WO2024092409A1 - Motor driver and motor driving system - Google Patents

Motor driver and motor driving system Download PDF

Info

Publication number
WO2024092409A1
WO2024092409A1 PCT/CN2022/128631 CN2022128631W WO2024092409A1 WO 2024092409 A1 WO2024092409 A1 WO 2024092409A1 CN 2022128631 W CN2022128631 W CN 2022128631W WO 2024092409 A1 WO2024092409 A1 WO 2024092409A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor driver
circuit
switch device
motor
freewheeling diode
Prior art date
Application number
PCT/CN2022/128631
Other languages
French (fr)
Inventor
Hua Liao
Jun Ping Zhang
Original Assignee
Siemens Aktiengesellschaft
Siemens Ltd., China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft, Siemens Ltd., China filed Critical Siemens Aktiengesellschaft
Priority to PCT/CN2022/128631 priority Critical patent/WO2024092409A1/en
Publication of WO2024092409A1 publication Critical patent/WO2024092409A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors

Definitions

  • the present disclosure generally relates to the technical field of circuits, and in particular, to a motor driver and a motor driving system.
  • VFC Voltage frequency converters
  • a capacitor is used as a power decoupling device in a DC link circuit.
  • regeneration energy is applied to the capacitor of the DC link circuit, causing a rise of a DC voltage. If the voltage continuously rises and exceeds an allowable operating voltage, the DCcapacitor may be damaged.
  • a braking resistor is used to consume the regeneration energy to prevent damage to components caused by overvoltage, which, however, causes other problems such as heat dissipation and a large volume.
  • FIG. 1 is a topology of a motor driver 10 in the prior art.
  • Ua, Ub, and Uc are three phases of a grid.
  • Two single-phase diode rectifier bridges are used at an input terminal.
  • One leg from each rectifier bridges share one grid phase to support a 1AC or 3AC power supply input.
  • An intelligent power module (IPM) is used in a DC/AC converter to realize a compact design.
  • a large braking resistor R1 is connected to the DC link through a power switch T7. If a DC voltage rises to a limitation, the power switch T7 will be activated, and R1 willabsorbs the overvoltage.
  • a freewheeling diode D9 is added to eliminate a transient overvoltage caused by a stray inductance of the braking resistor R1.
  • the braking resistor R1 needs to dissipate the regeneration energy of the motor, the braking resistor needs to be configured with a relatively high power capacity and a relatively large volume.
  • the braking resistor is usually tailor-made, the cost is rather expensive. Above all, since a high dissipation power willgenerate a high temperature inside the resistor, even up to hundreds of degrees Celsius, a heat sink and a structure design of the entire system face great challenges.
  • the present disclosure provides a motor driver capable of eliminating overvoltage damage.
  • An aspect of the present disclosure provides a motor driver.
  • An input terminal of the motor driver is connected to a three-phase grid, and an output terminal of the motor driver is connected to a motor.
  • the motor driver includes a rectifier circuit, a DC link circuit, and an inverter circuit.
  • the rectifier circuit includes a first rectifier bridge and a second rectifier bridge.
  • the inverter circuit includes a first DC/AC conversion branch circuit, a second DC/AC conversion branch circuit, and a third DC/AC conversion branch circuit arranged in parallel between a positive output terminal and a negative output terminal of the DC link circuit.
  • the first DC/AC conversion branch circuit includes a first switch device and a second switch device
  • the second DC/AC conversion branch circuit includes a third switch device and a fourth switch device
  • the third DC/AC conversion branch circuit includes a fifth switch device and a sixth switch device.
  • the DC link circuit is connected between the rectifier circuit and the inverter circuit.
  • the DC link circuit includes a capacitor, a switch device, a freewheeling diode, and an inductor. A first end and a second end of the capacitor are respectively connected to a positive output terminal and a negative output terminal of the rectifier circuit.
  • a collector of the seventh switch device is connected to the first end of the capacitor.
  • An emitter of the seventh switch device is connected to a negative electrode of the freewheeling diode.
  • a positive electrode of the freewheeling diode is connected to the second end of the capacitor.
  • a first end of the inductor is connected to a midpoint between the seventh switch device and the freewheeling diode.
  • a second end of the inductor and the positive electrode of the freewheeling diode are used as two terminals for connection to an energy storage element.
  • the energy storage element is any oneof a rechargeable battery) , acapacitor arranged inside the motor driver, or an external power supply connected to the outside of the motor driver.
  • a positive electrode of the rechargeable battery is connected to the second end of the inductor, and a negative electrode of the rechargeable battery is connected to the positive electrode of the freewheeling diode.
  • regeneration energy generated during braking is stored in the rechargeable battery.
  • the regeneration energy generated during the braking may be stored in the rechargeable battery to effectively use the regeneration energy.
