WO2022024219A1 - Polymer composition, crosslinked polymer, and tire - Google Patents

Polymer composition, crosslinked polymer, and tire Download PDF

Info

Publication number
WO2022024219A1
WO2022024219A1 PCT/JP2020/028893 JP2020028893W WO2022024219A1 WO 2022024219 A1 WO2022024219 A1 WO 2022024219A1 JP 2020028893 W JP2020028893 W JP 2020028893W WO 2022024219 A1 WO2022024219 A1 WO 2022024219A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
polymer
conjugated diene
mass
polymer composition
Prior art date
Application number
PCT/JP2020/028893
Other languages
French (fr)
Japanese (ja)
Inventor
瀚洋 秦
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to PCT/JP2020/028893 priority Critical patent/WO2022024219A1/en
Publication of WO2022024219A1 publication Critical patent/WO2022024219A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons

Definitions

  • the present invention relates to a polymer composition, a crosslinked polymer, and a tire made by using the crosslinked polymer.
  • Patent Document 1 discloses that when this material is used as a tread material for a tire, it is excellent in heat generation, wear resistance, and wet grip.
  • the modified conjugated diene polymer disclosed in Patent Document 1 when used as a tread material for a tire, the modified conjugated diene polymer has a strong interaction with silica and is therefore inferior in processability and is sufficiently kneaded. Since this is not possible, there is a problem that sufficient performance cannot be obtained in terms of breaking strength, wear resistance and fuel efficiency.
  • some aspects of the present invention are suitable for producing a tire that is easy to knead because of its excellent workability and has a high balance in breaking strength, wear resistance and fuel efficiency. I will provide a. In addition, some aspects of the present invention provide a tire that is highly balanced in breaking strength, wear resistance and fuel economy.
  • the present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as any of the following aspects.
  • a conjugated diene which is a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, which is a reaction product of an active polymerization terminal and a compound represented by the following general formula (1).
  • B First silica having a CTAB specific surface area of 150 m 2 / g or more and a BET specific surface area of 160 m 2 / g or more.
  • B Second silica having a CTAB specific surface area of 130 m 2 / g or less and a BET specific surface area of 140 m 2 / g or less.
  • Z is independently a hydrocarbyl group having 1 to 8 carbon atoms or a hydrocarbylviloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si has 1 to 8 carbon atoms. 8 hydrocarbyloxy groups.
  • R 1 , R 2 and R 3 are independently hydrocarbylene groups having 1 to 8 carbon atoms, and A is one of the following formulas (2) to (4). It is a group represented by.)
  • * is a site that binds to R 3 in the above formula (1).
  • Z independently has 1 to 8 carbon atoms.
  • Hydrocarbyl group or hydrocarbyloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms.
  • R 4 and R 5 are independent of each other. It is a hydrocarbylene group having 1 to 8 carbon atoms.
  • the first silica (B) can be contained in an amount of 20 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the (A) conjugated diene-based polymer.
  • the second silica (C) can be contained in an amount of 20 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the (A) conjugated diene-based polymer.
  • the (B) first silica and the (C) second silica can be contained in an amount ratio of 25:75 to 75:25 on a mass basis.
  • the polystyrene-equivalent weight average molecular weight of the (A) conjugated diene-based polymer as measured by gel permeation chromatography can be 10,000 to 2,000,000.
  • a cross-linking agent can be contained.
  • One aspect of the crosslinked polymer according to the present invention is It is produced by using the polymer composition of any one of the above embodiments.
  • One aspect of the tire according to the present invention is It is the one using the crosslinked polymer of the said aspect.
  • the polymer composition according to the present invention it is possible to produce a crosslinked polymer (tire) which is easy to knead because it is excellent in processability and has a high balance in breaking strength, wear resistance and fuel efficiency. can.
  • the numerical range described by using "XY” means that the numerical value X is included as the lower limit value and the numerical value Y is included as the upper limit value.
  • (meth) acrylic acid- is a concept including both acrylic acid-and methacrylic acid-.
  • the polymer composition according to the present embodiment is (A) a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, and has an active polymerization terminal and the following general formula (1). ), Which is a reaction product with the compound represented by), and (B) the first silica having a CTAB specific surface area of 150 m 2 / g or more and a BET specific surface area of 160 m 2 / g or more. , (C) Second silica having a CTAB specific surface area of 130 m 2 / g or less and a BET specific surface area of 140 m 2 / g or less.
  • the polymer composition according to the present embodiment includes (A) a polymer component containing a conjugated diene-based polymer, (B) first silica, (C) second silica, and other additives as necessary. It is an unvulcanized polymer composition obtained by kneading with.
  • the polymer composition according to the present embodiment forms a crosslinked polymer by subjecting it to a crosslinking treatment such as vulcanization.
  • the polymer composition according to the present embodiment is (A) a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, and has an active polymerization terminal and the following. It contains a conjugated diene-based polymer (also simply referred to as "(A) conjugated diene-based polymer" in the present specification), which is a reaction product with the compound represented by the general formula (1).
  • a conjugated diene-based polymer also simply referred to as "(A) conjugated diene-based polymer” in the present specification
  • Z is independently a hydrocarbyl group having 1 to 8 carbon atoms or a hydrocarbylviloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si has 1 to 8 carbon atoms. 8 hydrocarbyloxy groups.
  • R 1 , R 2 and R 3 are independently hydrocarbylene groups having 1 to 8 carbon atoms, and A is one of the following formulas (2) to (4). It is a group represented by.)
  • * is a site that binds to R 3 in the above formula (1).
  • Z has 1 to 8 carbon atoms independently.
  • Hydrocarbyl group or hydrocarbyloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms.
  • R 4 and R 5 are independent of each other. It is a hydrocarbylene group having 1 to 8 carbon atoms.
  • the conjugated diene-based polymer has a structural unit derived from the conjugated diene compound, and has a structure derived from the compound of the above general formula (1) at the terminal of active polymerization.
  • a monomer containing a conjugated diene compound is polymerized to obtain a polymer having an active terminal (polymerization step), and then a polymer having an active terminal is obtained.
  • polymerization step a monomer containing a conjugated diene compound is polymerized to obtain a polymer having an active terminal
  • a polymer having an active terminal is obtained.
  • Examples of the conjugated diene compound that can be used in the polymerization include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 1,3-heptadiene. , 2-Phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like. Among these, 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene are preferable. Conjugated diene compounds may be used alone or in combination of two or more.
  • the conjugated diene-based polymer may be a homopolymer of the conjugated diene compound, but is a copolymer of the conjugated diene compound and the aromatic vinyl compound from the viewpoint of increasing the strength of the crosslinked polymer. Is preferable. Above all, a copolymer containing 1,3-butadiene and styrene in a monomer composition is preferable in terms of high living property in anionic polymerization.
  • the (A) conjugated diene-based polymer is typically a conjugated diene compound and an aromatic vinyl compound. It may have a random copolymerized moiety having an irregular distribution of, and further have a block moiety composed of structural units derived from a conjugated diene compound or an aromatic vinyl compound.
  • aromatic vinyl compound examples include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, and the like.
  • the content of the aromatic vinyl compound is the low loss property of the obtained crosslinked polymer.
  • the content is preferably 3 to 55% by mass, preferably 5 to 50% by mass, based on 100% by mass of the total of the conjugated diene compound and the aromatic vinyl compound used for the polymerization. It is more preferable to do so.
  • the aromatic vinyl content of the (A) conjugated diene polymer can be measured by 1 H-NMR.
  • a monomer other than the conjugated diene compound and the aromatic vinyl compound may be used.
  • examples of other monomers include acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate and the like.
  • the amount of the other monomers used is preferably 25% by mass or less, more preferably 15% by mass or less, and more preferably 10% by mass or less, based on 100% by mass of the total amount of the monomers used for the polymerization. Especially preferable.
  • any of a solution polymerization method, a gas phase polymerization method and a bulk polymerization method may be used, but the solution polymerization method is particularly preferable.
  • the polymerization type either a batch type or a continuous type may be used.
  • the solution polymerization method as an example of a specific polymerization method, a monomer containing a conjugated diene compound is polymerized in an organic solvent in the presence of a polymerization initiator and a randomizer used as necessary. The method can be mentioned.
  • an alkali metal compound or an alkaline earth metal compound can be used as the polymerization initiator.
  • alkyllithium such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium and tert-butyllithium, 1,4-dilithiobtan, phenyllithium and stillbenlithium.
  • the total amount of the polymerization initiator used is preferably 0.2 to 20 mmol with respect to 100 g of the monomer used for the polymerization.
  • the polymerization initiator may be used alone or in combination of two or more.
  • the polymerization reaction is carried out in the presence of a compound (hereinafter, also referred to as "modification initiator") obtained by mixing an alkali metal compound or an alkaline earth metal compound with a compound having a functional group that interacts with silica. You may go with.
  • a modification initiator By carrying out the polymerization in the presence of a modification initiator, a functional group that interacts with silica can be introduced into the polymerization initiation terminal of the (A) conjugated diene-based polymer.
  • “interaction” means an intermolecular force which forms a covalent bond between molecules or is weaker than a covalent bond (for example, an ion-dipole interaction, a dipole-dipole interaction, etc.
  • the "functional group that interacts with silica” preferably has at least one selected from the group consisting of nitrogen atom, sulfur atom, phosphorus atom and oxygen atom.
  • the modification initiator is preferably a reaction product of a lithium compound such as alkyllithium and a nitrogen-containing compound such as a secondary amine compound.
  • a nitrogen-containing compound such as a secondary amine compound.
  • nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, and the like.
  • a modification initiator is prepared by previously mixing an alkali metal compound or an alkaline earth metal compound with a compound having a functional group that interacts with silica.
  • the prepared modification initiator may be added to the polymerization system to carry out the polymerization.
  • an alkali metal compound or an alkaline earth metal compound and a compound having a functional group that interacts with silica are added to the polymerization system, and both are mixed in the polymerization system to prepare a modification initiator.
  • Polymerization may be carried out.
  • a nitrogen-containing alkyllithium compound can also be used.
  • a reaction product of 3-dimethylaminopropyllithium and isoprene can be used.
  • the randomizer can be used for the purpose of adjusting the vinyl bond content, which represents the content of vinyl bonds (1,2-bond and 3,4-bond) in the polymer.
  • randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di (tetrahydrofuryl) propane, 2- (2-ethoxyethoxy) -2-methylpropane, triethylamine, pyridine. , N-Methylmorpholine, tetramethylethylenediamine and the like. These can be used alone or in combination of two or more.
  • the organic solvent used for the polymerization may be any organic solvent that is inert to the reaction, and for example, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and the like can be used. Of these, hydrocarbons having 3 to 8 carbon atoms are preferable, and specific examples thereof include propane, n-butene, isobutane, n-pentane, isopentan, n-hexane, cyclohexane, propene, 1-butene, isobutene, and trans-.
  • the organic solvent may be used alone or in combination of two or more.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, preferably 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. More preferred.
  • the temperature of the polymerization reaction is preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C., and particularly preferably 20 ° C. to 100 ° C. Further, it is preferable that the polymerization reaction is carried out under a pressure sufficient to keep the monomer substantially in the liquid phase. Such pressure can be obtained by a method such as pressurizing the inside of the reactor with a gas that is inert to the polymerization reaction. By such a polymerization reaction, a conjugated diene-based polymer having an active terminal can be obtained.
  • the vinyl bond content in the structural unit derived from the conjugated diene compound is preferably 30 to 65 mol%, more preferably 33 to 62 mol%, and 35 to 35 to It is particularly preferably 60 mol%. If the vinyl bond content is less than 30 mol%, the grip characteristics tend to be too low, and if it exceeds 65 mol%, the wear resistance of the obtained crosslinked polymer tends to deteriorate.
  • the "vinyl bond content” is a value indicating the content ratio of the structural unit having a vinyl bond to all the structural units derived from the conjugated diene compound in the conjugated diene-based polymer, and is 1 H-. It is a value measured by NMR.
  • the conjugated diene-based polymer obtained by the above polymerization reaction is reacted with the active terminal of the polymer with a compound (specific modifier) represented by the following general formula (1).
  • a compound (specific modifier) represented by the following general formula (1) By going through such a step, the (A) conjugated diene-based polymer end-modified with a specific modifying agent can be obtained.
  • the (A) conjugated diene-based polymer terminal-modified with such a specific modifier has a strong interaction with (B) first silica and (C) second silica at the terminal modification site, so that the breaking strength and breaking strength and Abrasion resistance is improved, and rigidity at low strain is increased, so steering stability is also improved.
  • Z is independently a hydrocarbyl group having 1 to 8 carbon atoms or a hydrocarbylviloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si has 1 to 8 carbon atoms. 8 hydrocarbyloxy groups.
  • R 1 , R 2 and R 3 are independently hydrocarbylene groups having 1 to 8 carbon atoms, and A is one of the following formulas (2) to (4). It is a group represented by.
  • * is a site that binds to R 3 in the above formula (1).
  • Z has 1 to 8 carbon atoms independently. Hydrocarbyl group or hydrocarbyloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms. R 4 and R 5 are independent of each other. It is a hydrocarbylene group having 1 to 8 carbon atoms.
  • the hydrocarbylene group having 1 to 8 carbon atoms of R 1 to R 5 is a linear or branched alkylene group having 1 to 8 carbon atoms and 3 to 3 carbon atoms. Examples thereof include a cycloalkylene group of 8 and an arylene group having 6 to 8 carbon atoms.
  • the hydrocarbyl group having 1 to 8 carbon atoms of Z a linear or branched alkyl group having 1 to 8 carbon atoms and a cycloalkyl group having 3 to 8 carbon atoms are used. Can be mentioned.
  • the hydrocarbyloxy group having 1 to 8 carbon atoms of Z is a linear or branched alkoxy group having 1 to 8 carbon atoms and a cyclo having 3 to 8 carbon atoms. Alkoxy groups can be mentioned.
  • one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms, but at the terminal modification site, (B) first silica and (C) second silica are used. From the viewpoint of strengthening the interaction between the two, it is preferable that all three Zs bonded to each Si are hydrocarbyloxy groups having 1 to 8 carbon atoms.
  • Specific examples of the compound represented by the above general formula (1) include N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3-diaminopropane, N, N, N'. , N'-Tetrakiss (3-triethoxysilylpropyl) -1,3-diaminopropane, N- (3-imidazolylpropyl) -N, N-bis (3-trimethoxysilylpropyl) amine, N- (3-) Examples thereof include imidazolylpropyl) -N, N-bis (3-triethoxysilylpropyl) amine.
  • the specific modifier may be used alone, but the specific modifier and the modifier other than the specific modifier (hereinafter, "other modifiers") Also called.) May be used.
  • the other modifier is particularly limited as long as it is a compound having a functional group that interacts with an inorganic filler such as (B) first silica and (C) second silica and that can react with the active terminal of the polymer. Not done.
  • the above denaturation reaction can be performed, for example, as a solution reaction.
  • This solution reaction may be carried out using a solution containing an unreacted monomer after the completion of the polymerization reaction.
  • the conjugated diene polymer contained in the solution may be isolated and dissolved in an appropriate solvent such as cyclohexane. You may go.
  • the denaturation reaction may be carried out by either a batch type or a continuous type.
  • the method of adding the denaturing agent is not particularly limited, and examples thereof include a method of adding the denaturing agent all at once, a method of adding the denaturing agent in portions, and a method of continuously adding the denaturing agent.
  • the ratio of the specific modifier (the total amount when two or more kinds are used) is preferably 0.2 mol or more with respect to 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator. It is more preferably 0.4 mol or more.
  • the upper limit of the usage ratio of the specific modifier is 1.5 with respect to 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator.
  • the amount is preferably less than 1.2 mol, more preferably less than 1.2 mol.
  • the ratio of the other denaturing agents used is specified from the viewpoint of sufficiently advancing the reaction between the conjugated diene polymer and the specific denaturing agent.
  • the total usage ratio of the denaturing agent and other denaturing agents is preferably 30 mol% or less, more preferably 20 mol% or less, and particularly preferably 10 mol% or less.
  • the temperature of the denaturation reaction is usually the same as the temperature of the polymerization reaction, preferably ⁇ 20 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C., and preferably 20 ° C. to 100 ° C. Especially preferable.
  • the reaction time of the denaturation reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the (A) conjugated diene polymer contained in the reaction solution can be isolated by a known desolvation method such as steam stripping and a drying operation such as heat treatment.
  • the obtained (A) conjugated diene-based polymer may have Mooney viscosity adjusted by adding stretching oil or the like, if necessary. By this treatment, workability can be improved.
  • the spreading oil include aroma oil, naphthenic oil, paraffin oil and the like.
  • the blending amount of the spreading oil may be appropriately set according to the monomer and the like used for the polymerization, and is, for example, 10 to 50 parts by mass with respect to 100 parts by mass of the conjugated diene-based polymer.
  • the (A) conjugated diene-based polymer can be obtained.
  • the dispersibility of (B) first silica and (C) second silica can be improved. This makes it possible to obtain a crosslinked polymer that can simultaneously improve the low loss performance and wear resistance required for applications such as automobile tires. Further, according to the (A) conjugated diene-based polymer, a polymer composition having good processability can be obtained.
  • the conjugated diene polymer (A) preferably has a structure derived from the compound of the general formula (1) at at least one end of the polymer. Since the conjugated diene polymer (A) has such a structure, the dispersibility of (B) first silica and (C) second silica is further improved when applied to, for example, tire applications, and low loss is achieved. It is preferable in that it exhibits a higher improvement effect in terms of properties and wear resistance.
  • the polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the conjugated diene polymer is preferably 10,000 to 2,000,000.
  • Mw is smaller than 10,000, the crosslinked polymer of the polymer composition according to the present embodiment tends to have low loss resistance and wear resistance, and when it is larger than 2,000,000, it tends to be deteriorated.
  • the processability of the polymer composition tends to decrease.
  • the weight average molecular weight (Mw) of the obtained (A) conjugated diene polymer is more preferably 30,000 to 1,500,000, still more preferably 50,000 to 1,000,000.
