WO2023171628A1 - Polymer composition and method for producing same, crosslinked product, and tire - Google Patents

Polymer composition and method for producing same, crosslinked product, and tire Download PDF

Info

Publication number
WO2023171628A1
WO2023171628A1 PCT/JP2023/008379 JP2023008379W WO2023171628A1 WO 2023171628 A1 WO2023171628 A1 WO 2023171628A1 JP 2023008379 W JP2023008379 W JP 2023008379W WO 2023171628 A1 WO2023171628 A1 WO 2023171628A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
conjugated diene
component
compound
polymer composition
Prior art date
Application number
PCT/JP2023/008379
Other languages
French (fr)
Japanese (ja)
Inventor
利充 菊池
寛文 千賀
龍源 中濱
天斗 福本
拓哉 佐野
俊之 早川
Original Assignee
株式会社Eneosマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Eneosマテリアル filed Critical 株式会社Eneosマテリアル
Publication of WO2023171628A1 publication Critical patent/WO2023171628A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • Conjugated diene polymers obtained by polymerization using conjugated diene compounds have good properties such as heat resistance, abrasion resistance, mechanical strength, and moldability, so they are used in pneumatic tires, anti-vibration rubber, Widely used in various industrial products such as hoses.
  • Polymer compositions used to manufacture pneumatic tire treads, sidewalls, etc. contain conjugated diene polymers as well as reinforcing agents such as carbon black and silica to improve product durability and wear resistance. It is known to incorporate inorganic fillers. Furthermore, conventionally, in order to increase the affinity between the conjugated diene polymer and the reinforcing agent, a conjugated diene polymer modified with a compound containing silicon or nitrogen has been used (for example, Patent Document 1 (See 3).
  • the functional groups may react with each other or the functional groups themselves may be eliminated during the solvent removal process. It is assumed that radical side reactions such as these and side reactions with metal residues (for example, hydrogenation catalysts, etc.) may occur. Furthermore, there is a concern that the Mooney viscosity of the conjugated diene polymer is likely to change due to variations in the time for desolvation due to such side reactions occurring during desolvation.
  • the present disclosure has been made in view of the above-mentioned problems, and it is possible to reduce the process load and stabilize quality in the manufacturing process of a conjugated diene polymer, and to obtain a crosslinked product in which performance deterioration is suppressed.
  • One object is to provide a polymer composition.
  • the present disclosure provides the following polymer composition, method for producing the same, crosslinked product, and tire.
  • [2] A crosslinked product obtained by crosslinking the polymer composition of [1] above.
  • [3] A tire in which a tread, a sidewall, or both are formed using the polymer composition of [1] above.
  • [4] A method for producing the polymer composition of [1] above, which comprises polymerizing a monomer containing a conjugated diene compound and an aromatic vinyl compound in the presence of an alkali metal or an alkaline earth metal, and hydrogenating the monomer.
  • a step of obtaining a polymer solution containing the component (A) by mixing the polymer solution and the component (B) to form a mixture containing the component (A) and the component (B).
  • a method for producing a polymer composition comprising the steps of obtaining a liquid, and removing the solvent from the mixed liquid and drying it.
  • the present disclosure it is possible to reduce the process load and stabilize the quality in the manufacturing process of a conjugated diene polymer. Furthermore, by stabilizing the quality of the conjugated diene polymer during the manufacturing process, a crosslinked product with suppressed performance deterioration can be obtained.
  • a numerical range described using " ⁇ " represents a range that includes the numerical values described before and after " ⁇ " as a lower limit value and an upper limit value.
  • the polymer composition of the present disclosure (hereinafter also referred to as “the present composition") contains (A) a conjugated diene polymer and (B) a hindered phenol compound having a molecular weight of 250 to 2,000.
  • the present composition contains (A) a conjugated diene polymer and (B) a hindered phenol compound having a molecular weight of 250 to 2,000.
  • (A) component Conjugated diene polymer>
  • the conjugated diene polymer that is component (A) (hereinafter also referred to as "(A) conjugated diene polymer”) has a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound. It is a copolymer.
  • the conjugated diene polymer includes a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), a structural unit represented by the following formula (3), and a structural unit represented by the following formula (
  • the composition ratios (molar ratios) of the structural units represented by 4) in the polymer are p, q, r, and s, respectively
  • the molecular structure of the conjugated diene polymer is not particularly limited.
  • the conjugated diene polymer may be a linear polymer (hereinafter also referred to as "linear polymer”) or a polymer having a multi-branched structure (hereinafter also referred to as “branched polymer”). or a mixture thereof.
  • Conjugated diene polymer is a conjugated diene polymer with four or more branches, in that it is possible to obtain a crosslinked product with suppressed deterioration of physical properties (for example, deterioration of strength, viscoelastic properties, and abrasion resistance). It is preferable to include.
  • Part or all of the conjugated diene polymer (A) contained in the present composition contains a functional group (hereinafter referred to as "specific functional group") containing at least one element selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorus. (also called “base”).
  • specific functional group a functional group containing at least one element selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorus.
  • a polymer having a specific functional group (hereinafter also referred to as a "functional group-containing polymer"), the position of the specific functional group in the polymer is not particularly limited.
  • the functional group-containing polymer include polymers having specific functional groups in the molecular chain (that is, between the ends of the molecular chain), at the ends of the molecular chain, or in both of these.
  • the functional group-containing polymer may have the specific functional group at the polymerization start end, or at the polymerization end end, and may have the specific functional group at the end of the polymerization end. It may be present at both the starting end and the polymerization ending end.
  • the functional group-containing polymer may have a specific functional group at a part of the terminal end in one polymer molecule, or may have a specific functional group at all the terminal ends in one polymer molecule.
  • Functional group-containing polymers are particularly effective in improving the various physical properties (e.g., mechanical strength, abrasion resistance, viscoelastic properties, fuel efficiency, etc.) of the crosslinked product obtained using the present composition. It is preferable that the above terminal has a specific functional group.
  • the term "functional group” refers to a group having a specific structure within the molecule of an organic compound, and refers to an atomic group or bonding style that characterizes the compound.
  • Specific functional groups possessed by the functional group-containing polymer include, for example, a primary amino group, a secondary amino group, a tertiary amino group, a nitrogen-containing group in which two hydrogen atoms of a primary amino group are protected, and a secondary amino group.
  • Examples include a sulfur-containing group, a nitrogen-containing heterocyclic group (for example, a group having a heterocycle such as a pyridine ring and an imide ring), a hydrocarbyloxysilyl group, a hydrocarbyloxycarbonyl group, an ether bond, a thioether bond, and the like.
  • the functional group-containing polymer contained in the conjugated diene polymer includes a conjugated diene polymer having an active end, a reaction point with the active end of the conjugated diene polymer, and a compound having a specific functional group.
  • modified polymer can be preferably used.
  • a compound hereinafter also referred to as a "modifier” having a reactive site with the active end of the conjugated diene polymer and a specific functional group
  • the number of reactive sites with the active end may be one, or two or more. There may be.
  • Specific examples of the specific functional group possessed by the modifier include the same groups and bonds as specific examples of the specific functional group possessed by the functional group-containing polymer.
  • Such a modified polymer can be obtained by using, as a modifying agent, a coupling agent or a terminal modifying agent, which will be described later, and a compound having a specific functional group during production of the modified polymer.
  • the modified polymer may be a polymer obtained by further using, in addition to a coupling agent or a terminal modifying agent, a starting terminal modifying agent to be described later in the reaction for obtaining the modified polymer.
  • the conjugated diene polymer (A) contains a functional group-containing polymer (preferably a modified polymer)
  • the branched polymer and the functional group-containing polymer may be separate polymers with different molecular structures and physical properties.
  • the conjugated diene polymer (A) may contain a branched polymer and also contain a functional group-containing polymer. .
  • the conjugated diene polymer (A) contains a branched polymer having a specific functional group, thereby stabilizing the quality. From the viewpoint of improving compound properties such as tensile strength while aiming at the above, it is more preferable to contain a branched polymer having a specific functional group at two or more terminals, and it is even more preferable to contain a branched polymer having a specific functional group at four or more terminals. preferable.
  • the conjugated diene polymer is an aggregate of polymers having structural units derived from a conjugated diene compound.
  • Specific embodiments of the conjugated diene polymer (A) include the following embodiments [a1] to [a4].
  • [a1] One or more polymers selected from the group consisting of a branched polymer with 4 or more branches (hereinafter also referred to as "first polymer”), a linear polymer, and a branched polymer with 3 or less branches (hereinafter referred to as "second polymer”) polymer), and the first polymer and the second polymer are functional group-containing polymers.
  • the conjugated diene polymer can be produced by a method including the following polymerization step and hydrogenation step.
  • the conjugated diene polymer (A) may also be produced by a method that includes at least one of the following reaction steps and modification steps in addition to the polymerization step and hydrogenation step.
  • the method for producing (A) the conjugated diene polymer the molecular structure and the like of the (A) conjugated diene polymer will also be explained.
  • the polymerization step is a step of polymerizing monomers containing a conjugated diene compound and an aromatic vinyl compound to obtain a conjugated diene polymer having an active terminal.
  • Conjugated diene compounds used in polymerization include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, 2- Examples include phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, and 2-chloro-1,3-butadiene. Among these, at least one selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene is preferred, and one or both of 1,3-butadiene and isoprene are more preferred. preferable.
  • One type of conjugated diene compound may be used alone, or two or more types may be used.
  • Aromatic vinyl compounds used in polymerization include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, ⁇ -methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-t -Butylstyrene, 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethyl ether, N , N-dimethylaminoethylstyrene, N,N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-
  • the proportion of structural units derived from an aromatic vinyl compound in the conjugated diene polymer is more than 0% by mass and 45% by mass or less with respect to the total structural units constituting the (A) conjugated diene polymer. It is preferable that By setting it as the said range, a crosslinked body with high strength and excellent wear resistance can be obtained while maintaining the processability of the polymer composition.
  • the proportion of the structural units derived from the aromatic vinyl compound is more preferably 2% by mass or more, and preferably 5% by mass or more, based on the total structural units constituting the (A) conjugated diene polymer. More preferred.
  • the proportion of the structural units derived from the aromatic vinyl compound is more preferably 40% by mass or less, and more preferably 38% by mass or less, based on the total structural units constituting the (A) conjugated diene polymer. It is even more preferable that the amount is 35% by mass or less, and even more preferably 35% by mass or less.
  • the content ratio of structural units derived from an aromatic vinyl compound in the polymer is a value measured by 1 H-NMR.
  • the conjugated diene polymer (A) is preferably a copolymer containing 1,3-butadiene and styrene in its monomer composition, since it has high living properties in anionic polymerization.
  • the conjugated diene polymer contains a conjugated diene compound and an aromatic It is preferable to have a random copolymerization portion with irregular distribution with the group vinyl compound.
  • the conjugated diene polymer is a random copolymer of a conjugated diene compound and an aromatic vinyl compound; It may further have a chain portion of a conjugated diene compound formed by additionally adding a conjugated diene compound after polymerization.
  • the conjugated diene polymer may have a polymerization block portion containing an aromatic vinyl compound as a main component.
  • the conjugated diene polymer has a polymerization block portion mainly composed of an aromatic vinyl compound, the contact area with equipment due to the flow of the polymer during drying of the (A) conjugated diene polymer This is preferable in that it is possible to suppress the increase, thereby suppressing the adhesion of the polymer to equipment.
  • the position of the polymerization block portion containing an aromatic vinyl compound as a main component in the conjugated diene polymer is not particularly limited.
  • the conjugated diene polymer may have a polymerization block portion mainly composed of an aromatic vinyl compound at the end of the molecular chain, or within the molecular chain (between the ends). It's okay.
  • Conjugated diene polymers can simplify the production process of conjugated diene polymers while also suppressing the adhesion of polymers to equipment. It is preferable that the polymer block portion, which is the main component, is present at the end of the molecular chain.
  • the polymerization block portion containing an aromatic vinyl compound as a main component has structural units derived from the aromatic vinyl compound in an amount of 80% by mass or more, and preferably 85% by mass or more based on the total structural units constituting the polymerization block portion. It is more preferable that the content is 90% by mass or more.
  • the conjugated diene polymer has a polymerization block portion mainly composed of an aromatic vinyl compound
  • 35% of the total amount of structural units derived from the aromatic vinyl compound possessed by the (A) conjugated diene polymer % by mass or more may constitute the polymer block portion
  • 40 mass % or more may constitute the polymer block portion.
  • 80% by mass or more of the total amount of structural units derived from the conjugated diene compound contained in the conjugated diene polymer (A) constitutes a random copolymerization portion
  • 90% by mass or more constitutes a random copolymerization portion. It is preferable that it constitutes a section.
  • the monomers used in the polymerization reaction to obtain the conjugated diene polymer may contain compounds other than the conjugated diene compound and the aromatic vinyl compound (hereinafter also referred to as "other monomers"). good.
  • other monomers include acrylonitrile, methyl (meth)acrylate, and ethyl (meth)acrylate.
  • the proportion of other monomers used is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total amount of monomers used for polymerization.
  • the polymerization method used may be any of a solution polymerization method, a gas phase polymerization method, and a bulk polymerization method. Among these, solution polymerization method is particularly preferred. Further, as the polymerization method, either a batch method or a continuous method may be used.
  • a solution polymerization method as an example of a specific polymerization method, a monomer containing a conjugated diene compound and an aromatic vinyl compound is mixed in an organic solvent with a polymerization initiator and a vinyl content used as necessary. Examples include a method of polymerizing in the presence of a regulator (hereinafter also referred to as "randomizer").
  • a metal compound containing an alkali metal or an alkaline earth metal can be used as the polymerization initiator.
  • compounds containing alkali metals are preferred.
  • Specific examples of metal compounds include alkyllithiums such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium, and t-butyllithium; 1,4-dilithiobutane, phenyllithium, stilbenelithium, Naphthyl lithium, 1,3-bis(1-lithio-1,3-dimethylpentyl)benzene, 1,3-phenylenebis(3-methyl-1-phenylpentylidene) dilithium, naphthyl sodium, naphthyl potassium, ethoxy potassium, etc. can be mentioned.
  • lithium compounds are preferred.
  • the metal compound used as a polymerization initiator may be a metal amide compound containing an alkali metal or an alkaline earth metal.
  • an amino group preferably can introduce a secondary amino group or a tertiary amino group.
  • the conjugated diene polymer (A) obtained by polymerizing monomers in the presence of a metal amide compound has the advantage that the strength of the crosslinked product can be increased, and that the crosslinked product has low fuel consumption when used in tires. This is preferable because it can enhance the effect of improving performance.
  • the metal amide compound is preferably a compound obtained by mixing a lithium compound (e.g., alkyl lithium, etc.) and a compound having a nitrogen atom (hereinafter also referred to as "initiating terminal modifier").
  • the starting terminal modifier is preferably a secondary amine compound.
  • the metal amide compound when polymerizing in the presence of a metal amide compound, the metal amide compound is prepared by mixing the lithium compound and the starting terminal modifier in advance, and the prepared metal amide compound is added to the polymerization system to perform polymerization. You may do so.
  • a metal amide compound may be prepared by adding a lithium compound and an initiating terminal modifier to the polymerization system and mixing the two in the polymerization system, followed by polymerization.
  • the amount of the polymerization initiator used is preferably 0.01 to 20 mmol, more preferably 0.05 to 15 mmol, per 100 g of monomer used for polymer synthesis.
  • the randomizer can be used for the purpose of adjusting the vinyl bond content, which represents the content of vinyl bonds in the polymer.
  • randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di(tetrahydrofuryl)propane, 2-(2-ethoxyethoxy)-2-methylpropane, triethylamine, pyridine. , N-methylmorpholine, tetramethylethylenediamine, potassium dodecylbenzenesulfonate, and the like.
  • One type of randomizer can be used alone or two or more types can be used in combination.
  • an organic solvent inert to the polymerization reaction can be preferably used.
  • the organic solvent used in the polymerization include chain or cyclic aliphatic hydrocarbons, aromatic hydrocarbons, and the like. Among these, hydrocarbons having 3 to 8 carbon atoms are preferred, and specific examples include propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, and 1-butene.
  • an organic solvent one type can be used individually or two or more types can be used in combination.
  • the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, and 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. is more preferable.
  • the temperature of the polymerization reaction is preferably -20°C to 150°C, more preferably 0 to 120°C.
  • the polymerization reaction is preferably carried out under sufficient pressure to maintain the monomer substantially in a liquid phase. Such pressure can be obtained by pressurizing the inside of the reactor with a gas inert to the polymerization reaction. Through such a polymerization reaction, a conjugated diene polymer having an active terminal can be obtained.
  • the vinyl bond content in the structural unit derived from 1,3-butadiene is preferably 15 to 85 mol%.
  • the vinyl bond content is preferably 20 mol% or more, more preferably 25 mol% or more.
  • the vinyl bond content of the conjugated diene polymer is preferably 75 mol% or less, more preferably 65 mol% or less.
  • vinyl bond content refers to the content of structural units having 1,2-bonds with respect to all structural units derived from 1,3-butadiene that the conjugated diene polymer before hydrogenation has. This is a value indicating a percentage. Vinyl bond content is determined by 1 H-NMR equipment.
  • the conjugated diene polymer obtained in the polymerization step is treated with a compound having four or more functional groups that can react with the active end of the conjugated diene polymer (hereinafter also referred to as a "coupling agent"). ) is reacted.
  • a compound having four or more functional groups that can react with the active end of the conjugated diene polymer hereinafter also referred to as a "coupling agent”
  • the conjugated diene polymer having an active end and the coupling agent four or more molecular chains of the conjugated diene polymer are bonded to one molecule of the coupling agent, thereby forming (A) the conjugated diene polymer.
  • A the conjugated diene polymer
  • a compound having at least one element selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus, tin, and silicon can be preferably used.
  • specific element selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus, tin, and silicon
  • the strength of the resulting crosslinked product can be further increased.
  • coupling agents include tetrachlorosilane, bis(trichlorosilyl)ethane, and the like.
  • a coupling agent as a functional group having a specific element, a nitrogen-containing group formed by protecting two hydrogen atoms of a primary amino group, a nitrogen-containing group formed by protecting one hydrogen atom of a secondary amino group, etc. groups, tertiary amino groups, imino groups, nitrogen-containing heterocyclic groups (for example, groups having heterocycles such as pyridine rings and imide rings), hydroxyl groups, oxygen-containing groups in which the hydrogen atom of the hydroxyl group is protected, and thiol groups.
  • a compound having a functional group hereinafter also referred to as "functional group F1" such as a sulfur-containing group with a protected hydrogen atom or a hydrocarbyloxysilyl group can also be used.
  • the coupling agent having the functional group F1 include N,N,N',N'-tetra(3-trimethoxysilylpropyl)ethylenediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl), ethoxysilylpropyl)ethylenediamine, N,N,N'-tris(3-trimethoxysilylpropyl)-N'-methyl-ethylenediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl)- 1,3-propanediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl)-1,4-butanediamine, bis(3-trimethoxysilylpropyl)-[2-(dimethylamino) )ethyl]amine, bis(3-trimethoxysilylpropyl)-[2-(2,2-dimethoxy
  • the crosslinked product obtained from the polymer composition can be Strength and viscoelastic properties can be improved.
  • the reaction between the conjugated diene polymer having an active end and the coupling agent is preferably carried out as a solution reaction.
  • the amount of the coupling agent used (the total amount when two or more types are used) is appropriately set so that the content ratio of the branched polymer with four or more branches in the conjugated diene polymer (A) is within the desired range. be able to.
  • (A) In the production process of conjugated diene polymers (especially drying treatment), it suppresses the adhesion of polymer to equipment, thereby suppressing equipment contamination due to polymer retention and heat storage combustion of the accumulated polymer, and desolvation.
  • the amount of the coupling agent to be used is determined by the amount of the polymerization initiator (i.e. It is preferably 0.01 mol or more, and more preferably 0.02 mol or more, per 1 mol of metal atoms involved in polymerization in the metal compound.
  • the amount of the coupling agent to be used is determined from the viewpoint of adjusting the coupling rate to a desired value and obtaining a polymer composition that exhibits good processability and a crosslinked product with excellent viscoelastic properties.
  • a coupling agent it is preferably 0.2 mol or less, more preferably 0.1 mol or less, per 1 mol of metal atoms involved in polymerization in the initiator.
  • one type may be used individually, and two or more types may be used in combination.
  • the reaction temperature is usually in the same range as the polymerization reaction. Specifically, the temperature is preferably -20°C to 150°C, more preferably 0 to 120°C. If the reaction temperature is low, the viscosity of the polymer after reaction tends to increase, and if the reaction temperature is high, the polymerization active terminal tends to be deactivated.
  • the reaction time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the conjugated diene polymer (A) before hydrogenation which contains a branched polymer having four or more branches.
  • the conjugated diene polymer after the coupling reaction may contain a linear polymer.
  • the linear polymer contained in the polymer solution after the coupling reaction is an unreacted polymer that did not react with the coupling agent among the linear polymers contained in the conjugated diene polymer having an active end.
  • the conjugated diene polymer obtained by the polymerization step or reaction step has a specific functional group
  • the polymer may be directly subjected to the next hydrogenation step.
  • the conjugated diene polymer obtained by the polymerization step or reaction step whether or not there is a specific functional group, the active terminal of the conjugated diene polymer and the specific functional group are removed before the hydrogenation step.
  • a treatment may be performed in which a compound capable of reacting with the active end of the conjugated diene polymer (excluding a coupling agent; hereinafter also referred to as "terminal modifier" is reacted.
  • the conjugated diene polymer obtained in the polymerization step or reaction step contains a polymer having an active end
  • the molecular chain of the linear conjugated diene polymer is terminally modified.
  • a polymer bonded to the agent that is, having a specific functional group
  • the terminal modifier is a compound that differs from the coupling agent in that it has 1 to 3 reactive sites with the active end of the conjugated diene polymer.
  • a preferred specific example of the terminal modifier includes at least one selected from the group consisting of a compound represented by the following formula (5) and a compound represented by the following formula (6).
  • a 11 has at least one element selected from the group consisting of nitrogen, phosphorus, oxygen, and sulfur, has no active hydrogen, and has nitrogen and phosphorus with respect to R 35 .
  • R 33 and R 34 are each independently a hydrocarbyl group .
  • R 35 is a hydrocarbylene group.
  • t is an integer of 0 to 2.
  • a 12 has at least one element selected from the group consisting of nitrogen, phosphorus, oxygen, and sulfur, has no active hydrogen, and has nitrogen and phosphorus with respect to R 39 .
  • R 36 and R 37 are each independently a hydrocarbyl group.
  • R 38 is a hydrocarbyl group. It is a carbylene group.
  • R 39 is a single bond or a hydrocarbylene group.
  • u is 0 or 1. However, when u is 0, multiple R 37s in the formula are the same or different from each other. )
  • the hydrocarbyl group is a linear or branched chain having 1 to 20 carbon atoms.
  • An alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms is preferable.
  • the hydrocarbylene group represented by R 38 and R 39 is a linear or branched alkanediyl group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or an arylene group having 6 to 20 carbon atoms. is preferred.
  • the hydrocarbylene group represented by R 38 is preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms.
  • t is preferably 0 or 1.
  • At least one element selected from the group consisting of nitrogen, phosphorus, oxygen, and sulfur, which A 11 has when A 11 is the monovalent functional group, and when A 12 is the monovalent functional group, may be protected with, for example, a trisubstituted hydrocarbylsilyl group.
  • active hydrogen refers to a hydrogen atom bonded to an atom other than a carbon atom, and preferably refers to a hydrogen atom having a lower bond energy than a carbon-hydrogen bond of polymethylene.
  • (thio)epoxy group includes epoxy groups and thioepoxy groups.
  • a 11 may be a group that can become an onium ion with an onium salt forming agent.
  • the terminal modifier has such a group (A 11 )
  • excellent shape retention can be imparted to the polymer.
  • Specific examples of A11 include a nitrogen-containing group in which two hydrogen atoms of a primary amino group are protected, a nitrogen-containing group in which one hydrogen atom of a secondary amino group is protected, a tertiary amino group, and an imino group.
  • pyridyl group phosphorus-containing group in which two hydrogen atoms of a primary phosphino group are protected, phosphorus-containing group in which one hydrogen atom of a secondary phosphino group is protected, tertiary phosphino group, epoxy group, thioepoxy group, an oxygen-containing group formed by protecting the hydrogen atom of a hydroxyl group, a sulfur-containing group formed by protecting the hydrogen atom of a thiol group, and a hydrocarbyloxycarbonyl group.
  • a group having a nitrogen atom is preferable because it has good affinity with silica, and a nitrogen-containing group in which two hydrogen atoms of a tertiary amino group or a primary amino group are protected is preferable. It is more preferable that Note that the protected group is a group in which A 11 and A 12 are converted into functional groups that are inert to the polymerization active terminal.
  • the onium salt generating agent is a Bronsted acid or a compound that produces a Bronsted acid upon contact with water.
  • terminal modifier examples include compounds represented by formula (5), such as N,N-bis(trimethylsilyl)aminopropyltrimethoxysilane, N,N-dimethylaminopropyltriethoxysilane, and N,N-dimethylaminopropyltriethoxysilane.
  • the compound represented by formula (6) examples include 2,2-dimethoxy-1-(3-trimethoxysilylpropyl)-1,2-azacylorizine, 2,2-diethoxy-1-(3 -trimethoxysilylpropyl)-1,2-azacylorizine, 2,2-dimethoxy-1-phenyl-1,2-azacylorizine, 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane, 2 -(2,2-dimethoxy-1,2-azacylolidin-1-yl)-N,N-diethylethan-1-amine, 2-(2,2-dimethoxy-1,2-azacylolidin-1-yl)- Examples include N,N-dimethylethane-1-amine, 3-(2,2-dimethoxy-1,2-azacylolidin-1-yl)-N,N-diethylpropan-1-amine, and the like.
  • the terminal modifier one type may be used alone
  • the reaction between the conjugated diene polymer having an active terminal and the terminal modifier can be carried out, for example, as a solution reaction.
  • This solution reaction may be carried out either batchwise or continuously.
  • the method of adding the terminal modifier is not particularly limited, and examples thereof include a method of adding at once, a method of adding in portions, a method of adding continuously.
  • the amount of the terminal modifier to be used may be appropriately set depending on the type of compound used in the reaction, but it is preferably 0.05 mol per mol of metal atoms involved in the polymerization reaction that the polymerization initiator has. or more, and more preferably 0.1 mol or more.
  • the terminal modifier in an amount of 0.1 molar equivalent or more, the modification reaction can proceed sufficiently, and the effect of improving the dispersibility of the inorganic filler can be enhanced.
  • the amount of the terminal modifier is preferably 1.0 mol or less, more preferably 0.8 mol or less, per 1 mol of the metal atom of the polymerization initiator that participates in the polymerization reaction.
  • the reaction temperature is usually the same as the temperature of the polymerization reaction, preferably -20 to 150°C, more preferably 0 to 120°C, and 20 to 100°C. It is even more preferable that there be.
  • the temperature of the modification reaction is low, the viscosity of the polymer solution tends to increase.
  • the temperature of the modification reaction is high, the polymerization active terminal is likely to be deactivated.
  • the reaction time for terminal modification is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
  • the coupling rate of the conjugated diene polymer is determined by the proportion of the branched polymer present in the (A) conjugated diene polymer, the molecular weight of the conjugated diene polymer having an active end, and the coupling agent used. It can be set depending on the number of functional groups, etc.
  • the coupling rate of the (A) conjugated diene polymer is preferably 10% or more, It is more preferably 15% or more, and even more preferably 20% or more.
  • the coupling rate of the conjugated diene polymer (A) is preferably 70% or less, from the viewpoint of obtaining a polymer composition with good processability and the viewpoint of obtaining a crosslinked product with excellent viscoelastic properties, and 60% or less. % or less, more preferably 50% or less.
  • coupling rate refers to the linear conjugated diene polymer having an active end used in the reaction of a linear conjugated diene polymer having an active end with a modifier. It refers to the proportion (% by mass) of the linear conjugated diene polymer used in the reaction among the diene polymers. Specifically, the amount of coupling agent Alternatively, it represents the proportion (% by mass) of a polymer in which two or more molecular chains of linear conjugated diene polymers are bonded via a terminal modifier.
  • the coupling rate is calculated by separating the waveform of a molecule in which two or more linear conjugated diene polymer chains are bonded together from a GPC curve obtained using gel permeation chromatography (GPC). , can be calculated from the peak area ratio.
  • the conjugated diene polymer having an active end obtained in the polymerization step the conjugated diene polymer having an active end and the polymerization termination using alcohol etc. After reacting with the agent, the next hydrogenation step may be performed. In this case, it is preferable to use a starting terminal modifier in the polymerization step to obtain a conjugated diene polymer having a specific functional group.
  • the conjugated diene polymer obtained by the above polymerization step, reaction step, or modification step is hydrogenated (hereinafter also referred to as "hydrogenation"). Any method and conditions for the hydrogenation reaction can be used as long as a conjugated diene polymer having a desired hydrogenation rate can be obtained.
  • Examples of such hydrogenation methods include methods using catalysts mainly composed of organometallic compounds of titanium; catalysts consisting of organometallic compounds of iron, nickel, and cobalt and organometallic compounds such as alkyl aluminum; A method using an organic complex of an organometallic compound such as ruthenium or rhodium; A method using a catalyst in which a metal such as palladium, platinum, ruthenium, cobalt, or nickel is supported on a carrier such as carbon, silica, or alumina. Examples include methods. Among the various methods, a homogeneous catalyst consisting of an organometallic compound of titanium alone or an organometallic compound of titanium and an organometallic compound of lithium, magnesium, or aluminum (for example, Japanese Patent Publication No.
  • Japanese Patent Publication No. The method of hydrogenating under mild conditions at low pressure and low temperature using the catalyst described in Japanese Patent Publication No. 37970 is industrially preferable, and is also suitable because of its high hydrogenation selectivity to the double bond of butadiene.
  • the hydrogenation of the conjugated diene polymer is preferably carried out using a solvent that is inert to the catalyst and in which the conjugated diene polymer is soluble.
  • Preferred solvents include chain aliphatic hydrocarbons such as n-pentane, n-hexane, and n-octane; cyclic aliphatic hydrocarbons such as cyclohexane and cycloheptane; aromatic hydrocarbons such as benzene and toluene; and diethyl ether. and ethers such as tetrahydrofuran.
  • the solvent used for hydrogenation may be one of the above compounds, or a mixture containing them as main components.
  • the hydrogenation reaction is generally carried out by holding a conjugated diene polymer at a predetermined temperature under hydrogen or an inert atmosphere, adding a hydrogenation catalyst with or without stirring, and then introducing hydrogen gas to a predetermined temperature. It is carried out by applying pressure.
  • the inert atmosphere means an atmosphere that does not react with substances involved in the hydrogenation reaction, and includes, for example, helium, neon, argon, and the like. Air and oxygen are not preferred because they oxidize the catalyst and cause deactivation of the catalyst. Further, nitrogen is not preferable because it acts as a catalyst poison during the hydrogenation reaction and reduces hydrogenation activity. In particular, it is most preferable that the inside of the hydrogenation reactor be in an atmosphere containing only hydrogen gas.
  • the hydrogenation reaction process can be a batch process, a continuous process, or a combination thereof.
  • a titanocene diaryl compound when used as a hydrogenation catalyst, it may be added alone to the reaction solution as it is, or may be added as a solution in an inert organic solvent.
  • the inert organic solvent used when the catalyst is used as a solution various solvents that do not react with substances involved in the hydrogenation reaction can be used. Preferably, it is the same solvent as used in the hydrogenation reaction.
  • the preferable amount of the catalyst added is 0.02 to 20 mmol per 100 g of the conjugated diene polymer before hydrogenation.
  • the conjugated diene polymer includes a structural unit represented by the above formula (1), a structural unit represented by the formula (2), a structural unit represented by the formula (3), and a structural unit represented by the formula (4).
  • the composition ratio (molar ratio) of the structural units represented by in the polymer is p, q, r, and s, respectively
  • the value ⁇ of the (A) conjugated diene polymer is less than 0.60, the amount of unsaturated bonds in the (A) conjugated diene polymer is large, so the change in Mooney viscosity due to the difference in dissolution time becomes large. There is a tendency that the quality of the conjugated diene polymer (A) becomes unstable or that the heat storage and combustibility of the conjugated diene polymer (A) attached to the equipment increases. Furthermore, there is a concern that the strength and viscoelastic properties of the crosslinked product may deteriorate due to the destabilization of the quality of the conjugated diene polymer (A).
  • the value ⁇ of the conjugated diene polymer exceeds 0.98, crosslinking cannot proceed sufficiently, and the strength of the crosslinked product tends to decrease and the viscoelastic properties tend to decrease. It tends to be difficult to secure adhesiveness in a laminated crosslinked product that is laminated with other conjugated diene material sheets and vulcanized.
  • the value ⁇ of the conjugated diene polymer (A) is more preferably 0.65 or more, still more preferably 0.70 or more, and even more preferably 0.75 or more. Further, the value ⁇ of the conjugated diene polymer (A) is more preferably 0.97 or less, even more preferably 0.95 or less, and even more preferably 0.92 or less.
  • the value ⁇ represented by formula (i) corresponds to the hydrogenation rate of the conjugated diene polymer.
  • the hydrogenation rate of the conjugated diene polymer is 60%.
  • the hydrogenation rate and value ⁇ of the conjugated diene polymer can be adjusted by adjusting the hydrogenation reaction time or controlling the cumulative supply amount of hydrogen.
  • the hydrogenation rate is a value measured using a 1 H-NMR device.
  • a preferred method for obtaining the conjugated diene polymer is to solution polymerize monomers containing 1,3-butadiene and styrene in the presence of a polymerization initiator (preferably a metal amide compound), and to obtain the resulting polymer. After a coupling agent is added to the combined solution and a coupling reaction is performed, a terminal modifier is preferably added, and then a hydrogenation step is performed.
  • a crosslinked product having excellent various physical properties (strength, abrasion resistance, viscoelastic properties, vulcanization adhesiveness, etc.) can be obtained, and is also industrially useful.
  • the weight average molecular weight (Mw) of the conjugated diene polymer measured using gel permeation chromatography (GPC) in terms of polystyrene indicates that the crosslinked product has high strength and excellent wear resistance. From the viewpoint of yield, it is preferably 1.5 ⁇ 10 5 to 2.0 ⁇ 10 6 .
  • the Mw of the conjugated diene polymer is more preferably 1.8 ⁇ 10 5 or more, and still more preferably 2.0 ⁇ 10 5 or more. Moreover, Mw is more preferably 1.6 ⁇ 10 6 or less, still more preferably 1.4 ⁇ 10 6 or less.
  • the weight average molecular weight of the conjugated diene polymer referred to herein is a value determined from all peaks of a GPC curve measured by GPC before hydrogenation. In the following, it is also referred to as "total average molecular weight.”
  • the molecular weight distribution (ratio of weight average molecular weight (Mw) to number average molecular weight (Mn)) of the total amount of polymer (i.e., aggregate of different molecular weights) measured by GPC ( Weight average molecular weight/number average molecular weight) is preferably 1.1 or more and 4.0 or less.
  • a molecular weight distribution of 1.1 or more is preferable in terms of excellent processability, and a molecular weight distribution of 4.0 or less is preferable in that low hysteresis loss properties of the resulting crosslinked product can be sufficiently improved.
  • the molecular weight distribution of the conjugated diene polymer is more preferably 1.2 or more. Further, the molecular weight distribution of the conjugated diene polymer (A) is more preferably 3.5 or less, still more preferably 3.0 or less.
  • the peak top molecular weight of the peak with the smallest molecular weight (hereinafter also referred to as "1st peak molecular weight”) measured by GPC is preferably 0.8 x 10 5 to 1.0 The range is ⁇ 10 6 .
  • the 1st peak molecular weight is more preferably 0.9 ⁇ 10 5 or more, and even more preferably 1.0 ⁇ 10 5 or more.
  • the 1st peak molecular weight is more preferably 8.0 ⁇ 10 5 or less, and even more preferably 5.0 ⁇ 10 5 or less.
  • the 1st peak molecular weight is a value determined from a GPC curve measured by GPC before hydrogenation.
  • the conjugated diene polymer preferably contains one or more polymers (second polymer) selected from the group consisting of a linear polymer and a branched polymer having three or less branches, together with a four-branched or more branched polymer. .
  • the second polymer is a hydrogenated product of the conjugated diene polymer obtained by the above polymerization step, or a conjugated diene polymer obtained by the reaction step and reacted with the coupling agent. It is a hydrogenated product of a polymer that did not.
  • the second polymer preferably has a specific functional group at some or all of the end portions, and more preferably has a specific functional group at all of the end portions.
  • a linear polymer modified at both ends can be obtained by using a metal amide compound as a polymerization initiator in the polymerization step and performing the above modification step.
  • the proportion of the branched polymer having four or more branches in the conjugated diene polymer (A) is preferably 10% by mass or more based on the total amount (100% by mass) of the conjugated diene polymer (A).
  • the proportion of the branched polymer having four or more branches in the conjugated diene polymer is more preferably 15% by mass or more, and even more preferably 20% by mass or more.
  • the proportion of the branched polymer having four or more branches in the conjugated diene polymer (A) is preferably 70% by mass or less from the viewpoint of improving the processability of the polymer composition and the viscoelastic properties of the crosslinked product, The content is more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the proportion (mass%) of branched polymers with 4 or more branches in the conjugated diene polymer is determined from the GPC curve obtained using GPC. It can be calculated by separating the waveform of the coupled molecules (coupling polymer) into components.
  • the proportion of the modified polymer in the (A) conjugated diene polymer is preferably 60% by mass or more based on the total amount of the (A) conjugated diene polymer.
  • the proportion of the modified polymer in the conjugated diene polymer is more preferably 70% by mass or more, and even more preferably 80% by mass or more.
  • the proportion (mass%) of the modified polymer in the conjugated diene polymer (A) was calculated by adding the proportion of the linear polymer having a partial structure derived from the terminal modifier and the coupling rate.
  • the reaction rate of the terminal modifier in the reaction between the conjugated diene polymer having an active terminal and the terminal modifier is determined by gas chromatography measurement of the polymer solution after the modification reaction with the terminal modifier. It can be calculated by quantifying the amount.
  • the conjugated diene polymer preferably has a nitrogen content of 50 ppm or more based on the total amount of the (A) conjugated diene polymer.
  • the proportion of nitrogen in the (A) conjugated diene polymer is preferably 500 ppm or less, more preferably 450 ppm or less, based on the total amount of the (A) conjugated diene polymer.
  • the nitrogen content of the polymer is a value measured in accordance with the chemiluminescence method of JIS K2609:1998 (Crude oil and petroleum products - Nitrogen content test method). The details of the measurement method follow the method described in Examples described later.
  • the conjugated diene polymer (A) having nitrogen can be produced by using a nitrogen-containing compound (preferably a secondary amine compound) as an initiating terminal modifier, or by using a nitrogen-containing monomer. It can be obtained by employing a method of polymerization using a nitrogen-containing compound, a method of using a nitrogen-containing compound as a terminal modifier, a method of using a nitrogen-containing compound as a coupling agent, or a combination of two or more of these methods. .
  • a nitrogen-containing compound preferably a secondary amine compound
  • the present composition contains a hindered phenol compound (hereinafter also referred to as "compound (B)”) with a molecular weight of 250 to 2,000.
  • hindered phenol compound refers to carbons on both sides of the carbon to which the hydroxyl group is bonded (i.e., to the carbons constituting the aromatic ring (preferably benzene ring) to which the hydroxyl group is bonded).
  • a compound having a partial structure hereinafter also referred to as a "hindered phenol structure" in which groups each having one or more carbon atoms are bonded to two ortho positions.
  • a group having one or more carbon atoms (hereinafter also referred to as "specific group Good, but not particularly limited.
  • specific group Xb include a saturated or unsaturated chain hydrocarbon group having 1 to 40 carbon atoms, a saturated or unsaturated alicyclic hydrocarbon group having 3 to 40 carbon atoms, and an aromatic group having 6 to 40 carbon atoms.
  • group hydrocarbon groups, and groups in which one or more of the methylene groups and hydrogen atoms in these hydrocarbon groups are replaced with a functional group (e.g., hydroxyl group, (meth)acryloyl group, -O-, -S-, etc.) can be mentioned.
  • At least one of the two specific groups Xb in the hindered phenol structure preferably has 2 or more carbon atoms, and 4 or more carbon atoms. It is more preferable that there be.
  • At least one of the two specific groups Xb in the hindered phenol structure of the compound (B) is bonded to the carbon constituting the aromatic ring through a tertiary carbon. That is, in the compound (B), carbon is bonded to at least one of the carbons on both sides of the carbon in the aromatic ring to which the hydroxyl group is bonded, and the carbon is preferably a quaternary carbon.
  • Such hindered phenol compounds include N-octadecyl-3-(4'-hydroxy-3',5'-di-t-butylphenyl)propionate, tetrakis ⁇ methylene-3-(3',5'- di-t-butyl-4-hydroxyphenyl)propionate ⁇ methane, 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, distearyl(4-hydroxy-3-methyl) -5-t-butylbenzyl)malonate, triethylene glycol-bis ⁇ 3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate ⁇ , 1,6-hexanediol-bis ⁇ 3-(3 ,5-di-t-butyl-4-hydroxyphenyl)propionate ⁇ , 2,4-bis-(N-octylthio)-6-(4-hydroxyphenyl ⁇ 3,5-di-t-butyl
  • Examples of the (meth)acrylate compound having a hindered phenol structure include a compound represented by the following formula (7).
  • R 1 to R 5 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms.
  • R 6 is a hydrogen atom or a methyl group.
  • the alkyl group having 1 to 10 carbon atoms represented by R 1 to R 5 includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, Examples include isobutyl group, tert-butyl group, and 1,1-dimethylpropyl group.
  • R 1 and R 2 are sterically hindered, such as isopropyl group, sec-butyl group, tert-butyl group, and 1,1-dimethylpropyl group, in terms of high stabilizing effect and ease of production. Large bulky alkyl groups are preferred.
  • R 3 and R 4 are preferably a tert-butyl group or a 1,1-dimethylpropyl group from the viewpoint of suppressing the reaction that produces a quinoid structure accompanied by hydrogen abstraction.
  • R 5 is preferably a methyl group, ethyl group, n-propyl group or n-butyl group.
  • (B) As a compound (B), it can be highly effective in suppressing equipment contamination caused by volatile matter and bleed substances during the drying process of polymers, and can stabilize quality by suppressing changes in Mooney viscosity due to variations in desolvation time, (A) It is highly effective in reducing the process load in the process of manufacturing conjugated diene polymers, and various properties such as the strength, abrasion resistance, viscoelastic properties of the crosslinked product, and low fuel consumption performance when used in tires Among them, hindered phenol compounds having an unsaturated group can be preferably used in that they can enhance the improvement effect.
  • the unsaturated group examples include a vinyl group, a (meth)acryloyl group, and a vinylphenyl group.
  • the hindered phenol compound having an unsaturated group as component (B) preferably has a (meth)acryloyl group, and the compound represented by formula (7) is more preferable.
  • R 1 and R 2 are tert-butyl groups
  • R 3 and R 4 are methyl groups
  • R 5 and R 6 are hydrogen atoms
  • R 1 to R 4 are tert-pentyl groups.
  • a compound in which R 5 is a methyl group and R 6 is a hydrogen atom is preferred.
  • the molecular weight of the compound (B) is 250 to 2,000. If the molecular weight of the hindered phenol compound added to the present composition is less than 250, the hindered phenol compound will easily migrate to the mixed solvent phase during the desolvation process, and the amount remaining in the polymer will tend to decrease. There is a concern that thermal storage combustion and volatilization of polymer components adhering to equipment during the drying process of the polymer cannot be sufficiently suppressed. Therefore, it is necessary to frequently perform treatment to remove components attached to the equipment, which increases the process load. Furthermore, if the molecular weight of the hindered phenol compound exceeds 2,000, there is a concern that the compatibility with the conjugated diene polymer (A) will decrease, leading to a decrease in performance.
  • the molecular weight of the compound (B) is preferably 300 or more, more preferably 350 or more. Moreover, the molecular weight of the compound (B) is preferably 1,800 or less, more preferably 1,500 or less, and even more preferably 1,200 or less.
  • the compounding amount of (B) compound (the total amount when two or more types are used) is 0.1 parts by mass or more and 2.2 parts by mass or less with respect to 100 parts by mass of (A) conjugated diene polymer. It is preferable that there be.
  • the blending amount of the compound (B) is more preferably 0.2 parts by mass or more, and more preferably 0.4 parts by mass or more with respect to 100 parts by mass of the conjugated diene polymer (A). It is even more preferable that there be. Furthermore, by setting the blending amount of the compound (B) to 2.2 parts by mass or less, it is possible to increase the effect of suppressing equipment contamination caused by volatile components and bleed products during the drying treatment of the polymer, and to use the present composition. There is a tendency that it is possible to suppress a decrease in the strength of the crosslinked product obtained by the above process and a decrease in fuel efficiency when used in tires.