  • the rechargeable battery may be directly used as the auxiliary power supply and the motor brake hold power supply.
  • the first to seventh switch devices each include a fully controlled power transistor and a diode, and a positive electrode and a negative electrode of the diode are respectively connected to an emitter and a collector of the fully controlled power transistor.
  • the fully controlled power transistor includes an insulated gate bipolar transistor (IGBT) .
  • IGBT insulated gate bipolar transistor
  • Another aspect of the present disclosure provides a motor driving system, including the motor driver described above and amotor, and the motor driver is configured to drive the motor.
  • regeneration energy generated during braking of the motor is stored in the rechargeable battery of the motor driver.
  • the inductor is added to the DC link circuit, so that a braking resistor frequently used in the prior art is removed.
  • the braking resistor is usually large in size, generates a lot of heat, and requires high costs. Therefore, the technical solution of the present invention has at least one of the following technical advantages.
  • the volume is reduced.
  • the braking resistor needs to dissipate the regeneration energy, and therefore requires a huge volume. Removing the resistor from the circuit topology of the present invention helps save the volume.
  • the rechargeable battery added to store the regeneration energy during the motor braking, which helps save the energy.
  • the rechargeable battery may be directly used as the auxiliary power supply and the motor brake hold power supply of the motor driver.
  • FIG. 1 is a circuit topology diagram of a motor driver in the prior art.
  • FIG. 2 is a circuit topology diagram of a motor driver according to an embodiment of the present disclosure.
  • D1-D9 Diode R1: resistor
  • T1-T7 First to seventh switch device 210: Rectifier circuit
  • M Motor 2101: First rectifier bridge
  • the term “include” and variants thereof represent open terms, and means “include but is not limited to” .
  • the term “based on” represents “at least partially based on” .
  • the terms “one embodiment” and “an embodiment” represent “at least one embodiment” .
  • the term “another embodiment” represents “at least one another embodiment” .
  • the terms “first” , “second” , and the like may represent different objects or the same object. Other definitions may be includes explicitly or implicitly in the following. Unless otherwise clearly specified, the definition of one term is consistent in the entire specification.
  • the present invention provides a motor driver, which can resolve the above problems in the prior art.
  • FIG. 2 is an exemplary circuit topology of a motor driver 20 according to an embodiment of the present disclosure. As shown in FIG. 2, an input terminal of the motor driver 20 is connected to three phase Ua, Ub, and Uc of a three-phase grid, and an output terminal of the motor driver is connected to a motor M.
  • the motor driver 20 includes a rectifier circuit 210, a DC link circuit 220, and an inverter circuit 230.
  • the rectifier circuit 210 includes a first rectifier bridge 2101 and a second rectifier bridge 2102.
  • the first rectifier bridge 2101 includes a first bridge arm and a second bridge arm.
  • the first bridge arm and the second bridge arm are connected in parallel.
  • the first bridge arm includes a first diode D1 and a second diode D2 connected in series
  • the second bridge arm includes a third diode D3 and a fourth diode D4 connected in series.
  • the second rectifier bridge 2102 includes a third bridge arm and a fourth bridge arm.
  • the third bridge arm and the fourth bridge arm are connected in parallel.
  • the third bridge arm includes a fifth diode D5 and a sixth diode D6 connected in series
  • the fourth bridge arm includes a seventh diode D7 and an eighth diode D8 connected in series.
  • a phase-ainput terminal of the three-phase grid is connected to a midpoint between the first diode D1 and the second diode D2 of the first bridge arm.
  • a phase-b input terminal of the three-phase grid is connected to a midpoint between the third diode D3 and the fourth diode D4 of the second bridge arm and a midpoint between the fifth diode D5 and the sixth diode D6 of the third bridge arm.
  • a phase-c output terminal of the three-phase grid is connected to a midpoint between the seventh diode D7 and the eighth diode D8 of the fourth bridge arm.
  • a positive output terminal and a negative output terminal of the first rectifier bridge 2101 are respectively connected to a positive output terminal and a negative output terminal of the second rectifier bridge 2102.
  • the three-phase grid and the rectifier circuit 210 may alternatively be connected in other manners, and are not limited to those shown in FIG. 2.
  • the circuit topology of the rectifier circuit 210 in FIG. 2 is a common circuit in the prior art.
  • the rectifier circuit of the present disclosure may not be limited to that shown in FIG. 2, and may be other topologies. Details are not described herein.
  • the inverter circuit 230 is connected to the DC link circuit 220, and includes three DC/AC conversion branch circuits: a first DC/AC conversion branch circuit, a second DC/AC conversion branch circuit, and a third DC/AC conversion branch circuit, which are configured to convert a DC voltage outputted by the DC link circuit into an AC voltage.
