WO2024090556A1 - Polymer composition and tire - Google Patents

Polymer composition and tire Download PDF

Info

Publication number
WO2024090556A1
WO2024090556A1 PCT/JP2023/038891 JP2023038891W WO2024090556A1 WO 2024090556 A1 WO2024090556 A1 WO 2024090556A1 JP 2023038891 W JP2023038891 W JP 2023038891W WO 2024090556 A1 WO2024090556 A1 WO 2024090556A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
mass
less
composition according
conjugated diene
Prior art date
Application number
PCT/JP2023/038891
Other languages
French (fr)
Japanese (ja)
Inventor
拓哉 佐野
寛文 千賀
龍源 中濱
天斗 福本
法由 大野
Original Assignee
株式会社Eneosマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Eneosマテリアル filed Critical 株式会社Eneosマテリアル
Publication of WO2024090556A1 publication Critical patent/WO2024090556A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof

Definitions

  • Conjugated diene polymers obtained by polymerization using conjugated diene compounds have excellent properties such as heat resistance, abrasion resistance, mechanical strength, and moldability, and are therefore widely used in various industrial products such as pneumatic tires, anti-vibration rubber, and hoses.
  • polymer compositions used in the manufacture of pneumatic tire treads, sidewalls, etc. contain inorganic fillers such as carbon black and silica as reinforcing agents along with conjugated diene polymers in order to improve the durability and abrasion resistance of the products.
  • conjugated diene polymers modified with silicon- or nitrogen-containing compounds have been used in the past to increase the affinity between the conjugated diene polymers and reinforcing agents (see, for example, Patent Documents 1 to 3).
  • the present disclosure has been made in consideration of the above problems, and has as its main objective the provision of a polymer composition that can produce a crosslinked product with high strength, excellent low-temperature grip performance, and ozone resistance, and that also has excellent vulcanization adhesion.
  • the present disclosure provides the following polymer composition and tire.
  • a polymer composition comprising: a first polymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene and satisfying the following conditions (x) and (y); and a second polymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene and satisfying the following conditions (x) and (y), wherein the difference between the ⁇ of the first polymer and the ⁇ of the second polymer is 0.10 or less, and the difference between the content ratio of the structural unit derived from the aromatic vinyl compound in the first polymer and the content ratio of the structural unit derived from the aromatic vinyl compound in the second polymer is 10 to 30 mass %.
  • Condition (x): ⁇ is 0.60 or more and 0.97 or less.
  • the polymer composition of the present disclosure has excellent vulcanization adhesion.
  • the term "(modified) conjugated diene polymer” includes unmodified conjugated diene polymers and modified conjugated diene polymers (i.e. modified conjugated diene polymers).
  • the “conjugated diene polymer” may be a modified conjugated diene polymer or an unmodified conjugated diene polymer, unless otherwise specified that it is unmodified.
  • the polymer composition of the present disclosure (hereinafter also referred to as “the composition”) contains a first polymer and a second polymer, which are polymers containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene, and have different content ratios of the structural unit derived from an aromatic vinyl compound.
  • the first polymer and the second polymer are also referred to as “polymer [P]”.
  • the content described by polymer [P] describes the respective configurations of the first polymer and the second polymer.
  • aromatic vinyl compounds constituting the polymer [P] include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethylether, N,N-dimethylaminoethylstyrene, N,N-dimethylaminomethylstyrene, 2-ethylst
  • Each of the first polymer and the second polymer is a highly saturated copolymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene.
  • the constituent ratios (molar ratios) in the polymer of the structural unit represented by the following formula (1), the structural unit represented by the following formula (2), the structural unit represented by the following formula (3), and the structural unit represented by the following formula (4) are respectively p, q, r, and s
  • the strength, abrasion resistance, and ozone resistance of the crosslinked body tend to be insufficient. If the ⁇ of each of the polymers exceeds 0.97, crosslinking cannot be sufficiently advanced, and the strength and viscoelastic properties of the crosslinked body tend to be reduced. In addition, in a laminated crosslinked body obtained by laminating the present composition with a conjugated diene material sheet or the like and vulcanizing it, it tends to be difficult to ensure adhesion to the conjugated diene material sheet or the like.
  • the ⁇ of each of the first polymer and the second polymer is preferably 0.65 or more, more preferably 0.70 or more, even more preferably 0.75 or more, and particularly preferably 0.80 or more.
  • the ⁇ of each polymer is preferably 0.96 or less.
  • the weight average molecular weight (Mw) of each of the first polymer and the second polymer, measured by gel permeation chromatography (GPC) in terms of polystyrene, is preferably in the range of 0.5 ⁇ 10 5 or more and 2.0 ⁇ 10 6 or less, from the viewpoint of obtaining a crosslinked body having high strength and excellent abrasion resistance.
  • the Mw of each polymer is more preferably 0.7 ⁇ 10 5 or more, and even more preferably 1.0 ⁇ 10 5 or more.
  • the Mw of each polymer is more preferably 1.6 ⁇ 10 6 or less, and even more preferably 1.4 ⁇ 10 6 or less.
  • the weight average molecular weight (Mw) of the polymer [P] represents the weight average molecular weight (total weight average molecular weight) based on all peaks of the GPC curve measured by GPC before hydrogenation.
  • the molecular weight distribution (Mw/Mn) which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by GPC, is preferably 4.0 or less, and more preferably 3.5 or less.
  • the peak top molecular weight of the peak with the smallest molecular weight measured by GPC is preferably in the range of 0.5 x 10 5 or more and 1.0 x 10 6 or less.
  • the 1st peak average molecular weight of each polymer is more preferably 0.7 x 10 5 or more, and even more preferably 1.0 x 10 5 or more.
  • the 1st peak average molecular weight of each polymer is more preferably 8.0 x 10 5 or less, and even more preferably 5.0 x 10 5 or less.
  • the 1st peak average molecular weight is a value obtained from a GPC curve measured by GPC before hydrogenation.
  • the ratio of the structural units derived from the aromatic vinyl compound in each of the first polymer and the second polymer is preferably greater than 0% by mass and less than 45% by mass, based on the total structural units constituting each polymer.
  • the ratio of the structural units derived from the aromatic vinyl compound is more preferably 2% by mass or more, and even more preferably 5% by mass or more, based on the total structural units constituting each of the first polymer and the second polymer.
  • the ratio of the structural units derived from the aromatic vinyl compound is more preferably 40% by mass or less, more preferably 38% by mass or less, and even more preferably 36% by mass or less, based on the total structural units constituting each polymer.
  • the content ratio of the structural units derived from the aromatic vinyl compound in the polymer is a value measured by 1 H-NMR.
  • the value represented by (i.e., ⁇ ) is 0.10 or more and 0.40 or less (this is referred to as condition (y)). If the ⁇ of each polymer is less than 0.10, the flexibility of the resulting crosslinked body is insufficient, and sufficient strength cannot be ensured, or good low-temperature grip performance tends not to be obtained. Furthermore, if the ⁇ of each polymer exceeds 0.40, the strength and wear resistance of the crosslinked body tend to be insufficient.
  • the ⁇ of each of the first polymer and the second polymer is preferably 0.15 or more, more preferably 0.20 or more. Furthermore, the ⁇ of each of the first polymer and the second polymer is preferably 0.39 or less, more preferably 0.37 or less.
  • the composition contains, as the polymer [P], a first polymer and a second polymer that contains a smaller proportion of structural units derived from an aromatic vinyl compound than the first polymer. According to the composition, by containing the first polymer and the second polymer that have different microstructures, it is possible to obtain a crosslinked product that has a good balance of improved strength, low-temperature grip performance, ozone resistance, and vulcanization adhesion compared to when only one of the two polymers is contained.
  • the difference between the content ratio of structural units derived from aromatic vinyl compounds in the first polymer and the content ratio of structural units derived from aromatic vinyl compounds in the second polymer (hereinafter also referred to as the "aromatic vinyl content difference”) is 10 to 30% by mass. If the aromatic vinyl content difference is less than 10% by mass, the difference in the microstructure of the first polymer and the second polymer is small, and the effect of improving the strength, low-temperature grip performance, ozone resistance, and vulcanization adhesion of the crosslinked body in a well-balanced manner cannot be fully obtained. Furthermore, if the aromatic vinyl content difference is greater than 30% by mass, the strength of the crosslinked body is insufficient and the low-temperature grip performance is inferior. From these viewpoints, the aromatic vinyl content difference is preferably 11% by mass or more, and more preferably 12% by mass or more. Furthermore, the aromatic vinyl content difference is preferably 28% by mass or less, and more preferably 27% by mass or less.
  • the difference between the ⁇ of the first polymer and the ⁇ of the second polymer (hereinafter also referred to as " ⁇ ") is 0.10 or less. If ⁇ exceeds 0.10, the strength and low-temperature grip performance of the obtained crosslinked body tend to be insufficient. From these viewpoints, ⁇ is preferably 0.08 or less, more preferably 0.07 or less, and even more preferably 0.06 or less. Furthermore, from the viewpoint of improving the strength, low-temperature grip performance, ozone resistance, and vulcanization adhesion of the crosslinked body in a well-balanced manner, it is preferable that the ⁇ of the first polymer is different from the ⁇ of the second polymer. ⁇ is preferably greater than 0, and more preferably 0.01 or more.
  • the ⁇ of the first polymer is different from the ⁇ of the second polymer, the ⁇ of either the first polymer or the second polymer may be larger. From the viewpoint of obtaining a polymer composition with good balance between improving the strength, low-temperature grip performance, and ozone resistance of the crosslinked body and having excellent vulcanization adhesion, it is preferable that the ⁇ of the second polymer is larger than the ⁇ of the first polymer.
  • the first polymer and the second polymer may be modified polymers (hereinafter, also referred to as “modified polymers”) or unmodified polymers.
  • modified polymers refers to providing an unmodified conjugated diene polymer consisting of structural units derived from hydrocarbons with a partial structure containing a heteroatom such as nitrogen, oxygen, sulfur, or silicon.
  • the modified polymer may be a polymer obtained by terminal modification in which a partial structure containing a heteroatom is introduced into the polymerization initiation end or polymerization termination end of the conjugated diene polymer using a modifying agent, or a polymer obtained by main chain modification in which a monomer having a heteroatom is copolymerized or a conjugated diene polymer is reacted with a modifying agent to introduce a partial structure containing a heteroatom into the main chain of the polymer.
  • modifying agent refers to a chemical agent that causes modification.
  • first polymer and the second polymer have a functional group (hereinafter also referred to as a "specific functional group") that contains at least one element selected from the group consisting of nitrogen, oxygen, silicon, and phosphorus.
  • a functional group hereinafter also referred to as a "specific functional group” that contains at least one element selected from the group consisting of nitrogen, oxygen, silicon, and phosphorus.
  • the position of the specific functional group in the polymer is not particularly limited. That is, the specific group-containing polymer may have a specific functional group at the end of the molecular chain, or may have a specific functional group on the side chain of the polymer. In addition, in a polymer having a specific functional group at the end of the molecular chain, the specific group-containing polymer may have the specific functional group at the polymerization initiation end, the polymerization termination end, or both the polymerization initiation end and the polymerization termination end. In terms of being able to enhance the effect of improving various physical properties of the crosslinked body obtained using this composition, it is preferable that the specific group-containing polymer has a specific functional group at one end or both ends of the molecular chain.
  • Specific functional groups include, for example, primary amino groups, secondary amino groups, tertiary amino groups, nitrogen-containing groups in which two hydrogen atoms of a primary amino group are protected, nitrogen-containing groups in which one hydrogen atom of a secondary amino group is protected, tertiary amino groups, imino groups, phosphorus-containing groups in which two hydrogen atoms of a primary phosphino group are protected, phosphorus-containing groups in which one hydrogen atom of a secondary phosphino group is protected, tertiary phosphino groups, cyclic ether groups, hydroxyl groups, oxygen-containing groups in which the hydrogen atom of a hydroxyl group is protected, nitrogen-containing heterocyclic groups (e.g., groups having heterocyclic rings such as pyridine rings and imide rings), hydrocarbyloxysilyl groups, hydrocarbyloxycarbonyl groups, ether bonds, etc.
  • nitrogen-containing heterocyclic groups e.g., groups having heterocyclic rings such as pyridine rings
  • one or both of the first polymer and the second polymer have at least one specific functional group selected from the group consisting of nitrogen-containing groups and hydrocarbyloxysilyl groups.
  • the specific group-containing polymer is preferably a reaction product between a conjugated diene polymer having an active end and a compound having a specific functional group and a reactive site with the active end of the conjugated diene polymer.
  • the compound may have one reactive site with the active end, or two or more reactive sites.
  • the first polymer may be a specific group-containing polymer
  • the second polymer may be a specific group-containing polymer. From the viewpoint of further enhancing the effect of improving various physical properties of the crosslinked body obtained by using this composition, it is preferable that at least one of the first polymer and the second polymer is a specific group-containing polymer, and it is more preferable that both the first polymer and the second polymer are specific group-containing polymers.
  • the blending ratio of the first polymer to the second polymer in this composition is preferably in the range of 10:90 to 90:10 by mass ratio (first polymer:second polymer).
  • first polymer:second polymer a polymer that has a high degree of polyethylene
  • the blending ratio of the first polymer to the second polymer is more preferably in the range of 15:85 to 85:15 (first polymer:second polymer), and even more preferably in the range of 20:80 to 80:20 (first polymer:second polymer).
  • the polymer [P] can be produced by a method including the following polymerization step and hydrogenation step.
  • the polymer [P] may also be produced by a method including the following modification step in addition to the polymerization step and hydrogenation step.
  • the polymerization step is a step of polymerizing a monomer containing 1,3-butadiene and an aromatic vinyl compound to obtain a conjugated diene polymer having an active terminal.
  • aromatic vinyl compound used in the polymerization step include the same compounds as the above-mentioned illustrative and preferred examples of the aromatic vinyl compound.
  • a conjugated diene compound other than 1,3-butadiene may be used together with the aromatic vinyl compound.
  • the conjugated diene compound include isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, 2-phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, and 2-chloro-1,3-butadiene.
  • the conjugated diene compound used in combination with 1,3-butadiene is preferably isoprene or 2,3-dimethyl-1,3-butadiene.
  • the proportion of the conjugated diene compound used in combination with 1,3-butadiene is preferably 30% by mass or less, and more preferably 20% by mass or less, based on the total amount of the conjugated diene compound used in the polymerization.
  • the monomers used in the polymerization reaction to obtain the polymer [P] may contain compounds other than conjugated diene compounds and aromatic vinyl compounds (hereinafter also referred to as "other monomers").
  • other monomers include acrylonitrile, methyl (meth)acrylate, and ethyl (meth)acrylate.
  • the proportion of other monomers used is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total amount of monomers used in the polymerization.
  • the polymer [P] has a random copolymerization portion in which the distribution of the conjugated diene compound and the aromatic vinyl compound is irregular.
  • the polymer [P] may further have a block portion made of a conjugated diene compound or an aromatic vinyl compound.
  • the polymer [P] is preferably a copolymer containing 1,3-butadiene and styrene in the monomer composition.
  • Polymerization methods that can be used include solution polymerization, gas phase polymerization, bulk polymerization, and the like. Of these, solution polymerization is particularly preferred.
  • the polymerization form may be either batch or continuous.
  • a specific example of the polymerization method is a method in which monomers including a conjugated diene compound and an aromatic vinyl compound are polymerized in a solvent (preferably an organic solvent) in the presence of a polymerization initiator and, if necessary, a vinyl content regulator (hereinafter, also referred to as a "randomizer").
  • a metal compound containing an alkali metal or an alkaline earth metal can be used as the polymerization initiator.
  • a compound containing an alkali metal is preferred.
  • metal compounds include alkyl lithium such as methyl lithium, ethyl lithium, n-propyl lithium, n-butyl lithium, sec-butyl lithium, and t-butyl lithium; 1,4-dilithiobutane, phenyl lithium, stilbene lithium, naphthyl lithium, 1,3-bis(1-lithio-1,3-dimethylpentyl)benzene, 1,3-phenylenebis(3-methyl-1-phenylpentylidene)dilithium, naphthyl sodium, naphthyl potassium, and ethoxy potassium. Of these, lithium compounds are preferred.
  • the metal compound used as the polymerization initiator may be a metal amide compound having an alkali metal or an alkaline earth metal.
  • an amino group preferably a secondary amino group or a tertiary amino group
  • the polymer [P] obtained by polymerizing the monomers in the presence of a metal amide compound is preferable in that it can increase the strength of the crosslinked body and can increase the effect of improving the fuel efficiency of the crosslinked body when used for tires.
  • the metal amide compound is preferably a compound obtained by mixing a lithium compound (e.g., alkyl lithium, etc.) with a compound having a nitrogen atom (hereinafter also referred to as the "initial end modifier").
  • the initial end modifier is preferably a secondary amine compound.
  • Specific examples thereof include dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N,N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di-(2-ethylhexyl)amine, diallylamine, morpholine, N-(trimethylsilyl)piperazine, N-(tert-butyldimethylsilyl)-4-piperazine, 1,3-ditrimethylsilyl-1,3,5-triazinane, etc.
  • a lithium compound and an initiating end modifier may be mixed in advance to prepare a metal amide compound, and the prepared metal amide compound may be added to the polymerization system to carry out polymerization.
  • a lithium compound and an initiating end modifier may be added to the polymerization system, and the two may be mixed in the polymerization system to prepare a metal amide compound, and polymerization may be carried out.
  • the amount of polymerization initiator used in polymerization is preferably 0.01 to 20 mmol, and more preferably 0.05 to 15 mmol, per 100 g of monomer used to synthesize the polymer.
  • the randomizer can be used for the purpose of adjusting the vinyl bond content, which indicates the content of vinyl bonds in a polymer.
  • randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di(tetrahydrofuryl)propane, 2-(2-ethoxyethoxy)-2-methylpropane, triethylamine, pyridine, N-methylmorpholine, tetramethylethylenediamine, potassium dodecylbenzenesulfonate, etc.
  • the randomizer can be used alone or in combination of two or more types.
  • organic solvent used in the polymerization an organic solvent that does not participate in the polymerization reaction can be preferably used.
  • Specific examples of the organic solvent used in the polymerization include, for example, chain or cyclic aliphatic hydrocarbons, aromatic hydrocarbons, etc.
  • hydrocarbons having 3 to 8 carbon atoms are preferred, and specific examples thereof include, for example, propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, trans-2-butene, cis-2-butene, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene, heptane, cyclopentane, methylcyclopentane, methylcyclohexane, 1-pentene, 2-pentene, cyclohexene, etc.
  • the organic solvent can be used alone or in combination of two or more kinds.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control.
  • the temperature of the polymerization reaction is preferably -20°C to 150°C, more preferably 0 to 120°C.
  • the polymerization reaction is preferably carried out under a pressure sufficient to substantially keep the monomer in a liquid phase. Such a pressure can be obtained by a method such as pressurizing the inside of the reactor with a gas that is not involved in the polymerization reaction.
  • a conjugated diene polymer having an active end can be obtained.
  • the term "active end" refers to the portion (more specifically, the metal end) other than the structure derived from the monomer having a carbon-carbon double bond that is present at the end of the molecular chain.
  • the vinyl bond content of the conjugated diene polymer obtained by the polymerization is preferably 10 to 40 mol%.
  • the vinyl bond content is preferably 15 mol% or more, more preferably 20 mol% or more.
  • the vinyl bond content of the conjugated diene polymer is preferably 39 mol% or less, more preferably 37 mol% or less.
  • the "vinyl bond content” is a value indicating the content ratio of structural units having vinyl bonds (1,2-bonds) to all structural units derived from 1,3-butadiene contained in the conjugated diene polymer before hydrogenation.
  • the vinyl bond content is a value measured by a 1 H-NMR device.
  • ⁇ represented by the above formula (ii) corresponds to the vinyl bond content of the conjugated diene polymer before hydrogenation. For example, when the ⁇ of a polymer is 0.10, the vinyl bond content of the polymer before hydrogenation is 10%.
  • the polymerization can be terminated by reacting the conjugated diene polymer having an active end with an alcohol or hydrogen.
  • the conjugated diene polymer having an active end may be reacted with a modifier by the modification process described below.
  • a compound having a functional group that is covalently bonded or interacts with the inorganic filler and can react with the active end of the polymer is preferably used as a modifying agent, and the modifying agent is reacted with the conjugated diene polymer having an active end.
  • the modifying agent may be a compound having one reactive site with the active end of the polymer (hereinafter also referred to as a "terminal end modifying agent”), or a polyfunctional compound having two or more reactive sites with the active end of the polymer (hereinafter also referred to as a "specific coupling agent").
  • the end-terminal modifier is not particularly limited, and can be appropriately selected from compounds known as modifiers for conjugated diene polymers.
  • a compound having at least one element selected from the group consisting of nitrogen, oxygen, silicon, and phosphorus, and having no active hydrogen bonded to the element can be preferably used.
  • a compound having at least one specific functional group selected from the group consisting of an amino group, a group having a carbon-nitrogen double bond, a nitrogen-containing heterocyclic group, a phosphino group, a cyclic ether group, a protected hydroxyl group, and a hydrocarbyloxysilyl group, and capable of reacting with a polymerization active terminal can be preferably used.
  • the amino group is preferably a protected primary amino group, a protected secondary amino group, or a tertiary amino group.
  • Such a compound is not particularly limited, but for example, one or more of the compounds described in JP-A-2003-171418 and WO2021/112167 can be preferably used.
  • a preferred specific example of the terminal modifying agent is at least one selected from the group consisting of compounds represented by the following formula (5) and compounds represented by the following formula (6).
  • a 11 is a monovalent functional group having at least one element selected from the group consisting of nitrogen, sulfur, phosphorus, and oxygen, having no active hydrogen, and bonded to R 35 via nitrogen, sulfur, phosphorus, oxygen, or a carbon atom contained in a carbonyl group, or is an epoxy group.
  • R 33 and R 34 are each independently a hydrocarbyl group.
  • R 35 is a hydrocarbylene group.
  • t is an integer of 0 to 2. However, when t is 2, multiple R 33s in the formula are the same as or different from each other.
  • a 12 is a monovalent functional group having at least one element selected from the group consisting of nitrogen, sulfur, phosphorus, and oxygen, having no active hydrogen, and bonded to R 39 via nitrogen, sulfur, phosphorus, or oxygen, or a hydrocarbyl group having 1 to 20 carbon atoms.
  • R 36 and R 37 are each independently a hydrocarbyl group.
  • R 38 is a hydrocarbylene group.
  • R 39 is a single bond or a hydrocarbylene group.
  • u is 0 or 1. However, when u is 0, multiple R 37 in the formula are the same or different from each other.
  • the hydrocarbyl group is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
  • the hydrocarbylene group represented by R 35 and R 39 is preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or an arylene group having 6 to 20 carbon atoms.
  • the hydrocarbylene group represented by R 38 is preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms.
  • t is preferably 0 or 1.
  • a 11 is the monovalent functional group
  • a 12 is the monovalent functional group
  • at least one element selected from the group consisting of nitrogen, sulfur, phosphorus, and oxygen possessed by A 12 may be protected, for example, by a tri-substituted hydrocarbylsilyl group, etc.
  • active hydrogen refers to a hydrogen atom bonded to an atom other than a carbon atom, and preferably refers to one having a bond energy lower than that of the carbon-hydrogen bond of polymethylene.
  • a 11 may be a group that can be turned into an onium ion by an onium salt generating agent.
  • the end-end modifying agent has such a group (A 11 ), and thus can impart excellent shape retention to the polymer.
  • Specific examples of A 11 include a nitrogen-containing group in which two hydrogen atoms of a primary amino group are protected, a nitrogen-containing group in which one hydrogen atom of a secondary amino group is protected, a tertiary amino group, an imino group, a nitrogen-containing heterocyclic group (e.g., a group having a heterocyclic ring such as a pyridine ring or an imide ring), a phosphorus-containing group in which two hydrogen atoms of a primary phosphino group are protected, a phosphorus-containing group in which one hydrogen atom of a secondary phosphino group is protected, a tertiary phosphino group, an epoxy group, an oxygen-containing group in which the hydrogen atom of a
  • a group having a nitrogen atom is preferred because of its good affinity with silica, and a nitrogen-containing group or an imino group in which two hydrogen atoms of a tertiary amino group or a primary amino group are protected is more preferred.
  • the protected group is a group in which A 11 and A 12 are converted into functional groups that do not react with the polymerization active terminal.
  • the onium salt generating agent is a Bronsted acid or a compound that generates a Bronsted acid when contacted with water.
  • end-terminal modifying agents include compounds represented by formula (5), such as N,N-bis(trimethylsilyl)aminopropyltrimethoxysilane, N,N-dimethylaminopropyltriethoxysilane, N,N-bis(trimethylsilyl)aminopropylmethyldiethoxysilane, 1-phenyl-N-(3-(triethoxysilyl)propyl)methanimine, N,N',N'-tris(trimethylsilyl)-N-(2-aminoethyl)-3-aminopropyltriethoxysilane, 3-(4-trimethylsilyl-1-piperazino)propylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-(trimethylsilylmercapto)propyltrimethoxysilane, and 3-(dipheneth
  • compounds represented by formula (6) include, for example, 2,2-dimethoxy-1-(3-trimethoxysilylpropyl)-1,2-azasilolidine, 2,2-diethoxy-1-(3-trimethoxysilylpropyl)-1,2-azasilolidine, 2,2-dimethoxy-1-phenyl-1,2-azasilolidine, 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane, 2-(2,2-dimethoxy-1,2-azasilolidine-1-yl)-N,N-diethylethane-1-amine, 2-(2,2-dimethoxy-1,2-azasilolidine-1-yl)-N,N-dimethylethane-1-amine, and 3-(2,2-dimethoxy-1,2-azasilolidine-1-yl)-N,N-diethylpropane-1-amine.
  • the terminal modifying agent may be used alone or in combination of two or more.
  • polyfunctional compound having either or both of nitrogen and oxygen among the specific coupling agents include tetraglycidyl-1,3-bisaminomethylcyclohexane, N,N,N',N'-tetra(3-trimethoxysilylpropyl)ethylenediamine, N,N,N',N'-tetra(3-triethoxysilylpropyl)ethylenediamine, N,N,N'-tris(3-trimethoxysilylpropyl)-N'-methyl-ethylenediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl)-1,3-propanediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl)-1,4-butanediamine, bis(3-trimethoxysilylpropyl)-[2-(dimethylamino)ethyl]amine, bis(3-trimethoxys
  • cyclopentane)ethyl]amine bis(3-triethoxysilylpropyl)-[2-(2,2-diethoxy-1-aza-2-silacyclopentane)ethyl]amine, bis(3-trimethoxysilylpropyl)-[3-(2,2-dimethoxy-1-aza-2-silacyclopentane)propyl]amine, bis(3-trimethoxysilylpropyl)-[2-(2,2-dimethoxy-1-aza-2-silacyclohexane)ethyl]amine, bis(3-trimethoxysilylpropyl)-[2-(2,2-dimethoxy-1-aza-2-silacyclooctane)ethyl]amine, N,N-bis(3-trimethoxysilylpropyl)-3-imidazolylpropylamine, bis(3-trimethoxysilylpropyl)-(3-dimethylamin
  • polyfunctional compounds containing silicon or phosphorus include dibutyldichlorosilicon, methyltrichlorosilicon, methyldichlorosilicon, tetrachlorosilicon (silicon tetrachloride), silicon tetrabromide, silicon tetraiodide, trichloromethoxysilane, tribromomethoxysilane, trimethoxysilane, tetramethoxysilane, trichlorophosphine, etc.
  • a multifunctional compound other than the specific coupling agent may be used as a coupling agent to react with the polymer having an active end.
  • multifunctional compounds include tetrachlorotin (tin tetrachloride), tetrabromotin, trichlorobutyltin, trichloromethyltin, trichloroethyltin, trichlorophenyltin, trichlorooctyltin, divinylbenzene, and trichloropropane.
  • the reaction between the conjugated diene polymer having an active end and the modifier can be carried out, for example, as a solution reaction.
  • This solution reaction may be carried out using a solution containing unreacted monomers after the polymerization reaction is completed, or the conjugated diene polymer contained in the solution may be isolated and dissolved in a suitable solvent such as cyclohexane before the reaction.
  • the reaction may be carried out either batchwise or continuously.
  • the method of adding the modifier is not particularly limited, and examples include a method of adding the modifier all at once, a method of adding the modifier in portions, and a method of adding the modifier continuously.
  • the amount of modifier to be reacted with the conjugated diene polymer having an active end may be appropriately set according to the type of compound used in the reaction.
  • the amount of modifier used is preferably 0.1 mol equivalent or more, more preferably 0.3 to 1.5 mol equivalent, relative to the metal element involved in the polymerization reaction of the polymerization initiator.
  • the reaction temperature is usually the same as the polymerization reaction temperature, preferably -20 to 150°C, and more preferably 0 to 120°C. If the modification reaction temperature is low, the viscosity of the polymer solution tends to increase. Also, if the modification reaction temperature is high, the polymerization active end is easily deactivated.
  • the reaction time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the conjugated diene polymer obtained by the polymerization step or modification step is hydrogenated (hereinafter also referred to as "hydrogenation"). Any method and conditions for the hydrogenation reaction can be used as long as a conjugated diene polymer with a desired hydrogenation rate can be obtained.
  • Examples of such hydrogenation methods include a method using a catalyst mainly composed of an organometallic compound of titanium as a hydrogenation catalyst; a method using a catalyst composed of an organometallic compound of iron, nickel, or cobalt and an organometallic compound such as alkylaluminum; a method using an organic complex of an organometallic compound such as ruthenium or rhodium; and a method using a catalyst in which a metal such as palladium, platinum, ruthenium, cobalt, or nickel is supported on a carrier such as carbon, silica, or alumina.
  • a method in which hydrogenation is carried out under mild conditions of low pressure and low temperature using a homogeneous catalyst consisting of an organometallic compound of titanium alone or an organometallic compound of titanium and an organometallic compound of lithium, magnesium or aluminum is preferred from an industrial viewpoint, and is also suitable because of its high hydrogenation selectivity to the double bonds of butadiene.
  • Hydrogenation of the conjugated diene polymer is preferably carried out using a solvent that does not react with the catalyst and dissolves the conjugated diene polymer.
  • Preferred solvents include chain aliphatic hydrocarbons such as n-pentane, n-hexane, and n-octane; cyclic aliphatic hydrocarbons such as cyclohexane and cycloheptane; aromatic hydrocarbons such as benzene and toluene; and ethers such as diethyl ether and tetrahydrofuran.
  • the solvent used for hydrogenation may be one of the above compounds, or a mixture containing the above compounds as the main components.
  • the hydrogenation reaction is generally carried out by maintaining the conjugated diene polymer at a prescribed temperature in a hydrogen or inert atmosphere, adding a hydrogenation catalyst with or without stirring, and then introducing hydrogen gas to pressurize to a prescribed pressure.
  • An inert atmosphere means an atmosphere that does not react with the substances involved in the hydrogenation reaction, such as an atmosphere of helium, neon, or argon. Air and oxygen are not preferred as they oxidize the catalyst and cause it to become inactive. Nitrogen is also not preferred as it acts as a catalyst poison during the hydrogenation reaction and reduces the hydrogenation activity.
  • the hydrogenation reactor be an atmosphere of hydrogen gas alone.
  • the hydrogenation reaction process can be a batch process, a continuous process, or a combination of both.
  • a titanocene diaryl compound used as the hydrogenation catalyst, it can be added to the reaction solution either alone or as a solution in an inert organic solvent.
  • various solvents that do not react with the substances involved in the hydrogenation reaction can be used as the inert organic solvent.
  • the same solvent as that used in the hydrogenation reaction is preferably used.
  • the preferred amount of catalyst to be added is 0.02 to 20 mmol per 100 g of the conjugated diene polymer before hydrogenation.
  • the hydrogenated conjugated diene polymer (hereinafter also referred to as "hydrogenated conjugated diene polymer”) has a hydrogenation rate of 60% or more and 97% or less.
  • the hydrogenation rate of the polymer [P] is preferably 65% or more, more preferably 70% or more, even more preferably 75% or more, and particularly preferably 80% or more.
  • the hydrogenation rate of the polymer [P] is preferably 96% or less.
  • ⁇ represented by the above mathematical formula (i) corresponds to the hydrogenation rate of the hydrogenated conjugated diene polymer. For example, when ⁇ of a polymer is 0.60, the hydrogenation rate of the polymer is 60%. In this specification, the hydrogenation rate is a value measured by a 1 H-NMR device.
  • the hydrogenation rate of the hydrogenated conjugated diene polymer can be adjusted by adjusting the hydrogenation reaction time or controlling the cumulative supply amount of hydrogen.
  • the preferred method for obtaining polymer [P] is to solution polymerize monomers containing 1,3-butadiene and styrene in the presence of a polymerization initiator, add a compound (polymerization termination end, specific coupling agent) that contains at least one element selected from the group consisting of nitrogen, oxygen, silicon, and phosphorus and that can react with the active end of the conjugated diene polymer to the obtained polymer solution to carry out a modification reaction, and then subject the solution to a hydrogenation step.
  • This method is preferred in that it can obtain a crosslinked product that is excellent in various physical properties (strength, wet grip performance, etc.), and is also industrially useful.
  • the conjugated diene polymer contained in the reaction solution can be isolated by known methods for removing the solvent, such as steam stripping, and by drying procedures such as heat treatment.
  • the total proportion of the first polymer and the second polymer in the composition is preferably 50 to 100 mass% of the total amount of the rubber component contained in the composition.
  • the total proportion of the first polymer and the second polymer is preferably 60 mass% or more, and more preferably 70 mass% or more, of the total amount of the rubber component contained in the composition.
  • the "rubber component" contained in the polymer composition refers to a polymer that can be cured with heat, light, ionic crosslinking, etc. to obtain a cured product that exhibits rubber elasticity.
  • the cured product exhibits the property of undergoing large deformation with a small force at room temperature (for example, deformation that stretches to more than twice its original size when stretched at room temperature) and rapidly returning to almost its original shape when the force is removed.
  • composition may further contain the following components.
  • the composition may contain an inorganic filler.
  • examples of the inorganic filler include silica and carbon black, and fillers other than silica and carbon black (hereinafter, also referred to as "other fillers").
  • the inorganic filler blended in the composition preferably contains one or both of silica and carbon black.
  • Component (B-1) Silica
  • the present composition may contain silica.
  • the amount of silica is preferably in the range of 20 to 120 parts by mass, more preferably in the range of 30 to 100 parts by mass, per 100 parts by mass of the rubber component containing the polymer [P].
  • the amount of silica is 20 parts by mass or more per 100 parts by mass of the rubber component, the low hysteresis loss, fracture properties, and abrasion resistance of the polymer composition can be sufficiently improved, and when it is 120 parts by mass or less, the processability of the polymer composition can be sufficiently improved.
  • the silica is not particularly limited, and examples thereof include wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, etc. Among these, wet silica is preferred. As the silica, one type may be used alone, or two or more types may be used in combination.
  • the BET specific surface area of the silica (a value measured in accordance with ISO 5794/1) is preferably in the range of 10 to 350 m 2 /g, more preferably in the range of 20 to 300 m 2 /g, and particularly preferably in the range of 30 to 250 m 2 /g.
  • Silica having a BET specific surface area in this range has the advantage of being able to achieve both rubber reinforcing properties and dispersibility in the modified diene polymer (A).
  • the silica to be blended in the present composition may be a combination of two or more different specific surface areas. Specifically, a first silica having a CTAB (cetyltrimethylammonium bromide) specific surface area of 180 m 2 /g or more, a BET specific surface area of 185 m 2 /g or more, and an aggregate size of 45 nm or more may be used in combination with a second silica having a CTAB specific surface area of 95 m 2 /g or less and a BET specific surface area of 100 m 2 /g or less.
  • CTAB specific surface area of the silica is measured in accordance with ASTM D3765-92.
  • the composition may contain a first silica having a CTAB specific surface area of 180 m 2 /g or more, a BET specific surface area of 185 m 2 /g or more, and an aggregate size of 45 nm or more, and a second silica having a CTAB specific surface area of 95 m 2 /g or less and a BET specific surface area of 100 m 2 /g or less.
  • a first silica and a second silica in combination it becomes possible to disperse the first silica, which has a small average primary particle size but a relatively large aggregate size, well in the rubber component. This improves the dispersibility of the silica, and provides excellent fracture strength, abrasion resistance, fuel economy, and processability.
  • the CTAB specific surface area of the first silica is preferably 190 m 2 /g or more, more preferably 195 m 2 /g or more, and even more preferably 197 m 2 /g or more.
  • the CTAB specific surface area of the first silica is preferably 350 m 2 /g or less, more preferably 300 m 2 /g or less, and even more preferably 250 m 2 /g or less.
  • the CTAB specific surface area is 350 m 2 /g or less, the silica is less likely to aggregate, and the physical properties tend to be improved.
  • the BET specific surface area of the first silica is preferably 190 m 2 /g or more, more preferably 195 m 2 /g or more, and even more preferably 210 m 2 /g or more.
  • the BET specific surface area of the first silica is preferably 350 m 2 /g or less, more preferably 300 m 2 /g or less, and even more preferably 260 m 2 /g or less.
  • the BET specific surface area is 350 m 2 /g or less, the silica is less likely to aggregate, and the physical properties tend to be improved.
  • the BET specific surface area of the silica is measured in accordance with ASTM D3037-81.
  • the aggregate size of the first silica is 45 nm or more, preferably 50 nm or more, more preferably 55 nm or more, and even more preferably 60 nm or more.
  • the aggregate size is preferably 100 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, and particularly preferably 67 nm or less. By having such an aggregate size, it is possible to provide excellent fuel efficiency and wear resistance while having good dispersibility (processability).
  • the aggregate size of silica can be measured by the method described in JP 2011-140613 A.
  • the average primary particle diameter of the first silica is preferably 25 nm or less, more preferably 22 nm or less, even more preferably 17 nm or less, and particularly preferably 14 nm or less.
  • the lower limit of the average primary particle diameter is not particularly limited, but is preferably 3 nm or more, more preferably 5 nm or more, and even more preferably 7 nm or more. Although it has such a small average primary particle diameter, the dispersibility (processability) of the silica can be further improved by a carbon black-like structure having the above aggregate size, and the fuel efficiency and wear resistance can be further improved.
  • the average primary particle diameter of the silica can be determined by observing the silica with a transmission or scanning electron microscope, measuring the particle diameters of 400 or more primary particles of silica observed within the field of view, and averaging the measured particle diameters.
  • the CTAB specific surface area of the second silica is preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, and even more preferably 30 m 2 /g or more. If the CTAB specific surface area is less than 10 m 2 /g, the reinforcing property is low, and it may be difficult to sufficiently secure the mechanical strength and abrasion resistance required for the polymer composition for tire production.
  • the CTAB specific surface area is preferably 80 m 2 /g or less, more preferably 60 m 2 /g or less, and even more preferably 50 m 2 /g or less. If the CTAB specific surface area exceeds 95 m 2 /g, the dispersibility of the silica may be poor, and it may be difficult to improve the breaking strength and abrasion resistance.
  • the BET specific surface area of the second silica is preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, and even more preferably 30 m 2 /g or more.
  • the BET specific surface area of the second silica is preferably 85 m 2 /g or less, more preferably 60 m 2 /g or less, and even more preferably 50 m 2 /g or less.
  • the BET specific surface area of the second silica is 85 m 2 /g or less, the silica is sufficiently dispersed, and it tends to easily improve the rubber fracture strength and abrasion resistance.
  • the average primary particle diameter of the second silica is preferably 20 nm or more, more preferably 25 nm or more, even more preferably 30 nm or more, particularly preferably 35 nm or more, and most preferably 55 nm or more.
  • There is no particular upper limit to the average primary particle diameter but it is preferably 500 nm or less, more preferably 200 nm or less, even more preferably 100 nm or less, and particularly preferably 70 nm or less. By having such an average primary particle diameter, it is possible to sufficiently ensure fracture strength and abrasion resistance.
  • Component (B-2) Carbon Black
  • the present composition may contain carbon black from the viewpoint of the fracture properties and abrasion resistance of the polymer composition.
  • the carbon black is not particularly limited, and examples thereof include GPF, FEF, HAF, ISAF, and SAF grade carbon black.
  • the nitrogen adsorption specific surface area (N 2 SA) of the carbon black is not particularly limited, but is preferably 50 to 200 m 2 /g, and more preferably 70 to 150 m 2 /g.
  • the nitrogen adsorption specific surface area (N 2 SA) is the value obtained by measuring the amount of nitrogen adsorbed on the carbon black surface according to JIS K6217-2:2001 "Part 2: Determination of specific surface area - Nitrogen adsorption method - Single point method".
  • Carbon black may be used alone or in combination of two or more types.
  • the amount of carbon black in the composition is preferably in the range of 1 to 150 parts by mass, and more preferably in the range of 5 to 120 parts by mass, per 100 parts by mass of the rubber component containing the polymer [P].
  • Component (B-3) Other Fillers
  • the present composition may contain other fillers in addition to silica and carbon black as inorganic fillers.
  • Other fillers include alumina (Al 2 O 3 ) such as ⁇ -alumina and ⁇ -alumina, alumina monohydrate (Al 2 O 3 .H 2 O) such as boehmite and diaspore, aluminum hydroxide [Al(OH) 3 ] such as gibbsite and bayerite, aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg(OH) 2 ], magnesium oxide (MgO ) , magnesium carbonate (MgCO 3 ), talc (3MgO.4SiO 2.H 2 O), attapulgite (5MgO.8SiO 2.9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide (CaO), calcium hydroxide [Ca(OH) 2 ], magnesium aluminum oxide (MgO.Al
  • the amount of inorganic filler containing silica and carbon black is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, per 100 parts by mass of the rubber component containing the polymer [P].
  • the amount of inorganic filler is preferably 350 parts by mass or less, more preferably 200 parts by mass or less, per 100 parts by mass of the rubber component containing the polymer [P]. If the amount of inorganic filler in the present composition is within the above range, when the present composition is applied to a tire tread, the tire can have a high level of balance and goodness in terms of low rolling resistance, braking performance on wet road surfaces, handling performance on dry road surfaces, and abrasion resistance.
  • Component (C) Other rubber components
  • the present composition may contain only the polymer [P] as a rubber component, but may also contain a rubber component different from the polymer [P] (hereinafter, also referred to as "other rubber component") in addition to the polymer [P], within a range that does not impair the effects of the present disclosure.
  • the other rubber component for example, at least one type of rubber selected from natural rubber, a conjugated diene-based polymer different from the first polymer and the second polymer (for example, isoprene rubber, butadiene rubber, emulsion-polymerized or solution-polymerized styrene-butadiene rubber, hydrogenated styrene-butadiene rubber), butyl rubber, halogenated butyl rubber, and ethylene-propylene rubber can be used.
  • a conjugated diene-based polymer different from the first polymer and the second polymer for example, isoprene rubber, butadiene rubber, emulsion-polymerized or solution-polymerized styrene-butadiene rubber, hydrogenated styrene-butadiene rubber
  • butyl rubber halogenated butyl rubber
  • ethylene-propylene rubber ethylene-propylene rubber
  • the other rubber component is preferably at least one type selected from the group consisting of a conjugated diene-based polymer different from the first polymer and the second polymer and natural rubber, and more preferably at least one type selected from the group consisting of natural rubber, butadiene rubber, and styrene-butadiene rubber.
  • the manner in which they are mixed is not particularly limited.
  • the other rubber components may be mixed with the polymer [P] during kneading using a Banbury mixer or rolls, which is normally performed, or the other rubber components may be mixed with a polymer solution containing the polymer [P] after polymerization, and then a desolvation and drying process may be performed.
  • the amount of the other rubber components is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less, based on the total amount of the rubber components (first polymer, second polymer, and other rubber components) contained in the polymer composition.
  • liquid rubber can be used as part or all of the other rubber components in order to further improve dry grip performance, wet grip performance, and blowout resistance.
  • Liquid rubbers include liquid polyisoprene (liquid IR), liquid polybutadiene (liquid BR), liquid styrene-butadiene copolymer (liquid SBR), and liquid ethylene-propylene copolymer (liquid EP).
  • liquid SBR with a weight average molecular weight of 1,000 to 100,000, preferably 2,000 to 80,000, can be used.
  • the weight average molecular weight of the liquid rubber refers to the weight average molecular weight in terms of polystyrene analyzed by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the liquid rubber used in this composition refers to one that has fluidity at 23°C.
  • the composition may further contain a resin component.
  • the resin component may be a thermoplastic resin or a thermosetting resin. From the viewpoint of obtaining a crosslinked body having excellent properties such as strength, abrasion resistance, and crack growth resistance, the resin component is preferably at least one selected from the group consisting of styrene-based resins, polyethylene, C5-based resins, C9-based resins, C5/C9-based resins, dicyclopentadiene-based resins, alkylphenol-based resins, and terpene-based resins. As the resin component, one type may be used alone, or two or more types may be used in combination.
  • the styrene-based resin is a polymer obtained using a styrene-based monomer, and in particular, it is preferable for the polymer to have structural units derived from styrene-based monomers in an amount of 20 mass% or more relative to the total amount of monomer units possessed by the styrene-based resin.
  • styrene-based monomers examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc. Of these, it is preferable for the styrene-based monomer to be at least one of styrene and ⁇ -methylstyrene.
  • the styrene resin may be a homopolymer obtained by polymerizing one type of styrene monomer, or a copolymer obtained by copolymerizing two or more types of styrene monomer.
  • the styrene resin may also be a copolymer obtained by using a styrene monomer and another monomer that can be copolymerized with the styrene monomer.
  • Examples of other monomers include unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylics and methacrylic acid; unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate; dienes such as chloroprene, butadiene, and isoprene; olefins such as 1-butene and 1-pentene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride or their acid anhydrides, etc.
  • the softening point of the styrene resin is preferably 30°C or higher, more preferably 60°C or higher, and even more preferably 80°C or higher. When the softening point is 30°C or higher, the crosslinked body tends to have an improved crack growth resistance.
  • the softening point of the styrene resin is preferably 160°C or lower, more preferably 130°C or lower, and even more preferably 100°C or lower. When the softening point is 160°C or lower, the resin has good dispersibility, and crack growth resistance, abrasion resistance, and breaking strength tend to be improved.
  • the softening point of the styrene resin is a value measured using a ring and ball softening point measuring device according to the method specified in JIS K 6220-1:2015, and is the temperature when the sample softens and the ball placed on the sample falls onto the bottom plate.
  • styrene-based resin a block polymer (thermoplastic elastomer) having a conjugated diene polymer block as a soft segment and a polystyrene block as a hard segment can also be used.
  • a block polymer thermoplastic elastomer
  • the conjugated diene polymer block of the block polymer may have some of the carbon-carbon double bonds in the structural unit derived from the conjugated diene compound hydrogenated.
  • Conjugated diene compounds constituting the above-mentioned conjugated diene polymer block include, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, etc.
  • the conjugated diene compounds may be used alone or in combination of two or more.
  • the conjugated diene compound is preferably at least one of 1,3-butadiene and isoprene.
  • the content of the conjugated diene units in the block polymer is preferably 20% by mass or more, and more preferably 30% by mass or more.
  • the content of the conjugated diene units is preferably 80% by mass or less, and more preferably 70% by mass or less.
  • the content of the polystyrene block in the block polymer is preferably 20% by mass or more in terms of increasing the breaking strength.
  • the content of the polystyrene block is preferably 80% by mass or less, and more preferably 70% by mass or less.
  • the content ratios of the polystyrene block, the conjugated diene polymer block, and the conjugated diene unit in the block polymer can be calculated from the integral ratio of 1 H-NMR spectrum.
  • block polymer examples include styrene-butadiene block copolymers, styrene-isoprene block copolymers, epoxidized products of styrene-butadiene block copolymers, and block copolymers in which a part of the conjugated diene polymer block of a styrene-butadiene block copolymer or a styrene-isoprene block copolymer has been hydrogenated.
  • examples include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-butadiene-butylene-styrene block copolymer (SBBS), and epoxidized products of styrene-butadiene-styrene block copolymers, as well as hydrogenated products of these copolymers.
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SBBS styrene-butadiene-butylene-styrene block copolymer
  • epoxidized products of styrene-butadiene-styrene block copolymers as well as hydrogenated products of these copo
  • the block polymer from the viewpoint of being easily crosslinked, it is preferable to use SBS or SIS having a conjugated diene polymer block in which the soft segment is not hydrogenated, or an epoxidized product of a styrene-butadiene-styrene block copolymer.
  • C5 resin is a solid polymer (C5 synthetic petroleum resin) obtained by polymerizing a C5 fraction using a Friedel-Crafts type catalyst ( AlCl3 , BF3 , etc.).
  • C5 resin include copolymers mainly composed of isoprene, cyclopentadiene, 1,3-pentadiene, 1-pentene, etc., copolymers of 2-pentene and dicyclopentadiene, polymers mainly composed of 1,3-pentadiene, etc.
  • the C9 resin is a solid polymer (C9 synthetic petroleum resin) obtained by polymerizing the C9 fraction using a Friedel-Crafts catalyst (AlCl 3 , BF 3 , etc.). Specific examples of the C9 resin include copolymers mainly composed of indene, methylindene, vinyltoluene, etc.
  • the C5/C9 resin is a solid polymer (C5/C9 synthetic petroleum resin) obtained by polymerizing the C5 to C9 fraction using a Friedel-Crafts catalyst (AlCl 3 , BF 3 , etc.). Specific examples of the C5/C9 resin include copolymers mainly composed of vinyltoluene, indene, etc.
  • the C5/C9 resin is preferably a resin with a small amount of C9 or more components from the viewpoint of compatibility with the rubber component.
  • the C5/C9 resin is preferably a resin with a C9 or more component in the total amount of the resin less than 50 mass%, more preferably 40 mass% or less.
  • Dicyclopentadiene resins are petroleum resins that use dicyclopentadiene from the C5 fraction as the main raw material.
  • Specific examples of dicyclopentadiene resins include Maruzen Petrochemical Co., Ltd.'s "Marukaretzu M” series (M-890A, M-845A, M-990A, etc.).
  • alkylphenol resins include alkylphenol-acetylene resins such as p-tert-butylphenol-acetylene resin, and low-polymerization alkylphenol-formaldehyde resins.
  • Terpene resins are solid resins obtained by blending turpentine oil, which is obtained at the same time as rosin is obtained from pine trees, or polymerization components separated from this, and polymerizing them using a Friedel-Crafts catalyst, and examples of such resins include ⁇ -pinene resin and ⁇ -pinene resin.
  • Commercially available terpene resins can be used, such as the "YS Resin” series (PX-1250, TR-105, etc.) manufactured by Yasuhara Chemical Co., Ltd. and the "Picolite” series (A115, S115, etc.) manufactured by Hercules.
  • terpene-phenol resin A representative example of a terpene-aromatic compound resin is terpene-phenol resin.
  • This terpene-phenol resin can be obtained by reacting terpenes with various phenols using a Friedel-Crafts catalyst, or by further condensing them with formalin.
  • monoterpene hydrocarbons such as ⁇ -pinene and limonene are preferred, and those containing ⁇ -pinene are more preferred, with ⁇ -pinene being particularly preferred.
  • a terpene-phenol resin with a low ratio of phenol components is preferred.
  • low ratio of phenol components refers to a phenol component content of less than 50 mass%, preferably 40 mass% or less in the total amount of resin.
  • a terpene-aromatic compound resin particularly a terpene-phenol resin
  • the handling performance can be further improved.
  • commercially available products include those sold under the trade names "Tamanol 803L” and “Tamanol 901” (manufactured by Arakawa Chemical Industries, Ltd.), and the "YS Polystar (registered trademark)” series (manufactured by Yasuhara Chemical Co., Ltd.).
  • the blending ratio of the resin component is preferably 1 part by mass or more per 100 parts by mass of the rubber component contained in the composition. By blending 1 part by mass or more of the resin component, the effect of improving the abrasion resistance, breaking strength, and crack growth resistance by adding the resin component can be sufficiently increased in the crosslinked body obtained using the composition, which is preferable.
  • the blending ratio of the resin component is more preferably 3 parts by mass or more per 100 parts by mass of the rubber component, and even more preferably 7 parts by mass or more.
  • the blending ratio of the resin component is preferably 50 parts by mass or less per 100 parts by mass of the rubber component contained in the composition, more preferably 30 parts by mass or less, and even more preferably 25 parts by mass or less.
  • the resin component one type may be used alone, or two or more types may be used in combination.
  • a silane coupling agent may be blended to further increase the dispersibility of silica.
  • silane coupling agent a sulfur-containing silane coupling agent is preferable, and examples thereof include bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)disulfide, 3-trimethoxysilylpropylbenzothiazoletetrasulfide, ⁇ -mercaptopropyltriethoxysilane, and 3-octanoylthiopropyltriethoxysilane.
  • the amount of the silane coupling agent is preferably 1 to 20 parts by mass per 100 parts by mass of silica contained in the composition. If the amount of the silane coupling agent is less than 1 part by mass, there is a concern that the effect of improving the dispersibility of the silica will be reduced due to the small amount. On the other hand, if the amount of the silane coupling agent is more than 20 parts by mass, the processability of the polymer composition and the breaking elongation of the crosslinked body may decrease. It is more preferable that the amount of the silane coupling agent is 5 to 15 parts by mass per 100 parts by mass of silica contained in the composition.
  • the composition may contain a crosslinking agent.
  • a crosslinking agent examples include sulfur, halogenated sulfur, organic peroxides, quinone dioximes, organic polyamine compounds, and alkylphenol resins having methylol groups, and sulfur is usually used.
  • the amount of the crosslinking agent is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass, based on 100 parts by mass of the total amount of the rubber components contained in the composition.
  • the composition may contain a process oil that is generally used to extend elastomers.
  • the method of adding the process oil is not particularly limited.
  • the process oil may be developed in the conjugated diene polymer solution after polymerization and then desolvated to form an oil-extended rubber, or the process oil may be directly added during kneading to obtain a rubber compound (compounded rubber) to be added to the polymer composition.
  • Preferred process oils include various oils known in the art, such as aromatic oils, paraffinic oils, naphthenic oils, vegetable oils (sunflower oil, soybean oil, etc.), and oils with low polycyclic aromatic compound content (low PCA oils), such as mild extraction solvates (MES), treated distillate aromatic extracts (TDAE), special residual aromatic extracts (SRAE), and heavy naphthenic oils.
  • MES mild extraction solvates
  • TDAE treated distillate aromatic extracts
  • SRAE special residual aromatic extracts
  • heavy naphthenic oils heavy naphthenic oils.
  • Examples of commercially available MES, TDAE and SRAE include Catenex SNR (heavy paraffin obtained by dewaxing distillate oil with a solvent) manufactured by Shell as MES, Vivatec 500 manufactured by H&R Wasag AG as TDAE, and NC140 manufactured by Japan Energy Corp. as SRAE.
  • the amount of the process oil to be blended is preferably 10 to 100 parts by mass based on 100 parts by mass of the total amount
  • the composition may contain various additives that are commonly used in polymer compositions for obtaining vulcanized rubber, such as zinc oxide, stearic acid, softeners, vulcanization accelerators, compatibilizers, vulcanization aids, processing aids, and scorch inhibitors.
  • additives that are commonly used in polymer compositions for obtaining vulcanized rubber, such as zinc oxide, stearic acid, softeners, vulcanization accelerators, compatibilizers, vulcanization aids, processing aids, and scorch inhibitors.
  • the blending ratios of these additives may be appropriately selected according to the various components, as long as they do not impair the effects of the present disclosure.
  • the composition may be in the form of solid particles (crumbs), or may be a rubber veil obtained by compression molding the crumbs into a desired shape (e.g., a rectangular parallelepiped shape).
  • the rubber veil as the composition may contain an extender oil together with the first polymer and the second polymer.
  • the total proportion of the first polymer, the second polymer, and the extender oil in the composition is preferably 90 to 100% by mass, and more preferably 95 to 100% by mass, when the entire composition is taken as 100% by mass.
  • Another embodiment of the present composition is a blended composition obtained by blending the various components described above (components (B) to (G), etc.) with the first polymer and the second polymer as necessary.
  • the blended composition can be obtained by mixing the first polymer and the second polymer with various additives (components (B) to (G), etc.) that are optionally used in the polymer composition for obtaining vulcanized rubber, and kneading them using a kneading machine such as an open kneader (e.g., a roll) or an internal kneader (e.g., a Banbury mixer).
  • the blended rubber thus obtained is crosslinked (vulcanized) after molding and processing to obtain a crosslinked body (i.e., vulcanized rubber).
  • the crosslinked body obtained using the polymer composition of the present disclosure can be applied to various rubber products.
  • the crosslinked body obtained using the present composition can be applied to applications such as tire applications such as tire treads, undertreads, carcasses, sidewalls, and bead parts; sealing materials such as packings, gaskets, weather strips, and O-rings; interior and exterior skin materials for various vehicles such as automobiles, ships, aircraft, and railways; building materials; vibration-proof rubbers for industrial machinery and equipment; various hoses and hose covers such as diaphragms, rolls, radiator hoses, and air hoses; belts such as power transmission belts; linings; dust boots; medical equipment materials; fenders; insulating materials for electric wires; and other industrial products.
  • the present composition containing the first polymer and the second polymer can provide a crosslinked product with a good balance of various physical properties required for tire applications, such as mechanical strength, low-temperature grip performance, and ozone resistance. Therefore, the polymer composition containing the first polymer and the second polymer can be particularly suitably used as a material for the cap tread, sidewall, or both of tires.
  • Tires can be manufactured in the usual way.
  • the polymer composition is mixed in a kneader, formed into a sheet, and then placed in a predetermined position (for example, in the case of a sidewall, on the outside of the carcass) in the usual way and vulcanized to form a cap tread or sidewall, to obtain a pneumatic tire.
  • a polymer composition comprising: a first polymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene and satisfying the following conditions (x) and (y); and a second polymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene and satisfying the following conditions (x) and (y), wherein the difference between the ⁇ of the first polymer and the ⁇ of the second polymer is 0.10 or less, and the difference between the content ratio of the structural unit derived from an aromatic vinyl compound in the first polymer and the content ratio of the structural unit derived from an aromatic vinyl compound in the second polymer is 10 to 30 mass %.
  • Condition (x) ⁇ is 0.60 or more and 0.97 or less.
  • Condition (y) ⁇ is 0.10 or more and 0.40 or less.
  • (p + (0.5 ⁇ r)) / (p + q + (0.5 ⁇ r) + s).
  • ... (i) ⁇ (p + q) / (p + q + (0.5 ⁇ r) + s) ... (ii)
  • [Means 2] The polymer composition according to [Means 1], wherein ⁇ of the first polymer is different from ⁇ of the second polymer.
  • [Means 3] The polymer composition according to [Means 2], wherein ⁇ of the second polymer is larger than ⁇ of the first polymer.
  • [Means 4] The polymer composition according to any one of [Means 1] to [Means 3], wherein one or both of the first polymer and the second polymer have a functional group containing at least one element selected from the group consisting of nitrogen, oxygen, silicon, and phosphorus.
  • [Means 5] The polymer composition according to any one of [Means 1] to [Means 4], wherein the first polymer and the second polymer have a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography of 0.5 ⁇ 10 5 or more and 2.0 ⁇ 10 6 or less.
  • [Means 6] The polymer composition according to any one of [Means 1] to [Means 5], wherein a ratio of the first polymer to the second polymer, in terms of mass ratio, of the first polymer:the second polymer is in a range of 10:90 to 90:10.
  • [Means 7] The polymer composition according to any one of [Means 1] to [Means 6], further comprising at least one selected from the group consisting of a conjugated diene-based polymer different from the first polymer and the second polymer, and a natural rubber.
  • [Means 8] The polymer composition according to any one of [Means 1] to [Means 7], wherein a total ratio of the first polymer and the second polymer is 50 to 100 mass% of a total amount of a rubber component contained in the polymer composition.
  • [Means 9] The polymer composition according to any one of [Means 1] to [Means 8], further comprising an inorganic filler.
  • [Means 10] The polymer composition according to any one of [Means 1] to [Means 9], further comprising a silane coupling agent.
  • [Means 11] The polymer composition according to any one of [Means 1] to [Means 10], further comprising a resin component.
  • [Means 12] The polymer composition according to any one of [Means 1] to [Means 8], further comprising an extender oil.
  • [Means 13] The polymer composition according to [Means 12], wherein a total content ratio of the first polymer, the second polymer, and the extender oil is 90 to 100% by mass when the entire composition is taken as 100% by mass.
  • [Means 14] A tire having a cap tread and/or a sidewall constituted by a cured product of the polymer composition according to any one of [Means 1] to [Means 11].
  • a small amount of the polymer solution was extracted from the reaction vessel to obtain a conjugated diene polymer before hydrogenation for analysis. Thereafter, 28 mmol of diethylaluminum chloride, 9 mmol of bis( ⁇ 5-cyclopentadienyl)titanium(furfuryloxy)chloride, and 19 mmol of n-butyllithium were added, and the hydrogenation reaction was carried out while maintaining the hydrogen pressure at 1.0 MPa. After the reaction, hydrogen was supplied until a predetermined hydrogen accumulation value was reached while maintaining the hydrogen pressure at 0.7 MPa or higher, and the reaction solution was returned to room temperature and pressure and extracted from the reaction vessel to obtain a polymer solution containing a hydrogenated conjugated diene polymer P1.
  • Table 1 shows the polymerization recipe for the hydrogenated conjugated diene polymer P1
  • Table 2 shows various physical properties of the hydrogenated conjugated diene polymer P1.
  • the rubber components ((hydrogenated) conjugated diene polymers P1 to P11, BR, NR), carbon black, silica, a silane coupling agent, a softener (extender oil), zinc oxide, stearic acid, and an antioxidant were blended and kneaded under conditions of a filling rate of 72% and a rotation speed of 60 rpm in the first stage of kneading to obtain a blend.
  • the types and blending ratios of the rubber components used in each example were as shown in Tables 4 and 5.
  • the numerical values of the rubber components indicate the blending ratios (parts by mass) of each polymer relative to 100 parts by mass of the rubber components used in the preparation of the blend.
  • the obtained compound was cooled to room temperature, and then a vulcanization accelerator and sulfur were added and kneaded.
  • the kneaded composition was molded and vulcanized at 160°C for a predetermined time in a vulcanization press to obtain a crosslinked product (vulcanized rubber).
  • the tensile strength, low-temperature grip performance, ozone resistance, and vulcanization adhesion were evaluated as follows. The results are shown in Tables 4 and 5.
  • Tensile strength A tensile test was performed in accordance with JIS K6251:2017 using vulcanized rubber as a measurement sample. Here, a dumbbell-shaped No. 3 was used as a test sample, and the stress at break (TB) and elongation at break (EB) were measured at room temperature. The larger the TB and EB values, the higher the breaking strength and the higher and better the mechanical strength of the material. Evaluation was performed based on the TB value, and was evaluated as an index based on Comparative Example 1. The higher the value, the higher the tensile strength and the better the strength. From the obtained tensile strength value, the tensile strength was judged as A to D according to the following criteria. A (very good): 110 or more B (good): 100 or more and less than 110 C (acceptable level): 80 or more and less than 100 D (poor): less than 80
  • Ozone resistance test Vulcanized rubber was used as a measurement sample, and a test piece (length 60 mm ⁇ width 10 mm ⁇ thickness 2.0 mm) was attached to an elongation jig and given a tensile strain of 20%, and left for 48 hours in an ozone concentration of 0.5 ppm to perform a static ozone deterioration test (ambient temperature 40° C.) in accordance with JIS K6259-1:2015. The sample was observed after the test and evaluated as follows. ⁇ Evaluation based on crack size> A: No cracks B: Cracks invisible to the naked eye but visible under magnification C: Very small cracks of 0.5 mm or less visible to the naked eye D: Cracks larger than 0.5 mm
  • Vulcanization Adhesion A pre-vulcanization sheet prepared by forming the pre-vulcanization polymer composition of each of the Examples and Comparative Examples into a sheet form and a pre-vulcanization sheet mainly composed of natural rubber were laminated with a PET film sandwiched between the ends, and vulcanized under conditions of a temperature of 170°C and a time of 15 minutes, to obtain a laminated vulcanizate in which the portions not sandwiched by the PET film were vulcanized and bonded.
  • the vulcanization adhesiveness was judged from A to D according to the following judgment criteria.
  • the rubber component ((hydrogenated) conjugated diene polymers P1 to P11), carbon black, silica, a silane coupling agent, a softener (extender oil), zinc oxide, and stearic acid were blended and kneaded at a filling rate of 72% and a rotation speed of 60 rpm in the first stage of kneading to obtain a blend.
  • the type and blending ratio of the rubber component used in each example were as shown in Table 7.
  • the numerical value of the rubber component indicates the blending ratio (parts by mass) of each polymer relative to 100 parts by mass of the rubber component used in the preparation of the blend.
  • the obtained compound was cooled to room temperature, and then a vulcanization accelerator and sulfur were added and kneaded.
  • the kneaded composition was molded and vulcanized at 160°C for a predetermined time in a vulcanization press to obtain a crosslinked product (vulcanized rubber).
  • the tensile strength, low-temperature grip performance, ozone resistance, and vulcanization adhesion were evaluated as follows. The results are shown in Table 7.
  • the polymer compositions of Examples 1 to 12 were all rated A or B for vulcanization adhesion, and rated A to C for the tensile strength, low-temperature grip performance, and ozone resistance of the crosslinked product, showing that the various properties could be improved in a well-balanced manner.
  • the polymer compositions of Examples 1 to 7, 10, 11, 13, and 14, in which the entire rubber component was hydrogenated conjugated diene polymers P1 to P5 were particularly excellent, with three or more A or B evaluation results.
  • looking at Examples 1 to 7, Examples 1 to 4, 6, and 7, which had sufficiently small ⁇ were rated A or B in all evaluation items, and were particularly excellent.
  • Examples 2 and 3 and Examples 10 and 11 which had sufficiently small ⁇ and used the same type of rubber component, respectively, Examples 2 and 10, which contained a large amount of polymer with a higher hydrogenation rate, showed a high improvement effect on tensile strength and ozone resistance.
  • the polymer compositions of Comparative Example 1 and Comparative Example 13 were rated D for low-temperature grip performance and vulcanization adhesion.
  • the polymer compositions of Comparative Example 2 and Comparative Example 14 were rated B for low-temperature grip performance and vulcanization adhesion, and C for tensile strength and ozone resistance, and were inferior to Examples 2 and 3, which also contained hydrogenated conjugated diene polymer P4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A polymer composition comprising a first polymer, which comprises aromatic vinyl units and butadiene units and satisfies requirements (x) and (y), and a second polymer, which comprises aromatic vinyl units and butadiene units, satisfies requirements (x) and (y), and has a lower aromatic-vinyl-unit content than the first polymer, wherein the difference in β between the first polymer and the second polymer is 0.10 or less and the difference in aromatic-vinyl-unit content between the first polymer and the second polymer is 10-30 mass%. Requirement (x): α is 0.60-0.97 inclusive. Requirement (y): β is 0.10-0.40 inclusive. (i) α=(p+(0.5×r))/(p+q+(0.5×r)+s) (ii) β=(p+q)/(p+q+(0.5×r)+s)