  • the molecular weight distribution of the conjugated diene polymer that is, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.5 to 3.0, more preferably. Is 1.5 to 2.5, and particularly preferably 1.5 to 2.2.
  • Mw / Mn weight average molecular weight
  • Mn number average molecular weight
  • the polymer composition according to the present embodiment has (B) a CTAB specific surface area of 150 m 2 / g or more and a BET specific surface area of 160 m 2 / g or more.
  • the first silica also simply referred to as "(B) first silica” in the present specification
  • the CTAB specific surface area is 130 m 2 / g or less
  • the BET specific surface area is 140 m 2 / g or less.
  • It contains a second silica also simply referred to as "(C) second silica” in the present specification).
  • the first silica having a small average primary particle diameter but a relatively large aggregate size is satisfactorily dispersed in the polymer composition. It is possible to make it.
  • the processability of the polymer composition is improved, and a crosslinked polymer (tire) having excellent rubber breaking strength, wear resistance and fuel efficiency can be obtained. can.
  • the CTAB (cetyltrimethylammonium bromide) specific surface area of the first silica is 150 m 2 / g or more, preferably 160 m 2 / g or more, more preferably 170 m 2 / g or more, and particularly preferably 180 m 2 / g or more. Is. When the CTAB specific surface area is less than 150 m 2 / g, it tends to be difficult to obtain sufficient improvement in rubber breaking strength and wear resistance.
  • the CTAB specific surface area of (B) first silica is preferably 600 m 2 / g or less, more preferably 300 m 2 / g or less, and particularly preferably 250 m 2 / g or less.
  • CTAB specific surface area exceeds 600 m 2 / g, the dispersibility is inferior and the particles aggregate, so that the performance of the obtained crosslinked polymer (tire) tends to deteriorate.
  • the CTAB specific surface area of silica is measured according to ASTM D3765-92.
  • the BET specific surface area of the first silica is 160 m 2 / g or more, preferably 175 m 2 / g or more, and more preferably 190 m 2 / g or more. When the BET specific surface area is less than 160 m 2 / g, it tends to be difficult to obtain sufficient improvement in rubber breaking strength and wear resistance.
  • the BET specific surface area of (B) first silica is preferably 600 m 2 / g or less, more preferably 300 m 2 / g or less, and particularly preferably 260 m 2 / g or less.
  • the BET specific surface area of silica is measured according to ASTM D3037-81.
  • the aggregate size of the first silica is preferably 45 nm or more, more preferably 50 nm or more, and particularly preferably 60 nm or more.
  • the silica aggregate size is measured by a disc centrifugal sedimentation type particle size analysis method.
  • the average primary particle size of the first silica is preferably 25 nm or less, more preferably 22 nm or less, still more preferably 17 nm or less, and particularly preferably 14 nm or less.
  • the average primary particle size of (B) first silica is preferably 3 nm or more, more preferably 5 nm or more, and particularly preferably 7 nm or more. Although it has such a small average primary particle size, the structure having the above-mentioned aggregate size can further improve the dispersibility (workability) of silica, and further improve fuel efficiency and wear resistance.
  • the average primary particle size of silica can be determined by observing silica with a transmission electron microscope or a scanning electron microscope, measuring the particle size of 400 primary particles of silica observed in the visual field, and averaging them. can.
  • the content of (B) first silica in the polymer composition according to the present embodiment is preferably 20 parts by mass or more and 70 parts by mass or less, more preferably, with respect to 100 parts by mass of the (A) conjugated diene-based polymer. Is 20 parts by mass or more and 60 parts by mass or less, and particularly preferably 25 parts by mass or more and 50 parts by mass or less.
  • the content of the first silica is within the above range, the obtained crosslinked polymer (tire) is provided with excellent fuel efficiency and wear resistance while having good dispersibility (workability). Can be done.
  • the CTAB specific surface area of the second silica is 130 m 2 / g or less, preferably 120 m 2 / g or less, more preferably 100 m 2 / g or less, and particularly preferably 80 m 2 / g or less. If the CTAB specific surface area exceeds 130 m 2 / g, the dispersibility of (C) second silica deteriorates, and it may be difficult to improve the rubber breaking strength and wear resistance.
  • the CTAB specific surface area of (C) second silica is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, and particularly preferably 40 m 2 / g or more. If the CTAB specific surface area is less than 10 m 2 / g, the reinforcing property may be low, and it may be difficult to secure the mechanical strength and wear resistance required for the crosslinked polymer.
  • the BET specific surface area of the second silica is 140 m 2 / g or less, preferably 120 m 2 / g or less, more preferably 100 m 2 / g or less, and particularly preferably 90 m 2 / g or less. If the BET specific surface area exceeds 140 m 2 / g, the dispersibility of (C) second silica deteriorates, and it may be difficult to improve the rubber breaking strength and wear resistance.
  • the BET specific surface area of (C) second silica is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, and particularly preferably 30 m 2 / g or more. If the BET specific surface area is less than 10 m 2 / g, the reinforcing property may be low, and it may be difficult to secure the mechanical strength and wear resistance required for the crosslinked polymer.
  • the average primary particle size of the second silica is preferably 20 nm or more, more preferably 25 nm or more, further preferably 30 nm or more, particularly preferably 35 nm or more, and most preferably 55 nm or more.
  • the average primary particle size of (C) second silica is preferably 500 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less, and particularly preferably 70 nm or less. Having such an average primary particle size may improve rubber breaking strength and wear resistance.
  • the content of (C) second silica in the polymer composition according to the present embodiment is preferably 20 parts by mass or more and 70 parts by mass or less, more preferably, with respect to 100 parts by mass of the (A) conjugated diene-based polymer. Is 20 parts by mass or more and 60 parts by mass or less, and particularly preferably 25 parts by mass or more and 50 parts by mass or less. (C) When the content of the second silica is in the above range, excellent rubber breaking strength and wear resistance can be imparted to the obtained crosslinked polymer (tire).
  • the total content of silica containing (B) first silica and (C) second silica is preferably (A) with respect to 100 parts by mass of the conjugated diene polymer. It is 20 parts by mass or more, more preferably 30 parts by mass or more, further preferably 40 parts by mass or more, and particularly preferably 45 parts by mass or more.
  • the total content of silica is preferably 150 parts by mass or less, more preferably 100 parts by mass or less, and particularly preferably 80 parts by mass or less.
  • the total content of silica exceeds the above range, the total content of silica and carbon black is contained when the minimum amount (about 10 parts by mass) of carbon black necessary for improving weather resistance (ultraviolet crack resistance) and coloring is blended. Since the amount is excessive, the fuel efficiency tends to deteriorate, and the filler may be too much to impair the workability.
  • the CTAB specific surface area of the entire silica contained in the polymer composition according to the present embodiment is preferably in the range of 115 to 130 m 2 / g.
  • the CTAB specific surface area of the entire silica is within the above range, the dispersibility of the silica is improved, so that the processability of the polymer composition becomes better, and the polymer composition has excellent rubber breaking strength, wear resistance and low fuel consumption. A crosslinked polymer (tire) can be obtained.
  • first silica and (C) second silica are contained in an amount ratio of 25:75 to 75:25 on a mass basis, 40. It is more preferable to contain it in an amount ratio of: 60 to 60:40.
  • the dispersibility of the silica is improved, so that the processability of the polymer composition becomes better, and the excellent rubber.
  • a crosslinked polymer (tire) having breaking strength, wear resistance and low fuel consumption can be obtained.
  • the polymer composition according to the present embodiment may contain silica other than (B) first silica and (C) second silica.
  • the total content of (B) first silica and (C) second silica in 100% by mass of the inorganic filler contained in the polymer composition according to the present embodiment is preferably 80% by mass or more. It is preferably 90% by mass or more.
  • the total content of (B) 1st silica and (C) 2nd silica is less than the above range, the use of carbon black as the remaining inorganic filler tends to deteriorate the wet grip performance, and carbon The use of fillers other than black may reduce wear resistance.
  • the polymer composition according to the present embodiment contains, if necessary, other diene-based polymers other than (A) conjugated diene-based polymer, (B) first silica, and (C) Other inorganic fillers other than the second silica, silane coupling agents, cross-linking agents, acidic compounds, spreading oils (process oils), antiaging agents, vulcanization accelerators, and vulcanization aids as necessary.
  • Known additives such as agents, processing aids, scorch inhibitors and zinc oxides, softeners, colorants, flame retardants, lubricants, foaming agents, plastics, antioxidants, UV inhibitors, antistatic agents, anticoloring agents, etc.
  • the agent can be used depending on the intended use of the polymer composition.
  • the polymer composition according to the present embodiment may contain a diene-based polymer other than the (A) conjugated diene-based polymer.
  • a diene-based polymer is not particularly limited as long as it has a repeating unit derived from a conjugated diene compound, and for example, natural rubber, polybutadiene, polyisoprene, ethylene-propylene-diene rubber, styrene-butadiene rubber, acrylonitrile-. Examples include butadiene rubber.
  • the content of the other polymers is when the total amount of the polymer components contained in the polymer composition is 100 parts by mass. It is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and particularly preferably 35 parts by mass or less.
  • the polymer composition according to the present embodiment is other than (B) first silica and (C) second silica in order to further improve the low loss property, wear resistance and wet grip property of the obtained crosslinked polymer. It may contain an inorganic filler.
  • the inorganic filler include (B) silica other than the first silica and (C) the second silica, carbon black, and a mixture thereof.
  • the carbon black is not particularly limited, and a general one blended in the rubber composition can be used, and specific examples thereof include GPF, FEF, HAF, ISAF, SAF and the like. Among these, ISAF, SAF and HAF are preferable, and ISAF is more preferable.
  • the ratio of carbon black used is preferably 0 to 130 parts by mass, and more preferably 2 to 110 parts by mass with respect to 100 parts by mass of the polymer component.
  • silane coupling agent examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy).
  • Cyrilethyl) tetrasulfide bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyl Trimethoxysilane, 2-mercaptoethyltriethoxysilane; 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 2-triethoxy Cyrilethyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-trimethoxysilylpropylbenzothiazolyltetrasulfide, 3-trie
  • the ratio of the silane coupling agent used is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass in total of (B) first silica, (C) second silica and other inorganic filler components. ..
  • the ratio of the silane coupling agent used is within the above range, sufficient reinforcing properties and fracture resistance can be imparted to the crosslinked polymer formed from the polymer composition, and the wear resistance of the crosslinked polymer is improved. can.
  • cross-linking agent examples include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group.
  • sulfur is usually used as a cross-linking agent.
  • the ratio of the cross-linking agent used is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • acidic compound saturated fatty acids having 12 to 24 carbon atoms and metal salts thereof are preferably used.
  • acidic compounds include lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadesilic acid, arachidic acid, henicosyl acid, bechenic acid, tricosyl acid, lignoceric acid, and these.
  • Saturated fatty acids such as calcium salt and zinc salt can be mentioned.
  • These acidic compounds can be used alone or in combination of two or more. Of these, stearic acid is preferred.
  • the ratio of the acidic compound used is preferably 0.3 to 15 parts by mass with respect to 100 parts by mass of the polymer component.
  • ⁇ Other additives examples include aroma oil, naphthenic oil, paraffin oil and the like.
  • the ratio of the spread oil used is 0 to 50 parts by mass with respect to 100 parts by mass of the polymer component.
  • antiaging agent examples include N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine and the like.
  • the proportion of the antioxidant used is 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • vulcanization aid examples include zinc oxide and the like.
  • the ratio of the vulcanization aid used is 1 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
  • vulcanization accelerator examples include guadinin-based, aldehyde-amine-based, aldehyde-ammonia-based, thiazole-based, sulfenamide-based, thiourea-based, thiuram-based, dithiocarbamate-based, and zantate-based compounds.
  • Preferred specific examples of the vulcanization accelerator are sulfenamides such as N-cyclohexyl-2-benzothiadylsulfenamide (CBS) and N-tetra-butyl-2-benzothiadylsulfenamide (TBBS).
  • CBS N-cyclohexyl-2-benzothiadylsulfenamide
  • TBBS N-tetra-butyl-2-benzothiadylsulfenamide
  • the ratio of the vulcanization accelerator to be used is appropriately determined in consideration of the type and ratio of the basic compound, but is preferably 0.5 to 5 parts
  • the polymer composition according to the present embodiment can be prepared by kneading each of the above components using a kneader such as a plast mill, a Banbury mixer, a roll, or an internal mixer. can. For example, it is preferable to prepare by the following method.
  • a kneader such as a plast mill, a Banbury mixer, a roll, or an internal mixer.
  • first-stage kneading In the first-stage kneading, (A) the conjugated diene-based polymer, (B) the first silica and (C) the second silica, and if necessary, other inorganic fillers and silane coupling agents are kneaded. Is preferable. Further, in the first-stage kneading, other polymers, spreading oils, antiaging agents and the like are also kneaded together, if necessary. Further, in the first-stage kneading, the acidic compounds, which are preferably kneaded in the second-stage kneading, may be kneaded together.
  • a silane coupling agent When a silane coupling agent is used for the first-stage kneading, first, (A) a conjugated diene-based polymer, other polymers, (B) first silica, (C) second silica, and if necessary. It is preferable to knead other inorganic fillers accordingly, and then add (post-add) a silane coupling agent and further knead.
  • the obtained polymer composition becomes more processable, and the crosslinked polymer formed from the polymer composition has more excellent low hysteresis. It will have characteristics. Further, by adding a silane coupling agent afterwards in the first-stage kneading, the dispersibility of (B) first silica and (C) second silica may be improved.
  • the timing of adding the silane coupling agent depends on the type of silica, the ratio of silica used, the kneading conditions, etc., and (A) the use of the conjugated diene polymer and other polymers. It is determined as appropriate in consideration of the ratio.
  • the (A) conjugated diene polymer and other polymers are blended and kneaded for 0.5 to 10 minutes, and then the silane coupling agent is added. It is preferable to knead for 0.5 to 10 minutes.
  • the kneader used for the first-stage kneading examples include an open type or a closed type kneader such as a plast mill, a Banbury mixer, a roll, and an internal mixer. Further, in the first-stage kneading, the kneading temperature is set to 30 ° C. to 180 ° C., preferably 50 to 160 ° C.
  • the method is not limited to the method of adding the silane coupling agent afterwards and kneading, and the silane coupling agent is used for the first-stage kneading.
  • a kneaded product containing a silane coupling agent may be obtained by a method of kneading all the components at the same time. Further, after preparing a masterbatch in which (A) a conjugated diene-based polymer, (B) first silica, (C) second silica, and a silane coupling agent are kneaded, other polymers and additives are added. It may be a method of doing.
  • the second-stage kneading is a step of adding at least a cross-linking agent to the kneaded product obtained in the first-stage kneading and kneading the kneaded product and the cross-linking agent to obtain a polymer composition.
  • the acidic compound is kneaded together with the kneaded product obtained in the first-stage kneading and the cross-linking agent.
  • zinc oxide and the vulcanization accelerator are also kneaded together, if necessary.
  • a polymer composition is obtained by a method of simultaneously kneading an acidic compound and other components such as zinc oxide and a vulcanization accelerator.
  • the obtained polymer composition has more excellent processability, and the crosslinked polymer formed from the polymer composition has more excellent low hysteresis characteristics. Will have.
  • the kneading machine used in the first stage kneading is used. Further, in the second stage kneading, the kneading temperature is set to 30 ° C. to 130 ° C., preferably 50 ° C. to 110 ° C.
  • the polymer composition obtained by the above-mentioned production method is an unvulcanized rubber composition, and a crosslinked polymer is formed by subjecting it to a crosslinking treatment such as vulcanization, for example.
  • the crosslinked polymer formed from the polymer composition according to this embodiment is suitably used as a tire, specifically, a tread of a tire.
  • the tire formed from the polymer composition according to the present embodiment has high strength in the tread and a desired shape in the tread, so that excellent performance can be obtained.
  • the crosslinked polymer formed from the polymer composition according to the present embodiment can also be used as a tire member other than a tread, a vibration-proof rubber, a fender, a belt, a hose, and other industrial products.
  • the polymer solution was continuously decharged from the first reactor at 321.9 g / min, to which N, N, N', N'-tetrakis (3-triethoxysilylpropyl) -1,3 -Diaminopropane was added at 0.0742 mmol / min, line-mixed, and continuously introduced into the second reactor to carry out the reaction.
  • N, N, N', N'-tetrakis (3-triethoxysilylpropyl) -1,3 -Diaminopropane was added at 0.0742 mmol / min, line-mixed, and continuously introduced into the second reactor to carry out the reaction.
  • 0.7 parts by mass of di-tert-butyl-p-cresol was added to 100 parts by mass of the polymer component.
  • the solvent was removed by steam stripping, and the rubber was dried by a heat roll adjusted to 110 ° C. to obtain a modified conjugated diene-based copolymer (hereinafter, also
  • each of the obtained polymer compositions was molded and vulcanized at 160 ° C. for a predetermined time by a vulcanization press to obtain each crosslinked polymer having a predetermined shape to be subjected to the following evaluation test.
  • ⁇ Abrasion resistance> Using a vulcanized rubber as a measurement sample, a DIN wear tester (manufactured by Toyo Seiki Co., Ltd.) was used, and the measurement was performed at 25 ° C. with a load of 10 N in accordance with JIS K6264-2: 2005.
  • the index is expressed when the measured value of Comparative Example 1 is set to 100, and the larger the value, the better the wear resistance.
  • Table 1 shows the physical characteristics of each polymer synthesized above.
  • Table 2 shows the physical property values of each silica used.
  • Tables 3 to 4 show the composition and evaluation results of each polymer composition.
  • the polymer compositions according to Examples 1 to 14 consist of (A) conjugated diene-based polymer, (B) first silica, and (C) second silica.
  • the processability is improved as compared with the polymer composition according to Comparative Example 1, so that it is easy to knead, and the breaking strength, wear resistance and fuel efficiency are also highly balanced. It was confirmed that the crosslinked polymer was obtained.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the present invention includes substantially the same configurations as those described in the embodiments (eg, configurations with the same function, method and result, or configurations with the same purpose and effect).
  • the present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration.
  • the present invention also includes a configuration having the same action and effect as the configuration described in the above embodiment or a configuration capable of achieving the same object.
  • the present invention also includes a configuration in which a known technique is added to the configuration described in the above embodiment.