  • the inverter circuit 230 includes a first DC/AC conversion branch circuit 2301, a second DC/AC conversion branch circuit 2302, and a third DC/AC conversion branch circuit 2303 arranged in parallel between a positive output terminal and a negative output terminal of the DC link circuit 220.
  • the first DC/AC conversion branch circuit 2301 includes two switch devices: a first switch device T1 and a second switch device T2.
  • the second DC/AC conversion branch circuit 2302 includes two switch devices: a third switch device T3 and a fourth switch device T4.
  • the third DC/AC conversion branch circuit 2303 includes two switch devices: a fifth switch device T5 and a sixth switch device T6.
  • the main improvement of the circuit structure of the motor driver of the present invention lies in the DC link circuit, which is described in detail below.
  • the DC link circuit 220 is connected between the rectifier circuit 210 and the inverter circuit 230 for filtering the output voltage of the rectifier circuit.
  • the DC link circuit 220 includes a capacitor C1, a seventh switch device T7, a freewheeling diode D9, an inductor L1, and a rechargeable battery E.
  • a first end and a second end of the capacitor C1 are respectively connected to a positive output terminal and a negative output terminal of the rectifier circuit 210.
  • a collector of the seventh switch device T7 is connected to the first end of the capacitor C1.
  • An emitter of the seventh switch device T7 is connected to a negative electrode of the freewheeling diode D9.
  • a positive electrode of the freewheeling diode D9 is connected to the second end of the capacitor.
  • a first end of the inductor L1 is connected to a midpoint between the seventh switch device T7 and the freewheeling diode D9.
  • a second end of the inductor L1 is connected to a positive electrode of the rechargeable battery E, and a negative electrode of the rechargeable battery E is connected to the positive electrode of the freewheeling diode D9.
  • the rechargeable battery E is connected between the inductor L1 and the freewheeling diode D9 as an energy storage element. It may be understood that acapacitor may also be used as the energy storage element.
  • the motor driver does not include the energy storage element.
  • the second end of the inductor L1 and the positive electrode of the freewheeling diode D9 form two terminals, which may be connected to an external energy storage element.
  • an external power supply is connected between the two terminals, that is, the second end of the inductor L1 and the positive electrode of the freewheeling diode D9.
  • the first to the seventh switch devices each are composed of a fully controlled power transistor and a diode, and a positive electrode and a negative electrode of the diode are respectively connected to an emitter and a collector of the fully controlled power transistor.
  • the single fully controlled power transistor may be composed of a plurality of fully controlled power transistors in parallel, series, or mixed connection.
  • the single diode may be composed of a plurality of diodes in parallel, series, or mixed connection.
  • the fully controlled power transistor is, for example, an insulated gate bipolar transistor (IGBT) .
  • IGBT insulated gate bipolar transistor
  • the seventh switch device T7, the freewheeling diode D9, and the inductor L1 in the motor driver of the present invention may be used as a buck converter.
  • regeneration energy is applied to the capacitor of the DC link circuit, causing a rise of the DC voltage. If the voltage continuously rises and exceeds an allowable operating voltage, the DC capacitor may be damaged.
  • the switch device T7 when the DC voltage is greater than a protection voltage, the switch device T7 is turned on, so that the circuit composed of the seventh switch device T7, the freewheeling diode D9, and the inductor L1 can reduce the DC voltage.
  • the regeneration energy generated during the braking may be stored in the rechargeable battery E to effectively use the regeneration energy.
  • the rechargeable battery E may be directly used as the auxiliary power supply and the motor brake hold power supply.
  • a proper voltage may be selected for the rechargeable battery E as required, for example, a 24V rechargeable battery may be used.
  • a motor driving system is also shown in Fig. 2, comprising the motor driver 20described above and amotor M, in which the motor driver 20 is configured to drive the motor M; andin a case that the motor M operates in a regeneration braking mode, regeneration energy generated during braking of the motor M is stored in the rechargeable battery E of the motor driver.
  • the inductor is added to the DC link circuit, so that a braking resistor frequently used in the prior art is removed.
  • the braking resistor is usually large in size, generates a lot of heat, and requires high costs. Therefore, the circuit topology of the motor driver of the present invention has at least one of the following technical advantages.
  • the volume is reduced.
  • the braking resistor needs to dissipate the regeneration energy, and therefore requires a huge volume. Removing the resistor from the circuit topology of the present invention helps save the volume.
  • the rechargeable battery added to store the regeneration energy during the motor braking, which helps save the energy.
  • the rechargeable battery may be directly used as the auxiliary power supply and the motor brake hold power supply of the motor driver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

