WO2024092705A1 - 一种传感装置 - Google Patents

一种传感装置 Download PDF

Info

Publication number
WO2024092705A1
WO2024092705A1 PCT/CN2022/129820 CN2022129820W WO2024092705A1 WO 2024092705 A1 WO2024092705 A1 WO 2024092705A1 CN 2022129820 W CN2022129820 W CN 2022129820W WO 2024092705 A1 WO2024092705 A1 WO 2024092705A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sensitive
conductive
units
sensing device
Prior art date
Application number
PCT/CN2022/129820
Other languages
English (en)
French (fr)
Inventor
邓文俊
袁永帅
黄雨佳
周文兵
廖风云
齐心
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to PCT/CN2022/129820 priority Critical patent/WO2024092705A1/zh
Publication of WO2024092705A1 publication Critical patent/WO2024092705A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance

Definitions

  • the present specification relates to the field of sensor technology, and in particular to a sensor device for bending detection.
  • the bending sensor can detect the bending degree (or bending state) of the elastic plate by detecting the change in force when the elastic plate is bent.
  • the bending sensor has begun to be used in the fields of robots, wearable devices, virtual sports, etc.
  • the bending sensors currently used are difficult to meet the performance requirements in some special scenarios, such as smaller size requirements, higher sensitivity requirements, and better mechanical reliability requirements. Therefore, it is hoped to propose a new type of sensing device that can be applied to bending detection in more scenarios.
  • An embodiment of the present specification provides a sensing device, comprising: a sensitive element, the sensitive element comprising a first conductive layer and a sensitive layer, wherein the first conductive layer comprises at least two conductive units, the at least two conductive units are distributed, at least a portion of the sensitive layer is disposed between and in contact with the at least two conductive units, and a resistance value of the sensitive element changes in response to bending of the sensing device; and a substrate for carrying the sensitive element.
  • the first conductive layer is disposed above the substrate, and the sensitive layer is at least partially disposed above the first conductive layer.
  • the thickness of the first conductive layer is in the range of 1 ⁇ m to 50 ⁇ m.
  • the thickness of the sensitive layer is in the range of 1 ⁇ m to 50 ⁇ m.
  • the sensitive layer includes a resistor paste, wherein the resistor paste is formed by mixing conductive particles with a resin base.
  • a microstructure is disposed on the sensitive layer, and the microstructure includes micropores or fine gaps.
  • the diameter of the micropore is less than 30 ⁇ m, and the width of the slit is less than 10 ⁇ m.
  • the sensitive layer includes at least two sensitive units, the at least two conductive units include three or more conductive units, and the at least two sensitive units are spaced apart from and in contact with the three or more conductive units.
  • the three or more conductive units have the same shape and area, and the intervals between any two adjacent conductive units are equal.
  • the substrate includes a base layer and a second conductive layer arranged from top to bottom, and a through hole is provided on the base layer, and the through hole is used to conduct the first conductive layer and the second conductive layer.
  • the thickness of the substrate layer is in the range of 10 ⁇ m to 500 ⁇ m.
  • the substrate includes an insulating layer, a second conductive layer and a base layer arranged in sequence from top to bottom, and a through hole is provided on the insulating layer, and the through hole is used to conduct electricity between the first conductive layer and the second conductive layer.
  • the thickness of the insulating layer is in the range of 1 ⁇ m to 100 ⁇ m.
  • the sensing device further includes a protective layer, wherein the protective layer covers an outer surface of the sensing device to protect the sensing device.
  • the protective layer has a thickness less than 100 ⁇ m.
  • FIG1 is a cross-sectional schematic diagram of an exemplary sensing device according to some embodiments of the present specification
  • FIG2 is a cross-sectional schematic diagram of an exemplary sensing device according to other embodiments of the present specification.
  • FIG3 is a cross-sectional schematic diagram of an exemplary sensing device according to other embodiments of the present specification.
  • FIG4 is a cross-sectional schematic diagram of an exemplary sensing device according to other embodiments of the present specification.
  • FIG5A is a cross-sectional schematic diagram of an exemplary sensing device according to other embodiments of the present specification.
  • FIG. 5B is a top view of the sensor device corresponding to FIG. 5A .
  • the directions “up”, “down”, “left” and “right” involved in the embodiments of this specification may be represented by a coordinate system XX’YY’. Specifically, “up” may refer to the direction toward arrow Y, “down” may refer to the direction toward arrow Y’, “left” may refer to the direction toward arrow X’, and “right” may refer to the direction toward arrow X.
  • connection can refer to fixed connection, detachable connection, or integration; it can be mechanical connection or electrical connection; it can be direct connection, or indirect connection through an intermediate medium, or it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • connection can refer to fixed connection, detachable connection, or integration; it can be mechanical connection or electrical connection; it can be direct connection, or indirect connection through an intermediate medium, or it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the sensing device provided in the embodiments of this specification can be applied to detect the bending state of a target object.
  • the sensing device also referred to as a bending sensor
  • the sensing device can be connected (e.g., bonded) to a target object (e.g., a back hanging of a headset, an electromyographic suit, etc.) so that the bending sensor deforms with the deformation of the target object, thereby detecting the bending state of the target object.
  • a target object e.g., a back hanging of a headset, an electromyographic suit, etc.
  • more information related to the target object can be determined through the bending state and intelligent operations can be performed.
  • the bending state of the connector between the two speaker assemblies of the headset can be detected by a bending sensor to analyze the current placement state of the headset (e.g., normal wearing state, abnormal wearing state, or free placement state), and then the working state of one or more electronic components of the headset (e.g., Bluetooth module, battery, etc.) can be automatically adjusted according to the current placement state of the headset, thereby saving the user's operating steps and improving the user's experience.
  • a bending sensor to analyze the current placement state of the headset (e.g., normal wearing state, abnormal wearing state, or free placement state), and then the working state of one or more electronic components of the headset (e.g., Bluetooth module, battery, etc.) can be automatically adjusted according to the current placement state of the headset, thereby saving the user's operating steps and improving the user's experience.
  • the current placement state of the headset e.g., normal wearing state, abnormal wearing state, or free placement state
  • one or more electronic components of the headset e.g., Bluetooth module, battery, etc
  • the embodiments of this specification provide a sensor device, which improves the structure of the sensor device to meet the requirements of the bending sensor in terms of size, sensitivity and reliability.
  • the sensing device includes a sensitive element and a substrate.
  • the resistance value of the sensitive element may change in response to bending of the sensing device.
  • the substrate may be used to support the sensitive element.
  • the sensitive element includes a first conductive layer and a sensitive layer.
  • the first conductive layer may include at least two conductive units, and the at least two conductive units are distributed. At least a portion of the sensitive layer may be disposed between and in contact with the at least two conductive units.
  • FIG. 1 is a schematic cross-sectional view of an exemplary sensing device according to some embodiments of the present specification.
  • the sensing device 100 may include a sensitive element 110 and a substrate 120.
  • the substrate 120 may be used to carry the sensitive element 110, and the resistance value of the sensitive element 110 may change in response to the bending of the sensing device 100.
  • the upper surface of the substrate 120 (such as the surface of the substrate 120 facing the direction Y as shown in FIG. 1 ) is stretched or compressed, thereby causing the sensitive element 110 disposed on the upper surface thereof to deform, thereby causing the resistance value of the sensitive element 110 to change (for example, increase or decrease).