  • the compounding amount of the compound is more preferably 1.8 parts by mass or less, even more preferably 1.4 parts by mass or less, and 1.0 parts by mass or less, based on 100 parts by mass of the (A) conjugated diene polymer. It is even more preferable that the amount is not more than parts by mass.
  • the (B) compound one type may be used alone, or two or more types may be used in combination.
  • composition may further contain the following components.
  • composition contains at least one type selected from the group consisting of phosphorus stabilizers and organic sulfur stabilizers as component (C), and has a molecular weight of 250 to 2,000. It may further contain a compound (hereinafter also referred to as "(C) specific stabilizer").
  • this composition has the effect of reducing the change in Mooney viscosity with respect to desolution time and achieving quality stability with a smaller amount of additive, and ( A) During the drying process of the conjugated diene polymer, it is possible to obtain the effect of suppressing heat storage combustion and component volatilization due to the adhesion of the conjugated diene polymer (A) to the equipment. This makes it possible to improve equipment contamination and the performance of the crosslinked product in a well-balanced manner.
  • compounds known as phosphorus antioxidants and organic sulfur antioxidants and having a molecular weight within the range of 250 to 2,000 can be used.
  • Specific examples of these include tris(2,4-di-t-butylphenyl) phosphite and tetrakis(2,4-di-t-butylphenyl) as phosphorus stabilizers with a molecular weight of 250 to 2,000.
  • -4-,4'-bisphenylene phosphite tris(nonylphenyl) phosphite, distearylpentaerythol diphosphite, bis(2,4,di-t-butylphenyl)pentaerythol phosphite, bis( 2,6,di-t-butyl-4-methylphenyl)pentaerythol phosphite, 2,2-methylenebis(4,6-di-t-butylphenyl)octylphosphite, tetrakis(2,4-di- (t-butylphenyl) 4,4'-bisphenylene-di-phosphite and the like.
  • the phosphorus stabilizer one kind can be used alone or two or more kinds can be used in combination.
  • organic sulfur stabilizers with a molecular weight of 250 to 2,000 include didodecylthiodipropionate, ditetradecylthiodipropionate, dioctadecylthiodipropionate, and bis[3-(dodecylthio)propionic acid].
  • 2,2-bis[[3-(dodecylthio)-1-oxopropyloxy]methyl]-1,3-propanediyl, pentaerythritol tetrakis (3-dodecylthiopropionate), thiobis(N-phenyl- ⁇ - Examples include organic thio acid compounds such as naphthylamine).
  • the organic sulfur stabilizer one type can be used alone or two or more types can be used in combination.
  • the blending amount of the specific stabilizer (if two or more types are used, the total amount) is 0.01 parts by mass or more and 2.0 parts by mass with respect to 100 parts by mass of (A) conjugated diene polymer.
  • the following is preferable.
  • the blending amount of the specific stabilizer (C) is more preferably 0.02 parts by mass or more, and even more preferably 0.05 parts by mass or more, based on 100 parts by mass of the conjugated diene polymer (A).
  • the blending amount of the specific stabilizer (C) is more preferably 1.5 parts by mass or less, and even more preferably 1.2 parts by mass or less, based on 100 parts by mass of the (A) conjugated diene polymer.
  • (C) By setting the blending amount of the specific stabilizer within the above range, it is possible to reduce the change in Mooney viscosity due to variations in desolvation time, and to reduce the adhesion of (A) conjugated diene polymer to equipment during drying. The effect of suppressing thermal storage combustion and volatilization of components can be obtained while reducing the amount of the additive of the (B) compound.
  • the specific stabilizer (C) only a phosphorus stabilizer, only an organic sulfur stabilizer, or a combination of a phosphorus stabilizer and an organic sulfur stabilizer may be used. It's okay.
  • composition may contain an inorganic filler.
  • examples of the inorganic filler include silica and carbon black, and fillers other than silica and carbon black (hereinafter also referred to as "other fillers").
  • the inorganic filler blended into the present composition preferably contains one or both of silica and carbon black.
  • the present composition can contain silica.
  • the amount of silica blended is preferably in the range of 20 to 120 parts by weight, more preferably in the range of 30 to 100 parts by weight, based on 100 parts by weight of the rubber component containing the conjugated diene polymer (A).
  • the blending amount of silica is 20 parts by mass or more based on 100 parts by mass of the rubber component, the low hysteresis loss property, fracture characteristics, and abrasion resistance of the polymer composition can be sufficiently improved;
  • the amount is less than 1.9 parts, the processability of the polymer composition can be sufficiently improved.
  • the "rubber component" contained in the polymer composition refers to a polymer that can be cured to exhibit rubber elasticity by heat curing or the like.
  • the cured product exhibits the property of causing large deformation (for example, deformation that stretches more than twice as much when stretched at room temperature) with a small force at room temperature, and rapidly returning to almost its original shape when the force is removed.
  • Silica is not particularly limited, and examples thereof include wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, and the like. Among these, wet silica is preferred. As silica, one type may be used alone, or two or more types may be used in combination. Furthermore, the BET specific surface area of silica (value measured according to ISO 5794/1) is preferably in the range of 40 to 350 m 2 /g, more preferably in the range of 80 to 350 m 2 /g, and more preferably in the range of 120 to 350 m 2 A range of /g is particularly preferred.
  • Silica having a BET specific surface area within this range has the advantage of being able to achieve both rubber reinforcing properties and dispersibility in the (A) modified diene polymer.
  • the first silica has a CTAB (cetyltrimethylammonium bromide) specific surface area of 180 m 2 /g or more, a BET specific surface area of 185 m 2 /g or more, and an aggregate size of 45 nm or more, and a CTAB specific surface area of 95 m 2 /g or less, and a second silica having a BET specific surface area of 100 m 2 /g or less may be used in combination.
  • CTAB cetyltrimethylammonium bromide
  • the present composition comprises a first silica having a CTAB specific surface area of 180 m 2 /g or more, a BET specific surface area of 185 m 2 /g or more, and an aggregate size of 45 nm or more;
  • the second silica may have a surface area of 100 m 2 /g or less.
  • the CTAB specific surface area of the first silica is preferably 190 m 2 /g or more, more preferably 195 m 2 /g or more, even more preferably 197 m 2 /g or more.
  • the CTAB specific surface area of the first silica is preferably 350 m 2 /g or less, more preferably 300 m 2 /g or less, even more preferably 250 m 2 /g or less.
  • the CTAB specific surface area exceeds 350 m 2 /g, the dispersibility is poor and agglomeration tends to occur easily, so that physical properties tend to deteriorate.
  • the BET specific surface area of the first silica is preferably 190 m 2 /g or more, more preferably 195 m 2 /g or more, and still more preferably 210 m 2 /g or more.
  • the BET specific surface area is preferably 350 m 2 /g or less, more preferably 300 m 2 /g or less, even more preferably 260 m 2 /g or less.
  • the BET specific surface area exceeds 350 m 2 /g, the dispersibility is poor and agglomeration tends to occur easily, so that physical properties tend to deteriorate. Note that the BET specific surface area of silica is measured according to ASTM D3037-81.
  • the aggregate size of the first silica is 45 nm or more, preferably 50 nm or more, more preferably 55 nm or more, and still more preferably 60 nm or more. Further, the aggregate size is preferably 100 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less, particularly preferably 67 nm or less. By having such an aggregate size, it is possible to provide excellent fuel efficiency and wear resistance while having good dispersibility (processability). Note that the aggregate size of silica can be measured by the method described in JP-A-2011-140613.
  • the average primary particle diameter of the first silica is preferably 25 nm or less, more preferably 22 nm or less, even more preferably 17 nm or less, particularly preferably 14 nm or less.
  • the lower limit of the average primary particle diameter is not particularly limited, but is preferably 3 nm or more, more preferably 5 nm or more, and still more preferably 7 nm or more.
  • the carbon black-like structure with the above-mentioned aggregate size can further improve the dispersibility (processability) of silica, resulting in low fuel consumption and wear resistance. can be further improved.
  • the average primary particle size of silica can be determined by observing silica using a transmission or scanning electron microscope, measuring the particle size of 400 or more silica primary particles observed within the field of view, and averaging the particle size. .
  • the CTAB specific surface area of the second silica is preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, even more preferably 30 m 2 /g or more. If the CTAB specific surface area is less than 10 m 2 /g, the reinforcing properties will be low, and it may be difficult to sufficiently ensure the mechanical strength and abrasion resistance required for a polymer composition for tire manufacturing.
  • the CTAB specific surface area is preferably 80 m 2 /g or less, more preferably 60 m 2 /g or less, even more preferably 50 m 2 /g or less. If the CTAB specific surface area exceeds 95 m 2 /g, the dispersibility of silica may deteriorate, making it difficult to improve fracture strength and abrasion resistance.
  • the BET specific surface area of the second silica is preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, even more preferably 30 m 2 /g or more. If the BET specific surface area is less than 10 m 2 /g, the reinforcing properties will be low, and it may be difficult to ensure the mechanical strength and abrasion resistance required for a polymer composition for tire manufacturing.
  • the BET specific surface area is preferably 85 m 2 /g or less, more preferably 60 m 2 /g or less, even more preferably 50 m 2 /g or less. If the BET specific surface area exceeds 100 m 2 /g, the dispersibility of silica may deteriorate, making it difficult to improve fracture strength and abrasion resistance.
  • the average primary particle diameter of the second silica is preferably 20 nm or more, more preferably 25 nm or more, even more preferably 30 nm or more, particularly preferably 35 nm or more, and most preferably 55 nm or more.
  • the upper limit of the average primary particle diameter is not particularly limited, but is preferably 500 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less, particularly preferably 70 nm or less. By having such an average primary particle diameter, sufficient fracture strength and wear resistance can be ensured.
  • Carbon black The present composition preferably contains carbon black from the viewpoint of fracture characteristics and wear resistance of the polymer composition. Carbon black is not particularly limited, and includes, for example, GPF, FEF, HAF, ISAF, and SAF grade carbon black.
  • the nitrogen adsorption specific surface area (N2SA) of carbon black is not particularly limited, but is preferably 50 to 200 m 2 /g, more preferably 70 to 150 m 2 /g. Nitrogen adsorption specific surface area (N 2 SA) is the value obtained by measuring the amount of nitrogen adsorbed on the carbon black surface in accordance with JIS K6217-2:2001 "Part 2: How to determine specific surface area - Nitrogen adsorption method - Single point method" It is.
  • One type of carbon black may be used alone, or two or more types may be used in combination.
  • the amount of carbon black in the present composition is preferably in the range of 1 to 150 parts by weight, more preferably in the range of 5 to 120 parts by weight, based on 100 parts by weight of the conjugated diene polymer (A).
  • the present composition may contain other fillers in addition to silica and carbon black as inorganic fillers.
  • Other fillers include alumina (Al 2 O 3 ) such as ⁇ -alumina and ⁇ -alumina, alumina monohydrate (Al 2 O 3 H 2 O) such as boehmite and diaspore, gibbsite, bayerite, etc.
  • the amount of the inorganic filler containing silica and carbon black is preferably 30 parts by mass or more, more preferably 40 parts by mass, based on 100 parts by mass of the rubber component containing (A) the conjugated diene polymer. That's all. Further, the amount of the inorganic filler blended is preferably 150 parts by mass or less, more preferably 130 parts by mass or less, based on 100 parts by mass of the rubber component containing the conjugated diene polymer (A). If the amount of inorganic filler in this composition is within the above range, when this composition is applied to a tire tread, the tire will have low rolling resistance, braking performance on wet roads, and good performance on dry roads. It is possible to improve the handling performance and wear resistance in a more highly balanced manner.
  • ⁇ Component (E) Other rubber components
  • the present composition may contain only (A) the conjugated diene polymer as a rubber component, in addition to the conjugated diene polymer (A), the present disclosure
  • a rubber component different from the conjugated diene polymer (A) (hereinafter also referred to as "other rubber component”) may be contained within a range that does not impair the effects of (A).
  • Other rubber components include, for example, at least one diene rubber selected from natural rubber, isoprene rubber, butadiene rubber, emulsion polymerization or solution polymerization styrene-butadiene rubber, butyl rubber, halogenated butyl rubber, and ethylene-propylene rubber. can be used.
  • other rubber components are preferably natural rubber, butadiene rubber, or styrene-butadiene rubber.
  • the manner in which the other rubber components and (A) the conjugated diene polymer are mixed is not particularly limited.
  • the other rubber components and (A) the conjugated diene polymer may be mixed during the usual kneading using a Banbury mixer, rolls, etc., or the (A) conjugated diene polymer may be mixed with the (A) conjugated diene polymer after polymerization.
  • Other rubber components may be mixed into the polymer solution containing the rubber, and then the solvent removal and drying steps may be performed.
  • the blending amount of other rubber components is preferably 80% by mass or less, and more preferably 80% by mass or less based on the total amount of rubber components ((A) conjugated diene polymer and other rubber components) contained in the polymer composition. Preferably it is 60% by mass or less.
  • a liquid rubber can also be used as part or all of the other rubber components from the viewpoint of further improving dry grip performance, wet grip performance, and blowout resistance.
  • liquid rubber examples include liquid polyisoprene (liquid IR), liquid polybutadiene (liquid BR), liquid styrene-butadiene copolymer (liquid SBR), and liquid ethylene-propylene copolymer (liquid EP).
  • liquid SBR having a weight average molecular weight of 1,000 to 100,000, preferably 2,000 to 80,000 can be used.
  • the weight average molecular weight means the weight average molecular weight in terms of polystyrene analyzed by gel permeation chromatography (GPC). Note that the liquid rubber used in this composition refers to one that has fluidity at 23°C.
  • Thermoplastic/thermosetting resin Thermoplastic/thermosetting resin
  • the present composition may contain a thermoplastic/thermosetting resin (hereinafter also simply referred to as "(F) resin").
  • Resins include styrene resins, polyethylene, C5 resins, C9 resins, C5/C9 resins, from the viewpoint of obtaining crosslinked products with excellent properties such as strength, abrasion resistance, and crack growth resistance. It is preferably at least one selected from the group consisting of dicyclopentadiene resins, alkylphenol resins, and terpene resins.
  • As the resin one type may be used alone, or two or more types may be used in combination.
  • the styrenic resin is a polymer obtained using a styrene monomer, and in particular, the structural units derived from the styrenic monomer are added to the total amount of monomer units possessed by the styrenic resin. It is preferable that the polymer contains 20% by mass or more.
  • Styrenic monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, o-chloro Examples include styrene, m-chlorostyrene, p-chlorostyrene, and the like. Among these, the styrenic monomer is preferably at least one of styrene and ⁇ -methylstyrene.
  • the styrenic resin may be a homopolymer obtained by polymerizing one type of styrenic monomer, or a copolymer obtained by copolymerizing two or more types of styrenic monomers.
  • the styrenic resin may also be a copolymer obtained using a styrene monomer and another monomer that can be copolymerized with the styrene monomer.
  • Other monomers include acrylonitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylics and methacrylic acid; unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate; chloroprene and butadiene isoprene. dienes such as; olefins such as 1-butene and 1-pentene; ⁇ , ⁇ -unsaturated carboxylic acids such as maleic anhydride or acid anhydrides thereof, and the like.
  • the softening point of the styrene resin is preferably 30°C or higher, more preferably 60°C or higher, and even more preferably 80°C or higher. When the softening point is 30° C. or higher, the effect of improving crack growth resistance tends to be easily obtained in the crosslinked body. Further, the softening point of the styrene resin is preferably 160°C or lower, more preferably 130°C or lower, and even more preferably 100°C or lower. When the softening point is 160° C. or less, the dispersibility of the resin becomes good, and crack growth resistance, abrasion resistance, and breaking strength tend to be improved.
  • the softening point of the styrene resin is a value measured using a ring and ball softening point measuring device according to the method specified in JIS K 6220-1:2015
  • the softening point of the styrene resin is a value measured using a ring and ball softening point measuring device. This is the temperature when the ball falls onto the bottom plate.
  • styrene resin a block polymer (thermoplastic elastomer) having a conjugated diene polymer block as a soft segment and a polystyrene block as a hard segment can also be used.
  • a block polymer thermoplastic elastomer
  • the effect of improving crack growth resistance can be increased, which is preferable.
  • a portion of the carbon-carbon double bonds in the structural unit derived from the conjugated diene compound may be hydrogenated.
  • conjugated diene compound constituting the conjugated diene polymer block examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene. Can be mentioned.
  • the conjugated diene compound one kind can be used alone or two or more kinds can be used in combination.
  • the conjugated diene compound is preferably at least one of 1,3-butadiene and isoprene.
  • the content of conjugated diene units in the block polymer is preferably 20% by mass or more, more preferably 30% by mass or more. Moreover, it is preferable that the content rate of a conjugated diene unit is 80 mass % or less, and it is more preferable that it is 70 mass % or less.
  • the content of the polystyrene block in the block polymer is preferably 20% by mass or more, since it can further increase the breaking strength. Moreover, it is preferable that the content rate of a polystyrene type block is 80 mass % or less, and it is more preferable that it is 70 mass % or less. Note that the respective content ratios of the polystyrene block, conjugated diene polymer block, and conjugated diene unit in the block polymer can be calculated from the integral ratio of the 1 H-NMR spectrum.
  • block polymer examples include styrene-butadiene block copolymer, styrene-isoprene block copolymer, epoxidized product of styrene-butadiene block copolymer, styrene-butadiene block copolymer, or styrene-isoprene block copolymer.
  • SBS styrene-butadiene-styrene block copolymers
  • SIS styrene-isoprene-styrene block copolymers
  • SBBS styrene-butadiene-butylene-styrene block copolymers
  • hydrogenated products of these copolymers epoxies of styrene-butadiene-styrene block copolymers (SIS), styrene-isoprene-styrene block copolymers (SIS), styrene-butadiene-butylene-styrene block copolymers (SBBS), and styrene-butadiene-styrene block copolymers and hydrogenated products of these copolymers.
  • SBS styrene-butadiene-styrene block copolymers
  • SIS styrene-is
  • SBS or SIS having a conjugated diene polymer block whose soft segment is not hydrogenated, or an epoxidized product of a styrene-butadiene-styrene block copolymer is preferably used as the block polymer because it is easily crosslinked. be able to.
  • polyethylene examples include low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and the like.
  • the C5 resin is a solid polymer (C5 synthetic petroleum resin) obtained by polymerizing a C5 fraction using a Friedel-Crafts catalyst (AlCl 3 , BF 3 , etc.).
  • Specific examples of C5 resins include copolymers containing isoprene, cyclopentadiene, 1,3-pentadiene, and 1-pentene as main components, copolymers of 2-pentene and dicyclopentadiene, and 1,3-pentadiene.
  • Examples include polymers containing pentadiene as a main component.
  • the C9 resin is a solid polymer (C9 synthetic petroleum resin) obtained by polymerizing a C9 fraction using a Friedel-Crafts catalyst (AlCl 3 , BF 3 , etc.).
  • C9-based resins include copolymers containing indene, methylindene, vinyltoluene, etc. as main components.
  • the C5/C9 resin is a solid polymer (C5/C9 synthetic petroleum resin) obtained by polymerizing C5 to C9 fractions using a Friedel-Crafts catalyst (AlCl 3 , BF 3, etc.).
  • Specific examples of C5/C9 resins include copolymers containing vinyltoluene, indene, etc. as main components.
  • the C5/C9 resin a resin containing a small amount of C9 or higher components is preferable from the viewpoint of compatibility with the rubber component.
  • the content of C9 or higher components in the total amount of the resin is preferably less than 50% by mass, and more preferably 40% by mass or less.
  • Dicyclopentadiene resin is a petroleum resin that uses dicyclopentadiene in the C5 fraction as the main raw material.
  • dicyclopentadiene-based resins include Marukaretz M series (M-890A, M-845A, M-990A, etc.) manufactured by Maruzen Petrochemical Co., Ltd.
  • alkylphenol resin include alkylphenol-acetylene resin such as p-tert-butylphenol-acetylene resin, alkylphenol-formaldehyde resin with a low degree of polymerization, and the like.
  • Terpene resin is a solid resin obtained by blending turpentine oil, which is obtained at the same time as rosin from Pine trees, or polymerization components separated from this oil, and polymerizing it using a Friedel-Crafts type catalyst. Examples include ⁇ -pinene resin and ⁇ -pinene resin.
  • turpentine oil obtained by blending turpentine oil, which is obtained at the same time as rosin from Pine trees, or polymerization components separated from this oil, and polymerizing it using a Friedel-Crafts type catalyst. Examples include ⁇ -pinene resin and ⁇ -pinene resin.
  • commercial products can be used, such as the "YS Resin” series (PX-1250, TR-105, etc.) manufactured by Yasuhara Chemical Co., Ltd., and the "Picolite” manufactured by Hercules Corporation. series (A115, S115, etc.).
  • a typical example of the terpene-aromatic compound resin is a terpene-phenol resin.
  • This terpene-phenol resin can be obtained by a method in which terpenes and various phenols are reacted using a Friedel-Crafts type catalyst, or further condensed with formalin.
  • monoterpene hydrocarbons such as ⁇ -pinene and limonene are preferred, those containing ⁇ -pinene are more preferred, and ⁇ -pinene is particularly preferred.
  • a terpene-phenol resin having a small proportion of phenol component is suitable.
  • the ratio of the phenol component is small refers to the fact that the phenol component in the total amount of the resin is less than 50% by mass, preferably 40% by mass or less.
  • a terpene-aromatic compound resin particularly a terpene-phenol resin
  • the handling performance can be further improved.
  • the terpene-aromatic compound resin commercially available products can be used.
  • Examples of commercially available products include “Tamanol 803L", “Tamanol 901” (manufactured by Arakawa Chemical Co., Ltd.) under the trade name, "YS Polyster (registered trademark)” series (manufactured by Yasuhara Chemical Co., Ltd.), and the like.
  • the blending ratio of the resin (F) is preferably 1 part by mass or more based on 100 parts by mass of the rubber component contained in the present composition.
  • the blending ratio of the resin (F) is more preferably 3 parts by mass or more, and even more preferably 7 parts by mass or more, based on 100 parts by mass of the rubber component.
  • the blending ratio of (F) resin is preferably 50 parts by mass or less based on 100 parts by mass of the rubber component contained in the composition, from the viewpoint of maintaining good performance of the composition.
  • the amount is preferably 30 parts by mass or less, and still more preferably 25 parts by mass or less.
  • the resin (F) one type may be used alone, or two or more types may be used in combination.
  • silane coupling agent in this composition, a silane coupling agent may be blended to further improve the dispersibility of silica.
  • the silane coupling agent used is not particularly limited.
  • the silane coupling agent is preferably a sulfur-containing silane coupling agent, such as bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)disulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, Examples include ⁇ -mercaptopropyltriethoxysilane and 3-octanoylthiopropyltriethoxysilane.
  • the amount of the silane coupling agent blended is preferably 1 to 20 parts by mass based on 100 parts by mass of silica contained in the present composition. If the amount of the silane coupling agent is less than 1 part by mass, there is a concern that the effect of improving the dispersibility of silica will be reduced due to the small amount of the silane coupling agent. On the other hand, if the amount of the silane coupling agent exceeds 20 parts by mass, the processability of the polymer composition and the elongation at break of the crosslinked product may decrease.
  • the blending amount of the silane coupling agent is more preferably 5 to 15 parts by mass based on 100 parts by mass of silica contained in the present composition.
  • Crosslinking agent The present composition may contain a crosslinking agent. By containing the crosslinking agent in the present composition, a crosslinked product with improved strength and wear resistance can be obtained.
  • the crosslinking agent include sulfur, halogenated sulfur, organic peroxides, quinone dioximes, organic polyvalent amine compounds, alkylphenol resins having a methylol group, and sulfur is usually used.
  • the amount of the crosslinking agent blended is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the total amount of rubber components contained in the composition.
  • Extender oil A process oil that is generally used for extending elastomers may be blended into the present composition as an oil for oil extension (extender oil).
  • the method of adding process oil is not particularly limited. For example, it may be compounded as an oil-extended rubber by spreading process oil in a conjugated diene polymer solution after polymerization and then removing the process oil, or it may be compounded as an oil-extended rubber by spreading the process oil into the conjugated diene polymer solution after polymerization, or by adding process oil to the conjugated diene polymer solution during kneading to obtain a rubber compound (compounded rubber). Processing oils may be incorporated into the polymer composition by adding the oil directly.
  • Preferred process oils include a variety of oils known in the art, such as aromatic oils, paraffinic oils, naphthenic oils, vegetable oils, and oils with a low content of polycyclic aromatics (low polyaromatics).
  • PCA oil e.g. mild extraction solvate (MES), treated distillate aromatic extract (TDAE) from distillate oil, special aromatic extraction from residual oil. (SRAE: special residual aromatic extract), heavy naphthenic oil, etc.
  • MES mild extraction solvate
  • TDAE treated distillate aromatic extract
  • SRAE special residual aromatic extract
  • Examples of commercially available MES, TDAE and SRAE include Catenex SNR (heavy paraffin made by solvent dewaxing of distillate) from Shell as MES, Vivatec 500 from H&R Wasag AG as TDAE, and Japan Energy Corp as SRAE.
  • Examples include NC140 manufactured by .
  • the amount of process oil blended is preferably 10 to 100 parts by mass based on 100 parts by mass of the total amount of polymer
  • this composition also contains vulcanized rubber, such as zinc white, stearic acid, softeners, vulcanization accelerators, compatibilizers, vulcanization aids, processing aids, and scorch inhibitors.
  • vulcanized rubber such as zinc white, stearic acid, softeners, vulcanization accelerators, compatibilizers, vulcanization aids, processing aids, and scorch inhibitors.
  • Various additives commonly used in polymer compositions for obtaining can be blended. These blending ratios can be appropriately selected depending on the various components within a range that does not impair the effects of the present disclosure.
  • the present composition can be obtained by mixing (A) the conjugated diene polymer and (B) the compound.
  • the manner in which the present composition is obtained by mixing the conjugated diene polymer (A) and the compound (B) is not particularly limited.
  • the present composition is capable of reducing (A) the conjugated diene polymer by adding the (B) compound to a polymer solution containing the (A) conjugated diene polymer after polymerization. It is preferable that the mixture is obtained by mixing the combined substance and the compound (B), and then removing the solvent and drying.
  • the present composition is preferably manufactured by a method including Step A, Step B, and Step C below.
  • Step A By polymerizing a monomer containing a conjugated diene compound and an aromatic vinyl compound in the presence of an alkali metal or an alkaline earth metal and hydrogenating it, (A) a polymer solution containing a conjugated diene polymer.
  • the process of obtaining Step B A step of mixing the polymer solution obtained in Step A and the (B) compound to obtain a mixed solution containing the (A) conjugated diene polymer and the (B) compound.
  • Step C A step of removing the solvent from the liquid mixture obtained in Step B and drying it.
  • Step A is a step that includes the above-mentioned polymerization step and hydrogenation step, and optionally includes one or both of a reaction step and a modification step.
  • the above description applies to the details of each step.
  • Step B from the viewpoint of simplifying the manufacturing process, the polymer solution containing the (A) conjugated diene polymer obtained in Step A is used as it is, and the polymer solution and the (B) compound are mixed. It is preferable.
  • the amount of the compound (B) is as described above.
  • (C) a specific stabilizer is blended into the present composition, the (C) specific stabilizer is blended during kneading to obtain a blended composition (so-called compounded rubber), thereby combining (A) with a conjugated diene polymer.
  • (C) It may be mixed with a specific stabilizer.
  • step B the (A) conjugated diene polymer and (C) the specific stabilizer may be mixed by adding the (C) specific stabilizer to the polymer solution.
  • the latter method an embodiment in which the specific stabilizer (C) is added to the polymer solution in step B) is preferable in that the effect of blending the specific stabilizer (C) can be sufficiently enhanced.
  • the (C) specific stabilizer may be added to the polymer solution at the same time as the (B) compound, or the (B) specific stabilizer may be added to the polymer solution before or after the addition of the compound.
  • a specific stabilizer may be added to the polymer solution later. The amount of the compound (C) is as described above.
  • Step C the method of removing the solvent from the liquid mixture containing the conjugated diene polymer (A) and the compound (B) and drying the mixture is not particularly limited.
  • the solvent can be removed from the mixed solution and dried by known desolvation operations such as steam stripping and drying operations such as heat treatment.
  • a solid polymer composition from which the solvent has been removed (hereinafter also referred to as "polymer composition P") can be obtained as one embodiment of the present composition.
  • the polymer composition P may be solid particles (crumbs), or may be rubber veils obtained by compression molding crumbs into a desired shape (for example, a rectangular parallelepiped shape).
  • the total content of (A) the conjugated diene polymer, (B) the compound, and (I) the extender oil that is optionally blended is 95% by mass or more based on the entire composition.
  • the content is preferably 97% by mass or more, and more preferably 97% by mass or more.
  • polymer composition Q By blending the above-mentioned various components ((D) to (I) components, etc.) into the obtained polymer composition P as necessary, it can be made into a blended composition as another embodiment of the present composition.
  • a polymer composition or blended composition hereinafter also referred to as "polymer composition Q" can be obtained.
  • the blended composition is prepared by mixing the polymer composition P with various additives (components (D) to (I), etc.) that are optionally used in a polymer composition for obtaining a vulcanized rubber, and preferably It can be obtained by kneading using a kneader such as a type kneader (for example, a roll) or an internal kneader (for example, a Banbury mixer). By crosslinking (vulcanizing) the compounded rubber thus obtained after molding, a crosslinked product (ie, vulcanized rubber) is obtained.
  • a kneader such as a type kneader (for example, a roll) or an internal kneader (for example, a Banbury mixer).
  • a crosslinked product obtained using the polymer composition of the present disclosure containing (A) a conjugated diene polymer and (B) a compound can be applied to various rubber products.
  • the crosslinked product obtained using the present composition can be used, for example, in tire applications such as tire treads, undertreads, carcass, sidewalls, and bead parts; seals such as packings, gaskets, weather strips, and O-rings.
  • Materials Interior and exterior skin materials for various vehicles such as automobiles, ships, aircraft, and railways; Building materials; Anti-vibration rubbers for industrial machinery and equipment;
  • Various hoses such as diaphragms, rolls, radiator hoses, air hoses, etc. It can be applied to hose covers; belts such as power transmission belts; linings; dust boots; medical equipment materials; fenders; insulating materials for electric wires; and other industrial products.
  • the polymer composition of the present disclosure containing (A) a conjugated diene polymer and (B) a compound, it is possible to suppress the adhesion of the (A) conjugated diene polymer to equipment during drying treatment, and also to prevent the adhesion of the equipment to equipment. It is possible to suppress thermal storage combustion and volatilization of components due to the polymer, and to obtain a crosslinked product that has good physical properties required for tire applications, such as tensile strength, abrasion resistance, and viscoelastic properties, while easing the process load in the manufacturing process. can. Therefore, a polymer composition containing (A) a conjugated diene polymer and (B) a compound can be particularly suitably used as a material for a tire tread, a sidewall, or both.
  • Tires can be manufactured according to conventional methods. For example, a polymer composition is mixed in a kneading machine and formed into a sheet, which is then placed in a predetermined position (for example, outside the carcass in the case of sidewalls) and vulcanized to form a tread. Alternatively, it can be formed as a sidewall to obtain a pneumatic tire.
  • the value ⁇ represented by the above formula (i) is 0.60 to 0.98
  • [Means 2] The polymer composition according to [Means 1], wherein the content of the component (B) is 0.1 to 2.2 parts by mass based on 100 parts by mass of the component (A).
  • [Means 3] The polymer composition according to [Means 1] or [Means 2], wherein the proportion of nitrogen contained in the component (A) is 50 ppm or more based on the total amount of the component (A).
  • [Means 4] The polymer composition according to any one of [Means 1] to [Means 3], wherein the component (A) has a polymer block portion containing 80% by mass or more of structural units derived from an aromatic vinyl compound. thing.
  • [Means 5] The polymer composition according to any one of [Means 1] to [Means 4], which contains a branched polymer having a branch number of 4 or more as the component (A).
  • [Means 6] The polymer composition according to [Means 5], wherein the proportion of the branched polymer having a branch number of 4 or more is 15% by mass or more based on the total amount of the component (A).
  • [Means 7] The polymer composition according to any one of [Means 1] to [Means 6], wherein the component (B) has a molecular weight of 350 to 1,200.
  • [Means 8] The polymer composition according to any one of [Means 1] to [Means 7], which contains a compound having a carbon-carbon unsaturated bond as the component (B).
  • [Means 9] [Means 1] to [Means 8] further containing at least one component selected from the group consisting of phosphorus stabilizers and organic sulfur stabilizers and having a molecular weight of 250 to 2,000.
  • [Means 10] The polymer composition according to any one of [Means 1] to [Means 9], wherein the value ⁇ is 0.75 to 0.92.
  • [Means 11] [Means 1] to [Means 1], wherein the total content of the component (A), the component (B), and the optionally added extender oil is 95% by mass or more based on the entire composition.
  • [Means 12] The polymer composition according to any one of [Means 1] to [Means 10], further containing an inorganic filler.
  • [Means 13] A crosslinked product obtained by crosslinking the polymer composition according to any one of [Means 1] to [Means 10] and [Means 12].
  • [Means 14] A tire in which a tread, a sidewall, or both are formed using the polymer composition according to any one of [Means 1] to [Means 10] and [Means 12].
  • [Means 15] A method for producing the polymer composition according to any one of [Means 1] to [Means 12], comprising: a conjugated diene compound and an aromatic vinyl compound in the presence of an alkali metal or an alkaline earth metal; A step of obtaining a polymer solution containing the component (A) by polymerizing and hydrogenating a monomer containing the component (A); A method for producing a polymer composition, comprising the steps of: obtaining a mixed solution containing the component and the component (B); and removing the solvent from the mixed solution and drying it.
  • ⁇ Coupling rate (mass%): From the GPC curve obtained using GPC (product name: HLC-8020, manufactured by Tosoh Corporation) for the polymer before hydrogenation, it was determined that two or more linear conjugates The waveform of the molecule to which the molecular chains of the diene polymer were bonded was separated into components and calculated from the peak area ratio.
  • - Hydrogenation rate and ⁇ Calculated from 1 H-NMR spectrum measured with a 100 MHz device using ethylene tetrachloride as a solvent.
  • ⁇ Content of branched polymer with 4 branches or more (mass%): Based on the GPC curve obtained using GPC (product name: HLC-8020, manufactured by Tosoh Corporation) for the polymer before hydrogenation, 4 branches or more The waveform of the molecule to which the molecular chains of the linear conjugated diene polymer were bonded was separated into components, and the calculation was made from the peak area ratio.
  • the ratio W1 is the number of moles of the polymerization initiator (M1) used in the production of the polymer, the number of moles of the coupling agent (M2), and the number of moles of the amount of the terminal modifier consumed during modification with the terminal modifier (M3). and the coupling ratio (C/E) using the following formula.
  • W1 [%] (100-C/E) x M3/(M1-4 x M2)
  • M3 the number of moles (M3) of the terminal modifier consumed during modification with the terminal modifier was calculated by quantifying the unreacted terminal modifier by gas chromatography measurement of the polymer solution after the modification reaction.
  • ppm Nitrogen content (ppm): Measured according to the chemiluminescence method of JIS K2609:1998 (Crude oil and petroleum products - Nitrogen content test method).
  • a trace total nitrogen analyzer (“TN-2100H” manufactured by Mitsubishi Chemical Analytech)
  • the sample was thermally decomposed under argon gas flow, and then the sample was oxidized by combustion in an oxygen atmosphere.
  • the nitrogen monoxide reacted with ozone gas under dehydration conditions, the detected luminescence intensity in the range of 590 to 2500 nm was measured, and the nitrogen content was calculated from the area of the luminescence intensity.
  • Polymerization was carried out under adiabatic conditions. After the polymerization conversion rate reached 99%, 111 g of 1,3-butadiene was added (additional butadiene), and polymerization was further carried out for 3 minutes to obtain a reaction solution containing a polymer. To the obtained reaction solution, 2.0 mmol of tetrachlorosilane was added and reacted for 5 minutes, and further, 28 mmol of N,N-bis(trimethylsilyl)aminopropylmethyldiethoxysilane was added and reacted for 15 minutes. Next, the reaction solution was heated to 80° C. or higher, hydrogen was introduced into the system, and the reaction was allowed to proceed for 1 hour.
  • a small amount of the polymer solution was extracted from the reaction vessel to obtain a conjugated diene polymer before hydrogenation for analysis. Then, 1.64 g of diethylaluminum chloride, 3.67 g of bis( ⁇ 5-cyclopentadienyl) titanium (furfuryloxy) chloride, and 1.67 g of n-butyllithium were added, and water was added while maintaining the hydrogen pressure of 1.0 MPa. An addition reaction was performed. After the reaction, the hydrogen pressure is maintained at 0.7 MPa or more and hydrogen is supplied until a predetermined integrated hydrogen value is reached.Then, the reaction solution is returned to room temperature and pressure and taken out from the reaction vessel, and then hydrogenated. A polymer solution containing conjugated diene polymer A-1 was obtained.
  • Hydrogenated conjugated diene polymer A was produced in the same manner as in Production Example 1, except that the polymerization recipe was changed as shown in Tables 1 and 2, and the hydrogenation rate was changed as shown in Tables 3 and 4. A polymer solution containing -2 to A-11, A-13 to A-18, A-21, and A-22 was obtained. In addition, in Production Examples 2 to 11 and 13 to 15, hydrogenated conjugated diene polymers A-2 to A-11, A-13, A-21, and A-22 were produced, respectively, and in Comparative Production Examples 2 to 5, Hydrogenated conjugated diene polymers A-14 to A-18 were produced, respectively. Tables 3 and 4 show various physical property values of hydrogenated conjugated diene polymers A-2 to A-11, A-13 to A-18, A-21, and A-22.
  • the reaction solution was cooled to 30° C., 700 g of styrene and 2,289 g of 1,3-butadiene were added, and further polymerization was carried out. After the polymerization conversion rate reached 99% or more, 111 g of 1,3-butadiene was added and polymerization was continued for an additional 3 minutes to obtain a reaction solution containing a polymer. To the obtained reaction solution, 2.0 mmol of tetrachlorosilane was added and reacted for 5 minutes, and further, 28 mmol of N,N-bis(trimethylsilyl)aminopropylmethyldiethoxysilane was added and reacted for 15 minutes.
  • reaction solution was heated to 80° C. or higher, hydrogen was introduced into the system, and the reaction was allowed to proceed for 1 hour.
  • a small amount of the polymer solution was extracted from the reaction vessel to obtain a conjugated diene polymer before hydrogenation.
  • the hydrogen pressure is maintained at 0.7 MPa or more and hydrogen is supplied until a predetermined integrated hydrogen value is reached. Then, the reaction solution is returned to room temperature and pressure and taken out from the reaction vessel, and then hydrogenated. A polymer solution containing conjugated diene polymer A-12 was obtained. A small amount of the obtained polymer solution was extracted, the solvent was removed by steam stripping, and the solution was dried using a heated roll whose temperature was controlled to 130° C. to obtain hydrogenated conjugated diene polymer A-12.
  • the polymerization recipe of hydrogenated conjugated diene polymer A-12 is shown in Table 2, and various physical property values of hydrogenated conjugated diene polymer A-12 are shown in Table 4.
  • Hydrogenated conjugated diene polymer A-19,A was produced in the same manner as in Production Example 12 except that the polymerization recipe was changed as shown in Table 2 and the hydrogenation rate was changed as shown in Table 4 A polymer solution containing -20 was obtained.
  • Table 4 shows various physical properties of hydrogenated conjugated diene polymers A-19 and A-20.
  • V-1 Potassium dodecylbenzenesulfonate
  • INI-1 Piperidine
  • Md-1 N,N-bis(trimethylsilyl)aminopropylmethyldiethoxysilane
  • Cp-1 Tetrachlorosilane
  • Example 1 ⁇ Production of polymer composition P To the polymer solution containing the hydrogenated conjugated diene polymer A-1 obtained in Production Example 1, for 100 parts by mass of the hydrogenated conjugated diene polymer A-1, 0.2 parts by mass of hindered phenol compound B-1 as component (B), 0.3 parts by mass of hindered phenol compound B-2, and 0.3 parts by mass of phosphoric acid ester compound C-1 as component (C). Parts by mass were mixed. The resulting mixed solution was desolvented for 2 hours by steam stripping, and dried using a heated roll whose temperature was controlled at 130°C, resulting in hydrogenated conjugated diene polymer A-1 and hindered phenol compound B. -1, a hindered phenol compound B-2, and a phosphoric acid ester compound C-1. Table 5 shows the formulation of polymer composition P-1.
  • the mixture obtained above was cooled to room temperature, and then a vulcanization accelerator and sulfur were added thereto and kneaded.
  • the kneaded polymer composition Q-1 was molded and vulcanized in a vulcanization press at 160° C. for a predetermined time to obtain a crosslinked product (vulcanized rubber).
  • a manufacturing process evaluation we evaluated the MV change rate, thermal storage combustion suppression ability, volatility, and equipment adhesion by extending the desolution time as shown below, and as a blend physical property evaluation, we evaluated the tensile strength of the obtained crosslinked product, Abrasion resistance, rolling resistance and vulcanization adhesion were evaluated. The results are shown in Table 8.
  • MV change rate due to extension of desolvation time Polymer composition P' was obtained in the same manner as in the production of polymer composition P except that the steam stripping time was changed from 2 hours to 8 hours. Mooney viscosity (MV) was measured for each of polymer composition P and polymer composition P', and MV measurement values (MV-P, MV-P') were obtained, respectively. Mooney viscosity was measured in accordance with JIS K6300-1 using an L rotor under conditions of preheating for 1 minute, rotor operating time for 4 minutes, and temperature of 100°C. Using the MV measurement values (MV-P, MV-P'), the MV change rate was calculated using the following formula.
  • MV change rate MV-P'/MV-P
  • heat storage combustion suppression performance was judged from A to C based on the following criteria.
  • A 97% or more and less than 99% of the polymer composition could be recovered, and there was little adhesion of the polymer composition to the wire mesh.
  • B 95% or more and less than 97% of the polymer composition could be recovered, and there was a large amount of the polymer composition attached to the wire mesh.
  • C The recovery rate of the polymer composition was less than 95%, and the polymer composition adhered to the wire mesh very often. If the evaluation is between AA and B, it can be determined that the adhesion to equipment during the drying process using a band dryer, extruder, etc. during production of the polymer composition is at a practical level. A C judgment indicates that it does not reach a practical level.
  • Abrasion resistance Using a crosslinked body as a measurement sample, measurement was performed at 25° C. under a load of 10 N using a DIN abrasion tester (manufactured by Toyo Seiki Co., Ltd.) in accordance with JIS K6264-2:2005. It was expressed as an index based on Comparative Example 1, and the rolling resistance was evaluated using the index. The larger the value, the higher the wear resistance and the better. From the obtained index, the wear resistance was judged from A to C based on the following criteria. A: 115 or more B: 105 or more and less than 115 and allowable range C: less than 105
  • Rolling resistance Using a crosslinked body as a measurement sample, measurements were made using a dynamic spectrometer (manufactured by Rheometrics, Inc., USA) under conditions of tensile dynamic strain of 0.7%, angular velocity of 100 radians per second, and 50°C. . It was expressed as an index based on Comparative Example 2, and rolling resistance was evaluated using the index. The larger the value, the lower the rolling resistance and the better. Based on the obtained index, rolling resistance was judged from AA to C based on the following criteria. AA: 125 or more A: 115 or more and less than 125 B: 105 or more and less than 115 and allowable range C: less than 105
  • Vulcanization adhesion A pre-vulcanized sheet of polymer composition Q and a pre-vulcanized sheet containing natural rubber as a main component are laminated with PET film sandwiched between the ends, and the temperature By vulcanizing at 170° C. for 15 minutes, a laminate vulcanized product was obtained in which the portions not sandwiching the PET film were vulcanized and bonded. In order to measure the adhesive strength at a width of 15 mm, a strip-shaped sample piece was taken from the laminated vulcanizate from the part where PET was sandwiched to the part where PET was not sandwiched, and the PET film was removed to prepare a test piece.
  • a vulcanized sheet made of polymer composition Q was placed on one side of an autograph tester equipped with a constant temperature bath, and a vulcanized sheet of natural rubber was placed on the other side, and the sheets were chucked up and down in an atmosphere of 70°C.
  • a peel test was conducted at a speed of 50 mm/min to measure the adhesive strength.
  • the obtained adhesive strength values were evaluated as an index based on Comparative Example 1. It can be said that the larger the value, the higher the adhesive force, and the better the vulcanization adhesion. Based on the obtained index, the vulcanization adhesion was judged from AA to C based on the following criteria.
  • Examples 2 to 15, Comparative Examples 1 to 7 In place of the polymer solution containing hydrogenated conjugated diene polymer A-1, each polymer solution containing hydrogenated conjugated diene polymers A-2 to A-22 was used, and the types and amounts of additives. Polymer compositions P-2 to P-22 were produced as polymer composition P in the same manner as in Example 1, except that the values were changed as shown in Tables 5 and 6. In addition, when producing the polymer composition P, in Examples 2 to 15, polymer solutions containing hydrogenated conjugated diene polymers A-2 to A-13, A-21, and A-22, respectively, were used, and in Comparative Example In Examples 1 to 7, polymer solutions containing hydrogenated conjugated diene polymers A-14 to A-20, respectively, were used.
  • each component was mixed according to the formulation shown in Table 7 in the same manner as in Example 1 except that polymer compositions P-2 to P-22 were used instead of polymer composition P-1.
  • Polymer compositions Q-2 to Q-22 were each produced by kneading. Further, crosslinked products were produced using each of the produced polymers Q-2 to Q-22, and various evaluations were conducted in the same manner as in Example 1. The results are shown in Tables 8 and 9.
  • the polymer compositions of Examples 1 to 15 were evaluated as ⁇ AA'' and ⁇ A'' in terms of MV change rate, heat storage combustion suppression ability, volatility, and equipment adhesion due to extended desolvation time. ” or “B”. From these results, it can be said that the polymer compositions of Examples 1 to 15 can reduce the load in the manufacturing process and have good quality stability.
  • the crosslinked products obtained from the polymer compositions of Examples 1 to 15 had improved tensile strength, abrasion resistance, rolling resistance, and vulcanization properties due to suppressed changes in the Mooney viscosity of the polymer during the manufacturing process.
  • the evaluation of adhesive properties was also good, and various compounding characteristics were excellent.
  • the polymer compositions of Nos. and 5 were evaluated as "C" in one or more of the manufacturing process evaluation items, and were inferior in terms of manufacturing process load and quality stability.
  • the compounding characteristics were rated "C” in one or more evaluation items.
  • the polymer composition of Comparative Example 6 containing hydrogenated conjugated diene polymer A-19 with a hydrogenation rate of 99% had good manufacturing process evaluations, but The evaluation of adhesiveness was "C", and the compounding characteristics were poor.
  • a polymer composition having a specific functional group containing a species element it is possible to reduce the process load and stabilize the quality in the production process of a conjugated diene polymer, and moreover, a crosslinked product with suppressed performance deterioration can be obtained. It has become clear that it can be obtained.