A motor driver and a motor driving system are disclosed. The motor driver (10, 20) includes a rectifier circuit (210), a DC link circuit (220), and an inverter circuit (230). The DC link circuit (220) is connected between the rectifier circuit (210) and the inverter circuit (230). The DC link circuit (220) includes a capacitor (C1), a seventh switch device (T1-T7), a freewheeling diode, and an inductor (L1). A first end and a second end of the capacitor (C1) are respectively connected to a positive output terminal and a negative output terminal of the rectifier circuit (210). A collector of the seventh switch device (T1-T7) is connected to the first end of the capacitor (C1), an emitter of the seventh switch device (T1-T7) is connected to a negative electrode of the freewheeling diode, and a positive electrode of the freewheeling diode is connected to the second end of the capacitor (C1). A first end of the inductor (L1) is connected to a midpoint between the seventh switch device (T1-T7) and the freewheeling diode, and a second end of the inductor (L1) and the positive electrode of the freewheeling diode are used as two terminals for connection to an energy storage element.

Description

MOTOR DRIVER AND MOTOR DRIVING SYSTEM TECHNICAL FIELD
The present disclosure generally relates to the technical field of circuits, and in particular, to a motor driver and a motor driving system.
BACKGROUND
Voltage frequency converters (VFC) are widely used in motor driving and servo industries. In most cases, a capacitor is used as a power decoupling device in a DC link circuit. During motor braking, regeneration energy is applied to the capacitor of the DC link circuit, causing a rise of a DC voltage. If the voltage continuously rises and exceeds an allowable operating voltage, the DCcapacitor may be damaged. Usually, a braking resistor is used to consume the regeneration energy to prevent damage to components caused by overvoltage, which, however, causes other problems such as heat dissipation and a large volume.
FIG. 1 is a topology of a motor driver 10 in the prior art. Ua, Ub, and Uc are three phases of a grid. Two single-phase diode rectifier bridges are used at an input terminal. One leg from each rectifier bridges share one grid phase to support a 1AC or 3AC power supply input. An intelligent power module (IPM) is used in a DC/AC converter to realize a compact design. A large braking resistor R1 is connected to the DC link through a power switch T7. If a DC voltage rises to a limitation, the power switch T7 will be activated, and R1 willabsorbs the overvoltage. A freewheeling diode D9 is added to eliminate a transient overvoltage caused by a stray inductance of the braking resistor R1.
Since the braking resistor R1 needs to dissipate the regeneration energy of the motor, the braking resistor needs to be configured with a relatively high power capacity and a relatively large volume. In addition, since the braking resistor is usually tailor-made, the cost is rather expensive. Above all, since a high dissipation power willgenerate a high temperature inside the resistor, even up to hundreds of degrees Celsius, a heat sink and a structure design of the entire system face great challenges.
SUMMARY
A brief overview of the present invention is given below to provide a basic understanding of certain aspects of the present invention. It should be understood that this summary is not an  exhaustive overview of the present invention. It is not intended to determine key or important parts of the present invention, nor is it intended to limit the scope of the present invention. The purpose is merely to present some concepts in a simplified form as a prelude to the more detailed description that is discussed later.
In view of the above, the present disclosure provides a motor driver capable of eliminating overvoltage damage.
An aspect of the present disclosure provides a motor driver. An input terminal of the motor driver is connected to a three-phase grid, and an output terminal of the motor driver is connected to a motor. The motor driver includes a rectifier circuit, a DC link circuit, and an inverter circuit. The rectifier circuit includes a first rectifier bridge and a second rectifier bridge. The inverter circuit includes a first DC/AC conversion branch circuit, a second DC/AC conversion branch circuit, and a third DC/AC conversion branch circuit arranged in parallel between a positive output terminal and a negative output terminal of the DC link circuit. The first DC/AC conversion branch circuit includes a first switch device and a second switch device, the second DC/AC conversion branch circuit includes a third switch device and a fourth switch device, and the third DC/AC conversion branch circuit includes a fifth switch device and a sixth switch device.
The DC link circuit is connected between the rectifier circuit and the inverter circuit. The DC link circuit includes a capacitor, a switch device, a freewheeling diode, and an inductor. A first end and a second end of the capacitor are respectively connected to a positive output terminal and a negative output terminal of the rectifier circuit. A collector of the seventh switch device is connected to the first end of the capacitor. An emitter of the seventh switch device is connected to a negative electrode of the freewheeling diode. A positive electrode of the freewheeling diode is connected to the second end of the capacitor. A first end of the inductor is connected to a midpoint between the seventh switch device and the freewheeling diode. A second end of the inductor and the positive electrode of the freewheeling diode are used as two terminals for connection to an energy storage element.
In this way, overvoltage damage to the capacitor can be prevented.
Optionally, in an example of the above aspect, the energy storage element is any oneof a rechargeable battery) , acapacitor arranged inside the motor driver, or an external power supply connected to the outside of the motor driver.
In this way, a proper energy storage element may be selected as required.
Optionally, in an example of the above aspect, a positive electrode of the rechargeable battery is connected to the second end of the inductor, and a negative electrode of the  rechargeable battery is connected to the positive electrode of the freewheeling diode.
In a case that the motor connected to the motor driver operates in a regeneration braking mode, regeneration energy generated during braking is stored in the rechargeable battery.
In this way, the regeneration energy generated during the braking may be stored in the rechargeable battery to effectively use the regeneration energy. In addition, for the driver requiring an external power supply as an auxiliary power supply and a motor brake hold power supply, the rechargeable battery may be directly used as the auxiliary power supply and the motor brake hold power supply.
Optionally, in an example of the above aspect, the first to seventh switch devices each include a fully controlled power transistor and a diode, and a positive electrode and a negative electrode of the diode are respectively connected to an emitter and a collector of the fully controlled power transistor.
Optionally, in an example of the above aspect, the fully controlled power transistor includes an insulated gate bipolar transistor (IGBT) .
Another aspect of the present disclosure provides a motor driving system, including the motor driver described above and amotor, and the motor driver is configured to drive the motor.