Description

重合体組成物及びタイヤPolymer composition and tire
[関連出願の相互参照]
 本出願は、2022年10月28日に出願された日本特許出願番号2022-173391号に基づく優先権を主張し、その全体が参照により本明細書に組み込まれる。
 本開示は、重合体組成物及びタイヤに関する。
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to Japanese Patent Application No. 2022-173391, filed on October 28, 2022, the entire contents of which are incorporated herein by reference.
The present disclosure relates to polymer compositions and tires.
 共役ジエン化合物を用いた重合により得られる共役ジエン系重合体は、耐熱性、耐摩耗性、機械的強度、成形加工性等の各種特性が良好であることから、空気入りタイヤや防振ゴム、ホース等の各種工業製品に広く使用されている。 Conjugated diene polymers obtained by polymerization using conjugated diene compounds have excellent properties such as heat resistance, abrasion resistance, mechanical strength, and moldability, and are therefore widely used in various industrial products such as pneumatic tires, anti-vibration rubber, and hoses.
 空気入りタイヤのトレッド、サイドウォール等の製造に用いられる重合体組成物としては、製品の耐久性や耐摩耗性を向上させるべく、共役ジエン系重合体と共に、補強剤としてカーボンブラックやシリカ等の無機フィラーを配合させることが知られている。また従来、共役ジエン系重合体と補強剤との親和性を高めるために、ケイ素や窒素を有する化合物で変性された共役ジエン系重合体を用いることが行われている(例えば、特許文献1~3参照)。 It is known that polymer compositions used in the manufacture of pneumatic tire treads, sidewalls, etc., contain inorganic fillers such as carbon black and silica as reinforcing agents along with conjugated diene polymers in order to improve the durability and abrasion resistance of the products. Also, conjugated diene polymers modified with silicon- or nitrogen-containing compounds have been used in the past to increase the affinity between the conjugated diene polymers and reinforcing agents (see, for example, Patent Documents 1 to 3).
 近年では、共役ジエン系重合体を水添した水添共役ジエン系重合体を用いて、高強度であって耐摩耗性に優れた加硫ゴムを得ることが提案されている(例えば、特許文献4、5参照)。 In recent years, it has been proposed to obtain vulcanized rubber with high strength and excellent abrasion resistance by using hydrogenated conjugated diene polymers (see, for example, Patent Documents 4 and 5).
国際公開第2008/123164号International Publication No. 2008/123164 特開平11-349632号公報Japanese Patent Application Laid-Open No. 11-349632 国際公開第2017/221943号International Publication No. 2017/221943 国際公開第2014/133097号International Publication No. 2014/133097 特開2020-045388号公報JP 2020-045388 A
 昨今における環境事情や、省資源・省エネルギーに対する意識の向上、安全性に対する消費者ニーズの向上等により、自動車タイヤ用ゴムには、機械的強度や耐オゾン性に加え、氷上でのグリップや冬用タイヤあるいはオールシーズンタイヤに求められる性能である低温グリップ性能といった各種性能が従来にも増して優れることが望まれている。 Due to recent environmental circumstances, growing awareness of resource and energy conservation, and rising consumer needs for safety, rubber for automobile tires is expected to have better performance than ever before, such as grip on ice and low-temperature grip performance, which is a requirement for winter tires or all-season tires, in addition to mechanical strength and ozone resistance.
 一般に、タイヤの製造においては数種の異なるゴム組成物を使用することが多く、そのため、自動車タイヤ用ゴムは加硫接着性に優れることが求められる。  Generally, several different rubber compositions are often used in tire manufacturing, and therefore rubber for automobile tires is required to have excellent vulcanization adhesion.
 本開示は上記課題に鑑みなされたものであり、高強度であって低温グリップ性能及び耐オゾン性に優れた架橋体を得ることができるとともに、加硫接着性に優れた重合体組成物を提供することを主たる目的とする。 The present disclosure has been made in consideration of the above problems, and has as its main objective the provision of a polymer composition that can produce a crosslinked product with high strength, excellent low-temperature grip performance, and ozone resistance, and that also has excellent vulcanization adhesion.
 本開示により、以下の重合体組成物及びタイヤが提供される。 The present disclosure provides the following polymer composition and tire.
 [1] 下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとし、下記数式(i)で表される値をαとし、下記数式(ii)で表される値をβとしたとき、芳香族ビニル化合物に由来する構造単位とブタジエンに由来する構造単位とを含み、かつ下記条件(x)及び条件(y)を満たす第1重合体と、芳香族ビニル化合物に由来する構造単位とブタジエンに由来する構造単位とを含み、下記条件(x)及び条件(y)を満たし、かつ前記第1重合体よりも芳香族ビニル化合物に由来する構造単位の含有割合が少ない第2重合体と、を含み、前記第1重合体のβと前記第2重合体のβとの差が0.10以下であり、かつ、前記第1重合体における芳香族ビニル化合物に由来する構造単位の含有割合と前記第2重合体における芳香族ビニル化合物に由来する構造単位の含有割合との差が10~30質量%である、重合体組成物。
条件(x) αが0.60以上0.97以下である
条件(y) βが0.10以上0.40以下である
 α=(p+(0.5×r))/(p+q+(0.5×r)+s)
                              …(i)
 β=(p+q)/(p+q+(0.5×r)+s)     …(ii)
Figure JPOXMLDOC01-appb-C000002
[1] A polymer composition comprising: a first polymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene and satisfying the following conditions (x) and (y); and a second polymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene and satisfying the following conditions (x) and (y), wherein the difference between the β of the first polymer and the β of the second polymer is 0.10 or less, and the difference between the content ratio of the structural unit derived from the aromatic vinyl compound in the first polymer and the content ratio of the structural unit derived from the aromatic vinyl compound in the second polymer is 10 to 30 mass %.
Condition (x): α is 0.60 or more and 0.97 or less. Condition (y): β is 0.10 or more and 0.40 or less. α = (p + (0.5 × r)) / (p + q + (0.5 × r) + s).
... (i)
β = (p + q) / (p + q + (0.5 × r) + s) ... (ii)
Figure JPOXMLDOC01-appb-C000002
 [2] 上記[1]の重合体組成物の硬化物によりキャップトレッド及びサイドウォールの一方又は両方が構成されてなるタイヤ。 [2] A tire in which either or both of the cap tread and sidewall are made of the cured product of the polymer composition of [1] above.
 本開示によれば、上記数式(i)で表されるαが0.60以上0.97以下であり、上記数式(ii)で表されるβが0.10以上0.40以下であり、βの差が所定範囲内であり、かつ芳香族ビニル化合物に由来する構造単位の含有割合の差が所定範囲内である第1重合体と第2重合体とを含むことにより、高強度であって、かつ低温グリップ性能及び耐オゾン性に優れた架橋体を得ることができる。また、本開示の重合体組成物は、加硫接着性に優れている。 According to the present disclosure, by including a first polymer and a second polymer in which α represented by the above formula (i) is 0.60 or more and 0.97 or less, β represented by the above formula (ii) is 0.10 or more and 0.40 or less, the difference in β is within a specified range, and the difference in the content ratio of structural units derived from aromatic vinyl compounds is within a specified range, a crosslinked body having high strength and excellent low-temperature grip performance and ozone resistance can be obtained. In addition, the polymer composition of the present disclosure has excellent vulcanization adhesion.
 以下、本開示の実施に関連する事項について詳細に説明する。なお、本明細書において、「~」を用いて記載された数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を表す。本開示は、以下に記載された実施形態に限定されるものではなく、本開示の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。  Below, matters related to the implementation of this disclosure are explained in detail. In this specification, a numerical range described using "~" indicates a range that includes the numerical values described before and after "~" as the lower and upper limits. This disclosure is not limited to the embodiments described below, and should be understood to include various modified examples that are implemented within the scope that does not change the gist of this disclosure.
 ここで、本明細書において「(変性)共役ジエン系重合体」とは、未変性の共役ジエン系重合体と、変性された共役ジエン系重合体(すなわち変性共役ジエン系重合体)とを包含する用語である。以下において、単に「共役ジエン系重合体」と記載されている場合、その「共役ジエン系重合体」は、未変性であることを特に断らない限り、変性された共役ジエン系重合体であってもよく、未変性の共役ジエン系重合体であってもよい。 In this specification, the term "(modified) conjugated diene polymer" includes unmodified conjugated diene polymers and modified conjugated diene polymers (i.e. modified conjugated diene polymers). In the following description, when simply referring to a "conjugated diene polymer," the "conjugated diene polymer" may be a modified conjugated diene polymer or an unmodified conjugated diene polymer, unless otherwise specified that it is unmodified.
《重合体組成物》
 本開示の重合体組成物(以下、「本組成物」ともいう)は、芳香族ビニル化合物に由来する構造単位とブタジエンに由来する構造単位とを含む重合体として、芳香族ビニル化合物に由来する構造単位の含有割合が異なる第1重合体と第2重合体とを含有する。なお、以下では、第1重合体と第2重合体とを包含して「重合体[P]」とも称する。以下において、重合体[P]と表記して説明した内容は、第1重合体及び第2重合体のそれぞれの構成を説明したものである。以下、本組成物に含まれる成分、及び任意に配合される成分について詳細に説明する。
Polymer Composition
The polymer composition of the present disclosure (hereinafter also referred to as "the composition") contains a first polymer and a second polymer, which are polymers containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene, and have different content ratios of the structural unit derived from an aromatic vinyl compound. In the following, the first polymer and the second polymer are also referred to as "polymer [P]". In the following, the content described by polymer [P] describes the respective configurations of the first polymer and the second polymer. Hereinafter, the components contained in the composition and the components that are optionally blended will be described in detail.
<重合体[P]>
 重合体[P](すなわち、第1重合体及び第2重合体のそれぞれ)を構成する芳香族ビニル化合物としては、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレン)等が挙げられる。芳香族ビニル化合物は、これらの中でも、スチレン又はα-メチルスチレンが好ましい。重合体[P]を構成する芳香族ビニル化合物は1種単独でもよく、2種以上でもよい。
<Polymer [P]>
Examples of aromatic vinyl compounds constituting the polymer [P] (i.e., each of the first polymer and the second polymer) include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-t-butylstyrene, 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethylether, N,N-dimethylaminoethylstyrene, N,N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-t-butylstyrene, 3-t-butylstyrene, vinylxylene, vinylnaphthalene, vinylpyridine, diphenylethylene, and tertiary amino group-containing diphenylethylene (e.g., 1-(4-N,N-dimethylaminophenyl)-1-phenylethylene). Among these, the aromatic vinyl compound is preferably styrene or α-methylstyrene. The aromatic vinyl compounds constituting the polymer [P] may be used alone or in combination of two or more kinds.
 第1重合体及び第2重合体はそれぞれ、芳香族ビニル化合物に由来する構造単位とブタジエンに由来する構造単位とを含む高飽和の共重合体である。具体的には、下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、重合体[P]は、下記数式(i):
 α=(p+(0.5×r))/(p+q+(0.5×r)+s)
                              …(i)
で表される値(すなわちα)が0.60以上0.97以下であること(これを条件(x)とする)を満たす。
Figure JPOXMLDOC01-appb-C000003
Each of the first polymer and the second polymer is a highly saturated copolymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene. Specifically, when the constituent ratios (molar ratios) in the polymer of the structural unit represented by the following formula (1), the structural unit represented by the following formula (2), the structural unit represented by the following formula (3), and the structural unit represented by the following formula (4) are respectively p, q, r, and s, the polymer [P] is represented by the following mathematical formula (i):
α=(p+(0.5×r))/(p+q+(0.5×r)+s)
... (i)
(i.e., α) is 0.60 or more and 0.97 or less (this is referred to as condition (x)).
Figure JPOXMLDOC01-appb-C000003
 第1重合体及び第2重合体のそれぞれのαが0.60未満であると、架橋体の強度、耐摩耗性及び耐オゾン性が十分でない傾向がある。また、各重合体のαが0.97を超える場合には架橋を十分に進行させることができず、架橋体の強度の低下や粘弾性特性の低下が生じやすい傾向がある。また、本組成物を共役ジエン系材料シート等と積層し加硫した積層架橋体において共役ジエン系材料シート等との接着性の確保が困難な傾向にある。これらの観点から、第1重合体及び第2重合体のそれぞれのαは、0.65以上が好ましく、0.70以上がより好ましく、0.75以上が更に好ましく、0.80以上が特に好ましい。また、各重合体のαは0.96以下が好ましい。 If the α of each of the first polymer and the second polymer is less than 0.60, the strength, abrasion resistance, and ozone resistance of the crosslinked body tend to be insufficient. If the α of each of the polymers exceeds 0.97, crosslinking cannot be sufficiently advanced, and the strength and viscoelastic properties of the crosslinked body tend to be reduced. In addition, in a laminated crosslinked body obtained by laminating the present composition with a conjugated diene material sheet or the like and vulcanizing it, it tends to be difficult to ensure adhesion to the conjugated diene material sheet or the like. From these viewpoints, the α of each of the first polymer and the second polymer is preferably 0.65 or more, more preferably 0.70 or more, even more preferably 0.75 or more, and particularly preferably 0.80 or more. In addition, the α of each polymer is preferably 0.96 or less.
 第1重合体及び第2重合体のそれぞれにつき、ゲルパーミエーションクロマトグラフ(GPC)を使用して測定されるポリスチレン換算の重量平均分子量(Mw)は、高強度かつ耐摩耗性に優れた架橋体を得る観点から、好ましくは0.5×10以上2.0×10以下の範囲である。各重合体のMwは、より好ましくは0.7×10以上であり、更に好ましくは1.0×10以上である。また、各重合体のMwは、より好ましくは1.6×10以下であり、更に好ましくは1.4×10以下である。なお、重合体[P]の重量平均分子量(Mw)は、水添前にGPCにより測定されるGPC曲線のGPC曲線の全ピークによる重量平均分子量(トータル重量平均分子量)を表す。 The weight average molecular weight (Mw) of each of the first polymer and the second polymer, measured by gel permeation chromatography (GPC) in terms of polystyrene, is preferably in the range of 0.5×10 5 or more and 2.0×10 6 or less, from the viewpoint of obtaining a crosslinked body having high strength and excellent abrasion resistance. The Mw of each polymer is more preferably 0.7×10 5 or more, and even more preferably 1.0×10 5 or more. The Mw of each polymer is more preferably 1.6×10 6 or less, and even more preferably 1.4×10 6 or less. The weight average molecular weight (Mw) of the polymer [P] represents the weight average molecular weight (total weight average molecular weight) based on all peaks of the GPC curve measured by GPC before hydrogenation.
 また、第1重合体及び第2重合体のそれぞれにつき、GPCにより測定される、数平均分子量(Mn)に対する重量平均分子量(Mw)の比率である分子量分布(Mw/Mn)は、4.0以下であることが好ましく、3.5以下であることがより好ましい。 Furthermore, for each of the first polymer and the second polymer, the molecular weight distribution (Mw/Mn), which is the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) measured by GPC, is preferably 4.0 or less, and more preferably 3.5 or less.
 第1重合体及び第2重合体のそれぞれにつき、GPCにより測定される、分子量が最も小さいピークのピークトップ分子量(以下、「1stピーク平均分子量」ともいう)は、好ましくは0.5×10以上1.0×10以下の範囲である。1stピーク平均分子量が0.5×10以上であると、得られる架橋体の強度及び耐摩耗性を十分に高くしながら、粘弾性特性及び加工性を良好にできる。各重合体の1stピーク平均分子量は、より好ましくは0.7×10以上であり、更に好ましくは1.0×10以上である。また、粘弾性特性及び加工性をより優れたものにする観点から、各重合体の1stピーク平均分子量は、より好ましくは8.0×10以下であり、更に好ましくは5.0×10以下である。なお、1stピーク平均分子量は、水添前にGPCにより測定されたGPC曲線から求めた値である。 For each of the first polymer and the second polymer, the peak top molecular weight of the peak with the smallest molecular weight measured by GPC (hereinafter also referred to as "1st peak average molecular weight") is preferably in the range of 0.5 x 10 5 or more and 1.0 x 10 6 or less. When the 1st peak average molecular weight is 0.5 x 10 5 or more, the strength and abrasion resistance of the obtained crosslinked body can be sufficiently increased while the viscoelastic properties and processability can be improved. The 1st peak average molecular weight of each polymer is more preferably 0.7 x 10 5 or more, and even more preferably 1.0 x 10 5 or more. In addition, from the viewpoint of making the viscoelastic properties and processability more excellent, the 1st peak average molecular weight of each polymer is more preferably 8.0 x 10 5 or less, and even more preferably 5.0 x 10 5 or less. The 1st peak average molecular weight is a value obtained from a GPC curve measured by GPC before hydrogenation.
 第1重合体及び第2重合体のそれぞれにおける芳香族ビニル化合物に由来する構造単位の割合は、各重合体を構成する全構造単位に対し、0質量%よりも大きく45質量%以下であることが好ましい。上記範囲とすることにより、重合体組成物の良好な加工性を保ちながら、高強度かつ耐摩耗性に優れた架橋体を得ることができる。これらの観点から、芳香族ビニル化合物に由来する構造単位の割合は、第1重合体及び第2重合体のそれぞれを構成する全構造単位に対して、2質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。また、芳香族ビニル化合物に由来する構造単位の割合は、各重合体を構成する全構造単位に対して、40質量%以下であることがより好ましく、38質量%以下であることが更に好ましく、36質量%以下であることがより更に好ましい。重合体中における芳香族ビニル化合物に由来する構造単位の含有割合はH-NMRによって測定した値である。 The ratio of the structural units derived from the aromatic vinyl compound in each of the first polymer and the second polymer is preferably greater than 0% by mass and less than 45% by mass, based on the total structural units constituting each polymer. By setting the ratio within the above range, a crosslinked body having high strength and excellent abrasion resistance can be obtained while maintaining good processability of the polymer composition. From these viewpoints, the ratio of the structural units derived from the aromatic vinyl compound is more preferably 2% by mass or more, and even more preferably 5% by mass or more, based on the total structural units constituting each of the first polymer and the second polymer. Moreover, the ratio of the structural units derived from the aromatic vinyl compound is more preferably 40% by mass or less, more preferably 38% by mass or less, and even more preferably 36% by mass or less, based on the total structural units constituting each polymer. The content ratio of the structural units derived from the aromatic vinyl compound in the polymer is a value measured by 1 H-NMR.
 第1重合体及び第2重合体のそれぞれは、下記数式(ii):
 β=(p+q)/(p+q+(0.5×r)+s)  …(ii)
で表される値(すなわちβ)が0.10以上0.40以下であること(これを条件(y)とする)を満たす。各重合体のβが0.10未満であると、得られる架橋体の柔軟性が不足し、十分な強度を確保できなかったり、良好な低温グリップ性能が得られなかったりする傾向がある。また、各重合体のβが0.40を超えると、架橋体の強度及び耐摩耗性が十分でない傾向がある。これらの観点から、第1重合体及び第2重合体のそれぞれのβは、好ましくは0.15以上であり、より好ましくは0.20以上である。また、第1重合体及び第2重合体のそれぞれのβは、好ましくは0.39以下であり、より好ましくは0.37以下である。
Each of the first polymer and the second polymer has the following formula (ii):
β = (p + q) / (p + q + (0.5 × r) + s) ... (ii)
The value represented by (i.e., β) is 0.10 or more and 0.40 or less (this is referred to as condition (y)). If the β of each polymer is less than 0.10, the flexibility of the resulting crosslinked body is insufficient, and sufficient strength cannot be ensured, or good low-temperature grip performance tends not to be obtained. Furthermore, if the β of each polymer exceeds 0.40, the strength and wear resistance of the crosslinked body tend to be insufficient. From these viewpoints, the β of each of the first polymer and the second polymer is preferably 0.15 or more, more preferably 0.20 or more. Furthermore, the β of each of the first polymer and the second polymer is preferably 0.39 or less, more preferably 0.37 or less.
 本組成物は、重合体[P]として、第1重合体と、第1重合体よりも芳香族ビニル化合物に由来する構造単位の含有割合が少ない第2重合体とを含む。本組成物によれば、ミクロ構造が異なる第1重合体と第2重合体とを含むことにより、どちらか一方のみを含む場合に比べて、強度、低温グリップ性能、耐オゾン性及び加硫接着性がバランス良く改善された架橋体を得ることができる。 The composition contains, as the polymer [P], a first polymer and a second polymer that contains a smaller proportion of structural units derived from an aromatic vinyl compound than the first polymer. According to the composition, by containing the first polymer and the second polymer that have different microstructures, it is possible to obtain a crosslinked product that has a good balance of improved strength, low-temperature grip performance, ozone resistance, and vulcanization adhesion compared to when only one of the two polymers is contained.
 第1重合体及び第2重合体においては、第1重合体における芳香族ビニル化合物に由来する構造単位の含有割合と、第2重合体における芳香族ビニル化合物に由来する構造単位の含有割合との差(以下、「芳香族ビニル含量差」ともいう)が10~30質量%である。芳香族ビニル含量差が10質量%未満であると、第1重合体及び第2重合体のミクロ構造の違いが小さく、架橋体の強度、低温グリップ性能、耐オゾン性及び加硫接着性をバランス良く改善する効果を十分に得ることができない。また、芳香族ビニル含量差が30質量%よりも大きいと、架橋体の強度が十分でなく、また低温グリップ性能に劣る。これらの観点から、芳香族ビニル含量差は、11質量%以上が好ましく、12質量%以上がより好ましい。また、芳香族ビニル含量差は、28質量%以下が好ましく、27質量%以下がより好ましい。 In the first polymer and the second polymer, the difference between the content ratio of structural units derived from aromatic vinyl compounds in the first polymer and the content ratio of structural units derived from aromatic vinyl compounds in the second polymer (hereinafter also referred to as the "aromatic vinyl content difference") is 10 to 30% by mass. If the aromatic vinyl content difference is less than 10% by mass, the difference in the microstructure of the first polymer and the second polymer is small, and the effect of improving the strength, low-temperature grip performance, ozone resistance, and vulcanization adhesion of the crosslinked body in a well-balanced manner cannot be fully obtained. Furthermore, if the aromatic vinyl content difference is greater than 30% by mass, the strength of the crosslinked body is insufficient and the low-temperature grip performance is inferior. From these viewpoints, the aromatic vinyl content difference is preferably 11% by mass or more, and more preferably 12% by mass or more. Furthermore, the aromatic vinyl content difference is preferably 28% by mass or less, and more preferably 27% by mass or less.
 第1重合体及び第2重合体において、第1重合体のβと第2重合体のβとの差(以下、「Δβ」とも表記する)は0.10以下である。Δβが0.10を超えると、得られる架橋体の強度及び低温グリップ性能が十分でない傾向がある。これらの観点から、Δβは、0.08以下が好ましく、0.07以下がより好ましく、0.06以下が更に好ましい。また、架橋体の強度、低温グリップ性能、耐オゾン性及び加硫接着性をバランス良く改善する観点から、第1重合体のβと第2重合体のβとは異なることが好ましい。Δβは0よりも大きいことが好ましく、0.01以上であることがより好ましい。 In the first polymer and the second polymer, the difference between the β of the first polymer and the β of the second polymer (hereinafter also referred to as "Δβ") is 0.10 or less. If Δβ exceeds 0.10, the strength and low-temperature grip performance of the obtained crosslinked body tend to be insufficient. From these viewpoints, Δβ is preferably 0.08 or less, more preferably 0.07 or less, and even more preferably 0.06 or less. Furthermore, from the viewpoint of improving the strength, low-temperature grip performance, ozone resistance, and vulcanization adhesion of the crosslinked body in a well-balanced manner, it is preferable that the β of the first polymer is different from the β of the second polymer. Δβ is preferably greater than 0, and more preferably 0.01 or more.
 第1重合体のβと第2重合体のβが異なる場合、第1重合体及び第2重合体のいずれのβが大きくてもよい。架橋体の強度、低温グリップ性能及び耐オゾン性をバランス良く改善するとともに、加硫接着性に優れた重合体組成物を得る観点から、第2重合体のβが第1重合体のβよりも大きいことが好ましい。 When the β of the first polymer is different from the β of the second polymer, the β of either the first polymer or the second polymer may be larger. From the viewpoint of obtaining a polymer composition with good balance between improving the strength, low-temperature grip performance, and ozone resistance of the crosslinked body and having excellent vulcanization adhesion, it is preferable that the β of the second polymer is larger than the β of the first polymer.
 第1重合体及び第2重合体は、変性された重合体(以下、「変性重合体」ともいう)であってもよく、未変性の重合体であってもよい。ここで、本明細書において「変性」とは、炭化水素に由来する構造単位からなる未変性の共役ジエン系重合体に、窒素や酸素、硫黄、ケイ素等のヘテロ原子を含む部分構造を持たせることをいう。第1重合体及び第2重合体のうち少なくとも一方が変性重合体である場合、その変性重合体は、共役ジエン系重合体の重合開始末端や重合終了末端にヘテロ原子を含む部分構造を、変性剤を用いて導入する末端変性が行われることによって得られた重合体であってもよく、あるいは、ヘテロ原子を有するモノマーを共重合させたり、共役ジエン系重合体と変性剤とを反応させてヘテロ原子を含む部分構造を重合体の主鎖に対し導入したりする主鎖変性が行われることによって得られた重合体であってもよい。なお、共役ジエン系重合体と変性剤とを反応させてヘテロ原子を含む部分構造を重合体の主鎖に対して導入した場合、ヘテロ原子を含む部分構造は重合体の側鎖に導入され、側鎖に存在することとなる。「変性剤」とは、変性を引き起こす化学薬品をいう。 The first polymer and the second polymer may be modified polymers (hereinafter, also referred to as "modified polymers") or unmodified polymers. In this specification, "modification" refers to providing an unmodified conjugated diene polymer consisting of structural units derived from hydrocarbons with a partial structure containing a heteroatom such as nitrogen, oxygen, sulfur, or silicon. When at least one of the first polymer and the second polymer is a modified polymer, the modified polymer may be a polymer obtained by terminal modification in which a partial structure containing a heteroatom is introduced into the polymerization initiation end or polymerization termination end of the conjugated diene polymer using a modifying agent, or a polymer obtained by main chain modification in which a monomer having a heteroatom is copolymerized or a conjugated diene polymer is reacted with a modifying agent to introduce a partial structure containing a heteroatom into the main chain of the polymer. Note that when a partial structure containing a heteroatom is introduced into the main chain of the polymer by reacting a conjugated diene polymer with a modifying agent, the partial structure containing a heteroatom is introduced into the side chain of the polymer and exists in the side chain. The "modifying agent" refers to a chemical agent that causes modification.
 第1重合体及び第2重合体の一方又は両方は、窒素、酸素、ケイ素及びリンよりなる群から選択される少なくとも1種の元素を含む官能基(以下、「特定官能基」ともいう)を有することが好ましい。第1重合体及び第2重合体のうち少なくとも一方が特定官能基を有することにより、本組成物を用いて得られる架橋体の各種物性(具体的には、強度や粘弾性特性、低燃費性能)を更に改善することができる。 It is preferable that one or both of the first polymer and the second polymer have a functional group (hereinafter also referred to as a "specific functional group") that contains at least one element selected from the group consisting of nitrogen, oxygen, silicon, and phosphorus. By having at least one of the first polymer and the second polymer have a specific functional group, various physical properties (specifically, strength, viscoelasticity, and fuel efficiency) of the crosslinked body obtained using this composition can be further improved.
 第1重合体及び第2重合体のうち特定官能基を有する重合体(以下、「特定基含有重合体」ともいう)において、重合体中の特定官能基の位置は特に限定されない。すなわち、特定基含有重合体は、分子鎖の末端に特定官能基を有していてもよく、重合体の側鎖に特定官能基を有していてもよい。また、分子鎖の末端に特定官能基を有する重合体において、特定基含有重合体は、特定官能基を重合開始末端に有していてもよく、重合終了末端に有していてもよく、重合開始末端及び重合終了末端の両方に有していてもよい。本組成物を用いて得られる架橋体の各種物性の改善効果を高くできる点において、特定基含有重合体は、分子鎖の一方の末端又は両末端に特定官能基を有していることが好ましい。 In the first polymer and the second polymer having a specific functional group (hereinafter also referred to as a "specific group-containing polymer"), the position of the specific functional group in the polymer is not particularly limited. That is, the specific group-containing polymer may have a specific functional group at the end of the molecular chain, or may have a specific functional group on the side chain of the polymer. In addition, in a polymer having a specific functional group at the end of the molecular chain, the specific group-containing polymer may have the specific functional group at the polymerization initiation end, the polymerization termination end, or both the polymerization initiation end and the polymerization termination end. In terms of being able to enhance the effect of improving various physical properties of the crosslinked body obtained using this composition, it is preferable that the specific group-containing polymer has a specific functional group at one end or both ends of the molecular chain.
 特定官能基としては、例えば、1級アミノ基、2級アミノ基、3級アミノ基、1級アミノ基の2つの水素原子が保護された窒素含有基、2級アミノ基の1つの水素原子が保護された窒素含有基、3級アミノ基、イミノ基、1級ホスフィノ基の2つの水素原子が保護されたリン含有基、2級ホスフィノ基の1つの水素原子が保護されたリン含有基、3級ホスフィノ基、環状エーテル基、水酸基、水酸基の水素原子が保護された酸素含有基、窒素含有複素環基(例えば、ピリジン環、イミド環等の複素環を有する基)、ヒドロカルビルオキシシリル基、ヒドロカルビルオキシカルボニル基、エーテル結合等が挙げられる。これらのうち、架橋体の各種物性の改善効果をより高める観点から、第1重合体及び第2重合体の一方又は両方は、特定官能基として、窒素を有する基及びヒドロカルビルオキシシリル基よりなる群から選択される少なくとも1種を有することが好ましい。 Specific functional groups include, for example, primary amino groups, secondary amino groups, tertiary amino groups, nitrogen-containing groups in which two hydrogen atoms of a primary amino group are protected, nitrogen-containing groups in which one hydrogen atom of a secondary amino group is protected, tertiary amino groups, imino groups, phosphorus-containing groups in which two hydrogen atoms of a primary phosphino group are protected, phosphorus-containing groups in which one hydrogen atom of a secondary phosphino group is protected, tertiary phosphino groups, cyclic ether groups, hydroxyl groups, oxygen-containing groups in which the hydrogen atom of a hydroxyl group is protected, nitrogen-containing heterocyclic groups (e.g., groups having heterocyclic rings such as pyridine rings and imide rings), hydrocarbyloxysilyl groups, hydrocarbyloxycarbonyl groups, ether bonds, etc. Among these, from the viewpoint of further enhancing the effect of improving various physical properties of the crosslinked body, it is preferable that one or both of the first polymer and the second polymer have at least one specific functional group selected from the group consisting of nitrogen-containing groups and hydrocarbyloxysilyl groups.
 特定基含有重合体は、活性末端を有する共役ジエン系重合体と、共役ジエン系重合体が有する活性末端との反応点を有し、かつ特定官能基を有する化合物との反応生成物であることが好ましい。当該化合物において、活性末端との反応点の数は1個でもよく、2個以上であってもよい。 The specific group-containing polymer is preferably a reaction product between a conjugated diene polymer having an active end and a compound having a specific functional group and a reactive site with the active end of the conjugated diene polymer. The compound may have one reactive site with the active end, or two or more reactive sites.