  • the sensitive element 110 may include a first conductive layer 112 and a sensitive layer 114.
  • the first conductive layer 112 may be disposed above the substrate 120 (i.e., the surface facing the Y direction in FIG. 1 ), and at least a portion of the sensitive layer 114 may be disposed above the first conductive layer 112.
  • the resistance value of the sensitive layer 114 may change with its deformation.
  • the first conductive layer 112 may include at least two conductive units. At least two conductive units may be disposed in a distributed manner. In the embodiments of this specification, the distributed arrangement may refer to arranging multiple components (e.g., conductive units, sensitive units) at intervals. For example, as shown in FIG.
  • multiple conductive units of the first conductive layer 112 are arranged at intervals (which may also be referred to as multiple conductive units being arranged in a distributed manner).
  • multiple sensitive units of the sensitive layer 114 are arranged at intervals (which may also be referred to as multiple sensitive units being arranged in a distributed manner).
  • At least a portion of the sensitive layer 114 may be disposed between at least two conductive units and in contact with the at least two conductive units (i.e., the sensitive layer 114 is electrically connected to the first conductive layer 112).
  • the first conductive layer 112 may include two conductive units, which may be disposed on the left and right sides of the sensitive layer 114, respectively.
  • the sensitive layer 114 may include a sensitive unit and be disposed in the gap between two conductive units.
  • the first conductive layer 112 may include a plurality of conductive units, which may be disposed at intervals (e.g., at equal intervals or at non-equal intervals), and the sensitive layer 114 may include at least two sensitive units, which are disposed at intervals in the gap between each two adjacent conductive units.
  • the sensing device 100 may further include a microstructure 130 disposed on the sensitive layer 114.
  • the microstructure 130 may refer to a relatively small structure, for example, a structure having at least one dimension (e.g., diameter, width) less than 30 ⁇ m.
  • the microstructure 130 may include micropores, slits, and the like. Specifically, when the microstructure 130 is a micropore, the diameter of the micropore may be less than 30 ⁇ m. When the microstructure 130 is a slit, the width of the slit may be less than 10 ⁇ m.
  • the contact area between the conductive materials inside the sensitive layer 114 may change when the deformation occurs, so that the sensitive layer 114 produces a greater resistance value change under the same deformation amount, thereby achieving the effect of improving the sensitivity of the sensing device 100.
  • the microstructures 130 may be arranged in an array on the upper surface (i.e., the surface facing away from the substrate 120), the lower surface (i.e., the surface in contact with the substrate 120) of the sensitive layer 114, or may penetrate the sensitive layer 114 from top to bottom. In some embodiments, the spacing between two adjacent microstructures 130 may be the same or different. It should be noted that, in the embodiments of this specification, the microstructure 130 is disposed on the upper surface or the lower surface of the sensitive layer 114, which may mean that the opening of the microstructure 130 is located on the upper surface or the lower surface of the sensitive layer 114. When the microstructure 130 penetrates the sensitive layer 114 from top to bottom, at least two openings located on the upper surface and the lower surface of the sensitive layer 114 are connected to each other.
  • the resistance of the first conductive layer 112 can be approximately regarded as 0. Relative to the first conductive layer 112, the sensitive layer 114 can have a larger resistance. Relative to the first conductive layer 112, the sensitive layer 114 can be short-circuited by the first conductive layer 112. In other words, if the first conductive layer 112 and the sensitive layer 114 are connected in parallel to a circuit, the current will flow through the first conductive layer 112, but not through the sensitive layer 114.
  • the sensitive layer 114 may include a resistor paste.
  • the sensitive layer 114 may be a thin film structure printed by a resistor paste.
  • the resistor paste may be a mixture of conductive particles and a resin substrate.
  • Exemplary conductive particles may include carbon black, carbon nanotubes, graphene, silver powder, copper powder, etc.
  • Exemplary resin substrates may include epoxy resin, polyvinyl chloride (PVC), polyimide resin, phenolic resin, etc.
  • the first conductive layer 112 may be prepared from a conductive metal.
  • the first conductive layer 112 may be a metal layer printed by a conductive paste such as copper or silver.
  • the first conductive layer may be formed by a liquid conductor. It should be noted that the above content regarding the sensitive layer 114 is only an exemplary description.
  • the sensitive layer 114 may not include a resistor paste.
  • other resistor materials may be used.
  • the sensitive layer 114 may not be processed by printing, but may be directly evaporated onto the upper surface of the substrate 120 to form a metal film in a specific area, thereby obtaining the aforementioned sensitive layer 114.
  • the thickness of the first conductive layer 112 may be in the range of 1 ⁇ m to 50 ⁇ m. Preferably, the thickness of the first conductive layer 112 may be in the range of 5 ⁇ m to 20 ⁇ m. In some embodiments, the thickness of the sensitive layer 114 may be in the range of 1 ⁇ m to 50 ⁇ m. In some embodiments, the thickness of the sensitive layer 114 may be greater than the thickness of the first conductive layer 112. For example, the thickness of the first conductive layer 112 may be 10 ⁇ m to 15 ⁇ m, and the thickness of the sensitive layer 114 may be 15 ⁇ m to 25 ⁇ m.
  • the thickness of the first conductive layer 112 may be 20 ⁇ m to 30 ⁇ m, and the thickness of the sensitive layer 114 may be 30 ⁇ m to 40 ⁇ m. It is understood that in this specification, the above description of the thickness of the first conductive layer 112 and the sensitive layer 114 is only exemplary. In some other embodiments, the first conductive layer 112 and the sensitive layer 114 may be other thicknesses or other thickness size relationships.
  • the local thickness of the sensitive layer 114 may be greater than the thickness of the first conductive layer 112.
  • the first conductive layer 112 includes two conductive units respectively disposed on the left and right sides of the sensitive layer 114
  • the thickness of the first portion of the sensitive layer 114 located between the left and right conductive units may be greater than the thickness of the first conductive layer 112.
  • the thickness of the two ends of the sensitive layer 114 i.e., the second portion located above the first conductive layer 112 (i.e., the portion located directly above the first conductive layer 112 in FIG. 1 ), may be less than the thickness of the first conductive layer 112.
  • the sensitive layer 114 and the first conductive layer 112 may form a bayonet structure, thereby strengthening the connection relationship between the first conductive layer 112 and the sensitive layer 114, avoiding the disconnection of the first conductive layer 112 and the sensitive layer 114 during the bending process, thereby improving the mechanical reliability of the sensor device 100 to a certain extent, and also facilitating the processing and preparation of the sensitive element 110.
  • the material strength of the first conductive layer 112 may be greater than the material strength of the sensitive layer 114.
  • the sensitive layer 114 can also be squeezed or stretched by the first conductive layer 112 disposed at both ends thereof during the bending process, thereby improving the sensitivity of the sensitive layer 114 in response to the change in the bending degree of the sensor device 100 to a certain extent.
  • the sensing device 100 may include a connection terminal to feed back a sensing signal (e.g., a resistance value or a change in resistance value) of the sensing device 100 (e.g., the sensitive element 110 or the sensitive layer 114) to an external circuit (e.g., a processing circuit). Further, the external circuit may generate a signal indicating a bending state of the sensing device 100 or the target object based on the sensing signal of the sensing device 100.
  • the two conductive units disposed at the two end edges of the first conductive layer 112 may serve as connection terminals and feed back the resistance value or a change in resistance value of the sensitive element 110 to an external circuit (e.g., a processing circuit) for processing.
