WO2024090614A1 - Steel plate having excellent heat-affected zone toughness and method for manufacturing same - Google Patents

Steel plate having excellent heat-affected zone toughness and method for manufacturing same Download PDF

Info

Publication number
WO2024090614A1
WO2024090614A1 PCT/KR2022/016589 KR2022016589W WO2024090614A1 WO 2024090614 A1 WO2024090614 A1 WO 2024090614A1 KR 2022016589 W KR2022016589 W KR 2022016589W WO 2024090614 A1 WO2024090614 A1 WO 2024090614A1
Authority
WO
WIPO (PCT)
Prior art keywords
affected zone
toughness
steel
less
heat
Prior art date
Application number
PCT/KR2022/016589
Other languages
French (fr)
Korean (ko)
Inventor
이학철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to PCT/KR2022/016589 priority Critical patent/WO2024090614A1/en
Publication of WO2024090614A1 publication Critical patent/WO2024090614A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to steel materials used in ships, etc., and relates to steel materials with excellent toughness of a welded heat-affected zone (HAZ) formed by welding and a method of manufacturing the same.
  • HZ welded heat-affected zone
  • the icebreaker refers to a ship that sails by breaking ice on the surface of the water to open a sea route.
  • Most icebreakers to date have been military or exploration ships, but as interest in the Northern Sea Route has recently increased, their scope of use is expanding to include commercial ships and cruise ships.
  • Russia is the most active country in the construction of icebreakers due to its regional characteristics.
  • about 40 icebreakers, including the Yermak, Arktika, and Sivir are in operation worldwide, and the construction of icebreakers is expected to increase further in the future. It is expected that it will be done.
  • the steel used in the icebreaker hull must have excellent impact toughness even at extremely low temperatures to withstand the low temperatures of the Northern Sea Route, and at the same time requires high strength to protect the hull. In other words, it is necessary to secure both high strength and high toughness, and for this purpose, a large amount of alloy elements are added.
  • shipbuilders are advantageous in increasing the heat input during welding of steel materials, and steel materials that do not deteriorate the toughness of the heat-affected zone when welding are required even when the heat input during welding increases as described above.
  • a large amount of alloying elements are added to the steel used in icebreakers to ensure strength, and as a result, the welded heat-affected zone suffers from a problem in which the toughness is significantly reduced.
  • Patent Document 1 In general, in order to secure the toughness of the weld heat-affected zone manufactured with high heat input, a method of increasing the nitrogen content and generating fine TiN precipitates to refine the grain size of the weld heat-affected zone (Patent Document 1) is used, but in this case, the high It is easy for base material impact toughness to decrease due to free nitrogen (Free N) depending on the nitrogen content. To prevent this, a decrease in toughness can be prevented by adding a large amount of boron (B) to form BN. However, if the amount added is not carefully controlled, further decrease in toughness may occur due to the formation of free boron (Free B). . In addition, when adding a large amount of nitrogen, there is a problem that micro cracks may be caused on the surface of the slab during the casting process for manufacturing slabs, so it is difficult to consider the method of utilizing high nitrogen as an effective method.
  • Free N free nitrogen
  • Patent Document 1 Japanese Patent Publication No. 2005-200716
  • One aspect of the present invention is to provide a steel material capable of securing excellent toughness in the weld heat-affected zone even when a steel material having high strength and high toughness is welded with a certain amount of heat input, and a method of manufacturing the same.
  • One aspect of the present invention is expressed in weight percent, C: 0.03-0.06%, Mn: 1.5-1.7%, Si: 0.05-0.2%, Al: 0.01-0.04%, Ni: 0.6-0.9%, Mo: 0.1-0.2 %, Cr: 0.1 ⁇ 0.3%, Ti: 0.01 ⁇ 0.02%, Nb: 0.005 ⁇ 0.02%, N: 0.0035 ⁇ 0.0070%, P: 0.008% or less, S: 0.002% or less, the remainder includes Fe and inevitable impurities do,
  • the MA fraction in the area from the fusion line (FL) to FL+1 mm is less than 4% by area, and the toughness of the welded heat-affected zone is excellent.
  • Another embodiment of the present invention is by weight percentage, C: 0.03-0.06%, Mn: 1.5-1.7%, Si: 0.05-0.2%, Al: 0.01-0.04%, Ni: 0.6-0.9%, Mo: 0.1- 0.2%, Cr: 0.1 ⁇ 0.3%, Ti: 0.01 ⁇ 0.02%, Nb: 0.005 ⁇ 0.02%, N: 0.0035 ⁇ 0.0070%, P: 0.008% or less, S: 0.002% or less, the remainder is Fe and inevitable impurities. Heating the steel slab to 1050-1150°C;
  • a method for manufacturing a steel material having excellent weld heat-affected zone toughness including cooling the hot-rolled steel sheet at a cooling rate of 15°C/s until the temperature at point t/4 of the thickness (t) of the hot-rolled steel sheet is 700°C or lower.
  • the present invention it is possible to provide a steel material that not only has excellent strength and toughness of the base material, but also secures excellent toughness in the weld heat-affected zone, and a method of manufacturing the same.
  • the above steel materials can be applied in various fields such as icebreakers and structures in cryogenic environments.
  • the inventor of the present invention has developed a technique for securing the toughness of the formed weld heat-affected zone, especially low-temperature toughness, by performing medium heat input welding, for example, welding with a heat input of about 150 to 200 KJ/cm, on steel materials with high strength and toughness. studied in depth.
  • medium heat input welding for example, welding with a heat input of about 150 to 200 KJ/cm
  • N nitrogen
  • the melt line We came to the present invention after recognizing that the technical purpose of preventing cracks and reducing toughness could be achieved by controlling the MA phase near the Fusion Line (FL).
  • the steel is expressed in weight percent: C: 0.03-0.06%, Mn: 1.5-1.7%, Si: 0.05-0.2%, Al: 0.01-0.04%, Ni: 0.6-0.9%, Mo: 0.1-0.2%, Cr : 0.1 ⁇ 0.3%, Ti: 0.01 ⁇ 0.02%, Nb: 0.005 ⁇ 0.02%, N: 0.0035 ⁇ 0.0070%, P: 0.008% or less, S: 0.002% or less, the remainder includes Fe and inevitable impurities.
  • each alloy composition will be described.
  • C Since C is the most important element in securing basic strength, it needs to be contained in steel within an appropriate range. If the content of C exceeds 0.06%, the hardenability is improved and a large amount of island-like martensite (MA) is generated, which reduces the toughness of the weld heat-affected zone. If the content of C is less than 0.03%, the strength decreases, so the C The content is preferably 0.03 to 0.06%.
  • the Si and Al are essential alloy elements for deoxidation by precipitating dissolved oxygen in the molten steel in the form of slag during the steelmaking and casting process.
  • Si and Al should be kept to 0.2% or less and Al 0.04% or less. It is desirable to include it.
  • Mn is a useful element that improves strength through solid solution strengthening and improves hardenability to generate a low-temperature transformation phase
  • Mn is included in an amount of 1.5% or more to secure a yield strength of 500 MPa or more.
  • the Mn content may greatly reduce toughness by promoting the formation of upper bainite and martensite in the weld heat-affected zone and the base metal structure due to excessive increase in hardenability. It is preferable that it is 1.5 to 1.7%.
  • Ni is an important element in improving impact toughness by facilitating cross slip of dislocations at low temperatures and increasing strength by improving hardenability.
  • it is desirable to contain 0.6% or more, but if it exceeds 0.9%, the hardenability increases excessively.
  • Nb precipitates in the form of NbC or NbCN to improve the strength of the base material.
  • Nb dissolved in solid solution when reheated to a high temperature precipitates very finely in the form of NbC during rolling, which has the effect of suppressing recrystallization of austenite and refining the structure. Accordingly, it is preferable to contain 0.005% or more of Nb, but if it is added excessively, there is a possibility of causing brittle cracks at the edges of the steel material, and the toughness is reduced due to the formation of a large amount of island-like martensite (MA) in the weld heat-affected zone. Since problems may occur, it is desirable not to exceed 0.02%.
  • MA island-like martensite
  • the N combines with Ti to precipitate TiN, preventing the growth of old austenite crystal grains, and has the effect of refining the particle size. It is preferable to contain 35 ppm or more to form fine TiN precipitates. However, if it is included excessively, it may cause a decrease in toughness due to the generation of free nitrogen and slab cracks due to AlN precipitation, so it is preferable that it is 70 ppm or less. It is more preferable that the N is 45 to 60 ppm.
  • the Mo is an element that improves strength by increasing hardenability.
  • Mo is included in an amount of 0.1% or more.
  • toughness may decrease due to excessive strength increase, so it is preferable not to exceed 0.2%.
  • Cr is an element that improves strength through solid solution strengthening, and is preferably included in an amount of 0.1% or more to secure the strength required in the present invention. However, if added excessively, the strength may increase too much or the toughness may decrease due to carbide precipitation, so the content is preferably 0.3% or less.
