WO2024090663A1 - 친수성 및 소수성 표면처리된 금속 플레이트 - Google Patents

친수성 및 소수성 표면처리된 금속 플레이트 Download PDF

Info

Publication number
WO2024090663A1
WO2024090663A1 PCT/KR2022/019276 KR2022019276W WO2024090663A1 WO 2024090663 A1 WO2024090663 A1 WO 2024090663A1 KR 2022019276 W KR2022019276 W KR 2022019276W WO 2024090663 A1 WO2024090663 A1 WO 2024090663A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hydrophilic
plate
hydrophobic
metal plate
Prior art date
Application number
PCT/KR2022/019276
Other languages
English (en)
French (fr)
Inventor
이정원
김성재
이창훈
Original Assignee
조선대학교산학협력단
한림대학교 산학협력단
재단법인대구경북과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220138875A external-priority patent/KR20240058278A/ko
Priority claimed from KR1020220138877A external-priority patent/KR20240058280A/ko
Priority claimed from KR1020220138876A external-priority patent/KR20240058279A/ko
Priority claimed from KR1020220138878A external-priority patent/KR20240058281A/ko
Application filed by 조선대학교산학협력단, 한림대학교 산학협력단, 재단법인대구경북과학기술원 filed Critical 조선대학교산학협력단
Publication of WO2024090663A1 publication Critical patent/WO2024090663A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • C23C22/64Treatment of refractory metals or alloys based thereon