Abstract

Provided is a polymer composition which is easily kneaded due to excellent processability, and is suitable for manufacturing a tire having an excellent, high level of balance in terms of breaking strength, abrasion resistance, and low fuel consumption. A polymer composition according to the present invention comprises: (A) a conjugated diene-based polymer which is a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, and which is a reaction product of an active polymerization terminal and a compound represented by general formula (1); (B) a first silica having a CTAB specific surface area of at least 150 m2/g and a BET specific surface area of at least 160 m2/g; and (C) a second silica having a CTAB specific surface area of at most 130 m2/g and a BET specific surface area of at most 140 m2/g.

Description

重合体組成物、架橋重合体、及びタイヤPolymer compositions, crosslinked polymers, and tires
 本発明は、重合体組成物、架橋重合体、及び該架橋重合体を用いて作成されたタイヤに関する。 The present invention relates to a polymer composition, a crosslinked polymer, and a tire made by using the crosslinked polymer.
 近年、環境問題への関心の高まりに伴う世界的な二酸化炭素排出規制の動きに関連して、自動車の低燃費化に対する要求が強まりつつある。このような要求に対応するため、タイヤ性能についても転がり抵抗の低減が求められている。従来、タイヤの転がり抵抗を減少させる手法として、タイヤ構造を最適化する手法が検討されてきたが、タイヤに適用される重合体組成物について、tanδが低く(以下、「低ロス性」ともいう。)、低発熱性の優れたものを用いることも、現在一般的な手法として行われている。 In recent years, there has been an increasing demand for fuel efficiency of automobiles in connection with the movement of global carbon dioxide emission regulations accompanying the growing interest in environmental issues. In order to meet such demands, it is required to reduce rolling resistance in terms of tire performance. Conventionally, as a method for reducing the rolling resistance of a tire, a method for optimizing the tire structure has been studied, but the polymer composition applied to the tire has a low tan δ (hereinafter, also referred to as “low loss property”). .), The use of excellent low heat generation is also currently practiced as a general method.
 このような発熱性の低い重合体組成物を得る方法としては、カーボンブラックやシリカ等の充填剤の減量、又は大粒径のカーボンブラックの使用等が考えられるが、いずれの方法でも、重合体組成物の補強性、耐摩耗性及び湿潤路面でのグリップ性(以下、「ウエットグリップ性」ともいう。)の低下が避けられない。 As a method for obtaining such a polymer composition having low heat generation property, it is conceivable to reduce the amount of a filler such as carbon black or silica, or to use carbon black having a large particle size. It is inevitable that the reinforcing property, wear resistance and grip property on a wet road surface (hereinafter, also referred to as "wet grip property") of the composition will be deteriorated.
 そこで、例えば、金属末端を有する活性重合体を形成し、該活性重合体に特定の変性剤を導入して変性させた変性共役ジエン系重合体をタイヤのトレッド材料として使用する検討がなされている(例えば、特許文献1参照)。特許文献1には、この材料をタイヤのトレッド材料として使用すると、発熱性、耐摩耗性、及びウエットグリップ性に優れたものとなることが開示されている。 Therefore, for example, studies have been made on using a modified conjugated diene-based polymer in which an active polymer having a metal terminal is formed and modified by introducing a specific modifying agent into the active polymer as a tread material for a tire. (See, for example, Patent Document 1). Patent Document 1 discloses that when this material is used as a tread material for a tire, it is excellent in heat generation, wear resistance, and wet grip.
特表2016-528369号公報Special Table 2016-528369 Publication No.
 しかしながら、特許文献1に開示された変性共役ジエン系重合体をタイヤのトレッド材料として使用した場合、該変性共役ジエン系重合体はシリカとの相互作用が強いために加工性が劣り、十分に混練できないことで、破断強度、耐摩耗性及び低燃費性の点で十分な性能が得られないという課題があった。 However, when the modified conjugated diene polymer disclosed in Patent Document 1 is used as a tread material for a tire, the modified conjugated diene polymer has a strong interaction with silica and is therefore inferior in processability and is sufficiently kneaded. Since this is not possible, there is a problem that sufficient performance cannot be obtained in terms of breaking strength, wear resistance and fuel efficiency.
 そこで、本発明に係る幾つかの態様は、加工性に優れるために混練しやすく、破断強度、耐摩耗性及び低燃費性においても高度にバランスに優れたタイヤの製造に適した重合体組成物を提供する。また、本発明に係る幾つかの態様は、破断強度、耐摩耗性及び低燃費性において高度にバランスに優れたタイヤを提供する。 Therefore, some aspects of the present invention are suitable for producing a tire that is easy to knead because of its excellent workability and has a high balance in breaking strength, wear resistance and fuel efficiency. I will provide a. In addition, some aspects of the present invention provide a tire that is highly balanced in breaking strength, wear resistance and fuel economy.
 本発明は上述の課題の少なくとも一部を解決するためになされたものであり、以下のいずれかの態様として実現することができる。 The present invention has been made to solve at least a part of the above-mentioned problems, and can be realized as any of the following aspects.
 本発明に係る重合体組成物の一態様は、
 (A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)で表される化合物との反応物である、共役ジエン系重合体と、
 (B)CTAB比表面積が150m/g以上、かつ、BET比表面積が160m/g以上である第1シリカと、
 (C)CTAB比表面積が130m/g以下、かつ、BET比表面積が140m/g以下である第2シリカと、
を含有する。
Figure JPOXMLDOC01-appb-C000003
 
(式(1)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基であり、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基であり、Aは下記式(2)~(4)のいずれかの式で表される基である。)
Figure JPOXMLDOC01-appb-C000004
 
(式(2)~(4)中、*は上記式(1)のRと結合する部位である。式(2)及び式(4)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基であり、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基である。)
One aspect of the polymer composition according to the present invention is
(A) A conjugated diene, which is a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, which is a reaction product of an active polymerization terminal and a compound represented by the following general formula (1). With the system polymer,
(B) First silica having a CTAB specific surface area of 150 m 2 / g or more and a BET specific surface area of 160 m 2 / g or more.
(C) Second silica having a CTAB specific surface area of 130 m 2 / g or less and a BET specific surface area of 140 m 2 / g or less.
Contains.
Figure JPOXMLDOC01-appb-C000003

(In the formula (1), Z is independently a hydrocarbyl group having 1 to 8 carbon atoms or a hydrocarbylviloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si has 1 to 8 carbon atoms. 8 hydrocarbyloxy groups. R 1 , R 2 and R 3 are independently hydrocarbylene groups having 1 to 8 carbon atoms, and A is one of the following formulas (2) to (4). It is a group represented by.)
Figure JPOXMLDOC01-appb-C000004

(In formulas (2) to (4), * is a site that binds to R 3 in the above formula (1). In formulas (2) and (4), Z independently has 1 to 8 carbon atoms. Hydrocarbyl group or hydrocarbyloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms. R 4 and R 5 are independent of each other. It is a hydrocarbylene group having 1 to 8 carbon atoms.)
 前記重合体組成物の一態様において、
 前記(A)共役ジエン系重合体100質量部に対して、前記(B)第1シリカを20質量部以上70質量部以下含有することができる。
In one aspect of the polymer composition,
The first silica (B) can be contained in an amount of 20 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the (A) conjugated diene-based polymer.
 前記重合体組成物のいずれかの態様において、
 前記(A)共役ジエン系重合体100質量部に対して、前記(C)第2シリカを20質量部以上70質量部以下含有することができる。
In any aspect of the polymer composition
The second silica (C) can be contained in an amount of 20 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the (A) conjugated diene-based polymer.
 前記重合体組成物のいずれかの態様において、
 前記(B)第1シリカと前記(C)第2シリカとを質量基準で25:75~75:25となる量比で含有することができる。
In any aspect of the polymer composition
The (B) first silica and the (C) second silica can be contained in an amount ratio of 25:75 to 75:25 on a mass basis.
 前記重合体組成物のいずれかの態様において、
 前記(A)共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量が10,000~2,000,000であることができる。
In any aspect of the polymer composition
The polystyrene-equivalent weight average molecular weight of the (A) conjugated diene-based polymer as measured by gel permeation chromatography can be 10,000 to 2,000,000.
 前記重合体組成物のいずれかの態様において、
 更に、架橋剤を含有することができる。
In any aspect of the polymer composition
Further, a cross-linking agent can be contained.
 本発明に係る架橋重合体の一態様は、
 前記いずれかの態様の重合体組成物を用いて製造されたものである。
One aspect of the crosslinked polymer according to the present invention is
It is produced by using the polymer composition of any one of the above embodiments.
 本発明に係るタイヤの一態様は、
 前記態様の架橋重合体を使用したものである。
One aspect of the tire according to the present invention is
It is the one using the crosslinked polymer of the said aspect.
 本発明に係る重合体組成物によれば、加工性に優れるため混練しやすく、破断強度、耐摩耗性及び低燃費性においても高度にバランスに優れた架橋重合体(タイヤ)を製造することができる。 According to the polymer composition according to the present invention, it is possible to produce a crosslinked polymer (tire) which is easy to knead because it is excellent in processability and has a high balance in breaking strength, wear resistance and fuel efficiency. can.
 以下、本発明に係る好適な実施形態について詳細に説明する。なお、本発明は、以下に記載された実施形態のみに限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形例も含むものとして理解されるべきである。 Hereinafter, preferred embodiments according to the present invention will be described in detail. It should be noted that the present invention is not limited to the embodiments described below, but should be understood to include various modifications to be carried out without changing the gist of the present invention.
 本明細書において、「X~Y」を用いて記載された数値範囲は、数値Xを下限値として含み、かつ、数値Yを上限値として含む意味である。 In the present specification, the numerical range described by using "XY" means that the numerical value X is included as the lower limit value and the numerical value Y is included as the upper limit value.
 本明細書において、「(メタ)アクリル酸~」とは、アクリル酸~及びメタクリル酸~の双方を含む概念である。 In the present specification, "(meth) acrylic acid-" is a concept including both acrylic acid-and methacrylic acid-.
 1.重合体組成物
 本実施形態に係る重合体組成物は、(A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)で表される化合物との反応物である、共役ジエン系重合体と、(B)CTAB比表面積が150m/g以上、かつ、BET比表面積が160m/g以上である第1シリカと、(C)CTAB比表面積が130m/g以下、かつ、BET比表面積が140m/g以下である第2シリカと、を含有する。
1. 1. Polymer composition The polymer composition according to the present embodiment is (A) a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, and has an active polymerization terminal and the following general formula (1). ), Which is a reaction product with the compound represented by), and (B) the first silica having a CTAB specific surface area of 150 m 2 / g or more and a BET specific surface area of 160 m 2 / g or more. , (C) Second silica having a CTAB specific surface area of 130 m 2 / g or less and a BET specific surface area of 140 m 2 / g or less.
 本実施形態に係る重合体組成物は、(A)共役ジエン系重合体を含む重合体成分と、(B)第1シリカと、(C)第2シリカと、必要に応じて他の添加剤とを混練することにより得られる未加硫の重合体組成物である。本実施形態に係る重合体組成物は、例えば加硫などの架橋処理をすることにより、架橋重合体を形成するものである。 The polymer composition according to the present embodiment includes (A) a polymer component containing a conjugated diene-based polymer, (B) first silica, (C) second silica, and other additives as necessary. It is an unvulcanized polymer composition obtained by kneading with. The polymer composition according to the present embodiment forms a crosslinked polymer by subjecting it to a crosslinking treatment such as vulcanization.
 以下、本実施形態に係る重合体組成物に含まれる各成分について説明する。 Hereinafter, each component contained in the polymer composition according to the present embodiment will be described.
 1.1.(A)共役ジエン系重合体
 本実施形態に係る重合体組成物は、(A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)で表される化合物との反応物である、共役ジエン系重合体(本明細書において、単に「(A)共役ジエン系重合体」ともいう。)を含有する。
1.1. (A) Conjugated Diene Polymer The polymer composition according to the present embodiment is (A) a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, and has an active polymerization terminal and the following. It contains a conjugated diene-based polymer (also simply referred to as "(A) conjugated diene-based polymer" in the present specification), which is a reaction product with the compound represented by the general formula (1).
Figure JPOXMLDOC01-appb-C000005
 
(式(1)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基であり、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基であり、Aは下記式(2)~(4)のいずれかの式で表される基である。)
Figure JPOXMLDOC01-appb-C000006
 
(式(2)~(4)中、*は上記式(1)のRと結合する部位である。式(2)及び式(4)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基であり、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基である。)
Figure JPOXMLDOC01-appb-C000005

(In the formula (1), Z is independently a hydrocarbyl group having 1 to 8 carbon atoms or a hydrocarbylviloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si has 1 to 8 carbon atoms. 8 hydrocarbyloxy groups. R 1 , R 2 and R 3 are independently hydrocarbylene groups having 1 to 8 carbon atoms, and A is one of the following formulas (2) to (4). It is a group represented by.)
Figure JPOXMLDOC01-appb-C000006