 第1重合体及び第2重合体のうち一方が特定基含有重合体である場合、第1重合体が特定基含有重合体であってもよく、第2重合体が特定基含有重合体であってもよい。本組成物を用いて得られる架橋体の各種物性の改善効果をより高める観点からすると、第1重合体及び第2重合体のうち少なくともいずれかは特定基含有重合体であることが好ましく、第1重合体及び第2重合体が共に特定基含有重合体であることがより好ましい。 When one of the first polymer and the second polymer is a specific group-containing polymer, the first polymer may be a specific group-containing polymer, and the second polymer may be a specific group-containing polymer. From the viewpoint of further enhancing the effect of improving various physical properties of the crosslinked body obtained by using this composition, it is preferable that at least one of the first polymer and the second polymer is a specific group-containing polymer, and it is more preferable that both the first polymer and the second polymer are specific group-containing polymers.
 本組成物における第1重合体と第2重合体との配合割合は、質量比で、第1重合体:第2重合体=10:90~90:10の範囲であることが好ましい。第1重合体及び第2重合体の配合割合が上記範囲である場合、得られる架橋体の強度、低温グリップ性能及び耐オゾン性、並びに重合体組成物の加硫接着性をバランス良く改善する効果を十分に得ることができる。第1重合体及び第2重合体の配合割合は、第1重合体:第2重合体=15:85~85:15の範囲であることがより好ましく、第1重合体:第2重合体=20:80~80:20の範囲であることが更に好ましい。 The blending ratio of the first polymer to the second polymer in this composition is preferably in the range of 10:90 to 90:10 by mass ratio (first polymer:second polymer). When the blending ratio of the first polymer to the second polymer is in the above range, the effect of improving the strength, low-temperature grip performance, and ozone resistance of the obtained crosslinked body, as well as the vulcanization adhesion of the polymer composition in a well-balanced manner can be sufficiently obtained. The blending ratio of the first polymer to the second polymer is more preferably in the range of 15:85 to 85:15 (first polymer:second polymer), and even more preferably in the range of 20:80 to 80:20 (first polymer:second polymer).
<重合体[P]の製造方法>
 重合体[P]は、以下の重合工程及び水添工程を含む方法により製造することができる。また、重合体[P]は、重合工程及び水添工程に加えて更に、以下の変性工程を含む方法により製造されてもよい。
<Production method of polymer [P]>
The polymer [P] can be produced by a method including the following polymerization step and hydrogenation step. The polymer [P] may also be produced by a method including the following modification step in addition to the polymerization step and hydrogenation step.
(重合工程)
 重合工程は、1,3-ブタジエンと芳香族ビニル化合物とを含む単量体を重合して、活性末端を有する共役ジエン系重合体を得る工程である。重合工程で用いる芳香族ビニル化合物の具体例及び好ましい例としては、上述した芳香族ビニル化合物の例示及び好ましい例と同様の化合物が挙げられる。
(Polymerization process)
The polymerization step is a step of polymerizing a monomer containing 1,3-butadiene and an aromatic vinyl compound to obtain a conjugated diene polymer having an active terminal. Specific and preferred examples of the aromatic vinyl compound used in the polymerization step include the same compounds as the above-mentioned illustrative and preferred examples of the aromatic vinyl compound.
 重合体[P]の製造に際しては、芳香族ビニル化合物と共に、1,3-ブタジエンとは異なる共役ジエン化合物を更に用いてもよい。当該共役ジエン化合物の具体例としては、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらのうち、1,3-ブタジエンと併用する共役ジエン化合物は、イソプレン又は2,3-ジメチル-1,3-ブタジエンが好ましい。1,3-ブタジエンと併用する共役ジエン化合物の使用割合は、重合に使用する共役ジエン化合物の全量に対して、30質量%以下とすることが好ましく、20質量%以下とすることがより好ましい。 When producing the polymer [P], a conjugated diene compound other than 1,3-butadiene may be used together with the aromatic vinyl compound. Specific examples of the conjugated diene compound include isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, 2-phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, and 2-chloro-1,3-butadiene. Of these, the conjugated diene compound used in combination with 1,3-butadiene is preferably isoprene or 2,3-dimethyl-1,3-butadiene. The proportion of the conjugated diene compound used in combination with 1,3-butadiene is preferably 30% by mass or less, and more preferably 20% by mass or less, based on the total amount of the conjugated diene compound used in the polymerization.
 重合体[P]を得るための重合反応に使用する単量体は、共役ジエン化合物及び芳香族ビニル化合物以外の化合物(以下、「他のモノマー」ともいう。)を含んでいてもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等が挙げられる。他のモノマーの使用割合は、重合に使用する単量体の全量に対して、10質量%以下とすることが好ましく、5質量%以下とすることがより好ましい。 The monomers used in the polymerization reaction to obtain the polymer [P] may contain compounds other than conjugated diene compounds and aromatic vinyl compounds (hereinafter also referred to as "other monomers"). Examples of other monomers include acrylonitrile, methyl (meth)acrylate, and ethyl (meth)acrylate. The proportion of other monomers used is preferably 10% by mass or less, and more preferably 5% by mass or less, based on the total amount of monomers used in the polymerization.
 本組成物が無機フィラーを含む場合に無機フィラーの分散性を向上させ、これにより本組成物を用いて得られる架橋体の各種物性(例えば、強度や耐摩耗性、粘弾性特性等)を向上させる観点から、重合体[P]は、共役ジエン化合物と芳香族ビニル化合物との分布が不規則なランダム共重合部を有することが好ましい。重合体[P]が共役ジエン化合物と芳香族ビニル化合物とのランダム共重合部分を有する場合、重合体[P]は、共役ジエン化合物又は芳香族ビニル化合物からなるブロック部分を更に有していてもよい。重合体[P]は、アニオン重合におけるリビング性が高い点で、中でも、1,3-ブタジエンとスチレンとを単量体組成に含む共重合体であることが好ましい。 In order to improve the dispersibility of the inorganic filler when the composition contains an inorganic filler, and thereby improve various physical properties (e.g., strength, abrasion resistance, viscoelastic properties, etc.) of the crosslinked body obtained using the composition, it is preferable that the polymer [P] has a random copolymerization portion in which the distribution of the conjugated diene compound and the aromatic vinyl compound is irregular. When the polymer [P] has a random copolymerization portion of a conjugated diene compound and an aromatic vinyl compound, the polymer [P] may further have a block portion made of a conjugated diene compound or an aromatic vinyl compound. In terms of high living property in anionic polymerization, the polymer [P] is preferably a copolymer containing 1,3-butadiene and styrene in the monomer composition.
 使用する重合法としては、溶液重合法、気相重合法、バルク重合法等が挙げられる。使用する重合法は、これらのうち溶液重合法が特に好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、溶媒中(好ましくは有機溶媒中)において、共役ジエン化合物及び芳香族ビニル化合物を含む単量体を、重合開始剤、及び必要に応じて用いられるビニル含量調整剤(以下、「ランダマイザー」ともいう)の存在下で重合する方法が挙げられる。 Polymerization methods that can be used include solution polymerization, gas phase polymerization, bulk polymerization, and the like. Of these, solution polymerization is particularly preferred. The polymerization form may be either batch or continuous. When using solution polymerization, a specific example of the polymerization method is a method in which monomers including a conjugated diene compound and an aromatic vinyl compound are polymerized in a solvent (preferably an organic solvent) in the presence of a polymerization initiator and, if necessary, a vinyl content regulator (hereinafter, also referred to as a "randomizer").
 重合開始剤としては、アルカリ金属又はアルカリ土類金属を有する金属化合物を用いることができる。これらのうち、アルカリ金属を有する化合物が好ましい。金属化合物の具体例としては、メチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム等のアルキルリチウム;1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、ナフチルナトリウム、ナフチルカリウム、エトキシカリウム等が挙げられる。これらのうち、リチウム化合物が好ましい。 As the polymerization initiator, a metal compound containing an alkali metal or an alkaline earth metal can be used. Of these, a compound containing an alkali metal is preferred. Specific examples of metal compounds include alkyl lithium such as methyl lithium, ethyl lithium, n-propyl lithium, n-butyl lithium, sec-butyl lithium, and t-butyl lithium; 1,4-dilithiobutane, phenyl lithium, stilbene lithium, naphthyl lithium, 1,3-bis(1-lithio-1,3-dimethylpentyl)benzene, 1,3-phenylenebis(3-methyl-1-phenylpentylidene)dilithium, naphthyl sodium, naphthyl potassium, and ethoxy potassium. Of these, lithium compounds are preferred.
 また、重合開始剤として使用する金属化合物は、アルカリ金属又はアルカリ土類金属を有する金属アミド化合物であってもよい。重合体[P]を得るための重合を金属アミド化合物の存在下で行うことにより、共役ジエン系重合体の重合開始末端に、アミノ基(好ましくは、2級アミノ基又は3級アミノ基)を導入することができる。金属アミド化合物の存在下で単量体を重合することにより得られた重合体[P]は、架橋体の強度をより高くできる点、及びタイヤ用途とする場合に架橋体の低燃費性能の改善効果を高くできる点で好ましい。 The metal compound used as the polymerization initiator may be a metal amide compound having an alkali metal or an alkaline earth metal. By carrying out the polymerization to obtain the polymer [P] in the presence of a metal amide compound, an amino group (preferably a secondary amino group or a tertiary amino group) can be introduced to the polymerization initiation terminal of the conjugated diene polymer. The polymer [P] obtained by polymerizing the monomers in the presence of a metal amide compound is preferable in that it can increase the strength of the crosslinked body and can increase the effect of improving the fuel efficiency of the crosslinked body when used for tires.
 金属アミド化合物としては、中でも、リチウム化合物(例えば、アルキルリチウム等)と、窒素原子を有する化合物(以下、「開始末端変性剤」ともいう)とを混合して得られる化合物であることが好ましい。開始末端変性剤は2級アミン化合物が好ましい。その具体例としては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)-4-ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。 The metal amide compound is preferably a compound obtained by mixing a lithium compound (e.g., alkyl lithium, etc.) with a compound having a nitrogen atom (hereinafter also referred to as the "initial end modifier"). The initial end modifier is preferably a secondary amine compound. Specific examples thereof include dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N,N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, hexamethyleneimine, heptamethyleneimine, dicyclohexylamine, N-methylbenzylamine, di-(2-ethylhexyl)amine, diallylamine, morpholine, N-(trimethylsilyl)piperazine, N-(tert-butyldimethylsilyl)-4-piperazine, 1,3-ditrimethylsilyl-1,3,5-triazinane, etc.
 なお、金属アミド化合物の存在下で重合を行う場合、リチウム化合物と開始末端変性剤とを予め混合することにより金属アミド化合物を調製し、その調製した金属アミド化合物を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、リチウム化合物と開始末端変性剤とを添加し、重合系中で両者を混合することにより金属アミド化合物を調製して重合を行ってもよい。重合に際し、重合開始剤の使用量は、重合体の合成に使用する単量体100gに対して、0.01~20mmolとすることが好ましく、0.05~15mmolとすることがより好ましい。 When polymerization is carried out in the presence of a metal amide compound, a lithium compound and an initiating end modifier may be mixed in advance to prepare a metal amide compound, and the prepared metal amide compound may be added to the polymerization system to carry out polymerization. Alternatively, a lithium compound and an initiating end modifier may be added to the polymerization system, and the two may be mixed in the polymerization system to prepare a metal amide compound, and polymerization may be carried out. The amount of polymerization initiator used in polymerization is preferably 0.01 to 20 mmol, and more preferably 0.05 to 15 mmol, per 100 g of monomer used to synthesize the polymer.
 ランダマイザーは、重合体中におけるビニル結合の含有率を表すビニル結合含量の調整等を目的として用いることができる。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン、ドデシルベンゼンスルホン酸カリウム等が挙げられる。ランダマイザーとしては、1種を単独で又は2種以上を組み合わせて使用できる。 The randomizer can be used for the purpose of adjusting the vinyl bond content, which indicates the content of vinyl bonds in a polymer. Examples of randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di(tetrahydrofuryl)propane, 2-(2-ethoxyethoxy)-2-methylpropane, triethylamine, pyridine, N-methylmorpholine, tetramethylethylenediamine, potassium dodecylbenzenesulfonate, etc. The randomizer can be used alone or in combination of two or more types.
 重合に使用する有機溶媒としては、重合反応に関与しない有機溶媒を好ましく用いることができる。重合に使用する有機溶媒の具体例としては、例えば、鎖状又は環状の脂肪族炭化水素、芳香族炭化水素等が挙げられる。これらの中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-へキサン、シクロへキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。なお、有機溶媒としては、1種を単独で又は2種以上を組み合わせて使用することができる。 As the organic solvent used in the polymerization, an organic solvent that does not participate in the polymerization reaction can be preferably used. Specific examples of the organic solvent used in the polymerization include, for example, chain or cyclic aliphatic hydrocarbons, aromatic hydrocarbons, etc. Among these, hydrocarbons having 3 to 8 carbon atoms are preferred, and specific examples thereof include, for example, propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, 1-butene, isobutene, trans-2-butene, cis-2-butene, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene, heptane, cyclopentane, methylcyclopentane, methylcyclohexane, 1-pentene, 2-pentene, cyclohexene, etc. The organic solvent can be used alone or in combination of two or more kinds.
 溶液重合とする場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性とのバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃が好ましく、0~120℃がより好ましい。また、重合反応は、単量体を実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に関与しないガスによって、反応器内を加圧する等の方法によって得ることができる。こうした重合反応により、活性末端を有する共役ジエン系重合体を得ることができる。なお、本明細書において「活性末端」とは、分子鎖の端に存在する、炭素-炭素二重結合を有するモノマーに由来する構造以外の部分(より具体的には、金属末端)を意味する。 When solution polymerization is used, the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, more preferably 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. The temperature of the polymerization reaction is preferably -20°C to 150°C, more preferably 0 to 120°C. The polymerization reaction is preferably carried out under a pressure sufficient to substantially keep the monomer in a liquid phase. Such a pressure can be obtained by a method such as pressurizing the inside of the reactor with a gas that is not involved in the polymerization reaction. By such a polymerization reaction, a conjugated diene polymer having an active end can be obtained. In this specification, the term "active end" refers to the portion (more specifically, the metal end) other than the structure derived from the monomer having a carbon-carbon double bond that is present at the end of the molecular chain.
 上記重合により得られる共役ジエン系重合体のビニル結合含量は、10~40mol%であることが好ましい。ビニル結合含量は、好ましくは15mol%以上であり、より好ましくは20mol%以上である。また、共役ジエン系重合体のビニル結合含量は、好ましくは39mol%以下であり、より好ましくは37mol%以下である。本明細書において「ビニル結合含量」は、水素添加前の共役ジエン系重合体が有する1,3-ブタジエンに由来する全構造単位に対する、ビニル結合を有する構造単位(1,2-結合)の含有割合を示す値である。ビニル結合含量はH-NMR装置によって測定される値である。なお、上記の数式(ii)で表されるβは、水添前の共役ジエン系重合体のビニル結合含量に相当する。例えば、重合体のβが0.10の場合、その重合体の水添前のビニル結合含量は10%である。 The vinyl bond content of the conjugated diene polymer obtained by the polymerization is preferably 10 to 40 mol%. The vinyl bond content is preferably 15 mol% or more, more preferably 20 mol% or more. The vinyl bond content of the conjugated diene polymer is preferably 39 mol% or less, more preferably 37 mol% or less. In this specification, the "vinyl bond content" is a value indicating the content ratio of structural units having vinyl bonds (1,2-bonds) to all structural units derived from 1,3-butadiene contained in the conjugated diene polymer before hydrogenation. The vinyl bond content is a value measured by a 1 H-NMR device. Note that β represented by the above formula (ii) corresponds to the vinyl bond content of the conjugated diene polymer before hydrogenation. For example, when the β of a polymer is 0.10, the vinyl bond content of the polymer before hydrogenation is 10%.
 重合の停止は、活性末端を有する共役ジエン系重合体と、アルコールや水素とを反応させることにより行うことができる。また、以下に示す変性工程により、活性末端を有する共役ジエン系重合体と変性剤とを反応させてもよい。 The polymerization can be terminated by reacting the conjugated diene polymer having an active end with an alcohol or hydrogen. Alternatively, the conjugated diene polymer having an active end may be reacted with a modifier by the modification process described below.
<変性工程>
 変性工程は、変性剤として、無機フィラーと共有結合又は相互作用する官能基を有し、かつ重合体の活性末端と反応し得る化合物を用い、活性末端を有する共役ジエン系重合体と反応させることが好ましい。変性剤は、重合体の活性末端との反応点が1個である化合物(以下、「終了末端変性剤」ともいう)であってもよく、重合体の活性末端との反応点を2個以上有する多官能化合物(以下、「特定カップリング剤」ともいう)であってもよい。
<Modification step>
In the modification step, a compound having a functional group that is covalently bonded or interacts with the inorganic filler and can react with the active end of the polymer is preferably used as a modifying agent, and the modifying agent is reacted with the conjugated diene polymer having an active end. The modifying agent may be a compound having one reactive site with the active end of the polymer (hereinafter also referred to as a "terminal end modifying agent"), or a polyfunctional compound having two or more reactive sites with the active end of the polymer (hereinafter also referred to as a "specific coupling agent").
 終了末端変性剤は特に限定されず、共役ジエン系重合体の変性剤として公知の化合物の中から適宜選択して使用できる。終了末端変性剤は、中でも、窒素、酸素、ケイ素及びリンよりなる群から選択される少なくとも1種の元素を有し、かつ当該元素に活性水素が結合していない化合物を好ましく使用することができる。終了末端変性剤としては、中でも、特定官能基として、アミノ基、炭素-窒素二重結合を有する基、窒素含有複素環基、ホスフィノ基、環状エーテル基、保護された水酸基、及びヒドロカルビルオキシシリル基よりなる群から選択される1種以上を有し、かつ重合活性末端と反応し得る化合物を好ましく使用することができる。アミノ基は、保護された1級アミノ基、保護された2級アミノ基、又は3級アミノ基が好ましい。このような化合物としては特に限定されないが、例えば特開2003-171418号公報、国際公開第2021/112167号に記載の化合物の1種又は2種以上を好ましく使用することができる。 The end-terminal modifier is not particularly limited, and can be appropriately selected from compounds known as modifiers for conjugated diene polymers. As the end-terminal modifier, a compound having at least one element selected from the group consisting of nitrogen, oxygen, silicon, and phosphorus, and having no active hydrogen bonded to the element, can be preferably used. As the end-terminal modifier, a compound having at least one specific functional group selected from the group consisting of an amino group, a group having a carbon-nitrogen double bond, a nitrogen-containing heterocyclic group, a phosphino group, a cyclic ether group, a protected hydroxyl group, and a hydrocarbyloxysilyl group, and capable of reacting with a polymerization active terminal, can be preferably used. The amino group is preferably a protected primary amino group, a protected secondary amino group, or a tertiary amino group. Such a compound is not particularly limited, but for example, one or more of the compounds described in JP-A-2003-171418 and WO2021/112167 can be preferably used.
 終了末端変性剤の好ましい具体例としては、下記式(5)で表される化合物及び下記式(6)で表される化合物よりなる群から選択される少なくとも1種が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式(5)中、A11は、窒素、硫黄、リン及び酸素よりなる群から選択される少なくとも1種の元素を有し、活性水素を有さず、かつR35に対して窒素、硫黄、リン、酸素、若しくはカルボニル基に含まれる炭素原子で結合する1価の官能基であるか、又はエポキシ基である。R33及びR34は、それぞれ独立して、ヒドロカルビル基である。R35は、ヒドロカルビレン基である。tは、0~2の整数である。ただし、tが2の場合、式中の複数のR33は、互いに同一又は異なる。tが0又は1の場合、式中の複数のR34は、互いに同一又は異なる。)
Figure JPOXMLDOC01-appb-C000005
(式(6)中、A12は、窒素、硫黄、リン及び酸素よりなる群から選択される少なくとも1種の元素を有し、活性水素を有さず、かつR39に対して窒素、硫黄、リン若しくは酸素で結合する1価の官能基であるか、又は炭素数1~20のヒドロカルビル基である。R36及びR37は、それぞれ独立して、ヒドロカルビル基である。R38は、ヒドロカルビレン基である。R39は、単結合又はヒドロカルビレン基である。uは0又は1である。ただし、uが0の場合、式中の複数のR37は、互いに同一又は異なる。)
A preferred specific example of the terminal modifying agent is at least one selected from the group consisting of compounds represented by the following formula (5) and compounds represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000004
(In formula (5), A 11 is a monovalent functional group having at least one element selected from the group consisting of nitrogen, sulfur, phosphorus, and oxygen, having no active hydrogen, and bonded to R 35 via nitrogen, sulfur, phosphorus, oxygen, or a carbon atom contained in a carbonyl group, or is an epoxy group. R 33 and R 34 are each independently a hydrocarbyl group. R 35 is a hydrocarbylene group. t is an integer of 0 to 2. However, when t is 2, multiple R 33s in the formula are the same as or different from each other. When t is 0 or 1, multiple R 34s in the formula are the same as or different from each other.)
Figure JPOXMLDOC01-appb-C000005
(In formula (6), A 12 is a monovalent functional group having at least one element selected from the group consisting of nitrogen, sulfur, phosphorus, and oxygen, having no active hydrogen, and bonded to R 39 via nitrogen, sulfur, phosphorus, or oxygen, or a hydrocarbyl group having 1 to 20 carbon atoms. R 36 and R 37 are each independently a hydrocarbyl group. R 38 is a hydrocarbylene group. R 39 is a single bond or a hydrocarbylene group. u is 0 or 1. However, when u is 0, multiple R 37 in the formula are the same or different from each other.)
 上記式(5)及び式(6)において、R33、R34、R36、R37、及びヒドロカルビル基である場合のA12について、ヒドロカルビル基は、炭素数1~20の直鎖状若しくは分岐状のアルキル基、炭素数3~20のシクロアルキル基又は炭素数6~20のアリール基であることが好ましい。
 R35及びR39で表されるヒドロカルビレン基は、炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基、炭素数3~20のシクロアルキレン基又は炭素数6~20のアリーレン基が好ましい。R38で表されるヒドロカルビレン基は、炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基が好ましい。
 tは、0又は1が好ましい。
In the above formulas (5) and (6), with respect to R 33 , R 34 , R 36 , R 37 , and A 12 when it is a hydrocarbyl group, the hydrocarbyl group is preferably a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms.
The hydrocarbylene group represented by R 35 and R 39 is preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or an arylene group having 6 to 20 carbon atoms. The hydrocarbylene group represented by R 38 is preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms.
t is preferably 0 or 1.
 A11が上記1価の官能基である場合にA11が有する、窒素、硫黄、リン及び酸素よりなる群から選択される少なくとも1種の元素、並びに、A12が上記1価の官能基である場合にA12が有する、窒素、硫黄、リン及び酸素よりなる群から選択される少なくとも1種の元素は、例えば3置換のヒドロカルビルシリル基等で保護されていてもよい。なお、本明細書において活性水素とは、炭素原子以外の原子に結合した水素原子をいい、好ましくはポリメチレンの炭素-水素結合よりも結合エネルギーが低いものを指す。 When A 11 is the monovalent functional group, at least one element selected from the group consisting of nitrogen, sulfur, phosphorus, and oxygen possessed by A 11 , and when A 12 is the monovalent functional group, at least one element selected from the group consisting of nitrogen, sulfur, phosphorus, and oxygen possessed by A 12 may be protected, for example, by a tri-substituted hydrocarbylsilyl group, etc. In this specification, active hydrogen refers to a hydrogen atom bonded to an atom other than a carbon atom, and preferably refers to one having a bond energy lower than that of the carbon-hydrogen bond of polymethylene.
 A11は、オニウム塩生成剤によってオニウムイオンになり得る基であってもよい。終了末端変性剤がこのような基(A11)を有することにより、重合体に対して優れた形状保持性を付与することができる。A11の具体例としては、1級アミノ基の2つの水素原子が保護された窒素含有基、2級アミノ基の1つの水素原子が保護された窒素含有基、3級アミノ基、イミノ基、窒素含有複素環基(例えば、ピリジン環、イミド環等の複素環を有する基)、1級ホスフィノ基の2つの水素原子が保護されたリン含有基、2級ホスフィノ基の1つの水素原子が保護されたリン含有基、3級ホスフィノ基、エポキシ基、水酸基の水素原子が保護された酸素含有基、チオール基の水素原子が保護基によって置換されてなる硫黄含有基、ヒドロカルビルオキシカルボニル基等が挙げられる。 A 11 may be a group that can be turned into an onium ion by an onium salt generating agent. The end-end modifying agent has such a group (A 11 ), and thus can impart excellent shape retention to the polymer. Specific examples of A 11 include a nitrogen-containing group in which two hydrogen atoms of a primary amino group are protected, a nitrogen-containing group in which one hydrogen atom of a secondary amino group is protected, a tertiary amino group, an imino group, a nitrogen-containing heterocyclic group (e.g., a group having a heterocyclic ring such as a pyridine ring or an imide ring), a phosphorus-containing group in which two hydrogen atoms of a primary phosphino group are protected, a phosphorus-containing group in which one hydrogen atom of a secondary phosphino group is protected, a tertiary phosphino group, an epoxy group, an oxygen-containing group in which the hydrogen atom of a hydroxyl group is protected, a sulfur-containing group in which the hydrogen atom of a thiol group is substituted with a protecting group, and a hydrocarbyloxycarbonyl group.
 これらの中でも、シリカとの親和性が良好である点で、窒素原子を有する基であることが好ましく、3級アミノ基、1級アミノ基の2つの水素原子が保護された窒素含有基又はイミノ基であることがより好ましい。なお、保護された基とは、A11、A12が重合活性末端と反応しない官能基に変換された基である。オニウム塩生成剤は、ブレンステッド酸、又は、水と接触することでブレンステッド酸を生成する化合物である。 Among these, a group having a nitrogen atom is preferred because of its good affinity with silica, and a nitrogen-containing group or an imino group in which two hydrogen atoms of a tertiary amino group or a primary amino group are protected is more preferred. The protected group is a group in which A 11 and A 12 are converted into functional groups that do not react with the polymerization active terminal. The onium salt generating agent is a Bronsted acid or a compound that generates a Bronsted acid when contacted with water.
 終了末端変性剤の具体例としては、式(5)で表される化合物として、例えば、N,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ジメチルアミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、1-フェニル-N-(3-(トリエトキシシリル)プロピル)メタンイミン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-(トリメチルシリルメルカプト)プロピルトリメトキシシラン、3-(ジフェニルホスフィノ)プロピルメチルジエトキシシラン等が挙げられる。 Specific examples of end-terminal modifying agents include compounds represented by formula (5), such as N,N-bis(trimethylsilyl)aminopropyltrimethoxysilane, N,N-dimethylaminopropyltriethoxysilane, N,N-bis(trimethylsilyl)aminopropylmethyldiethoxysilane, 1-phenyl-N-(3-(triethoxysilyl)propyl)methanimine, N,N',N'-tris(trimethylsilyl)-N-(2-aminoethyl)-3-aminopropyltriethoxysilane, 3-(4-trimethylsilyl-1-piperazino)propylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-(trimethylsilylmercapto)propyltrimethoxysilane, and 3-(diphenylphosphino)propylmethyldiethoxysilane.
 式(6)で表される化合物の具体例としては、例えば、2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1,2-アザシロリジン、2,2-ジエトキシ-1-(3-トリメトキシシリルプロピル)-1,2-アザシロリジン、2,2-ジメトキシ-1-フェニル-1,2-アザシロリジン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、2-(2,2-ジメトキシ-1,2-アザシロリジン-1-イル)-N,N-ジエチルエタン-1-アミン、2-(2,2-ジメトキシ-1,2-アザシロリジン-1-イル)-N,N-ジメチルエタン-1-アミン、3-(2,2-ジメトキシ-1,2-アザシロリジン-1-イル)-N,N-ジエチルプロパン-1-アミン等が挙げられる。終了末端変性剤としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Specific examples of compounds represented by formula (6) include, for example, 2,2-dimethoxy-1-(3-trimethoxysilylpropyl)-1,2-azasilolidine, 2,2-diethoxy-1-(3-trimethoxysilylpropyl)-1,2-azasilolidine, 2,2-dimethoxy-1-phenyl-1,2-azasilolidine, 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane, 2-(2,2-dimethoxy-1,2-azasilolidine-1-yl)-N,N-diethylethane-1-amine, 2-(2,2-dimethoxy-1,2-azasilolidine-1-yl)-N,N-dimethylethane-1-amine, and 3-(2,2-dimethoxy-1,2-azasilolidine-1-yl)-N,N-diethylpropane-1-amine. The terminal modifying agent may be used alone or in combination of two or more.
 特定カップリング剤のうち、窒素及び酸素の一方又は両方を有する多官能化合物の具体例としては、テトラグリシジル-1,3-ビスアミノメチルシクロヘキサン、N,N,N’,N’-テトラ(3-トリメトキシシリルプロピル)エチレンジアミン、N,N,N’,N’-テトラ(3-トリエトキシシリルプロピル)エチレンジアミン、N,N,N’-トリス(3-トリメトキシシリルプロピル)-N’-メチル-エチレンジアミン、N,N,N’,N’-テトラ(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、N,N,N’,N’-テトラ(3-トリメトキシシリルプロピル)-1,4-ブタンジアミン、ビス(3-トリメトキシシリルプロピル)-[2-(ジメチルアミノ)エチル]アミン、ビス(3-トリメトキシシリルプロピル)-[2-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)エチル]アミン、ビス(3-トリエトキシシリルプロピル)-[2-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)エチル]アミン、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、ビス(3-トリメトキシシリルプロピル)-[2-(2,2-ジメトキシ-1-アザ-2-シラシクロヘキサン)エチル]アミン、ビス(3-トリメトキシシリルプロピル)-[2-(2,2-ジメトキシ-1-アザ-2-シラシクロオクタン)エチル]アミン、N,N-ビス(3-トリメトキシシリルプロピル)-3-イミダゾリルプロピルアミン、ビス(3-トリメトキシシリルプロピル)-(3-ジメチルアミノプロピル)アミン、下記式(M-1)~式(M-4)のそれぞれで表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
(式(M-1)中、R20は水素原子又はアルキル基を表す。n1は1~8の整数を表す。)
Specific examples of the polyfunctional compound having either or both of nitrogen and oxygen among the specific coupling agents include tetraglycidyl-1,3-bisaminomethylcyclohexane, N,N,N',N'-tetra(3-trimethoxysilylpropyl)ethylenediamine, N,N,N',N'-tetra(3-triethoxysilylpropyl)ethylenediamine, N,N,N'-tris(3-trimethoxysilylpropyl)-N'-methyl-ethylenediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl)-1,3-propanediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl)-1,4-butanediamine, bis(3-trimethoxysilylpropyl)-[2-(dimethylamino)ethyl]amine, bis(3-trimethoxysilylpropyl)-[2-(2,2-dimethoxy-1-aza-2-silanediamine], and the like. cyclopentane)ethyl]amine, bis(3-triethoxysilylpropyl)-[2-(2,2-diethoxy-1-aza-2-silacyclopentane)ethyl]amine, bis(3-trimethoxysilylpropyl)-[3-(2,2-dimethoxy-1-aza-2-silacyclopentane)propyl]amine, bis(3-trimethoxysilylpropyl)-[2-(2,2-dimethoxy-1-aza-2-silacyclohexane)ethyl]amine, bis(3-trimethoxysilylpropyl)-[2-(2,2-dimethoxy-1-aza-2-silacyclooctane)ethyl]amine, N,N-bis(3-trimethoxysilylpropyl)-3-imidazolylpropylamine, bis(3-trimethoxysilylpropyl)-(3-dimethylaminopropyl)amine, and compounds represented by each of the following formulas (M-1) to (M-4).
Figure JPOXMLDOC01-appb-C000006
(In formula (M-1), R 20 represents a hydrogen atom or an alkyl group. n1 represents an integer of 1 to 8.)
 また、ケイ素又はリンを有する多官能化合物の具体例としては、ジブチルジクロロケイ素、メチルトリクロロケイ素、メチルジクロロケイ素、テトラクロロケイ素(四塩化ケイ素)、四臭化ケイ素、四ヨウ化ケイ素、トリクロロメトキシシラン、トリブロモメトキシシラン、トリメトキシシラン、テトラメトキシシラン、トリクロロフォスフィン等が挙げられる。 Specific examples of polyfunctional compounds containing silicon or phosphorus include dibutyldichlorosilicon, methyltrichlorosilicon, methyldichlorosilicon, tetrachlorosilicon (silicon tetrachloride), silicon tetrabromide, silicon tetraiodide, trichloromethoxysilane, tribromomethoxysilane, trimethoxysilane, tetramethoxysilane, trichlorophosphine, etc.