Definitions

  • the present invention relates to a metal plate with hydrophilic and hydrophobic surface treatment, and more specifically, to a metal plate with hydrophilic and hydrophobic surface treatment for imparting at least one of hydrophilicity and hydrophobicity to the surface of the plate.
  • Hydrophilic coating is a technology that physically or chemically attaches metals and non-metals or changes the surface properties in order to improve the aesthetics and durability of materials and parts or to provide functionality. It is used to physically or chemically attach metals and non-metals to provide functionality or to change surface properties.
  • hydrophilic coatings are used in various fields such as medical devices, automobiles, aerospace, marine, and optics.
  • Main products include human/medical, automotive, renewable energy, PCB, semiconductor/display, and optical films. , for mobile cases, etc.
  • Hydrophilic surface treatment technology including the above-mentioned hydrophilic coating, is a technology that can be applied to all industries, including semiconductor, display, automobile, machinery and industrial fields, and has a higher development rate compared to existing technologies.
  • this hydrophilic surface treatment technology has a wide range of applications as it can be applied to various industrial fields.
  • 3D industries such as contact with harmful gases and toxic liquids in the workplace and uncleanness of the workplace
  • the technology is relatively under development. Because this situation is inadequate, research and development is needed to improve the working environment and break away from being a polluting industry.
  • Patent Document 1 Registered Patent Publication No. 10-2326258 (2021.11.09.)
  • the purpose of the present invention to solve the above problems is to secure the hydrophilicity of the metal plate through etching and oxidation on the surface of the metal plate, so that it can be used in automobiles, new and renewable energy, PCB, semiconductors, displays, optics, optical films, mobile It provides metal plates with hydrophilic and hydrophobic surface treatment that can be used for cleaning, coating, and painting parts in various technical fields such as cases.
  • the purpose of the present invention to solve the above problems is to secure hydrophobicity through hydrophobic surface treatment on the surface of the metal plate, so that it can be used in application fields such as automobiles, aerospace, architecture and construction, marine, medical, and textiles.
  • the configuration of the present invention for achieving the above object includes a plate made of metal; and a hydrophilic surface layer formed to have hydrophilic properties through oxidation and etching of the surface of the plate.
  • the hydrophilic surface layer includes an etching layer formed on the surface of the plate by etching the plate by immersing it in an aqueous acid solution and then washing and drying the plate; and an oxide layer formed by oxidizing the etching layer by immersing it in an aqueous alkaline solution and then washing and drying the etch layer, wherein a titanium dioxide (TiO 2 ) layer having the hydrophilic property is formed on the surface of the oxidation layer.
  • TiO 2 titanium dioxide
  • the aqueous acid solution is at least one of hydrochloric acid, hydrofluoric acid, phosphoric acid, sulfuric acid, nitric acid, and acetic acid.
  • One may be characterized as an aqueous solution.
  • the aqueous alkaline solution includes sodium hydroxide, barium hydroxide, potassium hydroxide, calcium hydroxide, copper hydroxide, and ammonium hydroxide. It may be characterized as a solution containing at least one of hydroxide and iron hydroxide.
  • the titanium dioxide (TiO 2 ) layer is Ti + 4 H 2 O ⁇ Ti(OH) 3 + + (OH)- + 2 H 2 (dissolved), Ti(OH) 3 + It can be characterized as being formed through the chemical equation of + (OH)- ⁇ TiO 2 + 2 H 2 O (precipitation).
  • the configuration of the present invention for achieving the above object includes a plate made of metal; and a hydrophobic surface layer formed to have hydrophobicity by applying at least one of a polymer and a lubricant to the surface of the plate.
  • the hydrophobic surface layer includes a hydrophobic polymer layer having hydrophobicity by applying the polymer to the plate; and a lubricating surface layer having the lubricity by applying the lubricant to the hydrophobic polymer layer.
  • the hydrophobic surface layer may include a hydrophobic polymer layer having hydrophobicity by applying the polymer to the plate.
  • the hydrophobic surface layer may include a lubricating surface layer having the lubricity by applying the lubricant to the surface of the plate.
  • the configuration of the present invention for achieving the above object includes a plate made of metal; A hydrophilic surface layer formed to have hydrophilic properties through oxidation and etching of the surface of the plate; and a hydrophobic surface layer formed to have hydrophobicity by applying at least one of a polymer and a lubricant to the surface of the plate.
  • the plate may be made of titanium.
  • the hydrophilic surface layer includes an etching layer formed on the surface of the plate by etching the plate by immersing it in an aqueous acid solution and then washing and drying the plate; and an oxide layer formed by oxidizing the etching layer by immersing it in an aqueous alkaline solution and then washing and drying the etching layer. It may be characterized in that a titanium dioxide (TiO 2 ) layer having the hydrophilic property is formed on the surface of the oxidation layer. .
  • the aqueous acid solution is at least one of hydrochloric acid, hydrofluoric acid, phosphoric acid, sulfuric acid, nitric acid, and acetic acid.
  • One may be characterized as an aqueous solution.
  • the aqueous alkaline solution includes sodium hydroxide, barium hydroxide, potassium hydroxide, calcium hydroxide, copper hydroxide, and ammonium hydroxide. It may be characterized as a solution containing at least one of hydroxide and iron hydroxide.
  • the titanium dioxide (TiO 2 ) layer is Ti + 4 H 2 O ⁇ Ti(OH) 3 + + (OH)- + 2 H 2 (dissolved), Ti(OH) 3 + It can be characterized as being formed through the chemical equation of + (OH)- ⁇ TiO 2 + 2 H 2 O (precipitation).
  • the hydrophobic surface layer includes a hydrophobic polymer layer having hydrophobicity by applying the polymer to the plate; and a lubricating surface layer having the lubricity by applying the lubricant to the hydrophobic polymer layer.
  • the hydrophobic surface layer may include a hydrophobic polymer layer having hydrophobicity by applying the polymer to the plate.
  • the hydrophobic surface layer may include a lubricating surface layer having the lubricity by applying the lubricant to the surface of the plate.
  • the polymer is a fluorine resin such as polydimethylsiloxane (PDMS), polytetrafluoroethylene (PTFE), fluorinated ethylenepropyl copolymer (FEP), perfluoroalkoxy (PFA), HDFS ((HEPTADECAFLUORO- It may be characterized as one of 1,1,2,2-TETRAHYDRODECYL)-TRICHLOROSILANE) and PVDF (Polyvinylidene fluoride).
  • PDMS polydimethylsiloxane
  • PTFE polytetrafluoroethylene
  • FEP fluorinated ethylenepropyl copolymer
  • PFA perfluoroalkoxy
  • HDFS (HEPTADECAFLUORO- It may be characterized as one of 1,1,2,2-TETRAHYDRODECYL)-TRICHLOROSILANE) and PVDF (Polyvinylidene fluoride).
  • the lubricant is at least one of fluorinated lubricants (PFIE, PFPE, Krytox), low molecular weight fatty acids (C4, C6, C8, C10), polyunsaturated fatty acids (PUFA), and silicone oil. It may be characterized as including.
  • the effect of the present invention according to the above configuration is to secure hydrophilicity through etching and oxidation on the surface of the metal plate, so that it can be used in various fields such as automobiles, new and renewable energy, PCB, semiconductors, displays, optics, optical films, mobile cases, etc. It can be used for cleaning, coating, and painting parts in the technical field.
  • the effect of the present invention according to the above configuration can be utilized in application fields such as automobiles, aerospace, architecture and construction, marine, medical, and textiles by securing hydrophobicity through hydrophobic surface treatment on the surface of the metal plate. You can.
  • FIG. 1 is a cross-sectional view in one direction showing a hydrophilic surface layer formed on the surface of a metal plate treated with a hydrophilic surface according to a first embodiment of the present invention.
  • Figures 2 (a), (b), and (c) are conceptual diagrams showing the process of plate etching and oxidation in a hydrophilic surface-treated metal plate and a hydrophobic surface-treated metal plate according to the first and second embodiments of the present invention. am.
  • Figure 3 is a cross-sectional view in one direction showing a hydrophobic surface layer (hydrophobic polymer layer and lubricating surface layer) formed on the surface of a hydrophobic surface-treated metal plate according to a second embodiment of the present invention.
  • Figure 4 is a cross-sectional view in one direction showing a hydrophobic surface layer (hydrophobic polymer layer) formed on the surface of a metal plate treated with a hydrophobic surface according to the first modification of the second embodiment of the present invention.
  • a hydrophobic surface layer hydrophobic polymer layer
  • Figure 5 is a cross-sectional view in one direction showing a hydrophobic surface layer (lubricating surface layer) formed on the surface of a hydrophobic surface-treated metal plate according to a second modification of the second embodiment of the present invention.
  • Figure 6 is a cross-sectional view in one direction showing a hydrophobic surface layer (hydrophobic polymer layer and lubricating surface layer) formed on the hydrophilic surface layer formed on the surface of a metal plate treated with hydrophilic and hydrophobic surfaces according to a third embodiment of the present invention.
  • a hydrophobic surface layer hydrophobic polymer layer and lubricating surface layer
  • Figures 7 (a), (b), and (c) show the process of coating for hydrophobic surface treatment after the plate is etched and oxidized in a metal plate with hydrophilic and hydrophobic surface treatment according to the third embodiment of the present invention. It is a concept diagram.
  • Figure 8 is a cross-sectional view in one direction showing a hydrophobic surface layer (hydrophobic polymer layer) formed on the hydrophilic surface layer formed on the surface of a metal plate treated with hydrophilic and hydrophobic surfaces according to a third embodiment of the present invention.
  • a hydrophobic surface layer hydrophobic polymer layer
  • Figure 9 is a cross-sectional view in one direction showing a hydrophobic surface layer (lubricating surface layer) formed on the hydrophilic surface layer formed on the surface of a metal plate treated with hydrophilic and hydrophobic surfaces according to a third embodiment of the present invention.
  • a hydrophobic surface layer lubricating surface layer
  • Figures 10 (a), (b), and (c) show the process of coating for hydrophobic surface treatment after the plate is etched and oxidized in a metal plate with hydrophilic and hydrophobic surface treatment according to the third embodiment of the present invention. It is a concept diagram.
  • Figures 12 (a) and (b) are cross-sectional views in one direction showing the process of oxidizing a metal plate according to the first and third embodiments of the present invention.
  • Figures 14 (a), (b), and (c) are comparative diagrams comparing the results of biofilm formation through E. coli culture on the surface of a metal plate according to the third embodiment of the present invention.
  • Figure 15 shows a metal plate with nano coating, octanoic acid, epigallocatechin gallate (EGCG), and poloxamer coating layers added to the surface of the metal plate according to the third embodiment of the present invention. This is data verifying the ability to inhibit biofilm formation of antibiotic-resistant Staphylococcus aureus (Staphylococcus aureus).
  • Figure 16 is data verifying the ability to inhibit biofilm formation of Pseudomonas aeruginosa for a metal plate to which a nano coating and an octanoic acid coating layer were added to the surface of the metal plate according to the third embodiment of the present invention. .
  • One most preferred embodiment according to the present invention is a plate made of metal; A hydrophilic surface layer formed to have hydrophilic properties through oxidation and etching of the surface of the plate; and a hydrophobic surface layer formed to have hydrophobicity by applying at least one of a polymer and a lubricant to the surface of the plate.
  • the present invention can be used in various fields such as medical device (human body, medical), automobile, renewable energy, aerospace, marine, optics, semiconductor (including PCB), display, optics, and film fields. You can.
  • major products include human/medical use, automobiles, renewable energy, PCB, semiconductor/display, optical film, and mobile cases.
  • the present invention can be used in application fields such as automotive, aerospace, building and construction, marine, medical, and textile.
  • FIG. 1 is a cross-sectional view in one direction showing a hydrophilic surface layer formed on the surface of a metal plate treated with a hydrophilic surface according to a first embodiment of the present invention.
  • the metal plate 100 according to the first embodiment of the present invention includes a plate 110 and a hydrophilic surface layer 120.
  • the plate 110 is made of metal, and is preferably made of a material with particularly strong rigidity.
  • the plate 110 for this purpose is made of titanium alloy (TiAl6V4) or titanium.
  • the plate 110 has a plate shape with a predetermined thickness.
  • the hydrophilic surface layer 120 is formed to have hydrophilic properties through oxidation and etching on the surface of the plate 110.
  • the hydrophilic surface layer 120 is formed on one side of the plate 110.
  • the hydrophilic surface layer 120 includes an etching layer 121 and an oxidation layer 122 as shown in FIG. 1 .
  • Figures 2 (a), (b), and (c) are conceptual diagrams showing the process of plate etching and oxidation in the hydrophilic surface-treated metal plate and the hydrophobic surface-treated metal plate according to the first and second embodiments of the present invention. am.
  • the etch layer 121 is formed by chemically etching the plate 110 by immersion in an acid aqueous solution or physically etching it by blasting, then washing and drying the plate ( 110) is formed on the surface.
  • the etch layer 121 is etched so that one surface of the plate 110 is engulfed by an acid aqueous solution or blasting.
  • the aqueous acid solution used is a solution containing at least one of hydrochloric acid, hydrofluoric acid, phosphoric acid, sulfuric acid, nitric acid, and acetic acid. You can.
  • the above-mentioned blasting uses sand, dry-ice, silicon-carbide bead, alumina bead, glass bead, and plastic powder. At least one of the beads may be sprayed to physically etch the plate 110.
  • an etched layer 121 is formed on one side of the plate 110.
  • the formed etch layer 121 is formed as a micro (um) scale structural layer.