(In formulas (2) to (4), * is a site that binds to R 3 in the above formula (1). In formulas (2) and (4), Z has 1 to 8 carbon atoms independently. Hydrocarbyl group or hydrocarbyloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms. R 4 and R 5 are independent of each other. It is a hydrocarbylene group having 1 to 8 carbon atoms.)
 (A)共役ジエン系重合体は、共役ジエン化合物に由来する構造単位を有し、かつ活性重合末端に、上記一般式(1)の化合物に由来する構造を有する。このような(A)共役ジエン系重合体は、まず、共役ジエン化合物を含む単量体を重合して活性末端を有する重合体を得て(重合工程)、次いで、活性末端を有する重合体と、上記一般式(1)の化合物(以下、「特定変性剤」ともいう。)と、を反応させることにより得ることができる(変性工程)。 (A) The conjugated diene-based polymer has a structural unit derived from the conjugated diene compound, and has a structure derived from the compound of the above general formula (1) at the terminal of active polymerization. In such a (A) conjugated diene-based polymer, first, a monomer containing a conjugated diene compound is polymerized to obtain a polymer having an active terminal (polymerization step), and then a polymer having an active terminal is obtained. , Can be obtained by reacting with the compound of the above general formula (1) (hereinafter, also referred to as "specific modifier") (modification step).
<重合工程>
 重合に際して使用し得る共役ジエン化合物としては、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの中でも、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンが好ましい。共役ジエン化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。
<Polymerization process>
Examples of the conjugated diene compound that can be used in the polymerization include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 1,3-heptadiene. , 2-Phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, 2-chloro-1,3-butadiene and the like. Among these, 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene are preferable. Conjugated diene compounds may be used alone or in combination of two or more.
 (A)共役ジエン系重合体は、共役ジエン化合物の単独重合体であってもよいが、架橋重合体の強度を高める観点から、共役ジエン化合物と芳香族ビニル化合物との共重合体であることが好ましい。中でも、アニオン重合におけるリビング性が高い点において、1,3-ブタジエンとスチレンとをモノマー組成に含む共重合体であることが好ましい。(A)共役ジエン系重合体が共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、(A)共役ジエン系重合体は、典型的には、共役ジエン化合物と芳香族ビニル化合物との分布が不規則なランダム共重合部分を有し、さらに、共役ジエン化合物又は芳香族ビニル化合物に由来する構造単位からなるブロック部分を有していてもよい。 (A) The conjugated diene-based polymer may be a homopolymer of the conjugated diene compound, but is a copolymer of the conjugated diene compound and the aromatic vinyl compound from the viewpoint of increasing the strength of the crosslinked polymer. Is preferable. Above all, a copolymer containing 1,3-butadiene and styrene in a monomer composition is preferable in terms of high living property in anionic polymerization. When the (A) conjugated diene-based polymer is a copolymer of a conjugated diene compound and an aromatic vinyl compound, the (A) conjugated diene-based polymer is typically a conjugated diene compound and an aromatic vinyl compound. It may have a random copolymerized moiety having an irregular distribution of, and further have a block moiety composed of structural units derived from a conjugated diene compound or an aromatic vinyl compound.
 重合に際して使用し得る芳香族ビニル化合物としては、例えば、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、5-tert-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、tert-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-tert-ブチルスチレン、3-tert-ブチルスチレン、4-tert-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレンなど)等が挙げられる。これらの中でも、スチレン及びα-メチルスチレンが好ましい。芳香族ビニル化合物は、1種を単独で又は2種以上を組み合わせて使用することができる。 Examples of the aromatic vinyl compound that can be used in the polymerization include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, and the like. 5-tert-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, tert-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl) dimethylaminoethyl ether, N, N-dimethyl Aminoethyl styrene, N, N-dimethylaminomethyl styrene, 2-ethyl styrene, 3-ethyl styrene, 4-ethyl styrene, 2-tert-butyl styrene, 3-tert-butyl styrene, 4-tert-butyl styrene, vinyl Examples thereof include xylene, vinylnaphthalene, vinylpyridine, diphenylethylene, tertiary amino group-containing diphenylethylene (for example, 1- (4-N, N-dimethylaminophenyl) -1-phenylethylene, etc.). Among these, styrene and α-methylstyrene are preferable. The aromatic vinyl compound may be used alone or in combination of two or more.
 (A)共役ジエン系重合体が共役ジエン化合物と芳香族ビニル化合物との共重合体である場合、芳香族ビニル化合物の含有量(芳香族ビニル含量)は、得られる架橋重合体の低ロス性とウエットグリップ性とのバランスを良好にする観点から、重合に使用する共役ジエン化合物及び芳香族ビニル化合物の合計100質量%中、3~55質量%とすることが好ましく、5~50質量%とすることがより好ましい。なお、(A)共役ジエン系重合体の芳香族ビニル含量は、H-NMRによって測定することができる。 (A) When the conjugated diene polymer is a copolymer of a conjugated diene compound and an aromatic vinyl compound, the content of the aromatic vinyl compound (aromatic vinyl content) is the low loss property of the obtained crosslinked polymer. From the viewpoint of improving the balance between the and wet grip properties, the content is preferably 3 to 55% by mass, preferably 5 to 50% by mass, based on 100% by mass of the total of the conjugated diene compound and the aromatic vinyl compound used for the polymerization. It is more preferable to do so. The aromatic vinyl content of the (A) conjugated diene polymer can be measured by 1 H-NMR.
 重合に際しては、共役ジエン化合物及び芳香族ビニル化合物以外の他のモノマーを使用してもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ヒドロキシエチル等が挙げられる。他のモノマーの使用量は、重合に使用するモノマーの全体量100質量%中、25質量%以下とすることが好ましく、15質量%以下とすることがより好ましく、10質量%以下とすることが特に好ましい。 In the polymerization, a monomer other than the conjugated diene compound and the aromatic vinyl compound may be used. Examples of other monomers include acrylonitrile, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate and the like. The amount of the other monomers used is preferably 25% by mass or less, more preferably 15% by mass or less, and more preferably 10% by mass or less, based on 100% by mass of the total amount of the monomers used for the polymerization. Especially preferable.
 使用する重合方法としては、溶液重合法、気相重合法、バルク重合法のいずれを用いてもよいが、溶液重合法が特に好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、共役ジエン化合物を含む単量体を、重合開始剤及び必要に応じて用いられるランダマイザーの存在下で重合する方法が挙げられる。 As the polymerization method to be used, any of a solution polymerization method, a gas phase polymerization method and a bulk polymerization method may be used, but the solution polymerization method is particularly preferable. Further, as the polymerization type, either a batch type or a continuous type may be used. When the solution polymerization method is used, as an example of a specific polymerization method, a monomer containing a conjugated diene compound is polymerized in an organic solvent in the presence of a polymerization initiator and a randomizer used as necessary. The method can be mentioned.
 重合開始剤としては、アルカリ金属化合物又はアルカリ土類金属化合物を用いることができる。これらの具体例としては、例えばメチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム等のアルキルリチウム、1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、3-(ジメチルアミノ)プロピルリチウム、ナフチルナトリウム、ナフチルカリウム、ジ-n-ブチルマグネシウム、ジ-n-ヘキシルマグネシウム、エトキシカリウム、ステアリン酸カルシウム等が挙げられる。これらの中でも、リチウム化合物が好ましい。重合開始剤の合計の使用量は、重合に使用するモノマー100gに対して、0.2~20mmolとすることが好ましい。なお、重合開始剤は、1種を単独で又は2種以上を組み合わせて使用することができる。 As the polymerization initiator, an alkali metal compound or an alkaline earth metal compound can be used. Specific examples of these include alkyllithium such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium and tert-butyllithium, 1,4-dilithiobtan, phenyllithium and stillbenlithium. Lithium naphthyl, 1,3-bis (1-lithio-1,3-dimethylpentyl) benzene, 1,3-phenylenebis (3-methyl-1-phenylpentylidene) dilithium, 3- (dimethylamino) propyllithium, Examples thereof include sodium naphthyl, potassium naphthyl, di-n-butylmagnesium, di-n-hexylmagnesium, ethoxypotassium, calcium stearate and the like. Among these, lithium compounds are preferable. The total amount of the polymerization initiator used is preferably 0.2 to 20 mmol with respect to 100 g of the monomer used for the polymerization. The polymerization initiator may be used alone or in combination of two or more.
 また、重合反応は、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを混合して得られる化合物(以下、「変性開始剤」ともいう。)の存在下で行ってもよい。変性開始剤の存在下で重合を行うことにより、(A)共役ジエン系重合体の重合開始末端に、シリカと相互作用する官能基を導入することができる。なお、本明細書において「相互作用」とは、分子間で共有結合を形成するか、又は共有結合よりも弱い分子間力(例えば、イオン-双極子相互作用、双極子-双極子相互作用、水素結合、ファンデルワールス力等といった分子間に働く電磁気学的な力)を形成することを意味する。「シリカと相互作用する官能基」は、窒素原子、硫黄原子、リン原子及び酸素原子よりなる群から選択される少なくとも1種を有することが好ましい。 Further, the polymerization reaction is carried out in the presence of a compound (hereinafter, also referred to as "modification initiator") obtained by mixing an alkali metal compound or an alkaline earth metal compound with a compound having a functional group that interacts with silica. You may go with. By carrying out the polymerization in the presence of a modification initiator, a functional group that interacts with silica can be introduced into the polymerization initiation terminal of the (A) conjugated diene-based polymer. In addition, in this specification, "interaction" means an intermolecular force which forms a covalent bond between molecules or is weaker than a covalent bond (for example, an ion-dipole interaction, a dipole-dipole interaction, etc. It means forming an electromagnetic force (electromagnetic force acting between molecules such as hydrogen bond, van der Waals force, etc.). The "functional group that interacts with silica" preferably has at least one selected from the group consisting of nitrogen atom, sulfur atom, phosphorus atom and oxygen atom.
 変性開始剤としては、アルキルリチウム等のリチウム化合物と、第2級アミン化合物などの窒素含有化合物との反応生成物であることが好ましい。当該窒素含有化合物の具体例としては、例えばジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。なお、変性開始剤の存在下で重合を行う場合、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを予め混合することにより変性開始剤を調製し、その調製した変性開始剤を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、アルカリ金属化合物又はアルカリ土類金属化合物と、シリカと相互作用する官能基を有する化合物とを添加し、重合系中で両者を混合することにより変性開始剤を調製して重合を行ってもよい。又は、窒素含有のアルキルリチウム化合物を使用することもできる。窒素含有のアルキルリチウム化合物の具体例としては、3-ジメチルアミノプロピルリチウムとイソプレンとの反応物等を使用することができる。 The modification initiator is preferably a reaction product of a lithium compound such as alkyllithium and a nitrogen-containing compound such as a secondary amine compound. Specific examples of the nitrogen-containing compound include, for example, dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N, N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, and the like. Hexamethylene imine, heptamethylene imine, dicyclohexylamine, N-methylbenzylamine, di- (2-ethylhexyl) amine, diallylamine, morpholine, N- (trimethylsilyl) piperidine, N- (tert-butyldimethylsilyl) piperidine, 1, Examples thereof include 3-ditrimethylsilyl-1,3,5-triazinan and the like. When polymerization is carried out in the presence of a modification initiator, a modification initiator is prepared by previously mixing an alkali metal compound or an alkaline earth metal compound with a compound having a functional group that interacts with silica. The prepared modification initiator may be added to the polymerization system to carry out the polymerization. Alternatively, an alkali metal compound or an alkaline earth metal compound and a compound having a functional group that interacts with silica are added to the polymerization system, and both are mixed in the polymerization system to prepare a modification initiator. Polymerization may be carried out. Alternatively, a nitrogen-containing alkyllithium compound can also be used. As a specific example of the nitrogen-containing alkyllithium compound, a reaction product of 3-dimethylaminopropyllithium and isoprene can be used.
 ランダマイザーは、重合体中におけるビニル結合(1,2-結合及び3,4-結合)の含有率を表すビニル結合含量の調整等を目的として用いることができる。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン等が挙げられる。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。 The randomizer can be used for the purpose of adjusting the vinyl bond content, which represents the content of vinyl bonds (1,2-bond and 3,4-bond) in the polymer. Examples of randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di (tetrahydrofuryl) propane, 2- (2-ethoxyethoxy) -2-methylpropane, triethylamine, pyridine. , N-Methylmorpholine, tetramethylethylenediamine and the like. These can be used alone or in combination of two or more.
 重合に使用する有機溶媒としては、反応に不活性な有機溶媒であればよく、例えば脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素などを用いることができる。中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-ヘキサン、シクロヘキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ペンチン、2-ペンチン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。なお、有機溶媒は、1種を単独で又は2種以上を組み合わせて使用することができる。 The organic solvent used for the polymerization may be any organic solvent that is inert to the reaction, and for example, aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons and the like can be used. Of these, hydrocarbons having 3 to 8 carbon atoms are preferable, and specific examples thereof include propane, n-butene, isobutane, n-pentane, isopentan, n-hexane, cyclohexane, propene, 1-butene, isobutene, and trans-. 2-butene, cis-2-butene, 1-pentyne, 2-pentyne, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene, heptane, cyclopentane, methylcyclopentane, methylcyclohexane, 1-pentene, 2-Pentene, cyclohexene and the like can be mentioned. The organic solvent may be used alone or in combination of two or more.
 溶液重合を用いる場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性のバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃であることが好ましく、0℃~120℃であることがより好ましく、20℃~100℃であることが特に好ましい。また、重合反応は、単量体を実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に対して不活性なガスによって、反応器内を加圧する等の方法によって得ることができる。こうした重合反応により、活性末端を有する共役ジエン系重合体を得ることができる。 When solution polymerization is used, the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, preferably 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. More preferred. The temperature of the polymerization reaction is preferably −20 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C., and particularly preferably 20 ° C. to 100 ° C. Further, it is preferable that the polymerization reaction is carried out under a pressure sufficient to keep the monomer substantially in the liquid phase. Such pressure can be obtained by a method such as pressurizing the inside of the reactor with a gas that is inert to the polymerization reaction. By such a polymerization reaction, a conjugated diene-based polymer having an active terminal can be obtained.
 活性末端を有する共役ジエン系重合体につき、共役ジエン化合物に由来する構造単位におけるビニル結合含量は、30~65モル%であることが好ましく、33~62モル%であることがより好ましく、35~60モル%であることが特に好ましい。ビニル結合含量が30モル%未満であると、グリップ特性が低くなり過ぎる傾向があり、65モル%を超えると、得られる架橋重合体の耐摩耗性が悪化しやすくなる傾向にある。なお、本明細書において「ビニル結合含量」は、共役ジエン系重合体中において、共役ジエン化合物に由来する全構造単位に対する、ビニル結合を有する構造単位の含有割合を示す値であり、H-NMRによって測定した値である。 For the conjugated diene-based polymer having an active terminal, the vinyl bond content in the structural unit derived from the conjugated diene compound is preferably 30 to 65 mol%, more preferably 33 to 62 mol%, and 35 to 35 to It is particularly preferably 60 mol%. If the vinyl bond content is less than 30 mol%, the grip characteristics tend to be too low, and if it exceeds 65 mol%, the wear resistance of the obtained crosslinked polymer tends to deteriorate. In the present specification, the "vinyl bond content" is a value indicating the content ratio of the structural unit having a vinyl bond to all the structural units derived from the conjugated diene compound in the conjugated diene-based polymer, and is 1 H-. It is a value measured by NMR.
<変性工程>
 次いで、上記重合反応により得られた共役ジエン系重合体につき、該重合体の活性末端と、下記一般式(1)で表される化合物(特定変性剤)とを反応させる。こうした工程を経ることにより、特定変性剤で末端変性された(A)共役ジエン系重合体を得ることができる。このような特定変性剤で末端変性された(A)共役ジエン系重合体は、末端変性部位において(B)第1シリカや(C)第2シリカとの相互作用が強くなるので、破断強度及び耐摩耗性が向上し、また低歪みでの剛性が高くなるので操縦安定性も向上する。
<Denaturation process>
Next, the conjugated diene-based polymer obtained by the above polymerization reaction is reacted with the active terminal of the polymer with a compound (specific modifier) represented by the following general formula (1). By going through such a step, the (A) conjugated diene-based polymer end-modified with a specific modifying agent can be obtained. The (A) conjugated diene-based polymer terminal-modified with such a specific modifier has a strong interaction with (B) first silica and (C) second silica at the terminal modification site, so that the breaking strength and breaking strength and Abrasion resistance is improved, and rigidity at low strain is increased, so steering stability is also improved.
Figure JPOXMLDOC01-appb-C000007
 
(式(1)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基であり、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基であり、Aは下記式(2)~(4)のいずれかの式で表される基である。)
Figure JPOXMLDOC01-appb-C000007

(In the formula (1), Z is independently a hydrocarbyl group having 1 to 8 carbon atoms or a hydrocarbylviloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si has 1 to 8 carbon atoms. 8 hydrocarbyloxy groups. R 1 , R 2 and R 3 are independently hydrocarbylene groups having 1 to 8 carbon atoms, and A is one of the following formulas (2) to (4). It is a group represented by.)
Figure JPOXMLDOC01-appb-C000008
 
(式(2)~(4)中、*は上記式(1)のRと結合する部位である。式(2)及び式(4)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基であり、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基である。)
Figure JPOXMLDOC01-appb-C000008