Abstract

Provided is a polymer composition containing: (A) a conjugated diene polymer having a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound, the value α of the conjugated diene polymer, as represented by mathematical expression (i), is 0.60-0.98, where the composition ratio (molar ratio) in the polymer of the structural units represented by formulas (1), (2), (3) and (4) are p, q, r, s respectively; and (B) a hindered phenol compound having a molecular weight of 250-2000. A portion or all of the component (A) has a functional group including at least one element selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorous. α = (p + (0.5 × r)) / (p + q + (0.5 × r) + s) ... (i)

Description

重合体組成物及びその製造方法、架橋体、並びにタイヤPolymer composition, method for producing the same, crosslinked product, and tire
[関連出願の相互参照]
 本出願は、2022年3月8日に出願された日本特許出願番号2022-35722号に基づく優先権を主張し、その全体が参照により本明細書に組み込まれる。
 本開示は、重合体組成物及びその製造方法、架橋体、並びにタイヤに関する。
[Cross reference to related applications]
This application claims priority based on Japanese Patent Application No. 2022-35722 filed on March 8, 2022, which is incorporated herein by reference in its entirety.
The present disclosure relates to a polymer composition, a method for producing the same, a crosslinked product, and a tire.
 共役ジエン化合物を用いた重合により得られる共役ジエン系重合体は、耐熱性、耐摩耗性、機械的強度、成形加工性等の各種特性が良好であることから、空気入りタイヤや防振ゴム、ホース等の各種工業製品に広く使用されている。 Conjugated diene polymers obtained by polymerization using conjugated diene compounds have good properties such as heat resistance, abrasion resistance, mechanical strength, and moldability, so they are used in pneumatic tires, anti-vibration rubber, Widely used in various industrial products such as hoses.
 空気入りタイヤのトレッド、サイドウォール等の製造に用いられる重合体組成物としては、製品の耐久性や耐摩耗性を向上させるべく、共役ジエン系重合体と共に、補強剤としてカーボンブラックやシリカ等の無機フィラーを配合させることが知られている。また従来、共役ジエン系重合体と補強剤との親和性を高めるために、ケイ素や窒素を有する化合物で変性された共役ジエン系重合体を用いることが行われている(例えば、特許文献1~3参照)。 Polymer compositions used to manufacture pneumatic tire treads, sidewalls, etc. contain conjugated diene polymers as well as reinforcing agents such as carbon black and silica to improve product durability and wear resistance. It is known to incorporate inorganic fillers. Furthermore, conventionally, in order to increase the affinity between the conjugated diene polymer and the reinforcing agent, a conjugated diene polymer modified with a compound containing silicon or nitrogen has been used (for example, Patent Document 1 (See 3).
 また近年では、アミノ基やアルコキシシリル基等の官能基を片末端又は両末端に有する共役ジエン系重合体の水添物である水添共役ジエン系重合体を用いて、高強度であって耐摩耗性に優れるタイヤ部材を得ることが提案されている(特許文献4参照)。 In addition, in recent years, hydrogenated conjugated diene polymers, which are hydrogenated products of conjugated diene polymers having functional groups such as amino groups or alkoxysilyl groups at one or both ends, have been developed to provide high strength and durability. It has been proposed to obtain a tire member with excellent wear resistance (see Patent Document 4).
国際公開第2008/123164号International Publication No. 2008/123164 特開平11-349632号公報Japanese Patent Application Publication No. 11-349632 国際公開第2017/221943号International Publication No. 2017/221943 国際公開第2014/133097号International Publication No. 2014/133097
 共役ジエン系重合体の製造工程において、共役ジエン系重合体を含む重合体溶液から溶媒を除去して共役ジエン系重合体を回収する場合、通常、スチームストリッピング等の脱溶媒の操作が行われる。この脱溶媒の操作において、実工程では脱溶媒を行う時間を厳密に管理することは困難である。その一方で、脱溶媒を行う時間のばらつきによって重合体の品質が安定しないことがあり、このような品質不安定性に起因して架橋体の性能低下を招くことが懸念される。この点を考慮すると、脱溶媒を行う時間のばらつきに対して安定した物性を発現し得る重合体が望まれる。 In the process of producing a conjugated diene polymer, when removing the solvent from a polymer solution containing the conjugated diene polymer to recover the conjugated diene polymer, a desolvation operation such as steam stripping is usually performed. . In this desolvation operation, it is difficult to strictly control the time for desolvation in the actual process. On the other hand, the quality of the polymer may not be stable due to variations in the time for desolvation, and there is concern that such quality instability may lead to deterioration in the performance of the crosslinked product. Considering this point, a polymer that can exhibit stable physical properties despite variations in the time for desolvation is desired.
 しかしながら、官能基が導入された共役ジエン系重合体を含む重合体溶液に対し脱溶媒を行う場合、脱溶媒の処理中に官能基同士が反応したり、官能基自身の脱離が生じたりする等のラジカル的な副反応が起きることや、金属残渣(例えば、水添触媒等)との副反応が起きることが想定される。また、このような副反応が脱溶媒中に起きることによって、脱溶媒を行う時間のばらつきに起因して共役ジエン系重合体のムーニー粘度が変化しやすいことが懸念される。 However, when desolventizing a polymer solution containing a conjugated diene polymer into which functional groups have been introduced, the functional groups may react with each other or the functional groups themselves may be eliminated during the solvent removal process. It is assumed that radical side reactions such as these and side reactions with metal residues (for example, hydrogenation catalysts, etc.) may occur. Furthermore, there is a concern that the Mooney viscosity of the conjugated diene polymer is likely to change due to variations in the time for desolvation due to such side reactions occurring during desolvation.
 共役ジエン系重合体の製造工程では、共役ジエン系重合体を乾燥させる工程において共役ジエン系重合体の設備付着(例えば、乾燥炉への付着)がしばしば問題になる。重合体の設備付着が生じやすい場合、設備に付着して滞留した重合体由来の揮発分によって設備汚染が生じたり、設備滞留した重合体の蓄熱燃焼が生じたりすることが懸念される。そのため、設備を頻繁にクリーンアップする必要が生じ、これに伴い製造工程における工程負荷が増大して生産性が低下することが懸念される。 In the manufacturing process of a conjugated diene polymer, adhesion of the conjugated diene polymer to equipment (for example, adhesion to a drying oven) often becomes a problem in the step of drying the conjugated diene polymer. If polymers tend to adhere to equipment, there are concerns that volatile matter derived from the polymer that adheres to and remains on the equipment may contaminate the equipment or cause heat storage combustion of the polymer that remains on the equipment. Therefore, it becomes necessary to frequently clean up the equipment, and there is a concern that the process load in the manufacturing process increases and productivity decreases.
 本開示は上記課題に鑑みなされたものであり、共役ジエン系重合体の製造工程における工程負荷の軽減及び品質安定化を図ることができるとともに、性能低下が抑制された架橋体を得ることができる重合体組成物を提供することを一つの目的とする。 The present disclosure has been made in view of the above-mentioned problems, and it is possible to reduce the process load and stabilize quality in the manufacturing process of a conjugated diene polymer, and to obtain a crosslinked product in which performance deterioration is suppressed. One object is to provide a polymer composition.
 本開示により、以下の重合体組成物及びその製造方法、架橋体、並びにタイヤが提供される。 The present disclosure provides the following polymer composition, method for producing the same, crosslinked product, and tire.
 [1] (A)下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位及び下記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、下記数式(i)で表される値αが0.60~0.98であり、共役ジエン化合物に由来する構造単位と芳香族ビニル化合物に由来する構造単位とを有する共役ジエン系重合体、及び、(B)分子量が250~2,000のヒンダードフェノール化合物を含有し、前記(A)成分の一部又は全部が、窒素、酸素、硫黄及びリンよりなる群から選択される少なくとも1種の元素を含む官能基を有する、重合体組成物。
 α=(p+(0.5×r))/(p+q+(0.5×r)+s)  
                              …(i)
Figure JPOXMLDOC01-appb-C000002
[1] (A) A structural unit represented by the following formula (1), a structural unit represented by the following formula (2), a structural unit represented by the following formula (3), and a structural unit represented by the following formula (4). When the composition ratios (molar ratios) of the structural units in the polymer are p, q, r, and s, respectively, the value α expressed by the following formula (i) is 0.60 to 0.98, and the conjugated A conjugated diene polymer having a structural unit derived from a diene compound and a structural unit derived from an aromatic vinyl compound, and (B) a hindered phenol compound having a molecular weight of 250 to 2,000; ) A polymer composition in which some or all of the components have a functional group containing at least one element selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorus.
α=(p+(0.5×r))/(p+q+(0.5×r)+s)
...(i)
Figure JPOXMLDOC01-appb-C000002
 [2] 上記[1]の重合体組成物が架橋されてなる架橋体。
 [3] 上記[1]の重合体組成物を用いて、トレッド、サイドウォール又はその両方が形成されたタイヤ。
 [4] 上記[1]の重合体組成物を製造する方法であって、アルカリ金属又はアルカリ土類金属の存在下で共役ジエン化合物及び芳香族ビニル化合物を含む単量体を重合し、水素添加することにより、前記(A)成分を含む重合体溶液を得る工程と、前記重合体溶液と前記(B)成分とを混合して、前記(A)成分と前記(B)成分とを含む混合液を得る工程と、前記混合液の脱溶媒を行い、乾燥させる工程と、を含む、重合体組成物の製造方法。
[2] A crosslinked product obtained by crosslinking the polymer composition of [1] above.
[3] A tire in which a tread, a sidewall, or both are formed using the polymer composition of [1] above.
[4] A method for producing the polymer composition of [1] above, which comprises polymerizing a monomer containing a conjugated diene compound and an aromatic vinyl compound in the presence of an alkali metal or an alkaline earth metal, and hydrogenating the monomer. A step of obtaining a polymer solution containing the component (A) by mixing the polymer solution and the component (B) to form a mixture containing the component (A) and the component (B). A method for producing a polymer composition, comprising the steps of obtaining a liquid, and removing the solvent from the mixed liquid and drying it.
 本開示によれば、共役ジエン系重合体の製造工程における工程負荷の軽減及び品質安定化を図ることができる。また、製造工程における共役ジエン系重合体の品質安定化によって、性能低下が抑制された架橋体を得ることができる。 According to the present disclosure, it is possible to reduce the process load and stabilize the quality in the manufacturing process of a conjugated diene polymer. Furthermore, by stabilizing the quality of the conjugated diene polymer during the manufacturing process, a crosslinked product with suppressed performance deterioration can be obtained.
 以下、本開示の実施に関連する事項について詳細に説明する。なお、本明細書において、「~」を用いて記載された数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を表す。 Hereinafter, matters related to implementation of the present disclosure will be explained in detail. In addition, in this specification, a numerical range described using "~" represents a range that includes the numerical values described before and after "~" as a lower limit value and an upper limit value.
《重合体組成物》
 本開示の重合体組成物(以下、「本組成物」ともいう)は、(A)共役ジエン系重合体と、(B)分子量が250~2,000のヒンダードフェノール化合物とを含有する。以下に、本組成物に含まれる成分、及び任意に配合される成分について詳細に説明する。
《Polymer composition》
The polymer composition of the present disclosure (hereinafter also referred to as "the present composition") contains (A) a conjugated diene polymer and (B) a hindered phenol compound having a molecular weight of 250 to 2,000. Below, the components contained in this composition and the components optionally blended will be explained in detail.
<(A)成分:共役ジエン系重合体>
 (A)成分である共役ジエン系重合体(以下、「(A)共役ジエン系重合体」ともいう)は、共役ジエン化合物に由来する構造単位と芳香族ビニル化合物に由来する構造単位とを有する共重合体である。(A)共役ジエン系重合体は、下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、下記数式(i)で表される値αが0.60~0.98の高飽和の重合体である。
 α=(p+(0.5×r))/(p+q+(0.5×r)+s)
                              …(i)
Figure JPOXMLDOC01-appb-C000003
<(A) component: Conjugated diene polymer>
The conjugated diene polymer that is component (A) (hereinafter also referred to as "(A) conjugated diene polymer") has a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound. It is a copolymer. (A) The conjugated diene polymer includes a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), a structural unit represented by the following formula (3), and a structural unit represented by the following formula ( When the composition ratios (molar ratios) of the structural units represented by 4) in the polymer are p, q, r, and s, respectively, the value α represented by the following formula (i) is 0.60 to 0. 98 highly saturated polymer.
α=(p+(0.5×r))/(p+q+(0.5×r)+s)
...(i)
Figure JPOXMLDOC01-appb-C000003
 (A)共役ジエン系重合体の分子構造は特に限定されない。(A)共役ジエン系重合体は、直鎖状の重合体(以下、「直鎖ポリマー」ともいう)であってもよく、多分岐構造を有する重合体(以下、「分岐ポリマー」ともいう)であってもよく、これらの混合物であってもよい。(A)共役ジエン系重合体を含む重合体溶液から溶媒を除去する際の処理時間(以下、「脱溶時間」ともいう)の相違に起因する共役ジエン系重合体のムーニー粘度の変化が小さく、物性の低下(例えば、強度や粘弾性特性、耐摩耗性の低下)が抑制された架橋体を得ることができる点で、(A)共役ジエン系重合体は、4分岐以上の分岐ポリマーを含むことが好ましい。 (A) The molecular structure of the conjugated diene polymer is not particularly limited. (A) The conjugated diene polymer may be a linear polymer (hereinafter also referred to as "linear polymer") or a polymer having a multi-branched structure (hereinafter also referred to as "branched polymer"). or a mixture thereof. (A) Changes in the Mooney viscosity of the conjugated diene polymer due to differences in processing time (hereinafter also referred to as "resolution time") when removing the solvent from a polymer solution containing the conjugated diene polymer are small. (A) Conjugated diene polymer is a conjugated diene polymer with four or more branches, in that it is possible to obtain a crosslinked product with suppressed deterioration of physical properties (for example, deterioration of strength, viscoelastic properties, and abrasion resistance). It is preferable to include.
 本組成物に含まれる(A)共役ジエン系重合体の一部又は全部は、窒素、酸素、硫黄及びリンよりなる群から選択される少なくとも1種の元素を含む官能基(以下、「特定官能基」ともいう)を有する。 Part or all of the conjugated diene polymer (A) contained in the present composition contains a functional group (hereinafter referred to as "specific functional group") containing at least one element selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorus. (also called "base").
 特定官能基を有する重合体(以下、「官能基含有ポリマー」ともいう)において、重合体中の特定官能基の位置は特に限定されない。官能基含有ポリマーとしては、例えば、分子鎖中(すなわち、分子鎖の末端と末端との間)、分子鎖の末端又はこれらの両方に特定官能基を有する重合体が挙げられる。官能基含有ポリマーが特定官能基を分子鎖の末端に有する場合、官能基含有ポリマーは、特定官能基を重合開始末端に有していてもよく、重合終了末端に有していてもよく、重合開始末端及び重合終了末端の両方に有していてもよい。また、官能基含有ポリマーは、ポリマー1分子中の末端の一部に特定官能基を有していてもよいし、ポリマー1分子中の末端の全部に特定官能基を有していてもよい。本組成物を用いて得られる架橋体の各種物性(例えば、機械的強度、耐摩耗性、粘弾性特性、低燃費性能等)の改善効果を高くできる点において、官能基含有ポリマーは中でも、2以上の末端に特定官能基を有していることが好ましい。 In a polymer having a specific functional group (hereinafter also referred to as a "functional group-containing polymer"), the position of the specific functional group in the polymer is not particularly limited. Examples of the functional group-containing polymer include polymers having specific functional groups in the molecular chain (that is, between the ends of the molecular chain), at the ends of the molecular chain, or in both of these. When the functional group-containing polymer has a specific functional group at the end of the molecular chain, the functional group-containing polymer may have the specific functional group at the polymerization start end, or at the polymerization end end, and may have the specific functional group at the end of the polymerization end. It may be present at both the starting end and the polymerization ending end. Further, the functional group-containing polymer may have a specific functional group at a part of the terminal end in one polymer molecule, or may have a specific functional group at all the terminal ends in one polymer molecule. Functional group-containing polymers are particularly effective in improving the various physical properties (e.g., mechanical strength, abrasion resistance, viscoelastic properties, fuel efficiency, etc.) of the crosslinked product obtained using the present composition. It is preferable that the above terminal has a specific functional group.
 ここで、本明細書において「官能基」とは、有機化合物の分子内において特定の構造を持つ基であり、その化合物を特徴付ける原子団又は結合様式をいう。官能基含有ポリマーが有する特定官能基としては、例えば、1級アミノ基、2級アミノ基、3級アミノ基、1級アミノ基の2つの水素原子が保護されてなる窒素含有基、2級アミノ基の1つの水素原子が保護されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基の2つの水素原子が保護されてなるリン含有基、2級ホスフィノ基の1つの水素原子が保護されてなるリン含有基、3級ホスフィノ基、エポキシ基、チオエポキシ基、水酸基、水酸基の水素原子が保護されてなる酸素含有基、チオール基、チオール基の水素原子が保護されてなる硫黄含有基、窒素含有複素環基(例えば、ピリジン環、イミド環等の複素環を有する基)、ヒドロカルビルオキシシリル基、ヒドロカルビルオキシカルボニル基、エーテル結合、チオエーテル結合等が挙げられる。 Here, in this specification, the term "functional group" refers to a group having a specific structure within the molecule of an organic compound, and refers to an atomic group or bonding style that characterizes the compound. Specific functional groups possessed by the functional group-containing polymer include, for example, a primary amino group, a secondary amino group, a tertiary amino group, a nitrogen-containing group in which two hydrogen atoms of a primary amino group are protected, and a secondary amino group. A nitrogen-containing group in which one hydrogen atom of the group is protected, a tertiary amino group, an imino group, a pyridyl group, a phosphorus-containing group in which two hydrogen atoms of a primary phosphino group are protected, and a secondary phosphino group. A phosphorus-containing group in which one hydrogen atom is protected, a tertiary phosphino group, an epoxy group, a thioepoxy group, a hydroxyl group, an oxygen-containing group in which a hydrogen atom in a hydroxyl group is protected, a thiol group, a hydrogen atom in a thiol group is protected. Examples include a sulfur-containing group, a nitrogen-containing heterocyclic group (for example, a group having a heterocycle such as a pyridine ring and an imide ring), a hydrocarbyloxysilyl group, a hydrocarbyloxycarbonyl group, an ether bond, a thioether bond, and the like.
 (A)共役ジエン系重合体に含まれる官能基含有ポリマーとしては、活性末端を有する共役ジエン系重合体と、共役ジエン系重合体が有する活性末端との反応点及び特定官能基を有する化合物との反応生成物(以下、「変性ポリマー」ともいう)を好ましく用いることができる。共役ジエン系重合体が有する活性末端との反応点及び特定官能基を有する化合物(以下、「変性剤」ともいう)において、活性末端との反応点の数は1個でもよく、2個以上であってもよい。変性剤が有する特定官能基の具体例としては、官能基含有ポリマーが有する特定官能基の具体例と同様の基及び結合が挙げられる。このような変性ポリマーは、変性ポリマーの製造に際し、変性剤として、後述するカップリング剤又は末端変性剤であって特定官能基を有する化合物を用いることにより得ることができる。ここで、変性ポリマーは、変性ポリマーを得るための反応において、カップリング剤又は末端変性剤に加え、後述する開始末端変性剤を更に用いて得られる重合体であってもよい。 (A) The functional group-containing polymer contained in the conjugated diene polymer includes a conjugated diene polymer having an active end, a reaction point with the active end of the conjugated diene polymer, and a compound having a specific functional group. (hereinafter also referred to as "modified polymer") can be preferably used. In a compound (hereinafter also referred to as a "modifier") having a reactive site with the active end of the conjugated diene polymer and a specific functional group, the number of reactive sites with the active end may be one, or two or more. There may be. Specific examples of the specific functional group possessed by the modifier include the same groups and bonds as specific examples of the specific functional group possessed by the functional group-containing polymer. Such a modified polymer can be obtained by using, as a modifying agent, a coupling agent or a terminal modifying agent, which will be described later, and a compound having a specific functional group during production of the modified polymer. Here, the modified polymer may be a polymer obtained by further using, in addition to a coupling agent or a terminal modifying agent, a starting terminal modifying agent to be described later in the reaction for obtaining the modified polymer.
 なお、(A)共役ジエン系重合体が官能基含有ポリマー(好ましくは変性ポリマー)を含む場合、分岐ポリマーと官能基含有ポリマーは、分子構造や物性が互いに異なる別々の重合体であってもよい。また、(A)共役ジエン系重合体としての分岐ポリマーが特定官能基を有することにより、(A)共役ジエン系重合体が分岐ポリマーを含み、かつ官能基含有ポリマーを含むものであってもよい。脱溶時間の違いに対するムーニー粘度の変化をより小さくし、品質安定化を図る観点からすると、(A)共役ジエン系重合体は、特定官能基を有する分岐ポリマーを含むことが好ましく、品質安定化を図りつつ引張強度など配合物性を向上させる観点から、2以上の末端に特定官能基を有する分岐ポリマーを含むことがより好ましく、4以上の末端に特定官能基を有する分岐ポリマーを含むことが更に好ましい。 In addition, when the conjugated diene polymer (A) contains a functional group-containing polymer (preferably a modified polymer), the branched polymer and the functional group-containing polymer may be separate polymers with different molecular structures and physical properties. . Furthermore, since the branched polymer as the (A) conjugated diene polymer has a specific functional group, the conjugated diene polymer (A) may contain a branched polymer and also contain a functional group-containing polymer. . From the viewpoint of reducing the change in Mooney viscosity due to the difference in desolvation time and stabilizing the quality, it is preferable that the conjugated diene polymer (A) contains a branched polymer having a specific functional group, thereby stabilizing the quality. From the viewpoint of improving compound properties such as tensile strength while aiming at the above, it is more preferable to contain a branched polymer having a specific functional group at two or more terminals, and it is even more preferable to contain a branched polymer having a specific functional group at four or more terminals. preferable.
 (A)共役ジエン系重合体は、共役ジエン化合物に由来する構造単位を有する高分子の集合体である。(A)共役ジエン系重合体の具体的態様としては、下記の〔a1〕~〔a4〕の各態様が挙げられる。
〔a1〕4分岐以上の分岐ポリマー(以下、「第1ポリマー」ともいう)と、直鎖ポリマー及び3分岐以下の分岐ポリマーよりなる群から選択される1種以上のポリマー(以下、「第2ポリマー」ともいう)とを含有し、第1ポリマー及び第2ポリマーが官能基含有ポリマーである態様。
〔a2〕第1ポリマーと第2ポリマーとを含有し、第1ポリマー及び第2ポリマーのうち第1ポリマーが官能基含有ポリマーである態様。
〔a3〕第1ポリマーと第2ポリマーとを含有し、第1ポリマー及び第2ポリマーのうち第2ポリマーが官能基含有ポリマーである態様。
〔a4〕第2ポリマーを含有し、第1ポリマーを含有せず、第2ポリマーが官能基含有ポリマーである態様。
これらのうち、製造工程負荷の軽減と配合物性の向上との改善効果を高くできる点で、少なくとも第2ポリマーを含有し、第2ポリマーが官能基含有ポリマーである態様がより好ましく、第1ポリマー及び第2ポリマーを含有し、第1ポリマー及び第2ポリマーが官能基含有ポリマーである態様が更に好ましい。
(A) The conjugated diene polymer is an aggregate of polymers having structural units derived from a conjugated diene compound. Specific embodiments of the conjugated diene polymer (A) include the following embodiments [a1] to [a4].
[a1] One or more polymers selected from the group consisting of a branched polymer with 4 or more branches (hereinafter also referred to as "first polymer"), a linear polymer, and a branched polymer with 3 or less branches (hereinafter referred to as "second polymer") polymer), and the first polymer and the second polymer are functional group-containing polymers.
[a2] An embodiment containing a first polymer and a second polymer, and of the first polymer and the second polymer, the first polymer is a functional group-containing polymer.
[a3] An embodiment containing a first polymer and a second polymer, and of the first polymer and the second polymer, the second polymer is a functional group-containing polymer.
[a4] An embodiment in which the second polymer is contained, the first polymer is not contained, and the second polymer is a functional group-containing polymer.
Among these, it is more preferable that at least the second polymer is contained, and the second polymer is a functional group-containing polymer, since the improvement effect of reducing the manufacturing process load and improving the compound properties is more preferable. and a second polymer, and the first polymer and the second polymer are functional group-containing polymers.
 (A)共役ジエン系重合体は、以下の重合工程及び水添工程を含む方法により製造することができる。また、(A)共役ジエン系重合体は、重合工程及び水添工程に加えて更に、以下の反応工程及び変性工程のうち少なくとも一方を含む方法により製造されてもよい。以下、(A)共役ジエン系重合体の製造方法を説明しながら、(A)共役ジエン系重合体の分子構造等について併せて説明する。 (A) The conjugated diene polymer can be produced by a method including the following polymerization step and hydrogenation step. The conjugated diene polymer (A) may also be produced by a method that includes at least one of the following reaction steps and modification steps in addition to the polymerization step and hydrogenation step. Hereinafter, while explaining the method for producing (A) the conjugated diene polymer, the molecular structure and the like of the (A) conjugated diene polymer will also be explained.
<重合工程>
 重合工程は、共役ジエン化合物と芳香族ビニル化合物とを含む単量体を重合して、活性末端を有する共役ジエン系重合体を得る工程である。
<Polymerization process>
The polymerization step is a step of polymerizing monomers containing a conjugated diene compound and an aromatic vinyl compound to obtain a conjugated diene polymer having an active terminal.
 重合に使用する共役ジエン化合物としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン、1,3-ヘプタジエン、2-フェニル-1,3-ブタジエン、3-メチル-1,3-ペンタジエン、2-クロロ-1,3-ブタジエン等が挙げられる。これらの中でも、1,3-ブタジエン、イソプレン及び2,3-ジメチル-1,3-ブタジエンよりなる群から選択される少なくとも1種が好ましく、1,3-ブタジエン及びイソプレンのうち一方又は両方がより好ましい。共役ジエン化合物は1種を単独でもよく、2種以上でもよい。 Conjugated diene compounds used in polymerization include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 1,3-heptadiene, 2- Examples include phenyl-1,3-butadiene, 3-methyl-1,3-pentadiene, and 2-chloro-1,3-butadiene. Among these, at least one selected from the group consisting of 1,3-butadiene, isoprene and 2,3-dimethyl-1,3-butadiene is preferred, and one or both of 1,3-butadiene and isoprene are more preferred. preferable. One type of conjugated diene compound may be used alone, or two or more types may be used.
 重合に使用する芳香族ビニル化合物としては、スチレン、2-メチルスチレン、3-メチルスチレン、4-メチルスチレン、α-メチルスチレン、2,4-ジメチルスチレン、2,4-ジイソプロピルスチレン、4-t-ブチルスチレン、5-t-ブチル-2-メチルスチレン、ビニルエチルベンゼン、ジビニルベンゼン、トリビニルベンゼン、ジビニルナフタレン、t-ブトキシスチレン、ビニルベンジルジメチルアミン、(4-ビニルベンジル)ジメチルアミノエチルエーテル、N,N-ジメチルアミノエチルスチレン、N,N-ジメチルアミノメチルスチレン、2-エチルスチレン、3-エチルスチレン、4-エチルスチレン、2-t-ブチルスチレン、3-t-ブチルスチレン、ビニルキシレン、ビニルナフタレン、ビニルピリジン、ジフェニルエチレン、3級アミノ基含有ジフェニルエチレン(例えば、1-(4-N,N-ジメチルアミノフェニル)-1-フェニルエチレン)等が挙げられる。芳香族ビニル化合物としては、これらの中でも、スチレン及びα-メチルスチレンのうち一方又は両方が好ましい。芳香族ビニル化合物は1種を単独でもよく、2種以上でもよい。 Aromatic vinyl compounds used in polymerization include styrene, 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, α-methylstyrene, 2,4-dimethylstyrene, 2,4-diisopropylstyrene, 4-t -Butylstyrene, 5-t-butyl-2-methylstyrene, vinylethylbenzene, divinylbenzene, trivinylbenzene, divinylnaphthalene, t-butoxystyrene, vinylbenzyldimethylamine, (4-vinylbenzyl)dimethylaminoethyl ether, N , N-dimethylaminoethylstyrene, N,N-dimethylaminomethylstyrene, 2-ethylstyrene, 3-ethylstyrene, 4-ethylstyrene, 2-t-butylstyrene, 3-t-butylstyrene, vinylxylene, vinyl Examples include naphthalene, vinylpyridine, diphenylethylene, and diphenylethylene containing a tertiary amino group (eg, 1-(4-N,N-dimethylaminophenyl)-1-phenylethylene). Among these aromatic vinyl compounds, one or both of styrene and α-methylstyrene are preferred. One type of aromatic vinyl compound may be used alone, or two or more types may be used.
 (A)共役ジエン系重合体における、芳香族ビニル化合物に由来する構造単位の割合は、(A)共役ジエン系重合体を構成する全構造単位に対し、0質量%を超えて45質量%以下であることが好ましい。上記範囲とすることにより、重合体組成物の加工性を維持しながら、高強度であって、かつ耐摩耗性に優れた架橋体を得ることができる。芳香族ビニル化合物に由来する構造単位の割合は、(A)共役ジエン系重合体を構成する全構造単位に対して、2質量%以上であることがより好ましく、5質量%以上であることが更に好ましい。また、芳香族ビニル化合物に由来する構造単位の割合は、(A)共役ジエン系重合体を構成する全構造単位に対して、40質量%以下であることがより好ましく、38質量%以下であることが更に好ましく、35質量%以下であることがより更に好ましい。重合体中における、芳香族ビニル化合物に由来する構造単位の含有割合はH-NMRによって測定した値である。 (A) The proportion of structural units derived from an aromatic vinyl compound in the conjugated diene polymer is more than 0% by mass and 45% by mass or less with respect to the total structural units constituting the (A) conjugated diene polymer. It is preferable that By setting it as the said range, a crosslinked body with high strength and excellent wear resistance can be obtained while maintaining the processability of the polymer composition. The proportion of the structural units derived from the aromatic vinyl compound is more preferably 2% by mass or more, and preferably 5% by mass or more, based on the total structural units constituting the (A) conjugated diene polymer. More preferred. Further, the proportion of the structural units derived from the aromatic vinyl compound is more preferably 40% by mass or less, and more preferably 38% by mass or less, based on the total structural units constituting the (A) conjugated diene polymer. It is even more preferable that the amount is 35% by mass or less, and even more preferably 35% by mass or less. The content ratio of structural units derived from an aromatic vinyl compound in the polymer is a value measured by 1 H-NMR.
 (A)共役ジエン系重合体は、アニオン重合におけるリビング性が高い点で、中でも、1,3-ブタジエンとスチレンとを単量体組成に含む共重合体であることが好ましい。 The conjugated diene polymer (A) is preferably a copolymer containing 1,3-butadiene and styrene in its monomer composition, since it has high living properties in anionic polymerization.
 本組成物を用いて得られる架橋体の各種物性(例えば、機械的強度や耐摩耗性、粘弾性特性等)を向上させる観点から、(A)共役ジエン系重合体は、共役ジエン化合物と芳香族ビニル化合物との分布が不規則なランダム共重合部を有することが好ましい。(A)共役ジエン系重合体が、共役ジエン化合物と芳香族ビニル化合物とのランダム共重合体である場合、(A)共役ジエン系重合体は、共役ジエン化合物と芳香族ビニル化合物とのランダム共重合後に共役ジエン化合物を追添することによって形成される共役ジエン化合物の連鎖部分を更に有していてもよい。 From the viewpoint of improving various physical properties (e.g., mechanical strength, abrasion resistance, viscoelastic properties, etc.) of the crosslinked product obtained using the present composition, (A) the conjugated diene polymer contains a conjugated diene compound and an aromatic It is preferable to have a random copolymerization portion with irregular distribution with the group vinyl compound. (A) When the conjugated diene polymer is a random copolymer of a conjugated diene compound and an aromatic vinyl compound; It may further have a chain portion of a conjugated diene compound formed by additionally adding a conjugated diene compound after polymerization.
 (A)共役ジエン系重合体は、芳香族ビニル化合物を主成分とする重合ブロック部を有していてもよい。(A)共役ジエン系重合体が、芳香族ビニル化合物を主成分とする重合ブロック部を有する場合、(A)共役ジエン系重合体の乾燥処理の際に重合体の流動による設備との接触面積増大を抑制でき、これにより重合体の設備付着を抑制できる点で好ましい。 (A) The conjugated diene polymer may have a polymerization block portion containing an aromatic vinyl compound as a main component. (A) When the conjugated diene polymer has a polymerization block portion mainly composed of an aromatic vinyl compound, the contact area with equipment due to the flow of the polymer during drying of the (A) conjugated diene polymer This is preferable in that it is possible to suppress the increase, thereby suppressing the adhesion of the polymer to equipment.
 (A)共役ジエン系重合体における芳香族ビニル化合物を主成分とする重合ブロック部の位置は特に限定されない。(A)共役ジエン系重合体は、芳香族ビニル化合物を主成分とする重合ブロック部を分子鎖の末端に有していてもよく、分子鎖中(末端と末端との間)に有していてもよい。(A)共役ジエン系重合体の製造工程の簡略化を図りつつ、重合体の設備付着を抑制する効果を得ることができる点で、(A)共役ジエン系重合体は、芳香族ビニル化合物を主成分とする重合ブロック部を分子鎖の末端に有していることが好ましい。 (A) The position of the polymerization block portion containing an aromatic vinyl compound as a main component in the conjugated diene polymer is not particularly limited. (A) The conjugated diene polymer may have a polymerization block portion mainly composed of an aromatic vinyl compound at the end of the molecular chain, or within the molecular chain (between the ends). It's okay. (A) Conjugated diene polymers can simplify the production process of conjugated diene polymers while also suppressing the adhesion of polymers to equipment. It is preferable that the polymer block portion, which is the main component, is present at the end of the molecular chain.
 芳香族ビニル化合物を主成分とする重合ブロック部は、芳香族ビニル化合物に由来する構造単位を、当該重合ブロック部を構成する全構造単位に対し80質量%以上有することが好ましく、85質量%以上有することがより好ましく、90質量%以上有することが更に好ましい。 It is preferable that the polymerization block portion containing an aromatic vinyl compound as a main component has structural units derived from the aromatic vinyl compound in an amount of 80% by mass or more, and preferably 85% by mass or more based on the total structural units constituting the polymerization block portion. It is more preferable that the content is 90% by mass or more.
 (A)共役ジエン系重合体が、芳香族ビニル化合物を主成分とする重合ブロック部を有する場合、(A)共役ジエン系重合体が有する芳香族ビニル化合物に由来する構造単位の全量のうち35質量%以上が重合ブロック部を構成してもよく、40質量以上が重合ブロック部を構成してもよい。また、(A)共役ジエン系重合体が有する共役ジエン化合物に由来する構造単位の全量のうち80質量%以上がランダム共重合部を構成していることが好ましく、90質量%以上がランダム共重合部を構成していることが好ましい。 (A) When the conjugated diene polymer has a polymerization block portion mainly composed of an aromatic vinyl compound, 35% of the total amount of structural units derived from the aromatic vinyl compound possessed by the (A) conjugated diene polymer % by mass or more may constitute the polymer block portion, and 40 mass % or more may constitute the polymer block portion. Furthermore, it is preferable that 80% by mass or more of the total amount of structural units derived from the conjugated diene compound contained in the conjugated diene polymer (A) constitutes a random copolymerization portion, and 90% by mass or more constitutes a random copolymerization portion. It is preferable that it constitutes a section.
 (A)共役ジエン系重合体を得るための重合反応に使用する単量体は、共役ジエン化合物及び芳香族ビニル化合物以外の化合物(以下、「他のモノマー」ともいう。)を含んでいてもよい。他のモノマーとしては、例えばアクリロニトリル、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等が挙げられる。他のモノマーの使用割合は、重合に使用する単量体の全量に対して、10質量%以下とすることが好ましく、5質量%以下とすることがより好ましい。 (A) The monomers used in the polymerization reaction to obtain the conjugated diene polymer may contain compounds other than the conjugated diene compound and the aromatic vinyl compound (hereinafter also referred to as "other monomers"). good. Examples of other monomers include acrylonitrile, methyl (meth)acrylate, and ethyl (meth)acrylate. The proportion of other monomers used is preferably 10% by mass or less, more preferably 5% by mass or less, based on the total amount of monomers used for polymerization.
 使用する重合法としては、溶液重合法、気相重合法、バルク重合法のいずれを用いてもよい。これらのうち、溶液重合法が特に好ましい。また、重合形式としては、回分式及び連続式のいずれを用いてもよい。溶液重合法を用いる場合、具体的な重合方法の一例としては、有機溶媒中において、共役ジエン化合物及び芳香族ビニル化合物を含む単量体を、重合開始剤、及び必要に応じて用いられるビニル含量調整剤(以下、「ランダマイザー」ともいう)の存在下で重合する方法が挙げられる。 The polymerization method used may be any of a solution polymerization method, a gas phase polymerization method, and a bulk polymerization method. Among these, solution polymerization method is particularly preferred. Further, as the polymerization method, either a batch method or a continuous method may be used. When using a solution polymerization method, as an example of a specific polymerization method, a monomer containing a conjugated diene compound and an aromatic vinyl compound is mixed in an organic solvent with a polymerization initiator and a vinyl content used as necessary. Examples include a method of polymerizing in the presence of a regulator (hereinafter also referred to as "randomizer").
 重合開始剤としては、アルカリ金属又はアルカリ土類金属を有する金属化合物を用いることができる。これらのうち、アルカリ金属を有する化合物が好ましい。金属化合物の具体例としては、メチルリチウム、エチルリチウム、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム等のアルキルリチウム;1,4-ジリチオブタン、フェニルリチウム、スチルベンリチウム、ナフチルリチウム、1,3-ビス(1-リチオ-1,3-ジメチルペンチル)ベンゼン、1,3-フェニレンビス(3-メチル-1-フェニルペンチリデン)ジリチウム、ナフチルナトリウム、ナフチルカリウム、エトキシカリウム等が挙げられる。これらのうち、リチウム化合物が好ましい。 As the polymerization initiator, a metal compound containing an alkali metal or an alkaline earth metal can be used. Among these, compounds containing alkali metals are preferred. Specific examples of metal compounds include alkyllithiums such as methyllithium, ethyllithium, n-propyllithium, n-butyllithium, sec-butyllithium, and t-butyllithium; 1,4-dilithiobutane, phenyllithium, stilbenelithium, Naphthyl lithium, 1,3-bis(1-lithio-1,3-dimethylpentyl)benzene, 1,3-phenylenebis(3-methyl-1-phenylpentylidene) dilithium, naphthyl sodium, naphthyl potassium, ethoxy potassium, etc. can be mentioned. Among these, lithium compounds are preferred.
 また、重合開始剤として使用する金属化合物は、アルカリ金属又はアルカリ土類金属を有する金属アミド化合物であってもよい。(A)共役ジエン系重合体を得るための重合を金属アミド化合物の存在下で行うことにより、共役ジエン系重合体の重合開始末端(分岐ポリマーの場合、自由末端部分)に、アミノ基(好ましくは、2級アミノ基又は3級アミノ基)を導入することができる。金属アミド化合物の存在下で単量体を重合することにより得られた(A)共役ジエン系重合体は、架橋体の強度をより高くできる点、及びタイヤ用途とする場合に架橋体の低燃費性能の改善効果を高くできる点で好ましい。 Furthermore, the metal compound used as a polymerization initiator may be a metal amide compound containing an alkali metal or an alkaline earth metal. (A) By performing polymerization to obtain a conjugated diene polymer in the presence of a metal amide compound, an amino group (preferably can introduce a secondary amino group or a tertiary amino group). The conjugated diene polymer (A) obtained by polymerizing monomers in the presence of a metal amide compound has the advantage that the strength of the crosslinked product can be increased, and that the crosslinked product has low fuel consumption when used in tires. This is preferable because it can enhance the effect of improving performance.
 金属アミド化合物としては、中でも、リチウム化合物(例えば、アルキルリチウム等)と、窒素原子を有する化合物(以下、「開始末端変性剤」ともいう)とを混合して得られる化合物であることが好ましい。開始末端変性剤は2級アミン化合物が好ましい。その具体例としては、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ドデカメチレンイミン、N,N’-ジメチル-N’-トリメチルシリル-1,6-ジアミノヘキサン、ピペリジン、ピロリジン、ヘキサメチレンイミン、ヘプタメチレンイミン、ジシクロヘキシルアミン、N-メチルベンジルアミン、ジ-(2-エチルヘキシル)アミン、ジアリルアミン、モルホリン、N-(トリメチルシリル)ピペラジン、N-(tert-ブチルジメチルシリル)-4-ピペラジン、1,3-ジトリメチルシリル-1,3,5-トリアジナン等が挙げられる。 Among these, the metal amide compound is preferably a compound obtained by mixing a lithium compound (e.g., alkyl lithium, etc.) and a compound having a nitrogen atom (hereinafter also referred to as "initiating terminal modifier"). The starting terminal modifier is preferably a secondary amine compound. Specific examples include dimethylamine, diethylamine, dipropylamine, dibutylamine, dodecamethyleneimine, N,N'-dimethyl-N'-trimethylsilyl-1,6-diaminohexane, piperidine, pyrrolidine, hexamethyleneimine, heptamethyleneimine, Methyleneimine, dicyclohexylamine, N-methylbenzylamine, di-(2-ethylhexyl)amine, diallylamine, morpholine, N-(trimethylsilyl)piperazine, N-(tert-butyldimethylsilyl)-4-piperazine, 1,3- Examples include ditrimethylsilyl-1,3,5-triazinane.
 なお、金属アミド化合物の存在下で重合を行う場合、リチウム化合物と開始末端変性剤とを予め混合することにより金属アミド化合物を調製し、その調製した金属アミド化合物を重合系中に添加して重合を行ってもよい。あるいは、重合系中に、リチウム化合物と開始末端変性剤とを添加し、重合系中で両者を混合することにより金属アミド化合物を調製して重合を行ってもよい。重合に際し、重合開始剤の使用量は、重合体の合成に使用する単量体100gに対して、0.01~20mmolとすることが好ましく、0.05~15mmolとすることがより好ましい。 In addition, when polymerizing in the presence of a metal amide compound, the metal amide compound is prepared by mixing the lithium compound and the starting terminal modifier in advance, and the prepared metal amide compound is added to the polymerization system to perform polymerization. You may do so. Alternatively, a metal amide compound may be prepared by adding a lithium compound and an initiating terminal modifier to the polymerization system and mixing the two in the polymerization system, followed by polymerization. During polymerization, the amount of the polymerization initiator used is preferably 0.01 to 20 mmol, more preferably 0.05 to 15 mmol, per 100 g of monomer used for polymer synthesis.
 ランダマイザーは、重合体中におけるビニル結合の含有率を表すビニル結合含量の調整等を目的として用いることができる。ランダマイザーの例としては、ジメトキシベンゼン、テトラヒドロフラン、ジメトキシエタン、ジエチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、2,2-ジ(テトラヒドロフリル)プロパン、2-(2-エトキシエトキシ)-2-メチルプロパン、トリエチルアミン、ピリジン、N-メチルモルホリン、テトラメチルエチレンジアミン、ドデシルベンゼンスルホン酸カリウム等が挙げられる。ランダマイザーは、1種を単独で又は2種以上を組み合わせて使用できる。 The randomizer can be used for the purpose of adjusting the vinyl bond content, which represents the content of vinyl bonds in the polymer. Examples of randomizers include dimethoxybenzene, tetrahydrofuran, dimethoxyethane, diethylene glycol dibutyl ether, diethylene glycol dimethyl ether, 2,2-di(tetrahydrofuryl)propane, 2-(2-ethoxyethoxy)-2-methylpropane, triethylamine, pyridine. , N-methylmorpholine, tetramethylethylenediamine, potassium dodecylbenzenesulfonate, and the like. One type of randomizer can be used alone or two or more types can be used in combination.
 重合に使用する有機溶媒としては、重合反応に不活性な機溶媒を好ましく用いることができる。重合に使用する有機溶媒の具体例としては、例えば、鎖状又は環状の脂肪族炭化水素、芳香族炭化水素等が挙げられる。これらの中でも、炭素数3~8の炭化水素が好ましく、その具体例としては、例えばプロパン、n-ブタン、イソブタン、n-ペンタン、イソペンタン、n-へキサン、シクロへキサン、プロペン、1-ブテン、イソブテン、トランス-2-ブテン、シス-2-ブテン、1-ヘキセン、2-ヘキセン、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘプタン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、1-ペンテン、2-ペンテン、シクロヘキセン等が挙げられる。なお、有機溶媒としては、1種を単独で又は2種以上を組み合わせて使用することができる。 As the organic solvent used in the polymerization, an organic solvent inert to the polymerization reaction can be preferably used. Specific examples of the organic solvent used in the polymerization include chain or cyclic aliphatic hydrocarbons, aromatic hydrocarbons, and the like. Among these, hydrocarbons having 3 to 8 carbon atoms are preferred, and specific examples include propane, n-butane, isobutane, n-pentane, isopentane, n-hexane, cyclohexane, propene, and 1-butene. , isobutene, trans-2-butene, cis-2-butene, 1-hexene, 2-hexene, benzene, toluene, xylene, ethylbenzene, heptane, cyclopentane, methylcyclopentane, methylcyclohexane, 1-pentene, 2-pentene , cyclohexene and the like. In addition, as an organic solvent, one type can be used individually or two or more types can be used in combination.
 溶液重合とする場合、反応溶媒中のモノマー濃度は、生産性と重合コントロールの容易性とのバランスを維持する観点から、5~50質量%であることが好ましく、10~30質量%であることがより好ましい。重合反応の温度は、-20℃~150℃が好ましく、0~120℃がより好ましい。また、重合反応は、単量体を実質的に液相に保つのに十分な圧力の下で行うことが好ましい。このような圧力は、重合反応に不活性なガスによって、反応器内を加圧する等の方法によって得ることができる。こうした重合反応により、活性末端を有する共役ジエン系重合体を得ることができる。 In the case of solution polymerization, the monomer concentration in the reaction solvent is preferably 5 to 50% by mass, and 10 to 30% by mass, from the viewpoint of maintaining a balance between productivity and ease of polymerization control. is more preferable. The temperature of the polymerization reaction is preferably -20°C to 150°C, more preferably 0 to 120°C. Further, the polymerization reaction is preferably carried out under sufficient pressure to maintain the monomer substantially in a liquid phase. Such pressure can be obtained by pressurizing the inside of the reactor with a gas inert to the polymerization reaction. Through such a polymerization reaction, a conjugated diene polymer having an active terminal can be obtained.
 上記重合により得られる共役ジエン系重合体につき、1,3-ブタジエンに由来する構造単位におけるビニル結合含量は、15~85モル%であることが好ましい。ビニル結合含量を15モル%以上とすることで、得られる架橋体において柔軟性が維持され、加工性が良好となる。また、低スリップ領域での耐摩耗性に優れる傾向がある。ビニル結合含量は、好ましくは20モル%以上であり、より好ましくは25モル%以上である。また、共役ジエン系重合体のビニル結合含量は、耐久性の観点から、好ましくは75モル%以下であり、より好ましくは65モル%以下である。なお、本明細書において「ビニル結合含量」は、水素添加前の共役ジエン系重合体が有する、1,3-ブタジエンに由来する全構造単位に対し、1,2-結合を有する構造単位の含有割合を示す値である。ビニル結合含量はH-NMR装置によって測定される。 In the conjugated diene polymer obtained by the above polymerization, the vinyl bond content in the structural unit derived from 1,3-butadiene is preferably 15 to 85 mol%. By setting the vinyl bond content to 15 mol % or more, flexibility is maintained in the resulting crosslinked product, and processability is improved. Additionally, it tends to have excellent wear resistance in low slip areas. The vinyl bond content is preferably 20 mol% or more, more preferably 25 mol% or more. Further, from the viewpoint of durability, the vinyl bond content of the conjugated diene polymer is preferably 75 mol% or less, more preferably 65 mol% or less. In this specification, "vinyl bond content" refers to the content of structural units having 1,2-bonds with respect to all structural units derived from 1,3-butadiene that the conjugated diene polymer before hydrogenation has. This is a value indicating a percentage. Vinyl bond content is determined by 1 H-NMR equipment.
<反応工程>
 反応工程は、重合工程により得られた共役ジエン系重合体に対し、当該共役ジエン系重合体が有する活性末端と反応し得る官能基を4個以上有する化合物(以下、「カップリング剤」ともいう)を反応させる工程である。活性末端を有する共役ジエン系重合体とカップリング剤との反応により、カップリング剤1分子に対し共役ジエン系重合体の4個以上の分子鎖が結合し、これにより(A)共役ジエン系重合体として、4分岐以上の分岐ポリマーを含む重合体を得ることができる。
<Reaction process>
In the reaction step, the conjugated diene polymer obtained in the polymerization step is treated with a compound having four or more functional groups that can react with the active end of the conjugated diene polymer (hereinafter also referred to as a "coupling agent"). ) is reacted. By the reaction between the conjugated diene polymer having an active end and the coupling agent, four or more molecular chains of the conjugated diene polymer are bonded to one molecule of the coupling agent, thereby forming (A) the conjugated diene polymer. As a result of the coalescence, a polymer containing a branched polymer having four or more branches can be obtained.
 カップリング剤としては、窒素、酸素、硫黄、リン、スズ及びケイ素よりなる群から選択される少なくとも1種の元素(以下、「特定元素」ともいう)を有する化合物を好ましく使用することができる。カップリング剤として特定元素を有する化合物を用いた場合、得られる架橋体の強度をより高くできる点で好適である。 As the coupling agent, a compound having at least one element (hereinafter also referred to as "specific element") selected from the group consisting of nitrogen, oxygen, sulfur, phosphorus, tin, and silicon can be preferably used. When a compound having a specific element is used as a coupling agent, it is preferable in that the strength of the resulting crosslinked product can be further increased.
 このようなカップリング剤の具体例としては、例えば、テトラクロロシラン、ビス(トリクロロシリル)エタン等が挙げられる。また、カップリング剤としては、特定元素を有する官能基として、1級アミノ基の2つの水素原子が保護されてなる窒素含有基、2級アミノ基の1つの水素原子が保護されてなる窒素含有基、3級アミノ基、イミノ基、窒素含有複素環基(例えば、ピリジン環、イミド環等の複素環を有する基)、水酸基、水酸基の水素原子が保護されてなる酸素含有基、チオール基の水素原子が保護されてなる硫黄含有基、ヒドロカルビルオキシシリル基等の官能基(以下、「官能基F1」ともいう)を有する化合物を用いることもできる。 Specific examples of such coupling agents include tetrachlorosilane, bis(trichlorosilyl)ethane, and the like. In addition, as a coupling agent, as a functional group having a specific element, a nitrogen-containing group formed by protecting two hydrogen atoms of a primary amino group, a nitrogen-containing group formed by protecting one hydrogen atom of a secondary amino group, etc. groups, tertiary amino groups, imino groups, nitrogen-containing heterocyclic groups (for example, groups having heterocycles such as pyridine rings and imide rings), hydroxyl groups, oxygen-containing groups in which the hydrogen atom of the hydroxyl group is protected, and thiol groups. A compound having a functional group (hereinafter also referred to as "functional group F1") such as a sulfur-containing group with a protected hydrogen atom or a hydrocarbyloxysilyl group can also be used.
 官能基F1を有するカップリング剤の具体例としては、N,N,N’,N’-テトラ(3-トリメトキシシリルプロピル)エチレンジアミン、N,N,N’,N’-テトラ(3-トリエトキシシリルプロピル)エチレンジアミン、N,N,N’-トリス(3-トリメトキシシリルプロピル)-N’-メチル-エチレンジアミン、N,N,N’,N’-テトラ(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、N,N,N’,N’-テトラ(3-トリメトキシシリルプロピル)-1,4-ブタンジアミン、ビス(3-トリメトキシシリルプロピル)-[2-(ジメチルアミノ)エチル]アミン、ビス(3-トリメトキシシリルプロピル)-[2-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)エチル]アミン、ビス(3-トリエトキシシリルプロピル)-[2-(2,2-ジエトキシ-1-アザ-2-シラシクロペンタン)エチル]アミン、ビス(3-トリメトキシシリルプロピル)-[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]アミン、ビス(3-トリメトキシシリルプロピル)-[2-(2,2-ジメトキシ-1-アザ-2-シラシクロヘキサン)エチル]アミン、ビス(3-トリメトキシシリルプロピル)-[2-(2,2-ジメトキシ-1-アザ-2-シラシクロオクタン)エチル]アミン、N,N-ビス(3-トリメトキシシリルプロピル)-3-イミダゾリルプロピルアミン、ビス(3-トリメトキシシリルプロピル)-(3-ジメチルアミノプロピル)アミン、下記式(M-1)~式(M-4)のそれぞれで表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
(式(M-1)中、R20は水素原子又はアルキル基を表す。n1は1~8の整数を表す。)
Specific examples of the coupling agent having the functional group F1 include N,N,N',N'-tetra(3-trimethoxysilylpropyl)ethylenediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl), ethoxysilylpropyl)ethylenediamine, N,N,N'-tris(3-trimethoxysilylpropyl)-N'-methyl-ethylenediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl)- 1,3-propanediamine, N,N,N',N'-tetra(3-trimethoxysilylpropyl)-1,4-butanediamine, bis(3-trimethoxysilylpropyl)-[2-(dimethylamino) )ethyl]amine, bis(3-trimethoxysilylpropyl)-[2-(2,2-dimethoxy-1-aza-2-silacyclopentane)ethyl]amine, bis(3-triethoxysilylpropyl)-[ 2-(2,2-diethoxy-1-aza-2-silacyclopentane)ethyl]amine, bis(3-trimethoxysilylpropyl)-[3-(2,2-dimethoxy-1-aza-2-sila) cyclopentane)propyl]amine, bis(3-trimethoxysilylpropyl)-[2-(2,2-dimethoxy-1-aza-2-silacyclohexane)ethyl]amine, bis(3-trimethoxysilylpropyl)- [2-(2,2-dimethoxy-1-aza-2-silacyclooctane)ethyl]amine, N,N-bis(3-trimethoxysilylpropyl)-3-imidazolylpropylamine, bis(3-trimethoxy Silylpropyl)-(3-dimethylaminopropyl)amine, compounds represented by each of the following formulas (M-1) to (M-4), and the like.
Figure JPOXMLDOC01-appb-C000004
(In formula (M-1), R 20 represents a hydrogen atom or an alkyl group. n1 represents an integer from 1 to 8.)
 活性末端を有する共役ジエン系重合体とカップリング剤との反応の際には、活性末端を有する共役ジエン系重合体として、開始末端変性剤を用いて得られた重合体を使用することにより、分岐数が4以上である分岐ポリマーとして、含窒素官能基を末端に有する重合体を得ることが好ましい。(A)共役ジエン系重合体として、含窒素官能基を末端に有し分岐数が4以上である分岐ポリマーを含む重合体組成物とすることにより、当該重合体組成物により得られる架橋体の強度、及び粘弾性特性をより優れたものとすることができる。 When reacting a conjugated diene polymer having an active end with a coupling agent, by using a polymer obtained using a starting end modifier as the conjugated diene polymer having an active end, As the branched polymer having 4 or more branches, it is preferable to obtain a polymer having a nitrogen-containing functional group at the end. (A) By using a polymer composition containing a branched polymer having a nitrogen-containing functional group at the end and the number of branches of 4 or more as the conjugated diene polymer, the crosslinked product obtained from the polymer composition can be Strength and viscoelastic properties can be improved.
 活性末端を有する共役ジエン系重合体とカップリング剤との反応は溶液反応として行うことが好ましい。カップリング剤の使用量(2種以上使用する場合にはその合計量)は、(A)共役ジエン系重合体における4分岐以上の分岐ポリマーの含有割合が所望の範囲となるように適宜設定することができる。(A)共役ジエン系重合体の製造工程(特に乾燥処理)において重合体の設備付着を抑制し、これにより重合体の滞留による設備汚染及び滞留した重合体の蓄熱燃焼を抑制するとともに、脱溶時間の違いによるムーニー粘度の変化を抑制して品質安定化を図る観点、並びに重合体の品質安定化により高強度な架橋体を得る観点から、カップリング剤の使用量は、重合開始剤(すなわち金属化合物)が有する重合に関与する金属原子1モルに対して、0.01モル以上とすることが好ましく、0.02モル以上とすることがより好ましい。また、カップリング剤の使用量は、カップリング率を所望の値に調整して、良好な加工性を示す重合体組成物を得る観点及び粘弾特性に優れた架橋体を得る観点から、重合開始剤が有する重合に関与する金属原子1モルに対して、0.2モル以下とすることが好ましく、0.1モル以下とすることがより好ましい。なお、カップリング剤としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The reaction between the conjugated diene polymer having an active end and the coupling agent is preferably carried out as a solution reaction. The amount of the coupling agent used (the total amount when two or more types are used) is appropriately set so that the content ratio of the branched polymer with four or more branches in the conjugated diene polymer (A) is within the desired range. be able to. (A) In the production process of conjugated diene polymers (especially drying treatment), it suppresses the adhesion of polymer to equipment, thereby suppressing equipment contamination due to polymer retention and heat storage combustion of the accumulated polymer, and desolvation. From the viewpoint of stabilizing the quality by suppressing changes in Mooney viscosity due to differences in time, and from the viewpoint of obtaining a high-strength crosslinked product by stabilizing the quality of the polymer, the amount of the coupling agent to be used is determined by the amount of the polymerization initiator (i.e. It is preferably 0.01 mol or more, and more preferably 0.02 mol or more, per 1 mol of metal atoms involved in polymerization in the metal compound. In addition, the amount of the coupling agent to be used is determined from the viewpoint of adjusting the coupling rate to a desired value and obtaining a polymer composition that exhibits good processability and a crosslinked product with excellent viscoelastic properties. It is preferably 0.2 mol or less, more preferably 0.1 mol or less, per 1 mol of metal atoms involved in polymerization in the initiator. In addition, as a coupling agent, one type may be used individually, and two or more types may be used in combination.
 カップリング反応において、反応温度は、通常、重合反応と同じ範囲の温度である。具体的には、-20℃~150℃とすることが好ましく、0~120℃とすることがより好ましい。反応温度が低いと、反応後の重合体の粘度が上昇しやすい傾向があり、反応温度が高いと重合活性末端が失活しやすくなる。反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。 In the coupling reaction, the reaction temperature is usually in the same range as the polymerization reaction. Specifically, the temperature is preferably -20°C to 150°C, more preferably 0 to 120°C. If the reaction temperature is low, the viscosity of the polymer after reaction tends to increase, and if the reaction temperature is high, the polymerization active terminal tends to be deactivated. The reaction time is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
 上記のカップリング反応により、4分岐以上の分岐ポリマーを含む水添前の(A)共役ジエン系重合体を得ることができる。カップリング反応後の共役ジエン系重合体は直鎖ポリマーを含んでいてもよい。カップリング反応後の重合体溶液に含まれる直鎖ポリマーは、活性末端を有する共役ジエン系重合体に含まれる直鎖ポリマーのうち、カップリング剤と反応しなかった未反応ポリマーである。 By the above coupling reaction, it is possible to obtain the conjugated diene polymer (A) before hydrogenation, which contains a branched polymer having four or more branches. The conjugated diene polymer after the coupling reaction may contain a linear polymer. The linear polymer contained in the polymer solution after the coupling reaction is an unreacted polymer that did not react with the coupling agent among the linear polymers contained in the conjugated diene polymer having an active end.
<変性工程>
 重合工程又は反応工程により得られた共役ジエン系重合体が特定官能基を有する場合、当該重合体について、そのまま次の水添工程に供してもよい。また、重合工程又は反応工程により得られた共役ジエン系重合体について、特定官能基の有無にかかわらず、水添工程の前に、共役ジエン系重合体が有する活性末端と、特定官能基を有し、かつ共役ジエン系重合体が有する活性末端と反応し得る化合物(ただし、カップリング剤を除く。以下、「末端変性剤」ともいう)とを反応させる処理を行ってもよい。このような処理を行うことにより、重合工程又は反応工程により得られた共役ジエン系重合体が活性末端を有する重合体を含む場合に、直鎖状の共役ジエン系重合体の分子鎖が末端変性剤に結合した(すなわち、特定官能基を有する)高分子を(A)共役ジエン系重合体に含ませることができる。なお、末端変性剤は、共役ジエン系重合体が有する活性末端との反応点が1~3個である点においてカップリング剤とは異なる化合物である。
<Modification process>
When the conjugated diene polymer obtained by the polymerization step or reaction step has a specific functional group, the polymer may be directly subjected to the next hydrogenation step. In addition, regarding the conjugated diene polymer obtained by the polymerization step or reaction step, whether or not there is a specific functional group, the active terminal of the conjugated diene polymer and the specific functional group are removed before the hydrogenation step. However, a treatment may be performed in which a compound capable of reacting with the active end of the conjugated diene polymer (excluding a coupling agent; hereinafter also referred to as "terminal modifier") is reacted. By performing such a treatment, when the conjugated diene polymer obtained in the polymerization step or reaction step contains a polymer having an active end, the molecular chain of the linear conjugated diene polymer is terminally modified. A polymer bonded to the agent (that is, having a specific functional group) can be included in the conjugated diene polymer (A). Note that the terminal modifier is a compound that differs from the coupling agent in that it has 1 to 3 reactive sites with the active end of the conjugated diene polymer.
 末端変性剤の好ましい具体例としては、下記式(5)で表される化合物及び下記式(6)で表される化合物よりなる群から選択される少なくとも1種が挙げられる。
Figure JPOXMLDOC01-appb-C000005
(式(5)中、A11は、窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を有し、活性水素を有さず、かつR35に対して窒素、リン、酸素、硫黄、若しくはカルボニル基に含まれる炭素原子で結合する1価の官能基であるか、又は(チオ)エポキシ基である。R33及びR34は、それぞれ独立して、ヒドロカルビル基である。R35は、ヒドロカルビレン基である。tは、0~2の整数である。ただし、tが2の場合、式中の複数のR33は、互いに同一又は異なる。tが0又は1の場合、式中の複数のR34は、互いに同一又は異なる。)
Figure JPOXMLDOC01-appb-C000006
(式(6)中、A12は、窒素、リン、酸素及び硫黄よりなる群から選択される少なくとも1種の元素を有し、活性水素を有さず、かつR39に対して窒素、リン、酸素若しくは硫黄で結合する1価の官能基であるか、又は炭素数1~20のヒドロカルビル基である。R36及びR37は、それぞれ独立して、ヒドロカルビル基である。R38は、ヒドロカルビレン基である。R39は、単結合又はヒドロカルビレン基である。uは0又は1である。ただし、uが0の場合、式中の複数のR37は、互いに同一又は異なる。)
A preferred specific example of the terminal modifier includes at least one selected from the group consisting of a compound represented by the following formula (5) and a compound represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000005
(In formula (5), A 11 has at least one element selected from the group consisting of nitrogen, phosphorus, oxygen, and sulfur, has no active hydrogen, and has nitrogen and phosphorus with respect to R 35 . , is a monovalent functional group bonded to oxygen, sulfur, or a carbon atom contained in a carbonyl group, or is a (thio)epoxy group. R 33 and R 34 are each independently a hydrocarbyl group .R 35 is a hydrocarbylene group. t is an integer of 0 to 2. However, when t is 2, multiple R 33s in the formula are the same or different. t is 0 or 1 In the case of , multiple R 34s in the formula are the same or different.)
Figure JPOXMLDOC01-appb-C000006
(In formula (6), A 12 has at least one element selected from the group consisting of nitrogen, phosphorus, oxygen, and sulfur, has no active hydrogen, and has nitrogen and phosphorus with respect to R 39 . , a monovalent functional group bonded with oxygen or sulfur, or a hydrocarbyl group having 1 to 20 carbon atoms. R 36 and R 37 are each independently a hydrocarbyl group. R 38 is a hydrocarbyl group. It is a carbylene group. R 39 is a single bond or a hydrocarbylene group. u is 0 or 1. However, when u is 0, multiple R 37s in the formula are the same or different from each other. )
 上記式(5)及び式(6)において、R33、R34、R36、R37、及びヒドロカルビル基である場合のA12について、ヒドロカルビル基は、炭素数1~20の直鎖状若しくは分岐状のアルキル基、炭素数3~20のシクロアルキル基又は炭素数6~20のアリール基であることが好ましい。
 R38及びR39で表されるヒドロカルビレン基は、炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基、炭素数3~20のシクロアルキレン基又は炭素数6~20のアリーレン基が好ましい。R38で表されるヒドロカルビレン基は、炭素数1~20の直鎖状若しくは分岐状のアルカンジイル基が好ましい。
 tは、0又は1が好ましい。
In the above formulas (5) and (6), regarding R 33 , R 34 , R 36 , R 37 and A 12 when it is a hydrocarbyl group, the hydrocarbyl group is a linear or branched chain having 1 to 20 carbon atoms. An alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms is preferable.
The hydrocarbylene group represented by R 38 and R 39 is a linear or branched alkanediyl group having 1 to 20 carbon atoms, a cycloalkylene group having 3 to 20 carbon atoms, or an arylene group having 6 to 20 carbon atoms. is preferred. The hydrocarbylene group represented by R 38 is preferably a linear or branched alkanediyl group having 1 to 20 carbon atoms.
t is preferably 0 or 1.
 A11が上記1価の官能基である場合にA11が有する、窒素、リン、酸素及び硫黄からなる群より選択される少なくとも1種の元素、並びに、A12が上記1価の官能基である場合にA12が有する、窒素、リン、酸素及び硫黄からなる群より選択される少なくとも1種の元素は、例えば3置換のヒドロカルビルシリル基等で保護されていてもよい。なお、本明細書において活性水素とは、炭素原子以外の原子に結合した水素原子をいい、好ましくはポリメチレンの炭素-水素結合よりも結合エネルギーが低いものを指す。(チオ)エポキシ基とは、エポキシ基及びチオエポキシ基を包含する意味である。 At least one element selected from the group consisting of nitrogen, phosphorus, oxygen, and sulfur, which A 11 has when A 11 is the monovalent functional group, and when A 12 is the monovalent functional group, In some cases, at least one element selected from the group consisting of nitrogen, phosphorus, oxygen, and sulfur, which A 12 has, may be protected with, for example, a trisubstituted hydrocarbylsilyl group. Note that in this specification, active hydrogen refers to a hydrogen atom bonded to an atom other than a carbon atom, and preferably refers to a hydrogen atom having a lower bond energy than a carbon-hydrogen bond of polymethylene. The term (thio)epoxy group includes epoxy groups and thioepoxy groups.
 A11は、オニウム塩生成剤によってオニウムイオンになり得る基であってもよい。末端変性剤がこのような基(A11)を有することにより、重合体に対して優れた形状保持性を付与することができる。A11の具体例としては、1級アミノ基の2つの水素原子が保護されてなる窒素含有基、2級アミノ基の1つの水素原子が保護されてなる窒素含有基、3級アミノ基、イミノ基、ピリジル基、1級ホスフィノ基の2つの水素原子が保護されてなるリン含有基、2級ホスフィノ基の1つの水素原子が保護されてなるリン含有基、3級ホスフィノ基、エポキシ基、チオエポキシ基、水酸基の水素原子が保護されてなる酸素含有基、チオール基の水素原子が保護されてなる硫黄含有基、ヒドロカルビルオキシカルボニル基等が挙げられる。これらの中でも、シリカとの親和性が良好である点で、窒素原子を有する基であることが好ましく、3級アミノ基、又は1級アミノ基の2つの水素原子が保護されてなる窒素含有基であることがより好ましい。なお、保護されてなる基とは、A11、A12が重合活性末端に対して不活性な官能基に変換された基である。オニウム塩生成剤は、ブレンステッド酸、又は、水と接触することでブレンステッド酸を生成する化合物である。 A 11 may be a group that can become an onium ion with an onium salt forming agent. When the terminal modifier has such a group (A 11 ), excellent shape retention can be imparted to the polymer. Specific examples of A11 include a nitrogen-containing group in which two hydrogen atoms of a primary amino group are protected, a nitrogen-containing group in which one hydrogen atom of a secondary amino group is protected, a tertiary amino group, and an imino group. pyridyl group, phosphorus-containing group in which two hydrogen atoms of a primary phosphino group are protected, phosphorus-containing group in which one hydrogen atom of a secondary phosphino group is protected, tertiary phosphino group, epoxy group, thioepoxy group, an oxygen-containing group formed by protecting the hydrogen atom of a hydroxyl group, a sulfur-containing group formed by protecting the hydrogen atom of a thiol group, and a hydrocarbyloxycarbonyl group. Among these, a group having a nitrogen atom is preferable because it has good affinity with silica, and a nitrogen-containing group in which two hydrogen atoms of a tertiary amino group or a primary amino group are protected is preferable. It is more preferable that Note that the protected group is a group in which A 11 and A 12 are converted into functional groups that are inert to the polymerization active terminal. The onium salt generating agent is a Bronsted acid or a compound that produces a Bronsted acid upon contact with water.
 末端変性剤の具体例としては、式(5)で表される化合物として、例えば、N,N-ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N-ジメチルアミノプロピルトリエトキシシラン、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N’,N’-トリス(トリメチルシリル)-N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-(4-トリメチルシリル-1-ピペラジノ)プロピルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン等が挙げられる。 Specific examples of the terminal modifier include compounds represented by formula (5), such as N,N-bis(trimethylsilyl)aminopropyltrimethoxysilane, N,N-dimethylaminopropyltriethoxysilane, and N,N-dimethylaminopropyltriethoxysilane. -bis(trimethylsilyl)aminopropylmethyldiethoxysilane, N,N',N'-tris(trimethylsilyl)-N-(2-aminoethyl)-3-aminopropyltriethoxysilane, 3-(4-trimethylsilyl-1) -piperazino)propylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, and the like.
 式(6)で表される化合物の具体例としては、例えば、2,2-ジメトキシ-1-(3-トリメトキシシリルプロピル)-1,2-アザシロリジン、2,2-ジエトキシ-1-(3-トリメトキシシリルプロピル)-1,2-アザシロリジン、2,2-ジメトキシ-1-フェニル-1,2-アザシロリジン、1-トリメチルシリル-2,2-ジメトキシ-1-アザ-2-シラシクロペンタン、2-(2,2-ジメトキシ-1,2-アザシロリジン-1-イル)-N,N-ジエチルエタン-1-アミン、2-(2,2-ジメトキシ-1,2-アザシロリジン-1-イル)-N,N-ジメチルエタン-1-アミン、3-(2,2-ジメトキシ-1,2-アザシロリジン-1-イル)-N,N-ジエチルプロパン-1-アミン等が挙げられる。末端変性剤としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 Specific examples of the compound represented by formula (6) include 2,2-dimethoxy-1-(3-trimethoxysilylpropyl)-1,2-azacylorizine, 2,2-diethoxy-1-(3 -trimethoxysilylpropyl)-1,2-azacylorizine, 2,2-dimethoxy-1-phenyl-1,2-azacylorizine, 1-trimethylsilyl-2,2-dimethoxy-1-aza-2-silacyclopentane, 2 -(2,2-dimethoxy-1,2-azacylolidin-1-yl)-N,N-diethylethan-1-amine, 2-(2,2-dimethoxy-1,2-azacylolidin-1-yl)- Examples include N,N-dimethylethane-1-amine, 3-(2,2-dimethoxy-1,2-azacylolidin-1-yl)-N,N-diethylpropan-1-amine, and the like. As the terminal modifier, one type may be used alone, or two or more types may be used in combination.
 活性末端を有する共役ジエン系重合体と末端変性剤との反応は、例えば溶液反応として行うことができる。この溶液反応は、回分式及び連続式のいずれを用いて行ってもよい。このとき、末端変性剤の添加方法は特に制限されず、一括して添加する方法、分割して添加する方法、連続的に添加する方法等が挙げられる。 The reaction between the conjugated diene polymer having an active terminal and the terminal modifier can be carried out, for example, as a solution reaction. This solution reaction may be carried out either batchwise or continuously. At this time, the method of adding the terminal modifier is not particularly limited, and examples thereof include a method of adding at once, a method of adding in portions, a method of adding continuously.
 使用する末端変性剤の量は、反応に使用する化合物の種類に応じて適宜設定すればよいが、重合開始剤が有する重合反応に関与する金属原子1モルに対して、好ましくは0.05モル以上であり、より好ましくは0.1モル以上である。末端変性剤の使用量を0.1モル当量以上とすることにより、変性反応を十分に進行させることができ、無機フィラーの分散性の改善効果を高くすることができる。また、末端変性剤の量は、重合開始剤が有する重合反応に関与する金属原子1モルに対して、好ましくは1.0モル以下であり、より好ましくは0.8モル以下である。 The amount of the terminal modifier to be used may be appropriately set depending on the type of compound used in the reaction, but it is preferably 0.05 mol per mol of metal atoms involved in the polymerization reaction that the polymerization initiator has. or more, and more preferably 0.1 mol or more. By using the terminal modifier in an amount of 0.1 molar equivalent or more, the modification reaction can proceed sufficiently, and the effect of improving the dispersibility of the inorganic filler can be enhanced. Further, the amount of the terminal modifier is preferably 1.0 mol or less, more preferably 0.8 mol or less, per 1 mol of the metal atom of the polymerization initiator that participates in the polymerization reaction.
 末端変性剤による変性反応において、反応温度は、通常、重合反応の温度と同じであり、-20~150℃であることが好ましく、0~120℃であることがより好ましく、20~100℃であることが更に好ましい。変性反応の温度が低いと、重合体溶液の粘度が上昇する傾向がある。また、変性反応の温度が高いと、重合活性末端が失活しやすくなる。末端変性の際の反応時間は、好ましくは1分~5時間であり、より好ましくは2分~1時間である。 In the modification reaction using a terminal modifier, the reaction temperature is usually the same as the temperature of the polymerization reaction, preferably -20 to 150°C, more preferably 0 to 120°C, and 20 to 100°C. It is even more preferable that there be. When the temperature of the modification reaction is low, the viscosity of the polymer solution tends to increase. In addition, if the temperature of the modification reaction is high, the polymerization active terminal is likely to be deactivated. The reaction time for terminal modification is preferably 1 minute to 5 hours, more preferably 2 minutes to 1 hour.
 (A)共役ジエン系重合体のカップリング率は、(A)共役ジエン系重合体中に存在させる分岐ポリマーの割合や、活性末端を有する共役ジエン系重合体の分子量、使用するカップリング剤の官能基数等に応じて設定され得る。(A)共役ジエン系重合体の脱溶時間の相違によるムーニー粘度の変化を抑制し、品質安定化を図る観点から、(A)共役ジエン系重合体のカップリング率は10%以上が好ましく、15%以上がより好ましく、20%以上が更に好ましい。また、(A)共役ジエン系重合体のカップリング率は、加工性が良好な重合体組成物を得る観点や、粘弾性特性に優れた架橋体を得る観点から、70%以下が好ましく、60%以下がより好ましく、50%以下が更に好ましい。 (A) The coupling rate of the conjugated diene polymer is determined by the proportion of the branched polymer present in the (A) conjugated diene polymer, the molecular weight of the conjugated diene polymer having an active end, and the coupling agent used. It can be set depending on the number of functional groups, etc. (A) From the viewpoint of suppressing changes in Mooney viscosity due to differences in desolution time of the conjugated diene polymer and stabilizing the quality, the coupling rate of the (A) conjugated diene polymer is preferably 10% or more, It is more preferably 15% or more, and even more preferably 20% or more. In addition, the coupling rate of the conjugated diene polymer (A) is preferably 70% or less, from the viewpoint of obtaining a polymer composition with good processability and the viewpoint of obtaining a crosslinked product with excellent viscoelastic properties, and 60% or less. % or less, more preferably 50% or less.
 なお、本明細書において「カップリング率」とは、活性末端を有する直鎖状の共役ジエン系重合体と変性剤との反応において、当該反応に用いられた活性末端を有する直鎖状の共役ジエン系重合体のうち、反応に費やされた直鎖状の共役ジエン系重合体の割合(質量%)をいう。具体的には、カップリング剤又は末端変性剤との反応に用いられた重合体(より具体的には、活性末端を有する直鎖状の高分子の集合体)の全量に対し、カップリング剤又は末端変性剤を介して2個以上の直鎖状の共役ジエン系重合体の分子鎖が結合した重合体の割合(質量%)を表す。カップリング率は、ゲルパーミエーションクロマトグラフ(GPC)を使用して得られたGPC曲線から、2個以上の直鎖状の共役ジエン系重合体の分子鎖が結合した分子の波形を成分分離し、そのピーク面積比より算出することができる。 In addition, in this specification, "coupling rate" refers to the linear conjugated diene polymer having an active end used in the reaction of a linear conjugated diene polymer having an active end with a modifier. It refers to the proportion (% by mass) of the linear conjugated diene polymer used in the reaction among the diene polymers. Specifically, the amount of coupling agent Alternatively, it represents the proportion (% by mass) of a polymer in which two or more molecular chains of linear conjugated diene polymers are bonded via a terminal modifier. The coupling rate is calculated by separating the waveform of a molecule in which two or more linear conjugated diene polymer chains are bonded together from a GPC curve obtained using gel permeation chromatography (GPC). , can be calculated from the peak area ratio.
 なお、重合工程により得られた、活性末端を有する共役ジエン系重合体に対して、反応工程及び変性工程のいずれも行わない場合、活性末端を有する共役ジエン系重合体と、アルコール等の重合停止剤とを反応させた後、次の水添工程を行うとよい。この場合、重合工程では開始末端変性剤を用いることにより、特定官能基を有する共役ジエン系重合体を得ることが好ましい。 In addition, if neither the reaction step nor the modification step is performed on the conjugated diene polymer having an active end obtained in the polymerization step, the conjugated diene polymer having an active end and the polymerization termination using alcohol etc. After reacting with the agent, the next hydrogenation step may be performed. In this case, it is preferable to use a starting terminal modifier in the polymerization step to obtain a conjugated diene polymer having a specific functional group.
<水添工程>
 水添工程では、上記の重合工程、反応工程又は変性工程により得られた共役ジエン系重合体を水素添加(以下、「水添」ともいう)する。水添反応の方法及び条件は、所望の水添率の共役ジエン系重合体が得られるのであれば、いずれの方法及び条件を用いることも可能である。それらの水添方法の例としては、チタンの有機金属化合物を主成分とする触媒を水添触媒として使用する方法;鉄、ニッケル、コバルトの有機金属化合物とアルキルアルミニウム等の有機金属化合物からなる触媒を使用する方法;ルテニウム、ロジウム等の有機金属化合物の有機錯体を使用する方法;パラジウム、白金、ルテニウム、コバルト、ニッケル等の金属を、カーボン、シリカ、アルミナ等の担体に担持した触媒を使用する方法等が挙げられる。各種の方法の中では、チタンの有機金属化合物単独、又はチタンの有機金属化合物とリチウム、マグネシウム、アルミニウムの有機金属化合物とから成る均一触媒(例えば、特公昭63-4841号公報、特公平1-37970号公報に記載の触媒)を用い、低圧、低温の穏和な条件で水添する方法は工業的に好ましく、またブタジエンの二重結合への水添選択性も高く適している。
<Hydrogenation process>
In the hydrogenation step, the conjugated diene polymer obtained by the above polymerization step, reaction step, or modification step is hydrogenated (hereinafter also referred to as "hydrogenation"). Any method and conditions for the hydrogenation reaction can be used as long as a conjugated diene polymer having a desired hydrogenation rate can be obtained. Examples of such hydrogenation methods include methods using catalysts mainly composed of organometallic compounds of titanium; catalysts consisting of organometallic compounds of iron, nickel, and cobalt and organometallic compounds such as alkyl aluminum; A method using an organic complex of an organometallic compound such as ruthenium or rhodium; A method using a catalyst in which a metal such as palladium, platinum, ruthenium, cobalt, or nickel is supported on a carrier such as carbon, silica, or alumina. Examples include methods. Among the various methods, a homogeneous catalyst consisting of an organometallic compound of titanium alone or an organometallic compound of titanium and an organometallic compound of lithium, magnesium, or aluminum (for example, Japanese Patent Publication No. 4841/1986, Japanese Patent Publication No. The method of hydrogenating under mild conditions at low pressure and low temperature using the catalyst described in Japanese Patent Publication No. 37970 is industrially preferable, and is also suitable because of its high hydrogenation selectivity to the double bond of butadiene.
 共役ジエン系重合体の水添は、好ましくは、触媒に不活性であって、かつ共役ジエン系重合体が可溶な溶剤を用いて実施される。好ましい溶媒は、n-ペンタン、n-ヘキサン、n-オクタン等の鎖状の脂肪族炭化水素;シクロヘキサン、シクロヘプタン等の環状の脂肪族炭化水素;ベンゼン、トルエン等の芳香族炭化水素;ジエチルエーテル、テトラヒドロフラン等のエーテル類が挙げられる。水添に使用する溶媒は、上記化合物のうちの1種でもよく、それらを主成分とする混合物であってもよい。 The hydrogenation of the conjugated diene polymer is preferably carried out using a solvent that is inert to the catalyst and in which the conjugated diene polymer is soluble. Preferred solvents include chain aliphatic hydrocarbons such as n-pentane, n-hexane, and n-octane; cyclic aliphatic hydrocarbons such as cyclohexane and cycloheptane; aromatic hydrocarbons such as benzene and toluene; and diethyl ether. and ethers such as tetrahydrofuran. The solvent used for hydrogenation may be one of the above compounds, or a mixture containing them as main components.
 水添反応は、一般には共役ジエン系重合体を水素又は不活性雰囲気下、所定の温度に保持し、撹拌下又は不撹拌下にて水添触媒を添加し、次いで水素ガスを導入して所定圧に加圧することによって実施される。不活性雰囲気とは、水添反応に関与する物質と反応しない雰囲気を意味し、例えばヘリウム、ネオン、アルゴン等が挙げられる。空気や酸素は、触媒を酸化したりして触媒の失活を招くので好ましくない。また、窒素は、水添反応時に触媒毒として作用し、水添活性を低下させるので好ましくない。特に、水添反応器内は水素ガス単独の雰囲気であることが最も好適である。 The hydrogenation reaction is generally carried out by holding a conjugated diene polymer at a predetermined temperature under hydrogen or an inert atmosphere, adding a hydrogenation catalyst with or without stirring, and then introducing hydrogen gas to a predetermined temperature. It is carried out by applying pressure. The inert atmosphere means an atmosphere that does not react with substances involved in the hydrogenation reaction, and includes, for example, helium, neon, argon, and the like. Air and oxygen are not preferred because they oxidize the catalyst and cause deactivation of the catalyst. Further, nitrogen is not preferable because it acts as a catalyst poison during the hydrogenation reaction and reduces hydrogenation activity. In particular, it is most preferable that the inside of the hydrogenation reactor be in an atmosphere containing only hydrogen gas.
 水添反応プロセスは、バッチプロセス、連続プロセス、及びそれらの組合せのいずれでも用いることができる。また、水添触媒としてチタノセンジアリール系化合物を用いる場合は、単独でそのまま反応溶液に加えてもよいし、不活性有機溶媒の溶液として加えてもよい。触媒を溶液として用いる場合に使用する不活性有機溶媒は、水添反応に関与する物質と反応しない各種溶媒を用いることができる。好ましくは水添反応に用いる溶媒と同一の溶媒である。また、触媒の好ましい添加量は、水添前の共役ジエン系重合体100g当たり0.02~20ミリモルである。 The hydrogenation reaction process can be a batch process, a continuous process, or a combination thereof. Further, when a titanocene diaryl compound is used as a hydrogenation catalyst, it may be added alone to the reaction solution as it is, or may be added as a solution in an inert organic solvent. As the inert organic solvent used when the catalyst is used as a solution, various solvents that do not react with substances involved in the hydrogenation reaction can be used. Preferably, it is the same solvent as used in the hydrogenation reaction. Further, the preferable amount of the catalyst added is 0.02 to 20 mmol per 100 g of the conjugated diene polymer before hydrogenation.
 (A)共役ジエン系重合体は、上記の式(1)で表される構造単位、式(2)で表される構造単位、式(3)で表される構造単位、及び式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、数式(i)で表される値αが0.60以上0.98以下である。
 α=(p+(0.5×r))/(p+q+(0.5×r)+s)
                              …(i)
(A) The conjugated diene polymer includes a structural unit represented by the above formula (1), a structural unit represented by the formula (2), a structural unit represented by the formula (3), and a structural unit represented by the formula (4). When the composition ratio (molar ratio) of the structural units represented by in the polymer is p, q, r, and s, respectively, the value α represented by formula (i) is 0.60 or more and 0.98 or less. be.
α=(p+(0.5×r))/(p+q+(0.5×r)+s)
...(i)
 (A)共役ジエン系重合体の値αが0.60未満であると、(A)共役ジエン系重合体の不飽和結合量が多いため、脱溶時間の相違によるムーニー粘度の変化が大きくなり、(A)共役ジエン系重合体の品質が不安定になったり、設備付着した(A)共役ジエン系重合体の蓄熱燃焼性が亢進したりする傾向がある。また、(A)共役ジエン系重合体の品質の不安定化によって架橋体の強度や粘弾性特性が低下することが懸念される。(A)共役ジエン系重合体の値αが0.98を超える場合には、架橋を十分に進行させることができず、架橋体の強度の低下や粘弾性特性の低下が生じやすく、また、その他の共役ジエン系材料シート等と積層し加硫した積層架橋体において接着性の確保が困難な傾向にある。このような観点から、(A)共役ジエン系重合体の値αは、0.65以上がより好ましく、0.70以上が更に好ましく、0.75以上がより更に好ましい。また、(A)共役ジエン系重合体の値αは、0.97以下がより好ましく、0.95以下が更に好ましく、0.92以下がより更に好ましい。 If the value α of the (A) conjugated diene polymer is less than 0.60, the amount of unsaturated bonds in the (A) conjugated diene polymer is large, so the change in Mooney viscosity due to the difference in dissolution time becomes large. There is a tendency that the quality of the conjugated diene polymer (A) becomes unstable or that the heat storage and combustibility of the conjugated diene polymer (A) attached to the equipment increases. Furthermore, there is a concern that the strength and viscoelastic properties of the crosslinked product may deteriorate due to the destabilization of the quality of the conjugated diene polymer (A). (A) When the value α of the conjugated diene polymer exceeds 0.98, crosslinking cannot proceed sufficiently, and the strength of the crosslinked product tends to decrease and the viscoelastic properties tend to decrease. It tends to be difficult to secure adhesiveness in a laminated crosslinked product that is laminated with other conjugated diene material sheets and vulcanized. From such a viewpoint, the value α of the conjugated diene polymer (A) is more preferably 0.65 or more, still more preferably 0.70 or more, and even more preferably 0.75 or more. Further, the value α of the conjugated diene polymer (A) is more preferably 0.97 or less, even more preferably 0.95 or less, and even more preferably 0.92 or less.
 なお、数式(i)で表される値αは、共役ジエン系重合体の水添率に相当する。例えば、αが0.60の場合、その共役ジエン系重合体の水添率は60%である。共役ジエン系重合体の水添率及び値αは、水添反応の時間を調整したり水素の積算供給量を制御したりすることによって調整することができる。本明細書において水添率はH-NMR装置により測定した値である。数式(i)中のp、q、r、sについて、例えば、上記式(1)~式(4)の各構造単位の重合体中における構成比をモル%で表した場合、p、q、r、sはそれぞれ0~100%の値(ただし、p、q、r及びsの合計の値は100%以下)を取り得る。 Note that the value α represented by formula (i) corresponds to the hydrogenation rate of the conjugated diene polymer. For example, when α is 0.60, the hydrogenation rate of the conjugated diene polymer is 60%. The hydrogenation rate and value α of the conjugated diene polymer can be adjusted by adjusting the hydrogenation reaction time or controlling the cumulative supply amount of hydrogen. In this specification, the hydrogenation rate is a value measured using a 1 H-NMR device. Regarding p, q, r, and s in formula (i), for example, when the composition ratio of each structural unit of the above formulas (1) to (4) in the polymer is expressed in mol%, p, q, r and s can each take a value of 0 to 100% (however, the total value of p, q, r, and s is 100% or less).
 (A)共役ジエン系重合体を得るための好ましい方法は、1,3-ブタジエン及びスチレンを含むモノマーを、重合開始剤(好ましくは金属アミド化合物)の存在下で溶液重合し、得られた重合体溶液にカップリング剤を添加してカップリング反応を行った後、好ましくは末端変性剤を添加し、次いで水添工程に供する方法である。この方法は、各種物性(強度、耐摩耗性、粘弾性特性、加硫接着性等)に優れた架橋体を得ることができる点で好ましく、また工業的に有用である。 (A) A preferred method for obtaining the conjugated diene polymer is to solution polymerize monomers containing 1,3-butadiene and styrene in the presence of a polymerization initiator (preferably a metal amide compound), and to obtain the resulting polymer. After a coupling agent is added to the combined solution and a coupling reaction is performed, a terminal modifier is preferably added, and then a hydrogenation step is performed. This method is preferred in that a crosslinked product having excellent various physical properties (strength, abrasion resistance, viscoelastic properties, vulcanization adhesiveness, etc.) can be obtained, and is also industrially useful.
 (A)共役ジエン系重合体につき、ゲルパーミエーションクロマトグラフ(GPC)を使用して測定したポリスチレン換算の重量平均分子量(Mw)は、高強度であり、かつ耐摩耗性に優れた架橋体を得る観点から、好ましくは1.5×10~2.0×10である。共役ジエン系重合体のMwは、より好ましくは1.8×10以上であり、更に好ましくは2.0×10以上である。また、Mwは、より好ましくは1.6×10以下、更に好ましくは1.4×10以下である。なお、ここでいう共役ジエン系重合体の重量平均分子量は、水添前にGPCにより測定されるGPC曲線の全ピークから求めた値である。以下では「トータル平均分子量」ともいう。 (A) The weight average molecular weight (Mw) of the conjugated diene polymer measured using gel permeation chromatography (GPC) in terms of polystyrene indicates that the crosslinked product has high strength and excellent wear resistance. From the viewpoint of yield, it is preferably 1.5×10 5 to 2.0×10 6 . The Mw of the conjugated diene polymer is more preferably 1.8×10 5 or more, and still more preferably 2.0×10 5 or more. Moreover, Mw is more preferably 1.6×10 6 or less, still more preferably 1.4×10 6 or less. The weight average molecular weight of the conjugated diene polymer referred to herein is a value determined from all peaks of a GPC curve measured by GPC before hydrogenation. In the following, it is also referred to as "total average molecular weight."
 また、(A)共役ジエン系重合体につき、GPCにより測定される重合体の総量(すなわち、異なる分子量の集合体)の分子量分布(数平均分子量(Mn)に対する重量平均分子量(Mw)の比率(重量平均分子量/数平均分子量))は、1.1以上4.0以下であることが好ましい。分子量分布が1.1以上であると、加工性に優れる点で好ましく、4.0以下であると、得られる架橋体の低ヒステリシスロス性を十分に向上できる点で好ましい。(A)共役ジエン系重合体の分子量分布は、より好ましくは1.2以上である。また、(A)共役ジエン系重合体の分子量分布は、より好ましくは3.5以下、更に好ましくは3.0以下である。 For (A) conjugated diene polymer, the molecular weight distribution (ratio of weight average molecular weight (Mw) to number average molecular weight (Mn)) of the total amount of polymer (i.e., aggregate of different molecular weights) measured by GPC ( Weight average molecular weight/number average molecular weight) is preferably 1.1 or more and 4.0 or less. A molecular weight distribution of 1.1 or more is preferable in terms of excellent processability, and a molecular weight distribution of 4.0 or less is preferable in that low hysteresis loss properties of the resulting crosslinked product can be sufficiently improved. (A) The molecular weight distribution of the conjugated diene polymer is more preferably 1.2 or more. Further, the molecular weight distribution of the conjugated diene polymer (A) is more preferably 3.5 or less, still more preferably 3.0 or less.
 (A)共役ジエン系重合体につき、GPCにより測定される、分子量が最も小さいピークのピークトップ分子量(以下、「1stピーク分子量」ともいう)は、好ましくは0.8×10~1.0×10の範囲である。1stピーク分子量が0.8×10以上であると、得られる架橋体の強度及び耐摩耗性を十分に高くしながら、粘弾性特性及び加工性を良好にできる。1stピーク分子量は、より好ましくは0.9×10以上であり、更に好ましくは1.0×10以上である。また、粘弾性特性及び加工性をより優れたものにする観点から、1stピーク分子量は、より好ましくは8.0×10以下であり、更に好ましくは5.0×10以下である。なお、1stピーク分子量は、水添前にGPCにより測定されたGPC曲線から求めた値である。 (A) For the conjugated diene polymer, the peak top molecular weight of the peak with the smallest molecular weight (hereinafter also referred to as "1st peak molecular weight") measured by GPC is preferably 0.8 x 10 5 to 1.0 The range is ×10 6 . When the 1st peak molecular weight is 0.8×10 5 or more, the strength and abrasion resistance of the resulting crosslinked product can be sufficiently increased, while the viscoelastic properties and processability can be improved. The 1st peak molecular weight is more preferably 0.9×10 5 or more, and even more preferably 1.0×10 5 or more. Moreover, from the viewpoint of improving viscoelastic properties and processability, the 1st peak molecular weight is more preferably 8.0×10 5 or less, and even more preferably 5.0×10 5 or less. Note that the 1st peak molecular weight is a value determined from a GPC curve measured by GPC before hydrogenation.
 (A)共役ジエン系重合体は、4分岐以上の分岐ポリマーと共に、直鎖ポリマー及び3分岐以下の分岐ポリマーよりなる群から選択される1種以上のポリマー(第2ポリマー)を含むことが好ましい。第2ポリマーは、より詳細には、上記重合工程により得られた共役ジエン系重合体の水添物であるか、又は反応工程により得られた共役ジエン系重合体であってカップリング剤と反応しなかったポリマーの水添物である。第2ポリマーは、架橋体の強度を高める観点から、一部又は全部の末端部分に特定官能基を有することが好ましく、全部の末端部分に特定官能基を有することがより好ましい。例えば、両末端が変性された直鎖ポリマーは、重合工程において重合開始剤として金属アミド化合物を用いるとともに、上記の変性工程を行うことにより得ることができる。 (A) The conjugated diene polymer preferably contains one or more polymers (second polymer) selected from the group consisting of a linear polymer and a branched polymer having three or less branches, together with a four-branched or more branched polymer. . More specifically, the second polymer is a hydrogenated product of the conjugated diene polymer obtained by the above polymerization step, or a conjugated diene polymer obtained by the reaction step and reacted with the coupling agent. It is a hydrogenated product of a polymer that did not. From the viewpoint of increasing the strength of the crosslinked product, the second polymer preferably has a specific functional group at some or all of the end portions, and more preferably has a specific functional group at all of the end portions. For example, a linear polymer modified at both ends can be obtained by using a metal amide compound as a polymerization initiator in the polymerization step and performing the above modification step.
 (A)共役ジエン系重合体中の4分岐以上の分岐ポリマーの割合は、(A)共役ジエン系重合体の全量(100質量%)に対して、10質量%以上であることが好ましい。(A)共役ジエン系重合体中の4分岐以上の分岐ポリマーの割合が上記範囲であることにより、(A)共役ジエン系重合体の脱溶時間の相違によるムーニー粘度の変化を抑制し、品質安定化を図ることができる点で好ましい。(A)共役ジエン系重合体中の4分岐以上の分岐ポリマーの割合は、15質量%以上がより好ましく、20質量%以上が更に好ましい。また、(A)共役ジエン系重合体中の4分岐以上の分岐ポリマーの割合は、重合体組成物の加工性及び架橋体の粘弾性特性を良好にする観点から、70質量%以下が好ましく、60質量%以下がより好ましく、50質量%以下が更に好ましい。(A)共役ジエン系重合体中の4分岐以上の分岐ポリマーの割合(質量%)は、GPCを使用して得られたGPC曲線から、4個以上の直鎖状の共役ジエン系重合体が結合した分子であるカップリングポリマー)の波形を成分分離することによって算出することができる。 The proportion of the branched polymer having four or more branches in the conjugated diene polymer (A) is preferably 10% by mass or more based on the total amount (100% by mass) of the conjugated diene polymer (A). (A) By setting the proportion of the branched polymer having four or more branches in the conjugated diene polymer to be within the above range, changes in Mooney viscosity due to differences in the desolvation time of the (A) conjugated diene polymer can be suppressed, and quality can be improved. This is preferable in that it can achieve stabilization. (A) The proportion of the branched polymer having four or more branches in the conjugated diene polymer is more preferably 15% by mass or more, and even more preferably 20% by mass or more. Further, the proportion of the branched polymer having four or more branches in the conjugated diene polymer (A) is preferably 70% by mass or less from the viewpoint of improving the processability of the polymer composition and the viscoelastic properties of the crosslinked product, The content is more preferably 60% by mass or less, and even more preferably 50% by mass or less. (A) The proportion (mass%) of branched polymers with 4 or more branches in the conjugated diene polymer is determined from the GPC curve obtained using GPC. It can be calculated by separating the waveform of the coupled molecules (coupling polymer) into components.
 (A)共役ジエン系重合体中の変性ポリマーの割合は、(A)共役ジエン系重合体の全量に対して、60質量%以上であることが好ましい。(A)共役ジエン系重合体中の変性ポリマーの割合が上記範囲であることにより、得られる架橋体の強度や耐摩耗性、粘弾性特性、低燃費性能を良好にできる。(A)共役ジエン系重合体中の変性ポリマーの割合は、70質量%以上がより好ましく、80質量%以上が更に好ましい。なお、(A)共役ジエン系重合体中の変性ポリマーの割合(質量%)は、末端変性剤に由来する部分構造を有する直鎖ポリマーの割合とカップリング率とを足し合わせることによって算出された値である。活性末端を有する共役ジエン系重合体と末端変性剤との反応における末端変性剤の反応率は、末端変性剤による変性反応後の重合体溶液についてガスクロマトグフラフィー測定を行い、未反応の末端変性剤量を定量することによって算出することができる。 The proportion of the modified polymer in the (A) conjugated diene polymer is preferably 60% by mass or more based on the total amount of the (A) conjugated diene polymer. (A) When the proportion of the modified polymer in the conjugated diene polymer is within the above range, the resulting crosslinked product can have good strength, abrasion resistance, viscoelastic properties, and fuel efficiency. (A) The proportion of the modified polymer in the conjugated diene polymer is more preferably 70% by mass or more, and even more preferably 80% by mass or more. The proportion (mass%) of the modified polymer in the conjugated diene polymer (A) was calculated by adding the proportion of the linear polymer having a partial structure derived from the terminal modifier and the coupling rate. It is a value. The reaction rate of the terminal modifier in the reaction between the conjugated diene polymer having an active terminal and the terminal modifier is determined by gas chromatography measurement of the polymer solution after the modification reaction with the terminal modifier. It can be calculated by quantifying the amount.
 (A)共役ジエン系重合体は、窒素の割合が、(A)共役ジエン系重合体の全量に対して50ppm以上であることが好ましい。(A)共役ジエン系重合体の窒素の割合が上記範囲であると、製造工程負荷の低減効果を十分に得ながら、強度や粘弾性特性、耐摩耗性等の各種特性に優れた架橋体を得ることができる点で好ましい。このような観点から、(A)共役ジエン系重合体の窒素の割合は、(A)共役ジエン系重合体の全量に対して、60ppm以上であることがより好ましく、80ppm以上であることが更に好ましい。また、(A)共役ジエン系重合体の窒素の割合は、(A)共役ジエン系重合体の全量に対して、500ppm以下であることが好ましく、450ppm以下であることがより好ましい。なお、重合体の窒素の含有量は、JIS K2609:1998(原油及び石油製品-窒素分試験方法)の化学発光法に準拠して測定される値である。測定方法の詳細は、後述する実施例に記載の方法に従う。 (A) The conjugated diene polymer preferably has a nitrogen content of 50 ppm or more based on the total amount of the (A) conjugated diene polymer. (A) When the proportion of nitrogen in the conjugated diene polymer is within the above range, a crosslinked product with excellent properties such as strength, viscoelasticity, and abrasion resistance can be obtained while sufficiently reducing the load on the manufacturing process. It is preferable in that it can be obtained. From this point of view, the proportion of nitrogen in the (A) conjugated diene polymer is more preferably 60 ppm or more, and more preferably 80 ppm or more, based on the total amount of the (A) conjugated diene polymer. preferable. The proportion of nitrogen in the (A) conjugated diene polymer is preferably 500 ppm or less, more preferably 450 ppm or less, based on the total amount of the (A) conjugated diene polymer. The nitrogen content of the polymer is a value measured in accordance with the chemiluminescence method of JIS K2609:1998 (Crude oil and petroleum products - Nitrogen content test method). The details of the measurement method follow the method described in Examples described later.
 なお、窒素を有する(A)共役ジエン系重合体は、重合体を製造する際に、開始末端変性剤として含窒素化合物(好ましくは2級アミン化合物)を用いる方法、含窒素単量体を用いて重合する方法、末端変性剤として含窒素化合物を用いる方法、又はカップリング剤として含窒素化合物を用いる方法を採用するか、あるいはこれらの方法のうちの2つ以上を組み合わせることによって得ることができる。 The conjugated diene polymer (A) having nitrogen can be produced by using a nitrogen-containing compound (preferably a secondary amine compound) as an initiating terminal modifier, or by using a nitrogen-containing monomer. It can be obtained by employing a method of polymerization using a nitrogen-containing compound, a method of using a nitrogen-containing compound as a terminal modifier, a method of using a nitrogen-containing compound as a coupling agent, or a combination of two or more of these methods. .
<(B)成分:ヒンダードフェノール化合物>
 本組成物は、分子量が250~2,000のヒンダードフェノール化合物(以下、「(B)化合物」ともいう)を含有する。ここで、本明細書において「ヒンダードフェノール化合物」とは、水酸基が結合した芳香環(好ましくはベンゼン環)を構成する炭素のうち、水酸基が結合する炭素の両隣の炭素に(すなわち、水酸基に対して2つのオルト位に)炭素数1以上の基がそれぞれ結合した部分構造(以下、「ヒンダードフェノール構造」ともいう)を有する化合物をいう。
<(B) component: hindered phenol compound>
The present composition contains a hindered phenol compound (hereinafter also referred to as "compound (B)") with a molecular weight of 250 to 2,000. Here, in this specification, the term "hindered phenol compound" refers to carbons on both sides of the carbon to which the hydroxyl group is bonded (i.e., to the carbons constituting the aromatic ring (preferably benzene ring) to which the hydroxyl group is bonded). A compound having a partial structure (hereinafter also referred to as a "hindered phenol structure") in which groups each having one or more carbon atoms are bonded to two ortho positions.
 ヒンダードフェノール構造において、水酸基が結合する炭素の両隣の炭素に結合する炭素数1以上の基(以下、「特定基Xb」ともいう)は、(B)化合物の分子量が上記範囲内となればよく、特に限定されない。特定基Xbとしては、例えば、炭素数1~40の飽和又は不飽和の鎖状炭化水素基、炭素数3~40の飽和又は不飽和の脂環式炭化水素基及び炭素数6~40の芳香族炭化水素基、並びにこれらの炭化水素基におけるメチレン基及び水素原子のうち1個以上が官能基(例えば、水酸基、(メタ)アクリロイル基、-O-、-S-等)で置き換えられた基が挙げられる。(A)共役ジエン系重合体を製造する工程(特に、重合体の乾燥処理)において設備付着して滞留した重合体の蓄熱燃焼を抑制するとともに、脱溶時間のばらつきによるムーニー粘度の変化を抑制して品質安定化を図り、良好な特性を示す架橋体を得る観点から、ヒンダードフェノール構造における2つの特定基Xbのうち少なくとも一方は、炭素数が2以上であることが好ましく、4以上であることがより好ましい。 In the hindered phenol structure, a group having one or more carbon atoms (hereinafter also referred to as "specific group Good, but not particularly limited. Examples of the specific group Xb include a saturated or unsaturated chain hydrocarbon group having 1 to 40 carbon atoms, a saturated or unsaturated alicyclic hydrocarbon group having 3 to 40 carbon atoms, and an aromatic group having 6 to 40 carbon atoms. group hydrocarbon groups, and groups in which one or more of the methylene groups and hydrogen atoms in these hydrocarbon groups are replaced with a functional group (e.g., hydroxyl group, (meth)acryloyl group, -O-, -S-, etc.) can be mentioned. (A) In the process of manufacturing conjugated diene polymers (particularly in the drying process of polymers), it suppresses the thermal accumulation and combustion of polymers that adhere to equipment and remain, and also suppresses changes in Mooney viscosity due to variations in desolvation time. From the viewpoint of stabilizing the quality and obtaining a crosslinked product exhibiting good properties, at least one of the two specific groups Xb in the hindered phenol structure preferably has 2 or more carbon atoms, and 4 or more carbon atoms. It is more preferable that there be.
 (B)化合物が有するヒンダードフェノール構造における2つの特定基Xbのうち少なくとも一方は、芳香環を構成する炭素に対して3級炭素で結合していることが好ましい。すなわち、(B)化合物は、水酸基が結合する芳香環中の炭素の両隣の炭素のうち少なくとも一方には炭素が結合しており、かつ当該炭素は4級炭素であることが好ましい。 It is preferable that at least one of the two specific groups Xb in the hindered phenol structure of the compound (B) is bonded to the carbon constituting the aromatic ring through a tertiary carbon. That is, in the compound (B), carbon is bonded to at least one of the carbons on both sides of the carbon in the aromatic ring to which the hydroxyl group is bonded, and the carbon is preferably a quaternary carbon.
 このようなヒンダードフェノール化合物としては、N-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、テトラキス{メチレン-3-(3’,5’-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート}メタン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ジステアリル(4-ヒドロキシ-3-メチル-5-t-ブチルベンジル)マロネート、トリエチレングリコール-ビス{3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート}、1,6-ヘキサンジオール-ビス{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート}、2,4-ビス-(N-オクチルチオ)-6-(4-ヒドロキシフェニル「3,5-ジ-t-ブチル-アニリノ-1,3,5-トリアジン、2,2-チオジエチレンビス{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート}、2,2-チオビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、N,N’-ヘキサメチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロパンアミド]、3,5-ジ-t-ブチル-4-ヒドロキシベンジルフォスフォネートジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィド、トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、2,4-ビス{(オクチルチオ)メチル}-O-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ビス{3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルヒドラジン、ヒンダードフェノール構造を有する(メタ)アクリレート化合物等が挙げられる。 Such hindered phenol compounds include N-octadecyl-3-(4'-hydroxy-3',5'-di-t-butylphenyl)propionate, tetrakis{methylene-3-(3',5'- di-t-butyl-4-hydroxyphenyl)propionate}methane, 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, distearyl(4-hydroxy-3-methyl) -5-t-butylbenzyl)malonate, triethylene glycol-bis{3-(3-t-butyl-5-methyl-4-hydroxyphenyl)propionate}, 1,6-hexanediol-bis{3-(3 ,5-di-t-butyl-4-hydroxyphenyl)propionate}, 2,4-bis-(N-octylthio)-6-(4-hydroxyphenyl ``3,5-di-t-butyl-anilino-1 , 3,5-triazine, 2,2-thiodiethylenebis{3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate}, 2,2-thiobis(4-methyl-6-t- butylphenol), 2,2'-methylenebis-(4-ethyl-6-t-butylphenol), N,N'-hexamethylenebis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propane amide], 3,5-di-t-butyl-4-hydroxybenzylphosphonate diethyl ester, 1,3,5-trimethyl-2,4,6-tris(3,5-di-t-butyl-4 -hydroxybenzyl)benzene, bis(3,5-di-t-butyl-4-hydroxybenzyl) sulfide, tris(3,5-di-t-butyl-4-hydroxybenzyl)-isocyanurate, 2,4- Bis{(octylthio)methyl}-O-cresol, isooctyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate, N,N'-bis{3-(3,5-di- Examples include t-butyl-4-hydroxyphenyl)propionylhydrazine and (meth)acrylate compounds having a hindered phenol structure.
 ヒンダードフェノール構造を有する(メタ)アクリレート化合物としては、下記式(7)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(式(7)中、R~Rは、互いに独立して、水素原子又は炭素数1~10のアルキル基である。R6は水素原子又はメチル基である。)
Examples of the (meth)acrylate compound having a hindered phenol structure include a compound represented by the following formula (7).
Figure JPOXMLDOC01-appb-C000007
(In formula (7), R 1 to R 5 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. R 6 is a hydrogen atom or a methyl group.)
 式(7)において、R~Rで表される炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、1,1-ジメチルプロピル基等が挙げられる。これらのうち、R及びRは、安定化効果が高い点及び製造の容易性の点において、イソプロピル基、sec-ブチル基、tert-ブチル基、1,1-ジメチルプロピル基といった立体障害の大きい嵩高いアルキル基が好ましい。R及びRは、水素引き抜きを伴うキノイド型構造の生成反応を抑制する観点から、tert-ブチル基及び1,1-ジメチルプロピル基が好ましい。Rは、メチル基、エチル基、n-プロピル基及びn-ブチル基が好ましい。 In formula (7), the alkyl group having 1 to 10 carbon atoms represented by R 1 to R 5 includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, Examples include isobutyl group, tert-butyl group, and 1,1-dimethylpropyl group. Among these, R 1 and R 2 are sterically hindered, such as isopropyl group, sec-butyl group, tert-butyl group, and 1,1-dimethylpropyl group, in terms of high stabilizing effect and ease of production. Large bulky alkyl groups are preferred. R 3 and R 4 are preferably a tert-butyl group or a 1,1-dimethylpropyl group from the viewpoint of suppressing the reaction that produces a quinoid structure accompanied by hydrogen abstraction. R 5 is preferably a methyl group, ethyl group, n-propyl group or n-butyl group.
 (B)化合物としては、重合体の乾燥処理の際に揮発分やブリード物による設備汚染の抑制効果を高くでき、脱溶時間のばらつきによるムーニー粘度の変化を抑制して品質安定化を図り、(A)共役ジエン系重合体を製造する工程における工程負荷を低減する効果が高い点、及び架橋体の強度や耐摩耗性、粘弾性特性、あるいはタイヤ用途とした場合の低燃費性能といった各種特性の改善効果を高くできる点において、中でも、不飽和基を有するヒンダードフェノール化合物を好ましく使用できる。(B)化合物が不飽和基を有する場合、当該不飽和基としては、例えばビニル基、(メタ)アクリロイル基、ビニルフェニル基等が挙げられる。これらのうち、(B)成分としての不飽和基を有するヒンダードフェノール化合物は(メタ)アクリロイル基を有することが好ましく、式(7)で表される化合物がより好ましい。中でも、式(7)において、R及びRがtert-ブチル基、R及びRがメチル基、R及びRが水素原子である化合物や、R~Rがtert-ペンチル基、Rがメチル基、Rが水素原子である化合物が好ましい。 As a compound (B), it can be highly effective in suppressing equipment contamination caused by volatile matter and bleed substances during the drying process of polymers, and can stabilize quality by suppressing changes in Mooney viscosity due to variations in desolvation time, (A) It is highly effective in reducing the process load in the process of manufacturing conjugated diene polymers, and various properties such as the strength, abrasion resistance, viscoelastic properties of the crosslinked product, and low fuel consumption performance when used in tires Among them, hindered phenol compounds having an unsaturated group can be preferably used in that they can enhance the improvement effect. When the compound (B) has an unsaturated group, examples of the unsaturated group include a vinyl group, a (meth)acryloyl group, and a vinylphenyl group. Among these, the hindered phenol compound having an unsaturated group as component (B) preferably has a (meth)acryloyl group, and the compound represented by formula (7) is more preferable. Among these, in formula (7), R 1 and R 2 are tert-butyl groups, R 3 and R 4 are methyl groups, R 5 and R 6 are hydrogen atoms, and R 1 to R 4 are tert-pentyl groups. A compound in which R 5 is a methyl group and R 6 is a hydrogen atom is preferred.
 (B)化合物の分子量は250~2,000である。本組成物に配合するヒンダードフェノール化合物の分子量が250未満であると、脱溶工程でヒンダードフェノール化合物が混合溶媒相に移行し易くなることから重合体への残留量が低下する傾向にあり、重合体の乾燥処理の際に設備付着した重合体成分の蓄熱燃焼や成分の揮発を十分に抑制できないことが懸念される。このため、設備付着した成分を除去する処理を頻繁に行う必要があり、工程負荷が増大する。また、ヒンダードフェノール化合物の分子量が2,000を超えると、(A)共役ジエン系重合体との相溶性が低下し、性能低下を招くことが懸念される。このような観点から、(B)化合物の分子量は300以上が好ましく、350以上がより好ましい。また、(B)化合物の分子量は1,800以下が好ましく、1,500以下がより好ましく、1,200以下が更に好ましい。 The molecular weight of the compound (B) is 250 to 2,000. If the molecular weight of the hindered phenol compound added to the present composition is less than 250, the hindered phenol compound will easily migrate to the mixed solvent phase during the desolvation process, and the amount remaining in the polymer will tend to decrease. There is a concern that thermal storage combustion and volatilization of polymer components adhering to equipment during the drying process of the polymer cannot be sufficiently suppressed. Therefore, it is necessary to frequently perform treatment to remove components attached to the equipment, which increases the process load. Furthermore, if the molecular weight of the hindered phenol compound exceeds 2,000, there is a concern that the compatibility with the conjugated diene polymer (A) will decrease, leading to a decrease in performance. From such a viewpoint, the molecular weight of the compound (B) is preferably 300 or more, more preferably 350 or more. Moreover, the molecular weight of the compound (B) is preferably 1,800 or less, more preferably 1,500 or less, and even more preferably 1,200 or less.
 (B)化合物の配合量(2種以上使用する場合にはその合計量)は、(A)共役ジエン系重合体100質量部に対して、0.1質量部以上2.2質量部以下であることが好ましい。(B)化合物の配合量を0.1質量部以上とすることにより、脱溶時間の相違に対するムーニー粘度の変化をより小さくでき、また、(A)共役ジエン系重合体の乾燥処理の際に(A)共役ジエン系重合体の蓄熱燃焼性を低減できるとともに、架橋体の強度や粘弾性特性、あるいはタイヤ用途とした場合の低燃費性能といった各種特性の改善効果を高くできる。このような観点から、(B)化合物の配合量は、(A)共役ジエン系重合体100質量部に対して、0.2質量部以上であることがより好ましく、0.4質量部以上であることが更に好ましい。また、(B)化合物の配合量を2.2質量部以下とすることにより、重合体の乾燥処理の際に揮発分やブリード物による設備汚染の抑制効果を高くできるとともに、本組成物を用いて得られる架橋体の強度の低下や、タイヤに使用した場合の低燃費性能の低下を抑制できる傾向がある。(B)化合物の配合量は、(A)共役ジエン系重合体100質量部に対して、1.8質量部以下がより好ましく、1.4質量部以下であることが更に好ましく、1.0質量部以下であることがより更に好ましい。なお、(B)化合物としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The compounding amount of (B) compound (the total amount when two or more types are used) is 0.1 parts by mass or more and 2.2 parts by mass or less with respect to 100 parts by mass of (A) conjugated diene polymer. It is preferable that there be. (B) By setting the blending amount of the compound to 0.1 part by mass or more, the change in Mooney viscosity due to the difference in desolvation time can be made smaller. (A) It is possible to reduce the heat storage and combustibility of the conjugated diene polymer, and to enhance the effect of improving various properties such as the strength and viscoelastic properties of the crosslinked product, and fuel efficiency when used in tires. From this point of view, the blending amount of the compound (B) is more preferably 0.2 parts by mass or more, and more preferably 0.4 parts by mass or more with respect to 100 parts by mass of the conjugated diene polymer (A). It is even more preferable that there be. Furthermore, by setting the blending amount of the compound (B) to 2.2 parts by mass or less, it is possible to increase the effect of suppressing equipment contamination caused by volatile components and bleed products during the drying treatment of the polymer, and to use the present composition. There is a tendency that it is possible to suppress a decrease in the strength of the crosslinked product obtained by the above process and a decrease in fuel efficiency when used in tires. (B) The compounding amount of the compound is more preferably 1.8 parts by mass or less, even more preferably 1.4 parts by mass or less, and 1.0 parts by mass or less, based on 100 parts by mass of the (A) conjugated diene polymer. It is even more preferable that the amount is not more than parts by mass. In addition, as the (B) compound, one type may be used alone, or two or more types may be used in combination.
<その他の成分>
 本組成物は(A)共役ジエン系重合体及び(B)化合物に加え、更に以下の成分を含有していてもよい。
<Other ingredients>
In addition to (A) the conjugated diene polymer and (B) the compound, the composition may further contain the following components.
・(C)成分:特定安定剤
 本組成物は、(C)成分として、リン系安定剤及び有機硫黄系安定剤よりなる群から選択される少なくとも1種であって分子量が250~2,000である化合物(以下、「(C)特定安定剤」ともいう)を更に含有していてもよい。本組成物が(B)化合物と共に(C)特定安定剤を含有することにより、より少ない添加剤量によって、脱溶時間に対するムーニー粘度の変化をより小さくして品質安定性を図る効果や、(A)共役ジエン系重合体の乾燥処理の際に(A)共役ジエン系重合体の設備付着による蓄熱燃焼や成分の揮発を抑制する効果を得ることができる。これにより、設備汚染や架橋体の性能をバランス良く改善することができる。
・Component (C): Specific stabilizer This composition contains at least one type selected from the group consisting of phosphorus stabilizers and organic sulfur stabilizers as component (C), and has a molecular weight of 250 to 2,000. It may further contain a compound (hereinafter also referred to as "(C) specific stabilizer"). By containing the specific stabilizer (C) together with the compound (B), this composition has the effect of reducing the change in Mooney viscosity with respect to desolution time and achieving quality stability with a smaller amount of additive, and ( A) During the drying process of the conjugated diene polymer, it is possible to obtain the effect of suppressing heat storage combustion and component volatilization due to the adhesion of the conjugated diene polymer (A) to the equipment. This makes it possible to improve equipment contamination and the performance of the crosslinked product in a well-balanced manner.
 (C)特定安定剤としては、リン系酸化防止剤、有機硫黄系酸化防止剤して公知の化合物であって分子量が250~2,000の範囲内である化合物を使用することができる。これらの具体例としては、分子量が250~2,000のリン系安定剤として、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)-4-,4’-ビスフェニレンホスファイト、トリス(ノニルフェニル)ホスファイト、ジステアリルペンタエリストールジホスファイト、ビス(2,4,ジ-t-ブチルフェニル)ペンタエリストールホスファイト、ビス(2,6,ジ-t-ブチル-4-メチルフェニル)ペンタエリストールホスファイト、2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)オクチルホスファイト、テトラキス(2,4-ジ-t-ブチルフェニル)4,4’-ビスフェニレン-ジ-ホスファイト等が挙げられる。リン系安定剤としては、1種を単独で又は2種以上を組み合わせて使用することができる。 (C) As the specific stabilizer, compounds known as phosphorus antioxidants and organic sulfur antioxidants and having a molecular weight within the range of 250 to 2,000 can be used. Specific examples of these include tris(2,4-di-t-butylphenyl) phosphite and tetrakis(2,4-di-t-butylphenyl) as phosphorus stabilizers with a molecular weight of 250 to 2,000. -4-,4'-bisphenylene phosphite, tris(nonylphenyl) phosphite, distearylpentaerythol diphosphite, bis(2,4,di-t-butylphenyl)pentaerythol phosphite, bis( 2,6,di-t-butyl-4-methylphenyl)pentaerythol phosphite, 2,2-methylenebis(4,6-di-t-butylphenyl)octylphosphite, tetrakis(2,4-di- (t-butylphenyl) 4,4'-bisphenylene-di-phosphite and the like. As the phosphorus stabilizer, one kind can be used alone or two or more kinds can be used in combination.
 分子量250~2,000の有機硫黄系安定剤の具体例としては、ジドデシルチオジプロピオネート、ジテトラデシルチオジプロピオネート、ジオクタデシルチオジプロピオネート、ビス[3-(ドデシルチオ)プロピオン酸]2,2-ビス[[3-(ドデシルチオ)-1-オキソプロピルオキシ]メチル]-1,3-プロパンジイル、ペンタエリスリトールテトラキス(3-ドデシルチオプロピオネート)、チオビス(N-フェニル-β-ナフチルアミン)等の有機チオ酸系化合物等が挙げられる。有機硫黄系安定剤としては、1種を単独で又は2種以上を組み合わせて使用することができる。 Specific examples of organic sulfur stabilizers with a molecular weight of 250 to 2,000 include didodecylthiodipropionate, ditetradecylthiodipropionate, dioctadecylthiodipropionate, and bis[3-(dodecylthio)propionic acid]. 2,2-bis[[3-(dodecylthio)-1-oxopropyloxy]methyl]-1,3-propanediyl, pentaerythritol tetrakis (3-dodecylthiopropionate), thiobis(N-phenyl-β- Examples include organic thio acid compounds such as naphthylamine). As the organic sulfur stabilizer, one type can be used alone or two or more types can be used in combination.
 (C)特定安定剤の配合量(2種以上使用する場合にはその合計量)は、(A)共役ジエン系重合体100質量部に対して、0.01質量部以上2.0質量部以下とすることが好ましい。(C)特定安定剤の配合量は、(A)共役ジエン系重合体100質量部に対して、0.02質量部以上がより好ましく、0.05質量部以上が更に好ましい。また、(C)特定安定剤の配合量は、(A)共役ジエン系重合体100質量部に対して、1.5質量部以下がより好ましく、1.2質量部以下が更に好ましい。(C)特定安定剤の配合量を上記範囲とすることにより、脱溶時間のばらつきに対するムーニー粘度の変化をより小さくする効果や、乾燥処理の際に(A)共役ジエン系重合体の設備付着による蓄熱燃焼や成分の揮発を抑制する効果を、(B)化合物の添加剤量をより少なくしつつ得ることができる。なお、(C)特定安定剤としては、リン系安定剤のみを用いてもよいし、有機硫黄系安定剤のみを用いてもよいし、リン系安定剤と有機硫黄系安定剤とを併用してもよい。 (C) The blending amount of the specific stabilizer (if two or more types are used, the total amount) is 0.01 parts by mass or more and 2.0 parts by mass with respect to 100 parts by mass of (A) conjugated diene polymer. The following is preferable. The blending amount of the specific stabilizer (C) is more preferably 0.02 parts by mass or more, and even more preferably 0.05 parts by mass or more, based on 100 parts by mass of the conjugated diene polymer (A). Moreover, the blending amount of the specific stabilizer (C) is more preferably 1.5 parts by mass or less, and even more preferably 1.2 parts by mass or less, based on 100 parts by mass of the (A) conjugated diene polymer. (C) By setting the blending amount of the specific stabilizer within the above range, it is possible to reduce the change in Mooney viscosity due to variations in desolvation time, and to reduce the adhesion of (A) conjugated diene polymer to equipment during drying. The effect of suppressing thermal storage combustion and volatilization of components can be obtained while reducing the amount of the additive of the (B) compound. As the specific stabilizer (C), only a phosphorus stabilizer, only an organic sulfur stabilizer, or a combination of a phosphorus stabilizer and an organic sulfur stabilizer may be used. It's okay.
・(D)成分:無機フィラー
 本組成物は、無機フィラーを含有していてもよい。無機フィラーとしては、シリカ及びカーボンブラック、並びに、シリカ及びカーボンブラック以外の充填剤(以下、「他の充填剤」ともいう)が挙げられる。本組成物に配合される無機フィラーは、シリカ及びカーボンブラックの一方又は両方を含むことが好ましい。
- (D) Component: Inorganic filler This composition may contain an inorganic filler. Examples of the inorganic filler include silica and carbon black, and fillers other than silica and carbon black (hereinafter also referred to as "other fillers"). The inorganic filler blended into the present composition preferably contains one or both of silica and carbon black.
・(D-1)成分:シリカ
 本組成物は、シリカを含有することができる。シリカの配合量は、(A)共役ジエン系重合体を含むゴム成分100質量部に対して、20~120質量部の範囲が好ましく、30~100質量部の範囲が更に好ましい。シリカの配合量がゴム成分100質量部に対して20質量部以上であると、重合体組成物の低ヒステリシスロス性、破壊特性、耐摩耗性を十分に向上させることができ、また、120質量部以下であると、重合体組成物の加工性を十分に向上させることができる。
- (D-1) Component: Silica The present composition can contain silica. The amount of silica blended is preferably in the range of 20 to 120 parts by weight, more preferably in the range of 30 to 100 parts by weight, based on 100 parts by weight of the rubber component containing the conjugated diene polymer (A). When the blending amount of silica is 20 parts by mass or more based on 100 parts by mass of the rubber component, the low hysteresis loss property, fracture characteristics, and abrasion resistance of the polymer composition can be sufficiently improved; When the amount is less than 1.9 parts, the processability of the polymer composition can be sufficiently improved.
 なお、本明細書において、重合体組成物に含まれる「ゴム成分」とは、熱硬化等によりゴム弾性を示す硬化物を得ることが可能な重合体をいう。当該硬化物は、室温において小さな力で大きな変形(例えば、室温で伸ばすと2倍以上に伸びる変形)を起こし、力を取り除くと急速にほぼ元の形状に戻る性質を示す。 In this specification, the "rubber component" contained in the polymer composition refers to a polymer that can be cured to exhibit rubber elasticity by heat curing or the like. The cured product exhibits the property of causing large deformation (for example, deformation that stretches more than twice as much when stretched at room temperature) with a small force at room temperature, and rapidly returning to almost its original shape when the force is removed.
 シリカとしては、特に制限はなく、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。これらの中でも、湿式シリカが好ましい。シリカとしては、1種を単独で使用してもよいし、2種以上を併用してもよい。また、シリカのBET比表面積(ISO 5794/1に準拠して測定される値)は、40~350m/gの範囲が好ましく、80~350m/gの範囲が更に好ましく、120~350m/gの範囲が特に好ましい。BET比表面積がこの範囲であるシリカは、ゴム補強性と(A)変性ジエン系重合体中への分散性とを両立できる利点がある。このようなシリカとしては、東ソー・シリカ社製、商品名「ニプシルAQ」(BET比表面積=205m/g)、「ニプシルKQ」、デグッサ社製、商品名「ウルトラジルVN3」(BET比表面積=175m/g)等の市販品を用いることができる。 Silica is not particularly limited, and examples thereof include wet silica (hydrated silicic acid), dry silica (anhydrous silicic acid), calcium silicate, aluminum silicate, and the like. Among these, wet silica is preferred. As silica, one type may be used alone, or two or more types may be used in combination. Furthermore, the BET specific surface area of silica (value measured according to ISO 5794/1) is preferably in the range of 40 to 350 m 2 /g, more preferably in the range of 80 to 350 m 2 /g, and more preferably in the range of 120 to 350 m 2 A range of /g is particularly preferred. Silica having a BET specific surface area within this range has the advantage of being able to achieve both rubber reinforcing properties and dispersibility in the (A) modified diene polymer. Examples of such silica include Tosoh Silica Co., Ltd., trade name "Nipsil AQ" (BET specific surface area = 205 m 2 /g), "Nipsil KQ", Degussa Corporation, trade name "Ultrasil VN3" (BET specific surface area = 205 m 2 /g), = 175 m 2 /g) and the like can be used.
 本組成物に配合されるシリカは、比表面積の異なる2種以上の併用であってもよい。具体的には、CTAB(セチルトリメチルアンモニウムブロミド)比表面積が180m/g以上、BET比表面積が185m/g以上、アグリゲートサイズが45nm以上である第1シリカと、CTAB比表面積が95m/g以下、BET比表面積が100m/g以下である第2シリカとを併用していてもよい。なお、シリカのCTAB比表面積は、ASTM D3765-92に準拠して測定される。 Two or more types of silica having different specific surface areas may be used in combination in the present composition. Specifically, the first silica has a CTAB (cetyltrimethylammonium bromide) specific surface area of 180 m 2 /g or more, a BET specific surface area of 185 m 2 /g or more, and an aggregate size of 45 nm or more, and a CTAB specific surface area of 95 m 2 /g or less, and a second silica having a BET specific surface area of 100 m 2 /g or less may be used in combination. Note that the CTAB specific surface area of silica is measured in accordance with ASTM D3765-92.
 本組成物は、CTAB比表面積が180m/g以上、BET比表面積が185m/g以上、アグリゲートサイズが45nm以上である第1シリカと、CTAB比表面積が95m/g以下、BET比表面積が100m/g以下の第2シリカとを含有していてもよい。このような第1シリカと第2シリカとを併用することにより、平均一次粒子径は小さいが比較的アグリゲートサイズの大きい第1シリカをゴム成分中に良好に分散させることが可能となる。これにより、シリカの分散性を改善し、優れた破壊強度、耐摩耗性、低燃費性及び加工性を得ることができる。 The present composition comprises a first silica having a CTAB specific surface area of 180 m 2 /g or more, a BET specific surface area of 185 m 2 /g or more, and an aggregate size of 45 nm or more; The second silica may have a surface area of 100 m 2 /g or less. By using such a first silica and a second silica in combination, it becomes possible to favorably disperse the first silica, which has a small average primary particle diameter but a relatively large aggregate size, in the rubber component. This improves the dispersibility of silica and provides excellent fracture strength, wear resistance, fuel efficiency, and processability.
 第1シリカのCTAB比表面積は、好ましくは190m/g以上、より好ましくは195m/g以上、更に好ましくは197m/g以上である。CTAB比表面積が180m/g未満であると、破壊強度、耐摩耗性の充分な向上が得られにくくなる傾向がある。第1シリカのCTAB比表面積は、好ましくは350m/g以下、より好ましくは300m/g以下、更に好ましくは250m/g以下である。CTAB比表面積が350m/gを超えると、分散性に劣り凝集しやすくなるため、物性が低下する傾向がある。 The CTAB specific surface area of the first silica is preferably 190 m 2 /g or more, more preferably 195 m 2 /g or more, even more preferably 197 m 2 /g or more. When the CTAB specific surface area is less than 180 m 2 /g, it tends to be difficult to sufficiently improve fracture strength and wear resistance. The CTAB specific surface area of the first silica is preferably 350 m 2 /g or less, more preferably 300 m 2 /g or less, even more preferably 250 m 2 /g or less. When the CTAB specific surface area exceeds 350 m 2 /g, the dispersibility is poor and agglomeration tends to occur easily, so that physical properties tend to deteriorate.
 第1シリカのBET比表面積は、好ましくは190m/g以上、より好ましくは195m/g以上、更に好ましくは210m/g以上である。BET比表面積が185m/g未満であると、破壊強度、耐摩耗性の充分な向上が得られにくくなる傾向がある。BET比表面積は、好ましくは350m/g以下、より好ましくは300m/g以下、更に好ましくは260m/g以下である。BET比表面積が350m/gを超えると、分散性に劣り凝集しやすくなるため、物性が低下する傾向がある。なお、シリカのBET比表面積は、ASTM D3037-81に準じて測定される。 The BET specific surface area of the first silica is preferably 190 m 2 /g or more, more preferably 195 m 2 /g or more, and still more preferably 210 m 2 /g or more. When the BET specific surface area is less than 185 m 2 /g, it tends to be difficult to sufficiently improve fracture strength and wear resistance. The BET specific surface area is preferably 350 m 2 /g or less, more preferably 300 m 2 /g or less, even more preferably 260 m 2 /g or less. When the BET specific surface area exceeds 350 m 2 /g, the dispersibility is poor and agglomeration tends to occur easily, so that physical properties tend to deteriorate. Note that the BET specific surface area of silica is measured according to ASTM D3037-81.
 第1シリカのアグリゲートサイズは、45nm以上、好ましくは50nm以上、より好ましくは55nm以上、更に好ましくは60nm以上である。また、アグリゲートサイズは、好ましくは100nm以下、より好ましくは80nm以下、更に好ましくは70nm以下、特に好ましくは67nm以下である。このようなアグリゲートサイズを有することにより、良好な分散性(加工性)を有しながら、優れた低燃費性、耐摩耗性を与えることができる。なお、シリカのアグリゲートサイズは、特開2011-140613号公報に記載の方法により測定できる。 The aggregate size of the first silica is 45 nm or more, preferably 50 nm or more, more preferably 55 nm or more, and still more preferably 60 nm or more. Further, the aggregate size is preferably 100 nm or less, more preferably 80 nm or less, still more preferably 70 nm or less, particularly preferably 67 nm or less. By having such an aggregate size, it is possible to provide excellent fuel efficiency and wear resistance while having good dispersibility (processability). Note that the aggregate size of silica can be measured by the method described in JP-A-2011-140613.
 第1シリカの平均一次粒子径は、好ましくは25nm以下、より好ましくは22nm以下、更に好ましくは17nm以下、特に好ましくは14nm以下である。平均一次粒子径の下限は特に限定されないが、好ましくは3nm以上、より好ましくは5nm以上、更に好ましくは7nm以上である。このような小さい平均一次粒子径を有しているものの、上記のアグリゲートサイズを有するカーボンブラックのような構造により、シリカの分散性(加工性)をより改善でき、低燃費性、耐摩耗性を更に改善できる。なお、シリカの平均一次粒子径は、シリカを透過型又は走査型電子顕微鏡により観察し、視野内に観察されたシリカの一次粒子400個以上について粒子径を測定し、その平均により求めることができる。 The average primary particle diameter of the first silica is preferably 25 nm or less, more preferably 22 nm or less, even more preferably 17 nm or less, particularly preferably 14 nm or less. The lower limit of the average primary particle diameter is not particularly limited, but is preferably 3 nm or more, more preferably 5 nm or more, and still more preferably 7 nm or more. Although it has such a small average primary particle diameter, the carbon black-like structure with the above-mentioned aggregate size can further improve the dispersibility (processability) of silica, resulting in low fuel consumption and wear resistance. can be further improved. The average primary particle size of silica can be determined by observing silica using a transmission or scanning electron microscope, measuring the particle size of 400 or more silica primary particles observed within the field of view, and averaging the particle size. .
 第2シリカのCTAB比表面積は、好ましくは10m/g以上、より好ましくは20m/g以上、更に好ましくは30m/g以上である。CTAB比表面積が10m/g未満であると、補強性が低くなり、タイヤ製造用の重合体組成物に必要な力学強度や耐摩耗性を十分に確保することが難しくなるおそれがある。CTAB比表面積は、好ましくは80m/g以下、より好ましくは60m/g以下、更に好ましくは50m/g以下である。CTAB比表面積が95m/gを超えると、シリカの分散性が悪くなり、破壊強度及び耐摩耗性を改善することが難しくなるおそれがある。 The CTAB specific surface area of the second silica is preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, even more preferably 30 m 2 /g or more. If the CTAB specific surface area is less than 10 m 2 /g, the reinforcing properties will be low, and it may be difficult to sufficiently ensure the mechanical strength and abrasion resistance required for a polymer composition for tire manufacturing. The CTAB specific surface area is preferably 80 m 2 /g or less, more preferably 60 m 2 /g or less, even more preferably 50 m 2 /g or less. If the CTAB specific surface area exceeds 95 m 2 /g, the dispersibility of silica may deteriorate, making it difficult to improve fracture strength and abrasion resistance.
 第2シリカのBET比表面積は、好ましくは10m/g以上、より好ましくは20m/g以上、更に好ましくは30m/g以上である。BET比表面積が10m/g未満であると、補強性が低くなり、タイヤ製造用の重合体組成物に必要な力学強度や耐摩耗性を確保することが難しくなる場合がある。BET比表面積は、好ましくは85m/g以下、より好ましくは60m/g以下、更に好ましくは50m/g以下である。BET比表面積が100m/gを超えると、シリカの分散性が悪くなり、破壊強度及び耐摩耗性を改善することが難しくなるおそれがある。 The BET specific surface area of the second silica is preferably 10 m 2 /g or more, more preferably 20 m 2 /g or more, even more preferably 30 m 2 /g or more. If the BET specific surface area is less than 10 m 2 /g, the reinforcing properties will be low, and it may be difficult to ensure the mechanical strength and abrasion resistance required for a polymer composition for tire manufacturing. The BET specific surface area is preferably 85 m 2 /g or less, more preferably 60 m 2 /g or less, even more preferably 50 m 2 /g or less. If the BET specific surface area exceeds 100 m 2 /g, the dispersibility of silica may deteriorate, making it difficult to improve fracture strength and abrasion resistance.
 第2シリカの平均一次粒子径は、好ましくは20nm以上、より好ましくは25nm以上、更に好ましくは30nm以上、特に好ましくは35nm以上、最も好ましくは55nm以上である。また、該平均一次粒子径の上限は特に限定されないが、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、特に好ましくは70nm以下である。このような平均一次粒子径を有することにより、破壊強度及び耐摩耗性を十分に確保することができる。 The average primary particle diameter of the second silica is preferably 20 nm or more, more preferably 25 nm or more, even more preferably 30 nm or more, particularly preferably 35 nm or more, and most preferably 55 nm or more. Further, the upper limit of the average primary particle diameter is not particularly limited, but is preferably 500 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less, particularly preferably 70 nm or less. By having such an average primary particle diameter, sufficient fracture strength and wear resistance can be ensured.
・(D-2)成分:カーボンブラック
 本組成物は、重合体組成物の破壊特性、耐摩耗性の観点から、カーボンブラックを含むことが好ましい。カーボンブラックとしては、特に限定されるものではなく、例えば、GPF、FEF、HAF、ISAF、SAFグレードのカーボンブラックが挙げられる。カーボンブラックの窒素吸着比表面積(N2SA)は、特に限定されないが、50~200m/gが好ましく、70~150m/gがより好ましい。窒素吸着比表面積(NSA)は、カーボンブラック表面への窒素吸着量をJIS K6217-2:2001「第2部:比表面積の求め方-窒素吸着法-単点法」にしたがって測定した値である。カーボンブラックは、1種を単独で使用してもよいし、2種以上を併用してもよい。本組成物におけるカーボンブラックの配合量は、(A)共役ジエン系重合体100質量部に対して1~150質量部の範囲が好ましく、5~120質量部の範囲が更に好ましい。
- (D-2) Component: Carbon black The present composition preferably contains carbon black from the viewpoint of fracture characteristics and wear resistance of the polymer composition. Carbon black is not particularly limited, and includes, for example, GPF, FEF, HAF, ISAF, and SAF grade carbon black. The nitrogen adsorption specific surface area (N2SA) of carbon black is not particularly limited, but is preferably 50 to 200 m 2 /g, more preferably 70 to 150 m 2 /g. Nitrogen adsorption specific surface area (N 2 SA) is the value obtained by measuring the amount of nitrogen adsorbed on the carbon black surface in accordance with JIS K6217-2:2001 "Part 2: How to determine specific surface area - Nitrogen adsorption method - Single point method" It is. One type of carbon black may be used alone, or two or more types may be used in combination. The amount of carbon black in the present composition is preferably in the range of 1 to 150 parts by weight, more preferably in the range of 5 to 120 parts by weight, based on 100 parts by weight of the conjugated diene polymer (A).
・(D-3)成分:他の充填剤
 本組成物は、無機フィラーとして、シリカ、カーボンブラックの他に、他の充填剤を含んでもよい。他の充填剤としては、γ-アルミナ、α-アルミナ等のアルミナ(Al)、ベーマイト、ダイアスポア等のアルミナ一水和物(Al・HO)、ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)]、炭酸アルミニウム[Al(CO]、水酸化マグネシウム[Mg(OH)]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO)、タルク(3MgO・4SiO・HO)、アタパルジャイト(5MgO・8SiO・9HO)、チタン白(TiO)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)]、酸化アルミニウムマグネシウム(MgO・Al)、クレー(Al・2SiO)、カオリン(Al・2SiO・2HO)、パイロフィライト(Al・4SiO・HO)、ベントナイト(Al・4SiO・2HO)、ケイ酸アルミニウム(AlSiO、Al・3SiO・5HO等)、ケイ酸マグネシウム(MgSiO、MgSiO等)、ケイ酸カルシウム(CaSiO等)、ケイ酸アルミニウムカルシウム(Al・CaO・2SiO等)、ケイ酸マグネシウムカルシウム(CaMgSiO)、炭酸カルシウム(CaCO)、酸化ジルコニウム(ZrO)、水酸化ジルコニウム[ZrO(OH)・nHO]、炭酸ジルコニウム[Zr(CO]、各種ゼオライトのように、電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩等が挙げられる。
- (D-3) Component: Other fillers The present composition may contain other fillers in addition to silica and carbon black as inorganic fillers. Other fillers include alumina (Al 2 O 3 ) such as γ-alumina and α-alumina, alumina monohydrate (Al 2 O 3 H 2 O) such as boehmite and diaspore, gibbsite, bayerite, etc. Aluminum hydroxide [Al(OH) 3 ], aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg(OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3 ), talc ( 3MgO・4SiO 2・H 2 O), attapulgite (5MgO・8SiO 2・9H 2 O), titanium white (TiO 2 ), titanium black (TiO 2n-1 ), calcium oxide (CaO), calcium hydroxide [Ca( OH) 2 ], magnesium aluminum oxide (MgO・Al 2 O 3 ), clay (Al 2 O 3・2SiO 2 ), kaolin (Al 2 O 3・2SiO 2・2H 2 O), pyrophyllite (Al 2 O 3.4SiO 2.H 2 O), bentonite (Al 2 O 3.4SiO 2.2H 2 O), aluminum silicate (Al 2 SiO 5 , Al 4.3SiO 4.5H 2 O, etc.), magnesium silicate ( Mg2SiO4 , MgSiO3 , etc.), calcium silicate (Ca2SiO4 , etc. ) , aluminum calcium silicate ( Al2O3.CaO.2SiO2 , etc. ), magnesium calcium silicate ( CaMgSiO4 ), calcium carbonate ( CaCO 3 ), zirconium oxide (ZrO 2 ), zirconium hydroxide [ZrO(OH) 2 ·nH 2 O], zirconium carbonate [Zr(CO 3 ) 2 ], various zeolites, hydrogen and alkali to correct charge. Examples include crystalline aluminosilicates containing metals or alkaline earth metals.
 本組成物において、シリカ及びカーボンブラックを含む無機フィラーの配合量は、(A)共役ジエン系重合体を含むゴム成分100質量部に対して、好ましくは30質量部以上、より好ましくは40質量部以上である。また、無機フィラーの配合量は、(A)共役ジエン系重合体を含むゴム成分100質量部に対して、好ましくは150質量部以下、より好ましくは130質量部以下である。本組成物中における無機フィラーの配合量が上記範囲内であれば、本組成物をタイヤのトレッドに適用した場合に、タイヤの低転がり抵抗性と、湿潤路面での制動性能と、乾燥路面でのハンドリング性能と、耐摩耗性とを更に高度にバランス良く良好にすることができる。 In this composition, the amount of the inorganic filler containing silica and carbon black is preferably 30 parts by mass or more, more preferably 40 parts by mass, based on 100 parts by mass of the rubber component containing (A) the conjugated diene polymer. That's all. Further, the amount of the inorganic filler blended is preferably 150 parts by mass or less, more preferably 130 parts by mass or less, based on 100 parts by mass of the rubber component containing the conjugated diene polymer (A). If the amount of inorganic filler in this composition is within the above range, when this composition is applied to a tire tread, the tire will have low rolling resistance, braking performance on wet roads, and good performance on dry roads. It is possible to improve the handling performance and wear resistance in a more highly balanced manner.
・(E)成分:他のゴム成分
 本組成物は、ゴム成分として(A)共役ジエン系重合体のみを含有していてもよいが、(A)共役ジエン系重合体に加えて、本開示の効果を損なわない範囲において、(A)共役ジエン系重合体とは異なるゴム成分(以下、「他のゴム成分」ともいう)を含有していてもよい。他のゴム成分としては、例えば、天然ゴム、イソプレンゴム、ブタジエンゴム、乳化重合又は溶液重合スチレン-ブタジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、及びエチレン-プロピレンゴムから選ばれる少なくとも1種類以上のジエン系ゴムを用いることができる。これらの中でも、他のゴム成分は、天然ゴム、ブタジエンゴム、スチレン-ブタジエンゴムが好ましい。他のゴム成分と(A)共役ジエン系重合体とを混合する態様は特に限定されない。例えば、通常行われているバンバリーミキサーやロール等による混練時に他のゴム成分と(A)共役ジエン系重合体とを混合してもよいし、あるいは、重合後の(A)共役ジエン系重合体を含む重合体溶液に他のゴム成分を混合し、その後、脱溶媒・乾燥工程を行ってもよい。
・Component (E): Other rubber components Although the present composition may contain only (A) the conjugated diene polymer as a rubber component, in addition to the conjugated diene polymer (A), the present disclosure A rubber component different from the conjugated diene polymer (A) (hereinafter also referred to as "other rubber component") may be contained within a range that does not impair the effects of (A). Other rubber components include, for example, at least one diene rubber selected from natural rubber, isoprene rubber, butadiene rubber, emulsion polymerization or solution polymerization styrene-butadiene rubber, butyl rubber, halogenated butyl rubber, and ethylene-propylene rubber. can be used. Among these, other rubber components are preferably natural rubber, butadiene rubber, or styrene-butadiene rubber. The manner in which the other rubber components and (A) the conjugated diene polymer are mixed is not particularly limited. For example, the other rubber components and (A) the conjugated diene polymer may be mixed during the usual kneading using a Banbury mixer, rolls, etc., or the (A) conjugated diene polymer may be mixed with the (A) conjugated diene polymer after polymerization. Other rubber components may be mixed into the polymer solution containing the rubber, and then the solvent removal and drying steps may be performed.
 他のゴム成分の配合量は、重合体組成物に含まれるゴム成分((A)共役ジエン系重合体及び他のゴム成分)の合計量に対して、好ましくは80質量%以下であり、より好ましくは60質量%以下である。 The blending amount of other rubber components is preferably 80% by mass or less, and more preferably 80% by mass or less based on the total amount of rubber components ((A) conjugated diene polymer and other rubber components) contained in the polymer composition. Preferably it is 60% by mass or less.
 本組成物においては、ドライグリップ性能、ウェットグリップ性能及び耐ブローアウト性をさらに向上させる観点から、他のゴム成分の一部又は全部に液状ゴムを使用することもできる。 In this composition, a liquid rubber can also be used as part or all of the other rubber components from the viewpoint of further improving dry grip performance, wet grip performance, and blowout resistance.
 液状ゴムとしては、液状ポリイソプレン(液状IR)、液状ポリブタジエン(液状BR)、液状スチレン-ブタジエン共重合体(液状SBR)及び液状エチレン-プロピレン共重合体(液状EP)等が挙げられる。例えば液状SBRは、重量平均分子量が1,000~100,000、好ましくは2,000~80,000のものを使用することができる。なお、本明細書において重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)で分析されるポリスチレン換算の重量平均分子量を意味する。なお、本組成物において使用される液状ゴムは、23℃で流動性を有するものを指す。 Examples of the liquid rubber include liquid polyisoprene (liquid IR), liquid polybutadiene (liquid BR), liquid styrene-butadiene copolymer (liquid SBR), and liquid ethylene-propylene copolymer (liquid EP). For example, liquid SBR having a weight average molecular weight of 1,000 to 100,000, preferably 2,000 to 80,000 can be used. In addition, in this specification, the weight average molecular weight means the weight average molecular weight in terms of polystyrene analyzed by gel permeation chromatography (GPC). Note that the liquid rubber used in this composition refers to one that has fluidity at 23°C.
・(F)成分:熱可塑性/熱硬化性樹脂
 本組成物は、熱可塑性/熱硬化性樹脂(以下、単に「(F)樹脂」ともいう)を含有してもよい。(F)樹脂としては、強度、耐摩耗性及び耐亀裂成長性の各種特性により優れた架橋体を得る観点から、スチレン系樹脂、ポリエチレン、C5系樹脂、C9系樹脂、C5/C9系樹脂、ジシクロペンタジエン系樹脂、アルキルフェノール系樹脂、及びテルペン系樹脂よりなる群から選ばれる少なくとも1種であることが好ましい。(F)樹脂としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。
- (F) component: Thermoplastic/thermosetting resin The present composition may contain a thermoplastic/thermosetting resin (hereinafter also simply referred to as "(F) resin"). (F) Resins include styrene resins, polyethylene, C5 resins, C9 resins, C5/C9 resins, from the viewpoint of obtaining crosslinked products with excellent properties such as strength, abrasion resistance, and crack growth resistance. It is preferably at least one selected from the group consisting of dicyclopentadiene resins, alkylphenol resins, and terpene resins. (F) As the resin, one type may be used alone, or two or more types may be used in combination.
 ここで、スチレン系樹脂は、スチレン系単量体を用いて得られる重合体であり、中でも、スチレン系単量体に由来する構造単位を、スチレン系樹脂が有する単量体単位の全量に対して20質量%以上有する重合体であることが好ましい。スチレン系単量体としては、スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレン、p-メトキシスチレン、p-tert-ブチルスチレン、p-フェニルスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン等が挙げられる。スチレン系単量体は、これらのうち、スチレン及びα-メチルスチレンの少なくとも一方であることが好ましい。 Here, the styrenic resin is a polymer obtained using a styrene monomer, and in particular, the structural units derived from the styrenic monomer are added to the total amount of monomer units possessed by the styrenic resin. It is preferable that the polymer contains 20% by mass or more. Styrenic monomers include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene, p-methoxystyrene, p-tert-butylstyrene, p-phenylstyrene, o-chloro Examples include styrene, m-chlorostyrene, p-chlorostyrene, and the like. Among these, the styrenic monomer is preferably at least one of styrene and α-methylstyrene.
 スチレン系樹脂は、1種のスチレン系単量体を重合した単独重合体でもよいし、2種以上のスチレン系単量体を共重合した共重合体でもよい。また、スチレン系樹脂は、スチレン系単量体と、スチレン系単量体と共重合し得る他の単量体とを用いて得られる共重合体でもよい。他の単量体としては、アクリロニトリル、メタクリロニトリルなどのアクリロニトリル類、アクリル類、メタクリル酸等の不飽和カルボン酸類;アクリル酸メチル、メタクリル酸メチル等の不飽和カルボン酸エステル類;クロロプレン、ブタジエンイソプレン等のジエン類;1-ブテン、1-ペンテン等のオレフィン類;無水マレイン酸等のα,β-不飽和カルボン酸又はその酸無水物、等が挙げられる。 The styrenic resin may be a homopolymer obtained by polymerizing one type of styrenic monomer, or a copolymer obtained by copolymerizing two or more types of styrenic monomers. The styrenic resin may also be a copolymer obtained using a styrene monomer and another monomer that can be copolymerized with the styrene monomer. Other monomers include acrylonitriles such as acrylonitrile and methacrylonitrile; unsaturated carboxylic acids such as acrylics and methacrylic acid; unsaturated carboxylic acid esters such as methyl acrylate and methyl methacrylate; chloroprene and butadiene isoprene. dienes such as; olefins such as 1-butene and 1-pentene; α,β-unsaturated carboxylic acids such as maleic anhydride or acid anhydrides thereof, and the like.
 スチレン系樹脂の軟化点は、30℃以上が好ましく、60℃以上がより好ましく、80℃以上が更に好ましい。軟化点が30℃以上であると、架橋体において耐亀裂成長性の改善効果が得られやすい傾向がある。また、スチレン系樹脂の軟化点は、160℃以下が好ましく、130℃以下がより好ましく、100℃以下が更に好ましい。軟化点が160℃以下であると、樹脂の分散性が良好となり、耐亀裂成長性、耐摩耗性及び破断強度が改善されやすい傾向がある。なお、本開示においてスチレン系樹脂の軟化点は、JIS K 6220-1:2015に規定される方法に従い、環球式軟化点測定装置を用いて測定した値であり、試料が軟化して試料に載せた球が底板上に降下したときの温度である。 The softening point of the styrene resin is preferably 30°C or higher, more preferably 60°C or higher, and even more preferably 80°C or higher. When the softening point is 30° C. or higher, the effect of improving crack growth resistance tends to be easily obtained in the crosslinked body. Further, the softening point of the styrene resin is preferably 160°C or lower, more preferably 130°C or lower, and even more preferably 100°C or lower. When the softening point is 160° C. or less, the dispersibility of the resin becomes good, and crack growth resistance, abrasion resistance, and breaking strength tend to be improved. In addition, in this disclosure, the softening point of the styrene resin is a value measured using a ring and ball softening point measuring device according to the method specified in JIS K 6220-1:2015, and the softening point of the styrene resin is a value measured using a ring and ball softening point measuring device. This is the temperature when the ball falls onto the bottom plate.
 スチレン系樹脂としては、ソフトセグメントとしての共役ジエン系重合体ブロックと、ハードセグメントとしてのポリスチレン系ブロックとを有するブロックポリマー(熱可塑性エラストマー)を用いることもできる。こうしたブロックポリマーを用いた場合、耐亀裂成長性の改善効果をより高くでき好ましい。なお、上記ブロックポリマーが有する共役ジエン系重合体ブロックは、共役ジエン化合物に由来する構造単位中の炭素-炭素二重結合のうちの一部が水素添加されていてもよい。 As the styrene resin, a block polymer (thermoplastic elastomer) having a conjugated diene polymer block as a soft segment and a polystyrene block as a hard segment can also be used. When such a block polymer is used, the effect of improving crack growth resistance can be increased, which is preferable. In addition, in the conjugated diene polymer block included in the block polymer, a portion of the carbon-carbon double bonds in the structural unit derived from the conjugated diene compound may be hydrogenated.
 上記共役ジエン系重合体ブロックを構成する共役ジエン化合物としては、例えば1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。当該共役ジエン化合物としては、1種を単独で又は2種以上を組み合わせて用いることができる。これらの中でも、共役ジエン化合物としては、1,3-ブタジエン及びイソプレンの少なくともいずれかであることが好ましい。ブロックポリマー中における共役ジエンユニットの含有割合は、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。また、共役ジエンユニットの含有割合は、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。 Examples of the conjugated diene compound constituting the conjugated diene polymer block include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, and 1,3-hexadiene. Can be mentioned. As the conjugated diene compound, one kind can be used alone or two or more kinds can be used in combination. Among these, the conjugated diene compound is preferably at least one of 1,3-butadiene and isoprene. The content of conjugated diene units in the block polymer is preferably 20% by mass or more, more preferably 30% by mass or more. Moreover, it is preferable that the content rate of a conjugated diene unit is 80 mass % or less, and it is more preferable that it is 70 mass % or less.
 上記ブロックポリマーにおけるポリスチレン系ブロックの含有割合は、破断強度をより高くできる点で、20質量%以上であることが好ましい。また、ポリスチレン系ブロックの含有割合は、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。なお、ブロックポリマー中におけるポリスチレン系ブロック、共役ジエン系重合体ブロック及び共役ジエンユニットの各含有割合は、H-NMRスペクトルの積分比により算出することができる。 The content of the polystyrene block in the block polymer is preferably 20% by mass or more, since it can further increase the breaking strength. Moreover, it is preferable that the content rate of a polystyrene type block is 80 mass % or less, and it is more preferable that it is 70 mass % or less. Note that the respective content ratios of the polystyrene block, conjugated diene polymer block, and conjugated diene unit in the block polymer can be calculated from the integral ratio of the 1 H-NMR spectrum.
 上記ブロックポリマーの具体例としては、スチレン-ブタジエンブロック共重合体、スチレン-イソプレンブロック共重合体、スチレン-ブタジエンブロック共重合体のエポキシ化物、スチレン-ブタジエンブロック共重合体又はスチレン-イソプレンブロック共重合体が有する共役ジエン系重合体ブロックの一部を水素添加したブロック共重合体等が挙げられる。より詳細には、スチレン-ブタジエン-スチレンブロックコポリマー(SBS)、スチレン-イソプレン-スチレンブロックコポリマー(SIS)、スチレン-ブタジエン-ブチレン-スチレンブロックコポリマー(SBBS)、及びスチレン-ブタジエン-スチレンブロックコポリマーのエポキシ化物、並びにこれらコポリマーの水添物等が挙げられる。上記ブロックポリマーとしては、架橋されやすい点で、これらの中でも、ソフトセグメントが水素添加されていない共役ジエン系重合体ブロックを有するSBS若しくはSIS、又はスチレン-ブタジエン-スチレンブロックコポリマーのエポキシ化物を好ましく用いることができる。 Specific examples of the above block polymer include styrene-butadiene block copolymer, styrene-isoprene block copolymer, epoxidized product of styrene-butadiene block copolymer, styrene-butadiene block copolymer, or styrene-isoprene block copolymer. Examples include block copolymers in which a part of the conjugated diene polymer block included in the polymer is hydrogenated. More specifically, epoxies of styrene-butadiene-styrene block copolymers (SBS), styrene-isoprene-styrene block copolymers (SIS), styrene-butadiene-butylene-styrene block copolymers (SBBS), and styrene-butadiene-styrene block copolymers and hydrogenated products of these copolymers. Among these, SBS or SIS having a conjugated diene polymer block whose soft segment is not hydrogenated, or an epoxidized product of a styrene-butadiene-styrene block copolymer is preferably used as the block polymer because it is easily crosslinked. be able to.
 ポリエチレンとしては、例えば、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)等が挙げられる。C5系樹脂は、C5留分をフリーデルクラフツ型触媒(AlClやBF等)を用いて重合して得られる固体重合体(C5系合成石油樹脂)である。C5系樹脂の具体例としては、イソプレン、シクロペンタジエン、1,3-ペンタジエン、1-ペンテン等を主成分とする共重合体、2-ペンテンとジシクロペンタジエンとの共重合体、1,3-ペンタジエンを主成分とする重合体等が挙げられる。 Examples of polyethylene include low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and the like. The C5 resin is a solid polymer (C5 synthetic petroleum resin) obtained by polymerizing a C5 fraction using a Friedel-Crafts catalyst (AlCl 3 , BF 3 , etc.). Specific examples of C5 resins include copolymers containing isoprene, cyclopentadiene, 1,3-pentadiene, and 1-pentene as main components, copolymers of 2-pentene and dicyclopentadiene, and 1,3-pentadiene. Examples include polymers containing pentadiene as a main component.
 C9系樹脂は、C9留分をフリーデルクラフツ型触媒(AlClやBF等)を用いて重合して得られる固体重合体(C9系合成石油樹脂)である。C9系樹脂の具体例としては、インデン、メチルインデン、ビニルトルエン等を主成分とする共重合体等が挙げられる。C5/C9系樹脂は、C5~C9留分をフリーデルクラフツ型触媒(AlClやBF等)を用いて重合して得られる固体重合体(C5/C9系合成石油樹脂)である。C5/C9系樹脂の具体例としては、例えばビニルトルエン、インデン等を主成分とする共重合体等が挙げられる。C5/C9系樹脂は、C9以上の成分の少ない樹脂が、ゴム成分との相溶性の観点から好ましい。具体的には、C5/C9系樹脂は、樹脂全量中のC9以上の成分が50質量%未満であることが好ましく、40質量%以下であることがより好ましい。 The C9 resin is a solid polymer (C9 synthetic petroleum resin) obtained by polymerizing a C9 fraction using a Friedel-Crafts catalyst (AlCl 3 , BF 3 , etc.). Specific examples of C9-based resins include copolymers containing indene, methylindene, vinyltoluene, etc. as main components. The C5/C9 resin is a solid polymer (C5/C9 synthetic petroleum resin) obtained by polymerizing C5 to C9 fractions using a Friedel-Crafts catalyst (AlCl 3 , BF 3, etc.). Specific examples of C5/C9 resins include copolymers containing vinyltoluene, indene, etc. as main components. As the C5/C9 resin, a resin containing a small amount of C9 or higher components is preferable from the viewpoint of compatibility with the rubber component. Specifically, in the C5/C9 resin, the content of C9 or higher components in the total amount of the resin is preferably less than 50% by mass, and more preferably 40% by mass or less.
 ジシクロペンタジエン系樹脂とは、C5留分中のジシクロペンタジエンを主原料として用いた石油樹脂である。ジシクロペンタジエン系樹脂の具体例としては、丸善石油化学(株)の商品名「マルカレッツM」シリーズ(M-890A、M-845A、M-990A等)が挙げられる。アルキルフェノール系樹脂としては、例えば、p-tert-ブチルフェノール-アセチレン樹脂等のアルキルフェノール-アセチレン樹脂、低重合度のアルキルフェノール-ホルムアルデヒド樹脂等が挙げられる。 Dicyclopentadiene resin is a petroleum resin that uses dicyclopentadiene in the C5 fraction as the main raw material. Specific examples of dicyclopentadiene-based resins include Marukaretz M series (M-890A, M-845A, M-990A, etc.) manufactured by Maruzen Petrochemical Co., Ltd. Examples of the alkylphenol resin include alkylphenol-acetylene resin such as p-tert-butylphenol-acetylene resin, alkylphenol-formaldehyde resin with a low degree of polymerization, and the like.
 テルペン系樹脂は、マツ属の木からロジンを得る際に同時に得られるテレピン油、或いは、これから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得られる固体状の樹脂であり、β-ピネン樹脂、α-ピネン樹脂等が挙げられる。該テルペン系樹脂としては、市販品を利用することができ、例えば、ヤスハラケミカル株式会社製の商品名「YSレジン」シリーズ(PX-1250、TR-105等)、ハーキュリーズ社製の商品名「ピコライト」シリーズ(A115、S115等)等が挙げられる。 Terpene resin is a solid resin obtained by blending turpentine oil, which is obtained at the same time as rosin from Pine trees, or polymerization components separated from this oil, and polymerizing it using a Friedel-Crafts type catalyst. Examples include β-pinene resin and α-pinene resin. As the terpene resin, commercial products can be used, such as the "YS Resin" series (PX-1250, TR-105, etc.) manufactured by Yasuhara Chemical Co., Ltd., and the "Picolite" manufactured by Hercules Corporation. series (A115, S115, etc.).
 テルペン-芳香族化合物系樹脂としては、代表例としてテルペン-フェノール樹脂を挙げることができる。このテルペン-フェノール樹脂は、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させたり、あるいは更にホルマリンで縮合したりする方法により得ることができる。原料のテルペン類としては特に制限はなく、α-ピネンやリモネンなどのモノテルペン炭化水素が好ましく、α-ピネンを含むものがより好ましく、α-ピネンであることが特に好ましい。また、テルペン-フェノール樹脂としては、フェノール成分の比率の少ないテルペン-フェノール樹脂が好適である。ここで、「フェノール成分の比率が少ない」とは、樹脂全量中のフェノール成分が50質量%未満、好ましくは40質量%以下であることを指す。なお、(F)樹脂としてテルペン-芳香族化合物系樹脂、特にテルペン-フェノール樹脂を用いれば、更にハンドリング性能を向上させることもできる。テルペン-芳香族化合物系樹脂としては、市販品を利用することができる。市販品としては、例えば、商品名「タマノル803L」、「タマノル901」(荒川化学工業株式会社製)、商品名「YSポリスター(登録商標)」シリーズ(ヤスハラケミカル株式会社製)等が挙げられる。 A typical example of the terpene-aromatic compound resin is a terpene-phenol resin. This terpene-phenol resin can be obtained by a method in which terpenes and various phenols are reacted using a Friedel-Crafts type catalyst, or further condensed with formalin. There are no particular restrictions on the terpenes used as raw materials, but monoterpene hydrocarbons such as α-pinene and limonene are preferred, those containing α-pinene are more preferred, and α-pinene is particularly preferred. Further, as the terpene-phenol resin, a terpene-phenol resin having a small proportion of phenol component is suitable. Here, "the ratio of the phenol component is small" refers to the fact that the phenol component in the total amount of the resin is less than 50% by mass, preferably 40% by mass or less. Note that if a terpene-aromatic compound resin, particularly a terpene-phenol resin, is used as the resin (F), the handling performance can be further improved. As the terpene-aromatic compound resin, commercially available products can be used. Examples of commercially available products include "Tamanol 803L", "Tamanol 901" (manufactured by Arakawa Chemical Co., Ltd.) under the trade name, "YS Polyster (registered trademark)" series (manufactured by Yasuhara Chemical Co., Ltd.), and the like.
 (F)樹脂の配合割合は、本組成物に含まれるゴム成分100質量部に対して、1質量部以上とすることが好ましい。(F)樹脂を1質量部以上配合することにより、本組成物を用いて得られる架橋体において、(F)樹脂の添加による耐摩耗性、破断強度及び耐亀裂成長性の改善効果を十分に高くでき好適である。(F)樹脂の配合割合は、より好ましくは、ゴム成分100質量部に対して3質量部以上であり、更に好ましくは7質量部以上である。また、(F)樹脂の配合割合は、本組成物の各種性能が良好に維持されるようにする観点から、本組成物に含まれるゴム成分100質量部に対し、好ましくは50質量部以下であり、より好ましくは30質量部以下であり、更に好ましくは25質量部以下である。なお、(F)樹脂としては、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。 The blending ratio of the resin (F) is preferably 1 part by mass or more based on 100 parts by mass of the rubber component contained in the present composition. By blending 1 part by mass or more of (F) resin, the effects of improving wear resistance, breaking strength, and crack growth resistance due to the addition of (F) resin can be sufficiently achieved in the crosslinked product obtained using the present composition. It is suitable because it can be made high. The blending ratio of the resin (F) is more preferably 3 parts by mass or more, and even more preferably 7 parts by mass or more, based on 100 parts by mass of the rubber component. In addition, the blending ratio of (F) resin is preferably 50 parts by mass or less based on 100 parts by mass of the rubber component contained in the composition, from the viewpoint of maintaining good performance of the composition. The amount is preferably 30 parts by mass or less, and still more preferably 25 parts by mass or less. In addition, as the resin (F), one type may be used alone, or two or more types may be used in combination.
・(G)成分:シランカップリング剤
 本組成物においては、シランカップリング剤を配合してシリカの分散性を更に高めるようにしてもよい。使用するシランカップリング剤は特に制限されない。シランカップリング剤としては、含硫黄シランカップリング剤が好ましく、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、3-トリメトキシシリルプロピルベンゾチアゾールテトラスルフィド、γ-メルカプトプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン等を例示することができる。
- Component (G): Silane coupling agent In this composition, a silane coupling agent may be blended to further improve the dispersibility of silica. The silane coupling agent used is not particularly limited. The silane coupling agent is preferably a sulfur-containing silane coupling agent, such as bis(3-triethoxysilylpropyl)tetrasulfide, bis(3-triethoxysilylpropyl)disulfide, 3-trimethoxysilylpropylbenzothiazole tetrasulfide, Examples include γ-mercaptopropyltriethoxysilane and 3-octanoylthiopropyltriethoxysilane.
 シランカップリング剤の配合量は、本組成物に含まれるシリカ100質量に対して、1~20質量部であることが好ましい。シランカップリング剤の配合量が1質量部未満であると、配合量が少ないことによってシリカの分散性の改善効果が小さくなることが懸念される。一方、シランカップリング剤の配合量が20質量部を超えると、重合体組成物の加工性及び架橋体の破断伸びが低下する場合がある。シランカップリング剤の配合量は、本組成物に含まれるシリカ100質量部に対して、5~15質量部であることがより好ましい。 The amount of the silane coupling agent blended is preferably 1 to 20 parts by mass based on 100 parts by mass of silica contained in the present composition. If the amount of the silane coupling agent is less than 1 part by mass, there is a concern that the effect of improving the dispersibility of silica will be reduced due to the small amount of the silane coupling agent. On the other hand, if the amount of the silane coupling agent exceeds 20 parts by mass, the processability of the polymer composition and the elongation at break of the crosslinked product may decrease. The blending amount of the silane coupling agent is more preferably 5 to 15 parts by mass based on 100 parts by mass of silica contained in the present composition.
・(H)成分:架橋剤
 本組成物は架橋剤を含有してもよい。本組成物が架橋剤を含有することで、強度及び耐摩耗性が向上された架橋体を得ることができる。架橋剤としては、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂等が挙げられ、通常、硫黄が使用される。架橋剤の配合量は、本組成物に含まれるゴム成分の合計量100質量部に対して、好ましくは0.1~5質量部、より好ましくは0.5~3質量部である。
- Component (H): Crosslinking agent The present composition may contain a crosslinking agent. By containing the crosslinking agent in the present composition, a crosslinked product with improved strength and wear resistance can be obtained. Examples of the crosslinking agent include sulfur, halogenated sulfur, organic peroxides, quinone dioximes, organic polyvalent amine compounds, alkylphenol resins having a methylol group, and sulfur is usually used. The amount of the crosslinking agent blended is preferably 0.1 to 5 parts by weight, more preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the total amount of rubber components contained in the composition.
・(I)成分:伸展油
 本組成物には、油展のためのオイル(伸展油)として、エラストマーを油展するために一般的に用いられるプロセスオイルが配合されてもよい。プロセスオイルの添加方法は特に限定されない。例えば、重合後の共役ジエン系重合体溶液にプロセスオイルを展開してから脱溶することで油展ゴムとして配合してもよいし、ゴムコンパウンド(配合ゴム)を得るための混錬中にプロセスオイルを直接添加することによってプロセスオイルを重合体組成物に配合してもよい。好ましいプロセスオイルとしては、当業界で公知の様々なオイルが挙げられ、例えば、芳香族系オイル、パラフィン系オイル、ナフテン系オイル、植物油、並びに、多環式芳香族化合物の含量の低いオイル(低PCAオイル)、例えば軽度抽出溶媒和物(MES:mild extraction solvate)、留出油からの芳香族系抽出物を処理した油(TDAE:treated distillate aromatic extract)、残油からの芳香族系特殊抽出物(SRAE:special residual aromatic extract)、及び重ナフテン系オイル等が挙げられる。市販のMES、TDAE及びSRAEの例としては、MESとしてShell製のCatenex SNR(留出油を溶媒で脱ワックスした重質パラフィン)、TDAEとしてH&R Wasag AG製のVivatec 500、及びSRAEとしてJapan Energy Corp.製のNC140等が挙げられる。プロセスオイルの配合量は、重合体組成物に含まれる重合体成分の合計量100質量部に対して、好ましくは10~100質量部である。
- Component (I): Extender oil A process oil that is generally used for extending elastomers may be blended into the present composition as an oil for oil extension (extender oil). The method of adding process oil is not particularly limited. For example, it may be compounded as an oil-extended rubber by spreading process oil in a conjugated diene polymer solution after polymerization and then removing the process oil, or it may be compounded as an oil-extended rubber by spreading the process oil into the conjugated diene polymer solution after polymerization, or by adding process oil to the conjugated diene polymer solution during kneading to obtain a rubber compound (compounded rubber). Processing oils may be incorporated into the polymer composition by adding the oil directly. Preferred process oils include a variety of oils known in the art, such as aromatic oils, paraffinic oils, naphthenic oils, vegetable oils, and oils with a low content of polycyclic aromatics (low polyaromatics). PCA oil), e.g. mild extraction solvate (MES), treated distillate aromatic extract (TDAE) from distillate oil, special aromatic extraction from residual oil. (SRAE: special residual aromatic extract), heavy naphthenic oil, etc. Examples of commercially available MES, TDAE and SRAE include Catenex SNR (heavy paraffin made by solvent dewaxing of distillate) from Shell as MES, Vivatec 500 from H&R Wasag AG as TDAE, and Japan Energy Corp as SRAE. Examples include NC140 manufactured by . The amount of process oil blended is preferably 10 to 100 parts by mass based on 100 parts by mass of the total amount of polymer components contained in the polymer composition.
 本組成物には、上記した成分の他に、例えば、亜鉛華、ステアリン酸、軟化剤、加硫促進剤、相溶化剤、加硫助剤、加工助剤、スコーチ防止剤といった、加硫ゴムを得るための重合体組成物において一般に使用される各種添加剤を配合することができる。これらの配合割合は、本開示の効果を損なわない範囲で、各種成分に応じて適宜選択することができる。 In addition to the above-mentioned components, this composition also contains vulcanized rubber, such as zinc white, stearic acid, softeners, vulcanization accelerators, compatibilizers, vulcanization aids, processing aids, and scorch inhibitors. Various additives commonly used in polymer compositions for obtaining can be blended. These blending ratios can be appropriately selected depending on the various components within a range that does not impair the effects of the present disclosure.
《重合体組成物の製造方法》
 本組成物は、(A)共役ジエン系重合体と(B)化合物とを混合することにより得ることができる。(A)共役ジエン系重合体と(B)化合物とを混合して本組成物を得る態様は特に限定されない。(A)共役ジエン系重合体の脱溶時間の相違に対する、脱溶媒によって得られる(A)共役ジエン系重合体のムーニー粘度の変化を抑制する効果や、乾燥処理時の設備汚染による蓄熱燃焼や成分の揮発を抑制する効果を得る観点から、本組成物は、重合後の(A)共役ジエン系重合体を含む重合体溶液に(B)化合物を添加することにより(A)共役ジエン系重合体と(B)化合物とを混合し、その後、脱溶媒・乾燥することによって得られることが好ましい。
《Production method of polymer composition》
The present composition can be obtained by mixing (A) the conjugated diene polymer and (B) the compound. The manner in which the present composition is obtained by mixing the conjugated diene polymer (A) and the compound (B) is not particularly limited. (A) The effect of suppressing the change in Mooney viscosity of the (A) conjugated diene polymer obtained by desolvation with respect to the difference in desolvation time of the conjugated diene polymer, and the heat storage combustion due to equipment contamination during drying treatment. From the viewpoint of obtaining the effect of suppressing the volatilization of the components, the present composition is capable of reducing (A) the conjugated diene polymer by adding the (B) compound to a polymer solution containing the (A) conjugated diene polymer after polymerization. It is preferable that the mixture is obtained by mixing the combined substance and the compound (B), and then removing the solvent and drying.
 具体的には、本組成物は、以下の工程A、工程B及び工程Cを含む方法により製造されることが好ましい。
工程A:アルカリ金属又はアルカリ土類金属の存在下で共役ジエン化合物及び芳香族ビニル化合物を含む単量体を重合し、水素添加することにより、(A)共役ジエン系重合体を含む重合体溶液を得る工程。
工程B:工程Aにより得られた重合体溶液と(B)化合物とを混合して、(A)共役ジエン系重合体と(B)化合物とを含む混合液を得る工程。
工程C:工程Bにより得られた混合液の脱溶媒を行い、乾燥させる工程。
Specifically, the present composition is preferably manufactured by a method including Step A, Step B, and Step C below.
Step A: By polymerizing a monomer containing a conjugated diene compound and an aromatic vinyl compound in the presence of an alkali metal or an alkaline earth metal and hydrogenating it, (A) a polymer solution containing a conjugated diene polymer. The process of obtaining
Step B: A step of mixing the polymer solution obtained in Step A and the (B) compound to obtain a mixed solution containing the (A) conjugated diene polymer and the (B) compound.
Step C: A step of removing the solvent from the liquid mixture obtained in Step B and drying it.
 工程Aは、上述した重合工程及び水添工程を含み、任意に反応工程及び変性工程の一方又は両方を含む工程である。各工程の詳細は上記の説明が適用される。 Step A is a step that includes the above-mentioned polymerization step and hydrogenation step, and optionally includes one or both of a reaction step and a modification step. The above description applies to the details of each step.
 工程Bでは、製造工程の簡略化を図る観点から、工程Aにより得られた(A)共役ジエン系重合体を含む重合体溶液をそのまま用い、当該重合体溶液と(B)化合物とを混合することが好ましい。(B)化合物の配合量は上述した通りである。本組成物に(C)特定安定剤を配合する場合、配合組成物(いわゆる配合ゴム)を得るための混錬時に(C)特定安定剤を配合することにより(A)共役ジエン系重合体と(C)特定安定剤とを混合してもよい。また、工程Bにおいて(C)特定安定剤を重合体溶液に添加することにより(A)共役ジエン系重合体と(C)特定安定剤とを混合してもよい。(C)特定安定剤の配合による効果を十分に高くできる点で、好ましくは後者(工程Bで(C)特定安定剤を重合体溶液に添加する態様)である。工程Bで(C)特定安定剤を重合体溶液に添加する場合、(B)化合物と同時に(C)特定安定剤を重合体溶液に添加してもよく、(B)化合物の添加前又は添加後に(C)特定安定剤を重合体溶液に添加してもよい。(C)化合物の配合量は上述した通りである。 In Step B, from the viewpoint of simplifying the manufacturing process, the polymer solution containing the (A) conjugated diene polymer obtained in Step A is used as it is, and the polymer solution and the (B) compound are mixed. It is preferable. The amount of the compound (B) is as described above. When (C) a specific stabilizer is blended into the present composition, the (C) specific stabilizer is blended during kneading to obtain a blended composition (so-called compounded rubber), thereby combining (A) with a conjugated diene polymer. (C) It may be mixed with a specific stabilizer. Alternatively, in step B, the (A) conjugated diene polymer and (C) the specific stabilizer may be mixed by adding the (C) specific stabilizer to the polymer solution. The latter method (an embodiment in which the specific stabilizer (C) is added to the polymer solution in step B) is preferable in that the effect of blending the specific stabilizer (C) can be sufficiently enhanced. When (C) the specific stabilizer is added to the polymer solution in step B, the (C) specific stabilizer may be added to the polymer solution at the same time as the (B) compound, or the (B) specific stabilizer may be added to the polymer solution before or after the addition of the compound. (C) A specific stabilizer may be added to the polymer solution later. The amount of the compound (C) is as described above.
 工程Cにおいて、(A)共役ジエン系重合体と(B)化合物とを含む混合液から溶媒を除去し乾燥する方法は特に限定されない。当該混合液から溶媒を除去し乾燥するには、例えばスチームストリッピング等の公知の脱溶媒の操作及び熱処理等の乾燥の操作によって行うことができる。 In Step C, the method of removing the solvent from the liquid mixture containing the conjugated diene polymer (A) and the compound (B) and drying the mixture is not particularly limited. The solvent can be removed from the mixed solution and dried by known desolvation operations such as steam stripping and drying operations such as heat treatment.
 工程A~Cによれば、本組成物の一態様として、溶媒が除去された固形状の重合体組成物(以下、「重合体組成物P」ともいう)を得ることができる。重合体組成物Pは、固形状の粒子(クラム)であってもよく、クラムを所望の形状(例えば直方体形状)に圧縮成形することにより得られるゴムベールであってもよい。重合体組成物Pにおいて、(A)共役ジエン系重合体、(B)化合物、及び任意に配合される(I)伸展油の合計の含有量は、組成物全体に対して95質量%以上であることが好ましく、97質量%以上であることがより好ましい。 According to Steps A to C, a solid polymer composition from which the solvent has been removed (hereinafter also referred to as "polymer composition P") can be obtained as one embodiment of the present composition. The polymer composition P may be solid particles (crumbs), or may be rubber veils obtained by compression molding crumbs into a desired shape (for example, a rectangular parallelepiped shape). In the polymer composition P, the total content of (A) the conjugated diene polymer, (B) the compound, and (I) the extender oil that is optionally blended is 95% by mass or more based on the entire composition. The content is preferably 97% by mass or more, and more preferably 97% by mass or more.
 得られた重合体組成物Pに、必要に応じて上記の各種成分((D)~(I)成分等)を配合することにより、本組成物の別の一態様として、配合組成物となり得る重合体組成物又は配合組成物(以下、「重合体組成物Q」ともいう)を得ることができる。配合組成物は、重合体組成物Pに、加硫ゴムを得るための重合体組成物において任意に使用される各種添加剤((D)~(I)成分等)を混合し、好ましくは開放式混練機(例えば、ロール)、密閉式混練機(例えば、バンバリーミキサー)等の混練機を用いて混錬することにより得ることができる。こうして得られた配合ゴムを成形加工後に架橋(加硫)することによって、架橋体(すなわち加硫ゴム)が得られる。 By blending the above-mentioned various components ((D) to (I) components, etc.) into the obtained polymer composition P as necessary, it can be made into a blended composition as another embodiment of the present composition. A polymer composition or blended composition (hereinafter also referred to as "polymer composition Q") can be obtained. The blended composition is prepared by mixing the polymer composition P with various additives (components (D) to (I), etc.) that are optionally used in a polymer composition for obtaining a vulcanized rubber, and preferably It can be obtained by kneading using a kneader such as a type kneader (for example, a roll) or an internal kneader (for example, a Banbury mixer). By crosslinking (vulcanizing) the compounded rubber thus obtained after molding, a crosslinked product (ie, vulcanized rubber) is obtained.
 (A)共役ジエン系重合体及び(B)化合物を含む本開示の重合体組成物を用いて得られる架橋体は各種ゴム製品に適用可能である。具体的には、本組成物を用いて得られる架橋体は、例えば、タイヤトレッド、アンダートレッド、カーカス、サイドウォール、ビード部等のタイヤ用途;パッキン、ガスケット、ウェザーストリップ、O-リング等のシール材;自動車、船舶、航空機、鉄道等の各種車両用の内外装表皮材;建築材料;産業機械用や設備用などの防振ゴム類;ダイヤフラム、ロール、ラジエータホース、エアーホース等の各種ホース及びホースカバー類;動力伝達用ベルトなどのベルト類;ライニング;ダストブーツ;医療用機器材料;防舷材;電線用絶縁材料;その他の工業品等の用途に適用できる。 A crosslinked product obtained using the polymer composition of the present disclosure containing (A) a conjugated diene polymer and (B) a compound can be applied to various rubber products. Specifically, the crosslinked product obtained using the present composition can be used, for example, in tire applications such as tire treads, undertreads, carcass, sidewalls, and bead parts; seals such as packings, gaskets, weather strips, and O-rings. Materials: Interior and exterior skin materials for various vehicles such as automobiles, ships, aircraft, and railways; Building materials; Anti-vibration rubbers for industrial machinery and equipment; Various hoses such as diaphragms, rolls, radiator hoses, air hoses, etc. It can be applied to hose covers; belts such as power transmission belts; linings; dust boots; medical equipment materials; fenders; insulating materials for electric wires; and other industrial products.
 (A)共役ジエン系重合体と(B)化合物とを含有する本開示の重合体組成物によれば、乾燥処理時に(A)共役ジエン系重合体の設備付着を抑制できるとともに、設備付着した重合体による蓄熱燃焼や成分の揮発を抑制でき、製造工程における工程負荷を緩和しながら、引張強度、耐摩耗性及び粘弾性特性といった、タイヤ用途において求められる物性が良好な架橋体を得ることができる。したがって、(A)共役ジエン系重合体及び(B)化合物を含む重合体組成物は、特にタイヤのトレッド、サイドウォール又はその両方の材料として好適に使用できる。 According to the polymer composition of the present disclosure containing (A) a conjugated diene polymer and (B) a compound, it is possible to suppress the adhesion of the (A) conjugated diene polymer to equipment during drying treatment, and also to prevent the adhesion of the equipment to equipment. It is possible to suppress thermal storage combustion and volatilization of components due to the polymer, and to obtain a crosslinked product that has good physical properties required for tire applications, such as tensile strength, abrasion resistance, and viscoelastic properties, while easing the process load in the manufacturing process. can. Therefore, a polymer composition containing (A) a conjugated diene polymer and (B) a compound can be particularly suitably used as a material for a tire tread, a sidewall, or both.
 タイヤの製造は、常法に従い行うことができる。例えば、重合体組成物を混練機で混合し、シート状にしたものを、常法に従い所定位置(例えば、サイドウォールの場合にはカーカスの外側)に配して加硫成形することにより、トレッド又はサイドウォールとして形成され、空気入りタイヤが得られる。 Tires can be manufactured according to conventional methods. For example, a polymer composition is mixed in a kneading machine and formed into a sheet, which is then placed in a predetermined position (for example, outside the carcass in the case of sidewalls) and vulcanized to form a tread. Alternatively, it can be formed as a sidewall to obtain a pneumatic tire.
 以上説明した本開示によれば、次の手段が提供される。
〔手段1〕 (A)上記式(1)で表される構造単位、上記式(2)で表される構造単位、上記式(3)で表される構造単位及び上記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、上記数式(i)で表される値αが0.60~0.98であり、共役ジエン化合物に由来する構造単位と芳香族ビニル化合物に由来する構造単位とを有する共役ジエン系重合体、及び、(B)分子量が250~2,000のヒンダードフェノール化合物を含有し、前記(A)成分の一部又は全部が、窒素、酸素、硫黄及びリンよりなる群から選択される少なくとも1種の元素を含む官能基を有する、重合体組成物。
〔手段2〕 前記(B)成分の含有量が、前記(A)成分100質量部に対して0.1~2.2質量部である、〔手段1〕に記載の重合体組成物。
〔手段3〕 前記(A)成分に含まれる窒素の割合が、前記(A)成分の全量に対して50ppm以上である、〔手段1〕又は〔手段2〕に記載の重合体組成物。
〔手段4〕 前記(A)成分は、芳香族ビニル化合物に由来する構造単位を80質量%以上含む重合ブロック部を有する、〔手段1〕~〔手段3〕のいずれかに記載の重合体組成物。
〔手段5〕 前記(A)成分として、分岐数が4以上である分岐ポリマーを含む、〔手段1〕~〔手段4〕のいずれかに記載の重合体組成物。
〔手段6〕 分岐数が4以上である分岐ポリマーの割合が、前記(A)成分の全量に対して15質量%以上である、〔手段5〕に記載の重合体組成物。
〔手段7〕 前記(B)成分の分子量が350~1,200である、〔手段1〕~〔手段6〕のいずれかに記載の重合体組成物。
〔手段8〕 前記(B)成分として、炭素-炭素不飽和結合を有する化合物を含む、〔手段1〕~〔手段7〕のいずれかに記載の重合体組成物。
〔手段9〕 リン系安定剤及び有機硫黄系安定剤よりなる群から選択される少なくとも1種であって分子量が250~2,000である成分を更に含有する、〔手段1〕~〔手段8〕のいずれかに記載の重合体組成物。
〔手段10〕 前記値αが0.75~0.92である、〔手段1〕~〔手段9〕のいずれかに記載の重合体組成物。
〔手段11〕 前記(A)成分、前記(B)成分、及び任意に配合される伸展油の合計の含有量が、組成物全体に対して95質量%以上である、〔手段1〕~〔手段10〕のいずれかに記載の重合体組成物。
〔手段12〕 更に無機フィラーを含有する、〔手段1〕~〔手段10〕のいずれかに記載の重合体組成物。
〔手段13〕 〔手段1〕~〔手段10〕及び〔手段12〕のいずれかに記載の重合体組成物が架橋されてなる架橋体。
〔手段14〕 〔手段1〕~〔手段10〕及び〔手段12〕のいずれかに記載の重合体組成物を用いて、トレッド、サイドウォール又はその両方が形成されたタイヤ。
〔手段15〕 〔手段1〕~〔手段12〕のいずれかに記載の重合体組成物を製造する方法であって、アルカリ金属又はアルカリ土類金属の存在下で共役ジエン化合物及び芳香族ビニル化合物を含む単量体を重合し、水素添加することにより、前記(A)成分を含む重合体溶液を得る工程と、前記重合体溶液と前記(B)成分とを混合して、前記(A)成分と前記(B)成分とを含む混合液を得る工程と、前記混合液の脱溶媒を行い、乾燥させる工程と、を含む、重合体組成物の製造方法。
According to the present disclosure described above, the following means are provided.
[Means 1] (A) A structural unit represented by the above formula (1), a structural unit represented by the above formula (2), a structural unit represented by the above formula (3), and a structural unit represented by the above formula (4). When the composition ratio (mole ratio) of the structural units in the polymer is p, q, r, and s, the value α represented by the above formula (i) is 0.60 to 0.98, A conjugated diene polymer having a structural unit derived from a conjugated diene compound and a structural unit derived from an aromatic vinyl compound, and (B) a hindered phenol compound having a molecular weight of 250 to 2,000, A) A polymer composition in which part or all of the components have a functional group containing at least one element selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorus.