  • the etch layer 121 may have a surface roughness of 1 um to 10 um.
  • the oxidation layer 122 is formed by oxidizing the etching layer 121 by immersing it in an aqueous alkaline solution, followed by washing and drying.
  • the alkaline aqueous solution used is sodium hydroxide, barium hydroxide, potassium hydroxide, calcium hydroxide, copper hydroxide, ammonium hydroxide, and iron hydroxide ( It may be a solution containing at least one of iron hydroxide.
  • the oxide layer 122 (nanostructure) formed using sodium hydroxide is an oxide film with hydroxyl groups and has high adhesion to sustained-release materials. At the same time, it can maintain strong bonding power with sustained-release materials due to nano-roughness with a large adhesive area.
  • a hydrophilic titanium dioxide (TiO 2 ) layer is formed on the surface of the oxide layer 122.
  • titanium dioxide (TiO 2 ) layer is formed through [Chemical Equation 1] and [Chemical Equation 2] below.
  • an oxide layer 122 including a titanium dioxide (TiO 2 ) layer is formed.
  • the formed oxide layer 122 is formed as a nano-scale structural layer.
  • the oxide layer 122 may have a surface roughness of 10 nm to 100 nm.
  • Figure 3 is a cross-sectional view in one direction showing a hydrophobic surface layer (hydrophobic polymer layer and lubricating surface layer) formed on the surface of a hydrophobic surface-treated metal plate according to a second embodiment of the present invention.
  • the hydrophobic metal plate 100 includes a plate 110 and a hydrophobic surface layer 130.
  • the plate 110 is preferably made of metal and a material with strong rigidity.
  • the plate 110 for this purpose is made of titanium alloy (TiAl6V4) or titanium.
  • the plate 110 has a plate shape with a predetermined thickness.
  • the hydrophobic surface layer 130 is formed to have hydrophobicity by applying a polymer and a lubricant to the surface of the plate 110.
  • the hydrophobic surface layer 130 has hydrophobicity because a polymer is formed on the surface of the plate 110 and a lubricant is applied.
  • the hydrophobic surface layer 130 includes a hydrophobic polymer layer 131 and a lubricating surface layer 132, as shown in FIG. 3.
  • the hydrophobic polymer layer 131 has extremely hydrophobic properties because the polymer is applied to the hydrophilic surface layer 120.
  • the polymer is a fluorine resin such as polydimethylsiloxane (PDMS), polytetrafluoroethylene (PTFE), fluorinated ethylene propyl copolymer (FEP), perfluoroalkoxy (PFA), HDFS ((HEPTADECAFLUORO-1,1,2,2 -TETRAHYDRODECYL)-TRICHLOROSILANE) and PVDF (Polyvinylidene fluoride).
  • PDMS polydimethylsiloxane
  • PTFE polytetrafluoroethylene
  • FEP fluorinated ethylene propyl copolymer
  • PFA perfluoroalkoxy
  • HDFS (HEPTADECAFLUORO-1,1,2,2 -TETRAHYDRODECYL)-TRICHLOROSILANE)
  • PVDF Polyvinylidene fluoride
  • the lubricating surface layer 132 has lubricating properties by applying a lubricant to the hydrophobic polymer layer 131.
  • the lubricant does not have unpredictable toxicity because it is a bio-derived material or a material proven to be suitable for living organisms.
  • the lubricant is at least one of fluorine-based lubricants (PFIE, PFPE, Krytox), low-molecular-weight fatty acids (C4, C6, C8, C10), polyunsaturated fatty acids (PUFA), and silicone oil applied to the hydrophobic polymer layer 131.
  • PFIE fluorine-based lubricants
  • PFPE PFPE
  • Krytox low-molecular-weight fatty acids
  • C4, C6, C8, C10 low-molecular-weight fatty acids
  • PUFA polyunsaturated fatty acids
  • both the hydrophobic polymer layer 131 and the lubricating surface layer 132 are formed. It is possible to achieve an effect similar to that of the surface layer 130 to some extent.
  • Figure 4 is a cross-sectional view in one direction showing a hydrophobic surface layer (hydrophobic polymer layer) formed on the surface of a hydrophobic surface-treated metal plate according to the first modification of the second embodiment of the present invention.
  • Figure 5 is a cross-sectional view in one direction showing a hydrophobic surface layer (lubricating surface layer) formed on the surface of a hydrophobic surface-treated metal plate according to a second modification of the second embodiment of the present invention.
  • a hydrophobic polymer layer 131 provided in the hydrophobic surface layer 130 is formed on the surface of the plate 110 as shown in FIG. 4, or a lubricating surface layer 132 is applied as shown in FIG. 5. It can be.
  • a hydrophobic polymer layer 131 is formed on the surface of the plate 110.
  • FIG. 5 shows a lubricating surface layer 132 formed by applying it to the surface of the plate 110.
  • the metal plate 100 with hydrophilic and hydrophobic surface treatment according to the third embodiment of the present invention is the surface of the hydrophilic surface layer (specifically, the oxide layer) formed on the surface of the plate in the metal plate with hydrophilic and hydrophobic surface treatment according to the first embodiment.
  • a hydrophobic surface layer is further formed.
  • Figure 6 is a cross-sectional view in one direction showing a hydrophobic surface layer (hydrophobic polymer layer and lubricating surface layer) formed on the hydrophilic surface layer formed on the surface of a metal plate treated with hydrophilic and hydrophobic surfaces according to a third embodiment of the present invention.
  • a hydrophobic surface layer hydrophobic polymer layer and lubricating surface layer
  • the metal plate 100 with hydrophilic and hydrophobic surface treatment includes a plate 110, a hydrophilic surface layer 120, and a hydrophobic surface layer 130.
  • the plate 110 is made of titanium alloy (TiAl6V4) or titanium and may have a plate shape with a predetermined thickness.
  • the hydrophilic surface layer 120 is formed to have hydrophilic properties through oxidation and etching of the surface of the plate 110.
  • the hydrophilic surface layer 120 is formed by chemically etching the plate 110 by immersion in an aqueous acid solution or physically etching it using blasting, followed by washing and drying, and forming an etching layer 121 on the surface of the plate 110.
  • the etching layer 121 is oxidized by immersing it in an aqueous alkaline solution, and then includes an oxide layer 122 formed through washing and drying, and a hydrophilic titanium dioxide (TiO 2 ) layer is formed on the surface of the oxide layer 122.
  • hydrophilic surface layer 120 described above is substantially the same as the hydrophilic surface layer 120 according to the first embodiment, the above-described description will be referred to.
  • the hydrophobic surface layer 130 has extremely hydrophobic and lubricant properties because a polymer for extremely hydrophobic treatment is formed on the surface of the hydrophilic surface layer 120 and a lubricant for lubricity treatment is applied.
  • the hydrophobic surface layer 130 includes a hydrophobic polymer layer 131 and a lubricating surface layer 132, as shown in FIG. 6.
  • the hydrophobic polymer layer 131 has extremely hydrophobic properties because at least one of the polymers is applied to the hydrophilic surface layer 120.
  • the polymer is a fluorine resin such as polydimethylsiloxane (PDMS), polytetrafluoroethylene (PTFE), fluorinated ethylene propyl copolymer (FEP), perfluoroalkoxy (PFA), HDFS ((HEPTADECAFLUORO-1,1,2,2 -TETRAHYDRODECYL)-TRICHLOROSILANE) and PVDF (Polyvinylidene fluoride).
  • PDMS polydimethylsiloxane
  • PTFE polytetrafluoroethylene
  • FEP fluorinated ethylene propyl copolymer
  • PFA perfluoroalkoxy
  • HDFS (HEPTADECAFLUORO-1,1,2,2 -TETRAHYDRODECYL)-TRICHLOROSILANE)
  • PVDF Polyvinylidene fluoride
  • the lubricating surface layer 132 has lubricating properties by applying a lubricant to the hydrophobic polymer layer 131.
  • the lubricant does not have unpredictable toxicity because it is a bio-derived material or a material proven to be suitable for living organisms.
  • the lubricant is at least one of fluorine-based lubricants (PFIE, PFPE, Krytox), low-molecular-weight fatty acids (C4, C6, C8, C10), polyunsaturated fatty acids (PUFA), and silicone oil applied to the hydrophobic polymer layer 131.
  • PFIE fluorine-based lubricants
  • PFPE PFPE
  • Krytox low-molecular-weight fatty acids
  • C4, C6, C8, C10 low-molecular-weight fatty acids
  • PUFA polyunsaturated fatty acids
  • Figures 7 (a), (b), and (c) show the process of coating for hydrophobic surface treatment after the plate is etched and oxidized in a metal plate with hydrophilic and hydrophobic surface treatment according to the third embodiment of the present invention. It is a concept diagram.
  • the metal plate 100 with the hydrophilic and hydrophobic surface treatment according to the third embodiment of the present invention having the above structure has the surface of the plate 110 shown in (a) of FIG. 7 through etching and oxidation.
  • a hydrophilic surface layer 120 having a predetermined roughness is formed, and a polymer is formed on the surface of the hydrophilic surface layer 120 and coated with a lubricant to form a hydrophobic surface layer 130 shown in (c) of FIG. 7. ) is formed.
  • both the hydrophobic polymer layer 131 and the lubricating surface layer 132 are formed. It is possible to achieve an effect similar to that of the hydrophobic surface layer 130 to some extent.
  • a hydrophobic polymer layer 131 provided in the hydrophobic surface layer 130 may be formed on the surface of the hydrophilic surface layer 120, or a lubricating surface layer 132 may be applied.
  • Figure 8 is a cross-sectional view in one direction showing a hydrophobic surface layer (hydrophobic polymer layer) formed on the hydrophilic surface layer formed on the surface of a metal plate treated with hydrophilic and hydrophobic surfaces according to a third embodiment of the present invention.
  • a hydrophobic surface layer hydrophobic polymer layer
  • FIG. 8 shows that only the hydrophobic polymer layer 131 is formed on the surface of the oxide layer 122 included in the hydrophilic surface layer 120.
  • Figure 9 is a cross-sectional view in one direction showing a hydrophobic surface layer (lubricating surface layer) formed on the hydrophilic surface layer formed on the surface of a metal plate treated with hydrophilic and hydrophobic surfaces according to a third embodiment of the present invention.
  • a hydrophobic surface layer lubricating surface layer
  • FIG. 9 shows a lubricating surface layer 132 formed by applying it to the surface of the oxide layer 122 included in the hydrophilic surface layer 120.
  • Figures 10 (a), (b), and (c) show the process of coating for hydrophobic surface treatment after the plate is etched and oxidized in a metal plate with hydrophilic and hydrophobic surface treatment according to the third embodiment of the present invention. It is a concept diagram.
  • the hydrophilic and hydrophobic metal plate 100 according to the third embodiment of the present invention having the above structure is formed by etching and oxidizing the surface of the plate 110 shown in (a) of FIG. 10 to (b) of FIG. 10. As shown, a hydrophilic surface layer 120 having a predetermined roughness is formed, and a polymer is formed on the surface of the hydrophilic surface layer 120 and coated with a lubricant to form the hydrophobic surface layer 130 shown in (c) of FIG. 10. do.
  • both the hydrophobic polymer layer 131 and the lubricating surface layer 132 are formed. It is possible to achieve an effect similar to that of the hydrophobic surface layer 130 to some extent.
  • the surface roughness of the etch layer 121 goes from the state shown in (a) and (b) of Figure 11 to the state shown in (c) and (d) of Figure 11 to (e) and (f) of Figure 11. It is formed as shown in .
  • the resulting etch layer 121 has a surface roughness of 1 ⁇ m to 10 ⁇ m.
  • Figures 12 (a) and (b) are cross-sectional views in one direction showing the process of oxidizing a metal plate according to the first and third embodiments of the present invention.
  • the oxide layer 122 shown in FIG. 12(b) may be formed by etching the surface of the plate 110 shown in FIG. 12(a).
  • the surface roughness of the oxide layer 122 is formed from the state shown in Figures 13 (a) and (b) to the state shown in Figures 13 (c) and (d).
  • Figures 14 (a), (b), and (c) are comparative diagrams comparing the results of biofilm formation through E. coli culture on the surface of a metal plate according to the third embodiment of the present invention.
  • Figure 14 (a) shows a metal specimen in an E. coli culture test tube
  • Figure 14 (b) is a photograph of biofilm (red arrow) formation
  • Figure 14 (c) is a quantification graph by biofilm extraction staining. indicates.
  • Figure 15 shows a metal plate with nano coating, octanoic acid, epigallocatechin gallate (EGCG), and poloxamer coating layers added to the surface of the metal plate according to the third embodiment of the present invention. This is data verifying the ability to inhibit biofilm formation of antibiotic-resistant Staphylococcus aureus (Staphylococcus aureus).
  • P. Aeruginosa Pseudomonas aeruginosa
  • a metal surface without surface treatment Bare
  • nano-coated metal surface Na
  • Micro micro/nano-coated metal surface
  • Nano+HDFS nanocoating and polymer
  • Micro/nano micro/nanocoating
  • HDFS polymer
  • Figure 16 is data verifying the ability to inhibit biofilm formation of Pseudomonas aeruginosa for a metal plate to which a nano coating and an octanoic acid coating layer were added to the surface of the metal plate according to the third embodiment of the present invention. .
  • S. Aureus (Staphylococcus aureus), as a microorganism different from the previously tested E. coli, is shown on a metal surface without surface treatment (Bare), a nano-coated metal surface (Nano), and a micro/nano-coated metal surface (Micro).
  • the present invention as described above is a method for treating the surface of a plate to make it hydrophilic by etching and oxidizing it to give it a nanostructure. It uses an aqueous solution oxidation treatment containing sodium hydroxide, potassium hydroxide, etc. to produce a fine surface of 10 nm to 100 nm. Methods for manufacturing structures can be used, and unlike conventional techniques, surface treatment is possible without being restricted by complex surface shapes such as shadow areas.
  • the nanostructure formed using sodium hydroxide is an oxide film with hydroxyl groups and has high adhesion to the sustained-release material layer that can be added to the hydrophobic surface layer. At the same time, it has a strong bonding force with the sustained-release material layer due to the nano roughness with a large adhesive area. can be maintained.
  • the bonding strength can be further doubled by using sulfuric acid as a pretreatment to form the surface of the plate into a micro/nano structure.
  • the surface of the plate produced through the glycolysis process has strong hydrophilic properties (TiO 2 layer), it has the advantage of not requiring a separate plasma process to impart hydroxyl groups.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은 금속으로 이루어진 플레이트, 플레이트의 표면에 대한 산화 및 식각을 통해 친수성을 가지도록 형성되는 친수성 표면층 및 플레이트의 표면에 고분자 및 윤활제 중 적어도 어느 하나를 적용시켜 소수성을 가지도록 형성되는 소수성 표면층을 포함하는 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트를 제공한다.