  • P Phosphorus
  • S Sulfur
  • the P and S are elements that cause embrittlement by causing grain boundary embrittlement or forming coarse inclusions.
  • P 80 ppm or less
  • S 20 ppm or less.
  • the remainder includes iron (Fe), and unintended impurities may inevitably be introduced from raw materials or the surrounding environment during normal manufacturing processes, so this cannot be excluded. Since these impurities can be known to anyone skilled in the art during the manufacturing process, all of them are not specifically mentioned in this specification.
  • the steel material of the present invention preferably has a base material yield strength of 500 MPa or more and an impact transition temperature of -40°C or less.
  • the MA fraction in the area of fusion line (FL) ⁇ FL + 1 mm is less than 4% in area fraction.
  • the impact toughness at -20°C measured in the range FL ⁇ FL+1mm is 33J or more.
  • the microstructure of the weld heat-affected zone may include a mixed phase of granular bainite and upper bainite.
  • the base material microstructure of the steel material of the present invention is not particularly limited, but for example, the base material microstructure includes a mixed phase of acicular ferrite, granular bainite, and upper bainite. can do.
  • the steel material of the present invention can be manufactured through a process of reheating a steel slab that satisfies the above-described composition, performing rough rolling and finishing rolling, and then cooling. Below, each process is described in detail.
  • the reheating temperature is set to 1050°C or higher, carbonitrides of Ti and/or Nb formed during casting may be dissolved in solid solution.
  • the reheating temperature is preferably 1150°C or lower.
  • the reheated steel slab is subjected to rough rolling to adjust its shape.
  • the rough rolling temperature is preferably higher than the temperature (Tnr) at which recrystallization of austenite stops, and therefore, the rough rolling is preferably performed at a temperature of 900°C or higher.
  • the effect of reducing the grain size can also be achieved through recrystallization of coarse austenite along with destruction of the cast structure such as dendrites formed during casting by rolling.
  • the total cumulative reduction rate of rough rolling is 40% or more.
  • Finishing rolling is performed to introduce the austenite structure of the rough-rolled steel sheet into a non-uniform microstructure.
  • the cumulative reduction ratio of the finishing rolling is 50% or more. If the finishing rolling temperature is less than 800°C, ferrite precipitates during air cooling after completion of rolling and before water cooling, thereby lowering the strength, so it is preferable to carry out the finishing rolling at 800°C or higher.
  • Cooling after rolling Cool at a cooling rate of more than 15°C/s until the temperature at point t/4 is below 700°C (t: thickness of steel sheet)
  • the cooling rate is less than 15°C/s or the cooling end temperature exceeds 700°C, the microstructure is not properly formed, making it difficult to secure a yield strength of 500MPa or more.
  • the upper limit of the cooling rate is not particularly limited in the present invention, but in the technical field to which the present invention pertains, the cooling rate is possible at 100°C/s or more. Therefore, as a preferred example, the cooling rate is preferably 200°C/s or less.
  • a 300 mm thick steel slab having the composition shown in Table 1 below (the remainder being Fe and inevitable impurities) was reheated to a temperature of 1110°C, followed by rough rolling at 980°C, and finishing rolling at 860°C. . Afterwards, steel was manufactured by cooling to 620-560°C at a cooling rate of 25-37°C/s.
  • Table 2 below in Comparative Example 5, reheating and rough rolling were performed under the same conditions as above using a steel slab having the composition of Invention Steel 2, but finishing rolling was performed at 730°C and then at 7°C/s. Steel was manufactured by cooling to 610°C at a cooling rate.
  • the yield strength and impact transition temperature were measured and the results are shown in Table 2.
  • the manufactured steel was welded with a heat input of between 150 and 200 KJ/cm, where the impact toughness and microstructure of the fusion line (FL) ⁇ FL + 1 mm of the weld heat-affected zone (HAZ) were measured. was analyzed and the results are shown in Table 2.
  • the MA fraction is measured optically by the LePera etching method.
  • Inventive examples that satisfy the conditions of the present invention all have a yield strength of the base material of 500 MPa or more, an impact transition temperature of -40°C or less, and a heat-affected zone welded with a heat input of 150 to 200 KJ/cm, where the Fusion Line (FL) ⁇ It can be seen that the MA fraction of FL + 1mm is less than 4%, and the impact toughness at -20°C measured in the area from Fusion Line to FL + 1mm satisfies 33J or more.
  • Comparative Example 1 contains more C than the present invention, and as a large amount of island-like martensite (MA) phase is generated in the weld heat-affected zone, the impact toughness measured in the region of FL ⁇ FL + 1 mm is It can be seen that it is less than 33J at -20°C.
  • MA island-like martensite
  • Comparative Example 2 contained less Ni content than suggested in the present invention, and the lack of Ni addition caused a decrease in toughness, so that even though the MA fraction was less than 4%, the impact toughness measured at FL was less than 33J at -20°C. You can see that it happens.
  • Comparative Example 3 contains a large amount of Si and Nb as presented in the present invention, and as a large amount of MA phase is generated in the weld heat-affected zone, the impact toughness measured in the range FL ⁇ FL + 1 mm is less than 33J at -20 ° C. You can see that it happens.
  • Comparative Example 5 satisfies the components suggested by the present invention, but does not meet the manufacturing process, and the MA fraction of the weld heat-affected zone after welding is 4% or less, and the impact measured in the range FL ⁇ FL + 1 mm
  • the toughness was more than 33J at -20°C, some ferrite was formed during finishing rolling and air cooling, and the low-temperature transformation phase was not properly created due to the slow cooling rate, so it was confirmed that the base material was manufactured with a yield strength of 500 MPa or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

The present invention pertains to: a steel plate which is used in ships etc. and in which a heat-affected zone (HAZ) formed by welding has excellent toughness; and a method for manufacturing same.

Description

용접 열영향부 인성이 우수한 강재 및 그 제조방법Steel material with excellent weld heat-affected zone toughness and method of manufacturing the same
본 발명은 선박 등에 사용되는 강재에 관한 것으로서, 용접에 의해 형성된 용접 열영향부(Heat Affected Zone, HAZ)의 인성이 우수한 강재와 이를 제조하는 방법에 관한 것이다.The present invention relates to steel materials used in ships, etc., and relates to steel materials with excellent toughness of a welded heat-affected zone (HAZ) formed by welding and a method of manufacturing the same.
최근 지구온난화로 인한 기온 상승으로 북극 해빙면적이 급속히 감소함에 따라 북극항로 개설에 대한 관심이 높아지고 있다. 이러한 북극항로를 개척하기 위한 선박 또는 북극항로 운행을 위한 선박은 유사시 빙하를 분쇄할 수 있는 쇄빙선(碎氷船, icebreaker)으로 건조하는 것이 필요하다. Recently, as the Arctic sea ice area is rapidly decreasing due to temperature rise due to global warming, interest in opening the Northern Sea Route is increasing. It is necessary for ships to pioneer the Northern Sea Route or to operate the Northern Sea Route as icebreakers that can crush glaciers in case of emergency.
상기 쇄빙선은 수면의 얼음을 분쇄하여 항로를 열어 항해하는 선박을 말한다. 지금까지의 쇄빙선은 대부분 군용 또는 탐사선이지만, 최근 북극항로에 대한 관심이 높아지므로, 일반 상선이나 유람선까지 사용 범위가 확장되고 있다. 일예로, 러시아는 지역적 특성상 쇄빙선 건조가 가장 적극적인 나라인데, 예르마크호를 비롯하여 아르끄티까, 시비르 등 2020년 기준 전세계적으로 40여 척의 쇄빙성이 활동하고 있고, 쇄빙선의 건조는 앞으로 더 증가할 것으로 예상된다.The icebreaker refers to a ship that sails by breaking ice on the surface of the water to open a sea route. Most icebreakers to date have been military or exploration ships, but as interest in the Northern Sea Route has recently increased, their scope of use is expanding to include commercial ships and cruise ships. For example, Russia is the most active country in the construction of icebreakers due to its regional characteristics. As of 2020, about 40 icebreakers, including the Yermak, Arktika, and Sivir, are in operation worldwide, and the construction of icebreakers is expected to increase further in the future. It is expected that it will be done.
상기 쇄빙선의 선체에 사용되는 강재는 북극항로의 낮은 온도에서 견디기 위해 극저온에서도 우수한 충격인성을 가져야 하며, 동시에 선체를 보호하기 위해서는 높은 강도를 요구한다. 즉, 고강도와 고인성을 동시에 확보할 필요가 있고 이를 위해, 다량의 합금원소를 첨가하게 된다. The steel used in the icebreaker hull must have excellent impact toughness even at extremely low temperatures to withstand the low temperatures of the Northern Sea Route, and at the same time requires high strength to protect the hull. In other words, it is necessary to secure both high strength and high toughness, and for this purpose, a large amount of alloy elements are added.