 なお、重合体[P]を得るための反応に際し、活性末端を有する重合体と反応させるカップリング剤として、特定カップリング剤とは異なる多官能化合物を使用してもよい。このような多官能化合物としては、テトラクロロスズ(四塩化スズ)、テトラブロムスズ、トリクロロブチルスズ、トリクロロメチルスズ、トリクロロエチルスズ、トリクロロフェニルスズ、トリクロロオクチルスズ、ジビニルベンゼン、トリクロロプロパン等が挙げられる。 In the reaction to obtain the polymer [P], a multifunctional compound other than the specific coupling agent may be used as a coupling agent to react with the polymer having an active end. Examples of such multifunctional compounds include tetrachlorotin (tin tetrachloride), tetrabromotin, trichlorobutyltin, trichloromethyltin, trichloroethyltin, trichlorophenyltin, trichlorooctyltin, divinylbenzene, and trichloropropane.
 活性末端を有する共役ジエン系重合体と変性剤との反応は、例えば溶液反応として行うことができる。この溶液反応は、重合反応の終了後の未反応モノマーを含む溶液を用いて行ってもよく、当該溶液に含まれる共役ジエン系重合体を単離し、シクロヘキサン等の適当な溶媒に溶解した上で行ってもよい。反応は回分式及び連続式のいずれを用いて行ってもよい。このとき、変性剤の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法等が挙げられる。 The reaction between the conjugated diene polymer having an active end and the modifier can be carried out, for example, as a solution reaction. This solution reaction may be carried out using a solution containing unreacted monomers after the polymerization reaction is completed, or the conjugated diene polymer contained in the solution may be isolated and dissolved in a suitable solvent such as cyclohexane before the reaction. The reaction may be carried out either batchwise or continuously. In this case, the method of adding the modifier is not particularly limited, and examples include a method of adding the modifier all at once, a method of adding the modifier in portions, and a method of adding the modifier continuously.
 活性末端を有する共役ジエン系重合体と反応させる変性剤の量は、反応に使用する化合物の種類に応じて適宜設定すればよい。変性剤の使用量は、重合開始剤が有する重合反応に関与する金属元素に対して、好ましくは0.1mol当量以上、より好ましくは0.3~1.5mol当量である。反応温度は、通常、重合反応の温度と同じであり、-20~150℃であることが好ましく、0~120℃であることがより好ましい。変性反応の温度が低いと、重合体溶液の粘度が上昇する傾向がある。また、変性反応の温度が高いと、重合活性末端が失活しやすくなる。反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。 The amount of modifier to be reacted with the conjugated diene polymer having an active end may be appropriately set according to the type of compound used in the reaction. The amount of modifier used is preferably 0.1 mol equivalent or more, more preferably 0.3 to 1.5 mol equivalent, relative to the metal element involved in the polymerization reaction of the polymerization initiator. The reaction temperature is usually the same as the polymerization reaction temperature, preferably -20 to 150°C, and more preferably 0 to 120°C. If the modification reaction temperature is low, the viscosity of the polymer solution tends to increase. Also, if the modification reaction temperature is high, the polymerization active end is easily deactivated. The reaction time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
<水添工程>
 水添工程では、上記の重合工程又は変性工程により得られた共役ジエン系重合体を水素添加(以下、「水添」ともいう)する。水添反応の方法及び条件は、所望の水添率の共役ジエン系重合体が得られるのであれば、いずれの方法及び条件を用いることも可能である。それらの水添方法の例としては、チタンの有機金属化合物を主成分とする触媒を水添触媒として使用する方法;鉄、ニッケル、コバルトの有機金属化合物とアルキルアルミニウム等の有機金属化合物からなる触媒を使用する方法;ルテニウム、ロジウム等の有機金属化合物の有機錯体を使用する方法;パラジウム、白金、ルテニウム、コバルト、ニッケル等の金属を、カーボン、シリカ、アルミナ等の担体に担持した触媒を使用する方法等が挙げられる。各種の方法の中では、チタンの有機金属化合物単独、又はチタンの有機金属化合物とリチウム、マグネシウム、アルミニウムの有機金属化合物とから成る均一触媒(例えば、特公昭63-4841号公報、特公平1-37970号公報に記載の触媒)を用い、低圧、低温の穏和な条件で水添する方法は工業的に好ましく、またブタジエンの二重結合への水添選択性も高く適している。
<Hydrogenation process>
In the hydrogenation step, the conjugated diene polymer obtained by the polymerization step or modification step is hydrogenated (hereinafter also referred to as "hydrogenation"). Any method and conditions for the hydrogenation reaction can be used as long as a conjugated diene polymer with a desired hydrogenation rate can be obtained. Examples of such hydrogenation methods include a method using a catalyst mainly composed of an organometallic compound of titanium as a hydrogenation catalyst; a method using a catalyst composed of an organometallic compound of iron, nickel, or cobalt and an organometallic compound such as alkylaluminum; a method using an organic complex of an organometallic compound such as ruthenium or rhodium; and a method using a catalyst in which a metal such as palladium, platinum, ruthenium, cobalt, or nickel is supported on a carrier such as carbon, silica, or alumina. Among various methods, a method in which hydrogenation is carried out under mild conditions of low pressure and low temperature using a homogeneous catalyst consisting of an organometallic compound of titanium alone or an organometallic compound of titanium and an organometallic compound of lithium, magnesium or aluminum (for example, the catalysts described in JP-B-63-4841 and JP-B-1-37970) is preferred from an industrial viewpoint, and is also suitable because of its high hydrogenation selectivity to the double bonds of butadiene.
 共役ジエン系重合体の水添は、好ましくは、触媒と反応せずかつ共役ジエン系重合体を可溶な溶剤を用いて実施される。好ましい溶媒は、n-ペンタン、n-ヘキサン、n-オクタン等の鎖状の脂肪族炭化水素;シクロヘキサン、シクロヘプタン等の環状の脂肪族炭化水素;ベンゼン、トルエン等の芳香族炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル類が挙げられる。水添に使用する溶媒は、上記化合物のうちの1種でもよく、上記化合物を主成分とする混合物であってもよい。 Hydrogenation of the conjugated diene polymer is preferably carried out using a solvent that does not react with the catalyst and dissolves the conjugated diene polymer. Preferred solvents include chain aliphatic hydrocarbons such as n-pentane, n-hexane, and n-octane; cyclic aliphatic hydrocarbons such as cyclohexane and cycloheptane; aromatic hydrocarbons such as benzene and toluene; and ethers such as diethyl ether and tetrahydrofuran. The solvent used for hydrogenation may be one of the above compounds, or a mixture containing the above compounds as the main components.
 水添反応は、一般には共役ジエン系重合体を水素又は不活性雰囲気下、所定の温度に保持し、撹拌下又は不撹拌下にて水添触媒を添加し、次いで水素ガスを導入して所定圧に加圧することによって実施される。不活性雰囲気下とは、水添反応に関与する物質と反応しない雰囲気下を意味し、例えばヘリウム、ネオン、アルゴン等の雰囲気下が挙げられる。空気や酸素は、触媒を酸化したりして触媒の失活を招くので好ましくない。また、窒素は、水添反応時に触媒毒として作用し、水添活性を低下させるので好ましくない。特に、水添反応器内は水素ガス単独の雰囲気であることが好ましい。 The hydrogenation reaction is generally carried out by maintaining the conjugated diene polymer at a prescribed temperature in a hydrogen or inert atmosphere, adding a hydrogenation catalyst with or without stirring, and then introducing hydrogen gas to pressurize to a prescribed pressure. An inert atmosphere means an atmosphere that does not react with the substances involved in the hydrogenation reaction, such as an atmosphere of helium, neon, or argon. Air and oxygen are not preferred as they oxidize the catalyst and cause it to become inactive. Nitrogen is also not preferred as it acts as a catalyst poison during the hydrogenation reaction and reduces the hydrogenation activity. In particular, it is preferable that the hydrogenation reactor be an atmosphere of hydrogen gas alone.
 水添反応プロセスは、バッチプロセス、連続プロセス、及びそれらの組合せのいずれでも用いることができる。また、水添触媒としてチタノセンジアリール系化合物を用いる場合は、単独でそのまま反応溶液に加えてもよいし、不活性有機溶媒の溶液として加えてもよい。触媒を溶液として用いる場合に使用する不活性有機溶媒としては、水添反応に関与する物質と反応しない各種溶媒を用いることができる。好ましくは水添反応に用いる溶媒と同一の溶媒である。また、触媒の好ましい添加量は、水添前の共役ジエン系重合体100g当たり0.02~20mmolである。 The hydrogenation reaction process can be a batch process, a continuous process, or a combination of both. When a titanocene diaryl compound is used as the hydrogenation catalyst, it can be added to the reaction solution either alone or as a solution in an inert organic solvent. When the catalyst is used as a solution, various solvents that do not react with the substances involved in the hydrogenation reaction can be used as the inert organic solvent. The same solvent as that used in the hydrogenation reaction is preferably used. The preferred amount of catalyst to be added is 0.02 to 20 mmol per 100 g of the conjugated diene polymer before hydrogenation.
 水添後の共役ジエン系重合体(以下、「水添共役ジエン系重合体」ともいう)は、水添率が60%以上97%以下である。重合体[P]の水添率は65%以上が好ましく、70%以上がより好ましく、75%以上が更に好ましく、80%以上が特に好ましい。また、重合体[P]の水添率は96%以下が好ましい。なお、上記の数式(i)で表されるαは、水添共役ジエン系重合体の水添率に相当する。例えば、重合体のαが0.60の場合、その重合体の水添率は60%である。本明細書において水添率はH-NMR装置により測定した値である。水添共役ジエン系重合体の水添率は、水添反応の時間を調整したり水素の積算供給量を制御したりすることによって調整することができる。 The hydrogenated conjugated diene polymer (hereinafter also referred to as "hydrogenated conjugated diene polymer") has a hydrogenation rate of 60% or more and 97% or less. The hydrogenation rate of the polymer [P] is preferably 65% or more, more preferably 70% or more, even more preferably 75% or more, and particularly preferably 80% or more. The hydrogenation rate of the polymer [P] is preferably 96% or less. In addition, α represented by the above mathematical formula (i) corresponds to the hydrogenation rate of the hydrogenated conjugated diene polymer. For example, when α of a polymer is 0.60, the hydrogenation rate of the polymer is 60%. In this specification, the hydrogenation rate is a value measured by a 1 H-NMR device. The hydrogenation rate of the hydrogenated conjugated diene polymer can be adjusted by adjusting the hydrogenation reaction time or controlling the cumulative supply amount of hydrogen.
 重合体[P]を得るための好ましい方法は、1,3-ブタジエン及びスチレンを含むモノマーを、重合開始剤の存在下で溶液重合し、得られた重合体溶液に、窒素、酸素、ケイ素及びリンよりなる群から選択される少なくとも1種の元素を含み、かつ共役ジエン系重合体が有する活性末端と反応し得る化合物(重合終了末端、特定カップリング剤)を添加して変性反応を行った後、水添工程に供する方法である。この方法は、各種物性(強度、ウェットグリップ性能等)に優れた架橋体を得ることができる点で好ましく、また工業的に有用である。 The preferred method for obtaining polymer [P] is to solution polymerize monomers containing 1,3-butadiene and styrene in the presence of a polymerization initiator, add a compound (polymerization termination end, specific coupling agent) that contains at least one element selected from the group consisting of nitrogen, oxygen, silicon, and phosphorus and that can react with the active end of the conjugated diene polymer to the obtained polymer solution to carry out a modification reaction, and then subject the solution to a hydrogenation step. This method is preferred in that it can obtain a crosslinked product that is excellent in various physical properties (strength, wet grip performance, etc.), and is also industrially useful.
 反応液に含まれる共役ジエン系重合体を単離するには、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。 The conjugated diene polymer contained in the reaction solution can be isolated by known methods for removing the solvent, such as steam stripping, and by drying procedures such as heat treatment.
 本組成物における第1重合体及び第2重合体の合計の割合は、本組成物に含まれるゴム成分の全量のうち50~100質量%であることが好ましい。第1重合体及び第2重合体の合計の割合が上記範囲とすることにより、架橋体の強度及び耐オゾン性の改善効果が高く、また耐摩耗性に優れた重合体組成物を得ることができる点において好ましい。これらの観点から、第1重合体及び第2重合体の合計の割合は、本組成物に含まれるゴム成分の全量に対し、60質量%以上が好ましく、70質量%以上がより好ましい。 The total proportion of the first polymer and the second polymer in the composition is preferably 50 to 100 mass% of the total amount of the rubber component contained in the composition. By setting the total proportion of the first polymer and the second polymer in the above range, it is possible to obtain a polymer composition that is highly effective in improving the strength and ozone resistance of the crosslinked body and has excellent abrasion resistance. From these viewpoints, the total proportion of the first polymer and the second polymer is preferably 60 mass% or more, and more preferably 70 mass% or more, of the total amount of the rubber component contained in the composition.
 なお、本明細書において、重合体組成物に含まれる「ゴム成分」とは、熱や光、イオン架橋等による硬化によりゴム弾性を示す硬化物を得ることが可能な重合体をいう。当該硬化物は、室温において小さな力で大きな変形(例えば、室温で伸ばすと2倍以上に伸びる変形)を起こし、力を取り除くと急速にほぼ元の形状に戻る性質を示す。 In this specification, the "rubber component" contained in the polymer composition refers to a polymer that can be cured with heat, light, ionic crosslinking, etc. to obtain a cured product that exhibits rubber elasticity. The cured product exhibits the property of undergoing large deformation with a small force at room temperature (for example, deformation that stretches to more than twice its original size when stretched at room temperature) and rapidly returning to almost its original shape when the force is removed.
<その他の成分>
 本組成物は第1重合体及び第2重合体に加え、更に以下の成分を含有していてもよい。
<Other ingredients>
In addition to the First Polymer and the Second Polymer, the composition may further contain the following components.
((B)成分:無機フィラー)
 本組成物は、無機フィラーを含有していてもよい。無機フィラーとしては、シリカ及びカーボンブラック、並びに、シリカ及びカーボンブラック以外の充填剤(以下、「他の充填剤」ともいう)が挙げられる。本組成物に配合される無機フィラーは、シリカ及びカーボンブラックの一方又は両方を含むことが好ましい。
(Component (B): Inorganic Filler)
The composition may contain an inorganic filler. Examples of the inorganic filler include silica and carbon black, and fillers other than silica and carbon black (hereinafter, also referred to as "other fillers"). The inorganic filler blended in the composition preferably contains one or both of silica and carbon black.
・(B-1)成分:シリカ
 本組成物はシリカを含有することができる。シリカの配合量は、重合体[P]を含むゴム成分100質量部に対して、20~120質量部の範囲が好ましく、30~100質量部の範囲が更に好ましい。シリカの配合量がゴム成分100質量部に対して20質量部以上であると、重合体組成物の低ヒステリシスロス性、破壊特性、耐摩耗性を十分に向上させることができ、また、120質量部以下であると、重合体組成物の加工性を十分に向上させることができる。
Component (B-1): Silica The present composition may contain silica. The amount of silica is preferably in the range of 20 to 120 parts by mass, more preferably in the range of 30 to 100 parts by mass, per 100 parts by mass of the rubber component containing the polymer [P]. When the amount of silica is 20 parts by mass or more per 100 parts by mass of the rubber component, the low hysteresis loss, fracture properties, and abrasion resistance of the polymer composition can be sufficiently improved, and when it is 120 parts by mass or less, the processability of the polymer composition can be sufficiently improved.
 シリカとしては特に制限はなく、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。これらの中でも、湿式シリカが好ましい。シリカとしては、1種を単独で使用してもよいし、2種以上を併用してもよい。また、シリカのBET比表面積(ISO 5794/1に準拠して測定される値)は、10~350m/gの範囲が好ましく、20~300m/gの範囲が更に好ましく、30~250m/gの範囲が特に好ましい。BET比表面積がこの範囲であるシリカは、ゴム補強性と(A)変性ジエン系重合体中への分散性とを両立できる利点がある。このようなシリカとしては、東ソー・シリカ社製、商品名「ニプシルAQ」(BET比表面積=205m/g)、「ニプシルKQ」、デグッサ社製、商品名「ウルトラジルVN3」(BET比表面積=175m/g)等の市販品を用いることができる。 The silica is not particularly limited, and examples thereof include wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, etc. Among these, wet silica is preferred. As the silica, one type may be used alone, or two or more types may be used in combination. The BET specific surface area of the silica (a value measured in accordance with ISO 5794/1) is preferably in the range of 10 to 350 m 2 /g, more preferably in the range of 20 to 300 m 2 /g, and particularly preferably in the range of 30 to 250 m 2 /g. Silica having a BET specific surface area in this range has the advantage of being able to achieve both rubber reinforcing properties and dispersibility in the modified diene polymer (A). Examples of such silica that can be used include commercially available products such as "Nipsil AQ" (BET specific surface area = 205 m2 /g) and "Nipsil KQ" manufactured by Tosoh Silica Corporation, and "Ultrasil VN3" (BET specific surface area = 175 m2 /g) manufactured by Degussa.
 本組成物に配合されるシリカは、比表面積の異なる2種以上の併用であってもよい。具体的には、CTAB(セチルトリメチルアンモニウムブロミド)比表面積が180m/g以上、BET比表面積が185m/g以上、アグリゲートサイズが45nm以上である第1シリカと、CTAB比表面積が95m/g以下、BET比表面積が100m/g以下である第2シリカとを併用していてもよい。なお、シリカのCTAB比表面積は、ASTM D3765-92に準拠して測定される。 The silica to be blended in the present composition may be a combination of two or more different specific surface areas. Specifically, a first silica having a CTAB (cetyltrimethylammonium bromide) specific surface area of 180 m 2 /g or more, a BET specific surface area of 185 m 2 /g or more, and an aggregate size of 45 nm or more may be used in combination with a second silica having a CTAB specific surface area of 95 m 2 /g or less and a BET specific surface area of 100 m 2 /g or less. The CTAB specific surface area of the silica is measured in accordance with ASTM D3765-92.
 本組成物は、CTAB比表面積が180m/g以上、BET比表面積が185m/g以上、アグリゲートサイズが45nm以上である第1シリカと、CTAB比表面積が95m/g以下、BET比表面積が100m/g以下の第2シリカとを含有していてもよい。このような第1シリカと第2シリカとを併用することにより、平均一次粒子径は小さいが比較的アグリゲートサイズの大きい第1シリカをゴム成分中に良好に分散させることが可能となる。これにより、シリカの分散性を改善し、優れた破壊強度、耐摩耗性、低燃費性及び加工性を得ることができる。 The composition may contain a first silica having a CTAB specific surface area of 180 m 2 /g or more, a BET specific surface area of 185 m 2 /g or more, and an aggregate size of 45 nm or more, and a second silica having a CTAB specific surface area of 95 m 2 /g or less and a BET specific surface area of 100 m 2 /g or less. By using such a first silica and a second silica in combination, it becomes possible to disperse the first silica, which has a small average primary particle size but a relatively large aggregate size, well in the rubber component. This improves the dispersibility of the silica, and provides excellent fracture strength, abrasion resistance, fuel economy, and processability.
 第1シリカのCTAB比表面積は、好ましくは190m/g以上、より好ましくは195m/g以上、更に好ましくは197m/g以上である。CTAB比表面積が190m/g以上であると、重合体組成物により得られる架橋体の破壊強度及び耐摩耗性を十分に向上させることができる傾向がある。第1シリカのCTAB比表面積は、好ましくは350m/g以下、より好ましくは300m/g以下、更に好ましくは250m/g以下である。CTAB比表面積が350m/g以下であると、シリカが凝集しにくく、物性を向上させることができる傾向がある。 The CTAB specific surface area of the first silica is preferably 190 m 2 /g or more, more preferably 195 m 2 /g or more, and even more preferably 197 m 2 /g or more. When the CTAB specific surface area is 190 m 2 /g or more, the breaking strength and abrasion resistance of the crosslinked body obtained by the polymer composition tend to be sufficiently improved. The CTAB specific surface area of the first silica is preferably 350 m 2 /g or less, more preferably 300 m 2 /g or less, and even more preferably 250 m 2 /g or less. When the CTAB specific surface area is 350 m 2 /g or less, the silica is less likely to aggregate, and the physical properties tend to be improved.
 第1シリカのBET比表面積は、好ましくは190m/g以上、より好ましくは195m/g以上、更に好ましくは210m/g以上である。BET比表面積が190m/g以上であると、重合体組成物により得られる架橋体の破壊強度及び耐摩耗性を十分に向上させることができる傾向がある。第1シリカのBET比表面積は、好ましくは350m/g以下、より好ましくは300m/g以下、更に好ましくは260m/g以下である。BET比表面積が350m/g以下であると、シリカが凝集しにくく、物性を向上させることができる傾向がある。なお、シリカのBET比表面積は、ASTM D3037-81に準じて測定される。 The BET specific surface area of the first silica is preferably 190 m 2 /g or more, more preferably 195 m 2 /g or more, and even more preferably 210 m 2 /g or more. When the BET specific surface area is 190 m 2 /g or more, the breaking strength and abrasion resistance of the crosslinked body obtained from the polymer composition tend to be sufficiently improved. The BET specific surface area of the first silica is preferably 350 m 2 /g or less, more preferably 300 m 2 /g or less, and even more preferably 260 m 2 /g or less. When the BET specific surface area is 350 m 2 /g or less, the silica is less likely to aggregate, and the physical properties tend to be improved. The BET specific surface area of the silica is measured in accordance with ASTM D3037-81.
 第1シリカのアグリゲートサイズは、45nm以上、好ましくは50nm以上、より好ましくは55nm以上、更に好ましくは60nm以上である。また、アグリゲートサイズは、好ましくは100nm以下、より好ましくは80nm以下、更に好ましくは70nm以下、特に好ましくは67nm以下である。このようなアグリゲートサイズを有することにより、良好な分散性(加工性)を有しながら、優れた低燃費性、耐摩耗性を与えることができる。なお、シリカのアグリゲートサイズは、特開2011-140613号公報に記載の方法により測定できる。 The aggregate size of the first silica is 45 nm or more, preferably 50 nm or more, more preferably 55 nm or more, and even more preferably 60 nm or more. The aggregate size is preferably 100 nm or less, more preferably 80 nm or less, even more preferably 70 nm or less, and particularly preferably 67 nm or less. By having such an aggregate size, it is possible to provide excellent fuel efficiency and wear resistance while having good dispersibility (processability). The aggregate size of silica can be measured by the method described in JP 2011-140613 A.
 第1シリカの平均一次粒子径は、好ましくは25nm以下、より好ましくは22nm以下、更に好ましくは17nm以下、特に好ましくは14nm以下である。平均一次粒子径の下限は特に限定されないが、好ましくは3nm以上、より好ましくは5nm以上、更に好ましくは7nm以上である。このような小さい平均一次粒子径を有しているものの、上記のアグリゲートサイズを有するカーボンブラックのような構造により、シリカの分散性(加工性)をより改善でき、低燃費性、耐摩耗性を更に改善できる。なお、シリカの平均一次粒子径は、シリカを透過型又は走査型電子顕微鏡により観察し、視野内に観察されたシリカの一次粒子400個以上について粒子径を測定し、その平均により求めることができる。 The average primary particle diameter of the first silica is preferably 25 nm or less, more preferably 22 nm or less, even more preferably 17 nm or less, and particularly preferably 14 nm or less. The lower limit of the average primary particle diameter is not particularly limited, but is preferably 3 nm or more, more preferably 5 nm or more, and even more preferably 7 nm or more. Although it has such a small average primary particle diameter, the dispersibility (processability) of the silica can be further improved by a carbon black-like structure having the above aggregate size, and the fuel efficiency and wear resistance can be further improved. The average primary particle diameter of the silica can be determined by observing the silica with a transmission or scanning electron microscope, measuring the particle diameters of 400 or more primary particles of silica observed within the field of view, and averaging the measured particle diameters.
 第2シリカのCTAB比表面積は、好ましくは10m/g以上、より好ましくは20m/g以上、更に好ましくは30m/g以上である。CTAB比表面積が10m/g未満であると、補強性が低くなり、タイヤ製造用の重合体組成物に必要な力学強度や耐摩耗性を十分に確保することが難しくなるおそれがある。CTAB比表面積は、好ましくは80m/g以下、より好ましくは60m/g以下、更に好ましくは50m/g以下である。CTAB比表面積が95m/gを超えると、シリカの分散性が悪くなり、破壊強度及び耐摩耗性を改善することが難しくなるおそれがある。 The CTAB specific surface area of the second silica is preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, and even more preferably 30 m 2 /g or more. If the CTAB specific surface area is less than 10 m 2 /g, the reinforcing property is low, and it may be difficult to sufficiently secure the mechanical strength and abrasion resistance required for the polymer composition for tire production. The CTAB specific surface area is preferably 80 m 2 /g or less, more preferably 60 m 2 /g or less, and even more preferably 50 m 2 /g or less. If the CTAB specific surface area exceeds 95 m 2 /g, the dispersibility of the silica may be poor, and it may be difficult to improve the breaking strength and abrasion resistance.
 第2シリカのBET比表面積は、好ましくは10m/g以上、より好ましくは20m/g以上、更に好ましくは30m/g以上である。第2シリカのBET比表面積が10m/g以上であると、十分な補強性を持ち、タイヤ用ゴムを得るための重合体組成物に必要な力学強度や耐摩耗性を確保しやすい傾向にある。第2シリカのBET比表面積は、好ましくは85m/g以下、より好ましくは60m/g以下、更に好ましくは50m/g以下である。第2シリカのBET比表面積が85m/g以下であると、シリカが十分に分散し、ゴム破壊強度及び耐摩耗性を改善しやすい傾向がある。 The BET specific surface area of the second silica is preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, and even more preferably 30 m 2 /g or more. When the BET specific surface area of the second silica is 10 m 2 /g or more, it has sufficient reinforcing properties and tends to easily ensure the mechanical strength and abrasion resistance required for a polymer composition for obtaining rubber for tires. The BET specific surface area of the second silica is preferably 85 m 2 /g or less, more preferably 60 m 2 /g or less, and even more preferably 50 m 2 /g or less. When the BET specific surface area of the second silica is 85 m 2 /g or less, the silica is sufficiently dispersed, and it tends to easily improve the rubber fracture strength and abrasion resistance.
 第2シリカの平均一次粒子径は、好ましくは20nm以上、より好ましくは25nm以上、更に好ましくは30nm以上、特に好ましくは35nm以上、最も好ましくは55nm以上である。また、該平均一次粒子径の上限は特に限定されないが、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、特に好ましくは70nm以下である。このような平均一次粒子径を有することにより、破壊強度及び耐摩耗性を十分に確保することができる。 The average primary particle diameter of the second silica is preferably 20 nm or more, more preferably 25 nm or more, even more preferably 30 nm or more, particularly preferably 35 nm or more, and most preferably 55 nm or more. There is no particular upper limit to the average primary particle diameter, but it is preferably 500 nm or less, more preferably 200 nm or less, even more preferably 100 nm or less, and particularly preferably 70 nm or less. By having such an average primary particle diameter, it is possible to sufficiently ensure fracture strength and abrasion resistance.
・(B-2)成分:カーボンブラック
 本組成物は、重合体組成物の破壊特性、耐摩耗性の観点から、カーボンブラックを含んでいてもよい。カーボンブラックとしては、特に限定されるものではなく、例えば、GPF、FEF、HAF、ISAF、SAFグレードのカーボンブラックが挙げられる。カーボンブラックの窒素吸着比表面積(NSA)は、特に限定されないが、50~200m/gが好ましく、70~150m/gがより好ましい。窒素吸着比表面積(NSA)は、カーボンブラック表面への窒素吸着量をJIS K6217-2:2001「第2部:比表面積の求め方-窒素吸着法-単点法」にしたがって測定した値である。カーボンブラックは、1種を単独で使用してもよいし、2種以上を併用してもよい。本組成物におけるカーボンブラックの配合量は、重合体[P]を含むゴム成分100質量部に対して、1~150質量部の範囲が好ましく、5~120質量部の範囲が更に好ましい。
Component (B-2): Carbon Black The present composition may contain carbon black from the viewpoint of the fracture properties and abrasion resistance of the polymer composition. The carbon black is not particularly limited, and examples thereof include GPF, FEF, HAF, ISAF, and SAF grade carbon black. The nitrogen adsorption specific surface area (N 2 SA) of the carbon black is not particularly limited, but is preferably 50 to 200 m 2 /g, and more preferably 70 to 150 m 2 /g. The nitrogen adsorption specific surface area (N 2 SA) is the value obtained by measuring the amount of nitrogen adsorbed on the carbon black surface according to JIS K6217-2:2001 "Part 2: Determination of specific surface area - Nitrogen adsorption method - Single point method". Carbon black may be used alone or in combination of two or more types. The amount of carbon black in the composition is preferably in the range of 1 to 150 parts by mass, and more preferably in the range of 5 to 120 parts by mass, per 100 parts by mass of the rubber component containing the polymer [P].
・(B-3)成分:他の充填剤
 本組成物は、無機フィラーとして、シリカ、カーボンブラックの他に、他の充填剤を含んでもよい。他の充填剤としては、γ-アルミナ、α-アルミナ等のアルミナ(Al)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al・HO)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)]、炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(CaSiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、炭酸カルシウム(CaCO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、各種ゼオライトのように、電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩等が挙げられる。
Component (B-3): Other Fillers The present composition may contain other fillers in addition to silica and carbon black as inorganic fillers. Other fillers include alumina (Al 2 O 3 ) such as γ-alumina and α-alumina, alumina monohydrate (Al 2 O 3 .H 2 O) such as boehmite and diaspore, aluminum hydroxide [Al(OH) 3 ] such as gibbsite and bayerite, aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg(OH) 2 ], magnesium oxide (MgO ) , magnesium carbonate (MgCO 3 ), talc (3MgO.4SiO 2.H 2 O), attapulgite (5MgO.8SiO 2.9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide (CaO), calcium hydroxide [Ca(OH) 2 ], magnesium aluminum oxide (MgO.Al 2 O 3 ), clay (Al 2 O 3.2SiO 2 ), kaolin (Al 2 O 3.2SiO 2.2H 2 O), pyrophyllite (Al 2 O 3.4SiO 2.H 2 O), bentonite (Al 2 O 3.4SiO 2.2H 2 O), aluminum silicate (Al 2 SiO 5 , Al 4.3SiO 4.5H 2 O, etc.), magnesium silicate (Mg 2 SiO 4 , MgSiO 3 , etc.), calcium silicate (Ca 2 SiO 4 , etc.), aluminum calcium silicate (Al 2 O 3.CaO.2SiO 2 , etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2 ) , zirconium hydroxide [ZrO(OH) 2.nH 2 O], zirconium carbonate [Zr(CO 3 ) 2 ], crystalline aluminosilicates containing hydrogen, alkali metals or alkaline earth metals to compensate for the charge, such as various zeolites, and the like.
 本組成物において、シリカ及びカーボンブラックを含む無機フィラーの配合量は、重合体[P]を含むゴム成分100質量部に対して、好ましくは30質量部以上、より好ましくは40質量部以上である。また、無機フィラーの配合量は、重合体[P]を含むゴム成分100質量部に対して、好ましくは350質量部以下、より好ましくは200質量部以下である。本組成物中における無機フィラーの配合量が上記範囲内であれば、本組成物をタイヤのトレッドに適用した場合に、タイヤの低転がり抵抗性と、湿潤路面での制動性能と、乾燥路面でのハンドリング性能と、耐摩耗性とを更に高度にバランス良く良好にすることができる。 In the present composition, the amount of inorganic filler containing silica and carbon black is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, per 100 parts by mass of the rubber component containing the polymer [P]. The amount of inorganic filler is preferably 350 parts by mass or less, more preferably 200 parts by mass or less, per 100 parts by mass of the rubber component containing the polymer [P]. If the amount of inorganic filler in the present composition is within the above range, when the present composition is applied to a tire tread, the tire can have a high level of balance and goodness in terms of low rolling resistance, braking performance on wet road surfaces, handling performance on dry road surfaces, and abrasion resistance.