Description

친수성 및 소수성 표면처리된 금속 플레이트
본 발명은 친수성 및 소수성 표면처리된 금속 플레이트에 관한 것으로, 보다 상세하게는 플레이트의 표면에 친수성 및 소수성 중 적어도 어느 하나를 부여하기 위한 친수성 및 소수성 표면처리된 금속 플레이트에 관한 것이다.
친수성 코팅은 소재·부품의 미관 및 내구성을 개선시키거나 기능성을 부여하기 위하여 금속 및 비금속을 물리·화학적으로 부착시키거나 표면의 특성을 변화시키는 기술로서, 소재·부품의 미관 및 내구성을 개선시키거나 기능성을 부여하기 위하여 금속 및 비금속을 물리·화학적으로 부착시키거나 표면의 특성을 변화시키기 위해 사용된다.
구체적으로 친수성 코팅은 의료기기, 자동차, 항공우주, 해양, 광학 등 다양한 분야에 활용되며, 주요 제품으로는 인체·의료용, 자동차용, 신재생에너지용, PCB용, 반도체·디스플레이용, 광학필름용, 모바일 케이스용 등이 있다.
상기한 친수성 코팅을 포함한 친수성 표면처리기술은 반도체, 디스플레이, 자동차, 기계·산업 분야 등 전 산업에 적용 가능한 기술로서, 기존의 기술대비 높은 발전 속도를 가진다.
이러한 친수성 표면처리기술은 상기한 바와 같이 다양한 산업분야에 적용이 가능함에 따라 적용분야가 광범위하나, 현재 작업장의 유해가스 및 유독액의 접촉, 작업장의 불결함 등 3D업종에 적용되기 때문에 상대적으로 기술개발이 미진한 상황이므로 작업환경의 개선과 공해업종으로서의 탈피를 위한 연구개발이 필요한 실정이다.
(특허문헌 1) 등록특허공보 제10- 2326258호(2021.11.09.)
상기와 같은 문제를 해결하기 위한 본 발명의 목적은 금속 플레이트의 표면에 대한 식각 및 산화를 통해 금속 플레이트의 친수성을 확보하여 자동차, 신재생에너지, PCB, 반도체, 디스플레이, 광학, 광학용 필름, 모바일 케이스 등과 같이 다양한 기술분야의 부품에 대한 세정, 코팅, 도장 등에 활용할 수 있는 친수성 및 소수성 표면처리된 금속 플레이트를 제공하는 것이다.
또한, 상기와 같은 문제를 해결하기 위한 본 발명의 목적은 금속 플레이트의 표면에 대한 소수성 표면처리를 통하여 소수성을 확보함에 따라 자동차, 항공우주, 건축 및 건설, 해양, 의료 및 섬유와 같은 응용 분야에 적용되는 친수성 및 소수성 표면처리된 금속 플레이트를 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 금속으로 이루어진 플레이트; 및 상기 플레이트의 표면에 대한 산화 및 식각을 통해 친수성을 가지도록 형성되는 친수성 표면층;을 포함하는 것을 특징으로 하는 친수성 표면처리된 금속 플레이트를 제공한다.
본 발명의 실시예에 있어서, 상기 친수성 표면층은, 상기 플레이트를 산 수용액에 침지하여 식각시킨 후 세척 및 건조를 통해 상기 플레이트의 표면에 형성된 식각층; 및 상기 식각층을 알칼리 수용액에 침지하여 산화시킨 후 세척 및 건조를 통해 형성된 산화층;을 포함하고, 상기 산화층의 표면에는 상기 친수성을 가지는 이산화티타늄(TiO2)층이 형성되는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 산 수용액은 염산(hydrochloric acid), 불산(hydrofluoric acid), 인산(phosphoric acid), 황산(sulfuric acid), 질산(nitric acid) 및 아세트산(acetic acid) 중 적어도 어느 하나가 수용된 용액인 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 알칼리 수용액은 수산화나트륨(sodium hydroxide), 수산화바륨(barium hydroxide), 수산화칼륨(potassium hydroxide), 수산화칼슘(calcium hydroxide), 수산화구리(copper hydroxide), 수산화암모늄(ammonium hydroxide), 수산화철(iron hydroxide) 중 적어도 어느 하나가 수용된 용액인 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 이산화티타늄(TiO2)층은, Ti + 4 H2O → Ti(OH)3+ + (OH)- + 2 H2 (용해), Ti(OH)3+ + (OH)- → TiO2 + 2 H2O (침전)의 화학반응식을 통해 형성되는 것을 특징으로 할 수 있다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명의 구성은 금속으로 이루어진 플레이트; 및 상기 플레이트의 표면에 고분자 및 윤활제 중 적어도 어느 하나를 적용시켜 소수성을 가지도록 형성되는 소수성 표면층;을 포함하는 것을 특징으로 하는 소수성 표면처리된 금속 플레이트를 제공한다.
본 발명의 실시예에 있어서, 상기 소수성 표면층은, 상기 고분자가 상기 플레이트에 도포되어 소수성을 가지는 소수성 고분자층; 및 상기 윤활제가 상기 소수성 고분자층에 도포되어 상기 윤활성을 가지는 윤활 표면층;을 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 소수성 표면층은, 상기 고분자가 상기 플레이트에 도포되어 소수성을 가지는 소수성 고분자층;을 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 소수성 표면층은, 상기 윤활제가 상기 플레이트의 표면에 도포되어 상기 윤활성을 가지는 윤활 표면층;을 포함하는 것을 특징으로 할 수 있다.
또한, 상기와 같은 목적을 달성하기 위한 본 발명의 구성은 금속으로 이루어진 플레이트; 상기 플레이트의 표면에 대한 산화 및 식각을 통해 친수성을 가지도록 형성되는 친수성 표면층; 및 상기 플레이트의 표면에 고분자 및 윤활제 중 적어도 어느 하나를 적용시켜 소수성을 가지도록 형성되는 소수성 표면층;을 포함하는 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트를 제공한다.
본 발명의 실시예에 있어서, 상기 플레이트는 티타늄(titanium)으로 이루어진 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 친수성 표면층은, 상기 플레이트를 산 수용액에 침지하여 식각시킨 후 세척 및 건조를 통해 상기 플레이트의 표면에 형성된 식각층; 및 상기 식각층을 알칼리 수용액에 침지하여 산화시킨 후 세척 및 건조를 통해 형성된 산화층;을 포함하고, 상기 산화층의 표면에는 상기 친수성을 가지는 이산화티타늄(TiO2)층이 형성되는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 산 수용액은 염산(hydrochloric acid), 불산(hydrofluoric acid), 인산(phosphoric acid), 황산(sulfuric acid), 질산(nitric acid) 및 아세트산(acetic acid) 중 적어도 어느 하나가 수용된 용액인 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 알칼리 수용액은 수산화나트륨(sodium hydroxide), 수산화바륨(barium hydroxide), 수산화칼륨(potassium hydroxide), 수산화칼슘(calcium hydroxide), 수산화구리(copper hydroxide), 수산화암모늄(ammonium hydroxide), 수산화철(iron hydroxide) 중 적어도 어느 하나가 수용된 용액인 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 이산화티타늄(TiO2)층은, Ti + 4 H2O → Ti(OH)3+ + (OH)- + 2 H2 (용해), Ti(OH)3+ + (OH)- → TiO2 + 2 H2O (침전)의 화학반응식을 통해 형성되는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 소수성 표면층은, 상기 고분자가 상기 플레이트에 도포되어 소수성을 가지는 소수성 고분자층; 및 상기 윤활제가 상기 소수성 고분자층에 도포되어 상기 윤활성을 가지는 윤활 표면층;을 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 소수성 표면층은, 상기 고분자가 상기 플레이트에 도포되어 소수성을 가지는 소수성 고분자층;을 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 소수성 표면층은, 상기 윤활제가 상기 플레이트의 표면에 도포되어 상기 윤활성을 가지는 윤활 표면층;을 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 고분자는 불소계수지로서 폴리디메틸실록산(PDMS), 폴리테트라플루오르에틸렌(PTFE), 불화 에틸렌프로필 코폴리머(FEP), 퍼플루오르알콕시(PFA), HDFS((HEPTADECAFLUORO-1,1,2,2-TETRAHYDRODECYL)-TRICHLOROSILANE) 및 PVDF(Polyvinylidene fluoride) 중 어느 하나인 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 윤활제는 불소계윤활유(PFIE, PFPE, Krytox), 저분자 지방산(C4, C6, C8, C10), 다불포화 지방산(PUFA, polyunsaturated fatty acid) 및 실리콘 오일 중 적어도 하나를 포함하는 것을 특징으로 할 수 있다.
상기와 같은 구성에 따르는 본 발명의 효과는, 금속 플레이트의 표면에 대한 식각 및 산화를 통하여 친수성을 확보하여 자동차, 신재생에너지, PCB, 반도체, 디스플레이, 광학, 광학용 필름, 모바일 케이스 등과 같이 다양한 기술분야의 부품에 대한 세정, 코팅, 도장 등에 활용할 수 있다.
또한, 상기와 같은 구성에 따르는 본 발명의 효과는, 금속 플레이트의 표면에 대한 소수성 표면처리를 통하여 소수성을 확보함에 따라 자동차, 항공우주, 건축 및 건설, 해양, 의료 및 섬유와 같은 응용 분야에 활용할 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 제1 실시예에 따른 친수성 표면처리된 금속 플레이트의 표면에 형성되는 친수성 표면층을 나타낸 일 방향에서의 단면도이다.
도 2의 (a), (b), (c)는 본 발명의 제1, 2 실시예에 따른 친수성 표면처리된 금속 플레이트 및 소수성 표면처리된 금속 플레이트에서 플레이트가 식각 및 산화되는 과정을 나타낸 개념도이다.
도 3은 본 발명의 제2 실시예에 따른 소수성 표면처리된 금속 플레이트의 표면에 형성되는 소수성 표면층(소수성 고분자층 및 윤활 표면층)을 나타낸 일 방향에서의 단면도이다.
도 4는 본 발명의 제2 실시예의 제1 변형예에 따른 소수성 표면처리된 금속 플레이트의 표면에 형성되는 소수성 표면층(소수성 고분자층)을 나타낸 일 방향에서의 단면도이다.
도 5는 본 발명의 제2 실시예의 제2 변형예에 따른 소수성 표면처리된 금속 플레이트의 표면에 형성되는 소수성 표면층(윤활 표면층)을 나타낸 일 방향에서의 단면도이다.
도 6은 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트의 표면에 형성되는 친수성 표면층에 소수성 표면층(소수성 고분자층 및 윤활 표면층)이 형성된 것을 나타낸 일 방향에서의 단면도이다.
도 7의 (a), (b), (c)는 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트에서 플레이트가 식각 및 산화된 후 소수성 표면처리를 위한 코팅되는 과정을 나타낸 개념도이다.
도 8은 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트의 표면에 형성되는 친수성 표면층에 소수성 표면층(소수성 고분자층)이 형성된 것을 나타낸 일 방향에서의 단면도이다.
도 9는 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트의 표면에 형성되는 친수성 표면층에 소수성 표면층(윤활 표면층)이 형성된 것을 나타낸 일 방향에서의 단면도이다.