조선사에서는 쇄빙선을 건조할 경우 생산성을 향상시키기 위해서는 강재의 용접시 입열량을 증가시키는 것이 유리하며, 위와 같이 용접시 입열량을 증가하더라도 용접 열영향부 인성이 저하되지 않는 강재를 요구하고 있다. 그러나, 앞서 언급한 바와 같이, 쇄빙선에 사용되는 강재는 강도 확보를 위해 다량의 합금 원소가 첨가되며, 이에 따라, 용접된 용접 열영향부는 인성이 현저히 저하되는 문제가 발생하고 있다.In order to improve productivity when building an icebreaker, shipbuilders are advantageous in increasing the heat input during welding of steel materials, and steel materials that do not deteriorate the toughness of the heat-affected zone when welding are required even when the heat input during welding increases as described above. However, as mentioned above, a large amount of alloying elements are added to the steel used in icebreakers to ensure strength, and as a result, the welded heat-affected zone suffers from a problem in which the toughness is significantly reduced.
일반적으로 높은 입열량으로 제조된 용접 열영향부의 인성을 확보하기 위해, 질소 함량은 높여, 미세한 TiN 석출물을 생성시켜 용접 열영향부의 입도를 미세화하는 방식(특허문헌 1)을 사용하나, 이 경우 높은 질소 함량에 따른 자유 질소(Free N)로 인해 모재 충격 인성 저하가 발생하기 쉽다. 이를 방지하기 위해서는 보론(B)을 다량 첨가하여 BN을 형성시킴으로써, 인성저하를 막을 수 있으나, 첨가량을 세밀하게 관리하지 않을 경우에는 자유 보론(Free B)의 생성으로 인해 추가 인성 저하까지 발생할 수 있다. 또한, 다량의 질소를 첨가하는 경우에는 슬라브 제조를 위한 연주공정에서 슬라브 표면에 미세 크랙을 유발시킬 수 있는 문제가 있으므로, 높은 질소를 활용하는 방법은 효과적인 방법이라 보기 어렵다.In general, in order to secure the toughness of the weld heat-affected zone manufactured with high heat input, a method of increasing the nitrogen content and generating fine TiN precipitates to refine the grain size of the weld heat-affected zone (Patent Document 1) is used, but in this case, the high It is easy for base material impact toughness to decrease due to free nitrogen (Free N) depending on the nitrogen content. To prevent this, a decrease in toughness can be prevented by adding a large amount of boron (B) to form BN. However, if the amount added is not carefully controlled, further decrease in toughness may occur due to the formation of free boron (Free B). . In addition, when adding a large amount of nitrogen, there is a problem that micro cracks may be caused on the surface of the slab during the casting process for manufacturing slabs, so it is difficult to consider the method of utilizing high nitrogen as an effective method.
한편, 미세 산화물(oxide)를 활용하여 용접 열영향부 입도 미세화를 통해 인성을 확보하고자 하는 시도가 있으나, 고온에서 미리 생성되는 산화물을 실제로 미세하게 강재 내에 골고루 분산시키는 것이 매우 어려우며, 필요한 산화물만 선택적으로 강재 전체에 미세하게 만드는 것이 실제 가능한지와 인성 향상 효과가 있는지에 대한 불확실성이 존재한다.On the other hand, there are attempts to secure toughness by using fine oxides to refine the grain size of the weld heat-affected zone, but it is very difficult to actually finely disperse the oxides generated in advance at high temperatures evenly within the steel, and only the necessary oxides are selected. Therefore, there is uncertainty as to whether it is actually possible to make the entire steel material finer and whether it will have an effect in improving toughness.
따라서, 모재의 강도와 인성을 확보하면서, 동시에 용접 열영향부에서도 우수한 인성을 확보할 수 있는 강재 제조 기술이 요구되고 있는 실정이다.Accordingly, there is a demand for steel manufacturing technology that can secure the strength and toughness of the base material and at the same time ensure excellent toughness in the weld heat-affected zone.
(특허문헌 1) 일본 공개특허공보 제2005-200716호(Patent Document 1) Japanese Patent Publication No. 2005-200716
본 발명의 일측면은 고강도와 고인성을 갖는 강재를 일정 입열량으로 용접하더라도, 용접 열영향부에서 우수한 인성을 확보할 수 있는 강재와 이를 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a steel material capable of securing excellent toughness in the weld heat-affected zone even when a steel material having high strength and high toughness is welded with a certain amount of heat input, and a method of manufacturing the same.
본 발명의 과제는 상술한 사항에 한정되지 아니한다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The object of the present invention is not limited to the above-mentioned matters. The additional problems of the present invention are described throughout the specification, and those skilled in the art will have no difficulty in understanding the additional problems of the present invention from the content described in the specification of the present invention.
본 발명의 일태양은 중량%로, C: 0.03~0.06%, Mn: 1.5~1.7%, Si: 0.05~0.2%, Al: 0.01~0.04%, Ni: 0.6~0.9%, Mo: 0.1~0.2%, Cr: 0.1~0.3%, Ti: 0.01~0.02%, Nb: 0.005~0.02%, N: 0.0035~0.0070%, P: 0.008% 이하, S: 0.002% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하고, One aspect of the present invention is expressed in weight percent, C: 0.03-0.06%, Mn: 1.5-1.7%, Si: 0.05-0.2%, Al: 0.01-0.04%, Ni: 0.6-0.9%, Mo: 0.1-0.2 %, Cr: 0.1~0.3%, Ti: 0.01~0.02%, Nb: 0.005~0.02%, N: 0.0035~0.0070%, P: 0.008% or less, S: 0.002% or less, the remainder includes Fe and inevitable impurities do,
입열량 150~200KJ/cm로 용접한 용접 열영향부(HAZ)에서, 용융선(Fusion Line, FL)~FL+1㎜ 영역의 MA 분율이 면적분율로 4% 이하인 용접 열영향부 인성이 우수한 강재를 제공한다.In a welded heat-affected zone (HAZ) welded with a heat input of 150 to 200 KJ/cm, the MA fraction in the area from the fusion line (FL) to FL+1 mm is less than 4% by area, and the toughness of the welded heat-affected zone is excellent. Provides steel materials.
본 발명의 다른 일태양은 중량%로, C: 0.03~0.06%, Mn: 1.5~1.7%, Si: 0.05~0.2%, Al: 0.01~0.04%, Ni: 0.6~0.9%, Mo: 0.1~0.2%, Cr: 0.1~0.3%, Ti: 0.01~0.02%, Nb: 0.005~0.02%, N: 0.0035~0.0070%, P: 0.008% 이하, S: 0.002% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1150℃로 가열하는 단계;Another embodiment of the present invention is by weight percentage, C: 0.03-0.06%, Mn: 1.5-1.7%, Si: 0.05-0.2%, Al: 0.01-0.04%, Ni: 0.6-0.9%, Mo: 0.1- 0.2%, Cr: 0.1~0.3%, Ti: 0.01~0.02%, Nb: 0.005~0.02%, N: 0.0035~0.0070%, P: 0.008% or less, S: 0.002% or less, the remainder is Fe and inevitable impurities. Heating the steel slab to 1050-1150°C;
상기 가열된 강 슬라브를 900℃ 이상의 온도에서 조압연하는 단계;Rough rolling the heated steel slab at a temperature of 900°C or higher;
상기 조압연 후 800℃ 이상의 온도에서 마무리 열간 압연하여 열연강판을 제조하는 단계; 및Manufacturing a hot rolled steel sheet by performing final hot rolling at a temperature of 800° C. or higher after the rough rolling; and
상기 열연강판 두께(t)의 t/4 지점의 온도가 700℃이하까지 15℃/s의 냉각속도로 냉각하는 단계를 포함하는 용접 열영향부 인성이 우수한 강재의 제조방법을 제공한다.A method for manufacturing a steel material having excellent weld heat-affected zone toughness is provided, including cooling the hot-rolled steel sheet at a cooling rate of 15°C/s until the temperature at point t/4 of the thickness (t) of the hot-rolled steel sheet is 700°C or lower.
본 발명에 의하면, 모재의 강도 및 인성이 우수할 뿐만 아니라, 용접 열영향부에서도 우수한 인성을 확보할 수 있는 강재와 이의 제조방법을 제공할 수 있다. 위와 같은 강재는 쇄빙선, 극저온 환경의 구조물 등 다양한 분야에서 적용될 수 있다. According to the present invention, it is possible to provide a steel material that not only has excellent strength and toughness of the base material, but also secures excellent toughness in the weld heat-affected zone, and a method of manufacturing the same. The above steel materials can be applied in various fields such as icebreakers and structures in cryogenic environments.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 태양을 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The various and beneficial advantages and effects of the present invention are not limited to the above-described content, and may be more easily understood through description of specific embodiments of the present invention.
본 명세서에서 사용되는 용어는 본 발명을 설명하기 위한 것이고, 본 발명을 한정하는 것을 의도하지 않는다. 또한, 본 명세서에서 사용되는 단수 형태들은 관련 정의가 이와 명백히 반대되는 의미를 나타내지 않는 한 복수 형태들도 포함한다. The terms used in this specification are for describing the present invention and are not intended to limit the present invention. Additionally, as used herein, singular forms include plural forms unless the relevant definition clearly indicates the contrary.
명세서에서 사용되는 "포함하는"의 의미는 구성을 구체화하고, 다른 구성의 존재나 부가를 제외하는 것은 아니다.The meaning of “including” used in the specification specifies a configuration and does not exclude the presence or addition of another configuration.
달리 정의하지 않는 한, 본 명세서에서 사용되는 기술 용어 및 과학 용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련 기술문헌과 현재 개시된 내용에 부합하는 의미를 가지도록 해석된다.Unless otherwise defined, all terms, including technical and scientific terms, used in this specification have the same meaning as commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in the dictionary are interpreted to have meanings consistent with related technical literature and current disclosure.
본 발명의 발명자는 높은 강도와 인성을 갖는 강재에 대해 중입열 용접, 예를 들어 150~200KJ/cm 정도의 입열량으로 용접을 행하여, 형성된 용접 열영향부의 인성, 특히 저온 인성을 확보하기 위한 기술에 대해 깊이 연구하였다. 그 결과, 모재의 미세조직 중 도상 마르텐사이트(MA) 상을 최소화하고, 질소(N)을 함량을 최적화하여 TiN 석출물 미세하게 석출함으로써, 중입열 용접을 적용하여도 용접 열영향부에서 용융선(Fusion Line, FL) 부근의 MA상을 제어하여, 크랙을 방지하고 인성 저하를 방지의 기술적 목적을 달성할 수 있음을 인지하고 본 발명에 이르게 되었다.The inventor of the present invention has developed a technique for securing the toughness of the formed weld heat-affected zone, especially low-temperature toughness, by performing medium heat input welding, for example, welding with a heat input of about 150 to 200 KJ/cm, on steel materials with high strength and toughness. studied in depth. As a result, by minimizing the island-like martensite (MA) phase among the microstructures of the base material and optimizing the nitrogen (N) content to finely precipitate TiN precipitates, the melt line ( We came to the present invention after recognizing that the technical purpose of preventing cracks and reducing toughness could be achieved by controlling the MA phase near the Fusion Line (FL).
먼저, 본 발명 강재의 일태양에 대해 상세히 설명한다. First, one aspect of the steel material of the present invention will be described in detail.
상기 강재는 중량%로, C: 0.03~0.06%, Mn: 1.5~1.7%, Si: 0.05~0.2%, Al: 0.01~0.04%, Ni: 0.6~0.9%, Mo: 0.1~0.2%, Cr: 0.1~0.3%, Ti: 0.01~0.02%, Nb: 0.005~0.02%, N: 0.0035~0.0070%, P: 0.008% 이하, S: 0.002% 이하, 나머지는 Fe 및 불가피한 불순물을 포함한다. 이하, 각 합금조성에 대해 설명한다.The steel is expressed in weight percent: C: 0.03-0.06%, Mn: 1.5-1.7%, Si: 0.05-0.2%, Al: 0.01-0.04%, Ni: 0.6-0.9%, Mo: 0.1-0.2%, Cr : 0.1~0.3%, Ti: 0.01~0.02%, Nb: 0.005~0.02%, N: 0.0035~0.0070%, P: 0.008% or less, S: 0.002% or less, the remainder includes Fe and inevitable impurities. Hereinafter, each alloy composition will be described.
탄소(C): 0.03~0.06% (이하, 각 합금조성에 대한 함량은 중량%를 의미함)Carbon (C): 0.03~0.06% (hereinafter, the content for each alloy composition refers to weight%)
상기 C는 기본적인 강도를 확보하는데 가장 중요한 원소이므로 적절한 범위내에서, 강중에 함유될 필요가 있다. 상기 C의 함량이 0.06%를 초과하게 되면, 경화능이 향상되어 대량의 도상 마르텐사이트(MA)가 생성되어 용접 열영향부 인성이 저하되며, 0.03%를 미만이면 강도의 하락을 초래하므로, 상기 C의 함량은 0.03~0.06%인 것이 바람직하다.Since C is the most important element in securing basic strength, it needs to be contained in steel within an appropriate range. If the content of C exceeds 0.06%, the hardenability is improved and a large amount of island-like martensite (MA) is generated, which reduces the toughness of the weld heat-affected zone. If the content of C is less than 0.03%, the strength decreases, so the C The content is preferably 0.03 to 0.06%.
실리콘(Si): 0.05~0.2% 및 알루미늄(Al): 0.01~0.04%Silicon (Si): 0.05~0.2% and Aluminum (Al): 0.01~0.04%
상기 Si 및 Al은 제강 및 연주 공정 시에 용강 내에 용존 산소를 슬래그 형태로 석출시켜 탈산작업을 하는데 필수적인 합금원소로써, 전로를 이용한 강재 제조시에는 Si 0.05%, Al 0.01% 이상 함유되는 것이 바람직하다. 그러나, 다량 함유될 경우에는 Si, Al 복합 산화물이 조대하게 생성되거나, 용접 열영향부 미세조직 내에 도상 마르텐사이트를 조대하게 다량 생성시킬 수 있는 합금원소이므로, Si 0.2% 이하, Al 0.04% 이하로 포함하는 것이 바람직하다. The Si and Al are essential alloy elements for deoxidation by precipitating dissolved oxygen in the molten steel in the form of slag during the steelmaking and casting process. When manufacturing steel using a converter, it is preferable to contain more than 0.05% of Si and 0.01% of Al. . However, if contained in large amounts, it is an alloy element that can generate coarse Si and Al composite oxides or generate large amounts of island-like martensite within the microstructure of the weld heat-affected zone. Therefore, Si and Al should be kept to 0.2% or less and Al 0.04% or less. It is desirable to include it.
망간(Mn): 1.5~1.7%Manganese (Mn): 1.5~1.7%
상기 Mn은 고용강화에 의해 강도를 향상시키고 저온변태상이 생성되도록 경화능을 향상시키는 유용한 원소이므로, 500MPa 이상의 항복강도를 확보하기 위해 상기 Mn은 1.5% 이상 포함되는 것이 바람직하다. 그러나, 1.7%를 초과하는 경우에는 과도한 경화능의 증가로 인해 용접 열영향부 및 모재 조직내에 상부 베이나이트(Upper bainite) 및 마르텐사이트 생성을 촉진하여 인성을 크게 저하시킬 수 있으므로, 상기 Mn의 함량은 1.5~1.7%인 것이 바람직하다. Since Mn is a useful element that improves strength through solid solution strengthening and improves hardenability to generate a low-temperature transformation phase, it is preferable that Mn is included in an amount of 1.5% or more to secure a yield strength of 500 MPa or more. However, if it exceeds 1.7%, the Mn content may greatly reduce toughness by promoting the formation of upper bainite and martensite in the weld heat-affected zone and the base metal structure due to excessive increase in hardenability. It is preferable that it is 1.5 to 1.7%.
니켈(Ni): 0.6~0.9%Nickel (Ni): 0.6~0.9%
상기 Ni은 저온에서 전위의 크로스 슬립(cross slip)을 용이하게 만들어 충격인성을 향상시키고 경화능을 향상시켜 강도를 증가시키는데 중요한 원소이다. 500MPa 이상의 항복강도를 갖는 고강도 강에서의 충격인성 및 용접 열영향부 베이나이트 조직에서의 충격인성을 향상시키기 위해서는 0.6% 이상 포함되는 것이 바람직하나, 0.9%를 초과하는 경우에는 경화능이 과도하게 상승시켜 저온변태상이 생성되어 오히려 인성을 저하시키는 문제가 있으며, 제조원가를 상승시키는 문제 또한 있으므로 0.9%를 넘지 않는 것이 바람직하다.Ni is an important element in improving impact toughness by facilitating cross slip of dislocations at low temperatures and increasing strength by improving hardenability. In order to improve the impact toughness of high-strength steel with a yield strength of 500 MPa or more and the impact toughness of the bainitic structure in the weld heat-affected zone, it is desirable to contain 0.6% or more, but if it exceeds 0.9%, the hardenability increases excessively. There is a problem of generating a low-temperature transformation phase, which reduces toughness, and also increases manufacturing costs, so it is preferable not to exceed 0.9%.
니오븀(Nb): 0.005~0.02%Niobium (Nb): 0.005~0.02%
상기 Nb은 NbC 또는 NbCN의 형태로 석출하여 모재 강도를 향상시킨다. 또한, 고온으로 재가열시에 고용된 Nb는 압연시 NbC의 형태로 매우 미세하게 석출되어 오스테나이트의 재결정을 억제하여 조직을 미세화시키는 효과가 있다. 이에 상기 Nb는 0.005% 이상 포함하는 것이 바람직하나, 과다하게 투입될 경우에는 강재의 모서리에 취성 크랙을 야기할 가능성이 있고, 용접 열영향부에 다량의 도상 마르텐사이트(MA) 생성으로 인한 인성저하의 문제가 발생할 수 있으므로, 0.02%를 넘지 않는 것이 바람직하다.The Nb precipitates in the form of NbC or NbCN to improve the strength of the base material. In addition, Nb dissolved in solid solution when reheated to a high temperature precipitates very finely in the form of NbC during rolling, which has the effect of suppressing recrystallization of austenite and refining the structure. Accordingly, it is preferable to contain 0.005% or more of Nb, but if it is added excessively, there is a possibility of causing brittle cracks at the edges of the steel material, and the toughness is reduced due to the formation of a large amount of island-like martensite (MA) in the weld heat-affected zone. Since problems may occur, it is desirable not to exceed 0.02%.
티타늄(Ti): 0.01~0.02%Titanium (Ti): 0.01~0.02%
상기 Ti는 재가열시 TiN으로 석출하여 모재 및 용접 열영향부 결정립의 성장을 억제하여 저온 인성을 크게 향상시키며, 효과적인 TiN의 석출을 위해 0.01% 이상 포함하는 것이 바람직하다. 그러나, 0.02%를 초과하는 경우에는 연주 노즐의 막힘이나 중심부 정출에 의한 저온인성이 감소되는 문제점과 함께 Ti/N 비를 낮추어 TiN 석출물이 조대해짐에 따라 용접 열영향부 인성이 저하되는 문제를 발생시킬 수 있으므로 0.02%를 넘지 않는 것이 바람직하다.The Ti precipitates as TiN upon reheating and significantly improves low-temperature toughness by inhibiting the growth of grains in the base metal and weld heat-affected zone. It is preferable to contain 0.01% or more for effective TiN precipitation. However, if it exceeds 0.02%, low-temperature toughness is reduced due to clogging of the casting nozzle or crystallization at the center, and the toughness of the weld heat-affected zone is reduced as the TiN precipitates become coarse by lowering the Ti/N ratio. It is desirable not to exceed 0.02%.
질소(N): 0.0035~0.0070%(35~70ppm)Nitrogen (N): 0.0035~0.0070% (35~70ppm)
상기 N는 Ti와 결합하여 TiN을 석출시켜 구오스테나이트 결정립이 성장하는 것을 막아, 입도를 미세화하는 효과를 나타내며, 미세한 TiN 석출물을 형성하기 위해서는 35ppm 이상 포함되는 것이 바람직하다. 그러나, 과도하게 포함되는 경우에는 자유 질소(Free N) 생성으로 인한 인성 저하 및 AlN 석출로 인한 슬라브 크랙을 유발할 수 있으므로, 70ppm 이하인 것이 바람직하다. 상기 N이 45~60ppm인 것이 보다 바람직하다.The N combines with Ti to precipitate TiN, preventing the growth of old austenite crystal grains, and has the effect of refining the particle size. It is preferable to contain 35 ppm or more to form fine TiN precipitates. However, if it is included excessively, it may cause a decrease in toughness due to the generation of free nitrogen and slab cracks due to AlN precipitation, so it is preferable that it is 70 ppm or less. It is more preferable that the N is 45 to 60 ppm.
몰리브덴(Mo): 0.1~0.2%Molybdenum (Mo): 0.1~0.2%
상기 Mo는 경화능을 상승시켜 강도를 향상시키는 원소이다. 본 발명에서는 요구되는 강도를 확보하기 위해, 상기 Mo가 0.1% 이상 포함되는 것이 바람직하다. 그러나, 과도하게 포함되는 경우에는 지나친 강도 상승으로 인해 인성이 저하될 수 있으므로, 0.2% 를 넘지 않는 것이 바람직하다. The Mo is an element that improves strength by increasing hardenability. In the present invention, in order to secure the required strength, it is preferable that Mo is included in an amount of 0.1% or more. However, if it is included excessively, toughness may decrease due to excessive strength increase, so it is preferable not to exceed 0.2%.
크롬(Cr): 0.1~0.3%Chromium (Cr): 0.1~0.3%
상기 Cr은 고용강화에 의해 강도를 향상시키는 원소로써, 본 발명에서 요구되는 강도 확보를 위해, 0.1% 이상 포함되는 것이 바람직하다. 그러나, 과도한 첨가 시 강도가 너무 상승하거나 탄화물 석출로 인하여 인성이 저하될 수 있으므로, 그 함량은 0.3% 이하인 것이 바람직하다. Cr is an element that improves strength through solid solution strengthening, and is preferably included in an amount of 0.1% or more to secure the strength required in the present invention. However, if added excessively, the strength may increase too much or the toughness may decrease due to carbide precipitation, so the content is preferably 0.3% or less.
인(P): 0.008%(80ppm) 이하 및 황(S): 0.002%(20ppm) 이하Phosphorus (P): 0.008% (80ppm) or less and Sulfur (S): 0.002% (20ppm) or less.
상기 P 및 S는 결정립계 취성을 유발하거나 조대한 개재물을 형성시켜 취성을 유발하는 원소로써, 취성균열 전파 저항성을 향상시키기 위해서 P: 80ppm 이하, S: 20ppm 이하로 관리하는 것이 바람직하다. The P and S are elements that cause embrittlement by causing grain boundary embrittlement or forming coarse inclusions. In order to improve brittle crack propagation resistance, it is desirable to manage P: 80 ppm or less and S: 20 ppm or less.
나머지는 철(Fe)를 포함하며, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 제조과정에서 통상의 기술자가라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remainder includes iron (Fe), and unintended impurities may inevitably be introduced from raw materials or the surrounding environment during normal manufacturing processes, so this cannot be excluded. Since these impurities can be known to anyone skilled in the art during the manufacturing process, all of them are not specifically mentioned in this specification.
본 발명의 강재는 모재 항복강도 500MPa 이상이고, 충격천이온도가 -40℃ 이하인 것이 바람직하다.The steel material of the present invention preferably has a base material yield strength of 500 MPa or more and an impact transition temperature of -40°C or less.
한편, 본 발명의 강재를 중입열(약 150~200KJ/cm)로 용접한 용접 열영향부에서 용융선(Fusion Line, FL)~FL+1㎜ 영역의 MA 분율이 면적분율로 4% 이하이고, FL~FL+1㎜ 영역에서 측정된 -20℃ 에서의 충격인성이 33J 이상인 것이 바람직하다. 상기 용접 열영향부의 FL~FL+1㎜ 영역의 MA 분율을 최소화함으로써, 중입열 용접부에서의 저온 인성을 확보할 수 있다. 상기 중입열 용접시 용접 열영향부의 미세조직 특별히 한정되지 않으나, 본 발명의 강재는 강도를 확보하기 위해 합금성분이 다량 첨가되어, 인성에 좋지 않은 미세조직이 형성되며, 이에 MA 상을 최소화하여 인성을 확보하는 것이 중요하다. 상기 용접 열영향부의 미세조직은 일예로, 그래뉼라 베이나이트(granular bainite) 및 상부 베이나이트(upper bainite)의 혼합상을 포함할 수 있다. Meanwhile, in the heat-affected zone where the steel of the present invention is welded with medium heat input (about 150 to 200 KJ/cm), the MA fraction in the area of fusion line (FL) ~ FL + 1 mm is less than 4% in area fraction. , it is preferable that the impact toughness at -20°C measured in the range FL~FL+1mm is 33J or more. By minimizing the MA fraction in the FL ~ FL + 1 mm region of the weld heat-affected zone, low-temperature toughness in the medium heat input weld zone can be secured. There is no particular limitation on the microstructure of the weld heat-affected zone during the medium heat input welding, but in the steel material of the present invention, a large amount of alloy components are added to ensure strength, thereby forming a microstructure unfavorable to toughness, and thus the MA phase is minimized to improve toughness. It is important to secure. For example, the microstructure of the weld heat-affected zone may include a mixed phase of granular bainite and upper bainite.
한편, 본 발명 강재의 모재 미세조직은 특별히 한정되지 않으나, 일예로 모재의 미세조직은 침상 페라이트(acicular ferrite), 그래뉼라 베이나이트(granular bainite) 및 상부 베이나이트(upper bainite )의 혼합상을 포함할 수 있다. Meanwhile, the base material microstructure of the steel material of the present invention is not particularly limited, but for example, the base material microstructure includes a mixed phase of acicular ferrite, granular bainite, and upper bainite. can do.
다음으로, 본 발명 강재 제조방법의 일태양에 대해 상세히 설명한다.Next, one aspect of the steel manufacturing method of the present invention will be described in detail.
본 발명의 강재는 전술한 조성을 충족하는 강 슬라브를 재가열하고 조압연 및 사상압연 한 후, 냉각하는 과정을 거쳐 제조될 수 있다. 이하, 각 과정을 상세히 설명한다. The steel material of the present invention can be manufactured through a process of reheating a steel slab that satisfies the above-described composition, performing rough rolling and finishing rolling, and then cooling. Below, each process is described in detail.
슬라브 재가열: 1050~1150℃ Slab reheating: 1050~1150℃
전술한 조성을 충족하는 강 슬라브를 1050~1150℃의 온도범위로 재가열하는 것이 바람직하다. 상기 재가열 온도를 1050℃ 이상으로 하여 주조 중 형성된 Ti 및/또는 Nb의 탄질화물이 고용될 수 있다. 또한, 상기 Ti 및/또는 Nb의 탄질화물을 충분히 고용시키기 이해서는 1080℃ 이상으로 가열하는 것이 보다 바람직하다. 다만, 과도하게 높은 온도로 재가열하는 경우에는 오스테나이트가 조대화 될 우려가 있으므로, 상기 재가열온도는 1150℃ 이하인 것이 바람직하다.It is desirable to reheat the steel slabs meeting the above-described composition to a temperature range of 1050 to 1150°C. When the reheating temperature is set to 1050°C or higher, carbonitrides of Ti and/or Nb formed during casting may be dissolved in solid solution. In addition, in order to sufficiently dissolve the carbonitride of Ti and/or Nb, it is more preferable to heat to 1080°C or higher. However, when reheating to an excessively high temperature, there is a risk that austenite may coarsen, so the reheating temperature is preferably 1150°C or lower.
조압연: 900℃ 이상Rough rolling: above 900℃
상기 재가열된 강 슬라브는 그 형상의 조정을 위해 조압연을 실시한다. 상기 조압연 온도는 오스테나이트의 재결정이 멈추는 온도(Tnr) 이상으로 하는 것이 바람직하며, 이에 상기 조압연 900℃ 이상의 온도에서 행하는 것이 바람직하다. 압연에 의해 주조 중에 형성된 덴드라이트 등 주조 조직의 파괴와 함께 조대한 오스테나이트의 재결정을 통해 입도를 작게 하는 효과도 얻을 수 있다. 충분한 재결정을 일으켜 조직을 미세화하기 위해서 조압연 총 누적압하율은 40% 이상인 것이 바람직하다.The reheated steel slab is subjected to rough rolling to adjust its shape. The rough rolling temperature is preferably higher than the temperature (Tnr) at which recrystallization of austenite stops, and therefore, the rough rolling is preferably performed at a temperature of 900°C or higher. The effect of reducing the grain size can also be achieved through recrystallization of coarse austenite along with destruction of the cast structure such as dendrites formed during casting by rolling. In order to cause sufficient recrystallization and refine the structure, it is preferable that the total cumulative reduction rate of rough rolling is 40% or more.
사상압연: 800℃ 이상Finishing rolling: above 800℃
상기 조압연된 강판의 오스테나이트 조직을 불균일 미세조직으로 도입하기 위해 사상압연을 실시한다. 조직 내에 최대한 변형을 주기 위해 사상압연은 800℃ 이상의 온도에서 행하는 것이 바람직하다. 최대한 미세한 조직을 생성시키기 위해서 사상압연의 누적압하율은 50% 이상인 것이 바람직하다. 상기 사상압연 온도가 800℃ 미만인 경우에는 압연 종료 후 수냉 실시 전 공냉 중에 페라이트가 석출하게 되어 강도가 저하되게 되므로, 800℃ 이상에서 실시하는 것이 바람직하다. Finishing rolling is performed to introduce the austenite structure of the rough-rolled steel sheet into a non-uniform microstructure. In order to provide maximum deformation within the structure, it is desirable to carry out the finishing rolling at a temperature of 800°C or higher. In order to create the finest structure possible, it is desirable that the cumulative reduction ratio of the finishing rolling is 50% or more. If the finishing rolling temperature is less than 800°C, ferrite precipitates during air cooling after completion of rolling and before water cooling, thereby lowering the strength, so it is preferable to carry out the finishing rolling at 800°C or higher.
압연 후 냉각: t/4 지점의 온도가 700℃ 이하의 온도까지 15℃/s 이상의 냉각속도로 냉각(t: 강판의 두께)Cooling after rolling: Cool at a cooling rate of more than 15℃/s until the temperature at point t/4 is below 700℃ (t: thickness of steel sheet)
상기 냉각속도가 15℃/s 미만이거나, 냉각 종료온도가 700℃를 넘는 경우에는 미세조직이 적절하게 형성되지 않게 되어 항복강도가 500MPa 이상을 확보하는 것이 곤란하다. 상기 냉각속도의 상한을 본 발명에서 특별히 한정하지 않으나, 본 발명이 속하는 기술분야에서 상기 냉각 속도는 100℃/s 이상 가능하므로, 바람직할 일예로 상기 냉각속도는 200℃/s 이하인 것이 바람직하다.If the cooling rate is less than 15°C/s or the cooling end temperature exceeds 700°C, the microstructure is not properly formed, making it difficult to secure a yield strength of 500MPa or more. The upper limit of the cooling rate is not particularly limited in the present invention, but in the technical field to which the present invention pertains, the cooling rate is possible at 100°C/s or more. Therefore, as a preferred example, the cooling rate is preferably 200°C/s or less.
이하, 본 발명의 실시예에 대해 설명한다. 하기 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 하기 실시예는 본 발명의 이해를 위한 것으로서, 본 발명의 권리범위는 하기 실시예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.Hereinafter, embodiments of the present invention will be described. Of course, various modifications to the following examples can be made by those skilled in the art without departing from the scope of the present invention. The following examples are for understanding of the present invention, and the scope of the present invention should not be limited to the following examples, but should be determined by the claims described below as well as their equivalents.
(실시예)(Example)
하기 표 1의 조성(나머지는 Fe와 불가피한 불순물임)을 갖는 두께 300㎜의 강 슬라브를 1110℃의 온도로 재가열한 후, 연속하여 980℃에서 조압연을 행하고, 860℃에서 사상압연을 마무리하였다. 이후 25~37℃/s의 냉각속도로 620~560℃까지 냉각하여 강재를 제조하였다. 다만, 하기 표 2에서, 비교예 5는 발명강 2의 조성을 갖는 강 슬라브를 이용하여, 상기와 동일한 조건으로 재가열 및 조압연을 실시하였으나, 사상압연을 730℃에서 행하고, 이후 7℃/s의 냉각속도로 610℃까지 냉각하여 강재를 제조하였다.A 300 mm thick steel slab having the composition shown in Table 1 below (the remainder being Fe and inevitable impurities) was reheated to a temperature of 1110°C, followed by rough rolling at 980°C, and finishing rolling at 860°C. . Afterwards, steel was manufactured by cooling to 620-560°C at a cooling rate of 25-37°C/s. However, in Table 2 below, in Comparative Example 5, reheating and rough rolling were performed under the same conditions as above using a steel slab having the composition of Invention Steel 2, but finishing rolling was performed at 730°C and then at 7°C/s. Steel was manufactured by cooling to 610°C at a cooling rate.
위와 같이 제조된 강재에 대해, 항복강도 및 충격천이 온도를 측정하여 그 결과를 표 2에 나타내었다. 또한, 제조된 강재에 대해 150~200KJ/cm 사이의 입열량으로 용접을 실시하였으며, 여기서 용접 열영향부(HAZ)의 용융선(Fusion Line, FL)~FL+1㎜ 부의 충격인성 및 미세조직을 분석하여 그 결과를 표 2에 나타내었다. 상기 MA 분율은 광학을 통해 LePera 에칭법으로 현출된 분율을 측정한 것이다.For the steel manufactured as above, the yield strength and impact transition temperature were measured and the results are shown in Table 2. In addition, the manufactured steel was welded with a heat input of between 150 and 200 KJ/cm, where the impact toughness and microstructure of the fusion line (FL) ~ FL + 1 mm of the weld heat-affected zone (HAZ) were measured. was analyzed and the results are shown in Table 2. The MA fraction is measured optically by the LePera etching method.
강종Steel grade 강 조성(중량%)Steel composition (% by weight)
CC MnMn SiSi AlAl NiNi MoMo CrCr NbNb TiTi N
(ppm)
N
(ppm)
P
(ppm)
P
(ppm)
S
(ppm)
S
(ppm)
발명강1Invention Lecture 1 0.0480.048 1.671.67 0.130.13 0.020.02 0.870.87 0.120.12 0.160.16 0.0120.012 0.0130.013 5959 7979 99
발명강2Invention Lecture 2 0.0370.037 1.541.54 0.170.17 0.030.03 0.730.73 0.110.11 0.250.25 0.0130.013 0.0160.016 4848 6868 99
발명강3Invention Lecture 3 0.0520.052 1.631.63 0.120.12 0.020.02 0.660.66 0.160.16 0.130.13 0.0090.009 0.0120.012 3939 5858 1010
발명강4Invention Lecture 4 0.0440.044 1.591.59 0.090.09 0.030.03 0.810.81 0.130.13 0.190.19 0.0080.008 0.0150.015 6767 6464 1111
비교강1Comparison lecture 1 0.0910.091 1.661.66 0.130.13 0.030.03 0.720.72 0.130.13 0.220.22 0.0160.016 0.0190.019 3737 6868 1212
비교강2Comparison lecture 2 0.0540.054 1.681.68 0.190.19 0.030.03 0.370.37 0.170.17 0.120.12 0.0180.018 0.0150.015 4646 6161 99
비교강3Comparison lecture 3 0.0590.059 1.651.65 0.260.26 0.020.02 0.880.88 0.120.12 0.260.26 0.0390.039 0.0140.014 4949 5252 88
비교강4Comparison lecture 4 0.0550.055 1.571.57 0.110.11 0.020.02 0.790.79 0.130.13 0.210.21 0.0180.018 0.0220.022 2121 5353 1111
구분division 강종Steel grade 모재
항복강도
(MPa)
base material
yield strength
(MPa)
모재 충격
천이온도
(℃)
Base material impact
transition temperature
(℃)
입열량
(kJ/cm)
heat input
(kJ/cm)
Fusion Line(FL)~ FL + 1mm 영역 MA 분율(%)Fusion Line(FL)~FL + 1mm area MA fraction (%) Fusion Line 평균 CVN Energy @
-20℃ (J)
Fusion Line Average CVN Energy @
-20℃ (J)
Fusion Line+1mm 평균 CVN Energy @
-20℃ (J)
Fusion Line+1mm average CVN Energy @
-20℃ (J)
발명예1Invention Example 1 발명강1Invention Lecture 1 575575 -68-68 178178 2.12.1 7373 5959
발명예2Invention Example 2 발명강2Invention Lecture 2 537537 -78-78 167167 3.23.2 5656 4343
발명예3Invention Example 3 발명강3Invention Lecture 3 556556 -63-63 189189 1.71.7 4242 6868
발명예4Invention Example 4 발명강4Invention Lecture 4 549549 -71-71 157157 1.31.3 6464 7979
비교예1Comparative Example 1 비교강1Comparison lecture 1 586586 -51-51 163163 5.25.2 2828 2424
비교예2Comparative example 2 비교강2Comparison lecture 2 544544 -57-57 175175 2.32.3 2626 3535
비교예3Comparative Example 3 비교강3Comparison lecture 3 561561 -53-53 166166 6.76.7 1919 1111
비교예4Comparative example 4 비교강4Comparison lecture 4 559559 -56-56 171171 3.13.1 1212 2323
비교예5Comparative Example 5 발명강2Invention Lecture 2 472472 -75-75 173173 3.53.5 4949 5151
본 발명의 조건을 만족하는 발명예는 모두 모재의 항복강도가 500MPa 이상이고 충격천이온도가 -40℃ 이하이며, 입열량 150~200KJ/cm으로 용접된 용접 열영향부에서 Fusion Line(FL)~ FL + 1mm 부의 MA 분율이 4% 이하이고, Fusion Line~ FL + 1mm 의 영역에서 측정된 -20℃에서의 충격인성이 33J 이상을 만족하는 것을 알 수 있다. Inventive examples that satisfy the conditions of the present invention all have a yield strength of the base material of 500 MPa or more, an impact transition temperature of -40°C or less, and a heat-affected zone welded with a heat input of 150 to 200 KJ/cm, where the Fusion Line (FL) ~ It can be seen that the MA fraction of FL + 1mm is less than 4%, and the impact toughness at -20℃ measured in the area from Fusion Line to FL + 1mm satisfies 33J or more.
이에 비해, 비교예 1은 본 발명이 제시하는 C 보다 많이 포함하여, 용접 열영향부에서 다량의 도상 마르텐사이트(MA) 상이 생성됨에 따라, FL~FL+1㎜의 영역에서 측정된 충격인성이 -20℃에서 33J 미만이 되는 것을 알 수 있다. In contrast, Comparative Example 1 contains more C than the present invention, and as a large amount of island-like martensite (MA) phase is generated in the weld heat-affected zone, the impact toughness measured in the region of FL ~ FL + 1 mm is It can be seen that it is less than 33J at -20℃.
비교예 2는 본 발명에서 제시된 Ni 함량보다 적게 포함된 것으로서, Ni 첨가량 부족으로 인성의 저하가 발생하여 MA 분율이 4% 이하임에도 불구하고, FL에서 측정된 충격인성이 -20℃에서 33J 미만이 되는 것을 알 수 있다. Comparative Example 2 contained less Ni content than suggested in the present invention, and the lack of Ni addition caused a decrease in toughness, so that even though the MA fraction was less than 4%, the impact toughness measured at FL was less than 33J at -20°C. You can see that it happens.
비교예 3은 본 발명에서 제시된 Si, Nb 함량이 많이 포함된 것으로서, 용접 열영향부에서 다량의 MA 상이 생성됨에 따라 FL~FL+1㎜ 영역에서 측정된 충격인성이 -20℃에서 33J 미만이 되는 것을 알 수 있다. Comparative Example 3 contains a large amount of Si and Nb as presented in the present invention, and as a large amount of MA phase is generated in the weld heat-affected zone, the impact toughness measured in the range FL ~ FL + 1 mm is less than 33J at -20 ° C. You can see that it happens.
비교예 4는 본 발명이 제시하는 Ti 함량보다 많이 첨가되고, N 함량이 낮게 포함되어, TiN이 조대하게 용접부에 석출됨에 따라 입도가 증가하였기 때문에 MA 분율이 4% 이하임에도 불구하고, FL~FL+1㎜ 영역에서 측정된 충격인성이 -20℃에서 33J 미만이 되는 것을 알 수 있다.In Comparative Example 4, although the MA fraction was less than 4% because the Ti content was added more than that suggested by the present invention and the N content was low, the particle size increased as TiN was coarsely precipitated in the weld zone, FL ~ FL It can be seen that the impact toughness measured in the +1mm region is less than 33J at -20℃.
한편, 비교예 5는 본 발명이 제시하는 성분을 만족하나, 제조공정을 충족하지 못한 경우로써, 용접 후 용접 열영향부의 MA 분율이 4% 이하이고, FL~FL+1㎜ 영역에서 측정된 충격인성이 -20℃에서 33J 이상이나, 사상압연 및 공냉 중 일부 페라이트가 형성되어, 느린 냉각속도로 인해 저온변태상이 적절히 생성되지 않아, 모재의 항복강도가 500MPa 이하로 제조되는 것을 확인할 수 있었다.On the other hand, Comparative Example 5 satisfies the components suggested by the present invention, but does not meet the manufacturing process, and the MA fraction of the weld heat-affected zone after welding is 4% or less, and the impact measured in the range FL ~ FL + 1 mm Although the toughness was more than 33J at -20℃, some ferrite was formed during finishing rolling and air cooling, and the low-temperature transformation phase was not properly created due to the slow cooling rate, so it was confirmed that the base material was manufactured with a yield strength of 500 MPa or less.

Claims (8)

  1. 중량%로, C: 0.03~0.06%, Mn: 1.5~1.7%, Si: 0.05~0.2%, Al: 0.01~0.04%, Ni: 0.6~0.9%, Mo: 0.1~0.2%, Cr: 0.1~0.3%, Ti: 0.01~0.02%, Nb: 0.005~0.02%, N: 0.0035~0.0070%, P: 0.008% 이하, S: 0.002% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하고, In weight percent, C: 0.03~0.06%, Mn: 1.5~1.7%, Si: 0.05~0.2%, Al: 0.01~0.04%, Ni: 0.6~0.9%, Mo: 0.1~0.2%, Cr: 0.1~ 0.3%, Ti: 0.01-0.02%, Nb: 0.005-0.02%, N: 0.0035-0.0070%, P: 0.008% or less, S: 0.002% or less, the remainder includes Fe and inevitable impurities,
    입열량 150~200KJ/cm로 용접한 용접 열영향부(HAZ)에서, 용융선(Fusion Line, FL)~FL+1㎜ 영역의 MA 분율이 면적분율로 4% 이하인 용접 열영향부 인성이 우수한 강재.In a welded heat-affected zone (HAZ) welded with a heat input of 150 to 200 KJ/cm, the MA fraction in the area from the fusion line (FL) to FL+1 mm is less than 4% by area, and the toughness of the welded heat-affected zone is excellent. Steel.
  2. 청구항 1에 있어서,In claim 1,
    상기 FL~FL+1㎜ 영역에서의 -20℃에서의 충격인성이 33J 이상인 용접 열영향부 인성이 우수한 강재.A steel material with excellent weld heat-affected zone toughness having an impact toughness of 33J or more at -20°C in the FL to FL+1 mm range.
  3. 청구항 1에 있어서,In claim 1,
    상기 강재의 미세조직은 침상 페라이트(acicular ferrite), 그래뉼라 베이나이트(granular bainite) 및 상부 베이나이트(upper bainite )의 혼합상을 포함하는 용접 열영향부 인성이 우수한 강재.A steel with excellent weld heat-affected zone toughness, wherein the microstructure of the steel includes a mixed phase of acicular ferrite, granular bainite, and upper bainite.
  4. 청구항 1에 있어서, In claim 1,
    상기 용접 열영향부의 미세조직은 그래뉼라 베이나이트(granular bainite) 및 상부 베이나이트(upper bainite)의 혼합상을 포함하는 용접 열영향부 인성이 우수한 강재.A steel material with excellent weld heat-affected zone toughness, wherein the microstructure of the weld heat-affected zone includes a mixed phase of granular bainite and upper bainite.
  5. 청구항 1에 있어서,In claim 1,
    상기 강재의 모재 항복강도 500MPa 이상이고, 충격천이온도가 -40℃ 이하인 용접 열영향부 인성이 우수한 강재.A steel material with excellent weld heat-affected zone toughness having a base material yield strength of 500 MPa or more and an impact transition temperature of -40°C or less.
  6. 중량%로, C: 0.03~0.06%, Mn: 1.5~1.7%, Si: 0.05~0.2%, Al: 0.01~0.04%, Ni: 0.6~0.9%, Mo: 0.1~0.2%, Cr: 0.1~0.3%, Ti: 0.01~0.02%, Nb: 0.005~0.02%, N: 0.0035~0.0070%, P: 0.008% 이하, S: 0.002% 이하, 나머지는 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1150℃로 가열하는 단계;In weight percent, C: 0.03~0.06%, Mn: 1.5~1.7%, Si: 0.05~0.2%, Al: 0.01~0.04%, Ni: 0.6~0.9%, Mo: 0.1~0.2%, Cr: 0.1~ 0.3%, Ti: 0.01~0.02%, Nb: 0.005~0.02%, N: 0.0035~0.0070%, P: 0.008% or less, S: 0.002% or less, the remainder containing Fe and inevitable impurities. Heating to 1150°C;
    상기 가열된 강 슬라브를 900℃ 이상의 온도에서 조압연하는 단계;Rough rolling the heated steel slab at a temperature of 900°C or higher;
    상기 조압연 후 800℃ 이상의 온도에서 마무리 열간 압연하여 열연강판을 제조하는 단계; 및Manufacturing a hot rolled steel sheet by performing final hot rolling at a temperature of 800° C. or higher after the rough rolling; and
    상기 열연강판 두께(t)의 t/4 지점의 온도가 700℃이하까지 15℃/s의 냉각속도로 냉각하는 단계를 포함하는 용접 열영향부 인성이 우수한 강재의 제조방법.A method of manufacturing a steel material with excellent weld heat-affected zone toughness, comprising cooling the hot rolled steel sheet at a cooling rate of 15°C/s until the temperature at point t/4 of the thickness (t) of the hot rolled steel sheet is 700°C or lower.
  7. 청구항 6에 있어서,In claim 6,
    상기 조압연 총 압하율은 40% 이상으로 행하는 용접 열영향부 인성이 우수한 강재의 제조방법.A method of manufacturing a steel material with excellent weld heat-affected zone toughness, wherein the total reduction rate of the rough rolling is performed at 40% or more.
  8. 청구항 6에 있어서,In claim 6,
    상기 사상압연의 누적압하율은 50% 이상으로 행하는 용접 열영향부 인성이 우수한 강재의 제조방법.A method of manufacturing a steel material with excellent welding heat-affected zone toughness, wherein the cumulative reduction ratio of the finishing rolling is performed at 50% or more.
PCT/KR2022/016589 2022-10-27 2022-10-27 Steel plate having excellent heat-affected zone toughness and method for manufacturing same WO2024090614A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/016589 WO2024090614A1 (en) 2022-10-27 2022-10-27 Steel plate having excellent heat-affected zone toughness and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/016589 WO2024090614A1 (en) 2022-10-27 2022-10-27 Steel plate having excellent heat-affected zone toughness and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2024090614A1 true WO2024090614A1 (en) 2024-05-02

Family

ID=90831190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016589 WO2024090614A1 (en) 2022-10-27 2022-10-27 Steel plate having excellent heat-affected zone toughness and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2024090614A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041079A (en) * 2007-08-09 2009-02-26 Nippon Steel Corp Steel for welded structure having excellent toughness in weld heat-affected zone, method for producing the same, and method for producing welded structure
KR20090069873A (en) * 2007-12-26 2009-07-01 주식회사 포스코 Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
JP2013078775A (en) * 2011-10-03 2013-05-02 Jfe Steel Corp Welded steel pipe excelling in toughness of welding heat affected part, and method for manufacturing the same
KR20200064510A (en) * 2018-11-29 2020-06-08 주식회사 포스코 The steel plate having excellent heat affected zone toughness and method for manufacturing thereof
JP2022142983A (en) * 2021-03-17 2022-10-03 日本製鉄株式会社 Steel pipe having excellent low temperature toughness
KR20230026720A (en) * 2021-08-18 2023-02-27 주식회사 포스코 Steel plate having excellent heat affected zone toughness and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009041079A (en) * 2007-08-09 2009-02-26 Nippon Steel Corp Steel for welded structure having excellent toughness in weld heat-affected zone, method for producing the same, and method for producing welded structure
KR20090069873A (en) * 2007-12-26 2009-07-01 주식회사 포스코 Steel for a structure having excellent low temperature toughnetss, tensile strength and low yield ratio, of heat affected zone and manufacturing method for the same
JP2013078775A (en) * 2011-10-03 2013-05-02 Jfe Steel Corp Welded steel pipe excelling in toughness of welding heat affected part, and method for manufacturing the same
KR20200064510A (en) * 2018-11-29 2020-06-08 주식회사 포스코 The steel plate having excellent heat affected zone toughness and method for manufacturing thereof
JP2022142983A (en) * 2021-03-17 2022-10-03 日本製鉄株式会社 Steel pipe having excellent low temperature toughness
KR20230026720A (en) * 2021-08-18 2023-02-27 주식회사 포스코 Steel plate having excellent heat affected zone toughness and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2016104975A1 (en) High-strength steel material for pressure container having outstanding toughness after pwht, and production method therefor
WO2017105107A1 (en) High-strength steel material having excellent low-temperature strain aging impact properties and welding heat-affected zone impact properties and method for manufacturing same
WO2015099373A1 (en) Ultrahigh-strength welded structural steel having excellent toughness in welding heat-affected zones thereof, and production method therefor
WO2019107700A1 (en) High strength steel material having excellent hydrogen-induced cracking resistance and low-temperature impact toughness and manufacturing method therefor
WO2021091138A1 (en) Steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
WO2018117450A1 (en) Sour-resistant heavy-walled steel material having excellent low-temperature toughness and post-heat treatment characteristics and method for manufacturing same
WO2019098483A1 (en) Low-temperature steel plate having excellent impact toughness, and method for manufacturing same
WO2011081350A2 (en) High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same
WO2018117614A1 (en) Ultra-thick steel material having excellent surface part nrl-dwt properties and method for manufacturing same
WO2020111732A1 (en) High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio, and method thereof
WO2017105109A1 (en) High-strength steel material having excellent low-temperature strain aging impact properties and method for manufacturing same
WO2019124890A1 (en) Thick steel plate having excellent low-temperature toughness and manufacturing method therefor
WO2020111863A1 (en) Ultrahigh-strength steel having excellent cold workability and ssc resistance, and manufacturing method therefor
WO2022139191A1 (en) Highly thick steel material having excellent low-temperature impact toughness and manufacturing method therefor
WO2019124671A1 (en) Low-temperature steel material having excellent toughness in welding portion thereof and manufacturing method therefor
WO2018117507A1 (en) Low-yield ratio steel sheet having excellent low-temperature toughness and method for manufacturing same
WO2018117496A1 (en) Steel for pressure vessels with excellent resistance to high-temperature tempering heat treatment and post-weld heat treatment and manufacturing method therefor
WO2020111856A2 (en) High-strength steel sheet having excellent ductility and low-temperature toughness and method for manufacturing thereof
WO2017111345A1 (en) Low-yield-ratio type high-strength steel, and manufacturing method therefor
WO2020111857A1 (en) Chromium-molybdenum steel plate having excellent creep strength and method for manufacturing same
WO2024090614A1 (en) Steel plate having excellent heat-affected zone toughness and method for manufacturing same
WO2021112503A1 (en) Normalizing heat treated steel sheet having good low impact toughness and method for manufacturing same
WO2019124793A1 (en) High strength steel sheet and manufacturing method therefor
WO2017222122A1 (en) Reinforcing bar and manufacturing method therefor
KR20230026720A (en) Steel plate having excellent heat affected zone toughness and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963575

Country of ref document: EP

Kind code of ref document: A1