[Means 2] The polymer composition according to [Means 1], wherein the content of the component (B) is 0.1 to 2.2 parts by mass based on 100 parts by mass of the component (A).
[Means 3] The polymer composition according to [Means 1] or [Means 2], wherein the proportion of nitrogen contained in the component (A) is 50 ppm or more based on the total amount of the component (A).
[Means 4] The polymer composition according to any one of [Means 1] to [Means 3], wherein the component (A) has a polymer block portion containing 80% by mass or more of structural units derived from an aromatic vinyl compound. thing.
[Means 5] The polymer composition according to any one of [Means 1] to [Means 4], which contains a branched polymer having a branch number of 4 or more as the component (A).
[Means 6] The polymer composition according to [Means 5], wherein the proportion of the branched polymer having a branch number of 4 or more is 15% by mass or more based on the total amount of the component (A).
[Means 7] The polymer composition according to any one of [Means 1] to [Means 6], wherein the component (B) has a molecular weight of 350 to 1,200.
[Means 8] The polymer composition according to any one of [Means 1] to [Means 7], which contains a compound having a carbon-carbon unsaturated bond as the component (B).
[Means 9] [Means 1] to [Means 8] further containing at least one component selected from the group consisting of phosphorus stabilizers and organic sulfur stabilizers and having a molecular weight of 250 to 2,000. ] The polymer composition according to any one of the above.
[Means 10] The polymer composition according to any one of [Means 1] to [Means 9], wherein the value α is 0.75 to 0.92.
[Means 11] [Means 1] to [Means 1], wherein the total content of the component (A), the component (B), and the optionally added extender oil is 95% by mass or more based on the entire composition. The polymer composition according to any one of means 10].
[Means 12] The polymer composition according to any one of [Means 1] to [Means 10], further containing an inorganic filler.
[Means 13] A crosslinked product obtained by crosslinking the polymer composition according to any one of [Means 1] to [Means 10] and [Means 12].
[Means 14] A tire in which a tread, a sidewall, or both are formed using the polymer composition according to any one of [Means 1] to [Means 10] and [Means 12].
[Means 15] A method for producing the polymer composition according to any one of [Means 1] to [Means 12], comprising: a conjugated diene compound and an aromatic vinyl compound in the presence of an alkali metal or an alkaline earth metal; A step of obtaining a polymer solution containing the component (A) by polymerizing and hydrogenating a monomer containing the component (A); A method for producing a polymer composition, comprising the steps of: obtaining a mixed solution containing the component and the component (B); and removing the solvent from the mixed solution and drying it.
 以下、実施例に基づいて具体的に説明するが、本開示はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。重合体の各種物性値の測定方法を以下に示す。 Hereinafter, the present disclosure will be specifically described based on Examples, but the present disclosure is not limited to these Examples. Note that "parts" and "%" in Examples and Comparative Examples are based on mass unless otherwise specified. The methods for measuring various physical property values of the polymer are shown below.
[重合体の特性評価]
・ビニル結合含量(モル%):水添前の重合体につき、400MHzのH-NMRによって測定した。
・結合スチレン含量(%):水添前の重合体につき、400MHzのH-NMRによって測定した。
・1stピーク分子量:水添前の重合体につき、ゲルパーミエーションクロマトグラフ(GPC、製品名:HLC-8020、東ソー社製)を使用してポリスチレン換算の分子量に基づくチャートを得て、その得られたGPC曲線において最も保持時間が長いピークの保持時間から求めた。具体的な測定条件は以下のとおりである。
 (測定条件)
  カラム:GMH-HR-H(東ソー社製)2本を直列に連結した。
  検出器:示差屈折計RI-8020(東ソー社製)
  溶離液:テトラヒドロフラン
  カラム温度:40℃
  流速:1.0mL/分
  サンプル濃度:10mg/20mL
・トータル平均分子量:水添前の重合体につき、GPC(製品名:HLC-8020、東ソー社製)を使用して得られたGPC曲線の全ピークからポリスチレン換算で求めた。測定条件は上記と同様である。
・カップリング率(質量%):水添前の重合体につき、GPC(製品名:HLC-8020、東ソー社製)を使用して得られたGPC曲線から、2個以上の直鎖状の共役ジエン系重合体の分子鎖が結合した分子の波形を成分分離し、そのピーク面積比より算出した。
・水素添加率及びα:四塩化エチレンを溶媒とし、100MHzの装置で測定したH-NMRスペクトルから算出した。
・4分岐以上の分岐ポリマーの含有量(質量%):水添前の重合体につき、GPC(製品名:HLC-8020、東ソー社製)を使用して得られたGPC曲線から、4分岐以上の直鎖状の共役ジエン系重合体の分子鎖が結合した分子の波形を成分分離し、そのピーク面積比より算出した。
・変性ポリマーの含有量(質量%):末端変性剤により変性された直鎖ポリマーの割合(W1)に、カップリング率(C/E)を足し合わせることによって算出した(変性ポリマーの含有量=W1+C/E)。割合W1は、重合体の製造に使用した重合開始剤のモル数(M1)とカップリング剤のモル数(M2)と末端変性剤による変性時に消費された末端変性剤量のモル数(M3)とカップリング率(C/E)とから以下の数式により算出した。
 W1[%]=(100-C/E)×M3/(M1-4×M2)
なお、末端変性剤による変性時に消費された末端変性剤のモル数(M3)は、変性反応後の重合体溶液のガスクロマトグフラフィー測定にて未反応の末端変性剤を定量することにより算出した。
・窒素の含有量(ppm):JIS K2609:1998(原油及び石油製品-窒素分試験方法)の化学発光法に準拠して測定した。詳細には、微量全窒素分析装置(三菱化学アナリテック社製 「TN-2100H」)を用い、アルゴンガスの流通下で試料を熱分解した後に酸素雰囲気中で試料を燃焼酸化し、これにより生成する一酸化窒素を脱水分条件下でオゾンガスと反応させ、検出される590~2500nmにおける発光強度を測定し、その発光強度の面積から窒素の含有量を算出した。
[Polymer property evaluation]
- Vinyl bond content (mol %): Measured by 1 H-NMR at 400 MHz for the polymer before hydrogenation.
- Bound styrene content (%): Measured by 1 H-NMR at 400 MHz for the polymer before hydrogenation.
・1st peak molecular weight: For the polymer before hydrogenation, use a gel permeation chromatograph (GPC, product name: HLC-8020, manufactured by Tosoh Corporation) to obtain a chart based on the molecular weight in terms of polystyrene. It was determined from the retention time of the peak with the longest retention time in the GPC curve obtained. The specific measurement conditions are as follows.
(Measurement condition)
Column: Two GMH-HR-H (manufactured by Tosoh Corporation) were connected in series.
Detector: Differential refractometer RI-8020 (manufactured by Tosoh Corporation)
Eluent: Tetrahydrofuran Column temperature: 40°C
Flow rate: 1.0 mL/min Sample concentration: 10 mg/20 mL
- Total average molecular weight: Determined in terms of polystyrene from all peaks of a GPC curve obtained using GPC (product name: HLC-8020, manufactured by Tosoh Corporation) for the polymer before hydrogenation. The measurement conditions were the same as above.
・Coupling rate (mass%): From the GPC curve obtained using GPC (product name: HLC-8020, manufactured by Tosoh Corporation) for the polymer before hydrogenation, it was determined that two or more linear conjugates The waveform of the molecule to which the molecular chains of the diene polymer were bonded was separated into components and calculated from the peak area ratio.
- Hydrogenation rate and α: Calculated from 1 H-NMR spectrum measured with a 100 MHz device using ethylene tetrachloride as a solvent.
・Content of branched polymer with 4 branches or more (mass%): Based on the GPC curve obtained using GPC (product name: HLC-8020, manufactured by Tosoh Corporation) for the polymer before hydrogenation, 4 branches or more The waveform of the molecule to which the molecular chains of the linear conjugated diene polymer were bonded was separated into components, and the calculation was made from the peak area ratio.
・Content of modified polymer (mass%): Calculated by adding the coupling ratio (C/E) to the proportion of linear polymer modified with terminal modifier (W1) (content of modified polymer = W1+C/E). The ratio W1 is the number of moles of the polymerization initiator (M1) used in the production of the polymer, the number of moles of the coupling agent (M2), and the number of moles of the amount of the terminal modifier consumed during modification with the terminal modifier (M3). and the coupling ratio (C/E) using the following formula.
W1 [%] = (100-C/E) x M3/(M1-4 x M2)
The number of moles (M3) of the terminal modifier consumed during modification with the terminal modifier was calculated by quantifying the unreacted terminal modifier by gas chromatography measurement of the polymer solution after the modification reaction.
- Nitrogen content (ppm): Measured according to the chemiluminescence method of JIS K2609:1998 (Crude oil and petroleum products - Nitrogen content test method). In detail, using a trace total nitrogen analyzer (“TN-2100H” manufactured by Mitsubishi Chemical Analytech), the sample was thermally decomposed under argon gas flow, and then the sample was oxidized by combustion in an oxygen atmosphere. The nitrogen monoxide reacted with ozone gas under dehydration conditions, the detected luminescence intensity in the range of 590 to 2500 nm was measured, and the nitrogen content was calculated from the area of the luminescence intensity.
<共役ジエン系重合体の製造>
[製造例1:水添共役ジエン系重合体A-1の製造及びその物性]
 窒素置換された内容積50リットルのオートクレーブ反応器に、シクロヘキサン25900g、テトラヒドロフラン65g、ドデシルベンゼンスルホン酸カリウム0.6g、スチレン740g、1,3-ブタジエン2849g、ピペリジン30mmolを仕込んだ。反応器内容物の温度を42℃に調整した後、n-ブチルリチウム(39mmol)を含むシクロヘキサン溶液を添加して重合を開始した。重合は断熱条件で実施した。重合転化率が99%に達した後に、1,3-ブタジエン111gを追加し(追添ブタジエン)、更に3分重合させ、重合体を含む反応液を得た。得られた反応液にテトラクロロシラン2.0mmolを加えて5分間反応させ、更に、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン28mmolを加え、15分間反応させた。
 次いで、反応液を80℃以上にして、系内に水素を導入して1時間反応させた。少量の重合体溶液を反応容器より抜き出し、分析用に、水添前の共役ジエン系重合体を得た。その後、ジエチルアルミニウムクロリド1.64g、ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド3.67g、n-ブチルリチウム1.67gを加え、水素圧1.0MPaを保つようにして水添反応を行った。反応後、水素圧0.7MPa以上を保つようにして、所定の水素積算値となるまで水素を供給して反応させた後、反応液を常温、常圧に戻して反応容器より抜き出し、水添共役ジエン系重合体A-1を含む重合体溶液を得た。得られた重合体溶液を少量抜き出してスチームストリッピングにより脱溶媒を行い、130℃に調温された熱ロールにより乾燥を行って水添共役ジエン系重合体A-1を得た。水添共役ジエン系重合体A-1の重合処方を表1に示し、水添共役ジエン系重合体A-1の各種物性値等を表3に示す。
<Production of conjugated diene polymer>
[Production Example 1: Production of hydrogenated conjugated diene polymer A-1 and its physical properties]
25,900 g of cyclohexane, 65 g of tetrahydrofuran, 0.6 g of potassium dodecylbenzenesulfonate, 740 g of styrene, 2,849 g of 1,3-butadiene, and 30 mmol of piperidine were charged into a 50-liter autoclave reactor purged with nitrogen. After adjusting the temperature of the contents of the reactor to 42° C., a cyclohexane solution containing n-butyllithium (39 mmol) was added to initiate polymerization. Polymerization was carried out under adiabatic conditions. After the polymerization conversion rate reached 99%, 111 g of 1,3-butadiene was added (additional butadiene), and polymerization was further carried out for 3 minutes to obtain a reaction solution containing a polymer. To the obtained reaction solution, 2.0 mmol of tetrachlorosilane was added and reacted for 5 minutes, and further, 28 mmol of N,N-bis(trimethylsilyl)aminopropylmethyldiethoxysilane was added and reacted for 15 minutes.
Next, the reaction solution was heated to 80° C. or higher, hydrogen was introduced into the system, and the reaction was allowed to proceed for 1 hour. A small amount of the polymer solution was extracted from the reaction vessel to obtain a conjugated diene polymer before hydrogenation for analysis. Then, 1.64 g of diethylaluminum chloride, 3.67 g of bis(η5-cyclopentadienyl) titanium (furfuryloxy) chloride, and 1.67 g of n-butyllithium were added, and water was added while maintaining the hydrogen pressure of 1.0 MPa. An addition reaction was performed. After the reaction, the hydrogen pressure is maintained at 0.7 MPa or more and hydrogen is supplied until a predetermined integrated hydrogen value is reached.Then, the reaction solution is returned to room temperature and pressure and taken out from the reaction vessel, and then hydrogenated. A polymer solution containing conjugated diene polymer A-1 was obtained. A small amount of the obtained polymer solution was extracted, the solvent was removed by steam stripping, and the solution was dried using a heated roll whose temperature was controlled to 130° C. to obtain a hydrogenated conjugated diene polymer A-1. Table 1 shows the polymerization recipe of hydrogenated conjugated diene polymer A-1, and Table 3 shows various physical property values of hydrogenated conjugated diene polymer A-1.
[製造例2~11,製造例13~15,比較製造例1~5:水添共役ジエン系重合体の製造及びその物性]
 重合処方を表1、2に記載のとおり変更した点、及び水素添加率を表3、4に記載のとおり変更した点以外は製造例1と同様の方法により、水添共役ジエン系重合体A-2~A-11,A-13~A-18,A-21,A-22を含む重合体溶液を得た。なお、製造例2~11,13~15では水添共役ジエン系重合体A-2~A-11,A-13,A-21,A-22をそれぞれ製造し、比較製造例2~5では水添共役ジエン系重合体A-14~A-18をそれぞれ製造した。水添共役ジエン系重合体A-2~A-11,A-13~A-18,A-21,A-22の各種物性値等を表3、4に示す。
[Production Examples 2 to 11, Production Examples 13 to 15, Comparative Production Examples 1 to 5: Production of hydrogenated conjugated diene polymer and its physical properties]
Hydrogenated conjugated diene polymer A was produced in the same manner as in Production Example 1, except that the polymerization recipe was changed as shown in Tables 1 and 2, and the hydrogenation rate was changed as shown in Tables 3 and 4. A polymer solution containing -2 to A-11, A-13 to A-18, A-21, and A-22 was obtained. In addition, in Production Examples 2 to 11 and 13 to 15, hydrogenated conjugated diene polymers A-2 to A-11, A-13, A-21, and A-22 were produced, respectively, and in Comparative Production Examples 2 to 5, Hydrogenated conjugated diene polymers A-14 to A-18 were produced, respectively. Tables 3 and 4 show various physical property values of hydrogenated conjugated diene polymers A-2 to A-11, A-13 to A-18, A-21, and A-22.
[製造例12:水添共役ジエン系重合体A-12の製造及びその物性]
 窒素置換された50リットルのオートクレーブ反応器に、シクロヘキサン25900g、スチレン600g、テトラヒドロフラン65g、ピペリジン30mmolを仕込んだ。n-ブチルリチウム39mmolを含むシクロヘキサン溶液を仕込み、重合開始温度40℃にて断熱条件で重合を行った。重合転化率が99%以上に達した後、反応液を30℃に冷却し、スチレン700g、1,3-ブタジエン2289gを加えて、更に重合を行った。重合転化率が99%以上に達した後、1,3-ブタジエン111gを加えて、更に3分重合させ、重合体を含む反応液を得た。得られた反応液にテトラクロロシラン2.0mmolを加えて5分間反応させ、更に、N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン28mmolを加え、15分間反応させた。次いで、反応液を80℃以上にして、系内に水素を導入して1時間反応させた。少量の重合体溶液を反応容器より抜き出し、水添前の共役ジエン系重合体を得た。ジエチルアルミニウムクロリド1.64g、ビス(η5-シクロペンタジエニル)チタニウム(フルフリルオキシ)クロライド3.67g、n-ブチルリチウム1.67gを加え、水素圧1.0MPaを保つようにして水添反応を行った。反応後、水素圧0.7MPa以上を保つようにして、所定の水素積算値となるまで水素を供給して反応させた後、反応液を常温、常圧に戻して反応容器より抜き出し、水添共役ジエン系重合体A-12を含む重合体溶液を得た。得られた重合体溶液を少量抜き出してスチームストリッピングにより脱溶媒を行い、130℃に調温された熱ロールにより乾燥を行って水添共役ジエン系重合体A-12を得た。水添共役ジエン系重合体A-12の重合処方を表2に示し、水添共役ジエン系重合体A-12の各種物性値等を表4に示す。
[Production Example 12: Production of hydrogenated conjugated diene polymer A-12 and its physical properties]
A 50-liter autoclave reactor purged with nitrogen was charged with 25,900 g of cyclohexane, 600 g of styrene, 65 g of tetrahydrofuran, and 30 mmol of piperidine. A cyclohexane solution containing 39 mmol of n-butyllithium was charged, and polymerization was carried out under adiabatic conditions at a polymerization initiation temperature of 40°C. After the polymerization conversion rate reached 99% or more, the reaction solution was cooled to 30° C., 700 g of styrene and 2,289 g of 1,3-butadiene were added, and further polymerization was carried out. After the polymerization conversion rate reached 99% or more, 111 g of 1,3-butadiene was added and polymerization was continued for an additional 3 minutes to obtain a reaction solution containing a polymer. To the obtained reaction solution, 2.0 mmol of tetrachlorosilane was added and reacted for 5 minutes, and further, 28 mmol of N,N-bis(trimethylsilyl)aminopropylmethyldiethoxysilane was added and reacted for 15 minutes. Next, the reaction solution was heated to 80° C. or higher, hydrogen was introduced into the system, and the reaction was allowed to proceed for 1 hour. A small amount of the polymer solution was extracted from the reaction vessel to obtain a conjugated diene polymer before hydrogenation. Add 1.64 g of diethylaluminum chloride, 3.67 g of bis(η5-cyclopentadienyl) titanium (furfuryloxy) chloride, and 1.67 g of n-butyllithium, and conduct a hydrogenation reaction while maintaining the hydrogen pressure of 1.0 MPa. I did it. After the reaction, the hydrogen pressure is maintained at 0.7 MPa or more and hydrogen is supplied until a predetermined integrated hydrogen value is reached.Then, the reaction solution is returned to room temperature and pressure and taken out from the reaction vessel, and then hydrogenated. A polymer solution containing conjugated diene polymer A-12 was obtained. A small amount of the obtained polymer solution was extracted, the solvent was removed by steam stripping, and the solution was dried using a heated roll whose temperature was controlled to 130° C. to obtain hydrogenated conjugated diene polymer A-12. The polymerization recipe of hydrogenated conjugated diene polymer A-12 is shown in Table 2, and various physical property values of hydrogenated conjugated diene polymer A-12 are shown in Table 4.
[比較製造例6,7:水添共役ジエン系重合体A-19,A-20の製造及びその物性]
 重合処方を表2に記載のとおり変更した点、及び水素添加率を表4に記載のとおり変更した点以外は製造例12と同様の方法により、水添共役ジエン系重合体A-19,A-20を含む重合体溶液を得た。水添共役ジエン系重合体A-19,A-20の各種物性値等を表4に示す。
[Comparative Production Examples 6 and 7: Production of hydrogenated conjugated diene polymers A-19 and A-20 and their physical properties]
Hydrogenated conjugated diene polymer A-19,A was produced in the same manner as in Production Example 12 except that the polymerization recipe was changed as shown in Table 2 and the hydrogenation rate was changed as shown in Table 4 A polymer solution containing -20 was obtained. Table 4 shows various physical properties of hydrogenated conjugated diene polymers A-19 and A-20.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表1及び表2中、「-」は、該当する欄の化合物を使用しなかったことを意味する。ビニル含量調整剤、開始末端変性剤、末端変性剤及びカップリング剤の略称は以下のとおりである。
V-1:ドデシルベンゼンスルホン酸カリウム
INI-1:ピペリジン
Md-1:N,N-ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン
Cp-1:テトラクロロシラン
In Tables 1 and 2, "-" means that the compound in the corresponding column was not used. The abbreviations of the vinyl content adjuster, starting end modifying agent, end modifying agent, and coupling agent are as follows.
V-1: Potassium dodecylbenzenesulfonate INI-1: Piperidine Md-1: N,N-bis(trimethylsilyl)aminopropylmethyldiethoxysilane Cp-1: Tetrachlorosilane
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<重合体組成物及び架橋体の製造>
[実施例1]
・重合体組成物Pの製造
 製造例1により得られた、水添共役ジエン系重合体A-1を含む重合体溶液に、水添共役ジエン系重合体A-1 100質量部に対して、成分(B)としてヒンダードフェノール化合物B-1を0.2質量部、及びヒンダードフェノール化合物B-2を0.3質量部、成分(C)としてリン酸エステル化合物C-1を0.3質量部混合した。得られた混合液に対してスチームストリッピングにより2時間脱溶媒を行い、130℃に調温された熱ロールにより乾燥を行うことで、水添共役ジエン重合体A-1、ヒンダードフェノール化合物B-1、ヒンダードフェノール化合物B-2、及びリン酸エステル化合物C-1を含む重合体組成物P-1を得た。重合体組成物P-1の配合処方を表5に示す。
<Production of polymer composition and crosslinked product>
[Example 1]
・Production of polymer composition P To the polymer solution containing the hydrogenated conjugated diene polymer A-1 obtained in Production Example 1, for 100 parts by mass of the hydrogenated conjugated diene polymer A-1, 0.2 parts by mass of hindered phenol compound B-1 as component (B), 0.3 parts by mass of hindered phenol compound B-2, and 0.3 parts by mass of phosphoric acid ester compound C-1 as component (C). Parts by mass were mixed. The resulting mixed solution was desolvented for 2 hours by steam stripping, and dried using a heated roll whose temperature was controlled at 130°C, resulting in hydrogenated conjugated diene polymer A-1 and hindered phenol compound B. -1, a hindered phenol compound B-2, and a phosphoric acid ester compound C-1. Table 5 shows the formulation of polymer composition P-1.
・重合体組成物Q及び架橋体の製造
 上記で製造した重合体組成物P-1を用いて、表7に示す配合処方により各成分を配合し、これを混練りすることによって重合体組成物Q-1を製造した。混練りは以下の方法で行った。温度制御装置を付属したプラストミル(内容量:250mL)を使用し、まず1段目の混練りとして、充填率72%、回転数60rpmの条件で、重合体組成物P-1、シリカ、カーボンブラック、シランカップリング剤、伸展油、ステアリン酸、酸化亜鉛及び老化防止剤を配合して混練りした。次いで、2段目の混練りとして、上記で得た配合物を室温まで冷却後、加硫促進剤及び硫黄を配合し、混練りした。混練後の重合体組成物Q-1を成型し、160℃で所定時間、加硫プレスにて加硫して、架橋体(加硫ゴム)を得た。また、製造工程評価として、以下のように脱溶時間延長によるMV変化率、蓄熱燃焼抑制性、揮発性及び設備付着性を評価するとともに、配合物性評価として、得られた架橋体の引張強度、耐摩耗性、転がり抵抗性及び加硫接着性を評価した。結果を表8に示す。
・Production of polymer composition Q and crosslinked product Using the polymer composition P-1 produced above, each component is blended according to the formulation shown in Table 7, and the polymer composition is prepared by kneading this. Q-1 was manufactured. Kneading was performed in the following manner. Using a plastomill (capacity: 250 mL) equipped with a temperature control device, the polymer composition P-1, silica, and carbon black were kneaded in the first stage at a filling rate of 72% and a rotation speed of 60 rpm. , silane coupling agent, extender oil, stearic acid, zinc oxide, and anti-aging agent were mixed and kneaded. Next, in the second stage of kneading, the mixture obtained above was cooled to room temperature, and then a vulcanization accelerator and sulfur were added thereto and kneaded. The kneaded polymer composition Q-1 was molded and vulcanized in a vulcanization press at 160° C. for a predetermined time to obtain a crosslinked product (vulcanized rubber). In addition, as a manufacturing process evaluation, we evaluated the MV change rate, thermal storage combustion suppression ability, volatility, and equipment adhesion by extending the desolution time as shown below, and as a blend physical property evaluation, we evaluated the tensile strength of the obtained crosslinked product, Abrasion resistance, rolling resistance and vulcanization adhesion were evaluated. The results are shown in Table 8.
(1)脱溶時間延長によるMV変化率
 重合体組成物Pの製造におけるスチームストリッピング時間を2時間から8時間に変更した以外は同様にして、重合体組成物P’を得た。重合体組成物Pと重合体組成物P’についてそれぞれムーニー粘度(MV)を測定し、MV測定値(MV-P、MV-P’)をそれぞれ得た。ムーニー粘度は、JIS K6300-1に準拠し、Lローターを用い、予熱1分間、ローター作動時間4分間、温度100℃の条件で測定した。
 MV測定値(MV-P、MV-P’)を用い、以下数式によりMV変化率を算出した。
 MV変化率=MV-P’/MV-P
 得られたMV変化率の値が小さく1.0に近いほど、脱溶工程における品質安定性が良好であり、また工程管理上の負荷を軽減でき有用であると考え、以下の判断基準によりAA~Cにて判定した。
AA:0.8以上1.2未満
A:1.2以上1.5未満
B:1.5以上2.0未満
C:2.0以上又は0.8未満
(1) MV change rate due to extension of desolvation time Polymer composition P' was obtained in the same manner as in the production of polymer composition P except that the steam stripping time was changed from 2 hours to 8 hours. Mooney viscosity (MV) was measured for each of polymer composition P and polymer composition P', and MV measurement values (MV-P, MV-P') were obtained, respectively. Mooney viscosity was measured in accordance with JIS K6300-1 using an L rotor under conditions of preheating for 1 minute, rotor operating time for 4 minutes, and temperature of 100°C.
Using the MV measurement values (MV-P, MV-P'), the MV change rate was calculated using the following formula.
MV change rate = MV-P'/MV-P
We believe that the smaller the value of the obtained MV change rate is, the closer it is to 1.0, the better the quality stability in the desolution process, and the more useful it is to reduce the burden on process control. Judging from ~C.
AA: 0.8 or more and less than 1.2 A: 1.2 or more and less than 1.5 B: 1.5 or more and less than 2.0 C: 2.0 or more or less than 0.8
(2)蓄熱燃焼抑制性
 350gの重合体組成物Pを0.5cm角に裁断して角状クラムを得た。直径10cmのSUS金網内に角状クラムを投入し、温度計測用の熱電対を角状クラムに接触させるようにしてギアオーブン内に設置した。ギアオーブンを170℃設定として作動させ、8時間、通風加熱した際の熱電対表示の最高到達温度を計測した。最高到達温度が低いほど蓄熱燃焼抑制効果が大きく、製造工程において乾燥炉や押出機の内外に付着したり滞留したりする重合体組成物クラムの蓄熱発火リスクが小さく、設備クリーンナップ頻度を低減できるなど、工程負荷の軽減が可能で有用と判断できる。最高到達温度から、以下の判断基準により蓄熱燃焼抑制性をA~Cにて判定した。
A:最高到達温度が180℃未満
B:最高到達温度が180℃以上210℃未満であり許容範囲
C:最高到達温度が210℃以上であり許容しがたい
(2) Heat storage combustion suppression property 350 g of polymer composition P was cut into 0.5 cm square pieces to obtain square crumbs. A square crumb was placed in a SUS wire mesh with a diameter of 10 cm, and a thermocouple for temperature measurement was placed in a gear oven so as to be in contact with the square crumb. The gear oven was operated at a setting of 170° C., and the highest temperature reached by the thermocouple was measured during ventilation heating for 8 hours. The lower the maximum temperature reached, the greater the effect of suppressing heat accumulation and combustion, which reduces the risk of heat accumulation and ignition of polymer composition crumbs that adhere or remain inside and outside of drying ovens and extruders during the manufacturing process, and reduces the frequency of equipment cleanup. , it is possible to reduce the process load and can be judged to be useful. Based on the maximum temperature reached, heat storage combustion suppression performance was judged from A to C based on the following criteria.
A: The maximum temperature reached is less than 180°C. B: The maximum temperature reached is 180°C or more and less than 210°C, which is an acceptable range. C: The maximum temperature reached is 210°C or more, which is unacceptable.
(3)揮発性
 10mgの重合体組成物Pを用いて、熱重量測定装置にて200mL/分の大気流下にて40℃から5℃/分の昇温速度にて0.5重量%熱重量減少温度(Td0.5)を求めた。ここでは、重合体組成物Pの重量減少が0.5重量%に到達した際の測定温度を0.5質量%熱重量減少温度(Td0.5)とした。Td0.5が高温であるほど、製造工程において乾燥炉や押出機の周辺における揮発成分を抑制でき、製造現場の作業環境低下の抑制や設備クリーンナップ頻度の低減など、工程負荷の軽減が可能であり有用と判断できる。Td0.5から、以下の判断基準により揮発性をA~Cにて判定した。
A:280℃以上
B:170℃以上280℃未満であり許容範囲
C:170℃未満であり許容しがたい
(3) Volatility Using 10 mg of polymer composition P, 0.5% by weight thermogravimetrically measured from 40°C at a heating rate of 5°C/min under an air flow of 200 mL/min. The decreasing temperature (Td0.5) was determined. Here, the measurement temperature at which the weight loss of the polymer composition P reached 0.5% by weight was defined as the 0.5% by weight thermogravimetric loss temperature (Td0.5). The higher the Td0.5, the more volatile components around the drying oven and extruder can be suppressed in the manufacturing process, and the process load can be reduced, such as by suppressing deterioration of the working environment at the manufacturing site and reducing the frequency of equipment cleanup. It can be judged to be useful. From Td0.5, volatility was judged from A to C based on the following criteria.
A: 280°C or more B: 170°C or more and less than 280°C, acceptable range C: Less than 170°C, unacceptable
(4)設備付着性(エプロン付着)
 上記「重合体組成物Pの製造」において、スチームストリッピングによる脱溶媒後の重合体組成物に対し、130℃に調温された熱ロールによる乾燥処理を施す代わりに、脱溶媒後の重合体組成物をSUS製金網上に配置し、熱風恒温槽にて120℃1時間加温することで熱風乾燥処理を施した。乾燥後の重合体組成物PをSUS製金網から回収する際の状態を観察し、以下の判断基準により設備付着性をAA~Cにて判定した。
AA:99%以上の重合体組成物を回収でき、金網への重合体組成物の付着は認められなかった。
A:97%以上99%未満の重合体組成物を回収でき、金網への重合体組成物の付着は少なかった。
B:95%以上97%未満の重合体組成物を回収でき、金網への重合体組成物の付着が多かった。
C:重合体組成物の回収率が95%未満であり、金網への重合体組成物の付着が非常に多かった。
AA~Bの判定であれば、重合体組成物の製造時におけるバンドドライヤーや押出機等による乾燥工程における設備付着性は実用レベルであると判断できる。C判定では、実用レベルに至らないと判断できる。
(4) Equipment adhesion (apron adhesion)
In the above "manufacturing of polymer composition P", instead of drying the polymer composition after desolvation by steam stripping using a heated roll whose temperature is controlled at 130°C, The composition was placed on a SUS wire mesh and heated in a hot air constant temperature bath at 120° C. for 1 hour to perform hot air drying. The condition when the dried polymer composition P was recovered from the SUS wire mesh was observed, and the equipment adhesion was judged from AA to C based on the following criteria.
AA: 99% or more of the polymer composition was recovered, and no adhesion of the polymer composition to the wire mesh was observed.
A: 97% or more and less than 99% of the polymer composition could be recovered, and there was little adhesion of the polymer composition to the wire mesh.
B: 95% or more and less than 97% of the polymer composition could be recovered, and there was a large amount of the polymer composition attached to the wire mesh.
C: The recovery rate of the polymer composition was less than 95%, and the polymer composition adhered to the wire mesh very often.
If the evaluation is between AA and B, it can be determined that the adhesion to equipment during the drying process using a band dryer, extruder, etc. during production of the polymer composition is at a practical level. A C judgment indicates that it does not reach a practical level.
(5)引張強度
 架橋体を測定用試料として、JISK6251:2010に準拠して引張試験を行った。ここでは、試験サンプルとしてダンベル状3号形を用いて、破断時の応力(TB)及び破断時の伸び(EB)を室温で測定した。TB及びEBの数値が大きいほど破断強度が大きく、材料の機械的強度が高く良好であることを示す。評価はTBの値により行い、比較例1を基準とした指数により評価した。数値が大きいほど引張強度が大きく、強度が良好であるといえる。得られた引張強度の値から、以下の判断基準にて引張強度をAA~Cで判定した。
AA:110以上
A:100以上110未満
B:80以上100未満であり許容範囲
C:80未満
(5) Tensile strength A tensile test was conducted using the crosslinked body as a measurement sample in accordance with JIS K6251:2010. Here, the stress at break (TB) and elongation at break (EB) were measured at room temperature using a dumbbell shape No. 3 as a test sample. The larger the values of TB and EB, the higher the breaking strength, indicating that the mechanical strength of the material is high and good. Evaluation was performed based on the TB value, and was evaluated using an index based on Comparative Example 1. It can be said that the larger the number, the higher the tensile strength, and the better the strength. From the obtained tensile strength values, the tensile strengths were judged from AA to C based on the following criteria.
AA: 110 or more A: 100 or more and less than 110 B: 80 or more and less than 100 and allowable range C: less than 80
(6)耐摩耗性
 架橋体を測定用試料とし、DIN摩耗試験機(東洋精機社製)を使用して、JIS K6264-2:2005に準拠し、荷重10Nで25℃にて測定した。比較例1を基準とした指数で表し、指数により転がり抵抗性を評価した。数値が大きいほど耐摩耗性が高く良好である。得られた指数から、以下の判断基準にて耐摩耗性をA~Cにて判定した。
A:115以上
B:105以上115未満であり許容範囲
C:105未満
(6) Abrasion resistance Using a crosslinked body as a measurement sample, measurement was performed at 25° C. under a load of 10 N using a DIN abrasion tester (manufactured by Toyo Seiki Co., Ltd.) in accordance with JIS K6264-2:2005. It was expressed as an index based on Comparative Example 1, and the rolling resistance was evaluated using the index. The larger the value, the higher the wear resistance and the better. From the obtained index, the wear resistance was judged from A to C based on the following criteria.
A: 115 or more B: 105 or more and less than 115 and allowable range C: less than 105
(7)転がり抵抗性
 架橋体を測定用試料とし、動的スペクトロメーター(米国レオメトリックス社製)を使用して、引張動歪0.7%、角速度100ラジアン毎秒、50℃の条件で測定した。比較例2を基準とした指数で表し、指数により転がり抵抗性を評価した。数値が大きいほど転がり抵抗性が小さく良好である。得られた指数から、以下の判断基準にて転がり抵抗性をAA~Cにて判定した。
AA:125以上
A:115以上125未満
B:105以上115未満であり許容範囲
C:105未満
(7) Rolling resistance Using a crosslinked body as a measurement sample, measurements were made using a dynamic spectrometer (manufactured by Rheometrics, Inc., USA) under conditions of tensile dynamic strain of 0.7%, angular velocity of 100 radians per second, and 50°C. . It was expressed as an index based on Comparative Example 2, and rolling resistance was evaluated using the index. The larger the value, the lower the rolling resistance and the better. Based on the obtained index, rolling resistance was judged from AA to C based on the following criteria.
AA: 125 or more A: 115 or more and less than 125 B: 105 or more and less than 115 and allowable range C: less than 105
(8)加硫接着性
 重合体組成物Qをシート状にした加硫前のシートと、天然ゴムを主成分とする加硫前シートとを、端部にPETフィルムを挟んで積層し、温度170℃、時間15分の条件下で加硫することにより、PETフィルムを挟んでいない部分が加硫接着された積層加硫物を得た。
 積層加硫物から、幅15mmでの接着強度を測定できるように、PETを挟んだ部分から挟んでいない部分までの短冊状の試料片を採取し、PETフィルムを取り除いて試験片とした。恒温槽付きオートグラフ試験機の一方に、重合体組成物Qにより形成した加硫シートを配置し、もう一方に天然ゴムの加硫シートを配置して上下チャッキングして、70℃雰囲気下、速度50mm/分で剥離試験を実施し、接着力を測定した。得られた接着力の値から、比較例1を基準とした指数として評価した。数値が大きいほど接着力が高く、加硫接着性が良好であるといえる。得られた指数から、以下の判断基準にて加硫接着性をAA~Cで判断した。
AA:140以上
A:110以上140未満
B:90以上110未満
C:90未満
(8) Vulcanization adhesion A pre-vulcanized sheet of polymer composition Q and a pre-vulcanized sheet containing natural rubber as a main component are laminated with PET film sandwiched between the ends, and the temperature By vulcanizing at 170° C. for 15 minutes, a laminate vulcanized product was obtained in which the portions not sandwiching the PET film were vulcanized and bonded.
In order to measure the adhesive strength at a width of 15 mm, a strip-shaped sample piece was taken from the laminated vulcanizate from the part where PET was sandwiched to the part where PET was not sandwiched, and the PET film was removed to prepare a test piece. A vulcanized sheet made of polymer composition Q was placed on one side of an autograph tester equipped with a constant temperature bath, and a vulcanized sheet of natural rubber was placed on the other side, and the sheets were chucked up and down in an atmosphere of 70°C. A peel test was conducted at a speed of 50 mm/min to measure the adhesive strength. The obtained adhesive strength values were evaluated as an index based on Comparative Example 1. It can be said that the larger the value, the higher the adhesive force, and the better the vulcanization adhesion. Based on the obtained index, the vulcanization adhesion was judged from AA to C based on the following criteria.
AA: 140 or more A: 110 or more and less than 140 B: 90 or more and less than 110 C: Less than 90
[実施例2~15、比較例1~7]
 水添共役ジエン系重合体A-1を含む重合体溶液に代えて、水添共役ジエン系重合体A-2~A-22を含む各重合体溶液を用いた点、添加剤の種類及び量を表5、6に記載のとおりとした点以外は実施例1と同様にして、重合体組成物Pとして重合体組成物P-2~P-22をそれぞれ製造した。なお、重合体組成物Pの製造に際し、実施例2~15では水添共役ジエン系重合体A-2~A-13,A-21,A-22をそれぞれ含む重合体溶液を用い、比較例1~7では水添共役ジエン系重合体A-14~A-20をそれぞれ含む重合体溶液を用いた。また、重合体組成物P-1に代えて重合体組成物P-2~P-22を用いた点以外は実施例1と同様にして、表7に示す配合処方により各成分を配合して混練りすることによって重合体組成物Q-2~Q-22をそれぞれ製造した。また、製造した重合体Q-2~Q-22をそれぞれ用いて架橋体を製造し、実施例1と同様にして各種評価を行った。結果を表8、9に示す。
[Examples 2 to 15, Comparative Examples 1 to 7]
In place of the polymer solution containing hydrogenated conjugated diene polymer A-1, each polymer solution containing hydrogenated conjugated diene polymers A-2 to A-22 was used, and the types and amounts of additives. Polymer compositions P-2 to P-22 were produced as polymer composition P in the same manner as in Example 1, except that the values were changed as shown in Tables 5 and 6. In addition, when producing the polymer composition P, in Examples 2 to 15, polymer solutions containing hydrogenated conjugated diene polymers A-2 to A-13, A-21, and A-22, respectively, were used, and in Comparative Example In Examples 1 to 7, polymer solutions containing hydrogenated conjugated diene polymers A-14 to A-20, respectively, were used. In addition, each component was mixed according to the formulation shown in Table 7 in the same manner as in Example 1 except that polymer compositions P-2 to P-22 were used instead of polymer composition P-1. Polymer compositions Q-2 to Q-22 were each produced by kneading. Further, crosslinked products were produced using each of the produced polymers Q-2 to Q-22, and various evaluations were conducted in the same manner as in Example 1. The results are shown in Tables 8 and 9.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表5、6中、「-」は、該当する欄の化合物を使用しなかったことを意味する。添加剤の略称は以下のとおりである。
B-1:n-オクタデシル-3-(4-ヒドロキシル-3,5-ジ-t-ブチルフェニル)-プロピオネート
B-2:2-tert-ブチル-6-(3-tert-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニル=アクリラート
B-3:ペンタエリトリトール=テトラキス[3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオナート]
C-1:トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト
C-2:2,2-ビス({[3-(ドデシルチオ)プロピオニル]オキシ}メチル)-1,3-プロパンジイル=ビス[3-(ドデシルチオ)プロピオナート]
H-1:2,6-ジ-tert-ブチル-4-メチルフェノール
In Tables 5 and 6, "-" means that the compound in the corresponding column was not used. The abbreviations of additives are as follows.
B-1: n-octadecyl-3-(4-hydroxyl-3,5-di-t-butylphenyl)-propionate B-2: 2-tert-butyl-6-(3-tert-butyl-2-hydroxy -5-methylbenzyl)-4-methylphenyl acrylate B-3: Pentaerythritol tetrakis [3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]
C-1: Tris(2,4-di-tert-butylphenyl)phosphite C-2: 2,2-bis({[3-(dodecylthio)propionyl]oxy}methyl)-1,3-propanediyl= Bis[3-(dodecylthio)propionate]
H-1: 2,6-di-tert-butyl-4-methylphenol
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表8、9に示すように、実施例1~15の重合体組成物は、脱溶時間延長によるMV変化率、蓄熱燃焼抑制性、揮発性及び設備付着性の評価が「AA」、「A」又は「B」であった。これらの結果から、実施例1~15の重合体組成物は、製造工程における負荷を軽減でき、品質安定性も良好であるといえる。また、実施例1~15の重合体組成物により得られた架橋体は、製造工程における重合体のムーニー粘度の変化が抑制されたことにより、引張強度、耐摩耗性、転がり抵抗性及び加硫接着性の評価も良好であり、各種配合特性に優れていた。 As shown in Tables 8 and 9, the polymer compositions of Examples 1 to 15 were evaluated as ``AA'' and ``A'' in terms of MV change rate, heat storage combustion suppression ability, volatility, and equipment adhesion due to extended desolvation time. ” or “B”. From these results, it can be said that the polymer compositions of Examples 1 to 15 can reduce the load in the manufacturing process and have good quality stability. In addition, the crosslinked products obtained from the polymer compositions of Examples 1 to 15 had improved tensile strength, abrasion resistance, rolling resistance, and vulcanization properties due to suppressed changes in the Mooney viscosity of the polymer during the manufacturing process. The evaluation of adhesive properties was also good, and various compounding characteristics were excellent.
 これに対し、未変性の水添共役ジエン系重合体A-14、A-20をそれぞれ配合した比較例1,7の重合体組成物は、製造工程評価(脱溶時間延長によるMV変化率、蓄熱燃焼抑制性、揮発性及び設備付着性)は良好であったものの、配合物性(引張強度、耐摩耗性、転がり抵抗性及び加硫接着性)の1個以上の項目が「C」の評価であり、実施例1~15よりも劣っていた。また、分子量が250以上のヒンダードフェノール化合物を含まない比較例2,3の重合体組成物、及び水添率が5%、43%の水添共役ジエン系重合体をそれぞれ配合した比較例4,5の重合体組成物は、製造工程評価の1個以上の項目において「C」の評価であり、製造工程負荷や品質安定性の面で劣っていた。また、配合特性についても1個以上の評価項目において「C」であった。水添率が99%である水添共役ジエン系重合体A-19を配合した比較例6の重合体組成物は、製造工程評価は良好であったものの、引張強度、転がり抵抗性及び加硫接着性の評価が「C」であり、配合特性に劣っていた。 On the other hand, the polymer compositions of Comparative Examples 1 and 7, in which unmodified hydrogenated conjugated diene polymers A-14 and A-20 were blended, were evaluated for manufacturing process (MV change rate due to extension of desolvation time, Although the properties (thermal storage combustion suppression, volatility, and equipment adhesion) were good, one or more of the compound properties (tensile strength, abrasion resistance, rolling resistance, and vulcanization adhesion) were rated "C". and was inferior to Examples 1 to 15. In addition, the polymer compositions of Comparative Examples 2 and 3 that do not contain a hindered phenol compound with a molecular weight of 250 or more, and Comparative Example 4 that contains hydrogenated conjugated diene polymers with a hydrogenation rate of 5% and 43%, respectively. The polymer compositions of Nos. and 5 were evaluated as "C" in one or more of the manufacturing process evaluation items, and were inferior in terms of manufacturing process load and quality stability. In addition, the compounding characteristics were rated "C" in one or more evaluation items. The polymer composition of Comparative Example 6 containing hydrogenated conjugated diene polymer A-19 with a hydrogenation rate of 99% had good manufacturing process evaluations, but The evaluation of adhesiveness was "C", and the compounding characteristics were poor.
 以上の結果から、上記式(1)で表されるαの値が0.60以上0.98以下であって、共役ジエン化合物単位と芳香族ビニル化合物単位とを有する共役ジエン系重合体と、分子量が250~2,000のヒンダードフェノール化合物とを含有し、共役ジエン系重合体を構成する高分子の一部又は全部が、窒素、酸素、硫黄及びリンよりなる群から選択される少なくとも1種の元素を含む特定官能基を有する重合体組成物によれば、共役ジエン系重合体の製造工程における工程負荷の軽減及び品質安定化を図ることができ、しかも性能低下が抑制された架橋体が得られることが明らかとなった。 From the above results, a conjugated diene polymer having a value of α represented by the above formula (1) of 0.60 or more and 0.98 or less and having a conjugated diene compound unit and an aromatic vinyl compound unit, containing a hindered phenol compound having a molecular weight of 250 to 2,000, and at least one polymer selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorus, in which part or all of the polymer constituting the conjugated diene polymer According to a polymer composition having a specific functional group containing a species element, it is possible to reduce the process load and stabilize the quality in the production process of a conjugated diene polymer, and moreover, a crosslinked product with suppressed performance deterioration can be obtained. It has become clear that it can be obtained.

