下对电池包进行气密性检测中,由于采用淋水法耗时耗力,生产效率低下,难以适应大规模的生产线要求。因此,目前生产线上主要通过正压测试或负压测试对电池包进行防水气密性的检测。例如,制作与防爆阀或平衡阀相适配的气密性检测工装,将气密性检测工装安装到防爆阀或平衡阀上,利用防爆阀或平衡阀的将气体压入电池包内或者从电池包内将气体吸出,使电池包内部整体呈现短时间的正压或负压,并通过检测一段时间内电池包内的压差衰减程度,来判断电池包的气密性性能是否满足要求。然而,由于检测时气体从防爆阀或平衡阀的透气膜经过,受到透气膜的阻隔,透气量明显降低,导致测试时间过长,影响生产节拍。
根据以上考虑,申请人提供出了一种电池包的气密性检测方法、装置和系统,将气源装置设在电池包箱体的内部。
本公开实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本公开公开的电池单体、电池等组成该用电装置的电源系统。
本公开实施例提供一种车辆电池的热管理控制方法和装置,车辆包括但不限于乘用车、商用车、工程车辆、自动导航车(Automated
Guided Vehicle,简称AGV)等等。其中,车辆电池可以是支持整车充电的不可更换的电池,也可以是支持与车体分离后再充电的可更换的电池。
以下实施例为了方便说明,以本公开一实施例的车辆1000为例进行说明。
请参照图1,图1为本公开一些实施例提供的车辆的结构示意图。车辆1000可以是纯电动车辆、混合动力汽车或增程式汽车等(以下均简称为电动车辆)。车辆1000的内部设置有电池包100,电池包100可以设置在车辆1000的底部或头部或尾部。电池包100可以用于车辆1000的供电,例如,电池包100可以作为车辆1000的操作电源。
在本公开一些实施例中,电池包100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本公开一些实施例提供的电池的爆炸图。电池包100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体、刀片状等。箱体11上设有防爆阀11a,防爆阀11a内具有能够让气体通过的防水透气膜。
在电池包100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池包100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池包100还可以包括其他结构,例如,该电池包100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。
根据本公开人已知的气密性检测方案,检测人员首先将真空泵的抽气管连接到箱体11的防爆阀11a处,通过防爆阀11a将箱体11内部抽成负压状态。当检测到箱体11内的压强达到-10000Pa时停止对箱体11抽气,放置10分钟后再次检测箱体11内的压强,比较放置前后的压强变化,由此判断电池包100是否满足气密性的要求。
但是,一方面防水透气膜的透气量一般较小,抽气速度缓慢,检测效率低下。假如提高真空泵的功率,用较高的负压加速抽气,则可能会造成防水透气膜破裂,导致防爆阀11a的损坏。检测的速度难以满足工业化生产的要求。另一方面,由于箱体11本身的材质较薄,能够承受的压强较小,通常只能承受十余kPa的气密测试压力。在测试过程中真空泵不能脱离电池包,为了不影响生产节拍,气密性测试周期通常设为3-15分钟。在该测试期间内电池包内的气压变化较小,且易受温湿度等环境因素的影响,无法满足高精度的气密性检测要求。此外,真空泵的抽气管在长期测试中需要经过反复插拔防爆阀接口,管口容易磨损变形,导致测试结果误差大。
本公开的一些实施例提供了一种电池包的气密性检测方法。本实施例的电池包可以参照图2。
参照图3,本检测方法包括以下步骤:在电池包100的箱体10内置入气源装置;密封该箱体10;当符合预设条件时,检测箱体10内的气源气体的浓度,确定电池包100是否满足气密性标准。其中,气源装置用于释放气源气体,预设条件包括将电池包100放置一预设时长。