In a case that the motor operates in a regeneration braking mode, regeneration energy generated during braking of the motor is stored in the rechargeable battery of the motor driver.
In the circuit topology of the motor driver of the present invention, the inductor is added to the DC link circuit, so that a braking resistor frequently used in the prior art is removed. The braking resistor is usually large in size, generates a lot of heat, and requires high costs. Therefore, the technical solution of the present invention has at least one of the following technical advantages.
1. The heat sink design of the system is promoted, and the impact of the braking resistor on other temperature sensing components can be eliminated.
2. The volume is reduced. In the circuit topology of the prior art, the braking resistor needs to dissipate the regeneration energy, and therefore requires a huge volume. Removing the resistor from the circuit topology of the present invention helps save the volume.
3. The rechargeable battery added to store the regeneration energy during the motor braking, which helps save the energy. In addition, the rechargeable battery may be directly used as the auxiliary power supply and the motor brake hold power supply of the motor driver.
BRIEF DESCRIPTION OF THE DRAWINGS
Referring to the descriptions of the embodiments of the present invention in combination with the accompanying drawings, the foregoing and other objectives, features, and advantages of the present invention may be more easily understood. Components in the accompanying drawings are merely used for demonstrating the principle of the present invention. In the accompanying drawings, the same or similar technical features or components may be represented by using the same or similar reference numerals. In the accompanying drawings:
FIG. 1 is a circuit topology diagram of a motor driver in the prior art.
FIG. 2 is a circuit topology diagram of a motor driver according to an embodiment of the present disclosure.
Reference numerals:
10, 20: Motor driver                   Ua, Ub, and Uc: Three-phase grid
D1-D9: Diode                           R1: resistor
T1-T7: First to seventh switch device  210: Rectifier circuit
220: DC link circuit                   230: Inverter circuit
M:Motor                                2101: First rectifier bridge
2102:  Second rectifier bridge           2301, 2302, 2303: First to third DC/AC
                                       conversion branch circuit
L1: Inductor                           E: Rechargeable battery
C1: Capacitor
DETAILED DESCRIPTION
A subject described in this specification is discussed now with reference to exemplary implementations. It should be understood that discussion of the implementations is merely intended to make a person skilled in the art better understand and implement the subject described in this specification, and is not intended to limit the protection scope of the claims, the applicability, or examples. Changes may be made to the functions and arrangements of the discussed elements without departing from the protection scope of the content of the present disclosure. Various processes or components may be omitted, replaced, or added in each example according to requirements. For example, the described method may be performed according to a sequence different from the sequence described herein, and steps may be added, omitted, or combined. In addition, features described in some examples may also be  combined in other examples.
As used in this specification, the term "include" and variants thereof represent open terms, and means "include but is not limited to" . The term "based on" represents "at least partially based on" . The terms "one embodiment" and "an embodiment" represent "at least one embodiment" . The term "another embodiment" represents "at least one another embodiment" . The terms "first" , "second" , and the like may represent different objects or the same object. Other definitions may be includes explicitly or implicitly in the following. Unless otherwise clearly specified, the definition of one term is consistent in the entire specification.
In view of the above, the present invention provides a motor driver, which can resolve the above problems in the prior art.
FIG. 2 is an exemplary circuit topology of a motor driver 20 according to an embodiment of the present disclosure. As shown in FIG. 2, an input terminal of the motor driver 20 is connected to three phase Ua, Ub, and Uc of a three-phase grid, and an output terminal of the motor driver is connected to a motor M.
The motor driver 20 includes a rectifier circuit 210, a DC link circuit 220, and an inverter circuit 230.
The rectifier circuit 210 includes a first rectifier bridge 2101 and a second rectifier bridge 2102.
Specifically, the first rectifier bridge 2101 includes a first bridge arm and a second bridge arm. The first bridge arm and the second bridge arm are connected in parallel. The first bridge arm includes a first diode D1 and a second diode D2 connected in series, and the second bridge arm includes a third diode D3 and a fourth diode D4 connected in series. The second rectifier bridge 2102 includes a third bridge arm and a fourth bridge arm. The third bridge arm and the fourth bridge arm are connected in parallel. The third bridge arm includes a fifth diode D5 and a sixth diode D6 connected in series, and the fourth bridge arm includes a seventh diode D7 and an eighth diode D8 connected in series.
A phase-ainput terminal of the three-phase grid is connected to a midpoint between the first diode D1 and the second diode D2 of the first bridge arm. A phase-b input terminal of the three-phase grid is connected to a midpoint between the third diode D3 and the fourth diode D4 of the second bridge arm and a midpoint between the fifth diode D5 and the sixth diode D6 of the third bridge arm. A phase-c output terminal of the three-phase grid is connected to a midpoint between the seventh diode D7 and the eighth diode D8 of the fourth bridge arm. A positive output terminal and a negative output terminal of the first rectifier bridge 2101 are respectively connected to a positive output terminal and a negative output  terminal of the second rectifier bridge 2102.
It may be understood that the three-phase grid and the rectifier circuit 210 may alternatively be connected in other manners, and are not limited to those shown in FIG. 2.
The circuit topology of the rectifier circuit 210 in FIG. 2 is a common circuit in the prior art. The rectifier circuit of the present disclosure may not be limited to that shown in FIG. 2, and may be other topologies. Details are not described herein.
The inverter circuit 230 is connected to the DC link circuit 220, and includes three DC/AC conversion branch circuits: a first DC/AC conversion branch circuit, a second DC/AC conversion branch circuit, and a third DC/AC conversion branch circuit, which are configured to convert a DC voltage outputted by the DC link circuit into an AC voltage.
Specifically, the inverter circuit 230 includes a first DC/AC conversion branch circuit 2301, a second DC/AC conversion branch circuit 2302, and a third DC/AC conversion branch circuit 2303 arranged in parallel between a positive output terminal and a negative output terminal of the DC link circuit 220. The first DC/AC conversion branch circuit 2301 includes two switch devices: a first switch device T1 and a second switch device T2. The second DC/AC conversion branch circuit 2302 includes two switch devices: a third switch device T3 and a fourth switch device T4. The third DC/AC conversion branch circuit 2303 includes two switch devices: a fifth switch device T5 and a sixth switch device T6.