도 10의 (a), (b), (c)는 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트에서 플레이트가 식각 및 산화된 후 소수성 표면처리를 위한 코팅되는 과정을 나타낸 개념도이다.
도 11의 (a), (b), (c), (d), (e), (f)는 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트에서 플레이트의 표면에 황산 식각을 통한 마이크로 구조 형성 이후 수산화나트륨 수용액 산화를 통한 마이크로/나노 계층구조 형성 결과를 전자현미경(FE-SEM)으로 관찰한 이미지이다.
도 12의 (a), (b)는 본 발명의 제1, 3 실시예에 따른 금속 플레이트에서 플레이트를 산화 처리하는 과정을 나타낸 일 방향에서의 단면도이다.
도 13의 (a), (b), (c), (d)는 본 발명의 제3 실시예에 따른 금속 플레이트의 표면에 수산화나트륨 산화공정을 통한 나노구조 형성 후 전자현미경(FE-SEM)으로 관찰한 이미지이다.
도 14의 (a), (b), (c)는 본 발명의 제3 실시예에 따른 금속 플레이트의 표면에 대장균 (E.coli) 배양을 통한 바이오필름이 형성된 결과를 비교한 비교도이다.
도 15는 본 발명의 제3 실시예에 따른 금속 플레이트의 표면에 나노(Nano) 코팅, 옥탄산(Octanoic Acid), 에피갈로카테킨 갈레이트(EGCG) 및 폴록사머(Poloxamer) 코팅층을 추가한 금속판에 대하여 항생제 저항성 황색 포도상구균(스타필로코커스 아우레우스)의 생체막 형성 저해능 검증 데이터이다.
도 16은 본 발명의 제3 실시예에 따른 금속 플레이트의 표면에 나노(Nano) 코팅, 옥탄산(Octanoic Acid) 코팅층을 추가한 금속판에 대하여 녹농균(슈도모나스 에루지노사)의 생체막 형성 저해능 검증 데이터이다.
본 발명에 따른 가장 바람직한 일 실시예는, 금속으로 이루어진 플레이트; 상기 플레이트의 표면에 대한 산화 및 식각을 통해 친수성을 가지도록 형성되는 친수성 표면층; 및 상기 플레이트의 표면에 고분자 및 윤활제 중 적어도 어느 하나를 적용시켜 소수성을 가지도록 형성되는 소수성 표면층;을 포함하는 것을 특징으로 한다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
본 발명은 의료기기(인체, 의료용) 분야, 자동차 분야, 신재생에너지 분야, 항공우주, 해양 분야, 광학 분야, 반도체(PCB 포함) 분야, 디스플레이 분야, 광학 분야, 필름 분야 등 다양한 분야에 활용될 수 있다.
구체적으로 주요 제품으로는 인체·의료용, 자동차용, 신재생에너지용, PCB용, 반도체·디스플레이용, 광학필름용, 모바일 케이스용 등에 활용이 가능하다.
또한, 본 발명은 자동차, 항공우주, 건축 및 건설, 해양, 의료 및 섬유와 같은 응용 분야에 활용될 수 있다.
1. 제1 실시예(친수성 표면처리)
이하, 도 1 내지 도 2를 참조하여 본 발명의 제1 실시예에 따른 친수성 표면처리된 금속 플레이트를 설명하도록 한다.
도 1은 본 발명의 제1 실시예에 따른 친수성 표면처리된 금속 플레이트의 표면에 형성되는 친수성 표면층을 나타낸 일 방향에서의 단면도이다.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 금속 플레이트(100)는 플레이트(110) 및 친수성 표면층(120)을 포함한다.
플레이트(110)는 금속으로 이루어지고, 특히 강한 강성을 가진 재질로 이루어지는 것이 바람직하다.
이를 위한 플레이트(110)는 티타늄 합금 (titanium alloy, TiAl6V4) 또는 티타늄(titanium)으로 이루어진다.
또한, 플레이트(110)는 소정의 두께를 가지는 판형상을 가진다.
도 1을 참조하면, 친수성 표면층(120)은 플레이트(110)의 표면에 대한 산화 및 식각을 통해 친수성을 가지도록 형성된다.
이때, 친수성 표면층(120)는 플레이트(110)의 일면에 형성된다.
상기한 친수성 표면층(120)은 도 1에 도시된 바와 같이 식각층(121) 및 산화층(122)을 포함한다.
도 2의 (a), (b), (c)는 본 발명의 제1, 2 실시예에 따른 친수성 표면처리된 금속 플레이 및 소수성 표면처리된 금속 플레이트에서 플레이트가 식각 및 산화되는 과정을 나타낸 개념도이다.
도 2의 (a), (b)를 참조하면, 식각층(121)은 플레이트(110)를 산 수용액 침지를 통한 화학적 식각 또는 블라스팅(blasting)을 이용한 물리적 식각시킨 후 세척 및 건조를 통해 플레이트(110)의 표면에 형성된다.
즉, 식각층(121)은 산 수용액 또는 블라스팅에 의해 플레이트(110)의 일면이 함입되도록 식각된다.
이때, 사용되는 산 수용액은 염산(hydrochloric acid), 불산(hydrofluoric acid), 인산(phosphoric acid), 황산(sulfuric acid), 질산(nitric acid) 및 아세트산(acetic acid) 중 적어도 어느 하나가 수용된 용액일 수 있다.
한편, 전술한 블라스팅(blasting)은 모래(sand), 드라이아이스(dry-ice), 탄화규소 분말(silicone-carbide bead), 알루미나 분말(alumina bead), 유리분말(glass bead) 및 플라스틱 분말(plastic bead) 중 적어도 어느 하나가 분사되어 플레이트(110)를 물리적으로 식각할 수 있다.
이후, 식각된 플레이트(110)의 일면을 세척한 후 기설정된 시간 동안 건조시키면, 플레이트(110)의 일면에 식각층(121)이 형성된다.
형성된 식각층(121)은 마이크로(um) 스케일의 구조층으로 형성되는데, 보다 상세하게 식각층(121)은 1um 내지 10um의 표면거칠기를 가질 수 있다.
도 2의 (b), (c)를 참조하면, 산화층(122)은 식각층(121)을 알칼리 수용액에 침지하여 산화시킨 후 세척 및 건조를 통해 형성된다.
이때, 사용되는 알칼리 수용액은 수산화나트륨(sodium hydroxide), 수산화바륨(barium hydroxide), 수산화칼륨(potassium hydroxide), 수산화칼슘(calcium hydroxide), 수산화구리(copper hydroxide), 수산화암모늄(ammonium hydroxide), 수산화철(iron hydroxide) 중 적어도 어느 하나가 수용된 용액일 수 있다.
이처럼 수산화나트륨을 이용하여 형성된 산화층(122)(나노구조체)는 수산화기를 가지는 산화피막으로써 서방형 물질과 높은 접착력을 가진다. 이와 동시에 접착 면적이 넓은 나노거칠기로 인해 서방형 물질과 강력한 결합력을 유지해 줄 수 있다.
위와 같은 알칼리 수용액으로 식각층(121)의 표면을 산화시키는 과정에서, 산화층(122)의 표면에는 친수성을 가지는 이산화티타늄(TiO2)층이 형성된다.
구체적으로 이산화티타늄(TiO2)층은, 하기의 [화학반응식 1], [화학반응식 2]를 통해 형성된다.
[화학반응식 1]
Ti + 4 H2O → Ti(OH)3+ + (OH)- + 2 H2 (용해)
[화학반응식 2]
Ti(OH)3+ + (OH)- → TiO2 + 2 H2O (침전)
위와 같이 산화 과정을 거친 식각층(121)의 표면을 세척한 후 기설정된 시간 동안 건조시키면 이산화티타늄(TiO2)층을 포함하는 산화층(122)이 형성된다.
형성된 산화층(122)은 나노(nm) 스케일의 구조층으로 형성되는데, 보다 상세하게 산화층(122)은 10nm 내지 100nm의 표면거칠기를 가질 수 있다.
2. 제2 실시예(소수성 표면처리)
이하, 도 3 내지 도 5를 참조하여 본 발명의 제2 실시예에 따른 소수성 표면처리된 금속 플레이트를 설명하도록 한다.
도 3은 본 발명의 제2 실시예에 따른 소수성 표면처리된 금속 플레이트의 표면에 형성되는 소수성 표면층(소수성 고분자층 및 윤활 표면층)을 나타낸 일 방향에서의 단면도이다.
도 3을 참조하면, 본 발명의 제1 실시예에 따른 소수성 금속 플레이트(100)는 플레이트(110) 및 소수성 표면층(130)을 포함한다.
플레이트(110)는 금속으로 이루어지고, 강한 강성을 가진 재질로 이루어지는 것이 바람직하다.
이를 위한 플레이트(110)는 티타늄 합금 (titanium alloy, TiAl6V4) 또는 티타늄(titanium)으로 이루어진다.
또한, 플레이트(110)는 소정의 두께를 가지는 판형상을 가진다.
도 3을 참조하면, 소수성 표면층(130)은 플레이트(110)의 표면에 고분자 및 윤활제를 적용시켜 소수성을 가지도록 형성된다.
구체적으로 소수성 표면층(130)은 플레이트(110)의 표면에 고분자가 형성되고 윤활제가 도포되어 소수성을 가진다.
상기한 소수성 표면층(130)은 도 3에 도시된 바와 같이 소수성 고분자층(131) 및 윤활 표면층(132)을 포함한다.
소수성 고분자층(131)은 고분자가 친수성 표면층(120)에 도포되어 극소수성을 가진다.
이때, 고분자는 불소계수지로서 폴리디메틸실록산(PDMS), 폴리테트라플루오르에틸렌(PTFE), 불화 에틸렌프로필 코폴리머(FEP), 퍼플루오르알콕시(PFA), HDFS((HEPTADECAFLUORO-1,1,2,2-TETRAHYDRODECYL)-TRICHLOROSILANE) 및 PVDF(Polyvinylidene fluoride) 중 어느 하나일 수 있다.
윤활 표면층(132)은 윤활제가 소수성 고분자층(131)에 도포되어 윤활성을 가진다.
여기서, 윤활제는 생체 유래 물질 또는 생체에 적합한 것으로 검증된 물질이기 때문에 예측 불능의 독성을 갖지 않는다.
이때, 윤활제는 소수성 고분자층(131)에 도포되는 불소계윤활유(PFIE, PFPE, Krytox), 저분자 지방산(C4, C6, C8, C10), 다불포화 지방산(PUFA, polyunsaturated fatty acid) 및 실리콘 오일 중 적어도 하나를 포함한다.
다만, 플레이트(110)의 표면에 소수성 표면층(130)에 구비된 소수성 고분자층(131) 및 윤활 표면층(132) 중 어느 하나만 형성되어도 소수성 고분자층(131) 및 윤활 표면층(132)이 모두 형성된 소수성 표면층(130)과 어느 정도 유사한 효과의 발현이 가능하다.
도 4는 본 발명의 제2 실시예의 제1변형예에 따른 소수성 표면처리된 금속 플레이트의 표면에 형성되는 소수성 표면층(소수성 고분자층)을 나타낸 일 방향에서의 단면도이다. 도 5는 본 발명의 제2 실시예의 제2 변형예에 따른 소수성 표면처리된 금속 플레이트의 표면에 형성되는 소수성 표면층(윤활 표면층)을 나타낸 일 방향에서의 단면도이다.
이에 변형예로서, 플레이트(110)의 표면에는 도 4에 도시된 바와 같이 소수성 표면층(130)에 구비된 소수성 고분자층(131)이 형성되거나 도 5에 도시된 바와 같이 윤활 표면층(132)이 도포될 수 있다.
우선, 제1 변형예로서, 플레이트(110)의 표면에 소수성 고분자층(131)이 형성되는 것이 도 4에 도시된다.
다음, 제2 변형예로서, 플레이트(110)의 표면에 윤활 표면층(132)이 도포되어 형성된 것이 도 5에 도시된다.
3. 제3 실시예(친수성 및 소수성 표면처리)
이하, 도 6 내지 도 16을 참조하여 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트를 설명하도록 하되, 본 발명의 제1 실시예와 동일한 구성요소 및 기술적 특징에 대한 설명은 전술한 바를 참고하도록 하며, 본 발명의 제1 실시예와 다른 구성요소 및 기술적 특징에 대하여 상세히 설명하도록 한다.
본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트(100)는 제1 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트에서 플레이트의 표면에 형성된 친수성 표면층(구체적으로 산화층)의 표면에 소수성 표면층이 더 형성된다.
도 6은 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트의 표면에 형성되는 친수성 표면층에 소수성 표면층(소수성 고분자층 및 윤활 표면층)이 형성된 것을 나타낸 일 방향에서의 단면도이다.
도 6을 참조하면, 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트(100)는 플레이트(110), 친수성 표면층(120) 및 소수성 표면층(130)을 포함한다.