((C)成分:他のゴム成分)
 本組成物は、ゴム成分として重合体[P]のみを含有していてもよいが、重合体[P]に加えて、本開示の効果を損なわない範囲において、重合体[P]とは異なるゴム成分(以下、「他のゴム成分」ともいう)を含有していてもよい。他のゴム成分としては、例えば、天然ゴム、第1重合体及び第2重合体とは異なる共役ジエン系重合体(例えば、イソプレンゴム、ブタジエンゴム、乳化重合又は溶液重合スチレン-ブタジエンゴム、水添スチレン-ブタジエンゴム)、ブチルゴム、ハロゲン化ブチルゴム、及びエチレン-プロピレンゴムから選ばれる少なくとも1種類以上のゴムを用いることができる。これらの中でも、他のゴム成分は、第1重合体及び第2重合体とは異なる共役ジエン系重合体並びに天然ゴムよりなる群から選択される少なくとも1種が好ましく、天然ゴム、ブタジエンゴム及びスチレン-ブタジエンゴムよりなる群から選択される少なくとも1種がより好ましい。
(Component (C): Other rubber components)
The present composition may contain only the polymer [P] as a rubber component, but may also contain a rubber component different from the polymer [P] (hereinafter, also referred to as "other rubber component") in addition to the polymer [P], within a range that does not impair the effects of the present disclosure. As the other rubber component, for example, at least one type of rubber selected from natural rubber, a conjugated diene-based polymer different from the first polymer and the second polymer (for example, isoprene rubber, butadiene rubber, emulsion-polymerized or solution-polymerized styrene-butadiene rubber, hydrogenated styrene-butadiene rubber), butyl rubber, halogenated butyl rubber, and ethylene-propylene rubber can be used. Among these, the other rubber component is preferably at least one type selected from the group consisting of a conjugated diene-based polymer different from the first polymer and the second polymer and natural rubber, and more preferably at least one type selected from the group consisting of natural rubber, butadiene rubber, and styrene-butadiene rubber.
 他のゴム成分と重合体[P]とを混合する際、それらを混合する態様は特に限定されない。例えば、通常行われているバンバリーミキサーやロール等による混練時に他のゴム成分と重合体[P]とを混合してもよいし、あるいは、重合後の重合体[P]を含む重合体溶液に他のゴム成分を混合し、その後、脱溶媒・乾燥工程を行ってもよい。 When mixing the other rubber components with the polymer [P], the manner in which they are mixed is not particularly limited. For example, the other rubber components may be mixed with the polymer [P] during kneading using a Banbury mixer or rolls, which is normally performed, or the other rubber components may be mixed with a polymer solution containing the polymer [P] after polymerization, and then a desolvation and drying process may be performed.
 他のゴム成分の配合量は、重合体組成物に含まれるゴム成分(第1重合体、第2重合体及び他のゴム成分)の合計量に対して、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、更に好ましくは30質量%以下である。 The amount of the other rubber components is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less, based on the total amount of the rubber components (first polymer, second polymer, and other rubber components) contained in the polymer composition.
 本組成物においては、ドライグリップ性能、ウェットグリップ性能及び耐ブローアウト性を更に向上させる観点から、他のゴム成分の一部又は全部に液状ゴムを使用することもできる。 In this composition, liquid rubber can be used as part or all of the other rubber components in order to further improve dry grip performance, wet grip performance, and blowout resistance.
 液状ゴムとしては、液状ポリイソプレン(液状IR)、液状ポリブタジエン(液状BR)、液状スチレン-ブタジエン共重合体(液状SBR)及び液状エチレン-プロピレン共重合体(液状EP)等が挙げられる。例えば液状SBRは、重量平均分子量が1,000~100,000、好ましくは2,000~80,000のものを使用することができる。なお、本明細書において、液状ゴムの重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)で分析されるポリスチレン換算の重量平均分子量を意味する。本組成物において使用される液状ゴムは、23℃で流動性を有するものを指す。 Liquid rubbers include liquid polyisoprene (liquid IR), liquid polybutadiene (liquid BR), liquid styrene-butadiene copolymer (liquid SBR), and liquid ethylene-propylene copolymer (liquid EP). For example, liquid SBR with a weight average molecular weight of 1,000 to 100,000, preferably 2,000 to 80,000, can be used. In this specification, the weight average molecular weight of the liquid rubber refers to the weight average molecular weight in terms of polystyrene analyzed by gel permeation chromatography (GPC). The liquid rubber used in this composition refers to one that has fluidity at 23°C.
((D)成分:樹脂成分)
 本組成物は樹脂成分を更に含有していてもよい。樹脂成分は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよい。樹脂成分としては、強度、耐摩耗性及び耐亀裂成長性の各種特性により優れた架橋体を得る観点から、スチレン系樹脂、ポリエチレン、C5系樹脂、C9系樹脂、C5/C9系樹脂、ジシクロペンタジエン系樹脂、アルキルフェノール系樹脂、及びテルペン系樹脂よりなる群から選ばれる少なくとも1種であることが好ましい。樹脂成分としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
(Component (D): Resin Component)
The composition may further contain a resin component. The resin component may be a thermoplastic resin or a thermosetting resin. From the viewpoint of obtaining a crosslinked body having excellent properties such as strength, abrasion resistance, and crack growth resistance, the resin component is preferably at least one selected from the group consisting of styrene-based resins, polyethylene, C5-based resins, C9-based resins, C5/C9-based resins, dicyclopentadiene-based resins, alkylphenol-based resins, and terpene-based resins. As the resin component, one type may be used alone, or two or more types may be used in combination.
 ここで、スチレン系樹脂は、スチレン系単量体を用いて得られる重合体であり、中でも、スチレン系単量体に由来する構造単位を、スチレン系樹脂が有する単量体単位の全量に対して20質量%以上有する重合体であることが好ましい。スチレン系単量体としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等が挙げられる。スチレン系単量体は、これらのうち、スチレン及びα-メチルスチレンの少なくとも一方であることが好ましい。 Here, the styrene-based resin is a polymer obtained using a styrene-based monomer, and in particular, it is preferable for the polymer to have structural units derived from styrene-based monomers in an amount of 20 mass% or more relative to the total amount of monomer units possessed by the styrene-based resin. Examples of styrene-based monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, etc. Of these, it is preferable for the styrene-based monomer to be at least one of styrene and α-methylstyrene.
 スチレン系樹脂は、1種のスチレン系単量体を重合した単独重合体でもよいし、2種以上のスチレン系単量体を共重合した共重合体でもよい。また、スチレン系樹脂は、スチレン系単量体と、スチレン系単量体と共重合し得る他の単量体とを用いて得られる共重合体でもよい。他の単量体としては、アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;アクリル類、メタクリル酸等の不飽和カルボン酸類;アクリル酸メチル、メタクリル酸メチル等の不飽和カルボン酸エステル類;クロロプレン、ブタジエン、イソプレン等のジエン類;1-ブテン、1-ペンテン等のオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物、等が挙げられる。 The styrene resin may be a homopolymer obtained by polymerizing one type of styrene monomer, or a copolymer obtained by copolymerizing two or more types of styrene monomer. The styrene resin may also be a copolymer obtained by using a styrene monomer and another monomer that can be copolymerized with the styrene monomer. Examples of other monomers include unsaturated nitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylics and methacrylic acid; unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate; dienes such as chloroprene, butadiene, and isoprene; olefins such as 1-butene and 1-pentene; α,β-unsaturated carboxylic acids such as maleic anhydride or their acid anhydrides, etc.
 スチレン系樹脂の軟化点は、30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。軟化点が30℃以上であると、架橋体において耐亀裂成長性の改善効果が得られやすい傾向がある。また、スチレン系樹脂の軟化点は、160℃以下が好ましく、130℃以下がより好ましく、100℃以下が更に好ましい。軟化点が160℃以下であると、樹脂の分散性が良好となり、耐亀裂成長性、耐摩耗性及び破断強度が改善されやすい傾向がある。なお、本開示においてスチレン系樹脂の軟化点は、JIS K 6220-1:2015に規定される方法に従い、環球式軟化点測定装置を用いて測定した値であり、試料が軟化して試料に載せた球が底板上に降下したときの温度である。 The softening point of the styrene resin is preferably 30°C or higher, more preferably 60°C or higher, and even more preferably 80°C or higher. When the softening point is 30°C or higher, the crosslinked body tends to have an improved crack growth resistance. The softening point of the styrene resin is preferably 160°C or lower, more preferably 130°C or lower, and even more preferably 100°C or lower. When the softening point is 160°C or lower, the resin has good dispersibility, and crack growth resistance, abrasion resistance, and breaking strength tend to be improved. In this disclosure, the softening point of the styrene resin is a value measured using a ring and ball softening point measuring device according to the method specified in JIS K 6220-1:2015, and is the temperature when the sample softens and the ball placed on the sample falls onto the bottom plate.
 スチレン系樹脂としては、ソフトセグメントとしての共役ジエン系重合体ブロックと、ハードセグメントとしてのポリスチレン系ブロックとを有するブロックポリマー(熱可塑性エラストマー)を用いることもできる。こうしたブロックポリマーを用いた場合、耐亀裂成長性の改善効果をより高くでき好ましい。なお、上記ブロックポリマーが有する共役ジエン系重合体ブロックは、共役ジエン化合物に由来する構造単位中の炭素-炭素二重結合のうちの一部が水素添加されていてもよい。 As the styrene-based resin, a block polymer (thermoplastic elastomer) having a conjugated diene polymer block as a soft segment and a polystyrene block as a hard segment can also be used. When such a block polymer is used, the effect of improving crack growth resistance can be further enhanced, which is preferable. Note that the conjugated diene polymer block of the block polymer may have some of the carbon-carbon double bonds in the structural unit derived from the conjugated diene compound hydrogenated.
 上記共役ジエン系重合体ブロックを構成する共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。当該共役ジエン化合物としては、1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、共役ジエン化合物としては、1,3-ブタジエン及びイソプレンの少なくともいずれかであることが好ましい。ブロックポリマー中における共役ジエンユニットの含有割合は、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。また、共役ジエンユニットの含有割合は、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。 Conjugated diene compounds constituting the above-mentioned conjugated diene polymer block include, for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, etc. The conjugated diene compounds may be used alone or in combination of two or more. Among these, the conjugated diene compound is preferably at least one of 1,3-butadiene and isoprene. The content of the conjugated diene units in the block polymer is preferably 20% by mass or more, and more preferably 30% by mass or more. The content of the conjugated diene units is preferably 80% by mass or less, and more preferably 70% by mass or less.
 上記ブロックポリマーにおけるポリスチレン系ブロックの含有割合は、破断強度をより高くできる点で、20質量%以上であることが好ましい。また、ポリスチレン系ブロックの含有割合は、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。なお、ブロックポリマー中におけるポリスチレン系ブロック、共役ジエン系重合体ブロック及び共役ジエンユニットの各含有割合は、H-NMRスペクトルの積分比により算出することができる。 The content of the polystyrene block in the block polymer is preferably 20% by mass or more in terms of increasing the breaking strength. The content of the polystyrene block is preferably 80% by mass or less, and more preferably 70% by mass or less. The content ratios of the polystyrene block, the conjugated diene polymer block, and the conjugated diene unit in the block polymer can be calculated from the integral ratio of 1 H-NMR spectrum.
 上記ブロックポリマーの具体例としては、スチレン-ブタジエンブロック共重合体、スチレン-イソプレンブロック共重合体、スチレン-ブタジエンブロック共重合体のエポキシ化物、スチレン-ブタジエンブロック共重合体又はスチレン-イソプレンブロック共重合体が有する共役ジエン系重合体ブロックの一部を水素添加したブロック共重合体等が挙げられる。より詳細には、スチレン-ブタジエン-スチレンブロックコポリマー(SBS)、スチレン-イソプレン-スチレンブロックコポリマー(SIS)、スチレン-ブタジエン-ブチレン-スチレンブロックコポリマー(SBBS)、及びスチレン-ブタジエン-スチレンブロックコポリマーのエポキシ化物、並びにこれらコポリマーの水添物等が挙げられる。上記ブロックポリマーとしては、架橋されやすい点で、これらの中でも、ソフトセグメントが水素添加されていない共役ジエン系重合体ブロックを有するSBS若しくはSIS、又はスチレン-ブタジエン-スチレンブロックコポリマーのエポキシ化物を好ましく用いることができる。 Specific examples of the block polymer include styrene-butadiene block copolymers, styrene-isoprene block copolymers, epoxidized products of styrene-butadiene block copolymers, and block copolymers in which a part of the conjugated diene polymer block of a styrene-butadiene block copolymer or a styrene-isoprene block copolymer has been hydrogenated. More specifically, examples include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), styrene-butadiene-butylene-styrene block copolymer (SBBS), and epoxidized products of styrene-butadiene-styrene block copolymers, as well as hydrogenated products of these copolymers. As the block polymer, from the viewpoint of being easily crosslinked, it is preferable to use SBS or SIS having a conjugated diene polymer block in which the soft segment is not hydrogenated, or an epoxidized product of a styrene-butadiene-styrene block copolymer.
 ポリエチレンとしては、例えば、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等が挙げられる。C5系樹脂は、C5留分をフリーデルクラフツ型触媒(AlClやBF等)を用いて重合して得られる固体重合体(C5系合成石油樹脂)である。C5系樹脂の具体例としては、イソプレン、シクロペンタジエン、1,3-ペンタジエン、1-ペンテン等を主成分とする共重合体、2-ペンテンとジシクロペンタジエンとの共重合体、1,3-ペンタジエンを主成分とする重合体等が挙げられる。 Examples of polyethylene include low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), etc. C5 resin is a solid polymer (C5 synthetic petroleum resin) obtained by polymerizing a C5 fraction using a Friedel-Crafts type catalyst ( AlCl3 , BF3 , etc.). Specific examples of C5 resin include copolymers mainly composed of isoprene, cyclopentadiene, 1,3-pentadiene, 1-pentene, etc., copolymers of 2-pentene and dicyclopentadiene, polymers mainly composed of 1,3-pentadiene, etc.
 C9系樹脂は、C9留分をフリーデルクラフツ型触媒(AlClやBF等)を用いて重合して得られる固体重合体(C9系合成石油樹脂)である。C9系樹脂の具体例としては、インデン、メチルインデン、ビニルトルエン等を主成分とする共重合体等が挙げられる。C5/C9系樹脂は、C5~C9留分をフリーデルクラフツ型触媒(AlClやBF等)を用いて重合して得られる固体重合体(C5/C9系合成石油樹脂)である。C5/C9系樹脂の具体例としては、例えばビニルトルエン、インデン等を主成分とする共重合体等が挙げられる。C5/C9系樹脂は、C9以上の成分の少ない樹脂が、ゴム成分との相溶性の観点から好ましい。具体的には、C5/C9系樹脂は、樹脂全量中のC9以上の成分が50質量%未満であることが好ましく、40質量%以下であることがより好ましい。 The C9 resin is a solid polymer (C9 synthetic petroleum resin) obtained by polymerizing the C9 fraction using a Friedel-Crafts catalyst (AlCl 3 , BF 3 , etc.). Specific examples of the C9 resin include copolymers mainly composed of indene, methylindene, vinyltoluene, etc. The C5/C9 resin is a solid polymer (C5/C9 synthetic petroleum resin) obtained by polymerizing the C5 to C9 fraction using a Friedel-Crafts catalyst (AlCl 3 , BF 3 , etc.). Specific examples of the C5/C9 resin include copolymers mainly composed of vinyltoluene, indene, etc. The C5/C9 resin is preferably a resin with a small amount of C9 or more components from the viewpoint of compatibility with the rubber component. Specifically, the C5/C9 resin is preferably a resin with a C9 or more component in the total amount of the resin less than 50 mass%, more preferably 40 mass% or less.
 ジシクロペンタジエン系樹脂とは、C5留分中のジシクロペンタジエンを主原料として用いた石油樹脂である。ジシクロペンタジエン系樹脂の具体例としては、丸善石油化学(株)の商品名「マルカレッツM」シリーズ(M-890A、M-845A、M-990A等)が挙げられる。アルキルフェノール系樹脂としては、例えば、p-tert-ブチルフェノール-アセチレン樹脂等のアルキルフェノール-アセチレン樹脂、低重合度のアルキルフェノール-ホルムアルデヒド樹脂等が挙げられる。 Dicyclopentadiene resins are petroleum resins that use dicyclopentadiene from the C5 fraction as the main raw material. Specific examples of dicyclopentadiene resins include Maruzen Petrochemical Co., Ltd.'s "Marukaretzu M" series (M-890A, M-845A, M-990A, etc.). Examples of alkylphenol resins include alkylphenol-acetylene resins such as p-tert-butylphenol-acetylene resin, and low-polymerization alkylphenol-formaldehyde resins.
 テルペン系樹脂は、マツ属の木からロジンを得る際に同時に得られるテレピン油、あるいは、これから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得られる固体状の樹脂であり、β-ピネン樹脂、α-ピネン樹脂等が挙げられる。該テルペン系樹脂としては、市販品を利用することができ、例えば、ヤスハラケミカル株式会社製の商品名「YSレジン」シリーズ(PX-1250、TR-105等)、ハーキュリーズ社製の商品名「ピコライト」シリーズ(A115、S115等)等が挙げられる。 Terpene resins are solid resins obtained by blending turpentine oil, which is obtained at the same time as rosin is obtained from pine trees, or polymerization components separated from this, and polymerizing them using a Friedel-Crafts catalyst, and examples of such resins include β-pinene resin and α-pinene resin. Commercially available terpene resins can be used, such as the "YS Resin" series (PX-1250, TR-105, etc.) manufactured by Yasuhara Chemical Co., Ltd. and the "Picolite" series (A115, S115, etc.) manufactured by Hercules.
 テルペン-芳香族化合物系樹脂としては、代表例としてテルペン-フェノール樹脂を挙げることができる。このテルペン-フェノール樹脂は、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させたり、あるいは更にホルマリンで縮合したりする方法により得ることができる。原料のテルペン類としては特に制限はなく、α-ピネンやリモネンなどのモノテルペン炭化水素が好ましく、α-ピネンを含むものがより好ましく、α-ピネンであることが特に好ましい。また、テルペン-フェノール樹脂としては、フェノール成分の比率の少ないテルペン-フェノール樹脂が好適である。ここで、「フェノール成分の比率が少ない」とは、樹脂全量中のフェノール成分が50質量%未満、好ましくは40質量%以下であることを指す。なお、熱可塑性樹脂としてテルペン-芳香族化合物系樹脂、特にテルペン-フェノール樹脂を用いれば、更にハンドリング性能を向上させることもできる。テルペン-芳香族化合物系樹脂としては、市販品を利用することができる。市販品としては、例えば、商品名「タマノル803L」、「タマノル901」(荒川化学工業株式会社製)、商品名「YSポリスター(登録商標)」シリーズ(ヤスハラケミカル株式会社製)等が挙げられる。 A representative example of a terpene-aromatic compound resin is terpene-phenol resin. This terpene-phenol resin can be obtained by reacting terpenes with various phenols using a Friedel-Crafts catalyst, or by further condensing them with formalin. There are no particular restrictions on the terpenes used as raw materials, and monoterpene hydrocarbons such as α-pinene and limonene are preferred, and those containing α-pinene are more preferred, with α-pinene being particularly preferred. Furthermore, as the terpene-phenol resin, a terpene-phenol resin with a low ratio of phenol components is preferred. Here, "low ratio of phenol components" refers to a phenol component content of less than 50 mass%, preferably 40 mass% or less in the total amount of resin. In addition, if a terpene-aromatic compound resin, particularly a terpene-phenol resin, is used as the thermoplastic resin, the handling performance can be further improved. As the terpene-aromatic compound resin, commercially available products can be used. Examples of commercially available products include those sold under the trade names "Tamanol 803L" and "Tamanol 901" (manufactured by Arakawa Chemical Industries, Ltd.), and the "YS Polystar (registered trademark)" series (manufactured by Yasuhara Chemical Co., Ltd.).
 樹脂成分の配合割合は、本組成物に含まれるゴム成分100質量部に対して、1質量部以上とすることが好ましい。樹脂成分を1質量部以上配合することにより、本組成物を用いて得られる架橋体において、樹脂成分の添加による耐摩耗性、破断強度及び耐亀裂成長性の改善効果を十分に高くでき好適である。樹脂成分の配合割合は、より好ましくは、ゴム成分100質量部に対して3質量部以上であり、更に好ましくは7質量部以上である。また、樹脂成分の配合割合は、本組成物の各種性能が良好に維持されるようにする観点から、本組成物に含まれるゴム成分100質量部に対し、好ましくは50質量部以下であり、より好ましくは30質量部以下であり、更に好ましくは25質量部以下である。樹脂成分としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The blending ratio of the resin component is preferably 1 part by mass or more per 100 parts by mass of the rubber component contained in the composition. By blending 1 part by mass or more of the resin component, the effect of improving the abrasion resistance, breaking strength, and crack growth resistance by adding the resin component can be sufficiently increased in the crosslinked body obtained using the composition, which is preferable. The blending ratio of the resin component is more preferably 3 parts by mass or more per 100 parts by mass of the rubber component, and even more preferably 7 parts by mass or more. In addition, from the viewpoint of maintaining various performances of the composition well, the blending ratio of the resin component is preferably 50 parts by mass or less per 100 parts by mass of the rubber component contained in the composition, more preferably 30 parts by mass or less, and even more preferably 25 parts by mass or less. As the resin component, one type may be used alone, or two or more types may be used in combination.
((E)成分:シランカップリング剤)
 本組成物においては、シランカップリング剤を配合してシリカの分散性を更に高めるようにしてもよい。使用するシランカップリング剤は特に制限されない。シランカップリング剤としては、含硫黄シランカップリング剤が好ましく、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、γ-メルカプトプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン等を例示することができる。
(Component (E): Silane Coupling Agent)
In the present composition, a silane coupling agent may be blended to further increase the dispersibility of silica. There is no particular limitation on the silane coupling agent used. As the silane coupling agent, a sulfur-containing silane coupling agent is preferable, and examples thereof include bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)disulfide, 3-trimethoxysilylpropylbenzothiazoletetrasulfide, γ-mercaptopropyltriethoxysilane, and 3-octanoylthiopropyltriethoxysilane.
 シランカップリング剤の配合量は、本組成物に含まれるシリカ100質量に対して、1~20質量部であることが好ましい。シランカップリング剤の配合量が1質量部未満であると、配合量が少ないことによってシリカの分散性の改善効果が小さくなることが懸念される。一方、シランカップリング剤の配合量が20質量部を超えると、重合体組成物の加工性及び架橋体の破断伸びが低下する場合がある。シランカップリング剤の配合量は、本組成物に含まれるシリカ100質量部に対して、5~15質量部であることがより好ましい。 The amount of the silane coupling agent is preferably 1 to 20 parts by mass per 100 parts by mass of silica contained in the composition. If the amount of the silane coupling agent is less than 1 part by mass, there is a concern that the effect of improving the dispersibility of the silica will be reduced due to the small amount. On the other hand, if the amount of the silane coupling agent is more than 20 parts by mass, the processability of the polymer composition and the breaking elongation of the crosslinked body may decrease. It is more preferable that the amount of the silane coupling agent is 5 to 15 parts by mass per 100 parts by mass of silica contained in the composition.
((F)成分:架橋剤)
 本組成物は架橋剤を含有してもよい。本組成物が架橋剤を含有することで、強度及び耐摩耗性が向上された架橋体を得ることができる。架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられ、通常、硫黄が使用される。架橋剤の配合量は、本組成物に含まれるゴム成分の合計量100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。
(Component (F): Crosslinking Agent)
The composition may contain a crosslinking agent. When the composition contains a crosslinking agent, a crosslinked product having improved strength and abrasion resistance can be obtained. Examples of the crosslinking agent include sulfur, halogenated sulfur, organic peroxides, quinone dioximes, organic polyamine compounds, and alkylphenol resins having methylol groups, and sulfur is usually used. The amount of the crosslinking agent is preferably 0.1 to 5 parts by mass, more preferably 0.5 to 3 parts by mass, based on 100 parts by mass of the total amount of the rubber components contained in the composition.
((G)成分:伸展油)
 本組成物には、エラストマーを油展するために一般的に用いられるプロセスオイルが配合されてもよい。プロセスオイルの添加方法は特に限定されない。例えば、重合後の共役ジエン系重合体溶液にプロセスオイルを展開してから脱溶することで油展ゴムとして配合してもよいし、ゴムコンパウンド(配合ゴム)を得るための混錬中にプロセスオイルを直接添加することによってプロセスオイルを重合体組成物に配合してもよい。好ましいプロセスオイルとしては、当業界で公知の様々なオイルが挙げられ、例えば、芳香族系オイル、パラフィン系オイル、ナフテン系オイル、植物油(ひまわり油、大豆油等)、並びに、多環式芳香族化合物の含量の低いオイル(低PCAオイル)、例えば軽度抽出溶媒和物(MES:mild extraction solvate)、留出油からの芳香族系抽出物を処理した油(TDAE:treated distillate aromatic extract)、残油からの芳香族系特殊抽出物(SRAE:special residual aromatic extract)、及び重ナフテン系オイル等が挙げられる。市販のMES、TDAE及びSRAEの例としては、MESとしてShell製のCatenex SNR(留出油を溶媒で脱ワックスした重質パラフィン)、TDAEとしてH&R Wasag AG製のVivatec 500、及びSRAEとしてJapan Energy Corp.製のNC140等が挙げられる。プロセスオイルの配合量は、重合体組成物に含まれる重合体成分の合計量100質量部に対して、好ましくは10~100質量部である。
(Component (G): Extending oil)
The composition may contain a process oil that is generally used to extend elastomers. The method of adding the process oil is not particularly limited. For example, the process oil may be developed in the conjugated diene polymer solution after polymerization and then desolvated to form an oil-extended rubber, or the process oil may be directly added during kneading to obtain a rubber compound (compounded rubber) to be added to the polymer composition. Preferred process oils include various oils known in the art, such as aromatic oils, paraffinic oils, naphthenic oils, vegetable oils (sunflower oil, soybean oil, etc.), and oils with low polycyclic aromatic compound content (low PCA oils), such as mild extraction solvates (MES), treated distillate aromatic extracts (TDAE), special residual aromatic extracts (SRAE), and heavy naphthenic oils. Examples of commercially available MES, TDAE and SRAE include Catenex SNR (heavy paraffin obtained by dewaxing distillate oil with a solvent) manufactured by Shell as MES, Vivatec 500 manufactured by H&R Wasag AG as TDAE, and NC140 manufactured by Japan Energy Corp. as SRAE. The amount of the process oil to be blended is preferably 10 to 100 parts by mass based on 100 parts by mass of the total amount of the polymer components contained in the polymer composition.
 本組成物には、上記した成分の他に、例えば、亜鉛華、ステアリン酸、軟化剤、加硫促進剤、相溶化剤、加硫助剤、加工助剤、スコーチ防止剤といった、加硫ゴムを得るための重合体組成物において一般に使用される各種添加剤を配合することができる。これらの配合割合は、本開示の効果を損なわない範囲で、各種成分に応じて適宜選択することができる。 In addition to the components described above, the composition may contain various additives that are commonly used in polymer compositions for obtaining vulcanized rubber, such as zinc oxide, stearic acid, softeners, vulcanization accelerators, compatibilizers, vulcanization aids, processing aids, and scorch inhibitors. The blending ratios of these additives may be appropriately selected according to the various components, as long as they do not impair the effects of the present disclosure.
 本組成物は、固形状の粒子(クラム)であってもよく、クラムを所望の形状(例えば、直方体形状)に圧縮成形することにより得られるゴムベールであってもよい。本組成物としてのゴムベールは、第1重合体及び第2重合体と共に伸展油を含有していてもよい。本組成物がゴムベールの場合、本組成物における第1重合体、第2重合体及び伸展油の合計の割合は、組成物全体を100質量%としたときに90~100質量%であることが好ましく、95~100質量%であることがより好ましい。 The composition may be in the form of solid particles (crumbs), or may be a rubber veil obtained by compression molding the crumbs into a desired shape (e.g., a rectangular parallelepiped shape). The rubber veil as the composition may contain an extender oil together with the first polymer and the second polymer. When the composition is a rubber veil, the total proportion of the first polymer, the second polymer, and the extender oil in the composition is preferably 90 to 100% by mass, and more preferably 95 to 100% by mass, when the entire composition is taken as 100% by mass.
 また、本組成物の別の一つの態様は、第1重合体及び第2重合体に、必要に応じて上記の各種成分((B)~(G)成分等)を配合することにより得られる配合組成物である。配合組成物は、第1重合体及び第2重合体に、加硫ゴムを得るための重合体組成物において任意に使用される各種添加剤((B)~(G)成分等)を混合し、開放式混練機(例えば、ロール)、密閉式混練機(例えば、バンバリーミキサー)等の混練機を用いて混錬することにより得ることができる。こうして得られた配合ゴムを成形加工後に架橋(加硫)することによって、架橋体(すなわち加硫ゴム)が得られる。 Another embodiment of the present composition is a blended composition obtained by blending the various components described above (components (B) to (G), etc.) with the first polymer and the second polymer as necessary. The blended composition can be obtained by mixing the first polymer and the second polymer with various additives (components (B) to (G), etc.) that are optionally used in the polymer composition for obtaining vulcanized rubber, and kneading them using a kneading machine such as an open kneader (e.g., a roll) or an internal kneader (e.g., a Banbury mixer). The blended rubber thus obtained is crosslinked (vulcanized) after molding and processing to obtain a crosslinked body (i.e., vulcanized rubber).
 第1重合体及び第2重合体を含む本開示の重合体組成物を用いて得られる架橋体は各種ゴム製品に適用可能である。具体的には、本組成物を用いて得られる架橋体は、例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;パッキン、ガスケット、ウェザーストリップ、O-リング等のシール材;自動車、船舶、航空機、鉄道等の各種車両用の内外装表皮材;建築材料;産業機械用や設備用などの防振ゴム類;ダイヤフラム、ロール、ラジエータホース、エアーホース等の各種ホース及びホースカバー類;動力伝達用ベルトなどのベルト類;ライニング;ダストブーツ;医療用機器材料;防舷材;電線用絶縁材料;その他の工業品等の用途に適用できる。 The crosslinked body obtained using the polymer composition of the present disclosure, which contains the first polymer and the second polymer, can be applied to various rubber products. Specifically, the crosslinked body obtained using the present composition can be applied to applications such as tire applications such as tire treads, undertreads, carcasses, sidewalls, and bead parts; sealing materials such as packings, gaskets, weather strips, and O-rings; interior and exterior skin materials for various vehicles such as automobiles, ships, aircraft, and railways; building materials; vibration-proof rubbers for industrial machinery and equipment; various hoses and hose covers such as diaphragms, rolls, radiator hoses, and air hoses; belts such as power transmission belts; linings; dust boots; medical equipment materials; fenders; insulating materials for electric wires; and other industrial products.
 第1重合体と第2重合体とを含有する本組成物によれば、機械的強度、低温グリップ性能及び耐オゾン性といった、タイヤ用途において求められる各種物性がバランス良く改善された架橋体を得ることができる。したがって、第1重合体及び第2重合体を含む重合体組成物は、特にタイヤのキャップトレッド、サイドウォール又はそれらの両方の材料として好適に使用できる。 The present composition containing the first polymer and the second polymer can provide a crosslinked product with a good balance of various physical properties required for tire applications, such as mechanical strength, low-temperature grip performance, and ozone resistance. Therefore, the polymer composition containing the first polymer and the second polymer can be particularly suitably used as a material for the cap tread, sidewall, or both of tires.