The main improvement of the circuit structure of the motor driver of the present invention lies in the DC link circuit, which is described in detail below.
The DC link circuit 220 is connected between the rectifier circuit 210 and the inverter circuit 230 for filtering the output voltage of the rectifier circuit.
Specifically, as shown in FIG. 2, the DC link circuit 220 includes a capacitor C1, a seventh switch device T7, a freewheeling diode D9, an inductor L1, and a rechargeable battery E. A first end and a second end of the capacitor C1 are respectively connected to a positive output terminal and a negative output terminal of the rectifier circuit 210. A collector of the seventh switch device T7 is connected to the first end of the capacitor C1. An emitter of the seventh switch device T7 is connected to a negative electrode of the freewheeling diode D9. A positive electrode of the freewheeling diode D9 is connected to the second end of the capacitor. A first end of the inductor L1 is connected to a midpoint between the seventh switch device T7 and the freewheeling diode D9. A second end of the inductor L1 is connected to a positive electrode of the rechargeable battery E, and a negative electrode of the rechargeable battery E is connected to the positive electrode of the freewheeling diode D9.
In FIG. 2, the rechargeable battery E is connected between the inductor L1 and the freewheeling diode D9 as an energy storage element. It may be understood that acapacitor may also be used as the energy storage element.
Alternately, the motor driver does not include the energy storage element. The second end of the inductor L1 and the positive electrode of the freewheeling diode D9 form two terminals, which may be connected to an external energy storage element. For example, during operation of the motor driver, an external power supply is connected between the two terminals, that is, the second end of the inductor L1 and the positive electrode of the freewheeling diode D9.
As shown in FIG. 2, the first to the seventh switch devices each are composed of a fully controlled power transistor and a diode, and a positive electrode and a negative electrode of the diode are respectively connected to an emitter and a collector of the fully controlled power transistor. In other examples of the present disclosure, the single fully controlled power transistor may be composed of a plurality of fully controlled power transistors in parallel, series, or mixed connection. Similarly, the single diode may be composed of a plurality of diodes in parallel, series, or mixed connection. In the present disclosure, the fully controlled power transistor is, for example, an insulated gate bipolar transistor (IGBT) . Those skilled in the art may understand that other types of power transistors may be used, which are not detailed herein.
When the motor operates in a regeneration braking mode, the seventh switch device T7, the freewheeling diode D9, and the inductor L1 in the motor driver of the present invention may be used as a buck converter. During the motor braking, regeneration energy is applied to the capacitor of the DC link circuit, causing a rise of the DC voltage. If the voltage continuously rises and exceeds an allowable operating voltage, the DC capacitor may be damaged. In the circuit topology using the buck converter in the motor driver of the present invention, when the DC voltage is greater than a protection voltage, the switch device T7 is turned on, so that the circuit composed of the seventh switch device T7, the freewheeling diode D9, and the inductor L1 can reduce the DC voltage.
If a rechargeable battery E is connected between the inductor and the diode, the regeneration energy generated during the braking may be stored in the rechargeable battery E to effectively use the regeneration energy. In addition, for a low-voltage servo driver requiring an external power supply as an auxiliary power supply and a motor brake hold power supply, the rechargeable battery E may be directly used as the auxiliary power supply and the motor brake hold power supply.
A proper voltage may be selected for the rechargeable battery E as required, for example, a 24V rechargeable battery may be used.
A motor driving system is also shown in Fig. 2, comprising the motor driver 20described above and amotor M, in which the motor driver 20 is configured to drive the motor M; andin a case that the motor M operates in a regeneration braking mode, regeneration energy generated during braking of the motor M is stored in the rechargeable battery E of the motor driver.
In the circuit topology of the motor driver of the present invention, the inductor is added to the DC link circuit, so that a braking resistor frequently used in the prior art is removed. The braking resistor is usually large in size, generates a lot of heat, and requires high costs. Therefore, the circuit topology of the motor driver of the present invention has at least one of the following technical advantages.
1. The heat sink design of the system is promoted, and the impact of the braking resistor on other temperature sensing components can be eliminated.
2. The volume is reduced. In the circuit topology of the prior art, the braking resistor needs to dissipate the regeneration energy, and therefore requires a huge volume. Removing the resistor from the circuit topology of the present invention helps save the volume.
3. The rechargeable battery added to store the regeneration energy during the motor braking, which helps save the energy. In addition, the rechargeable battery may be directly used as the auxiliary power supply and the motor brake hold power supply of the motor driver.
Exemplary embodiments are described above in combination with specific implementations illustrated in the accompanying drawings, but this does not represent all embodiments that may be implemented or fall within the protection scope of the claims. Aterm "exemplary" used in the entire specification means "used as an example, an instance, or an illustration" , and does not mean "preferred" or "superior" over other embodiments. To provide an understanding of the described technologies, the specific implementations include specific details. However, these technologies may be implemented without these specific details. In some instances, to avoid confusing the concept of the described embodiments, a well-known structure and apparatus are shown in a block diagram form.
The descriptions of the content of the present disclosure are provided to allow any person of ordinary skill in the art to implement or use the content of the present disclosure. For a person of ordinary skill in the art, various modifications on the content of the present disclosure are obvious. In addition, a general principle defined in this specification may be  applied to other variants without departing from the protection scope of the content of the present disclosure. Therefore, the content of the present disclosure is not limited to the examples and designs described in this specification, but is consistent with the widest range conforming to the principle and novelty disclosed in this specification.
The foregoing descriptions are merely preferred embodiments of the present invention, but are not intended to limit the present invention. Any modification, equivalent replacement, or improvement made within the spirit and principle of the present invention shall fall within the protection scope of the present invention.