(In formulas (2) to (4), * is a site that binds to R 3 in the above formula (1). In formulas (2) and (4), Z has 1 to 8 carbon atoms independently. Hydrocarbyl group or hydrocarbyloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms. R 4 and R 5 are independent of each other. It is a hydrocarbylene group having 1 to 8 carbon atoms.)
 上記式(1)~(4)において、R~Rの炭素数1~8のヒドロカルビレン基としては、炭素数1~8の直鎖状または分岐状のアルキレン基、炭素数3~8のシクロアルキレン基、炭素数6~8のアリーレン基等が挙げられる。上記式(1)~(4)において、Zの炭素数1~8のヒドロカルビル基としては、炭素数1~8の直鎖状または分岐状のアルキル基、炭素数3~8のシクロアルキル基が挙げられる。また、上記式(1)~(4)において、Zの炭素数1~8のヒドロカルビルオキシ基としては、炭素数1~8の直鎖状または分岐状のアルコキシ基、炭素数3~8のシクロアルコキシ基が挙げられる。 In the above formulas (1) to (4), the hydrocarbylene group having 1 to 8 carbon atoms of R 1 to R 5 is a linear or branched alkylene group having 1 to 8 carbon atoms and 3 to 3 carbon atoms. Examples thereof include a cycloalkylene group of 8 and an arylene group having 6 to 8 carbon atoms. In the above formulas (1) to (4), as the hydrocarbyl group having 1 to 8 carbon atoms of Z, a linear or branched alkyl group having 1 to 8 carbon atoms and a cycloalkyl group having 3 to 8 carbon atoms are used. Can be mentioned. Further, in the above formulas (1) to (4), the hydrocarbyloxy group having 1 to 8 carbon atoms of Z is a linear or branched alkoxy group having 1 to 8 carbon atoms and a cyclo having 3 to 8 carbon atoms. Alkoxy groups can be mentioned.
 上記式(1)中、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基であるが、末端変性部位において(B)第1シリカや(C)第2シリカとの相互作用を強くできる観点から、各Siに結合するZの3個とも炭素数1~8のヒドロカルビルオキシ基であることが好ましい。 In the above formula (1), one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms, but at the terminal modification site, (B) first silica and (C) second silica are used. From the viewpoint of strengthening the interaction between the two, it is preferable that all three Zs bonded to each Si are hydrocarbyloxy groups having 1 to 8 carbon atoms.
 上記一般式(1)で表される化合物の具体例としては、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-ジアミノプロパン、N,N,N’,N’-テトラキス(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパン、N-(3-イミダゾリルプロピル)-N,N-ビス(3-トリメトキシシリルプロピル)アミン、N-(3-イミダゾリルプロピル)-N,N-ビス(3-トリエトキシシリルプロピル)アミン等が挙げられる。 Specific examples of the compound represented by the above general formula (1) include N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3-diaminopropane, N, N, N'. , N'-Tetrakiss (3-triethoxysilylpropyl) -1,3-diaminopropane, N- (3-imidazolylpropyl) -N, N-bis (3-trimethoxysilylpropyl) amine, N- (3-) Examples thereof include imidazolylpropyl) -N, N-bis (3-triethoxysilylpropyl) amine.
 なお、活性末端を有する共役ジエン系重合体の変性反応に際しては、特定変性剤を単独で使用してもよいが、特定変性剤とともに特定変性剤以外の変性剤(以下、「その他の変性剤」ともいう。)を使用してもよい。その他の変性剤は、(B)第1シリカや(C)第2シリカ等の無機充填剤と相互作用する官能基を有し、かつ重合体の活性末端と反応し得る化合物であれば特に限定されない。 In the modification reaction of the conjugated diene polymer having an active terminal, the specific modifier may be used alone, but the specific modifier and the modifier other than the specific modifier (hereinafter, "other modifiers") Also called.) May be used. The other modifier is particularly limited as long as it is a compound having a functional group that interacts with an inorganic filler such as (B) first silica and (C) second silica and that can react with the active terminal of the polymer. Not done.
 上記の変性反応は、例えば溶液反応として行うことができる。この溶液反応は、重合反応の終了後の未反応モノマーを含む溶液を用いて行ってもよく、当該溶液に含まれる共役ジエン系重合体を単離し、シクロヘキサン等の適当な溶媒に溶解した上で行ってもよい。また、変性反応は、回分式及び連続式のいずれを用いて行ってもよい。このとき、変性剤の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法などが挙げられる。 The above denaturation reaction can be performed, for example, as a solution reaction. This solution reaction may be carried out using a solution containing an unreacted monomer after the completion of the polymerization reaction. The conjugated diene polymer contained in the solution may be isolated and dissolved in an appropriate solvent such as cyclohexane. You may go. Further, the denaturation reaction may be carried out by either a batch type or a continuous type. At this time, the method of adding the denaturing agent is not particularly limited, and examples thereof include a method of adding the denaturing agent all at once, a method of adding the denaturing agent in portions, and a method of continuously adding the denaturing agent.
 特定変性剤の使用割合(二種以上使用する場合にはその合計量)は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、0.2モル以上とすることが好ましく、0.4モル以上とすることがより好ましい。0.2モル以上とすることにより、特定変性剤による重合体末端の変性反応を十分に進行させることができ、末端変性部位における(B)第1シリカや(C)第2シリカとの相互作用を十分に強くすることができる。また、変性反応後における溶液中の未反応物を少なくする点で、特定変性剤の使用割合の上限値は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、1.5モル未満とすることが好ましく、1.2モル未満とすることがより好ましい。 The ratio of the specific modifier (the total amount when two or more kinds are used) is preferably 0.2 mol or more with respect to 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator. It is more preferably 0.4 mol or more. By setting the amount to 0.2 mol or more, the modification reaction of the polymer terminal by the specific modifying agent can be sufficiently proceeded, and the interaction with (B) first silica and (C) second silica at the terminal modification site can be sufficiently promoted. Can be strong enough. Further, in terms of reducing the amount of unreacted substances in the solution after the modification reaction, the upper limit of the usage ratio of the specific modifier is 1.5 with respect to 1 mol of the metal atom involved in the polymerization reaction of the polymerization initiator. The amount is preferably less than 1.2 mol, more preferably less than 1.2 mol.
 なお、変性反応に際し、特定変性剤とその他の変性剤とを併用する場合、その他の変性剤の使用割合は、共役ジエン系重合体と特定変性剤との反応を十分に進行させる観点から、特定変性剤とその他の変性剤との合計の使用割合に対して、30モル%以下とすることが好ましく、20モル%以下とすることがより好ましく、10モル%以下とすることが特に好ましい。 When the specific denaturing agent and other denaturing agents are used in combination in the denaturing reaction, the ratio of the other denaturing agents used is specified from the viewpoint of sufficiently advancing the reaction between the conjugated diene polymer and the specific denaturing agent. The total usage ratio of the denaturing agent and other denaturing agents is preferably 30 mol% or less, more preferably 20 mol% or less, and particularly preferably 10 mol% or less.
 変性反応の温度は、通常、重合反応の温度と同じであり、-20℃~150℃とすることが好ましく、0℃~120℃とすることがより好ましく、20℃~100℃とすることが特に好ましい。変性反応の温度が低いと、変性後の共役ジエン系重合体の粘度が上昇する傾向がある。一方、変性反応の温度が高いと、重合体の活性末端が失活しやすくなる。変性反応の反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。 The temperature of the denaturation reaction is usually the same as the temperature of the polymerization reaction, preferably −20 ° C. to 150 ° C., more preferably 0 ° C. to 120 ° C., and preferably 20 ° C. to 100 ° C. Especially preferable. When the temperature of the denaturation reaction is low, the viscosity of the conjugated diene-based polymer after denaturation tends to increase. On the other hand, when the temperature of the denaturation reaction is high, the active end of the polymer is likely to be deactivated. The reaction time of the denaturation reaction is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
 反応溶液に含まれる(A)共役ジエン系重合体を単離するには、例えばスチームストリッピング等の公知の脱溶媒方法及び熱処理等の乾燥の操作によって行うことができる。得られた(A)共役ジエン系重合体は、必要に応じて伸展油等を添加することによりムーニー粘度を調整してもよい。この処理により、加工性を良好にすることができる。伸展油としては、例えばアロマ油、ナフテン油、パラフィン油等が挙げられる。伸展油の配合量は、重合に用いるモノマー等に応じて適宜設定すればよいが、例えば共役ジエン系重合体100質量部に対し、10~50質量部である。 The (A) conjugated diene polymer contained in the reaction solution can be isolated by a known desolvation method such as steam stripping and a drying operation such as heat treatment. The obtained (A) conjugated diene-based polymer may have Mooney viscosity adjusted by adding stretching oil or the like, if necessary. By this treatment, workability can be improved. Examples of the spreading oil include aroma oil, naphthenic oil, paraffin oil and the like. The blending amount of the spreading oil may be appropriately set according to the monomer and the like used for the polymerization, and is, for example, 10 to 50 parts by mass with respect to 100 parts by mass of the conjugated diene-based polymer.
 このようにして、(A)共役ジエン系重合体を得ることができる。(A)共役ジエン系重合体によれば、(B)第1シリカや(C)第2シリカの分散性を向上させることができる。これにより、自動車タイヤ等の用途において求められる低ロス性能及び耐摩耗性を同時に改善できる架橋重合体を得ることができる。また、(A)共役ジエン系重合体によれば、加工性が良好な重合体組成物を得ることができる。 In this way, the (A) conjugated diene-based polymer can be obtained. According to the (A) conjugated diene-based polymer, the dispersibility of (B) first silica and (C) second silica can be improved. This makes it possible to obtain a crosslinked polymer that can simultaneously improve the low loss performance and wear resistance required for applications such as automobile tires. Further, according to the (A) conjugated diene-based polymer, a polymer composition having good processability can be obtained.
 (A)共役ジエン系重合体は、該重合体の少なくとも片末端に、上記一般式(1)の化合物に由来する構造を有することが好ましい。(A)共役ジエン系重合体がこのような構造を有することにより、例えばタイヤ用途に適用した場合に、(B)第1シリカや(C)第2シリカの分散性がより改善され、低ロス性及び耐摩耗性において、より高い改善効果を奏する点で好ましい。 The conjugated diene polymer (A) preferably has a structure derived from the compound of the general formula (1) at at least one end of the polymer. Since the conjugated diene polymer (A) has such a structure, the dispersibility of (B) first silica and (C) second silica is further improved when applied to, for example, tire applications, and low loss is achieved. It is preferable in that it exhibits a higher improvement effect in terms of properties and wear resistance.
 (A)共役ジエン系重合体のゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)は、好ましくは10,000~2,000,000である。Mwが10,000よりも小さいと、本実施形態に係る重合体組成物の架橋重合体において、低ロス性及び耐摩耗性が低下しやすい傾向にあり、2,000,000よりも大きいと、重合体組成物の加工性が低下しやすい傾向にある。得られる(A)共役ジエン系重合体の重量平均分子量(Mw)は、より好ましくは30,000~1,500,000であり、さらに好ましくは50,000~1,000,000である。 (A) The polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC) of the conjugated diene polymer is preferably 10,000 to 2,000,000. When Mw is smaller than 10,000, the crosslinked polymer of the polymer composition according to the present embodiment tends to have low loss resistance and wear resistance, and when it is larger than 2,000,000, it tends to be deteriorated. The processability of the polymer composition tends to decrease. The weight average molecular weight (Mw) of the obtained (A) conjugated diene polymer is more preferably 30,000 to 1,500,000, still more preferably 50,000 to 1,000,000.
 (A)共役ジエン系重合体の分子量分布、すなわち重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)は、好ましくは1.5~3.0であり、より好ましくは1.5~2.5であり、特に好ましくは1.5~2.2である。(A)共役ジエン系重合体の分子量分布が前記範囲にあると、より優れた低ロス性、耐摩耗性、ウエットグリップ性能及び機械的特性が得られやすい。 (A) The molecular weight distribution of the conjugated diene polymer, that is, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.5 to 3.0, more preferably. Is 1.5 to 2.5, and particularly preferably 1.5 to 2.2. (A) When the molecular weight distribution of the conjugated diene polymer is within the above range, more excellent low loss property, wear resistance, wet grip performance and mechanical properties can be easily obtained.
 1.2.(B)第1シリカ及び(C)第2シリカ
 本実施形態に係る重合体組成物は、(B)CTAB比表面積が150m/g以上、かつ、BET比表面積が160m/g以上である第1シリカ(本明細書において、単に「(B)第1シリカ」ともいう。)と、(C)CTAB比表面積が130m/g以下、かつ、BET比表面積が140m/g以下である第2シリカ(本明細書において、単に「(C)第2シリカ」ともいう。)と、を含有する。このような(B)第1シリカと(C)第2シリカとを併用することにより、平均一次粒子径は小さいが比較的アグリゲートサイズの大きい第1シリカを重合体組成物中に良好に分散させることが可能となる。第1シリカの分散性が改善されることによって重合体組成物の加工性が良好となるとともに、優れたゴム破断強度、耐摩耗性及び低燃費性を有する架橋重合体(タイヤ)を得ることができる。
1.2. (B) First silica and (C) Second silica The polymer composition according to the present embodiment has (B) a CTAB specific surface area of 150 m 2 / g or more and a BET specific surface area of 160 m 2 / g or more. The first silica (also simply referred to as "(B) first silica" in the present specification) and (C) the CTAB specific surface area is 130 m 2 / g or less, and the BET specific surface area is 140 m 2 / g or less. It contains a second silica (also simply referred to as "(C) second silica" in the present specification). By using (B) the first silica and (C) the second silica in combination, the first silica having a small average primary particle diameter but a relatively large aggregate size is satisfactorily dispersed in the polymer composition. It is possible to make it. By improving the dispersibility of the first silica, the processability of the polymer composition is improved, and a crosslinked polymer (tire) having excellent rubber breaking strength, wear resistance and fuel efficiency can be obtained. can.
 (B)第1シリカのCTAB(セチルトリメチルアンモニウムブロミド)比表面積は150m/g以上であり、好ましくは160m/g以上、より好ましくは170m/g以上、特に好ましくは180m/g以上である。CTAB比表面積が150m/g未満であると、ゴム破断強度、耐摩耗性の十分な向上が得られにくくなる傾向がある。また、(B)第1シリカのCTAB比表面積は、好ましくは600m/g以下、より好ましくは300m/g以下、特に好ましくは250m/g以下である。CTAB比表面積が600m/gを超えると、分散性に劣り、凝集してしまうため、得られる架橋重合体(タイヤ)の性能が低下する傾向がある。なお、シリカのCTAB比表面積は、ASTM D3765-92に準拠して測定される。 (B) The CTAB (cetyltrimethylammonium bromide) specific surface area of the first silica is 150 m 2 / g or more, preferably 160 m 2 / g or more, more preferably 170 m 2 / g or more, and particularly preferably 180 m 2 / g or more. Is. When the CTAB specific surface area is less than 150 m 2 / g, it tends to be difficult to obtain sufficient improvement in rubber breaking strength and wear resistance. The CTAB specific surface area of (B) first silica is preferably 600 m 2 / g or less, more preferably 300 m 2 / g or less, and particularly preferably 250 m 2 / g or less. If the CTAB specific surface area exceeds 600 m 2 / g, the dispersibility is inferior and the particles aggregate, so that the performance of the obtained crosslinked polymer (tire) tends to deteriorate. The CTAB specific surface area of silica is measured according to ASTM D3765-92.
 (B)第1シリカのBET比表面積は160m/g以上であり、好ましくは175m/g以上、より好ましくは190m/g以上である。BET比表面積が160m/g未満であると、ゴム破断強度、耐摩耗性の十分な向上が得られにくくなる傾向がある。また、(B)第1シリカのBET比表面積は、好ましくは600m/g以下、より好ましくは300m/g以下、特に好ましくは260m/g以下である。BET比表面積が600m/gを超えると、分散性に劣り、凝集してしまうため、得られる架橋重合体(タイヤ)の性能が低下する傾向がある。なお、シリカのBET比表面積は、ASTM D3037-81に準拠して測定される。 (B) The BET specific surface area of the first silica is 160 m 2 / g or more, preferably 175 m 2 / g or more, and more preferably 190 m 2 / g or more. When the BET specific surface area is less than 160 m 2 / g, it tends to be difficult to obtain sufficient improvement in rubber breaking strength and wear resistance. The BET specific surface area of (B) first silica is preferably 600 m 2 / g or less, more preferably 300 m 2 / g or less, and particularly preferably 260 m 2 / g or less. If the BET specific surface area exceeds 600 m 2 / g, the dispersibility is inferior and aggregated, so that the performance of the obtained crosslinked polymer (tire) tends to deteriorate. The BET specific surface area of silica is measured according to ASTM D3037-81.
 (B)第1シリカのアグリゲートサイズは、好ましくは45nm以上、より好ましくは50nm以上、特に好ましくは60nm以上である。(B)第1シリカがこのようなアグリゲートサイズを有することにより、良好な分散性(加工性)を有しながら、優れた低燃費性、耐摩耗性を架橋重合体に与えることができる。なお、シリカのアグリゲートサイズは、ディスク遠心沈降式粒度分析法により測定される。 (B) The aggregate size of the first silica is preferably 45 nm or more, more preferably 50 nm or more, and particularly preferably 60 nm or more. (B) Since the first silica has such an aggregate size, it is possible to impart excellent fuel efficiency and wear resistance to the crosslinked polymer while having good dispersibility (workability). The silica aggregate size is measured by a disc centrifugal sedimentation type particle size analysis method.
 (B)第1シリカの平均一次粒子径は、好ましくは25nm以下、より好ましくは22nm以下、更に好ましくは17nm以下、特に好ましくは14nm以下である。また、(B)第1シリカの平均一次粒子径は、好ましくは3nm以上、より好ましくは5nm以上、特に好ましくは7nm以上である。このような小さい平均一次粒子径を有しているものの、上記のアグリゲートサイズを有する構造により、シリカの分散性(加工性)をより改善でき、低燃費性、耐摩耗性を更に改善できる。なお、シリカの平均一次粒子径は、シリカを透過型電子顕微鏡又は走査型電子顕微鏡により観察し、視野内に観察されたシリカの一次粒子400個について粒子径を測定し、その平均により求めることができる。 (B) The average primary particle size of the first silica is preferably 25 nm or less, more preferably 22 nm or less, still more preferably 17 nm or less, and particularly preferably 14 nm or less. The average primary particle size of (B) first silica is preferably 3 nm or more, more preferably 5 nm or more, and particularly preferably 7 nm or more. Although it has such a small average primary particle size, the structure having the above-mentioned aggregate size can further improve the dispersibility (workability) of silica, and further improve fuel efficiency and wear resistance. The average primary particle size of silica can be determined by observing silica with a transmission electron microscope or a scanning electron microscope, measuring the particle size of 400 primary particles of silica observed in the visual field, and averaging them. can.
 本実施形態に係る重合体組成物中の(B)第1シリカの含有量は、(A)共役ジエン系重合体100質量部に対して、好ましくは20質量部以上70質量部以下、より好ましくは20質量部以上60質量部以下、特に好ましくは25質量部以上50質量部以下である。(B)第1シリカの含有量が前記範囲にあると、良好な分散性(加工性)を有しながら、得られる架橋重合体(タイヤ)に優れた低燃費性、耐摩耗性を与えることができる。 The content of (B) first silica in the polymer composition according to the present embodiment is preferably 20 parts by mass or more and 70 parts by mass or less, more preferably, with respect to 100 parts by mass of the (A) conjugated diene-based polymer. Is 20 parts by mass or more and 60 parts by mass or less, and particularly preferably 25 parts by mass or more and 50 parts by mass or less. (B) When the content of the first silica is within the above range, the obtained crosslinked polymer (tire) is provided with excellent fuel efficiency and wear resistance while having good dispersibility (workability). Can be done.
 (C)第2シリカのCTAB比表面積は130m/g以下であり、好ましくは120m/g以下、より好ましくは100m/g以下、特に好ましくは80m/g以下である。CTAB比表面積が130m/gを超えると、(C)第2シリカの分散性が悪くなり、ゴム破断強度及び耐摩耗性を改善することが難しくなる場合がある。また、(C)第2シリカのCTAB比表面積は、好ましくは10m/g以上、より好ましくは20m/g以上、特に好ましくは40m/g以上である。CTAB比表面積が10m/g未満であると、補強性が低くなり、架橋重合体に必要な力学強度や耐摩耗性を確保することが難しくなる場合がある。 (C) The CTAB specific surface area of the second silica is 130 m 2 / g or less, preferably 120 m 2 / g or less, more preferably 100 m 2 / g or less, and particularly preferably 80 m 2 / g or less. If the CTAB specific surface area exceeds 130 m 2 / g, the dispersibility of (C) second silica deteriorates, and it may be difficult to improve the rubber breaking strength and wear resistance. The CTAB specific surface area of (C) second silica is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, and particularly preferably 40 m 2 / g or more. If the CTAB specific surface area is less than 10 m 2 / g, the reinforcing property may be low, and it may be difficult to secure the mechanical strength and wear resistance required for the crosslinked polymer.