 タイヤの製造は、常法に従い行うことができる。例えば、重合体組成物を混練機で混合し、シート状にしたものを、常法に従い所定位置(例えば、サイドウォールの場合にはカーカスの外側)に配して加硫成形することにより、キャップトレッド又はサイドウォールとして形成され、空気入りタイヤが得られる。 Tires can be manufactured in the usual way. For example, the polymer composition is mixed in a kneader, formed into a sheet, and then placed in a predetermined position (for example, in the case of a sidewall, on the outside of the carcass) in the usual way and vulcanized to form a cap tread or sidewall, to obtain a pneumatic tire.
 以上詳述した本開示によれば、以下の手段が提供される。
〔手段1〕 上記式(1)で表される構造単位、上記式(2)で表される構造単位、上記式(3)で表される構造単位、及び上記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとし、下記数式(i)で表される値をαとし、下記数式(ii)で表される値をβとしたとき、芳香族ビニル化合物に由来する構造単位とブタジエンに由来する構造単位とを含み、かつ下記条件(x)及び条件(y)を満たす第1重合体と、芳香族ビニル化合物に由来する構造単位とブタジエンに由来する構造単位とを含み、下記条件(x)及び条件(y)を満たし、かつ前記第1重合体よりも芳香族ビニル化合物に由来する構造単位の含有割合が少ない第2重合体と、を含み、前記第1重合体のβと前記第2重合体のβとの差が0.10以下であり、かつ、前記第1重合体における芳香族ビニル化合物に由来する構造単位の含有割合と前記第2重合体における芳香族ビニル化合物に由来する構造単位の含有割合との差が10~30質量%である、重合体組成物。
条件(x)αが0.60以上0.97以下である
条件(y)βが0.10以上0.40以下である
 α=(p+(0.5×r))/(p+q+(0.5×r)+s)
                              …(i)
 β=(p+q)/(p+q+(0.5×r)+s)     …(ii)
〔手段2〕 前記第1重合体のβと前記第2重合体のβとが異なる、〔手段1〕に記載の重合体組成物。
〔手段3〕 前記第2重合体のβが、前記第1重合体のβよりも大きい、〔手段2〕に記載の重合体組成物。
〔手段4〕 前記第1重合体及び前記第2重合体の一方又は両方が、窒素、酸素、ケイ素及びリンよりなる群から選択される少なくとも1種の元素を含む官能基を有する、〔手段1〕~〔手段3〕のいずれかに記載の重合体組成物。
〔手段5〕 前記第1重合体及び前記第2重合体のゲルパーミエーションクロマトグラフによるポリスチレン換算の重量平均分子量が0.5×10以上2.0×10以下である、〔手段1〕~〔手段4〕のいずれかに記載の重合体組成物。
〔手段6〕 前記第1重合体と前記第2重合体との割合が、質量比で、前記第1重合体:前記第2重合体=10:90~90:10の範囲である、〔手段1〕~〔手段5〕のいずれかに記載の重合体組成物。
〔手段7〕 前記第1重合体及び前記第2重合体とは異なる共役ジエン系重合体並びに天然ゴムよりなる群から選択される少なくとも1種を更に含有する、〔手段1〕~〔手段6〕のいずれかに記載の重合体組成物。
〔手段8〕 前記第1重合体及び前記第2重合体の合計の割合が、前記重合体組成物に含まれるゴム成分の全量のうち50~100質量%である、〔手段1〕~〔手段7〕のいずれかに記載の重合体組成物。
〔手段9〕 無機フィラーを更に含有する、〔手段1〕~〔手段8〕のいずれかに記載の重合体組成物。
〔手段10〕 シランカップリング剤を更に含有する、〔手段1〕~〔手段9〕のいずれかに記載の重合体組成物。
〔手段11〕 樹脂成分を更に含有する、〔手段1〕~〔手段10〕のいずれかに記載の重合体組成物。
〔手段12〕 伸展油を更に含有する、〔手段1〕~〔手段8〕のいずれかに記載の重合体組成物。
〔手段13〕 前記第1重合体、前記第2重合体及び前記伸展油の合計の含有割合が、組成物全体を100質量%としたときに90~100質量%である、〔手段12〕に記載の重合体組成物。
〔手段14〕 〔手段1〕~〔手段11〕のいずれかに記載の重合体組成物の硬化物によりキャップトレッド及びサイドウォールの一方又は両方が構成されてなるタイヤ。
According to the present disclosure described above in detail, the following means are provided.
[Means 1] A polymer composition comprising: a first polymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene and satisfying the following conditions (x) and (y); and a second polymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene and satisfying the following conditions (x) and (y), wherein the difference between the β of the first polymer and the β of the second polymer is 0.10 or less, and the difference between the content ratio of the structural unit derived from an aromatic vinyl compound in the first polymer and the content ratio of the structural unit derived from an aromatic vinyl compound in the second polymer is 10 to 30 mass %.
Condition (x) α is 0.60 or more and 0.97 or less. Condition (y) β is 0.10 or more and 0.40 or less. α = (p + (0.5 × r)) / (p + q + (0.5 × r) + s).
... (i)
β = (p + q) / (p + q + (0.5 × r) + s) ... (ii)
[Means 2] The polymer composition according to [Means 1], wherein β of the first polymer is different from β of the second polymer.
[Means 3] The polymer composition according to [Means 2], wherein β of the second polymer is larger than β of the first polymer.
[Means 4] The polymer composition according to any one of [Means 1] to [Means 3], wherein one or both of the first polymer and the second polymer have a functional group containing at least one element selected from the group consisting of nitrogen, oxygen, silicon, and phosphorus.
[Means 5] The polymer composition according to any one of [Means 1] to [Means 4], wherein the first polymer and the second polymer have a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography of 0.5 × 10 5 or more and 2.0 × 10 6 or less.
[Means 6] The polymer composition according to any one of [Means 1] to [Means 5], wherein a ratio of the first polymer to the second polymer, in terms of mass ratio, of the first polymer:the second polymer is in a range of 10:90 to 90:10.
[Means 7] The polymer composition according to any one of [Means 1] to [Means 6], further comprising at least one selected from the group consisting of a conjugated diene-based polymer different from the first polymer and the second polymer, and a natural rubber.
[Means 8] The polymer composition according to any one of [Means 1] to [Means 7], wherein a total ratio of the first polymer and the second polymer is 50 to 100 mass% of a total amount of a rubber component contained in the polymer composition.
[Means 9] The polymer composition according to any one of [Means 1] to [Means 8], further comprising an inorganic filler.
[Means 10] The polymer composition according to any one of [Means 1] to [Means 9], further comprising a silane coupling agent.
[Means 11] The polymer composition according to any one of [Means 1] to [Means 10], further comprising a resin component.
[Means 12] The polymer composition according to any one of [Means 1] to [Means 8], further comprising an extender oil.
[Means 13] The polymer composition according to [Means 12], wherein a total content ratio of the first polymer, the second polymer, and the extender oil is 90 to 100% by mass when the entire composition is taken as 100% by mass.
[Means 14] A tire having a cap tread and/or a sidewall constituted by a cured product of the polymer composition according to any one of [Means 1] to [Means 11].
 以下、実施例に基づいて具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。重合体の各種物性値の測定方法を以下に示す。 The following provides a detailed explanation based on examples, but the present disclosure is not limited to these examples. Note that "parts" and "%" in the examples and comparative examples are based on mass unless otherwise specified. The methods for measuring various physical properties of the polymer are shown below.
[重合体の特性評価]
・ビニル結合含量(mol%)及びβ:水添前の重合体につき、400MHzのH-NMRによって測定した。
・結合スチレン含量(%):水添前の重合体につき、400MHzのH-NMRによって測定した。
・1stピーク平均分子量:水添前の重合体につき、ゲルパーミエーションクロマトグラフ(GPC、製品名:HLC-8020、東ソー社製)を使用してポリスチレン換算の分子量に基づくチャートを得て、その得られたGPC曲線において最も保持時間が長いピークの保持時間から求めた。具体的な測定条件は以下のとおりである。
 (測定条件)
  カラム:GMH-HR-H(東ソー社製)2本を直列に連結した。
  検出器:示差屈折計RI-8020(東ソー社製)
  溶離液:テトラヒドロフラン
  カラム温度:40℃
  流速:1.0mL/分
  サンプル濃度:10mg/20mL
・トータル重量平均分子量:水添前の重合体につき、GPC(製品名:HLC-8020、東ソー社製)を使用して得られたGPC曲線の全ピークからポリスチレン換算で求めた。測定条件は上記と同様である。
・水素添加率(%)及びα:四塩化エチレンを溶媒とし、100MHzの装置で測定したH-NMRスペクトルから算出した。
[Evaluation of polymer properties]
Vinyl bond content (mol %) and β: Measured by 400 MHz 1 H-NMR for the polymer before hydrogenation.
Bound styrene content (%): Measured by 400 MHz 1 H-NMR for the polymer before hydrogenation.
First peak average molecular weight: For the polymer before hydrogenation, a chart based on the molecular weight converted into polystyrene was obtained using a gel permeation chromatograph (GPC, product name: HLC-8020, manufactured by Tosoh Corporation), and the first peak average molecular weight was determined from the retention time of the peak having the longest retention time in the obtained GPC curve. The specific measurement conditions are as follows:
(Measurement condition)
Column: Two GMH-HR-H columns (manufactured by Tosoh Corporation) were connected in series.
Detector: Differential refractometer RI-8020 (manufactured by Tosoh Corporation)
Eluent: tetrahydrofuran Column temperature: 40°C
Flow rate: 1.0 mL/min Sample concentration: 10 mg/20 mL
Total weight average molecular weight: For the polymer before hydrogenation, it was determined in terms of polystyrene from all peaks of a GPC curve obtained using GPC (product name: HLC-8020, manufactured by Tosoh Corporation). The measurement conditions were the same as above.
Hydrogenation rate (%) and α: Calculated from 1 H-NMR spectrum measured with a 100 MHz apparatus using ethylene tetrachloride as a solvent.
<(水添)共役ジエン系重合体の製造>
[製造例1:水添共役ジエン系重合体P1の合成及び物性]
 窒素置換された内容積50リットルのオートクレーブ反応器に、シクロヘキサン25800g、テトラヒドロフラン39g、スチレン1505g、1,3-ブタジエン2666gを仕込んだ。反応器内容物の温度を40℃に調整した後、n-ブチルリチウム(48mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施した。重合転化率が99%に達したことを確認した後、1,3-ブタジエン129gを追加し(追添ブタジエン)、更に3分重合させ、重合体を含む反応液を得た。得られた反応液に四塩化ケイ素2mmolを加えて5分間反応させ、更に、[N,N-ビス(トリメチルシリル)アミノプロピル]メチルジエトキシシラン24mmolを加え、15分間反応させた。
 次いで、反応液を80℃以上にして、系内に水素を導入して1時間反応させた。少量の重合体溶液を反応容器より抜き出し、分析用に、水添前の共役ジエン系重合体を得た。その後、ジエチルアルミニウムクロリド28mmol、ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド9mmol、n-ブチルリチウム19mmolを加え、水素圧1.0MPaを保つようにして水添反応を行った。反応後、水素圧0.7MPa以上を保つようにして、所定の水素積算値となるまで水素を供給して反応させた後、反応液を常温、常圧に戻して反応容器より抜き出し、水添共役ジエン系重合体P1を含む重合体溶液を得た。得られた重合体溶液を少量抜き出してスチームストリッピングにより脱溶媒を行い、130℃に調温された熱ロールにより乾燥を行って水添共役ジエン系重合体P1を得た。水添共役ジエン系重合体P1の重合処方を表1に示し、水添共役ジエン系重合体P1の各種物性値等を表2に示す。
<Production of (hydrogenated) conjugated diene polymer>
[Production Example 1: Synthesis and Properties of Hydrogenated Conjugated Diene Polymer P1]
Into a nitrogen-substituted autoclave reactor having an internal volume of 50 liters, 25,800 g of cyclohexane, 39 g of tetrahydrofuran, 1,505 g of styrene, and 2,666 g of 1,3-butadiene were charged. After adjusting the temperature of the reactor contents to 40°C, a cyclohexane solution containing n-butyllithium (48 mmol) was added to initiate polymerization. The polymerization was carried out under adiabatic conditions. After confirming that the polymerization conversion rate had reached 99%, 129 g of 1,3-butadiene was added (additional butadiene), and polymerization was continued for another 3 minutes to obtain a reaction liquid containing a polymer. 2 mmol of silicon tetrachloride was added to the obtained reaction liquid and reacted for 5 minutes, and further 24 mmol of [N,N-bis(trimethylsilyl)aminopropyl]methyldiethoxysilane was added and reacted for 15 minutes.
Next, the reaction solution was heated to 80°C or higher, hydrogen was introduced into the system, and the reaction was carried out for 1 hour. A small amount of the polymer solution was extracted from the reaction vessel to obtain a conjugated diene polymer before hydrogenation for analysis. Thereafter, 28 mmol of diethylaluminum chloride, 9 mmol of bis(η5-cyclopentadienyl)titanium(furfuryloxy)chloride, and 19 mmol of n-butyllithium were added, and the hydrogenation reaction was carried out while maintaining the hydrogen pressure at 1.0 MPa. After the reaction, hydrogen was supplied until a predetermined hydrogen accumulation value was reached while maintaining the hydrogen pressure at 0.7 MPa or higher, and the reaction solution was returned to room temperature and pressure and extracted from the reaction vessel to obtain a polymer solution containing a hydrogenated conjugated diene polymer P1. A small amount of the obtained polymer solution was extracted, the solvent was removed by steam stripping, and the solution was dried by a hot roll adjusted to 130°C to obtain a hydrogenated conjugated diene polymer P1. Table 1 shows the polymerization recipe for the hydrogenated conjugated diene polymer P1, and Table 2 shows various physical properties of the hydrogenated conjugated diene polymer P1.
[製造例2~8、製造例10:水添共役ジエン系重合体P2~P8,P10の製造及びその物性]
 重合処方を表1に記載のとおり変更した点、及び水素添加率を表2に記載のとおり変更した点以外は製造例1と同様の方法により、水添共役ジエン系重合体P2~P8,P10を含む重合体溶液を得た。水添共役ジエン系重合体P2~P8,P10の各種物性値等を表2に示す。
[Production Examples 2 to 8, Production Example 10: Production of Hydrogenated Conjugated Diene Polymers P2 to P8, and P10 and Their Physical Properties]
Polymer solutions containing hydrogenated conjugated diene polymers P2 to P8 and P10 were obtained in the same manner as in Production Example 1, except that the polymerization recipe was changed as shown in Table 1 and the hydrogenation rate was changed as shown in Table 2. Various physical property values of the hydrogenated conjugated diene polymers P2 to P8 and P10 are shown in Table 2.
[製造例9、製造例11:共役ジエン系重合体P9,P11の製造及びその物性]
 重合処方を表1に記載のとおり変更した点、及び水素添加反応を行わなかった点以外は製造例1と同様の方法により、共役ジエン系重合体P9,P11を含む重合体溶液を得た。共役ジエン系重合体P9,P11の各種物性値等を表2に示す。
[Production Examples 9 and 11: Production of Conjugated Diene Polymers P9 and P11 and Their Physical Properties]
Polymer solutions containing conjugated diene polymers P9 and P11 were obtained in the same manner as in Production Example 1, except that the polymerization recipe was changed as shown in Table 1 and that the hydrogenation reaction was not carried out. Various physical property values of the conjugated diene polymers P9 and P11 are shown in Table 2.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表1中、「-」は、該当する欄の化合物を使用しなかったことを意味する(表4、表5及び表7中のゴム成分の欄についても同じ)。化合物の詳細は以下のとおりである。
化合物A:[N,N-ビス(トリメチルシリル)アミノプロピル]メチルジエトキシシラン
 化合物B:四塩化ケイ素
 Ti化合物:[ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド]
 Al化合物:ジエチルアルミニウムクロライド
 Li化合物:n-ブチルリチウム
In Table 1, "-" means that the compound in the corresponding column was not used (the same applies to the rubber component columns in Tables 4, 5 and 7). Details of the compounds are as follows.
Compound A: [N,N-bis(trimethylsilyl)aminopropyl]methyldiethoxysilane Compound B: silicon tetrachloride Ti compound: [bis(η5-cyclopentadienyl)titanium(furfuryloxy)chloride]
Al compound: diethylaluminum chloride Li compound: n-butyllithium
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<重合体組成物及び架橋体の製造>
[実施例1~9、比較例1~12]
 上記で製造した(水添)共役ジエン系重合体P1~P11、ブタジエンゴム(BR)、天然ゴム(NR)を用いて、表3に示す配合処方により各成分を配合し、これを混練りすることによって重合体組成物を製造した。混練りは以下の方法で行った。温度制御装置を付属したプラストミル(内容量:250mL)を使用し、まず1段目の混練りとして、充填率72%、回転数60rpmの条件で、ゴム成分((水添)共役ジエン系重合体P1~P11、BR、NR)、カーボンブラック、シリカ、シランカップリング剤、軟化剤(伸展油)、酸化亜鉛、ステアリン酸及び老化防止剤を配合して混練りし、配合物を得た。なお、各例で使用したゴム成分の種類及び配合比は表4及び表5に記載のとおりとした。表4及び表5中、ゴム成分の数値は、配合物の調製に使用したゴム成分100質量部に対する各重合体の配合比(質量部)を示す。
 次いで、2段目の混練りとして、得られた配合物を室温まで冷却後、加硫促進剤及び硫黄を配合し、混練りした。混錬後の組成物を成型し、160℃で所定時間、加硫プレスにて加硫して、架橋体(加硫ゴム)を得た。また、以下のようにして引張強度、低温グリップ性能、耐オゾン性及び加硫接着性を評価した。結果を表4及び表5に示す。
<Production of polymer composition and crosslinked product>
[Examples 1 to 9, Comparative Examples 1 to 12]
Using the (hydrogenated) conjugated diene polymers P1 to P11, butadiene rubber (BR), and natural rubber (NR) produced above, each component was blended according to the blending recipe shown in Table 3, and the blended mixture was kneaded to produce a polymer composition. Kneading was performed in the following manner. Using a plastomill (capacity: 250 mL) equipped with a temperature control device, the rubber components ((hydrogenated) conjugated diene polymers P1 to P11, BR, NR), carbon black, silica, a silane coupling agent, a softener (extender oil), zinc oxide, stearic acid, and an antioxidant were blended and kneaded under conditions of a filling rate of 72% and a rotation speed of 60 rpm in the first stage of kneading to obtain a blend. The types and blending ratios of the rubber components used in each example were as shown in Tables 4 and 5. In Tables 4 and 5, the numerical values of the rubber components indicate the blending ratios (parts by mass) of each polymer relative to 100 parts by mass of the rubber components used in the preparation of the blend.
Next, in the second stage of kneading, the obtained compound was cooled to room temperature, and then a vulcanization accelerator and sulfur were added and kneaded. The kneaded composition was molded and vulcanized at 160°C for a predetermined time in a vulcanization press to obtain a crosslinked product (vulcanized rubber). In addition, the tensile strength, low-temperature grip performance, ozone resistance, and vulcanization adhesion were evaluated as follows. The results are shown in Tables 4 and 5.
(1)引張強度:加硫ゴムを測定用試料として、JIS K6251:2017に準拠して引張試験を行った。ここでは、試験サンプルとしてダンベル状3号形を用いて、破断時の応力(TB)及び破断時の伸び(EB)を室温で測定した。TB及びEBの数値が大きいほど破断強度が大きく、材料の機械的強度が高く良好であることを示す。評価はTBの値により行い、比較例1を基準とした指数として評価した。数値が大きいほど、引張強度が大きく、強度が良好であるといえる。得られた引張強度の値から、以下の判断基準にて引張強度をA~Dで判定した。
A(極めて良好):110以上
B(良好)   :100以上110未満
C(許容レベル):80以上100未満
D(不良)   :80未満
(1) Tensile strength: A tensile test was performed in accordance with JIS K6251:2017 using vulcanized rubber as a measurement sample. Here, a dumbbell-shaped No. 3 was used as a test sample, and the stress at break (TB) and elongation at break (EB) were measured at room temperature. The larger the TB and EB values, the higher the breaking strength and the higher and better the mechanical strength of the material. Evaluation was performed based on the TB value, and was evaluated as an index based on Comparative Example 1. The higher the value, the higher the tensile strength and the better the strength. From the obtained tensile strength value, the tensile strength was judged as A to D according to the following criteria.
A (very good): 110 or more B (good): 100 or more and less than 110 C (acceptable level): 80 or more and less than 100 D (poor): less than 80
(2)低温グリップ性能(0℃-G):加硫ゴムを測定用試料とし、ARES-RDA(TA Instruments社製)を使用して、剪断歪0.14%、角速度100ラジアン毎秒、0℃の条件で複素弾性率(0℃-G)を測定した。測定結果については、比較例1を基準とした指数で評価した。数値が大きいほど、低温グリップ性能が良好であるといえる。得られた指数から、以下の判断基準にて低温グリップ性能をA~Dで判断した。
A:200以上
B:150以上200未満
C:100以上150未満
D:100未満
(2) Low-temperature grip performance (0°C-G * ): Using vulcanized rubber as a measurement sample, the complex modulus (0°C-G * ) was measured using an ARES-RDA (manufactured by TA Instruments) under conditions of shear strain of 0.14%, angular velocity of 100 radians per second, and 0°C. The measurement results were evaluated using an index based on Comparative Example 1. The larger the value, the better the low-temperature grip performance. From the obtained index, the low-temperature grip performance was judged from A to D according to the following criteria.
A: 200 or more B: 150 or more but less than 200 C: 100 or more but less than 150 D: Less than 100
(3)耐オゾン性試験:加硫ゴムを測定用試料とし、JIS K6259-1:2015に準拠して、試験片(長さ60mm×幅10mm×厚み2.0mm)を伸長ジグに取り付けて20%の引張歪みを与え、オゾン濃度0.5ppmにて48時間放置し、静的オゾン劣化試験を行った(雰囲気温度40℃)。試験後の試料を観察し、下記に従い評価した。
<亀裂の大きさによる評価>
 A:亀裂なし
 B:肉眼では見えないが拡大すると観察できる亀裂あり
 C:肉眼で確認できるものの0.5mm以下の非常に小さい亀裂あり
 D:0.5mmよりも大きい亀裂あり
(3) Ozone resistance test: Vulcanized rubber was used as a measurement sample, and a test piece (length 60 mm × width 10 mm × thickness 2.0 mm) was attached to an elongation jig and given a tensile strain of 20%, and left for 48 hours in an ozone concentration of 0.5 ppm to perform a static ozone deterioration test (ambient temperature 40° C.) in accordance with JIS K6259-1:2015. The sample was observed after the test and evaluated as follows.
<Evaluation based on crack size>
A: No cracks B: Cracks invisible to the naked eye but visible under magnification C: Very small cracks of 0.5 mm or less visible to the naked eye D: Cracks larger than 0.5 mm
(4)加硫接着性
 実施例及び比較例の加硫前の重合体組成物をシート状にした加硫前シートと、天然ゴムを主成分とする加硫前シートとを、端部にPETフィルムを挟んで積層し、温度170℃、時間15分の条件下で加硫することにより、PETフィルムを挟んでいない部分が加硫接着された積層加硫物を得た。
 積層加硫物から、幅15mmでの接着強度を測定できるように、PETを挟んだ部分から挟んでいない部分までの短冊状の試料片を採取し、PETフィルムを取り除いて試験片とした。恒温槽付きオートグラフ試験機の一方に、実施例及び比較例の重合体組成物により形成した加硫シートを配置し、もう一方に天然ゴムの加硫シートを配置して上下チャッキングして、70℃雰囲気下、速度50mm/分で剥離試験を実施し、接着力を測定した。得られた接着力の値から、比較例1を基準とした指数として評価した。数値が大きいほど接着力が高く、加硫接着性(共架橋性)が良好であるといえる。得られた指数から、以下の判断基準にて加硫接着性をA~Dで判断した。
A:140以上
B:110以上140未満
C:90以上110未満
D:90未満
(4) Vulcanization Adhesion A pre-vulcanization sheet prepared by forming the pre-vulcanization polymer composition of each of the Examples and Comparative Examples into a sheet form and a pre-vulcanization sheet mainly composed of natural rubber were laminated with a PET film sandwiched between the ends, and vulcanized under conditions of a temperature of 170°C and a time of 15 minutes, to obtain a laminated vulcanizate in which the portions not sandwiched by the PET film were vulcanized and bonded.
From the laminated vulcanizate, a rectangular sample piece was taken from the part where PET was sandwiched to the part where it was not sandwiched so that the adhesive strength at a width of 15 mm could be measured, and the PET film was removed to prepare a test piece. On one side of an autograph tester equipped with a thermostatic chamber, a vulcanized sheet formed from the polymer composition of the Examples and Comparative Examples was placed, and on the other side, a vulcanized sheet of natural rubber was placed and chucked from above and below, and a peel test was performed at a speed of 50 mm/min in an atmosphere of 70°C to measure the adhesive strength. From the obtained adhesive strength value, an index was evaluated based on Comparative Example 1. It can be said that the larger the value, the higher the adhesive strength and the better the vulcanization adhesiveness (co-crosslinking property). From the obtained index, the vulcanization adhesiveness was judged from A to D according to the following judgment criteria.
A: 140 or more B: 110 or more but less than 140 C: 90 or more but less than 110 D: Less than 90
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表3中の各成分の詳細は以下のとおりである(表6についても同じ)。
*1:東海カーボン社製 シースト3
*2:ローディア社製 ZEOSIL 1165MP
*3:エボニック社製 Si75
*4:出光興産社製 ダイアナプロセスオイルNS
*5:正同化学工業社製 酸化亜鉛2種
*6:花王ケミカル社製 ルナックS-98
*7:精工化学社製 オゾノン6C
*8:大内新興化学工業社製 ノクセラーCZ
*9:大内新興化学工業社製 ノクセラーD
*10:鶴見化学工業社製 沈降硫黄
Details of each component in Table 3 are as follows (same for Table 6).
*1: Seast 3 manufactured by Tokai Carbon Co., Ltd.
*2: ZEOSIL 1165MP manufactured by Rhodia
*3: Evonik Si75
*4: Diana Process Oil NS manufactured by Idemitsu Kosan Co., Ltd.
*5: Zinc oxide type 2 manufactured by Seido Chemical Industry Co., Ltd. *6: Lunac S-98 manufactured by Kao Chemical Co., Ltd.
*7: Ozonone 6C manufactured by Seiko Chemical Co., Ltd.
*8: Noccela CZ manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
*9: Noccela D manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
*10: Precipitated sulfur manufactured by Tsurumi Chemical Industry Co., Ltd.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 ゴム成分の詳細は以下のとおりである。
BR:ENEOSマテリアル社製 BR01
NR:RSS#3
Details of the rubber component are as follows:
BR: ENEOS Materials BR01
NR: RSS #3
<重合体組成物及び架橋体の製造>
[実施例10~14、比較例13~21]
 表6に示す配合処方により各成分を配合し、これを混練りすることによって重合体組成物を製造した。混練りは以下の方法で行った。温度制御装置を付属したプラストミル(内容量:250mL)を使用し、まず1段目の混練りとして、充填率72%、回転数60rpmの条件で、ゴム成分((水添)共役ジエン系重合体P1~P11)、カーボンブラック、シリカ、シランカップリング剤、軟化剤(伸展油)、酸化亜鉛、ステアリン酸を配合して混練りし、配合物を得た。なお、各例で使用したゴム成分の種類及び配合比は表7に記載のとおりとした。表7中、ゴム成分の数値は、配合物の調製に使用したゴム成分100質量部に対する各重合体の配合比(質量部)を示す。
 次いで、2段目の混練りとして、得られた配合物を室温まで冷却後、加硫促進剤及び硫黄を配合し、混練りした。混錬後の組成物を成型し、160℃で所定時間、加硫プレスにて加硫して、架橋体(加硫ゴム)を得た。また、以下のようにして引張強度、低温グリップ性能、耐オゾン性及び加硫接着性を評価した。結果を表7に示す。
<Production of polymer composition and crosslinked product>
[Examples 10 to 14, Comparative Examples 13 to 21]
Each component was blended according to the blending recipe shown in Table 6, and the resulting mixture was kneaded to produce a polymer composition. Kneading was performed by the following method. Using a plastomill (capacity: 250 mL) equipped with a temperature control device, the rubber component ((hydrogenated) conjugated diene polymers P1 to P11), carbon black, silica, a silane coupling agent, a softener (extender oil), zinc oxide, and stearic acid were blended and kneaded at a filling rate of 72% and a rotation speed of 60 rpm in the first stage of kneading to obtain a blend. The type and blending ratio of the rubber component used in each example were as shown in Table 7. In Table 7, the numerical value of the rubber component indicates the blending ratio (parts by mass) of each polymer relative to 100 parts by mass of the rubber component used in the preparation of the blend.
Next, in the second stage of kneading, the obtained compound was cooled to room temperature, and then a vulcanization accelerator and sulfur were added and kneaded. The kneaded composition was molded and vulcanized at 160°C for a predetermined time in a vulcanization press to obtain a crosslinked product (vulcanized rubber). The tensile strength, low-temperature grip performance, ozone resistance, and vulcanization adhesion were evaluated as follows. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表4及び表7に示すように、実施例1~12の重合体組成物はいずれも、加硫接着性がA又はBの評価であり、また架橋体の引張強度、低温グリップ性能及び耐オゾン性の評価がA~Cであり、各種特性をバランス良く改善できることが分かった。これらの中でも特に、ゴム成分の全量を水添共役ジエン系重合体P1~P5とした実施例1~7、10、11、13、14の重合体組成物は、A又はBの評価結果が3つ以上であり優れていた。また、実施例1~7について見ると、Δβが十分に小さい実施例1~4、6、7は全ての評価項目においてA又はBの評価であり、特に優れていた。また、Δβが十分に小さく、使用したゴム成分の種類が同じ実施例2と実施例3、実施例10と実施例11をそれぞれ対比すると、水添率がより高い重合体を多く含む実施例2、実施例10では、引張強度及び耐オゾン性の改善効果が高かった。 As shown in Tables 4 and 7, the polymer compositions of Examples 1 to 12 were all rated A or B for vulcanization adhesion, and rated A to C for the tensile strength, low-temperature grip performance, and ozone resistance of the crosslinked product, showing that the various properties could be improved in a well-balanced manner. Among these, the polymer compositions of Examples 1 to 7, 10, 11, 13, and 14, in which the entire rubber component was hydrogenated conjugated diene polymers P1 to P5, were particularly excellent, with three or more A or B evaluation results. In addition, looking at Examples 1 to 7, Examples 1 to 4, 6, and 7, which had sufficiently small Δβ, were rated A or B in all evaluation items, and were particularly excellent. In addition, comparing Examples 2 and 3, and Examples 10 and 11, which had sufficiently small Δβ and used the same type of rubber component, respectively, Examples 2 and 10, which contained a large amount of polymer with a higher hydrogenation rate, showed a high improvement effect on tensile strength and ozone resistance.
 これに対し、表5に示すように、ゴム成分として1種の重合体のみを含む例のうち、比較例1及び比較例13の重合体組成物は、低温グリップ性能及び加硫接着性の評価がDであった。また、比較例2及び比較例14の重合体組成物は、低温グリップ性能及び加硫接着性の評価がBであり、引張強度及び耐オゾン性の評価がCであり、同じく水添共役ジエン系重合体P4を含む実施例2や実施例3に比べて劣っていた。未水添の共役ジエン系重合体又はαの値が0.6未満である水添共役ジエン共重合体を単独で含む比較例7、8、16、17の重合体組成物は、強度や耐オゾン性がDの評価であった。 In contrast, as shown in Table 5, among the examples containing only one type of polymer as the rubber component, the polymer compositions of Comparative Example 1 and Comparative Example 13 were rated D for low-temperature grip performance and vulcanization adhesion. The polymer compositions of Comparative Example 2 and Comparative Example 14 were rated B for low-temperature grip performance and vulcanization adhesion, and C for tensile strength and ozone resistance, and were inferior to Examples 2 and 3, which also contained hydrogenated conjugated diene polymer P4. The polymer compositions of Comparative Examples 7, 8, 16, and 17, which contained only an unhydrogenated conjugated diene polymer or a hydrogenated conjugated diene copolymer with an α value of less than 0.6, were rated D for strength and ozone resistance.
 また、2種の水添共役ジエン系重合体を含むが、一方の水添共役ジエン系重合体のβの値が0.10~0.40の範囲から外れる比較例3~5及び比較例15は、Dの評価が1個以上あった。未水添の共役ジエン系重合体とブタジエンとを用いた比較例6の重合体組成物は、引張強度及び耐オゾン性がDの評価であった。2種の共役ジエン系重合体のうち、一方が未水添の共役ジエン系重合体か又はαの値が0.6未満の水添共役ジエン共重合体である比較例9~12、18~21の重合体組成物は、強度や耐オゾン性がDの評価であった。 Comparative examples 3 to 5 and 15, which contain two types of hydrogenated conjugated diene polymers but in which the β value of one of the hydrogenated conjugated diene polymers is outside the range of 0.10 to 0.40, received one or more ratings of D. The polymer composition of comparative example 6, which uses an unhydrogenated conjugated diene polymer and butadiene, received a rating of D for tensile strength and ozone resistance. The polymer compositions of comparative examples 9 to 12 and 18 to 21, in which one of the two conjugated diene polymers is an unhydrogenated conjugated diene polymer or a hydrogenated conjugated diene copolymer with an α value of less than 0.6, received a rating of D for strength and ozone resistance.
 以上の結果から、本開示の重合体組成物によれば、高強度であって低温グリップ性能及び耐オゾン性に優れた架橋体を得ることができるとともに、加硫接着性に優れることが明らかとなった。 These results demonstrate that the polymer composition disclosed herein can produce a crosslinked product that is high in strength and has excellent low-temperature grip performance and ozone resistance, and also has excellent vulcanization adhesion.