플레이트(110)는 티타늄 합금 (titanium alloy, TiAl6V4) 또는 티타늄(titanium)으로 이루어지고, 소정의 두께를 가지는 판형상을 가질 수 있다.
친수성 표면층(120)은 플레이트(110)의 표면에 대한 산화 및 식각을 통해 친수성을 가지도록 형성된다.
상기한 친수성 표면층(120)은 플레이트(110)를 산 수용액 침지를 통한 화학적 식각 또는 블라스팅(blasting) 을 이용한 물리적 식각시킨 후 세척 및 건조를 통해 플레이트(110)의 표면에 형성된 식각층(121) 및 식각층(121)을 알칼리 수용액에 침지하여 산화시킨 후 세척 및 건조를 통해 형성된 산화층(122)을 포함하고, 산화층(122)의 표면에는 친수성을 가지는 이산화티타늄(TiO2)층이 형성된다.
전술한 친수성 표면층(120)은 제1 실시예에 따른 친수성 표면층(120)과 실질적으로 동일하므로 구체적인 설명은 전술한 바를 참고하도록 한다.
소수성 표면층(130)은 친수성 표면층(120)의 표면에 극소수성 처리를 위한 고분자가 형성되고 윤활성 처리를 위한 윤활제가 도포되어 극소수성 및 윤활성을 가진다.
상기한 소수성 표면층(130)은 도 6에 도시된 바와 같이 소수성 고분자층(131) 및 윤활 표면층(132)을 포함한다.
소수성 고분자층(131)은 고분자 중 적어도 어느 하나가 친수성 표면층(120)에 도포되어 극소수성을 가진다.
이때, 고분자는 불소계수지로서 폴리디메틸실록산(PDMS), 폴리테트라플루오르에틸렌(PTFE), 불화 에틸렌프로필 코폴리머(FEP), 퍼플루오르알콕시(PFA), HDFS((HEPTADECAFLUORO-1,1,2,2-TETRAHYDRODECYL)-TRICHLOROSILANE) 및 PVDF(Polyvinylidene fluoride) 중 어느 하나일 수 있다.
윤활 표면층(132)은 윤활제가 소수성 고분자층(131)에 도포되어 윤활성을 가진다.
여기서, 윤활제는 생체 유래 물질 또는 생체에 적합한 것으로 검증된 물질이기 때문에 예측 불능의 독성을 갖지 않는다.
이때, 윤활제는 소수성 고분자층(131)에 도포되는 불소계윤활유(PFIE, PFPE, Krytox), 저분자 지방산(C4, C6, C8, C10), 다불포화 지방산(PUFA, polyunsaturated fatty acid) 및 실리콘 오일 중 적어도 하나를 포함한다.
도 7의 (a), (b), (c)는 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트에서 플레이트가 식각 및 산화된 후 소수성 표면처리를 위한 코팅되는 과정을 나타낸 개념도이다.
상기한 구조를 가진 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트(100)는 도 7의 (a)에 도시된 플레이트(110)의 표면에 식각 및 산화를 통하여 도 7의 (b)에 도시된 바와 같이 소정의 거칠기를 가지는 친수성 표면층(120)이 형성되고, 친수성 표면층(120)의 표면에 고분자를 형성시키고 윤활제 코팅하여 도 7의 (c)에 도시된 소수성 표면층(130)이 형성된다.
다만, 친수성 표면층(120)의 표면에 소수성 표면층(130)에 구비된 소수성 고분자층(131) 및 윤활 표면층(132) 중 어느 하나만 형성되어도 소수성 고분자층(131) 및 윤활 표면층(132)이 모두 형성된 소수성 표면층(130)과 어느 정도 유사한 효과의 발현이 가능하다.
이에 변형예로서, 친수성 표면층(120)의 표면에는 소수성 표면층(130)에 구비된 소수성 고분자층(131)이 형성되거나 윤활 표면층(132)이 도포될 수 있다.
도 8은 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트의 표면에 형성되는 친수성 표면층에 소수성 표면층(소수성 고분자층)이 형성된 것을 나타낸 일 방향에서의 단면도이다.
우선, 제1 변형예로서, 친수성 표면층(120)에 포함되는 산화층(122)의 표면에 소수성 고분자층(131)만이 형성되는 것이 도 8에 도시된다.
도 9는 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트의 표면에 형성되는 친수성 표면층에 소수성 표면층(윤활 표면층)이 형성된 것을 나타낸 일 방향에서의 단면도이다.
다음, 제2 변형예로서, 친수성 표면층(120)에 포함되는 산화층(122)의 표면에 윤활 표면층(132)이 도포되어 형성된 것이 도 9에 도시된다.
도 10의 (a), (b), (c)는 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트에서 플레이트가 식각 및 산화된 후 소수성 표면처리를 위한 코팅되는 과정을 나타낸 개념도이다.
상기한 구조를 가진 본 발명의 제3 실시예에 따른 친수성 및 소수성 금속 플레이트(100)는 도 10의 (a)에 도시된 플레이트(110)의 표면에 식각 및 산화를 통하여 도 10의 (b)에 도시된 바와 같이 소정의 거칠기를 가지는 친수성 표면층(120)이 형성되고, 친수성 표면층(120)의 표면에 고분자를 형성시키고 윤활제 코팅하여 도 10의 (c)에 도시된 소수성 표면층(130)이 형성된다.
다만, 친수성 표면층(120)의 표면에 소수성 표면층(130)에 구비된 소수성 고분자층(131) 및 윤활 표면층(132) 중 어느 하나만 형성되어도 소수성 고분자층(131) 및 윤활 표면층(132)이 모두 형성된 소수성 표면층(130)과 어느 정도 유사한 효과의 발현이 가능하다.
이하, 도 11 내지 도 16을 참조하여 본 발명의 소수성 표면층(120), 친수성 표면층(130)과 관련된 측정 및 실험 결과에 대하여 설명하도록 한다.
도 11의 (a), (b), (c), (d), (e), (f)는 본 발명의 제3 실시예에 따른 친수성 및 소수성 표면처리된 금속 플레이트에서 플레이트의 표면에 황산 식각을 통한 마이크로 구조 형성 이후 수산화나트륨 수용액 산화를 통한 마이크로/나노 계층구조 형성 결과를 전자현미경(FE-SEM)으로 관찰한 이미지이다.
식각층(121)의 표면거칠기는 도 11의 (a), (b)에 도시된 상태에서 도 11의 (c), (d)에 도시된 상태를 지나 도 11의 (e), (f)에 도시된 상태와 같이 형성된다.
이에 따른 식각층(121)는 1um 내지 10um의 표면거칠기를 갖는다.
도 12의 (a), (b)는 본 발명의 제1, 3 실시예에 따른 금속 플레이트에서 플레이트를 산화 처리하는 과정을 나타낸 일 방향에서의 단면도이다.
도 12의 (a)에 도시된 플레이트(110)의 표면을 식각하여 도 12의 (b)에 도시된 산화층(122)이 형성될 수 있다.
도 13의 (a), (b), (c), (d)는 본 발명의 제3 실시예에 따른 금속 플레이트의 표면에 수산화나트륨 산화공정을 통한 나노구조 형성 후 전자현미경(FE-SEM)으로 관찰한 이미지이다.
산화층(122)의 표면거칠기는 도 13의 (a), (b)에 도시된 상태에서 도 13의 (c), (d)에 도시된 상태와 같이 형성된다.
도 14의 (a), (b), (c)는 본 발명의 제3 실시예에 따른 금속 플레이트의 표면에 대장균 (E.coli) 배양을 통한 바이오필름이 형성된 결과를 비교한 비교도이다.
도 14의 (a)는 E.coli 배양 시험관 속 금속 시편을 나타내고, 도 14의 (b)는 바이오필름(적색 화살표) 형성 사진, 도 14의 (c)는 바이오필름 추출 염색에 의한 정량화 그래프를 나타낸다.
도 14의 (c)에 도시된 바와 같이 표면처리를 하지 않은 금속 표면과 초친수성 표면 처리한 금속 표면에서 초소수성 표면 처리한 금속 표면보다 더 많은 바이오 필름이 형성됨을 확인할 수 있다.
이는 본 발명에 따라 제조된 친수성 표면층(120) 및 친수성 표면층(130)이 형성된 금속 플레이트(100)에서는 세균 증식하는 것을 억제하는 효과가 있음이 증명되었다.
도 15는 본 발명의 제3 실시예에 따른 금속 플레이트의 표면에 나노(Nano) 코팅, 옥탄산(Octanoic Acid), 에피갈로카테킨 갈레이트(EGCG) 및 폴록사머(Poloxamer) 코팅층을 추가한 금속판에 대하여 항생제 저항성 황색 포도상구균(스타필로코커스 아우레우스)의 생체막 형성 저해능 검증 데이터이다.
도 15에서는 앞서 실험한 대장균과 다른 미생물로서, P.Aeruginosa(Pseudomonas aeruginosa)을 각각 표면 처리를 하지 않은 금속 표면(Bare), 나노코팅한 금속 표면(Nano), 마이크로/나노코팅한 금속 표면(Micro/nano), 나노코팅과 고분자(HDFS) 처리한 금속 표면(Nano+HDFS), 나노코팅과 고분자(HDFS)와 윤활제(Krytox) 처리한 금속 표면(Nano+HDFS+Krytox), 마이크로/나노코팅(Micro/nano)과 고분자(HDFS) 처리한 금속 표면(Micro/nano+ HDFS), 마이크로/나노코팅(Micro/nano)과 고분자(HDFS)와 윤활제(Krytox) 처리한 금속 표면(Micro/nano+HDFS+Krytox), 나노코팅, 옥탄산(Octanoic Acid) 처리한 금속 표면(Nano+OA), 나노코팅과 옥탄산과 에피갈로카테킨 갈레이트(EGCG)와 PLX 처리한 금속 표면(Nano+OA+EGCG+PLX)에서의 바이오 필름 형성 정도를 나타낸다.
도 15에 도시된 바와 같이 나노코팅과 고분자(Nano+HDFS), 마이크로/나노코팅(Micro/nano)과 고분자(HDFS)(Micro/nano+HDFS)가 추가된 금속 표면에서는 바이오 필름이 거의 형성되지 않음을 확인할 수 있다.
도 16은 본 발명의 제3 실시예에 따른 금속 플레이트의 표면에 나노(Nano) 코팅, 옥탄산(Octanoic Acid) 코팅층을 추가한 금속판에 대하여 녹농균(슈도모나스 에루지노사)의 생체막 형성 저해능 검증 데이터이다.
도 16에서는 앞서 실험한 대장균과 다른 미생물로서, S.Aureus(Staphylococcus aureus)을 각각 표면 처리를 하지 않은 금속 표면(Bare), 나노코팅한 금속 표면(Nano), 마이크로/나노코팅한 금속 표면(Micro/nano), 나노코팅과 고분자(HDFS) 처리한 금속 표면(Nano+HDFS), 나노코팅과 고분자(HDFS)와 윤활제(Krytox) 처리한 금속 표면(Nano+HDFS+Krytox), 마이크로/나노코팅(Micro/nano)과 고분자(HDFS)와 윤활제(Krytox) 처리한 금속 표면(Micro/nano+HDFS+Krytox), 나노코팅 및 옥탄산(Octanoic Acid) 처리한 금속 표면(Nano+OA)에서의 바이오 필름 형성 정도를 나타낸다.
도 16에 도시된 바와 같이 나노코팅과 고분자 처리된 금속 표면(Nano+HDFS)과 나노코팅과 옥탄산 코팅층이 추가된 금속 표면(Nano+OA)에서는 바이오 필름이 거의 형성되지 않음을 확인할 수 있다.
전술한 바에 따른 본 발명은 플레이트의 표면에 식각 및 산화시켜 나노 구조를 부여하여 친수성 표면처리하기 위한 방법으로 수산화나트륨, 수산화칼륨 등을 포함하는 수용액 산화처리를 이용하여 10 nm ~ 100 nm 수준의 미세구조를 제작하는 방법을 이용할 수 있으며, 종래의 기법과 달리 음영영역(shadow area)와 같은 복잡한 표면 형태에 구애받지 않고 표면처리가 가능하다.
구체적으로 수산화나트륨을 이용하여 형성된 나노구조체는 수산화기를 가지는 산화피막으로써 소수성 표면층에 추가될 수 있는 서방형 물질층과 높은 접착력을 가짐과 동시에 접착면적이 넓은 나노거칠기로 인해 서방형 물질층과 강력한 결합력을 유지킬 수 있다.
추가적으로 황산을 전처리로 이용하여 플레이트의 표면을 마이크로/나노구조체로 형성시킴에 따라 결합력을 더욱 배가시킬 수 있다.
또한, 해당과정을 통해 제작된 플레이트의 표면은 강한 친수성 성질(TiO2 층)을 가지기 때문에 별도의 수산화기를 부여하기 위한 플라즈마 공정이 필요없는 장점이 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<부호의 설명>
100: 금속 플레이트
110: 플레이트
120: 친수성 표면층
121: 식각층
122: 산화층
130: 소수성 표면층
131: 소수성 고분자층
132: 윤활 표면층