 (C)第2シリカのBET比表面積は140m/g以下であり、好ましくは120m/g以下、より好ましくは100m/g以下、特に好ましくは90m/g以下である。BET比表面積が140m/gを超えると、(C)第2シリカの分散性が悪くなり、ゴム破断強度及び耐摩耗性を改善することが難しくなる場合がある。また、(C)第2シリカのBET比表面積は、好ましくは10m/g以上、より好ましくは20m/g以上、特に好ましくは30m/g以上である。BET比表面積が10m/g未満であると、補強性が低くなり、架橋重合体に必要な力学強度や耐摩耗性を確保することが難しくなる場合がある。 (C) The BET specific surface area of the second silica is 140 m 2 / g or less, preferably 120 m 2 / g or less, more preferably 100 m 2 / g or less, and particularly preferably 90 m 2 / g or less. If the BET specific surface area exceeds 140 m 2 / g, the dispersibility of (C) second silica deteriorates, and it may be difficult to improve the rubber breaking strength and wear resistance. The BET specific surface area of (C) second silica is preferably 10 m 2 / g or more, more preferably 20 m 2 / g or more, and particularly preferably 30 m 2 / g or more. If the BET specific surface area is less than 10 m 2 / g, the reinforcing property may be low, and it may be difficult to secure the mechanical strength and wear resistance required for the crosslinked polymer.
 (C)第2シリカの平均一次粒子径は、好ましくは20nm以上、より好ましくは25nm以上、更に好ましくは30nm以上、特に好ましくは35nm以上、最も好ましくは55nm以上である。また、(C)第2シリカの平均一次粒子径は、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、特に好ましくは70nm以下である。このような平均一次粒子径を有することにより、ゴム破断強度及び耐摩耗性を改善できる場合がある。 (C) The average primary particle size of the second silica is preferably 20 nm or more, more preferably 25 nm or more, further preferably 30 nm or more, particularly preferably 35 nm or more, and most preferably 55 nm or more. The average primary particle size of (C) second silica is preferably 500 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less, and particularly preferably 70 nm or less. Having such an average primary particle size may improve rubber breaking strength and wear resistance.
 本実施形態に係る重合体組成物中の(C)第2シリカの含有量は、(A)共役ジエン系重合体100質量部に対して、好ましくは20質量部以上70質量部以下、より好ましくは20質量部以上60質量部以下、特に好ましくは25質量部以上50質量部以下である。(C)第2シリカの含有量が前記範囲にあると、得られる架橋重合体(タイヤ)に優れたゴム破断強度、耐摩耗性を与えることができる。 The content of (C) second silica in the polymer composition according to the present embodiment is preferably 20 parts by mass or more and 70 parts by mass or less, more preferably, with respect to 100 parts by mass of the (A) conjugated diene-based polymer. Is 20 parts by mass or more and 60 parts by mass or less, and particularly preferably 25 parts by mass or more and 50 parts by mass or less. (C) When the content of the second silica is in the above range, excellent rubber breaking strength and wear resistance can be imparted to the obtained crosslinked polymer (tire).
 本実施形態に係る重合体組成物において、(B)第1シリカ及び(C)第2シリカを含むシリカの合計含有量は、(A)共役ジエン系重合体100質量部に対して、好ましくは20質量部以上、より好ましくは30質量部以上、更に好ましくは40質量部以上、特に好ましくは45質量部以上である。シリカの合計含有量が前記範囲未満の場合、カーボンブラックの配合量を増やす必要があり、低燃費性の点で好ましくない。また、シリカの合計含有量は、好ましくは150質量部以下、より好ましくは100質量部以下、特に好ましくは80質量部以下である。シリカの合計含有量が前記範囲を超えると、耐候性(耐紫外線クラック性)の改善や着色に必要な最小限量(10質量部程度)のカーボンブラックを配合した場合、シリカとカーボンブラックの合計含有量が過剰なために、低燃費性が悪化する傾向があるとともに、フィラーが多すぎて加工性が損なわれる場合がある。 In the polymer composition according to the present embodiment, the total content of silica containing (B) first silica and (C) second silica is preferably (A) with respect to 100 parts by mass of the conjugated diene polymer. It is 20 parts by mass or more, more preferably 30 parts by mass or more, further preferably 40 parts by mass or more, and particularly preferably 45 parts by mass or more. When the total content of silica is less than the above range, it is necessary to increase the blending amount of carbon black, which is not preferable in terms of fuel efficiency. The total content of silica is preferably 150 parts by mass or less, more preferably 100 parts by mass or less, and particularly preferably 80 parts by mass or less. When the total content of silica exceeds the above range, the total content of silica and carbon black is contained when the minimum amount (about 10 parts by mass) of carbon black necessary for improving weather resistance (ultraviolet crack resistance) and coloring is blended. Since the amount is excessive, the fuel efficiency tends to deteriorate, and the filler may be too much to impair the workability.
 本実施形態に係る重合体組成物が含有するシリカ全体のCTAB比表面積は、115~130m/gの範囲内であることが好ましい。シリカ全体のCTAB比表面積が前記範囲にあると、シリカの分散性が改善されることによって重合体組成物の加工性がより良好となり、優れたゴム破断強度、耐摩耗性及び低燃費性を有する架橋重合体(タイヤ)を得ることができる。 The CTAB specific surface area of the entire silica contained in the polymer composition according to the present embodiment is preferably in the range of 115 to 130 m 2 / g. When the CTAB specific surface area of the entire silica is within the above range, the dispersibility of the silica is improved, so that the processability of the polymer composition becomes better, and the polymer composition has excellent rubber breaking strength, wear resistance and low fuel consumption. A crosslinked polymer (tire) can be obtained.
 また、本実施形態に係る重合体組成物では、(B)第1シリカと(C)第2シリカとを質量基準で25:75~75:25となる量比で含有することが好ましく、40:60~60:40となる量比で含有することがより好ましい。前記の量比で(B)第1シリカと(C)第2シリカとを含有することにより、シリカの分散性が改善されることによって重合体組成物の加工性がより良好となり、優れたゴム破断強度、耐摩耗性及び低燃費性を有する架橋重合体(タイヤ)を得ることができる。 Further, in the polymer composition according to the present embodiment, it is preferable that (B) first silica and (C) second silica are contained in an amount ratio of 25:75 to 75:25 on a mass basis, 40. It is more preferable to contain it in an amount ratio of: 60 to 60:40. By containing (B) the first silica and (C) the second silica in the above-mentioned amount ratio, the dispersibility of the silica is improved, so that the processability of the polymer composition becomes better, and the excellent rubber. A crosslinked polymer (tire) having breaking strength, wear resistance and low fuel consumption can be obtained.
 本実施形態に係る重合体組成物では、(B)第1シリカ及び(C)第2シリカ以外のシリカを含有してもよい。なお、本実施形態に係る重合体組成物に含有される無機充填剤100質量%中の(B)第1シリカ及び(C)第2シリカの合計含有量は、好ましくは80質量%以上、より好ましくは90質量%以上である。(B)第1シリカ及び(C)第2シリカの合計含有量が前記範囲未満である場合、残りの無機充填剤としてカーボンブラックを使用すると、ウエットグリップ性能が悪化する傾向があり、また、カーボンブラック以外の充填剤を使用すると、耐摩耗性が悪化する場合がある。 The polymer composition according to the present embodiment may contain silica other than (B) first silica and (C) second silica. The total content of (B) first silica and (C) second silica in 100% by mass of the inorganic filler contained in the polymer composition according to the present embodiment is preferably 80% by mass or more. It is preferably 90% by mass or more. When the total content of (B) 1st silica and (C) 2nd silica is less than the above range, the use of carbon black as the remaining inorganic filler tends to deteriorate the wet grip performance, and carbon The use of fillers other than black may reduce wear resistance.
 1.3.その他の成分
 本実施形態に係る重合体組成物は、上記の成分の他に、必要に応じて、(A)共役ジエン系重合体以外のその他のジエン系重合体、(B)第1シリカ及び(C)第2シリカ以外のその他の無機充填剤、シランカップリング剤、架橋剤、酸性化合物、伸展油(プロセス油)、老化防止剤、加硫促進剤の他、必要に応じて加硫助剤、加工助剤、スコーチ防止剤及び酸化亜鉛、軟化剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、酸化防止剤、紫外線防止剤、帯電防止剤、着色防止剤などの公知の添加剤を、重合体組成物の使用目的に応じて使用することができる。
1.3. Other Ingredients In addition to the above-mentioned components, the polymer composition according to the present embodiment contains, if necessary, other diene-based polymers other than (A) conjugated diene-based polymer, (B) first silica, and (C) Other inorganic fillers other than the second silica, silane coupling agents, cross-linking agents, acidic compounds, spreading oils (process oils), antiaging agents, vulcanization accelerators, and vulcanization aids as necessary. Known additives such as agents, processing aids, scorch inhibitors and zinc oxides, softeners, colorants, flame retardants, lubricants, foaming agents, plastics, antioxidants, UV inhibitors, antistatic agents, anticoloring agents, etc. The agent can be used depending on the intended use of the polymer composition.
<その他の重合体>
 本実施形態に係る重合体組成物は、(A)共役ジエン系重合体以外のジエン系重合体を含有してもよい。このようなジエン系重合体としては、共役ジエン化合物に由来する繰り返し単位を有すれば特に制限されないが、例えば、天然ゴム、ポリブタジエン、ポリイソプレン、エチレン-プロピレン-ジエンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム等が挙げられる。
<Other polymers>
The polymer composition according to the present embodiment may contain a diene-based polymer other than the (A) conjugated diene-based polymer. Such a diene-based polymer is not particularly limited as long as it has a repeating unit derived from a conjugated diene compound, and for example, natural rubber, polybutadiene, polyisoprene, ethylene-propylene-diene rubber, styrene-butadiene rubber, acrylonitrile-. Examples include butadiene rubber.
 本実施形態に係る重合体組成物がその他の重合体を含有する場合、その他の重合体の含有量は、重合体組成物に含有される重合体成分の合計量を100質量部としたときに、好ましくは50質量部以下であり、より好ましくは40質量部以下であり、特に好ましくは35質量部以下である。 When the polymer composition according to the present embodiment contains other polymers, the content of the other polymers is when the total amount of the polymer components contained in the polymer composition is 100 parts by mass. It is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, and particularly preferably 35 parts by mass or less.
<その他の無機充填剤>
 本実施形態に係る重合体組成物は、得られる架橋重合体の低ロス性、耐摩耗性、ウエットグリップ性をさらに向上させるために、(B)第1シリカ及び(C)第2シリカ以外の無機充填剤を含有してもよい。無機充填剤としては、例えば(B)第1シリカ及び(C)第2シリカ以外のシリカ、カーボンブラック、及びこれらの混合物が挙げられる。
<Other inorganic fillers>
The polymer composition according to the present embodiment is other than (B) first silica and (C) second silica in order to further improve the low loss property, wear resistance and wet grip property of the obtained crosslinked polymer. It may contain an inorganic filler. Examples of the inorganic filler include (B) silica other than the first silica and (C) the second silica, carbon black, and a mixture thereof.
 カーボンブラックとしては、特に制限されず、ゴム組成物に配合される一般的なものを用いることができ、具体例としては、例えば、GPF、FEF、HAF、ISAF、SAFなどが挙げられる。これらの中では、ISAF、SAF、HAFが好ましく、ISAFがより好ましい。 The carbon black is not particularly limited, and a general one blended in the rubber composition can be used, and specific examples thereof include GPF, FEF, HAF, ISAF, SAF and the like. Among these, ISAF, SAF and HAF are preferable, and ISAF is more preferable.
 カーボンブラックの使用割合は、重合体成分100質量部に対して、好ましくは0~130質量部であり、より好ましくは2~110質量部である。 The ratio of carbon black used is preferably 0 to 130 parts by mass, and more preferably 2 to 110 parts by mass with respect to 100 parts by mass of the polymer component.
<シランカップリング剤>
 シランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(2-トリメトキシシリルエチル)テトラスルフィド、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン;3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾリルテトラスルフィド、3-トリエトキシシリルプロピルメタクリレートモノスルフィド、3-トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3-ジエトキシメチルシリルプロピル)テトラスルフィド、3-メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド、3-オクタノイルチオ-1-プロピルトリエトキシシランなどが挙げられる。これらの化合物は、1種単独でまたは2種以上組み合わせて用いることができる。また、これらの中では、補強性改善効果などの観点から、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィドが好ましい。
<Silane coupling agent>
Examples of the silane coupling agent include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and bis (2-triethoxy). Cyrilethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (2-trimethoxysilylethyl) tetrasulfide, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 2-mercaptoethyl Trimethoxysilane, 2-mercaptoethyltriethoxysilane; 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, 2-triethoxy Cyrilethyl-N, N-dimethylthiocarbamoyltetrasulfide, 3-trimethoxysilylpropylbenzothiazolyltetrasulfide, 3-triethoxysilylpropylbenzolyltetrasulfide, 3-triethoxysilylpropylmethacrylate monosulfide, 3-tri Methoxysilylpropyl methacrylate monosulfide, bis (3-diethoxymethylsilylpropyl) tetrasulfide, 3-mercaptopropyl dimethoxymethylsilane, dimethoxymethylsilylpropyl-N, N-dimethylthiocarbamoyltetrasulfide, dimethoxymethylsilylpropylbenzothiazoli Examples thereof include lutetrasulfide and 3-octanoylthio-1-propyltriethoxysilane. These compounds can be used alone or in combination of two or more. Among these, bis (3-triethoxysilylpropyl) trisulfide, bis (3-triethoxysilylpropyl) disulfide, and 3-trimethoxysilylpropylbenzothiazolyltetra from the viewpoint of improving the reinforcing property. Sulfide is preferred.
 シランカップリング剤の使用割合は、(B)第1シリカ、(C)第2シリカ及びその他の無機充填剤成分の合計100質量部に対して、0.5~20質量部であることが好ましい。シランカップリング剤の使用割合が前記範囲にあると、重合体組成物から形成される架橋重合体に十分な補強性及び耐破壊特性を付与することができ、架橋重合体の耐摩耗性を向上できる。 The ratio of the silane coupling agent used is preferably 0.5 to 20 parts by mass with respect to 100 parts by mass in total of (B) first silica, (C) second silica and other inorganic filler components. .. When the ratio of the silane coupling agent used is within the above range, sufficient reinforcing properties and fracture resistance can be imparted to the crosslinked polymer formed from the polymer composition, and the wear resistance of the crosslinked polymer is improved. can.
<架橋剤>
 架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられる。これらの中では、通常、架橋剤として硫黄が用いられる。架橋剤の使用割合は、重合体成分100質量部に対して、0.1~10質量部であることが好ましく、0.5~5質量部であることがより好ましい。
<Crosslinking agent>
Examples of the cross-linking agent include sulfur, sulfur halides, organic peroxides, quinonedioximes, organic polyvalent amine compounds, and alkylphenol resins having a methylol group. Among these, sulfur is usually used as a cross-linking agent. The ratio of the cross-linking agent used is preferably 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
<酸性化合物>
 酸性化合物としては、炭素数12~24の飽和脂肪酸及びそれらの金属塩が好適に用いられる。酸性化合物の具体例としては、ラウリル酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ノナデシル酸、アラキジン酸、ヘンイコシル酸、ベヘン酸、トリコシル酸、リグノセリン酸、及びこれらの飽和脂肪酸の、カルシウム塩、亜鉛塩などが挙げられる。これらの酸性化合物は、1種単独でまたは2種以上組み合わせて用いることができる。これらの中では、ステアリン酸が好ましい。酸性化合物の使用割合は、重合体成分100質量部に対して、0.3~15質量部であることが好ましい。
<Acid compound>
As the acidic compound, saturated fatty acids having 12 to 24 carbon atoms and metal salts thereof are preferably used. Specific examples of acidic compounds include lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, margaric acid, stearic acid, nonadesilic acid, arachidic acid, henicosyl acid, bechenic acid, tricosyl acid, lignoceric acid, and these. Saturated fatty acids such as calcium salt and zinc salt can be mentioned. These acidic compounds can be used alone or in combination of two or more. Of these, stearic acid is preferred. The ratio of the acidic compound used is preferably 0.3 to 15 parts by mass with respect to 100 parts by mass of the polymer component.
<他の添加剤>
 伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。伸展油の使用割合は、重合体成分100質量部に対して、0~50質量部である。
<Other additives>
Examples of the spreading oil include aroma oil, naphthenic oil, paraffin oil and the like. The ratio of the spread oil used is 0 to 50 parts by mass with respect to 100 parts by mass of the polymer component.
 老化防止剤としては、例えば、N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン等が挙げられる。老化防止剤の使用割合は、重合体成分100質量部に対して、0.5~5質量部である。 Examples of the antiaging agent include N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine and the like. The proportion of the antioxidant used is 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
 加硫助剤としては、例えば、酸化亜鉛等が挙げられる。加硫助剤の使用割合は、重合体成分100質量部に対して、1~5質量部である。 Examples of the vulcanization aid include zinc oxide and the like. The ratio of the vulcanization aid used is 1 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
 加硫促進剤としては、グアジニン系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が挙げられる。加硫促進剤の好ましい具体例としては、N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド(CBS)、N-テトラ-ブチル-2-ベンゾチアジルスルフェンアミド(TBBS)等のスルフェンアミド系加硫促進剤が挙げられる。加硫促進剤の使用割合は、塩基性化合物の種類及び使用割合を考慮して適宜に定められるが、重合体成分100質量部に対して、0.5~5質量部であることが好ましい。 Examples of the vulcanization accelerator include guadinin-based, aldehyde-amine-based, aldehyde-ammonia-based, thiazole-based, sulfenamide-based, thiourea-based, thiuram-based, dithiocarbamate-based, and zantate-based compounds. Preferred specific examples of the vulcanization accelerator are sulfenamides such as N-cyclohexyl-2-benzothiadylsulfenamide (CBS) and N-tetra-butyl-2-benzothiadylsulfenamide (TBBS). Examples include vulcanization accelerators. The ratio of the vulcanization accelerator to be used is appropriately determined in consideration of the type and ratio of the basic compound, but is preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the polymer component.
 1.4.重合体組成物の製造方法
 本実施形態に係る重合体組成物は、上記の各成分を、例えばプラストミル、バンバリーミキサー、ロール、インターナルミキサー等の混練機を用いて混練することによって調製することができる。例えば、下記の方法によって調製することが好ましい。
1.4. Method for Producing Polymer Composition The polymer composition according to the present embodiment can be prepared by kneading each of the above components using a kneader such as a plast mill, a Banbury mixer, a roll, or an internal mixer. can. For example, it is preferable to prepare by the following method.
<一段目の混練>
 一段目の混練においては、(A)共役ジエン系重合体と共に、(B)第1シリカ及び(C)第2シリカ、必要に応じてその他の無機充填剤及びシランカップリング剤が混練されることが好ましい。また、一段目の混練においては、必要に応じて、その他の重合体、伸展油及び老化防止剤なども共に混練される。また、一段目の混練においては、二段目の混練において混練されることが好ましいとされる、酸性化合物が共に混練されてもよい。
<First stage kneading>
In the first-stage kneading, (A) the conjugated diene-based polymer, (B) the first silica and (C) the second silica, and if necessary, other inorganic fillers and silane coupling agents are kneaded. Is preferable. Further, in the first-stage kneading, other polymers, spreading oils, antiaging agents and the like are also kneaded together, if necessary. Further, in the first-stage kneading, the acidic compounds, which are preferably kneaded in the second-stage kneading, may be kneaded together.
 (B)第1シリカ及び(C)第2シリカやその他の無機充填剤を一段目の混練に供することによって、これらの分散性が良好となりやすく、得られる重合体組成物から形成されるタイヤ(架橋重合体)の低燃費性能が向上する場合がある。 By subjecting (B) first silica, (C) second silica and other inorganic fillers to the first-stage kneading, the dispersibility of these is likely to be improved, and a tire formed from the obtained polymer composition ( The low fuel consumption performance of the crosslinked polymer) may be improved.