Claims (14)

  1.  下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとし、下記数式(i)で表される値をαとし、下記数式(ii)で表される値をβとしたとき、
     芳香族ビニル化合物に由来する構造単位とブタジエンに由来する構造単位とを含み、かつ下記条件(x)及び条件(y)を満たす第1重合体と、
     芳香族ビニル化合物に由来する構造単位とブタジエンに由来する構造単位とを含み、下記条件(x)及び条件(y)を満たし、かつ前記第1重合体よりも芳香族ビニル化合物に由来する構造単位の含有割合が少ない第2重合体と、を含み、
     前記第1重合体のβと前記第2重合体のβとの差が0.10以下であり、かつ、
     前記第1重合体における芳香族ビニル化合物に由来する構造単位の含有割合と前記第2重合体における芳香族ビニル化合物に由来する構造単位の含有割合との差が10~30質量%である、重合体組成物。
    条件(x) αが0.60以上0.97以下である
    条件(y) βが0.10以上0.40以下である
     α=(p+(0.5×r))/(p+q+(0.5×r)+s)
                               …(i)
     β=(p+q)/(p+q+(0.5×r)+s)  …(ii)
    Figure JPOXMLDOC01-appb-C000001
    When the constituent ratios (molar ratios) of the structural unit represented by the following formula (1), the structural unit represented by the following formula (2), the structural unit represented by the following formula (3), and the structural unit represented by the following formula (4) in the polymer are p, q, r, and s, respectively, the value represented by the following mathematical formula (i) is α, and the value represented by the following mathematical formula (ii) is β,
    A first polymer containing a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene and satisfying the following conditions (x) and (y):
    a second polymer which contains a structural unit derived from an aromatic vinyl compound and a structural unit derived from butadiene, satisfies the following condition (x) and condition (y), and has a lower content of the structural unit derived from the aromatic vinyl compound than the first polymer,
    The difference between the β of the first polymer and the β of the second polymer is 0.10 or less, and
    a difference between a content ratio of structural units derived from an aromatic vinyl compound in the first polymer and a content ratio of structural units derived from an aromatic vinyl compound in the second polymer is 10 to 30 mass %.
    Condition (x): α is 0.60 or more and 0.97 or less. Condition (y): β is 0.10 or more and 0.40 or less. α = (p + (0.5 × r)) / (p + q + (0.5 × r) + s).
    ... (i)
    β = (p + q) / (p + q + (0.5 × r) + s) ... (ii)
    Figure JPOXMLDOC01-appb-C000001
  2.  前記第1重合体のβと前記第2重合体のβとが異なる、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the β of the first polymer is different from the β of the second polymer.
  3.  前記第2重合体のβが、前記第1重合体のβよりも大きい、請求項2に記載の重合体組成物。 The polymer composition according to claim 2, wherein the β of the second polymer is greater than the β of the first polymer.
  4.  前記第1重合体及び前記第2重合体の一方又は両方が、窒素、酸素、ケイ素及びリンよりなる群から選択される少なくとも1種の元素を含む官能基を有する、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein one or both of the first polymer and the second polymer have a functional group containing at least one element selected from the group consisting of nitrogen, oxygen, silicon, and phosphorus.
  5.  前記第1重合体及び前記第2重合体のゲルパーミエーションクロマトグラフによるポリスチレン換算の重量平均分子量が0.5×10以上2.0×10以下である、請求項1に記載の重合体組成物。 The polymer composition according to claim 1 , wherein the first polymer and the second polymer have a weight average molecular weight in terms of polystyrene measured by gel permeation chromatography of 0.5×10 5 or more and 2.0×10 6 or less.
  6.  前記第1重合体と前記第2重合体との割合が、質量比で、前記第1重合体:前記第2重合体=10:90~90:10の範囲である、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the ratio of the first polymer to the second polymer is in the range of 10:90 to 90:10 by mass ratio of the first polymer:the second polymer.
  7.  前記第1重合体及び前記第2重合体とは異なる共役ジエン系重合体並びに天然ゴムよりなる群から選択される少なくとも1種を更に含有する、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, further comprising at least one selected from the group consisting of conjugated diene polymers different from the first polymer and the second polymer, and natural rubber.
  8.  前記第1重合体及び前記第2重合体の合計の割合が、前記重合体組成物に含まれるゴム成分の全量のうち50~100質量%である、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the total proportion of the first polymer and the second polymer is 50 to 100 mass % of the total amount of the rubber component contained in the polymer composition.
  9.  無機フィラーを更に含有する、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, further comprising an inorganic filler.
  10.  シランカップリング剤を更に含有する、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, further comprising a silane coupling agent.
  11.  樹脂成分を更に含有する、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, further comprising a resin component.
  12.  伸展油を更に含有する、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, further comprising an extender oil.
  13.  前記第1重合体、前記第2重合体及び前記伸展油の合計の割合が、組成物全体を100質量%としたときに90~100質量%である、請求項12に記載の重合体組成物。 The polymer composition according to claim 12, wherein the total ratio of the first polymer, the second polymer, and the extender oil is 90 to 100% by mass when the entire composition is taken as 100% by mass.
  14.  請求項1~11のいずれか一項に記載の重合体組成物の硬化物によりキャップトレッド及びサイドウォールの一方又は両方が構成されてなるタイヤ。 A tire in which one or both of the cap tread and the sidewall are made of a cured product of the polymer composition according to any one of claims 1 to 11.
PCT/JP2023/038891 2022-10-28 2023-10-27 Polymer composition and tire WO2024090556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022173391 2022-10-28
JP2022-173391 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024090556A1 true WO2024090556A1 (en) 2024-05-02

Family

ID=90831044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/038891 WO2024090556A1 (en) 2022-10-28 2023-10-27 Polymer composition and tire

Country Status (1)

Country Link
WO (1) WO2024090556A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045388A (en) * 2018-09-14 2020-03-26 Jsr株式会社 Rubber composition, crosslinked product, and tire
WO2021206068A1 (en) * 2020-04-06 2021-10-14 旭化成株式会社 Hydrogenated conjugated diene polymer, hydrogenated conjugated diene polymer composition, and rubber composition, and method for producing hydrogenated conjugated diene polymer
JP2022028234A (en) * 2020-08-03 2022-02-16 旭化成株式会社 Polymer blend, method for producing the same, and rubber composition and pneumatic tire using the same
JP2022030649A (en) * 2020-08-07 2022-02-18 旭化成株式会社 Conjugated diene polymer composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045388A (en) * 2018-09-14 2020-03-26 Jsr株式会社 Rubber composition, crosslinked product, and tire
WO2021206068A1 (en) * 2020-04-06 2021-10-14 旭化成株式会社 Hydrogenated conjugated diene polymer, hydrogenated conjugated diene polymer composition, and rubber composition, and method for producing hydrogenated conjugated diene polymer
JP2022028234A (en) * 2020-08-03 2022-02-16 旭化成株式会社 Polymer blend, method for producing the same, and rubber composition and pneumatic tire using the same
JP2022030649A (en) * 2020-08-07 2022-02-18 旭化成株式会社 Conjugated diene polymer composition

Similar Documents

Publication Publication Date Title
WO2018186367A1 (en) Rubber composition and tire
WO2021085616A1 (en) Method for producing modified conjugated-diene-based polymer, polymer composition, crosslinked object, and tire
WO2017090421A1 (en) Method for producing hydrogenated conjugated diene polymer, hydrogenated conjugated diene polymer, polymer composition, crosslinked polymer, and tire
JP7500440B2 (en) Rubber composition, crosslinked product and tire
JPWO2020031904A1 (en) Pneumatic tires
JPWO2019117093A1 (en) Rubber composition and tires
JP7346543B2 (en) Method for producing modified conjugated diene polymer, modified conjugated diene polymer, polymer composition, crosslinked product, and tire
JP7194641B2 (en) Polymer composition, method for producing the same, and tire
WO2024090556A1 (en) Polymer composition and tire
WO2020075829A1 (en) Rubber composition, tread and tire
WO2020075830A1 (en) Rubber composition, tread, base tread rubber composition, and tire
WO2018199280A1 (en) Crosslinked rubber and tire
WO2022196643A1 (en) Conjugated diene polymer and method for producing same, polymer composition, crosslinked product, and tire
WO2023171627A1 (en) Polymer composition and method for producing same, crosslinked product, and tire
WO2023171628A1 (en) Polymer composition and method for producing same, crosslinked product, and tire
EP4382542A1 (en) Modified conjugated diene polymer and method for producing same, polymer composition, crosslinked product, and tire
WO2023085309A1 (en) Method for producing modified conjugated diene polymer, modified conjugated diene polymer, polymer composition, crosslinked body and tire
WO2023074773A1 (en) Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, polymer composition, crosslinked product, tire, and compound
WO2022195978A1 (en) Rubber composition and tire
JP2024062294A (en) Modified conjugated diene polymer, method for producing same, polymer composition, crosslinked product, and tire
US20240182697A1 (en) Rubber composition and tire
WO2022249766A1 (en) Tire rubber composition, tread rubber, and tire
WO2022024219A1 (en) Polymer composition, crosslinked polymer, and tire
JP2010275353A (en) Rubber composition and pneumatic tire using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882758

Country of ref document: EP

Kind code of ref document: A1