Claims (20)

  1. 금속으로 이루어진 플레이트; 및
    상기 플레이트의 표면에 대한 산화 및 식각을 통해 친수성을 가지도록 형성되는 친수성 표면층;을 포함하는 것을 특징으로 하는 친수성 표면처리된 금속 플레이트.
  2. 제1 항에 있어서,
    상기 친수성 표면층은,
    상기 플레이트를 산 수용액에 침지하여 식각시킨 후 세척 및 건조를 통해 상기 플레이트의 표면에 형성된 식각층; 및
    상기 식각층을 알칼리 수용액에 침지하여 산화시킨 후 세척 및 건조를 통해 형성된 산화층;을 포함하고,
    상기 산화층의 표면에는 상기 친수성을 가지는 이산화티타늄(TiO2)층이 형성되는 것을 특징으로 하는 친수성 표면처리된 금속 플레이트.
  3. 제2 항에 있어서,
    상기 산 수용액은 염산(hydrochloric acid), 불산(hydrofluoric acid), 인산(phosphoric acid), 황산(sulfuric acid), 질산(nitric acid) 및 아세트산(acetic acid) 중 적어도 어느 하나가 수용된 용액인 것을 특징으로 하는 친수성 표면처리된 금속 플레이트.
  4. 제2 항에 있어서,
    상기 알칼리 수용액은 수산화나트륨(sodium hydroxide), 수산화바륨(barium hydroxide), 수산화칼륨(potassium hydroxide), 수산화칼슘(calcium hydroxide), 수산화구리(copper hydroxide), 수산화암모늄(ammonium hydroxide), 수산화철(iron hydroxide) 중 적어도 어느 하나가 수용된 용액인 것을 특징으로 하는 친수성 표면처리된 금속 플레이트.
  5. 제2 항에 있어서,
    상기 이산화티타늄(TiO2)층은,
    Ti + 4 H2O → Ti(OH)3+ + (OH)- + 2 H2 (용해)
    Ti(OH)3+ + (OH)- → TiO2 + 2 H2O (침전)
    의 화학반응식을 통해 형성되는 것을 특징으로 하는 친수성 표면처리된 금속 플레이트.
  6. 금속으로 이루어진 플레이트; 및
    상기 플레이트의 표면에 고분자 및 윤활제 중 적어도 어느 하나를 적용시켜 소수성을 가지도록 형성되는 소수성 표면층;을 포함하는 것을 특징으로 하는 소수성 표면처리된 금속 플레이트.
  7. 제6 항에 있어서,
    상기 소수성 표면층은,
    상기 고분자가 상기 플레이트에 도포되어 소수성을 가지는 소수성 고분자층; 및
    상기 윤활제가 상기 소수성 고분자층에 도포되어 상기 윤활성을 가지는 윤활 표면층;을 포함하는 것을 특징으로 하는 소수성 표면처리된 금속 플레이트.
  8. 제6 항에 있어서,
    상기 소수성 표면층은, 상기 고분자가 상기 플레이트에 도포되어 소수성을 가지는 소수성 고분자층;을 포함하는 것을 특징으로 하는 소수성 표면처리된 금속 플레이트.
  9. 제6 항에 있어서,
    상기 소수성 표면층은, 상기 윤활제가 상기 플레이트의 표면에 도포되어 상기 윤활성을 가지는 윤활 표면층;을 포함하는 것을 특징으로 하는 소수성 표면처리된 금속 플레이트.
  10. 금속으로 이루어진 플레이트;
    상기 플레이트의 표면에 대한 산화 및 식각을 통해 친수성을 가지도록 형성되는 친수성 표면층; 및
    상기 플레이트의 표면에 고분자 및 윤활제 중 적어도 어느 하나를 적용시켜 소수성을 가지도록 형성되는 소수성 표면층;을 포함하는 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
  11. 제10 항에 있어서,
    상기 플레이트는 티타늄(titanium)으로 이루어진 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
  12. 제10 항에 있어서,
    상기 친수성 표면층은,
    상기 플레이트를 산 수용액에 침지하여 식각시킨 후 세척 및 건조를 통해 상기 플레이트의 표면에 형성된 식각층; 및
    상기 식각층을 알칼리 수용액에 침지하여 산화시킨 후 세척 및 건조를 통해 형성된 산화층;을 포함하고,
    상기 산화층의 표면에는 상기 친수성을 가지는 이산화티타늄(TiO2)층이 형성되는 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
  13. 제12 항에 있어서,
    상기 산 수용액은 염산(hydrochloric acid), 불산(hydrofluoric acid), 인산(phosphoric acid), 황산(sulfuric acid), 질산(nitric acid) 및 아세트산(acetic acid) 중 적어도 어느 하나가 수용된 용액인 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
  14. 제12 항에 있어서,
    상기 알칼리 수용액은 수산화나트륨(sodium hydroxide), 수산화바륨(barium hydroxide), 수산화칼륨(potassium hydroxide), 수산화칼슘(calcium hydroxide), 수산화구리(copper hydroxide), 수산화암모늄(ammonium hydroxide), 수산화철(iron hydroxide) 중 적어도 어느 하나가 수용된 용액인 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
  15. 제12 항에 있어서,
    상기 이산화티타늄(TiO2)층은,
    Ti + 4 H2O → Ti(OH)3+ + (OH)- + 2 H2 (용해)
    Ti(OH)3+ + (OH)- → TiO2 + 2 H2O (침전)
    의 화학반응식을 통해 형성되는 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
  16. 제10 항에 있어서,
    상기 소수성 표면층은,
    상기 고분자가 상기 플레이트에 도포되어 소수성을 가지는 소수성 고분자층; 및
    상기 윤활제가 상기 소수성 고분자층에 도포되어 상기 윤활성을 가지는 윤활 표면층;을 포함하는 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
  17. 제10 항에 있어서,
    상기 소수성 표면층은, 상기 고분자가 상기 플레이트에 도포되어 소수성을 가지는 소수성 고분자층;을 포함하는 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
  18. 제10 항에 있어서,
    상기 소수성 표면층은, 상기 윤활제가 상기 플레이트의 표면에 도포되어 상기 윤활성을 가지는 윤활 표면층;을 포함하는 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
  19. 제10 항에 있어서,
    상기 고분자는 불소계수지로서 폴리디메틸실록산(PDMS), 폴리테트라플루오르에틸렌(PTFE), 불화 에틸렌프로필 코폴리머(FEP), 퍼플루오르알콕시(PFA), HDFS((HEPTADECAFLUORO-1,1,2,2-TETRAHYDRODECYL)-TRICHLOROSILANE) 및 PVDF(Polyvinylidene fluoride) 중 어느 하나인 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
  20. 제10 항에 있어서,
    상기 윤활제는 불소계윤활유(PFIE, PFPE, Krytox), 저분자 지방산(C4, C6, C8, C10), 다불포화 지방산(PUFA, polyunsaturated fatty acid) 및 실리콘 오일 중 적어도 하나를 포함하는 것을 특징으로 하는 친수성 및 소수성 표면처리된 금속 플레이트.
PCT/KR2022/019276 2022-10-26 2022-11-30 친수성 및 소수성 표면처리된 금속 플레이트 WO2024090663A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020220138875A KR20240058278A (ko) 2022-10-26 2022-10-26 친수성 표면처리된 금속 플레이트
KR10-2022-0138878 2022-10-26
KR10-2022-0138876 2022-10-26
KR1020220138877A KR20240058280A (ko) 2022-10-26 2022-10-26 금속 플레이트의 친수성 표면처리 방법
KR10-2022-0138875 2022-10-26
KR1020220138876A KR20240058279A (ko) 2022-10-26 2022-10-26 소수성 표면처리된 금속 플레이트
KR10-2022-0138877 2022-10-26
KR1020220138878A KR20240058281A (ko) 2022-10-26 2022-10-26 금속 플레이트의 소수성 표면처리 방법

Publications (1)

Publication Number Publication Date
WO2024090663A1 true WO2024090663A1 (ko) 2024-05-02

Family

ID=90831183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019276 WO2024090663A1 (ko) 2022-10-26 2022-11-30 친수성 및 소수성 표면처리된 금속 플레이트

Country Status (1)

Country Link
WO (1) WO2024090663A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110006036A1 (en) * 2008-03-14 2011-01-13 Postech Academy-Industry Foundation Method for Fabricating Membrane having Hydrophilicity and Hydrophobicity
KR20110090150A (ko) * 2010-02-03 2011-08-10 단국대학교 산학협력단 초소수성 표면을 갖는 적층체 및 이의 제조방법
KR20130011444A (ko) * 2011-07-21 2013-01-30 포항공과대학교 산학협력단 극소수성 표면 가공 방법 및 극소수성 표면을 가지는 증발기
KR20140014044A (ko) * 2013-12-23 2014-02-05 포항공과대학교 산학협력단 금속 기재의 표면 가공 방법 및 이 방법에 의해 가공된 표면을 가지는 금속 기재
KR20140044764A (ko) * 2010-10-20 2014-04-15 발스파 소씽, 인크. 개선된 내습성 및 내열성을 갖는 수계 코팅 시스템

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110006036A1 (en) * 2008-03-14 2011-01-13 Postech Academy-Industry Foundation Method for Fabricating Membrane having Hydrophilicity and Hydrophobicity
KR20110090150A (ko) * 2010-02-03 2011-08-10 단국대학교 산학협력단 초소수성 표면을 갖는 적층체 및 이의 제조방법
KR20140044764A (ko) * 2010-10-20 2014-04-15 발스파 소씽, 인크. 개선된 내습성 및 내열성을 갖는 수계 코팅 시스템
KR20130011444A (ko) * 2011-07-21 2013-01-30 포항공과대학교 산학협력단 극소수성 표면 가공 방법 및 극소수성 표면을 가지는 증발기
KR20140014044A (ko) * 2013-12-23 2014-02-05 포항공과대학교 산학협력단 금속 기재의 표면 가공 방법 및 이 방법에 의해 가공된 표면을 가지는 금속 기재

Similar Documents

Publication Publication Date Title
WO2014123376A1 (ko) 초발수/초발유 구조물 및 그의 제조 방법
WO2015102240A1 (en) Low reflective and superhydrophobic or super water-repellent glasses and method of fabricating the same
WO2024090663A1 (ko) 친수성 및 소수성 표면처리된 금속 플레이트
WO2016072724A1 (ko) 플라즈마 내식각성이 향상된 공정부품 및 공정부품의 플라즈마 내식각성 강화 처리 방법
WO2013141606A1 (ko) 알루미늄-고분자 수지 접합체 및 이의 제조방법
WO2009113824A2 (en) Method for fabricating 3d structure having hydrophobic surface by dipping method
WO2010123162A1 (ko) 부분경화를 이용한 계층적 미세 구조물 형성방법
WO2018159918A1 (ko) 윈도우 기판 및 이를 포함하는 화상 표시 장치
WO2015099496A1 (ko) 표면 처리된 기재 및 이를 위한 기재의 표면 처리방법
WO2021049743A2 (ko) 히알루론산 또는 그의 염 및 폴리페놀 화합물을 포함하는 수분해성 필름
WO2018139725A1 (ko) 레이저 스크라이빙 공정의 웨이퍼 보호용 코팅제 조성물
WO2012087076A2 (ko) 이산화탄소 용매를 이용한 초발수 공중합체의 합성과 그 응용
WO2023163323A1 (ko) 양극산화 공정에서 프리패터닝 단계를 생략한 5000계열 알루미늄 합금에 초발수 및 초발유 표면 동시 구현 방법
WO2017051993A1 (ko) 발색 처리된 기판 및 이를 위한 발색 처리방법
WO2023182607A1 (ko) 양극산화 공정에서 프리패터닝 단계를 생략한 3000계열 알루미늄 합금에 초발수 및 초발유 표면 동시 구현 방법
WO2023191242A1 (ko) 양극산화 공정에서 프리패터닝 단계를 생략한 6000계열 알루미늄 합금에 초발수 및 초발유 표면 동시 구현 방법
WO2021182711A1 (ko) 투명 유연성 박막 및 이의 제조 방법
KR20240058278A (ko) 친수성 표면처리된 금속 플레이트
WO2020209544A1 (ko) 나노 무기조성물 및 이를 이용한 코팅방법
KR20240058280A (ko) 금속 플레이트의 친수성 표면처리 방법
KR20240058279A (ko) 소수성 표면처리된 금속 플레이트
WO2022177282A1 (ko) 매끄러운 표면을 갖는 다공성 폴리머 구조체, 이의 제조방법 및 이를 포함하는 보호필름
WO2019107743A1 (ko) 비불소계 고분자를 포함하는 초소수성 고분자 직물의 제조방법
KR20240058281A (ko) 금속 플레이트의 소수성 표면처리 방법
WO2024025330A1 (ko) 알루미늄 합금의 표면 처리 방법 및 이에 따른 알루미늄 합금

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963624

Country of ref document: EP

Kind code of ref document: A1