 また、一段目の混練にシランカップリング剤を供する場合には、先ず、(A)共役ジエン系重合体、その他の重合体、(B)第1シリカ、(C)第2シリカ、及び必要に応じてその他の無機充填剤を混練し、その後、シランカップリング剤を添加(後添加)して更に混練することが好ましい。 When a silane coupling agent is used for the first-stage kneading, first, (A) a conjugated diene-based polymer, other polymers, (B) first silica, (C) second silica, and if necessary. It is preferable to knead other inorganic fillers accordingly, and then add (post-add) a silane coupling agent and further knead.
 一段目の混練においてシランカップリング剤を後添加することにより、得られる重合体組成物がより加工性に優れたものとなり、該重合体組成物から形成される架橋重合体がより優れた低ヒステリシス特性を有するものとなる。また、一段目の混練においてシランカップリング剤を後添加することにより、(B)第1シリカ及び(C)第2シリカの分散性をより良好なものとすることができる場合がある。 By post-adding the silane coupling agent in the first-stage kneading, the obtained polymer composition becomes more processable, and the crosslinked polymer formed from the polymer composition has more excellent low hysteresis. It will have characteristics. Further, by adding a silane coupling agent afterwards in the first-stage kneading, the dispersibility of (B) first silica and (C) second silica may be improved.
 シランカップリング剤を後添加する場合において、シランカップリング剤の添加タイミングは、シリカの種類、シリカの使用割合及び混練条件などに応じ、(A)共役ジエン系重合体及びその他の重合体の使用割合などを考慮して適宜に定められる。 When the silane coupling agent is added afterwards, the timing of adding the silane coupling agent depends on the type of silica, the ratio of silica used, the kneading conditions, etc., and (A) the use of the conjugated diene polymer and other polymers. It is determined as appropriate in consideration of the ratio.
 また、シランカップリング剤を後添加する場合においては、(A)共役ジエン系重合体及びその他の重合体を配合して0.5~10分間にわたって混練した後、シランカップリング剤を添加して0.5~10分間にわたって混練することが好ましい。 When the silane coupling agent is added afterwards, the (A) conjugated diene polymer and other polymers are blended and kneaded for 0.5 to 10 minutes, and then the silane coupling agent is added. It is preferable to knead for 0.5 to 10 minutes.
 一段目の混練に用いられる混練機としては、プラストミル、バンバリーミキサー、ロール、インターナルミキサーなどの開放式または密閉式の混練機が挙げられる。また、一段目の混練において、混練温度は、30℃~180℃とされ、好ましくは50~160℃である。 Examples of the kneader used for the first-stage kneading include an open type or a closed type kneader such as a plast mill, a Banbury mixer, a roll, and an internal mixer. Further, in the first-stage kneading, the kneading temperature is set to 30 ° C. to 180 ° C., preferably 50 to 160 ° C.
 また、一段目の混練にシランカップリング剤を供する場合においては、シランカップリング剤を後添加して混練する手法に限定されず、シランカップリング剤を、一段目の混練に供される他の全ての成分と共に一斉に混練する手法によって、シランカップリング剤を含有する混練物を得てもよい。また、(A)共役ジエン系重合体、(B)第1シリカ、(C)第2シリカ、及びシランカップリング剤が混練されるマスターバッチを作製した後に、その他の重合体、添加剤を添加する方法でもよい。 Further, when the silane coupling agent is applied to the first-stage kneading, the method is not limited to the method of adding the silane coupling agent afterwards and kneading, and the silane coupling agent is used for the first-stage kneading. A kneaded product containing a silane coupling agent may be obtained by a method of kneading all the components at the same time. Further, after preparing a masterbatch in which (A) a conjugated diene-based polymer, (B) first silica, (C) second silica, and a silane coupling agent are kneaded, other polymers and additives are added. It may be a method of doing.
<二段目の混練>
 二段目の混練は、一段目の混練において得られた混練物に、少なくとも架橋剤を添加し、当該混練物と架橋剤とを混練し、重合体組成物を得る工程である。この二段目の混練においては、一段目の混練において得られた混練物と架橋剤と共に、酸性化合物が混練されることが好ましい。また、二段目の混練においては、必要に応じて、酸化亜鉛及び加硫促進剤も共に混練される。そして、二段目の混練においては、通常、当該二段目の混練に供される全ての成分(具体的には、一段目の混練において得られた混練物、架橋剤、並びに、必要に応じて供される、酸性化合物及び酸化亜鉛や加硫促進剤などのその他の成分)を一斉に混練する手法によって重合体組成物が得られる。
<Second stage kneading>
The second-stage kneading is a step of adding at least a cross-linking agent to the kneaded product obtained in the first-stage kneading and kneading the kneaded product and the cross-linking agent to obtain a polymer composition. In this second-stage kneading, it is preferable that the acidic compound is kneaded together with the kneaded product obtained in the first-stage kneading and the cross-linking agent. Further, in the second stage kneading, zinc oxide and the vulcanization accelerator are also kneaded together, if necessary. Then, in the second-stage kneading, all the components normally subjected to the second-stage kneading (specifically, the kneaded product obtained in the first-stage kneading, the cross-linking agent, and, if necessary), are used. A polymer composition is obtained by a method of simultaneously kneading an acidic compound and other components such as zinc oxide and a vulcanization accelerator.
 二段目の混練に酸性化合物を供することにより、得られる重合体組成物がより加工性に優れたものとなり、また、重合体組成物から形成される架橋重合体が、より優れた低ヒステリシス特性を有するものとなる。 By applying the acidic compound to the second stage kneading, the obtained polymer composition has more excellent processability, and the crosslinked polymer formed from the polymer composition has more excellent low hysteresis characteristics. Will have.
 二段目の混練においては、一段目の混練において用いた混練機が用いられる。また、二段目の混練において、混練温度は、30℃~130℃とされ、好ましくは50℃~110℃である。 In the second stage kneading, the kneading machine used in the first stage kneading is used. Further, in the second stage kneading, the kneading temperature is set to 30 ° C. to 130 ° C., preferably 50 ° C. to 110 ° C.
 以上のような製造方法によって得られる重合体組成物は、未加硫ゴム組成物であり、例えば加硫などの架橋処理をすることによって架橋重合体が形成されるものである。 The polymer composition obtained by the above-mentioned production method is an unvulcanized rubber composition, and a crosslinked polymer is formed by subjecting it to a crosslinking treatment such as vulcanization, for example.
 1.5.用途
 本実施形態に係る重合体組成物から形成される架橋重合体は、タイヤ、具体的にはタイヤのトレッドとして好適に用いられる。本実施形態に係る重合体組成物から形成されるタイヤには、トレッドに高い強度が得られ、またトレッドに所望の形状が得られるため、優れた性能が得られる。また、本実施形態に係る重合体組成物から形成される架橋重合体は、トレッド以外のタイヤ部材、防振ゴム、防舷材、ベルト、ホース、及びその他の工業品などとして用いることもできる。
1.5. Applications The crosslinked polymer formed from the polymer composition according to this embodiment is suitably used as a tire, specifically, a tread of a tire. The tire formed from the polymer composition according to the present embodiment has high strength in the tread and a desired shape in the tread, so that excellent performance can be obtained. Further, the crosslinked polymer formed from the polymer composition according to the present embodiment can also be used as a tire member other than a tread, a vibration-proof rubber, a fender, a belt, a hose, and other industrial products.
 2.実施例
 以下、本発明の具体的な実施例について説明するが、本発明はこれらの実施例に限定されるものではない。なお、下記製造例、実施例及び比較例中の「%」は、特に断りのない限り質量基準である。
2. 2. Examples Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to these examples. In addition, "%" in the following production examples, examples and comparative examples is based on mass unless otherwise specified.
 2.1.(A)共役ジエン系重合体の製造例
<製造例1>
 窒素置換された内容積16リットルのオートクレーブ反応器に、1,3-ブタジエンを27.3g/分、スチレンを18.2g/分、溶媒としてシクロヘキサンを237.1g/分、テトラヒドロフランを3.3g/分、n-ブチルリチウムを0.283mmol/分(18.11mg/分)で連続的にチャージし、リアクターの温度は75℃でコントロールした。1基目の反応器から連続的に重合体溶液を321.9g/分でデスチャージし、これに、N,N,N’,N’-テトラキス(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパンを0.0742mmol/分で添加しラインミキシングし、2基目の反応器に連続的に導入し反応を行った。2基目の反応器の出口にてジ-tert-ブチル-p-クレゾールを重合体成分100質量部に対して0.7質量部添加した。次いで、スチームストリッピングにより脱溶媒を行い、110℃に調温された熱ロールによりゴムを乾燥し、変性共役ジエン系共重合体(以下、「SBR-1」ともいう。)を得た。
2.1. (A) Production Example of Conjugated Diene Polymer <Production Example 1>
In an autoclave reactor with an internal volume of 16 liters substituted with nitrogen, 1,3-butadiene was 27.3 g / min, styrene was 18.2 g / min, cyclohexane was 237.1 g / min, and tetrahydrofuran was 3.3 g / min. Minutes, n-butyllithium was continuously charged at 0.283 mmol / min (18.11 mg / min) and the reactor temperature was controlled at 75 ° C. The polymer solution was continuously decharged from the first reactor at 321.9 g / min, to which N, N, N', N'-tetrakis (3-triethoxysilylpropyl) -1,3 -Diaminopropane was added at 0.0742 mmol / min, line-mixed, and continuously introduced into the second reactor to carry out the reaction. At the outlet of the second reactor, 0.7 parts by mass of di-tert-butyl-p-cresol was added to 100 parts by mass of the polymer component. Then, the solvent was removed by steam stripping, and the rubber was dried by a heat roll adjusted to 110 ° C. to obtain a modified conjugated diene-based copolymer (hereinafter, also referred to as “SBR-1”).
<製造例2>
 製造例1において、N,N,N’,N’-テトラキス(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパンに代えて、N-(3-イミダゾリルプロピル)-N,N-ビス(3-トリエトキシシリルプロピル)アミン0.0742mmol/分で添加した以外は製造例1と同様の操作を行い、変性共役ジエン系共重合体(以下、「SBR-2」ともいう。)を得た。
<Manufacturing example 2>
In Production Example 1, instead of N, N, N', N'-tetrakis (3-triethoxysilylpropyl) -1,3-diaminopropane, N- (3-imidazolylpropyl) -N, N-bis (3-imidazolylpropyl) -N, N-bis ( The same procedure as in Production Example 1 was carried out except that 3-triethoxysilylpropyl) amine was added at 0.0742 mmol / min to obtain a modified conjugated diene-based copolymer (hereinafter, also referred to as “SBR-2”). ..
<製造例3>
 製造例1において、N,N,N’,N’-テトラキス(3-トリエトキシシリルプロピル)-1,3-ジアミノプロパンを添加しなかった以外は製造例1と同様の操作を行い、共役ジエン系共重合体(以下、「SBR-3」ともいう。)を得た。
<Manufacturing example 3>
In Production Example 1, the same operation as in Production Example 1 was performed except that N, N, N', N'-tetrakis (3-triethoxysilylpropyl) -1,3-diaminopropane were not added, and the conjugated diene was performed. A system copolymer (hereinafter, also referred to as “SBR-3”) was obtained.
 2.2.物性の測定方法
<数平均分子量(Mn)及び重量平均分子量(Mw)の測定>
 上記で製造された各重合体について、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー社製の「HLC-8120」)を用い、下記のGPC条件で得られたGPC曲線の最大ピークの頂点に相当する保持時間から、ポリスチレン換算の数平均分子量(Mn)及び重量平均分子量(Mw)を算出した。
(GPC条件)
 カラム:商品名「GMHXL」(東ソー社製)2本
 カラム温度:40℃
 移動相:テトラヒドロフラン
 流速:1.0ml/分
 サンプル濃度:10mg/20ml
2.2. Measurement method of physical properties <Measurement of number average molecular weight (Mn) and weight average molecular weight (Mw)>
For each polymer produced above, gel permeation chromatography (GPC) (“HLC-8120” manufactured by Tosoh Corporation) corresponds to the peak of the maximum peak of the GPC curve obtained under the following GPC conditions. From the holding time, the polystyrene-equivalent number average molecular weight (Mn) and weight average molecular weight (Mw) were calculated.
(GPC condition)
Column: Product name "GMHXL" (manufactured by Tosoh Corporation) 2 columns Column temperature: 40 ° C
Mobile phase: Tetrahydrofuran Flow rate: 1.0 ml / min Sample concentration: 10 mg / 20 ml
<ビニル含量、結合スチレン含量の測定>
・ビニル含量(%):400MHzのH-NMR測定によって測定した。
・結合スチレン含量(%):400MHzのH-NMR測定によって測定した。結合スチレン含量は、芳香族ビニル含量に相当するパラメータである。
<Measurement of vinyl content and bound styrene content>
-Vinyl content (%): Measured by 1 H-NMR measurement at 400 MHz.
-Binding styrene content (%): Measured by 1 H-NMR measurement at 400 MHz. The bound styrene content is a parameter corresponding to the aromatic vinyl content.
 2.3.実施例1~14及び比較例1~9
 2.3.1.重合体組成物及び架橋重合体の製造
 下表3~下表4に示す配合処方により各成分を配合し、それらを混練することによって各重合体組成物を製造した。混練は以下の方法で行った。
2.3. Examples 1 to 14 and Comparative Examples 1 to 9
2.3.1. Production of Polymer Composition and Crosslinked Polymer Each component was blended according to the compounding formulations shown in Tables 3 to 4 below, and each component was kneaded to produce each polymer composition. Kneading was performed by the following method.
 温度制御装置を付属したプラストミル(内容量:250ml)を使用し、一段目の混練)として、充填率72%、回転数60rpmの条件で、下表3~下表4に示す重合体成分、シリカ、カーボンブラック、シランカップリング剤、ステアリン酸、老化防止剤、酸化亜鉛、伸展油を混練した。次いで、二段目の混練として、上記で得られた混練物を室温まで冷却後、加硫促進剤、硫黄を混練することにより、実施例1~14及び比較例1~9の各重合体組成物を得た。 As a plast mill (contents: 250 ml) with a temperature control device, the polymer component shown in Tables 3 to 4 below, silica, under the conditions of a filling rate of 72% and a rotation speed of 60 rpm as the first stage kneading). , Carbon black, silane coupling agent, stearic acid, anti-aging agent, zinc oxide, and spreading oil were kneaded. Next, as the second-stage kneading, the kneaded product obtained above is cooled to room temperature, and then the vulcanization accelerator and sulfur are kneaded to form the polymers of Examples 1 to 14 and Comparative Examples 1 to 9. I got something.
 次に、得られた各重合体組成物を成形し、160℃で所定時間、加硫プレスにて加硫し、下記の評価試験に供する所定の形状を有する各架橋重合体を得た。 Next, each of the obtained polymer compositions was molded and vulcanized at 160 ° C. for a predetermined time by a vulcanization press to obtain each crosslinked polymer having a predetermined shape to be subjected to the following evaluation test.
 2.3.2.重合体組成物及び架橋重合体の評価
 得られた各重合体組成物及び各架橋重合体について、以下の評価試験を行った。結果を下表3~下表4に示す。
2.3.2. Evaluation of Polymer Composition and Crosslinked Polymer The following evaluation tests were performed on each of the obtained polymer compositions and each crosslinked polymer. The results are shown in Tables 3 to 4 below.
<破断強度>
 JIS K6251:2010に準拠して、試験用加硫ゴムシートからなる3号ダンベル型試験片を作製し、評価用の試験片とした。引張試験機(型名「AG-2000」、株式会社島津製作所製)を用いて、負荷速度500mm/分にて上記試料片を引っ張り、破断強度(TB)を求めた。下表3~下表4においては、比較例1の測定値を基準として100とした場合の指数で表示し、数値が大きいほど高強度である。
<Breaking strength>
In accordance with JIS K6251: 2010, a No. 3 dumbbell type test piece made of a test vulcanized rubber sheet was prepared and used as a test piece for evaluation. Using a tensile tester (model name "AG-2000", manufactured by Shimadzu Corporation), the sample piece was pulled at a load speed of 500 mm / min to determine the breaking strength (TB). In Tables 3 to 4 below, the index is displayed when the measured value of Comparative Example 1 is set to 100, and the larger the value, the higher the intensity.
<耐摩耗性>
 加硫ゴムを測定用試料とし、DIN磨耗試験機(東洋精機社製)を使用し、JIS K6264-2:2005に準拠し、荷重10Nで25℃にて測定した。下表3~下表4においては、比較例1の測定値を基準として100とした場合の指数で表示し、数値が大きいほど耐摩耗性が良好である。
<Abrasion resistance>
Using a vulcanized rubber as a measurement sample, a DIN wear tester (manufactured by Toyo Seiki Co., Ltd.) was used, and the measurement was performed at 25 ° C. with a load of 10 N in accordance with JIS K6264-2: 2005. In Tables 3 to 4 below, the index is expressed when the measured value of Comparative Example 1 is set to 100, and the larger the value, the better the wear resistance.
<低燃費性(50℃tanδ)>
 加硫ゴムを測定用試料として、ARES-RDA(TA Instruments社製)を使用し、剪断歪0.7%、角速度100ラジアン毎秒、50℃の条件で、損失係数(tanδ(50℃))を測定した。下表3~下表4においては、比較例1の測定値を基準として100とした指数で表示し、tanδ(50℃)は数値が大きいほどエネルギーロスが小さく、低ヒステリシスロス特性が良好であることを示す。
<Fuel efficiency (50 ° C tan δ)>
Using vulcanized rubber as a measurement sample, ARES-RDA (manufactured by TA Instruments) was used, and the loss coefficient (tan δ (50 ° C)) was set under the conditions of shear strain 0.7%, angular velocity 100 radians per second, and 50 ° C. It was measured. In Tables 3 to 4 below, the index is expressed as 100 based on the measured value of Comparative Example 1, and the larger the value of tan δ (50 ° C.), the smaller the energy loss and the better the low hysteresis loss characteristic. Show that.
<加工性>
 JIS K6300-1:2013に準拠し、Lローターを使用して、予熱1分、ローター作動時間4分、温度100℃の条件で、重合体組成物のムーニー粘度を求めた。下表3~下表4においては、比較例1の測定値を基準として100とした指数で表示し、数値が大きいほど加工性が良好であることを示す。
<Workability>
According to JIS K6300-1: 2013, the Mooney viscosity of the polymer composition was determined using an L rotor under the conditions of preheating 1 minute, rotor operating time 4 minutes, and temperature 100 ° C. In Tables 3 to 4 below, the index is expressed as 100 based on the measured value of Comparative Example 1, and the larger the value, the better the workability.
 2.4.評価結果
 下表1に、上記で合成した各重合体の物性値を示す。下表2に、使用した各シリカの物性値を示す。下表3~下表4に、各重合体組成物の組成及び評価結果を示す。
2.4. Evaluation Results Table 1 below shows the physical characteristics of each polymer synthesized above. Table 2 below shows the physical property values of each silica used. Tables 3 to 4 below show the composition and evaluation results of each polymer composition.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 上表3~上表4中、重合体組成物の組成中の各成分の数値は質量部を表す。なお、上表3~上表4に示す各材料は、それぞれ以下の商品を用いた。
・シリカB1:ローディア社製、商品名「ZEOSIL Premium 200P」
・シリカB2:ローディア社製、商品名「ZEOSIL HRS 1200MP」
・シリカB3:エボニック社製、商品名「ULTRASIL VN3」
・シリカC1:ローディア社製、商品名「ZEOSIL 1115MP」
・シリカC2:Degussa社製、商品名「ULTRASIL 360」
・シリカC3:東ソー・シリカ社製、商品名「Nipsil E-743」
・伸展油:ジャパンエナジー社製、「X140」
・カーボンブラック:東海カーボン社製、商品名「シーストKH」
・シランカップリング剤:エボニック社製、商品名「Si69」
・ステアリン酸:日油社製、商品名「ビーズステアリン酸つばき」
・老化防止剤:住友化学工業社製、商品名「アンチゲン3C」
・加硫促進剤CZ:住友化学工業社製、商品名「ソクシノールCZ」、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド
・加硫促進剤D:住友化学工業社製、商品名「ソクシノールD」、1,3-ジフェニルグアニジン
・硫黄:鶴見化学工業社製、商品名「金華印油入微粉硫黄」
In Tables 3 to 4 above, the numerical values of each component in the composition of the polymer composition represent parts by mass. The following products were used as the materials shown in Tables 3 to 4 above.
-Silica B1: Made by Rhodia, trade name "ZEOSIL Premium 200P"
-Silica B2: Made by Rhodia, trade name "ZEOSIL HRS 1200MP"
-Silica B3: Evonik's product name "ULTRASIL VN3"
-Silica C1: Made by Rhodia, trade name "ZEOSIL 1115MP"
-Silica C2: Made by Degussa, trade name "ULTRASIL 360"
-Silica C3: Made by Tosoh Silica, trade name "Nipsil E-743"
・ Extension oil: "X140" manufactured by Japan Energy Co., Ltd.
-Carbon black: Made by Tokai Carbon Co., Ltd., product name "Seast KH"
-Silane coupling agent: Evonik, trade name "Si69"
・ Stearic acid: Made by NOF Corporation, trade name "Beads stearic acid camellia"
-Anti-aging agent: manufactured by Sumitomo Chemical Co., Ltd., product name "Antigen 3C"
-Vulcanization accelerator CZ: manufactured by Sumitomo Chemical Industries, Ltd., trade name "Soxinol CZ", N-cyclohexyl-2-benzothiazolesulfenamide-Vulcanization accelerator D: manufactured by Sumitomo Chemical Industries, Ltd., trade name "Soxinol D" , 1,3-Diphenylguanidine / Sulfur: Manufactured by Tsurumi Chemical Industry Co., Ltd.
 上表3~上表4の結果から、実施例1~14に係る重合体組成物は、(A)共役ジエン系重合体と、(B)第1シリカと、(C)第2シリカとを含有することで、比較例1に係る重合体組成物に比べて、加工性が良好となるため混練しやすくなること、及び、破断強度、耐摩耗性及び低燃費性においても高度にバランスに優れた架橋重合体が得られることが確認できた。 From the results of Tables 3 to 4, the polymer compositions according to Examples 1 to 14 consist of (A) conjugated diene-based polymer, (B) first silica, and (C) second silica. By containing it, the processability is improved as compared with the polymer composition according to Comparative Example 1, so that it is easy to knead, and the breaking strength, wear resistance and fuel efficiency are also highly balanced. It was confirmed that the crosslinked polymer was obtained.
 本発明は、上記の実施形態に限定されるものではなく、種々の変形が可能である。本発明は、実施形態で説明した構成と実質的に同一の構成(例えば、機能、方法および結果が同一の構成、あるいは目的および効果が同一の構成)を包含する。また本発明は、上記の実施形態で説明した構成の本質的でない部分を他の構成に置き換えた構成を包含する。さらに本発明は、上記の実施形態で説明した構成と同一の作用効果を奏する構成または同一の目的を達成することができる構成をも包含する。さらに本発明は、上記の実施形態で説明した構成に公知技術を付加した構成をも包含する。
 