Claims (15)

  1.  (A)下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位及び下記式(4)で表される構造単位の重合体中の構成比(モル比)をそれぞれp、q、r、sとしたとき、下記数式(i)で表される値αが0.60~0.98であり、共役ジエン化合物に由来する構造単位と芳香族ビニル化合物に由来する構造単位とを有する共役ジエン系重合体、及び、
     (B)分子量が250~2,000のヒンダードフェノール化合物
    を含有し、
     前記(A)成分の一部又は全部が、窒素、酸素、硫黄及びリンよりなる群から選択される少なくとも1種の元素を含む官能基を有する、重合体組成物。
     α=(p+(0.5×r))/(p+q+(0.5×r)+s)
                               …(i)
    Figure JPOXMLDOC01-appb-C000001
    (A) Structural unit represented by the following formula (1), structural unit represented by the following formula (2), structural unit represented by the following formula (3), and structural unit represented by the following formula (4) When the composition ratio (molar ratio) in the polymer is p, q, r, and s, respectively, the value α expressed by the following formula (i) is 0.60 to 0.98, and the conjugated diene compound A conjugated diene polymer having a structural unit derived from the derivative and a structural unit derived from an aromatic vinyl compound, and
    (B) contains a hindered phenol compound with a molecular weight of 250 to 2,000,
    A polymer composition in which part or all of the component (A) has a functional group containing at least one element selected from the group consisting of nitrogen, oxygen, sulfur, and phosphorus.
    α=(p+(0.5×r))/(p+q+(0.5×r)+s)
    ...(i)
    Figure JPOXMLDOC01-appb-C000001
  2.  前記(B)成分の含有量が、前記(A)成分100質量部に対して0.1~2.2質量部である、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the content of the component (B) is 0.1 to 2.2 parts by mass based on 100 parts by mass of the component (A).
  3.  前記(A)成分に含まれる窒素の割合が、前記(A)成分の全量に対して50ppm以上である、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the proportion of nitrogen contained in the component (A) is 50 ppm or more based on the total amount of the component (A).
  4.  前記(A)成分は、芳香族ビニル化合物に由来する構造単位を80質量%以上含む重合ブロック部を有する、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the component (A) has a polymer block portion containing 80% by mass or more of a structural unit derived from an aromatic vinyl compound.
  5.  前記(A)成分として、分岐数が4以上である分岐ポリマーを含む、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the component (A) contains a branched polymer having a branching number of 4 or more.
  6.  分岐数が4以上である分岐ポリマーの割合が、前記(A)成分の全量に対して15質量%以上である、請求項5に記載の重合体組成物。 The polymer composition according to claim 5, wherein the proportion of the branched polymer having a branching number of 4 or more is 15% by mass or more based on the total amount of the component (A).
  7.  前記(B)成分の分子量が350~1,200である、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the molecular weight of the component (B) is 350 to 1,200.
  8.  前記(B)成分として、炭素-炭素不飽和結合を有する化合物を含む、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the component (B) contains a compound having a carbon-carbon unsaturated bond.
  9.  リン系安定剤及び有機硫黄系安定剤よりなる群から選択される少なくとも1種であって分子量が250~2,000である成分を更に含有する、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, further comprising at least one component selected from the group consisting of phosphorus stabilizers and organic sulfur stabilizers and having a molecular weight of 250 to 2,000.
  10.  前記値αが0.75~0.92である、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the value α is 0.75 to 0.92.
  11.  前記(A)成分、前記(B)成分、及び任意に配合される伸展油の合計の含有量が、組成物全体に対して95質量%以上である、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, wherein the total content of the (A) component, the (B) component, and optionally blended extender oil is 95% by mass or more based on the entire composition. .
  12.  更に無機フィラーを含有する、請求項1に記載の重合体組成物。 The polymer composition according to claim 1, further comprising an inorganic filler.
  13.  請求項1~10及び12のいずれか一項に記載の重合体組成物が架橋されてなる架橋体。 A crosslinked product obtained by crosslinking the polymer composition according to any one of claims 1 to 10 and 12.
  14.  請求項1~10及び12のいずれか一項に記載の重合体組成物を用いて、トレッド、サイドウォール又はその両方が形成されたタイヤ。 A tire having a tread, a sidewall, or both formed using the polymer composition according to any one of claims 1 to 10 and 12.
  15.  請求項1~12のいずれか一項に記載の重合体組成物を製造する方法であって、
     アルカリ金属又はアルカリ土類金属の存在下で共役ジエン化合物及び芳香族ビニル化合物を含む単量体を重合し、水素添加することにより、前記(A)成分を含む重合体溶液を得る工程と、
     前記重合体溶液と前記(B)成分とを混合して、前記(A)成分と前記(B)成分とを含む混合液を得る工程と、
     前記混合液の脱溶媒を行い、乾燥させる工程と、
    を含む、重合体組成物の製造方法。
    A method for producing a polymer composition according to any one of claims 1 to 12, comprising:
    Polymerizing a monomer containing a conjugated diene compound and an aromatic vinyl compound in the presence of an alkali metal or an alkaline earth metal and hydrogenating it to obtain a polymer solution containing the component (A);
    mixing the polymer solution and the component (B) to obtain a mixed solution containing the component (A) and the component (B);
    removing the solvent from the liquid mixture and drying it;
    A method for producing a polymer composition, comprising:
PCT/JP2023/008379 2022-03-08 2023-03-06 Polymer composition and method for producing same, crosslinked product, and tire WO2023171628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022035722 2022-03-08
JP2022-035722 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023171628A1 true WO2023171628A1 (en) 2023-09-14

Family

ID=87935036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008379 WO2023171628A1 (en) 2022-03-08 2023-03-06 Polymer composition and method for producing same, crosslinked product, and tire

Country Status (2)

Country Link
TW (1) TW202346387A (en)
WO (1) WO2023171628A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299280A (en) * 2001-03-26 2006-11-02 Jsr Corp Hydrogenated modified polymer, process for producing the same and composition containing the same
WO2014126184A1 (en) * 2013-02-14 2014-08-21 Jsr株式会社 Method for producing hydrogenated conjugated diene polymer
JP2022028238A (en) * 2020-08-03 2022-02-16 旭化成株式会社 Rubber composition and tire

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299280A (en) * 2001-03-26 2006-11-02 Jsr Corp Hydrogenated modified polymer, process for producing the same and composition containing the same
WO2014126184A1 (en) * 2013-02-14 2014-08-21 Jsr株式会社 Method for producing hydrogenated conjugated diene polymer
JP2022028238A (en) * 2020-08-03 2022-02-16 旭化成株式会社 Rubber composition and tire

Also Published As

Publication number Publication date
TW202346387A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JPH0987426A (en) Production of rubber composition
JP6190711B2 (en) Process for producing modified conjugated diene polymer composition
EP0992537A1 (en) Oil extended rubber and rubber composition
JP2006213809A (en) Rubber composition and pneumatic tire using the same
JP2000178378A (en) Oil-extended rubber and rubber composition
JP2006213807A (en) Rubber composition and pneumatic tire using the same
WO2021085616A1 (en) Method for producing modified conjugated-diene-based polymer, polymer composition, crosslinked object, and tire
JP2020059778A (en) Rubber composition, tread, and tire
WO2023171628A1 (en) Polymer composition and method for producing same, crosslinked product, and tire
JP7194641B2 (en) Polymer composition, method for producing the same, and tire
WO2023171627A1 (en) Polymer composition and method for producing same, crosslinked product, and tire
WO2020158678A1 (en) Rubber composition, crosslinked body and tire
JP2022028234A (en) Polymer blend, method for producing the same, and rubber composition and pneumatic tire using the same
WO2020075829A1 (en) Rubber composition, tread and tire
WO2024090556A1 (en) Polymer composition and tire
JPWO2020031904A1 (en) Pneumatic tires
BR112020017663A2 (en) POLYMER OF MODIFIED LIQUID DIENE AND RUBBER COMPOSITION
KR102640782B1 (en) Random copolymer, method for producing crumb, and pneumatic tire
WO2022196643A1 (en) Conjugated diene polymer and method for producing same, polymer composition, crosslinked product, and tire
WO2023074773A1 (en) Method for producing modified conjugated diene-based polymer, modified conjugated diene-based polymer, polymer composition, crosslinked product, tire, and compound
JP7453877B2 (en) Conjugated diene polymer composition
CA3140763C (en) Diene rubber and rubber composition
EP4309915A1 (en) Rubber composition and tire
WO2022195978A1 (en) Rubber composition and tire
WO2023013639A1 (en) Modified conjugated diene polymer and method for producing same, polymer composition, crosslinked product, and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766804

Country of ref document: EP

Kind code of ref document: A1