  • the sensor device 100 may further include a protective layer 140.
  • the protective layer 140 may at least cover the sensitive layer 114 to protect the sensitive layer 114.
  • the protective layer 140 may also cover the sensitive layer 114 and the first conductive layer 112 at the same time and be connected to the substrate 120, so as to protect the sensitive layer 114 and the first conductive layer 112 while strengthening the connection between the sensitive layer 114 and the first conductive layer 112, and avoid the sensitive layer 114 and the first conductive layer 112 being disconnected from each other during bending deformation, thereby further improving the mechanical reliability of the sensor device 100.
  • the protective layer 140 may cover the entire outer surface of the sensor device 100, so as to provide comprehensive protection for the sensor device 100.
  • the protective layer 140 may include a flexible insulating film, and its material may include insulating resin materials such as PI and PVC. In some embodiments, the protective layer 140 may also include insulating three-proof paint or insulating ink. In some embodiments, in order to make the sensor device 100 as miniaturized as possible, the thickness of the protective layer 140 may be controlled within 100 ⁇ m, and preferably, the thickness of the protective layer 140 may be controlled within 50 ⁇ m. In some embodiments, in order to reduce the hindrance of the protective layer 140 to the deformation of the sensitive layer 114, the Young's modulus of the protective layer 140 may be smaller than the Young's modulus of the sensitive layer 114.
  • the ratio of the Young's modulus of the protective layer 140 to the Young's modulus of the sensitive layer 114 is not greater than 1/10.
  • the ratio of the Young's modulus of the protective layer 140 to the Young's modulus of the sensitive layer 114 is not greater than 1/100.
  • the substrate 120 may be made of a flexible material, for example, polyimide (PI), polyethylene terephthalate (PET), etc.
  • the Young's modulus of the protective layer 140 may be smaller than the Young's modulus of the substrate 120.
  • the ratio of the Young's modulus of the protective layer 140 to the Young's modulus of the substrate 120 is not greater than 1/100.
  • the first conductive layer 112 may be provided on the substrate 120 in the form of a coating.
  • FIG. 2 is a schematic cross-sectional view of an exemplary sensing device according to other embodiments of the present specification.
  • the substrate 120 may be composed of a composite of multiple layers of materials.
  • the substrate 120 may include at least a second conductive layer 122 and a substrate layer 124.
  • the second conductive layer 122 may be conductive (i.e., electrically connected) to the first conductive layer 112 (e.g., the conductive unit on the left side of FIG. 2).
  • the substrate 120 may include a substrate layer 124 and a second conductive layer 122 arranged from top to bottom.
  • the substrate layer 124 may include a through hole 150.
  • the first conductive layer 112 and the second conductive layer 122 may be conductive through the through hole 150.
  • the width of the sensor device 100 may be reduced (e.g., compared with FIG. 1, the width of the sensor device 100 in the direction perpendicular to the XX'YY' plane may be reduced), so that the sensor device 100 has a smaller volume, thereby meeting the miniaturization requirements in specific scenarios.
  • the substrate layer 124 may be a flexible film, for example, its material may include polyimide (PI), polyethylene terephthalate (PET, commonly known as polyester resin), etc.
  • the thickness of the substrate layer 124 may be in the range of 10 ⁇ m to 500 ⁇ m.
  • the thickness of the substrate layer 124 may be 100 ⁇ m to 400 ⁇ m. It is understood that the above description of the thickness of the substrate layer 124 is only an exemplary description, and in some other embodiments, the substrate layer 124 may be of other thicknesses.
  • the thickness of the substrate layer 124 can be set by comprehensively considering the size requirements and sensitivity requirements of the sensor device 100.
  • the second conductive layer 122 is similar to the first conductive layer 112, and can be used to electrically connect with the conductive unit located at one end of the sensitive layer 114 in the first conductive layer 112, so as to form a connection terminal connected to an external circuit. It should be noted that, through the second conductive layer 122, the position of the connection terminal of the sensitive layer 114 can be changed, thereby improving the installation adaptability of the sensor device 100. Specifically, the second conductive layer 122 can be connected to the sensitive layer 114 through the second conductive layer 122, so as to extend the connection terminal of the sensitive layer 114 to other positions.
  • one end of the second conductive layer 122 can be electrically connected with the conductive unit located at one end of the sensitive layer 114 in the first conductive layer 112, and the other end of the second conductive layer 122 can extend to the vicinity of the conductive unit located at the other end of the sensitive layer 114 in the first conductive layer 112, so that the two connection terminals connected to the sensitive layer 114 and the external circuit are close to each other, so as to facilitate connection with the external circuit.
  • the side of the second conductive layer 122 facing away from the substrate layer 124 may include a protective layer 140 , which can protect the second conductive layer 122 to prevent the second conductive layer 122 from contacting other elements and causing interference to the detection signal of the sensor device 100 .
  • FIG. 3 is a schematic cross-sectional view of an exemplary sensing device according to other embodiments of the present specification.
  • the substrate 120 may include an insulating layer 126, a second conductive layer 122, and a substrate layer 124 arranged in sequence from top to bottom.
  • the insulating layer 126 may be made of an insulating material.
  • the insulating layer 126 may be an insulating film made of, for example, a polyester film.
  • a flexible printed circuit may be used as the substrate 120, and the sensitive element 110 may be arranged on the FPC board by printing or spraying, thereby preparing the sensor device 100.
  • the thickness of the insulating layer 126 may be in the range of 1 ⁇ m to 100 ⁇ m.
  • the thickness of the insulating layer 126 may be in the range of 5 ⁇ m to 30 ⁇ m.
  • the insulating layer 126 may include a through hole 150, which can be used to conduct the first conductive layer 112 and the second conductive layer 122.
  • the second conductive layer 122 can be electrically connected to the conductive unit disposed at the edge (e.g., the rightmost side in FIG3 ) of the first conductive layer 112 via the aforementioned through hole 150, thereby forming a connection terminal for connecting to an external circuit, thereby changing the location of the connection terminal of the sensitive layer 114.
  • the conductive element at one end of the first conductive layer 112 can constitute a connection terminal of the sensitive layer 114
  • the second conductive layer 122 can constitute another connection terminal of the sensitive layer 114.
  • the aforementioned two connection terminals can be set at any position as required.
  • the aforementioned two connection terminals can be set at positions close to each other; for another example, in some embodiments, in order to facilitate layout, the aforementioned two connection terminals can be respectively set at both ends of the sensitive layer 114.
  • the two connection terminals may be located at different levels, or may be extended to be arranged at the same level.
  • the insulating layer 126 may further include a second through hole 160, and the second conductive layer 122 may further extend to the plane where the first conductive layer 112 is located through the second through hole 160, so that the connection terminal formed by the first conductive layer 112 and the connection terminal formed by the second conductive layer 122 are located at the same level.
  • FIG. 4 is a schematic cross-sectional view of an exemplary sensing device according to some other embodiments of the present specification.
  • the sensitive layer 114 may include at least two sensitive units.
  • the first conductive layer 112 may include three or more conductive units.
  • the at least two sensitive units may be spaced apart from and contacted with the three or more conductive units included in the first conductive layer 112. The more sensitive units and conductive units there are, the higher the sensitivity of the sensor device 100.
  • the sensitive layer 114 may include a B1 segment, a B2 segment, ... a Bx-1 segment, each of which may be regarded as a sensitive unit of the sensitive layer 114.
  • the first conductive layer 112 may include an A1 segment, an A2 segment, an A3 segment, ... an Ax segment, each of which may be regarded as a conductive unit of the first conductive layer 112.