可选地,气源装置是干冰,或者容纳有干冰的容器。干冰在常温常压下升华成二氧化碳气体,通过检测电池包100内二氧化碳的浓度变化,即可确定电池包100的气密性是否符合标准。图5为本公开一些实施例提供的气源气体浓度随时间变化的曲线图。参照图5,由于电池包100内的空间是已知的,放入预设重量的干冰,经过一个较长的放置周期t1(例如,10小时)后,再通过内置在箱体10内的二氧化碳浓度传感器检测箱内的二氧化碳浓度C1。假如二氧化碳浓度C1高于或等于预设浓度值,则电池包100满足气密性标准;假如二氧化碳浓度C1低于预设浓度值,则电池包100不满足气密性标准。该预设浓度值可以由测试人员多次实验得到。
应当注意的是,本公开中提及的“放置一预设时长”应当被理解为维持箱体10的气密性一段时长。在该放置期间可以对电池包进行高温高压测试、电气功能测试、运输和储存等。在一些实施例中,可以借助干冰的升华点高于室温的特性,等待干冰的自然升华。在又一些实施例中,为了加快干冰的升华速度,也可以利用加热元件对干冰进行加热。在又一些实施例中,也可以调整测试的顺序,也可以利用热敏电阻等加热元件对干冰进行加热。具体细节将在后续实施例中进行详细说明。
通过检测气体浓度比压差法的测试结果更加准确。经过长时间放置后,气体浓度的变化大,测试精度更高。此外,电池包在被密封后,依然可以用于执行后续的功能测试和储存运输,提高了生产节拍。
本公开的一些实施例还提供了一种电池包的气密性检测方法。本实施例的电池包可以参照图2。该电池包100的箱体10内安装有电池单体20、以及由电池管理系统(Battery
Management System,以下简称BMS)、气源装置及其它周边电路(图中未示出)构成的气密性检测系统。在本实施例中,气源装置是干冰。
参照图2。电池包100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,并用封头等封住防爆阀11a,实现箱体10的密封。箱体10内形成容纳气源装置的空间。示例性的,电池单体20与箱体10内壁之间形成的空腔,空腔的形状对应气源装置,防止气源装置在箱体内移动,形成局部凝水,损坏电池包的内部结构。在一些实施例中,第一部分11和/或第二部分12上设有用于固定气源装置的卡扣,在又一些实施例中,第一部分11和/或第二部分12上设容纳气源装置的凹槽。
请参见附图4,气密性检测系统设在电池包100的内部,是由BMS、温湿度传感器(温度传感器)、二氧化碳浓度传感器、用于驱动高压继电器的驱动模块、用于加热电池单体的加热器、用于加热气源装置的发热单元等周边电路构成。前述加热器可以是由正温度系数加热电阻元件或者硅胶加热膜构成,也可以是利用多串电池单体之间彼此DC-DC充放电来加热的充放电电路。前述发热单元是独立于加热器的小型加热装置,用于为气源装置加热。在一些实施例中,气密性检测系统通过BMS与设置在电池包100外部的上位机电耦合。BMS接收来自上位机的气密性检测命令,并将二氧化碳浓度的变化率发送给上位机。在一些实施例中,上位机可以是计算机、可编程逻辑控制器(Programmable
Logic Controller,PLC)等,通过与BMS之间的通信,确定气密性是否符合要求。
a) 装配阶段:在电池包内放置气源装置。具体而言,在安装电池包的上盖之前,测试人员利用机械臂从冷藏室取出气源装置,并将气源装置放置在电池包100的空腔内,再将加热单元的低压线束插接至BMS的总控盒,最后进行上盖安装,并对电池包进行密封。示例性的,在本方案中利用干冰块作为气源装置,该干冰块附有用于加热干冰的发热单元(例如,PTC陶瓷发热片),该发热单元通过低压线束连接至BMS,并根据BMS发出的控制信号开始和停止对干冰的加热。在一些实施例中,干冰被放置在电池包100的中部,从而确保电池包100内的二氧化碳浓度分布是均匀的。在一些实施例中,也可以将干冰直接放在用于加热电池单体20的加热器或者电池单体20处。在完成对电池包100的密封后,利用发热单元对电池包100内的干冰进行加热。通过对干冰加热,不仅提高了干冰升华的速度,还避免了干冰在升华时吸收大量热量,损坏了电池包的内部结构。在又一些的实施例中,可以利用用于加热电池单体的加热器对干冰进行加热。BMS通过温度传感器检测各电池单体20的温度,控制加热器,从而避免靠近干冰的电池单体20局部温度过低,加速部分电池单体20的老化,影响电池单体20性能的一致性。在加热期间,可以对电池包执行如防震试验等其它测试项目。另外,避免了抽气机工装的封头因反复插拔造成磨损,与防爆阀不闭合的问题。在一些实施例中,为了防止干冰移动,机械臂在放置干冰时将干冰固定在电池包100内的固定槽或者固定支架上。
b) 电测阶段:测试员通过外部设备(上位机)连接电池包的BMS,通过BMS对启动气源装置的发热单元,促使干冰快速升华。请参见图6,电池包100内的二氧化碳浓度首先在t0显著提升直到达到峰值浓度C0,记录该阶段时间对应的二氧化碳浓度变化。在图6中,纵坐标表示浓度,单位是ppm(Parts
Per Million,百万分率),即一百万体积的空气中所含气源气体(二氧化碳)的体积数,横坐标代表时间,单位是min(Minute,分钟)。
c) 稳压阶段:在电测阶段完毕后,转移包体至放置区,让包体内浓度趋于稳定下降的过程。
d) 测试阶段:放置电池包100到达第一预设时长后,通过连接在BMS上的二氧化碳传感器对电池包体的内部进行气源气体浓度检测,记录此时的第一时间t1,第一浓度C1;再对电池包体进行放置第二预设时长(放置时长为△t),最后对包体进行浓度检测,记录此时的第二时间t2,第二浓度C2。第一浓度与第二浓度的浓度差△C=C1-C2。在一些实施例中,△t的放置时长大于2小时,由此可以避免测试时间过断导致的气密性检测结果不准确的问题。在又一些实施例中,△t的放置时长为30分钟到1小时之间,从而加快检测的速度。
e) 判定阶段:根据△C/△t=(C1-C2)/(t2-t1)计算电池包100泄露率。如果泄露率低于预设的标准,则判断该电池包体满足了气密性要求,即通过了气密性测试。否则,未通过气密性测试。
在又一些实施例中,可以根据测得的二氧化碳浓度的峰值和放置时长△t后测得二氧化碳浓度的差值来计算电池包100的泄露率。参见图7,BMS在加热干冰后,通过二氧化碳浓度传感器记录电池包100内二氧化碳浓度随时间变化的曲线,获得二氧化碳的浓度峰值C1和放置时长△t(第二预设时长)后的浓度C2。根据△C/△t=(C1-C2)/(t2-t1),即可计算得到电池包100泄露率。
由此,可以检测到更精确的电池包的气密性,满足更高精度的密封性测试分级要求。还克服了正压法和负压法容易受堵头安装不当、堵头密封件反复插拔磨损等因素造成的测试结果不准确的缺点。还可以降低总体的气密性检测时间。
本公开的一些实施例还提供了一种电池包的气密性检测用封头。参见图9和图10,图9是气密性检测封头的硬件示意图,图10是气密性检测封头的电路框图。气密性检测用封头用于安装到电池包的防爆阀或平衡阀,为电池包提供气密性的同时根据检测电池包内气源气体的浓度来判断。该封头包括:用于与电池包箱体连接的外壳体81,设置在外壳体内的密封体82和检测件83。其中,密封体82用于插入到防爆阀孔(例如,图2的11a),为防爆阀孔提供密封性。密封体82通常由橡胶等具有一定延展性的材质制成。在密封体82上设有连通孔82a;检测件83的至少一部分设置在外壳体内,检测件包括探头部83a和主体部83b,探头部83a设有用于检测气源气体的气体传感器,探头部83a被配置为突出于主体部83b,并穿过连通孔82a,从而在保证密封体83气密性的同时,检测防爆阀孔11a内的二氧化碳浓度。检测件83还包括处理器和存储器,存储器存储有计算机程序,计算机程序在由处理器执行时,使得处理器实现本公开实施例的方法的步骤。在一些实施例中,检测件83内还包括例如LED数码管等显示模块,用于显示二氧化碳浓度或者气密性测试是否合格的结果信息,外壳体81在显示模块处设有通孔,以便测试人员能够看到上述结果信息。在又一些实施例中,检测件83内还包括无线通信模块,气密性检测用封头通过无线通信模块向上位机传输二氧化碳浓度信息,由上位机的处理器确定该封头对应的电池包是否满足气密性的要求。示例性的,无线通信模块可以是RFID(Radio
Frequency Identification,射频识别)的发射模块。由此,可以在仓库存放阶段批量检测电池包的气密性。本堵头能满足更高测试精度的要求。
本公开的一些实施例还提供了一种电池包的气密性检测装置,包括:第一模块,其在电池包内放置气源装置;第二模块,其密封前述电池包;第三模块,其响应于符合预设条件,检测电池包内的气源气体浓度,确定前述电池包是否满足气密性标准;其中,前述气源装置用于释放前述气源气体;前述预设条件包括将前述电池包放置第一预设时长。
本公开的一些实施例还提供了一种电池包的气密性检测系统,参考图8,该气密性检测系统包括:用于释放二氧化碳的气源装置;用于加热电池包加热器,用于加热二氧化碳的发热单元,用于检测前述气源气体的浓度的气体浓度传感器,以及BMS。BMS包括处理器和存储器。处理器与前述第一加热组件、前述第二加热组件和前述气体浓度传感器电耦合。前述存储器存储有计算机程序,前述计算机程序在由前述处理器执行时,本公开其它实施例的方法的步骤。
本公开的一些实施例还提供了一种电池包,该电池包包括本公开实施例的气密性检测装置或者实施例的气密性检测系统。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围,其均应涵盖在本公开的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本公开并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。
Claims (13)
- 一种电池包的气密性检测方法,其特征在于,包括以下步骤:在电池包内放置气源装置;密封所述电池包;响应于符合预设条件,检测电池包内的气源气体浓度,确定所述电池包是否满足气密性标准;其中,所述气源装置用于释放所述气源气体;所述预设条件包括将电池包放置第一预设时长。
- 根据权利要求1所述的方法,其特征在于,所述响应于符合预设条件,检测电池包内的气源气体浓度,确定所述电池包是否满足气密性标准的步骤包括以下子步骤:响应于符合预设条件,记录所述电池包体内的所述气源气体达到最大浓度的时间;从所述最大浓度的时间起经过第二预设时长后,检测所述电池包内的第一气源气体浓度,根据所述第一气源气体浓度,确定所述电池包是否满足气密性标准。
- 根据权利要求1所述的方法,其特征在于,所述响应于符合预设条件,检测电池包内的气源气体浓度,确定所述电池包是否满足气密性标准的步骤,包括以下子步骤:响应于符合预设条件,确定所述电池包内的所述气源气体的浓度变化率;根据所述气源气体的所述浓度变化率,确定所述电池包是否满足气密性标准。
- 根据权利要求3所述的方法,其特征在于,所述响应于符合预设条件,确定所述电池包内的所述气源气体浓度的变化率的步骤,包括以下子步骤:响应于符合预设条件,检测所述电池包内的第二气源气体浓度;经过第二预设时长后,检测所述电池包内的第三气源气体浓度;根据所述第二气源气体浓度和所述第三气源气体浓度,确定所述电池包内的所述气源气体的所述变化率。
- 根据权利要求3所述的方法,其特征在于,所述响应于符合预设条件,确定所述电池包内的所述气源气体浓度的变化率的步骤,包括以下子步骤:响应于符合预设条件,记录所述电池包体内气源气体达到的最大浓度;从到达所述最大浓度起经过第二预设时长后,检测所述电池包内第四气源气体浓度;根据所述最大浓度和所述第四气源气体浓度,确定电池包内的所述气源气体的浓度变化率。
- 根据权利要求1至5所述的方法,其特征在于,所述气源装置包括干冰。
- 根据权利要求1至5所述的方法,其特征在于,所述预设条件还包括:加热所述气源装置。
- 根据权利要求1至5所述的方法,其特征在于,所述第二预设时长大于2小时。
- 一种电池包的气密性检测装置,其特征在于包括:第一模块,其在电池包内放置气源装置;第二模块,其密封所述电池包;第三模块,其响应于符合预设条件,检测电池包内的气源气体浓度,确定所述电池包是否满足气密性标准;其中,所述气源装置用于释放所述气源气体;所述预设条件包括将所述电池包放置第一预设时长。
- 一种电池包的气密性检测用封头,其特征在于,包括:外壳体;密封体,其设置在外壳体内,并罩设电池包的防爆阀,其中所述密封体上设有连通孔;检测件,其至少一部分设置在外壳体内,其中所述检测件包括主体部和探头部,所述探头部设有用于检测气源气体的气体传感器,所述探头部被配置为突出于主体部,并穿过所述连通孔;所述检测件包括处理器和存储器,所述存储器存储有计算机程序,所述计算机程序在由所述处理器执行时,使得所述处理器实现权利要求1至8中任意一项所述的方法的步骤。
- 一种电池包的气密性检测系统,其特征在于包括:气源装置,其用于释放气源气体;第一加热组件,其用于加热所述电池包;第二加热组件,其用于加热所述气源装置;气体浓度传感器,其用于检测所述气源气体的浓度;其中,处理器与所述第一加热组件、所述第二加热组件和所述气体浓度传感器电耦合。
- 根据权利要求11所述的气密性检测系统,其特征在于,所述电池管理系统还包括存储器,所述存储器存储有计算机程序,所述计算机程序在由所述处理器执行时,使得所述处理器实现权利要求1至8中任意一项所述的方法的步骤。
- 一种电池包,其特征在于包括权利要求9所述的气密性检测装置或者权利要求11所述的气密性检测系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/130068 WO2024092787A1 (zh) | 2022-11-04 | 2022-11-04 | 一种电池包的气密性检测方法、装置、系统及电池包 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/130068 WO2024092787A1 (zh) | 2022-11-04 | 2022-11-04 | 一种电池包的气密性检测方法、装置、系统及电池包 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024092787A1 true WO2024092787A1 (zh) | 2024-05-10 |
Family
ID=90929498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/130068 WO2024092787A1 (zh) | 2022-11-04 | 2022-11-04 | 一种电池包的气密性检测方法、装置、系统及电池包 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024092787A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118518289A (zh) * | 2024-06-04 | 2024-08-20 | 科尼普科技(江苏)有限公司 | 一种储能电池包气密性检测方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207233897U (zh) * | 2017-08-21 | 2018-04-13 | 宁德时代新能源科技股份有限公司 | 电池模组 |
CN211743333U (zh) * | 2020-02-13 | 2020-10-23 | 湖南弘毅科技有限公司 | 一种圆柱形电池 |
CN112542664A (zh) * | 2019-09-23 | 2021-03-23 | 湖南弘毅科技有限公司 | 方形锂电池及方形锂电池的气密检测方法 |
CN112577678A (zh) * | 2019-09-27 | 2021-03-30 | 湖南弘毅科技有限公司 | 软包锂电池的气密检测方法 |
US20210210817A1 (en) * | 2018-09-26 | 2021-07-08 | Dongguan Puwei waterproof and breathable membrane material Co., Ltd | Explosion-proof valve core, explosion-proof valve, and box body gas tightness detection clamp |
CN113267299A (zh) * | 2021-05-17 | 2021-08-17 | 中国第一汽车股份有限公司 | 一种电池箱体泄漏检测装置及检测方法 |
-
2022
- 2022-11-04 WO PCT/CN2022/130068 patent/WO2024092787A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207233897U (zh) * | 2017-08-21 | 2018-04-13 | 宁德时代新能源科技股份有限公司 | 电池模组 |
US20210210817A1 (en) * | 2018-09-26 | 2021-07-08 | Dongguan Puwei waterproof and breathable membrane material Co., Ltd | Explosion-proof valve core, explosion-proof valve, and box body gas tightness detection clamp |
CN112542664A (zh) * | 2019-09-23 | 2021-03-23 | 湖南弘毅科技有限公司 | 方形锂电池及方形锂电池的气密检测方法 |
CN112577678A (zh) * | 2019-09-27 | 2021-03-30 | 湖南弘毅科技有限公司 | 软包锂电池的气密检测方法 |
CN211743333U (zh) * | 2020-02-13 | 2020-10-23 | 湖南弘毅科技有限公司 | 一种圆柱形电池 |
CN113267299A (zh) * | 2021-05-17 | 2021-08-17 | 中国第一汽车股份有限公司 | 一种电池箱体泄漏检测装置及检测方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118518289A (zh) * | 2024-06-04 | 2024-08-20 | 科尼普科技(江苏)有限公司 | 一种储能电池包气密性检测方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023010798A1 (zh) | 电芯、电池模组、电池包及电动汽车 | |
CN201436692U (zh) | 一种圆柱形锂二次电池盖帽组件及使用该盖帽组件的电池 | |
CN109613055B (zh) | 一种圆柱电池径向导热系数的稳态测定方法与测定装置 | |
WO2024092787A1 (zh) | 一种电池包的气密性检测方法、装置、系统及电池包 | |
WO2023065951A1 (zh) | 一种储能单元热失控实验平台及其控制方法 | |
CN112462277B (zh) | 一种锂离子电池自放电性能检测方法 | |
CN115629327B (zh) | 一种电池包热失控检测方法、装置及检测电池包 | |
CN105355994A (zh) | 一种用于铅酸蓄电池的安全阀老化检测方法及检测工装 | |
CN201266657Y (zh) | 内置压力感应器的蓄电池 | |
CN111103105A (zh) | 一种动力蓄电池箱体气密性正负压检测方法 | |
CN113418651B (zh) | 基于压电传感的锂离子动力电池内部压力检测方法及结构 | |
CN104006923B (zh) | 超级电容器气密性检测方法及气密性检测机 | |
CN113258147A (zh) | 智能电池 | |
WO2024077814A1 (zh) | 壳结构、电池单体、电池及用电装置 | |
CN116183141A (zh) | 一种电池包气密性检测装置与方法 | |
CN115219914B (zh) | 考虑温差因素的锂电池充放电模拟测试装置及测试方法 | |
CN216436054U (zh) | 一种气体保护式锂电池储能集装箱 | |
CN117855770A (zh) | 注液系统及注液方法 | |
CN215955396U (zh) | 一种方形锂电池外壳 | |
CN216926961U (zh) | 绝热实验仓以及热冲击实验系统 | |
CN114421036A (zh) | 一种防爆叉车用锂电池系统及工作方法 | |
CN113074825A (zh) | 一种监测电池包内单体电池温度变化的系统及方法 | |
WO2024000418A1 (zh) | 电池单体及其制备方法、电池和用电设备 | |
CN208752185U (zh) | 一种锂离子电池组多工位防爆检测装置 | |
CN114061870B (zh) | 新能源电池包密封性自检系统及自检方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22964091 Country of ref document: EP Kind code of ref document: A1 |