Claims (6)

  1. A motor driver (20) , wherein an input terminal of the motor driver (20) is connected to a three-phase grid (Ua, Ub, Uc) , an output terminal of the motor driver (20) is connected to a motor (M) , the motor driver (20) comprises a rectifier circuit (210) , a DC link circuit (220) , and an inverter circuit (230) , the rectifier circuit (210) comprises a first rectifier bridge (2101) and a second rectifier bridge (2102) , the inverter circuit (230) comprises a first DC/AC conversion branch circuit (2301) , a second DC/AC conversion branch circuit (2302) , and a third DC/AC conversion branch circuit (2303) arranged in parallel between a positive output terminal and a negative output terminal of the DC link circuit (220) , the first DC/AC conversion branch circuit (2301) comprises a first switch device (T1) and a second switch device (T2) , the second DC/AC conversion branch circuit (2302) comprises a third switch device (T3) and a fourth switch device (T4) , and the third DC/AC conversion branch circuit (2303) comprises a fifth switch device (T5) and a sixth switch device (T6) , wherein
    the DC link circuit (220) is connected between the rectifier circuit (210) and the inverter circuit (230) , the DC link circuit (220) comprises a capacitor (C1) , a seventh switch device (T7) , a freewheeling diode (D9) , and an inductor (L1) , a first end and a second end of the capacitor (C1) are respectively connected to a positive output terminal and a negative output terminal of the rectifier circuit (210) , a collector of the seventh switch device (T7) is connected to the first end of the capacitor (C1) , an emitter of the seventh switch device (T7) is connected to a negative electrode of the freewheeling diode (D9) , a positive electrode of the freewheeling diode (D9) is connected to the second end of the capacitor (C1) , a first end of the inductor (L1) is connected to a midpoint between the seventh switch device (T7) and the freewheeling diode (D9) , and a second end of the inductor (L1) and the positive electrode of the freewheeling diode (D9) are used as two terminals for connection to an energy storage element.
  2. The motor driver (20) according to claim 1, wherein the energy storage element is any oneof below: a rechargeable battery (E) oracapacitor arranged inside the motor driver, or an external power supply connected to the outside of the motor driver.
  3. The motor driver (20) according to claim 2, wherein a positive electrode of the rechargeable battery (E) is connected to the second end of the inductor (L1) , and a negative electrode of the rechargeable battery (E) is connected to the positive electrode of the freewheeling diode (D9) ; and
    in a case that the motor connected to the motor driver (20) operates in a regeneration braking mode, regeneration energy generated during braking is stored in the rechargeable battery (E) .
  4. The motor driver (20) according to any of claims 1 to 3, wherein the first to seventh switch devices (T1, T2, T3, T4, T5, T6, and T7) each comprise a fully controlled power transistor and a diode, and a positive electrode and a negative electrode of the diode are respectively connected to an emitter and a collector of the fully controlled power transistor.
  5. The motor driver (20) according to claim 4, wherein the fully controlled power transistor is an insulated gate bipolar transistor (IGBT) .
  6. A motor driving system, comprising the motor driver according to any of claims 1 to 5and amotor, wherein the motor driver is configured to drive the motor; and
    in a case that the motor operates in a regeneration braking mode, regeneration energy generated during braking of the motor is stored in the rechargeable battery of the motor driver.
PCT/CN2022/128631 2022-10-31 2022-10-31 Motor driver and motor driving system WO2024092409A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128631 WO2024092409A1 (en) 2022-10-31 2022-10-31 Motor driver and motor driving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/128631 WO2024092409A1 (en) 2022-10-31 2022-10-31 Motor driver and motor driving system

Publications (1)

Publication Number Publication Date
WO2024092409A1 true WO2024092409A1 (en) 2024-05-10

Family

ID=90929302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128631 WO2024092409A1 (en) 2022-10-31 2022-10-31 Motor driver and motor driving system

Country Status (1)

Country Link
WO (1) WO2024092409A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217166A (en) * 1998-02-03 1999-08-10 Hitachi Ltd Control device for elevator
JP2003333891A (en) * 2002-05-10 2003-11-21 Hitachi Ltd Motor driver and power source used therefor and method for reducing capacity of power source facility of motor driver
CN101531317A (en) * 2009-04-10 2009-09-16 林清华 A new energy-saving device of elevator
JP2010124549A (en) * 2008-11-17 2010-06-03 Toshiba Corp Movable body
JP2016067172A (en) * 2014-09-26 2016-04-28 株式会社日立製作所 Vehicle power conversion apparatus and railway vehicle equipped with the same
JP2016201893A (en) * 2015-04-09 2016-12-01 アイシン精機株式会社 Interconnection system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11217166A (en) * 1998-02-03 1999-08-10 Hitachi Ltd Control device for elevator
JP2003333891A (en) * 2002-05-10 2003-11-21 Hitachi Ltd Motor driver and power source used therefor and method for reducing capacity of power source facility of motor driver
JP2010124549A (en) * 2008-11-17 2010-06-03 Toshiba Corp Movable body
CN101531317A (en) * 2009-04-10 2009-09-16 林清华 A new energy-saving device of elevator
JP2016067172A (en) * 2014-09-26 2016-04-28 株式会社日立製作所 Vehicle power conversion apparatus and railway vehicle equipped with the same
JP2016201893A (en) * 2015-04-09 2016-12-01 アイシン精機株式会社 Interconnection system

Similar Documents

Publication Publication Date Title
KR101234404B1 (en) Switchgear cell and converter circuit for switching a large number of voltage levels
JP5369922B2 (en) 3-level power converter
US9960708B2 (en) Apparatus and method for an active-switched inverter using multiple frequencies
JP5060147B2 (en) DC-DC converter
US7675192B2 (en) Active DC bus filter for fuel cell applications
CN102347702A (en) Highly efficient half-bridge dcac converter
CN112564049B (en) Fault shutdown control method of ANPC type three-level inverter
JP2015033217A (en) Semiconductor device and power converter
US8787055B2 (en) Inverter device
CN106329975B (en) Five LCU level conversion units
EP2768131A1 (en) Inverter device
JP2016119739A (en) Semiconductor device
WO2024092409A1 (en) Motor driver and motor driving system
Ertl et al. Active voltage balancing of DC-link electrolytic capacitors
JP7199043B2 (en) Power conversion system and virtual DC voltage generation circuit
JP2012170268A (en) Semiconductor switch
JP5355283B2 (en) DC-DC converter circuit
CN107546974B (en) Boost circuit and inverter topology with cascaded diode circuits
KR102349362B1 (en) Power converting apparatus
KR20160149454A (en) Multi-phase interleaved dc-dc converter
JP2001314081A (en) Ac-dc converter
WO2024040609A1 (en) Motor driver and motor driving system
WO2024092408A1 (en) Motor driver and motor driving system
CN114499178A (en) Four-quadrant output switching power supply
EP3086458B1 (en) Inverter circuit and method for producing inverter circuit