  • the sensitive units corresponding to the B1 segment, the B2 segment, ... the Bx-1 segment may be spaced apart from and in contact with the conductive units corresponding to the A1 segment, the A2 segment, the A3 segment, ... the Ax segment.
  • the conductive units corresponding to the A1 segment and the Ax segment may serve as connection terminals of the sensitive element 110.
  • the sensitive layer 114 may further include segments A1, A2, A3, ..., and Ax.
  • the sensitive units corresponding to the segments A1, A2, A3, ..., and Ax may be disposed above the conductive units corresponding to the segments A1, A2, A3, ..., and Ax, and connected to the sensitive units of segments B1, B2, ..., and Bx-1, thereby strengthening the connection strength between each sensitive unit in the sensitive layer 114 and each conductive unit in the first conductive layer 112 to a certain extent, and preventing the sensitive units and the conductive units from breaking and separating from each other during the bending process.
  • the shapes and/or areas of the various sensitive units included in the sensitive layer 114 may be the same or different, and the distances between two adjacent conductive units may be equal or unequal.
  • the shapes and/or areas of the various conductive units included in the first conductive layer 112 may be the same or different, and the distances between two adjacent sensitive units may be equal or unequal.
  • the shape and/or area of the aforementioned sensitive unit may refer to the shape and/or area in the cross-sectional view of the sensing device 100 (e.g., FIGS. 1-4 , FIG. 5A ), or may refer to the shape and/or area in the top view of the sensing device 100 (e.g., FIG. 5B ).
  • each sensitive unit in order to ensure the consistency of the sensing device 100, that is, to make each position of the sensing device 100 produce the same response when the same bending occurs, each sensitive unit can be set to have the same shape and area, and each conductive unit is also set to have the same shape and area, and each conductive unit has the same spacing.
  • each adjacent sensitive unit and/or conductive unit can be set according to the needs of the application scenario. In some embodiments, if it is only necessary to obtain the characteristics of the overall output of the sensor device 100, and it is not necessary to obtain the deformation amount of each position, each sensitive unit and/or conductive unit can be designed to have different shapes, or have different areas, or the spacing between each two adjacent sensitive units and/or two adjacent conductive units is unequal.
  • each sensitive unit and/or conductive unit can be designed to have different shapes, or have different areas, or the spacing between each two adjacent sensitive units and/or two adjacent conductive units is unequal.
  • the sensor device 100 can be set in the middle position of the back hanging of the bone conduction earphone, and the spacing between two adjacent sensitive units and/or two adjacent conductive units close to the middle position is smaller than the spacing between two adjacent sensitive units and/or two adjacent conductive units far from the middle position.
  • each sensitive unit and/or conductive unit can be designed to have the same shape, or have the same area, or the spacing between every two adjacent sensitive units and/or two adjacent conductive units is equal.
  • each sensitive unit and/or conductive unit can be designed to have the same shape, or have the same area, or the spacing between every two adjacent sensitive units and/or two adjacent conductive units is equal.
  • the aforementioned microstructure 130 can be arranged on the upper surface (i.e., the upper surface of the sensitive unit located between two adjacent conductive units), the lower surface, or penetrate the sensitive layer 114 from top to bottom.
  • the sensitive units corresponding to the A1 segment, A2 segment, A3 segment, ... Ax segment may also include the microstructure 130.
  • some microstructures 130 may also be generated on the sensitive units corresponding to the A1 segment, A2 segment, A3 segment, ... Ax segment.
  • Fig. 5A is a cross-sectional schematic diagram of an exemplary sensor device according to some other embodiments of the present specification.
  • Fig. 5B is a top view of the sensor device corresponding to Fig. 5A.
  • the resistance values of the sensitive units corresponding to the B1 segment, B2 segment, ..., Bx-1 segment in the sensitive layer 114 can be expressed as R1 , R2 , ..., Rx -1 , respectively. Since the sensitive units corresponding to the A1 segment, A2 segment, A3 segment, ..., Ax segment can be short-circuited by the conductive units corresponding to the A1 segment, A2 segment, A3 segment, ..., Ax segment, they do not contribute to the resistance of the sensitive element 110. Therefore, the total resistance R0 of the sensitive element 110 can be expressed as formula (1):
  • R 0 R 1 +R 2 + ... +R x-1 .
  • the effective measurement length L0 corresponding to the sensitive layer 114 can be determined according to formula (2):
  • the total length Ls of the sensitive unit contributing to the resistance of the sensitive element 110 can be determined according to formula (3):
  • the total length Ls of the sensitive units contributing to the resistance in the sensitive element 110 can be adjusted to make the width of the sensitive layer 114 (or the sensitive unit) meet the actual needs.
  • the total length Ls of the sensitive units contributing to the resistance in the sensitive element 110 can be reduced to make the sensitive layer 114 have a smaller width (i.e., the vertical dimension of the sensitive layer 114 shown in FIG. 5B ), so that the size of the prepared sensor device 100 is smaller, and miniaturization is achieved.
  • the first conductive layer 112 and the sensitive layer 114 may have the same width (i.e., the dimension in the vertical direction in FIG. 5B ).
  • the area of the conductive units at both ends of the sensitive layer 114 in the first conductive layer 112 may be larger than the area between the conductive units between two adjacent sensitive units.
  • the sensing device 100 may have other structures.
  • the first conductive layer 112 and the sensitive layer 114 may have different widths.
  • the sensitive layer 114 may also include a sensitive unit located above the conductive unit, which connects the sensitive units located between the conductive units in series to form a sensitive layer 114 with fluctuating thickness, and makes the stress and strain of the sensitive layer 114 mainly concentrated in the area between the conductive units when the sensing device 100 is bent, that is, the sensitive units corresponding to the B1 segment, the B2 segment, ..., the Bx-1 segment, thereby improving the sensitivity of the sensing device 100 to a certain extent.
  • a structure similar to the aforementioned microstructure 130 such as a microhole or a fine slit, may also be provided at a position corresponding to the sensitive layer 114 on the substrate 120.
  • the substrate 120 is the carrier for the deformation of the sensitive layer 114
  • the stress and strain at the position on the substrate 120 corresponding to the sensitive layer 114 can be increased, thereby increasing the stress and strain at the corresponding position on the sensitive layer 114.
  • the beneficial effects that may be brought about by the embodiments of the present application include but are not limited to: (1) by arranging the first conductive layer and the second conductive layer in layers (i.e., the first conductive layer and the second conductive layer are not in the same plane), the width of the sensor device can be reduced, so that the sensor device can have a smaller size; (2) by forming a bayonet structure at the connection between the sensitive layer and the first conductive layer, the connection relationship between the first conductive layer and the sensitive layer can be strengthened to avoid disconnection between the two during bending, thereby improving the mechanical reliability of the sensor device; (3) by arranging a microstructure on the surface of the sensitive layer, the contact area and gap size between the conductive materials of the sensitive layer (or the sensor device) can be changed accordingly when the sensitive layer (or the sensor device) is deformed, thereby A greater change in resistance value is produced under the same deformation amount, thereby improving the sensitivity of the sensor device in response to changes in bending; (4) by segmenting the first conductive layer and the sensitive layer to obtain
  • beneficial effects may be any one or a combination of the above, or may be any other possible beneficial effects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本说明书实施例提供一种传感装置,所述传感装置包括敏感元件和基板,其中,所述基板用于承载所述敏感元件,所述敏感元件包括第一导电层和敏感层,所述第一导电层包括至少两个导电单元,所述至少两个导电单元呈分布式设置,所述敏感层的至少一部分设置于所述至少两个导电单元之间并与之接触,所述敏感元件的电阻值响应于所述传感装置的弯曲发生改变。

Description

一种传感装置 技术领域
本说明书涉及传感技术领域,特别涉及一种用于弯曲检测的传感装置。
背景技术
随着电子技术的发展,已经开发了各种传感器,例如,加速度传感器、方向传感器、压力传感器、触觉传感器等等,并被广泛地应用在各个领域。弯曲传感器可以通过检测弹性板弯曲时的受力变化来检测弹性板的弯曲程度(或弯曲状态)。当前,弯曲传感器已开始应用于机器人、可穿戴设备、虚拟运动等领域。
但是,目前所使用的弯曲传感器难以满足一些特殊场景下的性能需求,例如较小的尺寸需求、更高的灵敏度需求以及更好的机械可靠性需求等。因此,希望提出一种新型的传感装置,以适用于更多场景的弯曲检测。
发明内容
本说明书实施例提供一种传感装置,包括:敏感元件,所述敏感元件包括第一导电层和敏感层,其中,所述第一导电层包括至少两个导电单元,所述至少两个导电单元呈分布式设置,所述敏感层的至少一部分设置于所述至少两个导电单元之间并与之接触,所述敏感元件的电阻值响应于所述传感装置的弯曲发生改变;以及基板,用于承载所述敏感元件。
在一些实施例中,所述第一导电层设置在所述基板上方,所述敏感层至少部分设置在所述第一导电层上方。
在一些实施例中,所述第一导电层的厚度在1μm~50μm范围内。
在一些实施例中,所述敏感层的厚度在1μm~50μm范围内。
在一些实施例中,所述敏感层包括电阻浆料,所述电阻浆料由导电颗粒与树脂基底混合而成。
在一些实施例中,所述敏感层上设置有微型结构,所述微型结构包括微孔或细缝。
在一些实施例中,所述微孔的直径小于30μm,所述细缝的宽度小于10μm。
在一些实施例中,所述敏感层包括至少两个敏感单元,所述至少两个导电单元包括三个或以上导电单元,所述至少两个敏感单元与所述三个或以上导电单元相互间隔且接触设置。
在一些实施例中,所述三个或以上导电单元的形状和面积均相同,且各相邻的两个导电单元之间的间距相等。
在一些实施例中,所述基板包括自上而下设置的衬底层和第二导电层,所述衬底层上设置有通孔,所述通孔用于导通所述第一导电层和第二导电层。
在一些实施例中,所述衬底层的厚度在10μm~500μm范围内。
在一些实施例中,所述基板包括自上而下依次设置的绝缘层、第二导电层和衬底层,所述绝缘层上设置有通孔,所述通孔用于导通所述第一导电层和第二导电层。
在一些实施例中,所述绝缘层的厚度在1μm~100μm范围内。
在一些实施例中,所述传感装置还包括保护层,所述保护层覆盖所述传感装置外表面以保护所述传感装置。
在一些实施例中,所述保护层的厚度小于100μm。
附加的特征将在下面的描述中部分地阐述,并且对于本领域技术人员来说,通过查阅以下内容和附图将变得显而易见,或者可以通过实例的产生或操作来了解。本说明书的特征可以通过实践或使用以下详细实例中阐述的方法、工具和组合的各个方面来实现和获得。
附图说明
本说明书将以示例性实施例的方式进一步说明,这些示例性实施例将通过附图进行详细描述。这些实施例并非限制性的,在这些实施例中,相同的编号表示相同的结构,其中:
图1是根据本说明书一些实施例所示的示例性传感装置的截面示意图;
图2是根据本说明书另一些实施例所示的示例性传感装置的截面示意图;
图3是根据本说明书另一些实施例所示的示例性传感装置的截面示意图;
图4是根据本说明书另一些实施例所示的示例性传感装置的截面示意图;
图5A是根据本说明书另一些实施例所示的示例性传感装置的截面示意图;
图5B是图5A对应的传感装置的俯视图。
具体实施方式
为了更清楚地说明本说明书的实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其他类似情景。应当理解,给出这些示例性实施例仅仅是为了使 相关领域的技术人员能够更好地理解进而实现本说明书,而并非以任何方式限制本说明书的范围。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其他的步骤或元素。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”。
在本说明书的描述中,需要理解的是,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等特征可以明示或者隐含地包括至少一个该特征。在本说明书的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
为便于描述,本说明书实施例中涉及的方向“上”、“下”、“左”、“右”可以由坐标系统XX’YY’来表示。具体地,“上”可以指朝向箭头Y的方向,“下”可以指朝向箭头Y’的方向,“左”可以指朝向箭头X’的方向,“右”可以指朝向箭头X的方向。在本说明书的描述中,还需要理解的是,术语“长度”、“宽度”、“厚度”、“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本说明书的限制。
另外,在本说明书中,除非另有明确的规定和限定,术语“安装”、“设置”、“连接”、“固定”等术语应做广义理解。例如,“连接”可以指固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本说明书中的具体含义。
本说明书实施例提供的传感装置可以应用于检测目标对象的弯曲状态。在一些实施例中,可以通过将传感装置(也可以称为弯曲传感器)与目标对象(例如,耳机的后挂、肌电服等)相连接(例如粘接),使弯曲传感器随目标对象的形变而产生形变,从而检测目标对象的弯曲状态。进一步地,可以通过该弯曲状态确定更多与目标对象相关的信息并进行智能化的操作。例如,可以通过弯曲传感器检测耳机的两个扬声器组件之间的连接件的弯曲状态来分析耳机的当前放置状态(例如,正常佩戴状态、非正常佩戴状态或自由放 置状态),然后进一步根据耳机的当前放置状态自动调整耳机的一个或多个电子组件(例如,蓝牙模块、电池等)的工作状态,从而节省用户的操作步骤,提高用户的使用体验。
然而,不同的应用场景对于弯曲传感器的性能通常具有不同的要求。对于一些场景而言,目前所使用的弯曲传感器在尺寸、灵敏度或者可靠性方面并不能很好地满足所需的性能要求。基于此,本说明书实施例提供一种传感装置,通过对传感装置的结构进行改进,以满足弯曲传感器在尺寸、灵敏度以及可靠性等方面的需求。
在一些实施例中,传感装置包括敏感元件和基板。该敏感元件的电阻值可以响应于传感装置的弯曲发生改变。该基板可以用于承载该敏感元件。该敏感元件包括第一导电层和敏感层。第一导电层可以包括至少两个导电单元,并且至少两个导电单元呈分布式设置。敏感层的至少一部分可以设置于至少两个导电单元之间并与之接触。
下面结合附图对本说明书实施例提供的传感装置进行详细说明。
图1是根据本说明书一些实施例所示的示例性传感装置的截面示意图。
参照图1,在一些实施例中,传感装置100可以包括敏感元件110和基板120。基板120可以用于承载敏感元件110,敏感元件110的电阻值可以响应于传感装置100的弯曲发生改变。具体而言,当传感装置100受到外力发生弯曲时,基板120的上表面(如图1中所示基板120的朝向方向Y的表面)被拉伸或压缩,进而使得设置于其上表面的敏感元件110随之发生形变,从而使得敏感元件110的电阻值发生变化(例如,增大或减小)。
在一些实施例中,敏感元件110可以包括第一导电层112和敏感层114。第一导电层112可以设置在基板120上方(即,如图1中朝向Y方向的表面),敏感层114的至少部分可以设置在第一导电层112的上方。敏感层114的电阻值可以随其形变发生变化。第一导电层112可以包括至少两个导电单元。至少两个导电单元可以呈分布式设置。在本说明书实施例中,分布式设置可以指将多个部件(例如,导电单元,敏感单元)间隔设置。例如,如图1所示,第一导电层112的多个导电单元之间间隔设置(也可以称为多个导电单元呈分布式布置)。再例如,敏感层114的多个敏感单元之间间隔设置(也可以称为多个敏感单元呈分布式布置)。敏感层114的至少一部分可以设置在至少两个导电单元之间并与该至少两个导电单元接触(即敏感层114与第一导电层112之间电性连接)。例如,第一导电层112可以包括两个导电单元,其可以分别设置在敏感层114的左右两侧。此时,敏感层114可以包括一个敏感单元,并设置在两个导电单元之间的间隙中。又例如,如图1所示,第一导电层112可以包括多个导电单元,其可以间隔(例如,等间距或非等间距) 设置,敏感层114可以包括至少两个敏感单元,并间隔设置在每相邻两个导电单元之间的间隙中。
在一些实施例中,参照图1,为了增大传感装置100的灵敏度,传感装置100还可以包括设置在敏感层114上的微型结构130。该微型结构130可以指尺寸相对较小的结构,例如至少一个维度(例如,直径、宽度)的尺寸小于30μm。在一些实施例中,该微型结构130可以包括微孔、细缝等。具体地,当微型结构130为微孔时,微孔的直径可以小于30μm。当微型结构130为细缝时,细缝的宽度可以小于10μm。通过设置该微型结构130,可以使得敏感层114在发生形变时其内部导电物质之间的接触面积随之改变,从而使敏感层114在相同的形变量下产生更大的电阻值变化,从而达到提高传感装置100的灵敏度的效果。
在一些实施例中,微型结构130可以呈阵列排布设置在敏感层114的上表面(即背离基板120一侧的表面)、下表面(即与基板120接触的表面)或上下贯通敏感层114。在一些实施例中,相邻两个微型结构130之间的间距可以相同或不同。需要说明的是,在本说明书实施例中,微型结构130设置在敏感层114的上表面或下表面可以指该微型结构130的开口位于敏感层114的上表面或下表面,当该微型结构130上下贯通敏感层114时,位于敏感层114上表面和下表面的至少两个开口相互连通。
需要说明的是,在本说明书实施例中,第一导电层112的电阻可以近似看作为0。相对于第一导电层112,敏感层114可以具较大电阻。相对于第一导电层112,敏感层114可以被第一导电层112短路。换句话说,若第一导电层112和敏感层114并联接入某一电路时,电流将从第一导电层112流过,而不从敏感层114流过。在一些实施例中,为了使传感装置100具有较好的柔韧性,敏感层114可以包括电阻浆料。例如,敏感层114可以为通过电阻浆料印刷而成的薄膜结构。在一些实施例中,该电阻浆料可以由导电颗粒和树脂基底混合而成。示例性导电颗粒可以包括炭黑、碳纳米管、石墨烯、银粉、铜粉等。示例性树脂基底可以包括环氧树脂、聚氯乙烯(Polyvinyl chloride,PVC)、聚酰亚胺树脂、酚醛树脂等。第一导电层112可以由导电金属制备。例如,第一导电层112可以是通过铜、银等导体浆料印刷而成的金属层。或者,在一些情况下,为了满足柔性的需求,第一导电层可以由液体导体形成。需要说明的是,以上关于敏感层114的内容仅为示例性说明。在一些其他的实施例中,敏感层114可以不包括电阻浆料,例如,可以采用其他的电阻材料,又例如,可以不采用印刷的方式加工而成,而是直接把金属材料蒸镀到基板120的上表面,在特定的区域形成金属薄膜,从而得到前述敏感层114。
在一些实施例中,第一导电层112的厚度可以在1μm~50μm范围内。优选的,第一导电层112的厚度可以在5μm~20μm范围内。在一些实施例中,敏感层114的厚度可以在1μm~50μm范围内。在一些实施例中,敏感层114的厚度可以大于第一导电层112的厚度。例如,第一导电层112的厚度可以为10μm~15μm,敏感层114的厚度可以为15μm~25μm。又例如,在一些实施例中,第一导电层112的厚度可以为20μm~30μm,敏感层114的厚度可以为30μm~40μm。可以理解,在本说明书中,以上关于第一导电层112和敏感层114的厚度仅为示例性说明。在一些其他的实施例中,该第一导电层112和敏感层114可以为其他的厚度或其他的厚度大小关系。
在一些实施例中,敏感层114的局部厚度可以大于第一导电层112的厚度。例如,当第一导电层112包括分别设置在敏感层114的左右两侧的两个导电单元时,位于左右两个导电单元之间的敏感层114的第一部分的厚度可以大于第一导电层112的厚度。敏感层114的两端,即位于第一导电层112之上的第二部分(即图1中位于第一导电层112正上方的部分)的厚度可以小于第一导电层112的厚度。通过设置敏感层114的第二部分,可以使敏感层114与第一导电层112构成卡口结构,从而加强第一导电层112与敏感层114之间的连接关系,避免第一导电层112与敏感层114在弯曲过程中断开,从而在一定程度提高传感装置100的机械可靠性,此外也便于敏感元件110的加工制备。
在一些实施例中,第一导电层112的材料强度可以大于敏感层114的材料强度。通过上述卡口结构,还可以使得敏感层114在弯曲过程中受到设置于其两端的第一导电层112的挤压或拉伸作用,从而在一定程度提高敏感层114响应于传感装置100的弯曲度变化的灵敏度。
在一些实施例中,传感装置100可以包括连接端子,以将传感装置100(例如,敏感元件110或敏感层114)的传感信号(例如,电阻值或电阻值的变化情况)反馈至外部电路(例如,处理电路)。进一步地,外部电路可以基于传感装置100的传感信号生成指示传感装置100或目标对象的弯曲状态的信号。在一些实施例中,第一导电层112的设置在两端边缘的两个导电单元可以作为连接端子并将敏感元件110的电阻值或电阻值的变化情况反馈至外部电路(例如,处理电路)以进行处理。
在一些实施例中,参照图1,传感装置100还可以包括保护层140。保护层140可以至少覆盖在敏感层114上方,以用于保护敏感层114。在一些实施例中,保护层140也可以同时覆盖敏感层114和第一导电层112,并与基板120连接,从而在保护敏感层114和第一导电层112的同时,强化敏感层114与第一导电层112之间的连接关系,避免敏感 层114和第一导电层112在弯曲变形的过程中相互断开,从而进一步提高传感装置100的机械可靠性。在一些实施例中,保护层140可以覆盖在传感装置100的整个外表面,从而对传感装置100进行全面的保护。
在一些实施例中,保护层140可以包括柔性绝缘薄膜,其材料可以包括PI、PVC等绝缘树脂材料。在一些实施例中,该保护层140也可以包括绝缘三防漆或者绝缘油墨等。在一些实施例中,为使得传感装置100尽可能地小型化,可以将保护层140的厚度控制在100μm以内,优选地,可以将保护层140的厚度控制在50μm以内。在一些实施例中,为了减小保护层140对敏感层114发生形变的阻碍,保护层140的杨氏模量可以小于敏感层114的杨氏模量。例如,保护层140的杨氏模量与敏感层114的杨氏模量的比值不大于1/10。优选地,保护层140的杨氏模量与敏感层114的杨氏模量的比值不大于1/100。
需要说明的是,在本说明书的实施例中,基板120可以由柔性材料制备,例如,聚酰亚胺(Polyimide,PI)、聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)等。在一些实施例中,为了减小保护层140对基板120发生形变的影响,保护层140的杨氏模量可以小于基板120的杨氏模量。优选地,保护层140的杨氏模量与基板120的杨氏模量的比值不大于1/100。在一些实施例中,第一导电层112可以以镀层的形式设置在基板120上。
图2是根据本说明书另一些实施例所示的示例性传感装置的截面示意图。
在一些实施例中,基板120可以由多层材料复合构成。基板120可以至少包括第二导电层122和衬底层124。第二导电层122可以与第一导电层112(例如,图2中左侧的导电单元)导通(即,电连接)。示例性地,参照图2,基板120可以包括自上而下设置的衬底层124和第二导电层122。衬底层124可以包括通孔150。第一导电层112和第二导电层122可以通过通孔150进行导通。需要知道的是,通过设置通孔150使第一导电层112和第二导电层122分层排布设置(即第一导电层112和第二导电层122不在同一个平面),可以减小传感装置100的宽度(例如,相较于图1可以减小传感装置100在垂直于XX’YY’平面的方向上的宽度),从而使得传感装置100具有更小的体积,进而满足特定场景下的小型化需求。
在本说明书的一些实施例中,衬底层124可以为柔性薄膜,例如,其材料可以包括聚酰亚胺(Polyimide,PI)、聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET,俗称涤纶树脂)等。在一些实施例中,衬底层124的厚度可以在10μm~500μm范围内。优选 地,该衬底层124的厚度可以为100μm~400μm。可以理解,以上关于衬底层124的厚度仅为示例性说明,在一些其他的实施例中,衬底层124可以为其他的厚度。
在一些实施例中,考虑到在相同的弯曲程度下,衬底层124越厚,其带动敏感层114产生的形变量越大,敏感层114的灵敏度也就越高。因此,在一些实施例中,可以综合考虑传感装置100的尺寸需求以及灵敏度需求对衬底层124的厚度进行设定。
第二导电层122与第一导电层112类似,其可以用于与第一导电层112中位于敏感层114一端的导电单元电性连接,从而构成与外部电路连接的连接端子。需要说明的是,通过该第二导电层122,可以改变敏感层114的连接端子的位置,从而提高传感装置100的安装适应性。具体而言,即可以通过第二导电层122与敏感层114导通,从而将敏感层114的连接端子延伸到其它位置。示例性地,在一些实施例中,第二导电层122的一端可以与第一导电层112中位于敏感层114一端的导电单元电性连接,第二导电层122的另一端可以延伸至第一导电层112中位于敏感层114另一端的导电单元附近,从而使得敏感层114与外部电路连接的两个连接端子相互靠拢,以便于与外部电路连接。
参照图2,在一些实施例中,第二导电层122背离衬底层124的一侧可以包括保护层140,通过该保护层140可以对第二导电层122进行保护,避免第二导电层122与其他元件接触导致对传感装置100的检测信号产生干扰。
图3是根据本说明书另一些实施例所示的示例性传感装置的截面示意图。
在一些实施例中,参照图3,基板120可以包括自上而下依次设置的绝缘层126、第二导电层122和衬底层124。绝缘层126可以由绝缘材料制成。例如,绝缘层126可以是由例如,聚酯薄膜等制成的绝缘薄膜。通过该排布方式,可以使得敏感层114、第一导电层112、绝缘层126以及第二导电层122均位于衬底层124的同一侧,以便于加工。例如,可以使用单侧增材工艺(如丝网印刷或者喷涂等),并且无需在衬底层124上打孔。又例如,可以以柔性电路板(Flexible Printed Circuit,FPC)作为基板120,通过印刷或喷涂等方式将敏感元件110设置在FPC板上,从而制备传感装置100。在一些实施例中,绝缘层126的厚度可以在1μm~100μm范围内。优选的,绝缘层126的厚度可以在5μm~30μm范围内。
如图3所示,在一些实施例中,绝缘层126上可以包括通孔150,该通孔150可以用于导通第一导电层112和第二导电层122。具体而言,即第二导电层122可以经由前述通孔150与第一导电层112中设置在边缘(例如,图3中最右侧)的导电单元电性连接,从而构成用于与外部电路连接的连接端子,从而可以改变敏感层114的连接端子的所在位 置。在一些实施例中,第一导电层112一端(例如,图3中设置在最左侧)的导电元件可以构成敏感层114的一个连接端子,第二导电层122可以构成敏感层114的另一个连接端子。在一些实施例中,前述两个连接端子可以根据需求设置在任意位置。例如,在一些实施例中,为便于与外部电路连接,可以将前述两个连接端子设置在相互靠近的位置;又例如,在一些实施例中,为便于布局,可以将前述两个连接端子分别设置在敏感层114的两端。
在一些实施例中,前述两个连接端子可以位于不同层面,也可以通过延伸设置在同一层面。例如,参照图3,在一些实施例中,为了便于将传感装置100连接到外接电路,绝缘层126上还可以包括第二通孔160,第二导电层122还可以通过第二通孔160延伸至第一导电层112所在的平面,从而使得由第一导电层112构成的连接端子与第二导电层122构成的连接端子位于同一层面。
图4是根据本说明书另一些实施例所示的示例性传感装置的截面示意图。
参照图4,在一些实施例中,为了增大传感装置100的灵敏度,敏感层114可以包括至少两个敏感单元。此时,第一导电层112可以包括三个或以上导电单元。该至少两个敏感单元可以与第一导电层112所包含的三个或以上导电单元相互间隔且接触设置。敏感单元和导电单元越多,传感装置100的灵敏度越高。
如图4所示,在一些实施例中,敏感层114可以包括B1段、B2段、……Bx-1段,其中每一段可以视为敏感层114的一个敏感单元。第一导电层112可以包括A1段、A2段、A3段、……Ax段,其中每一段可以视为第一导电层112的一个导电单元。B1段、B2段、……Bx-1段所对应的敏感单元可以与A1段、A2段、A3段、……Ax段对应的导电单元相互间隔且接触设置。在一些实施例中,A1段和Ax段对应的导电单元可以作为敏感元件110的连接端子。
参照图4,在一些实施例中,敏感层114还可以包括A1段、A2段、A3段、……Ax段,该A1段、A2段、A3段、……Ax段所对应的敏感单元可以设置A1段、A2段、A3段、……Ax段所对应的导电单元上方,并与B1段、B2段、……Bx-1段的敏感单元连接,从而在一定程度加强敏感层114中各个敏感单元与第一导电层112中各个导电单元之间的连接强度,避免敏感单元与导电单元在弯曲过程中出现断裂相互脱离。
在一些实施例中,敏感层114所包含的各个敏感单元的形状和/或面积可以相同或不同,各相邻的两个导电单元之间的间距可以相等或不相等。同理地,第一导电层112所包含的各个导电单元的形状和/或面积也可以相同或不同,各相邻的两个敏感单元之间的间 距可以相等或不相等。需要说明的是,在本说明书中,前述敏感单元的形状和/或面积可以指传感装置100的截面图(例如图1-图4,图5A)中的形状和/或面积,也可以指传感装置100的俯视图(例如图5B)中的形状和/或面积。
在一些实施例中,为了保证传感装置100的一致性,即,使得传感装置100的每个位置在发生相同的弯曲时产生相同的响应,可以将各个敏感单元设置为具有相同的形状和面积,并且,各个导电单元也设置为具有相同的形状和面积,各个导电单元之间具有相同的间距。
在一些实施例中,可以根据应用场景的需要,设置各个敏感单元和/或导电单元的形状、面积和/或每相邻两个敏感单元和/或相邻两个导电单元之间的间距。在一些实施例中,如果只需要获取传感装置100整体输出的特性,而不需要获取其每个位置的形变量时,可以将各个敏感单元和/或导电单元设计为不同的形状,或具有不同的面积,或每两个相邻敏感单元和/或两个相邻导电单元之间的间距不相等。例如,当传感装置100应用在骨导耳机后挂时,此时,不需要获取骨导耳机后挂的各个位置的具体形变量,而只需要测量耳机后挂的总形变量,则可以将各个敏感单元和/或导电单元设计为不同的形状,或具有不同的面积,或每两个相邻敏感单元和/或两个相邻导电单元之间的间距不相等。例如,可以将传感装置100设置在骨导耳机后挂的中间位置,靠近中间位置的两个相邻敏感单元和/或两个相邻导电单元之间的间距小于远离中间位置的两个相邻敏感单元和/或两个相邻导电单元之间的间距。换句话说,敏感单元和/或导电单元在靠近骨导耳机后挂中间位置的布置密度大于远离骨导耳机后挂中间位置的布置密度,以此提高传感装置100整体的灵敏度。在一些实施例中,当需要了解传感装置100的局部输出的特性时,可以将各个敏感单元和/或导电单元设计为相同的形状,或具有相同的面积,或每两个相邻敏感单元和/或两个相邻导电单元之间的间距相等。例如,当传感装置100应用在肌电服上时,此时,为了准确了解用户的各个肌肉的发力及运动情况,需要了解肌电服的各个位置在同等发力情况下的具体形变量,则可以将各个敏感单元和/或导电单元设计为相同的形状,或具有相同的面积,或每两个相邻敏感单元和/或两个相邻导电单元之间的间距相等。
参照图4,当敏感层114包括A1段、A2段、A3段、……Ax段以及B1段、B2段、……Bx-1段对应的多个敏感单元时,前述微型结构130可以设置在B1段、B2段、……Bx-1段对应的敏感单元的上表面(也即位于相邻两个导电单元之间的敏感单元的上表面)、下表面或上下贯穿敏感层114。需要说明的是,在一些实施例中,A1段、A2段、A3段、……Ax段对应的敏感单元上也可以包括微型结构130。例如,在一些实施例中, 受制备工艺的影响,在对B1段、B2段、……Bx-1段对应的敏感单元加工微型结构130时,可能会同时在A1段、A2段、A3段、……Ax段对应的敏感单元上也产生一些微型结构130。
图5A是根据本说明书另一些实施例所示的示例性传感装置的截面示意图。图5B是图5A对应的传感装置的俯视图。
参照图4和图5A,在一些实施例中,敏感层114中B1段、B2段、……Bx-1段对应的敏感单元的电阻值可以分别表示为R 1、R 2、……R x-1,由于A1段、A2段、A3段、……Ax段对应的敏感单元可以被A1段、A2段、A3段、……Ax段所对应的导电单元短路,其不贡献敏感元件110的电阻。因此,敏感元件110的总电阻R 0可以表示为公式(1):
R 0=R 1+R 2+……+R x-1。    (1)
假设连接在多个敏感单元之间的每一个导电单元(除左右边缘的导电单元外)的在XX’方向的尺寸相等且为a,每一个敏感单元的在XX’方向的尺寸相等且为b(即相邻两个导电单元之间的间隔为b),则敏感层114对应的有效测量长度L0可以根据公式(2)确定:
L0=(x-2)*a+(x-1)*b。      (2)
对敏感元件110的电阻做贡献的敏感单元的总长度Ls可以根据公式(3)确定:
Ls=(x-1)*b。     (3)
在敏感层114的方阻Rf(其由敏感层114材质、厚度以及微型结构形态共同决定)以及总电阻R 0一定的情况下,若敏感层114(或敏感单元)的宽度(即敏感层114沿垂直于XX’YY’平面的方向上的尺寸)为w,则由公式(4):
R 0=Rf*Ls/w,      (4)
可知,在给定的有效测量长度L0时,通过将导电单元和敏感单元相互间隔设置,可以调节敏感元件110中对电阻做贡献的敏感单元的总长度Ls,来使得敏感层114(或敏感单元)的宽度满足实际需求。例如,在需要小尺寸弯曲传感器的应用场景下,在总电阻R 0不变的情况下,可以通过减小敏感元件110中对电阻做贡献的敏感单元的总长度Ls,来使得敏感层114具有更小的宽度(即图5B所示的敏感层114在图中竖直方向的尺寸),从而使得制备的传感装置100的尺寸更小,实现小型化应用。
参照图5B,在一些实施例中,第一导电层112与敏感层114可以具有相同的宽度(即图5B中竖直方向的尺寸)。第一导电层112中位于敏感层114两端的导电单元的面积可以大于位于相邻两个敏感单元之间的导电单元之间的面积。
需要说明的是,图5B仅为示例性说明。在一些其他的实施例中,传感装置100可以具有其他的结构。例如,第一导电层112与敏感层114可以具有不同的宽度。又例如,敏感层114还可以包括位于导电单元上方的敏感单元,该敏感单元将位于各个导电单元之间的敏感单元串联,形成厚度高低起伏的敏感层114,并使得传感装置100弯曲时敏感层114的应力应变主要集中在导电单元之间的区域,即B1段、B2段、……Bx-1段对应的敏感单元,从而在一定程度提高传感装置100的灵敏度。在一些实施例中,为了达到相同的目的,即使得敏感层114的应力应变主要集中在导电单元之间的区域,还可以在基板120上与敏感层114对应的位置设置与前述微型结构130类似的结构,例如微孔或细缝等。可以理解,由于基板120是敏感层114产生形变的载体,因此,通过在基板120上与敏感层114对应的位置设置与前述微型结构130类似的结构,可以使得基板120上与敏感层114对应的位置的应力应变增大,进而使得敏感层114上对应位置的应力应变也随之增大。
还需要说明的是,在不冲突的情况下,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
本申说明书实施例可能带来的有益效果包括但不限于:(1)通过将第一导电层和第二导电层分层排布(即第一导电层和第二导电层不在同一个平面),可以减小传感装置在宽度上的尺寸,从而可以使得传感装置具有更小的尺寸;(2)通过将敏感层与第一导电层的连接处构成卡口结构,可以加强第一导电层与敏感层之间的连接关系,避免二者在弯曲过程中断开,从而提高传感装置的机械可靠性;(3)通过在敏感层表面设置微型结构,可以使得敏感层(或传感装置)在发生形变时可以随之改变敏感层(或传感装置)的导电物质之间的接触面积和间隙大小,从而在相同的形变量下产生更大的电阻值变化,提高传感装置响应于弯曲度变化的灵敏度;(4)通过将第一导电层和敏感层分段,得到多个导电单元和多个敏感单元,并将该多个敏感单元与第一导电层所包含的多个导电单元相互间隔且接触设置,可以使得传感装置弯曲时敏感层的应力应变主要集中在导电单元之间的区域,从而进一步提高传感装置的灵敏度;(5)通过将第一导电层和敏感层分段,得到多个导电单元和多个敏感单元,可以在总电阻不变的情况下,通过减小对总电阻有贡献敏感单元的总长度,来缩小敏感单元(或传感装置)的宽度,从而实现小型化应用。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可 能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。

Claims (15)

  1. 一种传感装置,包括:
    敏感元件,所述敏感元件包括第一导电层和敏感层,其中,所述第一导电层包括至少两个导电单元,所述至少两个导电单元呈分布式设置,所述敏感层的至少一部分设置于所述至少两个导电单元之间并与之接触,所述敏感元件的电阻值响应于所述传感装置的弯曲发生改变;以及
    基板,用于承载所述敏感元件。
  2. 根据权利要求1所述的传感装置,其中,所述第一导电层设置在所述基板上方,所述敏感层至少部分设置在所述第一导电层上方。
  3. 根据权利要求1或2所述的传感装置,其中,所述第一导电层的厚度在1μm~50μm范围内。
  4. 根据权利要求1至3中任一项所述的传感装置,其中,所述敏感层的厚度在1μm~50μm范围内。
  5. 根据权利要求1至4中任一项所述的传感装置,其中,所述敏感层包括电阻浆料,所述电阻浆料由导电颗粒与树脂基底混合而成。
  6. 根据权利要求1至5中任一项所述的传感装置,其中,所述敏感层上设置有微型结构,所述微型结构包括微孔或细缝。
  7. 根据权利要求6所述的传感装置,其中,所述微孔的直径小于30μm,所述细缝的宽度小于10μm。
  8. 根据权利要求1至7中任一项所述的传感装置,其中,所述敏感层包括至少两个敏感单元,所述至少两个导电单元包括三个或以上导电单元,所述至少两个敏感单元与所述三个或以上导电单元相互间隔且接触设置。
  9. 根据权利要求8所述的传感装置,其中,所述三个或以上导电单元的形状和面积均相同,且各相邻的两个导电单元之间的间距相等。
  10. 根据权利要求1至9中任一项所述的传感装置,其中,所述基板包括自上而下设置的衬底层和第二导电层,所述衬底层上设置有通孔,所述通孔用于导通所述第一导电层和第二导电层。
  11. 根据权利要求10所述的传感装置,其中,所述衬底层的厚度在10μm~500μm范围内。
  12. 根据权利要求1至9中任一项所述的传感装置,其中,所述基板包括自上而下依次设置的绝缘层、第二导电层和衬底层,所述绝缘层上设置有通孔,所述通孔用于导通所述第一导电层和第二导电层。
  13. 根据权利要求12所述的传感装置,其中,所述绝缘层的厚度在1μm~100μm范围内。
  14. 根据权利要求1至13中任一项所述的传感装置,其中,所述传感装置还包括保护层,所述保护层覆盖所述传感装置外表面以保护所述传感装置。
  15. 根据权利要求14所述的传感装置,其中,所述保护层的厚度小于100μm。
PCT/CN2022/129820 2022-11-04 2022-11-04 一种传感装置 WO2024092705A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129820 WO2024092705A1 (zh) 2022-11-04 2022-11-04 一种传感装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/129820 WO2024092705A1 (zh) 2022-11-04 2022-11-04 一种传感装置

Publications (1)

Publication Number Publication Date
WO2024092705A1 true WO2024092705A1 (zh) 2024-05-10

Family

ID=90929346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129820 WO2024092705A1 (zh) 2022-11-04 2022-11-04 一种传感装置

Country Status (1)

Country Link
WO (1) WO2024092705A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198483A (ja) * 2008-01-24 2009-09-03 Tokai Rubber Ind Ltd センサ薄膜、その製造方法、および変形センサ
US20120256720A1 (en) * 2011-04-08 2012-10-11 Samsung Electronics Co., Ltd. Bending sensor and method for fabricating the same
CN106595469A (zh) * 2017-01-10 2017-04-26 昆山工研院新型平板显示技术中心有限公司 一种弯曲传感器
CN107907251A (zh) * 2017-10-27 2018-04-13 深圳先进技术研究院 压力传感器及其制备方法
CN109640516A (zh) * 2017-10-09 2019-04-16 鹏鼎控股(深圳)股份有限公司 拉伸感压电路板、拉伸感压电路板的制作方法及柔性感压元件
CN110806429A (zh) * 2019-08-08 2020-02-18 杭州市富阳区浙工大银湖创新创业研究院 一种弯折状态下具有电阻补偿功能的电阻式柔性气体传感器及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198483A (ja) * 2008-01-24 2009-09-03 Tokai Rubber Ind Ltd センサ薄膜、その製造方法、および変形センサ
US20120256720A1 (en) * 2011-04-08 2012-10-11 Samsung Electronics Co., Ltd. Bending sensor and method for fabricating the same
CN106595469A (zh) * 2017-01-10 2017-04-26 昆山工研院新型平板显示技术中心有限公司 一种弯曲传感器
CN109640516A (zh) * 2017-10-09 2019-04-16 鹏鼎控股(深圳)股份有限公司 拉伸感压电路板、拉伸感压电路板的制作方法及柔性感压元件
CN107907251A (zh) * 2017-10-27 2018-04-13 深圳先进技术研究院 压力传感器及其制备方法
CN110806429A (zh) * 2019-08-08 2020-02-18 杭州市富阳区浙工大银湖创新创业研究院 一种弯折状态下具有电阻补偿功能的电阻式柔性气体传感器及其制备方法

Similar Documents

Publication Publication Date Title
EP3244179B1 (en) Pressure-sensitive element and pressure sensor
US7050045B2 (en) Miniature highly manufacturable mouse pointing device
CN105519241B (zh) 印刷布线板以及连接该布线板的连接器
US20090135573A1 (en) Circuit board device, wiring board interconnection method, and circuit board module device
US20100039121A1 (en) Low cost fingerprint sensor system
CN110709680B (zh) 压力传感器和压力传感器的制造方法
CN105493640B (zh) 印刷布线板以及连接该布线板的连接器
JP2017062161A (ja) 感圧素子および圧力センサ
CN101242708A (zh) 布线电路基板及其制造方法
US8502080B2 (en) Flexible printed circuit board with waterproof structure
US20110094775A1 (en) Double-side-conducting flexible-circuit flat cable with cluster section
US20190339141A1 (en) A stretch sensor with an improved flexible interconnect
JP2009099498A (ja) タッチパネル及びタッチパネルの製造方法
JP2000181612A (ja) 座標入力装置
CN111699761B (zh) 柔性印刷电路板
WO2024092705A1 (zh) 一种传感装置
CN118031789A (zh) 一种传感装置
US20150028915A1 (en) Touch panel and test method thereof
US10237991B2 (en) Electronic component
JP3308368B2 (ja) 三軸圧電加速度センサー
US7419387B2 (en) Electric connection member utilizing ansiotropically conductive sheets
JP2002223046A (ja) シールド付きフレキシブル基板
CN212034439U (zh) 单面跨线式导通电路薄膜
CN213936187U (zh) 组合传感器及电子设备
CN220232269U (zh) 一种显示模组及智能穿戴设备