The present invention is not limited to the above embodiment, and various modifications are possible. The present invention includes substantially the same configurations as those described in the embodiments (eg, configurations with the same function, method and result, or configurations with the same purpose and effect). The present invention also includes a configuration in which a non-essential part of the configuration described in the above embodiment is replaced with another configuration. Further, the present invention also includes a configuration having the same action and effect as the configuration described in the above embodiment or a configuration capable of achieving the same object. Further, the present invention also includes a configuration in which a known technique is added to the configuration described in the above embodiment.

Claims (8)

  1.  (A)共役ジエン化合物の重合体又は共役ジエン化合物と芳香族ビニル化合物の共重合体であって、活性重合末端と下記一般式(1)で表される化合物との反応物である、共役ジエン系重合体と、
     (B)CTAB比表面積が150m/g以上、かつ、BET比表面積が160m/g以上である第1シリカと、
     (C)CTAB比表面積が130m/g以下、かつ、BET比表面積が140m/g以下である第2シリカと、
    を含有する、重合体組成物。
    Figure JPOXMLDOC01-appb-C000001
     
    (式(1)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基であり、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基であり、Aは下記式(2)~(4)のいずれかの式で表される基である。)
    Figure JPOXMLDOC01-appb-C000002
     
    (式(2)~(4)中、*は上記式(1)のRと結合する部位である。式(2)及び式(4)中、Zはそれぞれ独立に、炭素数1~8のヒドロカルビル基又は炭素数1~8のヒドロカルビルオキシ基であり、各Siに結合するZのうち1個以上が炭素数1~8のヒドロカルビルオキシ基である。R、Rはそれぞれ独立に、炭素数1~8のヒドロカルビレン基である。)
    (A) A conjugated diene, which is a polymer of a conjugated diene compound or a copolymer of a conjugated diene compound and an aromatic vinyl compound, which is a reaction product of an active polymerization terminal and a compound represented by the following general formula (1). With the system polymer,
    (B) First silica having a CTAB specific surface area of 150 m 2 / g or more and a BET specific surface area of 160 m 2 / g or more.
    (C) Second silica having a CTAB specific surface area of 130 m 2 / g or less and a BET specific surface area of 140 m 2 / g or less.
    A polymer composition containing.
    Figure JPOXMLDOC01-appb-C000001

    (In the formula (1), Z is independently a hydrocarbyl group having 1 to 8 carbon atoms or a hydrocarbylviloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si has 1 to 8 carbon atoms. 8 hydrocarbyloxy groups. R 1 , R 2 and R 3 are independently hydrocarbylene groups having 1 to 8 carbon atoms, and A is one of the following formulas (2) to (4). It is a group represented by.)
    Figure JPOXMLDOC01-appb-C000002

    (In formulas (2) to (4), * is a site that binds to R 3 in the above formula (1). In formulas (2) and (4), Z has 1 to 8 carbon atoms independently. Hydrocarbyl group or hydrocarbyloxy group having 1 to 8 carbon atoms, and one or more of Z bonded to each Si is a hydrocarbyloxy group having 1 to 8 carbon atoms. R 4 and R 5 are independent of each other. It is a hydrocarbylene group having 1 to 8 carbon atoms.)
  2.  前記(A)共役ジエン系重合体100質量部に対して、前記(B)第1シリカを20質量部以上70質量部以下含有する、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the (B) first silica is contained in an amount of 20 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the (A) conjugated diene-based polymer.
  3.  前記(A)共役ジエン系重合体100質量部に対して、前記(C)第2シリカを20質量部以上70質量部以下含有する、請求項1又は請求項2に記載の重合体組成物。 The polymer composition according to claim 1 or 2, wherein the (C) second silica is contained in an amount of 20 parts by mass or more and 70 parts by mass or less with respect to 100 parts by mass of the (A) conjugated diene-based polymer.
  4.  前記(B)第1シリカと前記(C)第2シリカとを質量基準で25:75~75:25となる量比で含有する、請求項1ないし請求項3のいずれか一項に記載の重合体組成物。 The invention according to any one of claims 1 to 3, wherein the (B) first silica and the (C) second silica are contained in an amount ratio of 25:75 to 75:25 on a mass basis. Polymer composition.
  5.  前記(A)共役ジエン系重合体の、ゲルパーミエーションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量が10,000~2,000,000である、請求項1ないし請求項4のいずれか一項に記載の重合体組成物。 One of claims 1 to 4, wherein the polystyrene-equivalent weight average molecular weight of the (A) conjugated diene-based polymer measured by gel permeation chromatography is 10,000 to 2,000,000. The polymer composition according to.
  6.  更に、架橋剤を含有する、請求項1ないし請求項5のいずれか一項に記載の重合体組成物。 The polymer composition according to any one of claims 1 to 5, further comprising a cross-linking agent.
  7.  請求項6に記載の重合体組成物を用いて製造された架橋重合体。 A crosslinked polymer produced by using the polymer composition according to claim 6.
  8.  請求項7に記載の架橋重合体を使用したタイヤ。
     
    A tire using the crosslinked polymer according to claim 7.
PCT/JP2020/028893 2020-07-28 2020-07-28 Polymer composition, crosslinked polymer, and tire WO2022024219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028893 WO2022024219A1 (en) 2020-07-28 2020-07-28 Polymer composition, crosslinked polymer, and tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028893 WO2022024219A1 (en) 2020-07-28 2020-07-28 Polymer composition, crosslinked polymer, and tire

Publications (1)

Publication Number Publication Date
WO2022024219A1 true WO2022024219A1 (en) 2022-02-03

Family

ID=80037800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028893 WO2022024219A1 (en) 2020-07-28 2020-07-28 Polymer composition, crosslinked polymer, and tire

Country Status (1)

Country Link
WO (1) WO2022024219A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245247A (en) * 2012-05-23 2013-12-09 Asahi Kasei Chemicals Corp Rubber composition and method for producing the same
JP2016056350A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
WO2017150643A1 (en) * 2016-03-04 2017-09-08 株式会社ブリヂストン Rubber composition, laminate body, and conveyer belt
JP2019002028A (en) * 2015-02-19 2019-01-10 旭化成株式会社 Modified conjugated diene polymer and method for producing the same, rubber composition, and tire
WO2020070961A1 (en) * 2018-10-03 2020-04-09 旭化成株式会社 Conjugated diene polymer, branching agent, method for manufacturing conjugated diene polymer, extended conjugated diene polymer, rubber composition, and tire
JP2020100677A (en) * 2018-12-19 2020-07-02 株式会社ブリヂストン tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013245247A (en) * 2012-05-23 2013-12-09 Asahi Kasei Chemicals Corp Rubber composition and method for producing the same
JP2016056350A (en) * 2014-09-08 2016-04-21 住友ゴム工業株式会社 Pneumatic tire
JP2019002028A (en) * 2015-02-19 2019-01-10 旭化成株式会社 Modified conjugated diene polymer and method for producing the same, rubber composition, and tire
WO2017150643A1 (en) * 2016-03-04 2017-09-08 株式会社ブリヂストン Rubber composition, laminate body, and conveyer belt
WO2020070961A1 (en) * 2018-10-03 2020-04-09 旭化成株式会社 Conjugated diene polymer, branching agent, method for manufacturing conjugated diene polymer, extended conjugated diene polymer, rubber composition, and tire
JP2020100677A (en) * 2018-12-19 2020-07-02 株式会社ブリヂストン tire

Similar Documents

Publication Publication Date Title
KR102594509B1 (en) Polymer compositions, cross-linked polymers, and tires
WO2021020189A1 (en) Polymer composition, crosslinked polymer and tire
JP2019094390A (en) Method for producing modified conjugated diene polymer, polymer composition, crosslinked body and tire
EP3006227B1 (en) Rubber composition and pneumatic tire
JP7194641B2 (en) Polymer composition, method for producing the same, and tire
KR102619412B1 (en) Polymer compositions, cross-linked polymers, and tires
US11746216B2 (en) Polymer composition, crosslinked polymer, and tire
WO2022024219A1 (en) Polymer composition, crosslinked polymer, and tire
JP2022028234A (en) Polymer blend, method for producing the same, and rubber composition and pneumatic tire using the same
JP7458373B2 (en) Polymer compositions, crosslinked polymers, and tires
JP2020180218A (en) Polymer composition, cross-link polymer and tire
JPWO2020031904A1 (en) Pneumatic tires
WO2021125259A1 (en) Polymer composition, crosslinked polymer, and tire
WO2021256419A1 (en) Polymer composition, crosslinked polymer, and tire
WO2021112167A1 (en) Polymer composition manufacturing method
TW202204454A (en) Polymer composition, cross-linked polymer and tire A polymer composition that is excellent in processability, easy to knead, and has a high balance of breaking strength, abrasion resistance, and low fuel consumption
JP2020193289A (en) Rubber composition and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP