WO2024090305A1 - Tank manufacturing method - Google Patents

Tank manufacturing method Download PDF

Info

Publication number
WO2024090305A1
WO2024090305A1 PCT/JP2023/037696 JP2023037696W WO2024090305A1 WO 2024090305 A1 WO2024090305 A1 WO 2024090305A1 JP 2023037696 W JP2023037696 W JP 2023037696W WO 2024090305 A1 WO2024090305 A1 WO 2024090305A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
welded
welding
welded layer
tank
Prior art date
Application number
PCT/JP2023/037696
Other languages
French (fr)
Japanese (ja)
Inventor
亨尚 渡部
俊之 久保
Original Assignee
三菱造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱造船株式会社 filed Critical 三菱造船株式会社
Publication of WO2024090305A1 publication Critical patent/WO2024090305A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/08Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for flash removal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/04Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of metal, e.g. skate blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D88/00Large containers
    • B65D88/02Large containers rigid
    • B65D88/06Large containers rigid cylindrical

Definitions

  • the present disclosure relates to a method for manufacturing a tank.
  • This application claims priority to Japanese Patent Application No. 2022-170369, filed in Japan on October 25, 2022, the contents of which are incorporated herein by reference.
  • Patent Document 1 discloses a configuration in which a modified layer with improved toughness is formed between the front weld layer and the back weld layer of a multi-layer butt welded joint of steel plates by applying compressive residual stress through ultrasonic impact treatment.
  • the present disclosure has been made to solve the above problems, and aims to provide a method for manufacturing a tank that can increase toughness more uniformly throughout the entire weld.
  • the method of manufacturing a tank according to the present disclosure is a method of manufacturing a tank by joint-welding steel plates that constitute the tank.
  • the method of manufacturing the tank includes a step of performing welding and a step of removing a part of the surface layer of a lower weld layer.
  • the step of performing welding is performed such that a plurality of weld layers are sequentially stacked between the ends of the opposing plates toward the surface side of the plates.
  • the step of removing a part of the surface layer of a lower weld layer removes a part of the surface layer of a lower weld layer before the upper weld layer is stacked on the lower weld layer.
  • the tank manufacturing method disclosed herein allows for more uniform toughness to be achieved throughout the entire weld.
  • FIG. 1 is a cross-sectional view of a tank manufactured by a tank manufacturing method according to an embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing a weld between steel tank plate materials constituting a tank according to an embodiment of the present disclosure.
  • 4 is a flowchart showing the steps of a method for manufacturing a tank according to an embodiment of the present disclosure.
  • 10A to 10C are diagrams illustrating a process of obtaining a reheating range in a welded layer and a process of setting a range for removing a part of a surface layer of the welded layer in a method for manufacturing a tank according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram showing a state in which a first welded layer has been formed by a welding process according to an embodiment of the present disclosure.
  • 1 is a diagram showing a state in which a portion of a surface layer portion of a first welded layer has been removed by a step of removing a portion of a surface layer portion of a lower welded layer according to an embodiment of the present disclosure.
  • FIG. FIG. 11 is a diagram showing a state in which a second welded layer has been formed by a welding process according to an embodiment of the present disclosure.
  • FIG. 1 is a diagram showing a state in which a portion of a surface layer portion of a second welded layer has been removed by a step of removing a portion of a surface layer portion of a lower welded layer according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram showing a state in which an outermost welded layer has been formed by a step of forming an outermost welded layer according to an embodiment of the present disclosure.
  • the tank 1 of this embodiment is a tank capable of storing liquefied gas such as liquefied carbon dioxide.
  • the tank 1 is installed in the hull of a ship, the floating body of an offshore floating facility, a liquefied gas storage facility on land, or the like.
  • the tank 1 illustrated in this embodiment is cylindrical.
  • the tank 1 includes a tubular portion 2 and a head plate portion 3.
  • the tubular portion 2 extends in its central axis direction Dc.
  • the tubular portion 2 is formed in a cylindrical shape, and the cross-sectional shape perpendicular to the central axis direction Dc is circular.
  • the head plate portions 3 are disposed at both ends of the tubular portion 2 in the central axis direction Dc.
  • Each head plate portion 3 has a spherical shape such as a hemisphere, and closes an opening in the central axis direction Dc of the tubular portion 2.
  • the tank 1 is not limited to a cylindrical shape, and may be other shapes such as a spherical shape or a rectangular shape.
  • FIG. 2 is a cross-sectional view showing a weld between steel plates constituting a tank according to an embodiment of the present disclosure.
  • the tank 1 is formed by joint-welding a plurality of steel plates 20.
  • the plates 20 constituting the tank 1 are formed of a metal material such as high-strength tempered steel.
  • the thickness of the plate 20 in the plate thickness direction Dt is, for example, about 10 to 100 mm.
  • the plate materials 20 have a groove portion 21V with a V-shaped cross section, which is a V-shaped groove.
  • the ends 20a of the plate materials 20 facing each other have an inclined surface 20s.
  • the inclined surfaces 20s of the plate materials 20 facing each other are formed so that the distance between them in the facing direction Da of the plate materials 20 gradually decreases from the surface 20f of the first side Dt1 in the plate thickness direction Dt to the surface 20g of the second side Dt2 in the plate thickness direction Dt.
  • the groove portion 21V extends in a direction perpendicular to the facing direction Da of the plate materials 20 and the plate thickness direction Dt of the plate materials 20 (a direction perpendicular to the paper surface of FIG. 2).
  • the ends 20a of the opposing plate materials 20 are joined together via a weld 30.
  • the weld 30 is formed between the ends 20a of the plate materials 20.
  • the weld 30 is formed by multi-layer welding. In multi-layer welding, the weld 30 is formed between the ends 20a of the opposing plate materials 20 by repeating welding multiple times. Multi-layer welding is suitable for reducing the amount of heat input to the plate material 20 during each welding.
  • the welded portion 30 has a plurality of welded layers 31.
  • six welded layers 311 to 316 are formed as the welded layers 31 of the welded portion 30 (see FIG. 9). Note that in FIG. 2, only five welded layers 311 to 315 out of the six welded layers 311 to 316 are illustrated.
  • the welded layers 311 to 316 are stacked in order from the second side Dt2 in the plate thickness direction Dt toward the surface 20f of the first side Dt1 in the plate thickness direction Dt. Note that the number of layers of the plurality of welded layers 31 is set depending on the plate thickness of the plate material 20, etc., and can be changed as appropriate. A portion of the surface layer 31a of each of the welded layers 311 to 315 is removed, as will be described in detail later.
  • FIG. 3 is a flowchart showing the procedure of the method for manufacturing a tank according to an embodiment of the present disclosure.
  • Fig. 4 is a diagram showing a schematic diagram of a process for obtaining a reheating range in a welded layer and a process for setting a range for removing a part of a surface layer of the welded layer in the method for manufacturing a tank according to an embodiment of the present disclosure. As shown in FIG.
  • the manufacturing method S10 of the tank 1 includes a step S11 of obtaining a reheat range in the welded layer, a step S12 of setting a range for removing a portion of the surface layer of the welded layer, a step S13 of performing welding, a step S14 of removing a portion of the surface layer of the lower welded layer, a step S15 of forming the outermost welded layer, and a step S16 of removing at least a portion of the outermost welded layer.
  • step S11 of acquiring the reheat range in the welded layer the reheat range in the lower welded layer 31 is acquired.
  • step S13 of performing welding which will be described later, welding is repeated multiple times from the second side Dt2 toward the first side Dt1 in the plate thickness direction Dt to sequentially stack and form the welded layers 311-315 and the outermost welded layer 316.
  • the lower welded layer 31 which is formed first, receives welding heat when welding the upper welded layer 31 later.
  • step S11 of acquiring the reheat range in this welded layer as shown in FIG.
  • the reheat range A in the lower welded layer 31A due to the heat input from the upper welded layer 31B is acquired. That is, the heat input from the upper welded layer 31B does not necessarily extend to the entire lower welded layer 31A, but the area of the lower welded layer 31A that extends from the part that contacts (actually, partially overlaps) with the upper welded layer 31B is taken as reheat area A.
  • Reheat area A is the area where the toughness of the lower welded layer 31A is increased by the heat input from the upper welded layer 31B, and it recovers to a preset standard or higher.
  • step S12 the range for removing a part of the surface layer of the welded layer is set based on the reheat range A acquired in step S11 for acquiring the reheat range in the welded layer.
  • the part of the surface layer 31a of the lower welded layer 31 is removed in step S14 for removing a part of the surface layer of the lower welded layer, which will be described later in detail.
  • the range for removing the part of the surface layer 31a of the lower welded layer 31 is set so that the toughness of the entire lower welded layer 31 remaining after removing this range is increased (recovered) to a standard level by the heat input from the upper welded layer 31B.
  • the range for removing the part of the surface layer 31a of the lower welded layer 31 is set by the thickness T in the plate thickness direction Dt of the range B other than the reheat range A in the lower welded layer 31.
  • the removal of the surface layer 31a can be performed, for example, by cutting using a tool such as a disc grinder.
  • welding is performed between the ends 20a of the opposing plate materials 20. Specifically, welding is performed from the second side Dt2 in the plate thickness direction Dt between the inclined surfaces 20s of the opposing plate materials 20 in the direction in which the welded portion 30 extends (the direction perpendicular to the paper surface in FIG. 2).
  • process S14 for removing a portion of the surface portion of the lower welding layer a portion of the surface portion 31a of the lower welding layer 31 is removed before the upper welding layer 31 is laminated on the lower welding layer 31.
  • the welding layer 31 formed by welding in process S13 for performing welding is regarded as the lower welding layer 31.
  • a portion of the surface portion 31a of the lower welding layer 31 is removed based on the dimension T set in process S12 for setting the range for removing the portion of the surface portion of the welding layer.
  • a grinder for example, is used to remove the portion of the surface portion 31a of the lower welding layer 31.
  • the above-mentioned welding process S13 and process S14 of removing part of the surface of the lower welded layer are repeated a predetermined number of times to form the welded layers 311 to 315 in sequence.
  • Fig. 5 is a diagram showing a state in which a first welded layer is formed by a step of performing welding according to an embodiment of the present disclosure
  • Fig. 6 is a diagram showing a state in which a part of a surface layer portion of a first welded layer is removed by a step of removing a part of a surface layer portion of a lower welded layer according to an embodiment of the present disclosure.
  • a welding step S13 welding is performed between the ends 20a of the opposing plate materials 20 at a position on the second side Dt2 in the plate thickness direction Dt to form a first welded layer 311.
  • a welding step S13 welding is performed between the ends 20a of the opposing plate materials 20 at a position on the second side Dt2 in the plate thickness direction Dt to form a first welded layer 311.
  • Fig. 5 is a diagram showing a state in which a first welded layer is formed by a step of performing welding according to an embodiment of the present disclosure
  • Fig. 6 is a diagram
  • a part of the surface layer portion 31a of the first welded layer 311 is removed by a dimension T before a second welded layer 312 (corresponding to the upper welded layer 31) is laminated on the first welded layer 311 (corresponding to the lower welded layer 31).
  • Fig. 7 is a diagram showing a state in which a second welded layer is formed by a step of performing welding according to an embodiment of the present disclosure
  • Fig. 8 is a diagram showing a state in which a part of a surface layer portion of the second welded layer is removed by a step of removing a part of a surface layer portion of a lower welded layer according to an embodiment of the present disclosure.
  • a welding step S13 welding is performed between the ends 20a of the opposing plate materials 20 such that a second welded layer 312 (corresponding to the upper welded layer 31) is laminated on a first side Dt1 in the plate thickness direction Dt with respect to a first welded layer 311 (corresponding to the lower welded layer 31).
  • the first welded layer 311 is reheated by the heat input when welding the second welded layer 312. A part of the surface layer 31a of the first welded layer 311 has been removed. Therefore, the heat input from the second welded layer 312 increases (in other words, recovers) the overall toughness of the first welded layer 311 from which a part of the surface layer 31a has been removed.
  • step S14 which removes a portion of the surface of the lower welded layer, a portion of the surface 31a of the second welded layer 311 is removed by a dimension T before the third welded layer 313 (corresponding to the upper welded layer 31) is laminated on the second welded layer 312 (corresponding to the lower welded layer 31).
  • the third welded layer 313 to the fifth welded layer 315 are stacked in sequence by repeating the process S13 of welding and the process S14 of removing part of the surface of the lower welded layer in the same manner.
  • FIG. 9 is a diagram showing a state in which an outermost welded layer is formed by the step of forming an outermost welded layer according to an embodiment of the present disclosure.
  • a sixth welded layer 316 located closest to the first side Dt1 (closest to the surface 20f) in the plate thickness direction Dt is formed by welding so as to be laminated on the fifth welded layer 315.
  • the outermost welded layer 316 located closest to the first side Dt1 (closest to the surface 20f) in the plate thickness direction Dt is formed so as to rise from the surface 20f to the first side Dt1 in the plate thickness direction Dt.
  • step S16 of removing at least a part of the outermost welded layer at least a part of the welded layer 31 located closest to the surface 20f of the plate material 20 is removed.
  • the welded layers 311 to 314 have their toughness restored and their residual stress alleviated by the heat input when the other welded layers 31 are formed later.
  • the welded layer 315 has their toughness restored and their residual stress alleviated by the heat input when the outermost welded layer 316 is formed later.
  • the outermost welded layer 316 formed last on the first side Dt1 in the plate thickness direction Dt has residual stress. Therefore, at least a part of the outermost welded layer 316 located closest to the surface 20f of the plate material 20 is removed.
  • FIG. 2 illustrates a case in which all of the welded layer 316 is removed.
  • the plate materials 20 in this embodiment are joined together.
  • a welded portion 30 in which a plurality of weld layers 31 are stacked is formed between the ends 20a of the plate materials 20 that face each other.
  • the entire welded portion 30 is finally reheated by the heat input from the upper welded layer 31, and the toughness is increased.
  • the toughness can be increased more uniformly throughout the entire welded portion 30.
  • the residual stress in the welded portion 30 can also be reduced.
  • the lower welded layer 31 from which part of the surface layer 31a has been removed is reheated by heat input from the upper welded layer 31, thereby reheating the entire lower welded layer 31.
  • the reheat range A due to the heat input from the upper welded layer 31 extends to the entire lower welded layer 31 after removing part of the surface layer 31a, thereby improving the overall toughness of the lower welded layer 31.
  • the reheat range A in the lower welding layer 31 due to the heat input from the upper welding layer 31 is acquired. This makes it possible to appropriately set the range in which the part of the surface layer 31a of the lower welding layer 31 is removed so that the heat input from the upper welding layer 31 covers the entire lower welding layer 31 after the part of the surface layer 31a has been removed.
  • the portion of the welded layer 316 located on the surface 20f side that has not been reheated can be removed, and residual stress can be locally reduced.
  • the groove portion 21V has a V-shaped cross section, but is not limited thereto.
  • the groove portion may have an X-shaped cross section.
  • a manufacturing method of the tank 1 described in the embodiment can be understood, for example, as follows.
  • a manufacturing method of a tank 1 according to a first aspect is a manufacturing method of a tank 1 for manufacturing the tank 1 by joint-welding steel plates 20 constituting the tank 1, the manufacturing method including a step S13 of welding between the ends 20a of the plates 20 facing each other so that a plurality of welded layers 31 are sequentially stacked toward the surface 20f side of the plates 20, and a step S14 of removing a part of the surface layer 31a of the lower welded layer 31 before the upper welded layer 31 is stacked on the lower welded layer 31. including.
  • the manufacturing method of the tank 1 according to the second aspect is the manufacturing method of the tank 1 according to (1), and in the welding step S13, when the upper welding layer 31 is laminated to the lower welding layer 31 by welding, the lower welding layer 31 from which a part of the surface layer 31a has been removed is reheated by the heat input from the upper welding layer 31.
  • the manufacturing method of the tank 1 according to the third aspect is the manufacturing method of the tank 1 according to (1) or (2), and in step S14 of removing a portion of the surface layer 31a of the lower welded layer 31, the portion of the surface layer 31a of the lower welded layer 31 is removed so that when the upper welded layer 31 is laminated on the lower welded layer 31, the reheat range A due to the heat input from the upper welded layer 31 covers the entire lower welded layer 31 after the portion of the surface layer 31a has been removed.
  • the reheat range A due to the heat input from the upper welded layer 31 extends to the entire lower welded layer 31 after part of the surface layer 31a has been removed, thereby increasing the overall toughness of the lower welded layer 31.
  • the manufacturing method of the tank 1 according to the fourth aspect is a manufacturing method of the tank 1 according to any one of (1) to (3), and further includes a step S11 of acquiring a reheating range A in the lower welded layer 31 due to heat input from the upper welded layer 31 when the upper welded layer 31 is laminated on the lower welded layer 31, and a step S12 of setting a range for removing a portion of the surface layer 31a of the lower welded layer 31 based on the reheating range A acquired in the step S11 of acquiring the reheating range A, in a step S14 of removing a portion of the surface layer 31a of the lower welded layer 31.
  • the manufacturing method of the tank 1 according to the fifth aspect is any one of the manufacturing methods of the tank 1 according to (1) to (4), in which at least a portion of the welded layer 316, which is located closest to the surface 20f of the plate material 20, among the multiple welded layers 31, is removed.
  • the portion of the welded layer 316 located on the surface 20f side that has not been reheated can be removed, and residual stress can be locally reduced.
  • the tank manufacturing method disclosed herein allows for more uniform toughness to be achieved throughout the entire weld.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

A tank manufacturing method for manufacturing a tank by joint-welding steel sheets from which the tank is to be configured, the method comprising: a step for performing welding such that a plurality of weld layers are formed successively toward the surface side of the sheets between opposing ends of the sheets; and a step for removing a portion of the surface layer part of the underlying weld layer prior to the overlying weld layer being layered on the underlying weld layer.

Description

タンクの製造方法Tank manufacturing method
 本開示は、タンクの製造方法に関する。
 本願は、2022年10月25日に日本に出願された特願2022-170369号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to a method for manufacturing a tank.
This application claims priority to Japanese Patent Application No. 2022-170369, filed in Japan on October 25, 2022, the contents of which are incorporated herein by reference.
 金属材料を用いて製造される各種の物品においては、物品に応じた所要の強度と靭性とを備えることが要求されている。例えば、特許文献1には、鋼板の多層盛突合せ溶接継手において、表面溶接層と裏面溶接層間に、超音波打撃処理により圧縮残留応力が付与されて靭性が向上した改質層を形成する構成が開示されている。 Various articles manufactured using metallic materials are required to have the required strength and toughness according to the article. For example, Patent Document 1 discloses a configuration in which a modified layer with improved toughness is formed between the front weld layer and the back weld layer of a multi-layer butt welded joint of steel plates by applying compressive residual stress through ultrasonic impact treatment.
特開2008-229692号公報JP 2008-229692 A
 ところで、貨物温度が-10℃以下となるような低温の液化ガスを収容するタンクでは、タンクを形成する材料の厚さ、強度、靭性等が、規則によって定められている。このため、タンクを構成する鋼製の板材同士を接合する溶接部においても、所要の靱性を確保することが要求されている。これに対し、特許文献1に開示されたような構成により、靱性が向上した改質層を形成したとしても、改質層以外の部分では、靱性が向上していない可能性がある。溶接部の靱性を高めるには、溶接部全体で、より均一に靱性を高めることが望まれる。 In tanks that store low-temperature liquefied gas, where the cargo temperature is -10°C or below, regulations stipulate the thickness, strength, toughness, etc., of the material that forms the tank. For this reason, the welds that join the steel plates that make up the tank are also required to have the required toughness. In contrast, even if a modified layer with improved toughness is formed using the configuration disclosed in Patent Document 1, there is a possibility that the toughness will not be improved in areas other than the modified layer. To increase the toughness of the welds, it is desirable to increase the toughness more uniformly throughout the entire weld.
 本開示は、上記課題を解決するためになされたものであって、溶接部全体で、より均一に靱性を高めることができるタンクの製造方法を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a method for manufacturing a tank that can increase toughness more uniformly throughout the entire weld.
 上記課題を解決するために、本開示に係るタンクの製造方法は、タンクを構成する鋼製の板材を継手溶接することで前記タンクを製造するタンクの製造方法である。前記タンクの製造方法は、溶接を行う工程と、下層の溶接層の表層部の一部を除去する工程と、を含む。前記溶接を行う工程は、互いに対向する前記板材の端部同士の間に、前記板材の表面側に向かって複数の溶接層が順次積層されるように溶接を行う。下層の溶接層の表層部の一部を除去する工程は、下層の前記溶接層に対して上層の前記溶接層が積層されるに先立ち、下層の溶接層の表層部の一部を除去する。 In order to solve the above problems, the method of manufacturing a tank according to the present disclosure is a method of manufacturing a tank by joint-welding steel plates that constitute the tank. The method of manufacturing the tank includes a step of performing welding and a step of removing a part of the surface layer of a lower weld layer. The step of performing welding is performed such that a plurality of weld layers are sequentially stacked between the ends of the opposing plates toward the surface side of the plates. The step of removing a part of the surface layer of a lower weld layer removes a part of the surface layer of a lower weld layer before the upper weld layer is stacked on the lower weld layer.
 本開示のタンクの製造方法によれば、溶接部全体で、より均一に靱性を高めることができる。 The tank manufacturing method disclosed herein allows for more uniform toughness to be achieved throughout the entire weld.
本開示の実施形態に係るタンクの製造方法により製造されたタンクの断面図である。1 is a cross-sectional view of a tank manufactured by a tank manufacturing method according to an embodiment of the present disclosure. 本開示の実施形態に係るタンクを構成する鋼製のタンク板材同士の溶接部を示す断面図である。FIG. 2 is a cross-sectional view showing a weld between steel tank plate materials constituting a tank according to an embodiment of the present disclosure. 本開示の実施形態に係るタンクの製造方法の手順を示すフローチャートである。4 is a flowchart showing the steps of a method for manufacturing a tank according to an embodiment of the present disclosure. 本開示の実施形態に係るタンクの製造方法の、溶接層における再熱範囲を取得する工程、溶接層の表層部の一部を除去する範囲を設定する工程を、模式的に示す図である。10A to 10C are diagrams illustrating a process of obtaining a reheating range in a welded layer and a process of setting a range for removing a part of a surface layer of the welded layer in a method for manufacturing a tank according to an embodiment of the present disclosure. 本開示の実施形態に係る溶接を行う工程により、一層目の溶接層を形成した状態を示す図である。FIG. 13 is a diagram showing a state in which a first welded layer has been formed by a welding process according to an embodiment of the present disclosure. 本開示の実施形態に係る下層の溶接層の表層部の一部を除去する工程により、一層目の溶接層の表層部の一部を除去した状態を示す図である。1 is a diagram showing a state in which a portion of a surface layer portion of a first welded layer has been removed by a step of removing a portion of a surface layer portion of a lower welded layer according to an embodiment of the present disclosure. FIG. 本開示の実施形態に係る溶接を行う工程により、二層目の溶接層を形成した状態を示す図である。FIG. 11 is a diagram showing a state in which a second welded layer has been formed by a welding process according to an embodiment of the present disclosure. 本開示の実施形態に係る下層の溶接層の表層部の一部を除去する工程により、二層目の溶接層の表層部の一部を除去した状態を示す図である。1 is a diagram showing a state in which a portion of a surface layer portion of a second welded layer has been removed by a step of removing a portion of a surface layer portion of a lower welded layer according to an embodiment of the present disclosure. FIG. 本開示の実施形態に係る最表層の溶接層を形成する工程により、最表層の溶接層を形成した状態を示す図である。FIG. 11 is a diagram showing a state in which an outermost welded layer has been formed by a step of forming an outermost welded layer according to an embodiment of the present disclosure.
 以下、本開示の実施形態に係るタンクの製造方法について、図1~図9を参照して説明する。
(タンクの構成)
 図1に示すように、この実施形態のタンク1は、例えば液化二酸化炭素等の液化ガスを貯留可能なタンクである。船舶の船体、洋上浮体設備の浮体本体、陸上の液化ガス貯蔵施設等に設置される。本実施形態で例示するタンク1は、円筒状をなしている。タンク1は、筒状部2と、鏡板部3と、を備えている。筒状部2は、その中心軸方向Dcに延びている。この実施形態において、筒状部2は、円筒状に形成され、その中心軸方向Dcに直交する断面形状が円形をなしている。鏡板部3は、筒状部2の中心軸方向Dcの両端部にそれぞれ配置されている。各鏡板部3は、半球等の球面状をなし、筒状部2の中心軸方向Dcの開口を閉塞している。なお、タンク1は、円筒状に限られるものではなく、球形、方形等、他の形状であってもよい。
Hereinafter, a method for manufacturing a tank according to an embodiment of the present disclosure will be described with reference to FIGS.
(Tank configuration)
As shown in FIG. 1, the tank 1 of this embodiment is a tank capable of storing liquefied gas such as liquefied carbon dioxide. The tank 1 is installed in the hull of a ship, the floating body of an offshore floating facility, a liquefied gas storage facility on land, or the like. The tank 1 illustrated in this embodiment is cylindrical. The tank 1 includes a tubular portion 2 and a head plate portion 3. The tubular portion 2 extends in its central axis direction Dc. In this embodiment, the tubular portion 2 is formed in a cylindrical shape, and the cross-sectional shape perpendicular to the central axis direction Dc is circular. The head plate portions 3 are disposed at both ends of the tubular portion 2 in the central axis direction Dc. Each head plate portion 3 has a spherical shape such as a hemisphere, and closes an opening in the central axis direction Dc of the tubular portion 2. The tank 1 is not limited to a cylindrical shape, and may be other shapes such as a spherical shape or a rectangular shape.
 図2は、本開示の実施形態に係るタンクを構成する鋼製の板材同士の溶接部を示す断面図である。
 図2に示すように、タンク1は、複数枚の鋼製の板材20を継手溶接することによって形成されている。タンク1を構成する板材20は、例えば、高強度調質鋼等の金属材料により形成されている。この実施形態において、板材20の板厚方向Dtにおける厚さは、例えば、10~100mm程度である。
FIG. 2 is a cross-sectional view showing a weld between steel plates constituting a tank according to an embodiment of the present disclosure.
2, the tank 1 is formed by joint-welding a plurality of steel plates 20. The plates 20 constituting the tank 1 are formed of a metal material such as high-strength tempered steel. In this embodiment, the thickness of the plate 20 in the plate thickness direction Dt is, for example, about 10 to 100 mm.
 この実施形態の板材20同士は、V形開先である断面V字状の開先部21Vを有している。開先部21Vにおいて、互いに対向する板材20の端部20aのそれぞれは、傾斜面20sを有している。互いに対向する板材20の傾斜面20s同士は、板厚方向Dtの第一側Dt1の表面20fから、板厚方向Dtの第二側Dt2の表面20gに向かって、板材20同士の対向する対向方向Daにおける間隔を漸次接近させるように形成されている。開先部21Vは、板材20同士の対向方向Da、及び板材20の板厚方向Dtに直交する方向(図2の紙面に直交する方向)に延びている。 In this embodiment, the plate materials 20 have a groove portion 21V with a V-shaped cross section, which is a V-shaped groove. In the groove portion 21V, the ends 20a of the plate materials 20 facing each other have an inclined surface 20s. The inclined surfaces 20s of the plate materials 20 facing each other are formed so that the distance between them in the facing direction Da of the plate materials 20 gradually decreases from the surface 20f of the first side Dt1 in the plate thickness direction Dt to the surface 20g of the second side Dt2 in the plate thickness direction Dt. The groove portion 21V extends in a direction perpendicular to the facing direction Da of the plate materials 20 and the plate thickness direction Dt of the plate materials 20 (a direction perpendicular to the paper surface of FIG. 2).
 互いに対向する板材20の端部20a同士は、溶接部30を介して接合されている。溶接部30は、板材20の端部20a同士の間に形成されている。溶接部30は、多層溶接により形成されている。多層溶接では、互いに対向する板材20の端部20a同士の間に、溶接を複数回繰り返すことで溶接部30が形成される。多層溶接は、1回あたりの溶接時における板材20への入熱量を抑える場合に好適である。 The ends 20a of the opposing plate materials 20 are joined together via a weld 30. The weld 30 is formed between the ends 20a of the plate materials 20. The weld 30 is formed by multi-layer welding. In multi-layer welding, the weld 30 is formed between the ends 20a of the opposing plate materials 20 by repeating welding multiple times. Multi-layer welding is suitable for reducing the amount of heat input to the plate material 20 during each welding.
 溶接部30は、複数の溶接層31を有している。本実施形態では、溶接部30の溶接層31として、六つの溶接層311~316が形成される(図9参照)。なお、図2においては、六つの溶接層311~316のうち、五つの溶接層311~315のみが図示されている。溶接層311~316は、板厚方向Dtの第二側Dt2から板厚方向Dtの第一側Dt1の表面20fに向かって順に積層される。なお、複数の溶接層31の層数は、板材20の板厚等によって設定されるものであり、適宜変更可能である。
 溶接層311~315のそれぞれの表層部31aの一部は、後に詳述するように、除去されている。
The welded portion 30 has a plurality of welded layers 31. In this embodiment, six welded layers 311 to 316 are formed as the welded layers 31 of the welded portion 30 (see FIG. 9). Note that in FIG. 2, only five welded layers 311 to 315 out of the six welded layers 311 to 316 are illustrated. The welded layers 311 to 316 are stacked in order from the second side Dt2 in the plate thickness direction Dt toward the surface 20f of the first side Dt1 in the plate thickness direction Dt. Note that the number of layers of the plurality of welded layers 31 is set depending on the plate thickness of the plate material 20, etc., and can be changed as appropriate.
A portion of the surface layer 31a of each of the welded layers 311 to 315 is removed, as will be described in detail later.
(タンク製造方法の手順)
 図3は、本開示の実施形態に係るタンクの製造方法の手順を示すフローチャートである。図4は、本開示の実施形態に係るタンクの製造方法の、溶接層における再熱範囲を取得する工程、溶接層の表層部の一部を除去する範囲を設定する工程を、模式的に示す図である。
 図3に示すように、本実施形態に係るタンク1の製造方法S10は、溶接層における再熱範囲を取得する工程S11と、溶接層の表層部の一部を除去する範囲を設定する工程S12と、溶接を行う工程S13と、下層の溶接層の表層部の一部を除去する工程S14と、最表層の溶接層を形成する工程S15と、最表層の溶接層の少なくとも一部を除去する工程S16と、を含んでいる。
(Tank manufacturing method procedure)
Fig. 3 is a flowchart showing the procedure of the method for manufacturing a tank according to an embodiment of the present disclosure. Fig. 4 is a diagram showing a schematic diagram of a process for obtaining a reheating range in a welded layer and a process for setting a range for removing a part of a surface layer of the welded layer in the method for manufacturing a tank according to an embodiment of the present disclosure.
As shown in FIG. 3, the manufacturing method S10 of the tank 1 according to this embodiment includes a step S11 of obtaining a reheat range in the welded layer, a step S12 of setting a range for removing a portion of the surface layer of the welded layer, a step S13 of performing welding, a step S14 of removing a portion of the surface layer of the lower welded layer, a step S15 of forming the outermost welded layer, and a step S16 of removing at least a portion of the outermost welded layer.
 溶接層における再熱範囲を取得する工程S11では、下層の溶接層31における再熱範囲を取得する。ここで、後述する溶接を行う工程S13では、板厚方向Dtの第二側Dt2から第一側Dt1に向かって、溶接を複数回繰り返すことで、溶接層311~315、及び最表層の溶接層316を順次積層して形成する。このとき、先行して形成される下層の溶接層31には、後から上層の溶接層31を溶接する際の溶接熱が入熱される。この溶接層における再熱範囲を取得する工程S11では、図4に示すように、下層の溶接層31Aに対して上層の溶接層31Bを積層した際に、上層の溶接層31Bからの入熱による、下層の溶接層31Aにおける再熱範囲Aを取得する。すなわち、上層の溶接層31Bによる入熱は、下層の溶接層31Aの全体に及ぶとは限らず、下層の溶接層31Aにおいて、上層の溶接層31Bと接触(実際には、一部重なり合う)する部分から、上層の溶接層31Bからの入熱が及ぶ範囲を、再熱範囲Aとして所得する。再熱範囲Aとは、上層の溶接層31Bからの入熱によって、下層の溶接層31Aの靱性が高まり、予め設定した基準以上に回復する領域である。 In step S11 of acquiring the reheat range in the welded layer, the reheat range in the lower welded layer 31 is acquired. Here, in step S13 of performing welding, which will be described later, welding is repeated multiple times from the second side Dt2 toward the first side Dt1 in the plate thickness direction Dt to sequentially stack and form the welded layers 311-315 and the outermost welded layer 316. At this time, the lower welded layer 31, which is formed first, receives welding heat when welding the upper welded layer 31 later. In step S11 of acquiring the reheat range in this welded layer, as shown in FIG. 4, when the upper welded layer 31B is stacked on the lower welded layer 31A, the reheat range A in the lower welded layer 31A due to the heat input from the upper welded layer 31B is acquired. That is, the heat input from the upper welded layer 31B does not necessarily extend to the entire lower welded layer 31A, but the area of the lower welded layer 31A that extends from the part that contacts (actually, partially overlaps) with the upper welded layer 31B is taken as reheat area A. Reheat area A is the area where the toughness of the lower welded layer 31A is increased by the heat input from the upper welded layer 31B, and it recovers to a preset standard or higher.
 溶接層の表層部の一部を除去する範囲を設定する工程S12では、溶接層における再熱範囲を取得する工程S11で取得された再熱範囲Aに基づき、下層の溶接層31の表層部31aの一部を除去する範囲を設定する。下層の溶接層31の表層部31aの一部は、後に詳述する下層の溶接層の表層部の一部を除去する工程S14で除去する。下層の溶接層31の表層部31aの一部を除去する範囲は、この範囲を除去した後に残る下層の溶接層31の全体に対し、上層の溶接層31Bによる入熱により、靱性が基準以上に高まる(回復する)ように設定する。この実施形態では、下層の溶接層31の表層部31aの一部を除去する範囲を、下層の溶接層31において、再熱範囲A以外の範囲Bの板厚方向Dtにおける厚さTにより設定する。なお、表層部31aの除去は、例えば、ディスクグラインダー等の工具を用いた切削により行うことができる。 In step S12, the range for removing a part of the surface layer of the welded layer is set based on the reheat range A acquired in step S11 for acquiring the reheat range in the welded layer. The part of the surface layer 31a of the lower welded layer 31 is removed in step S14 for removing a part of the surface layer of the lower welded layer, which will be described later in detail. The range for removing the part of the surface layer 31a of the lower welded layer 31 is set so that the toughness of the entire lower welded layer 31 remaining after removing this range is increased (recovered) to a standard level by the heat input from the upper welded layer 31B. In this embodiment, the range for removing the part of the surface layer 31a of the lower welded layer 31 is set by the thickness T in the plate thickness direction Dt of the range B other than the reheat range A in the lower welded layer 31. The removal of the surface layer 31a can be performed, for example, by cutting using a tool such as a disc grinder.
 溶接を行う工程S13では、互いに対向する板材20の端部20a同士の間で、溶接を行う。具体的には、板厚方向Dtの第二側Dt2から、互いに対向する板材20の傾斜面20s同士の間で、溶接部30の延びる方向(図2において紙面に直交する方向)に溶接を行う。 In the welding process S13, welding is performed between the ends 20a of the opposing plate materials 20. Specifically, welding is performed from the second side Dt2 in the plate thickness direction Dt between the inclined surfaces 20s of the opposing plate materials 20 in the direction in which the welded portion 30 extends (the direction perpendicular to the paper surface in FIG. 2).
 下層の溶接層の表層部の一部を除去する工程S14では、下層の溶接層31に対して上層の溶接層31が積層されるに先立ち、下層の溶接層31の表層部31aの一部を除去する。下層の溶接層の表層部の一部を除去する工程S14では、溶接を行う工程S13における溶接によって形成された溶接層31を、下層の溶接層31とする。下層の溶接層の表層部の一部を除去する工程S14では、溶接層の表層部の一部を除去する範囲を設定する工程S12で設定した寸法Tに基づき、下層の溶接層31の表層部31aの一部を除去する。下層の溶接層31の表層部31aの一部の除去には、例えばグラインダーが用いられる。 In process S14 for removing a portion of the surface portion of the lower welding layer, a portion of the surface portion 31a of the lower welding layer 31 is removed before the upper welding layer 31 is laminated on the lower welding layer 31. In process S14 for removing a portion of the surface portion of the lower welding layer, the welding layer 31 formed by welding in process S13 for performing welding is regarded as the lower welding layer 31. In process S14 for removing a portion of the surface portion of the lower welding layer, a portion of the surface portion 31a of the lower welding layer 31 is removed based on the dimension T set in process S12 for setting the range for removing the portion of the surface portion of the welding layer. A grinder, for example, is used to remove the portion of the surface portion 31a of the lower welding layer 31.
 上記の溶接を行う工程S13と、下層の溶接層の表層部の一部を除去する工程S14とを所定回数繰り返すことで、溶接層311~315を順次積層して形成する。 The above-mentioned welding process S13 and process S14 of removing part of the surface of the lower welded layer are repeated a predetermined number of times to form the welded layers 311 to 315 in sequence.
 図5は、本開示の実施形態に係る溶接を行う工程により、一層目の溶接層を形成した状態を示す図である。図6は、本開示の実施形態に係る下層の溶接層の表層部の一部を除去する工程により、一層目の溶接層の表層部の一部を除去した状態を示す図である。
 具体的には、まず、図5に示すように、溶接を行う工程S13において、互いに対向する板材20の端部20a同士の間で、板厚方向Dtの第二側Dt2の位置で溶接を行うことで、一層目の溶接層311を形成する。次いで、図6に示すように、下層の溶接層の表層部の一部を除去する工程S14において、一層目の溶接層311(下層の溶接層31に相当)に対して二層目の溶接層312(上層の溶接層31に相当)が積層されるに先立ち、一層目の溶接層311の表層部31aの一部を、寸法Tだけ除去する。
Fig. 5 is a diagram showing a state in which a first welded layer is formed by a step of performing welding according to an embodiment of the present disclosure, and Fig. 6 is a diagram showing a state in which a part of a surface layer portion of a first welded layer is removed by a step of removing a part of a surface layer portion of a lower welded layer according to an embodiment of the present disclosure.
Specifically, first, as shown in Fig. 5, in a welding step S13, welding is performed between the ends 20a of the opposing plate materials 20 at a position on the second side Dt2 in the plate thickness direction Dt to form a first welded layer 311. Next, as shown in Fig. 6, in a part of the surface layer portion of the lower welded layer removal step S14, a part of the surface layer portion 31a of the first welded layer 311 is removed by a dimension T before a second welded layer 312 (corresponding to the upper welded layer 31) is laminated on the first welded layer 311 (corresponding to the lower welded layer 31).
 図7は、本開示の実施形態に係る溶接を行う工程により、二層目の溶接層を形成した状態を示す図である。図8は、本開示の実施形態に係る下層の溶接層の表層部の一部を除去する工程により、二層目の溶接層の表層部の一部を除去した状態を示す図である。
 次に、図7に示すように、溶接を行う工程S13において、互いに対向する板材20の端部20a同士の間で、一層目の溶接層311(下層の溶接層31に相当)に対し、板厚方向Dtの第一側Dt1に、二層目の溶接層312(上層の溶接層31に相当)を積層するように溶接を行う。このとき、二層目の溶接層312を溶接する際の入熱により、一層目の溶接層311が再熱される。一層目の溶接層311は、表層部31aの一部が除去されている。このため、二層目の溶接層312からの入熱により、表層部31aの一部が除去された一層目の溶接層311の全体の靱性が高まる(言い換えれば、回復する)。
Fig. 7 is a diagram showing a state in which a second welded layer is formed by a step of performing welding according to an embodiment of the present disclosure, and Fig. 8 is a diagram showing a state in which a part of a surface layer portion of the second welded layer is removed by a step of removing a part of a surface layer portion of a lower welded layer according to an embodiment of the present disclosure.
Next, as shown in Fig. 7, in a welding step S13, welding is performed between the ends 20a of the opposing plate materials 20 such that a second welded layer 312 (corresponding to the upper welded layer 31) is laminated on a first side Dt1 in the plate thickness direction Dt with respect to a first welded layer 311 (corresponding to the lower welded layer 31). At this time, the first welded layer 311 is reheated by the heat input when welding the second welded layer 312. A part of the surface layer 31a of the first welded layer 311 has been removed. Therefore, the heat input from the second welded layer 312 increases (in other words, recovers) the overall toughness of the first welded layer 311 from which a part of the surface layer 31a has been removed.
 次いで、図8に示すように、下層の溶接層の表層部の一部を除去する工程S14において、二層目の溶接層312(下層の溶接層31に相当)に対して三層目の溶接層313(上層の溶接層31に相当)が積層されるに先立ち、二層目の溶接層311の表層部31aの一部を、寸法Tだけ除去する。 Next, as shown in FIG. 8, in step S14, which removes a portion of the surface of the lower welded layer, a portion of the surface 31a of the second welded layer 311 is removed by a dimension T before the third welded layer 313 (corresponding to the upper welded layer 31) is laminated on the second welded layer 312 (corresponding to the lower welded layer 31).
 この後は、溶接を行う工程S13、下層の溶接層の表層部の一部を除去する工程S14を同様に繰り返すことで、三層目の溶接層313~五層目の溶接層315を順次積層していく。 After this, the third welded layer 313 to the fifth welded layer 315 are stacked in sequence by repeating the process S13 of welding and the process S14 of removing part of the surface of the lower welded layer in the same manner.
 図9は、本開示の実施形態に係る最表層の溶接層を形成する工程により、最表層の溶接層を形成した状態を示す図である。
 その後、最表層の溶接層を形成する工程S15では、図9に示すように、板厚方向Dtにおいて最も第一側Dt1側(最も表面20f側)に位置する六層目の溶接層316を、五層目の溶接層315に積層するように溶接を行うことで形成する。板厚方向Dtにおいて最も第一側Dt1側(最も表面20f側)に位置する最表層の溶接層316は、表面20fから板厚方向Dtの第一側Dt1に盛り上がるように形成する。
FIG. 9 is a diagram showing a state in which an outermost welded layer is formed by the step of forming an outermost welded layer according to an embodiment of the present disclosure.
9, in step S15 of forming the outermost welded layer, a sixth welded layer 316 located closest to the first side Dt1 (closest to the surface 20f) in the plate thickness direction Dt is formed by welding so as to be laminated on the fifth welded layer 315. The outermost welded layer 316 located closest to the first side Dt1 (closest to the surface 20f) in the plate thickness direction Dt is formed so as to rise from the surface 20f to the first side Dt1 in the plate thickness direction Dt.
 次いで、最表層の溶接層の少なくとも一部を除去する工程S16では、最も板材20の表面20f側に位置する溶接層31の少なくとも一部を除去する。複数の溶接層31のうち、溶接層311~314は、後から他の溶接層31が形成される際の入熱によって、靱性の回復とともに、残留応力が緩和されている。溶接層315は、後から最表層の溶接層316が形成される際の入熱によって、靱性の回復とともに、残留応力が緩和されている。これに対し、板厚方向Dtの第一側Dt1で最後に形成される最表層の溶接層316には、残留応力が生じている。そこで、最も板材20の表面20f側に位置する最表層の溶接層316の少なくとも一部を除去する。これにより、最表層の溶接層316において、再熱されていない部分を除去し、残留応力を局所的に低減する。なお、図2においては、溶接層316の全てを除去した場合を例示している。
 このようにして、本実施形態における板材20同士が接合される。これにより、互いに対向する板材20の端部20a同士の間に、複数の溶接層31が積層された溶接部30が形成される。
Next, in step S16 of removing at least a part of the outermost welded layer, at least a part of the welded layer 31 located closest to the surface 20f of the plate material 20 is removed. Among the multiple welded layers 31, the welded layers 311 to 314 have their toughness restored and their residual stress alleviated by the heat input when the other welded layers 31 are formed later. The welded layer 315 has their toughness restored and their residual stress alleviated by the heat input when the outermost welded layer 316 is formed later. In contrast, the outermost welded layer 316 formed last on the first side Dt1 in the plate thickness direction Dt has residual stress. Therefore, at least a part of the outermost welded layer 316 located closest to the surface 20f of the plate material 20 is removed. As a result, the part of the outermost welded layer 316 that has not been reheated is removed, and the residual stress is locally reduced. Note that FIG. 2 illustrates a case in which all of the welded layer 316 is removed.
In this manner, the plate materials 20 in this embodiment are joined together. As a result, a welded portion 30 in which a plurality of weld layers 31 are stacked is formed between the ends 20a of the plate materials 20 that face each other.
(作用効果)
 上記実施形態のタンクの製造方法S10では、下層の溶接層31に対して上層の溶接層31が積層されるに先立ち、下層の溶接層31の表層部31aの一部を除去している。これにより、上層の溶接層31を下層の溶接層31に対して積層するように溶接する際、上層の溶接層31から下層の溶接層31に入熱がなされる。下層の溶接層31の表層部31aの一部が除去されているので、上層の溶接層31からの入熱により、下層の溶接層31が再熱され、下層の溶接層31の靱性が高まる。複数の溶接層31を順次積層する度に、上層の溶接層31からの入熱により、最終的に、溶接部30の全体に再熱がなされ、靱性が高められる。その結果、溶接部30全体で、より均一に靱性を高めることができる。また、溶接部30の全体に再熱がなされることによって、溶接部30における残留応力を低減することもできる。
(Action and Effect)
In the manufacturing method S10 of the tank according to the embodiment, before the upper welded layer 31 is laminated on the lower welded layer 31, a part of the surface layer 31a of the lower welded layer 31 is removed. As a result, when the upper welded layer 31 is welded to be laminated on the lower welded layer 31, heat is input from the upper welded layer 31 to the lower welded layer 31. Since a part of the surface layer 31a of the lower welded layer 31 has been removed, the lower welded layer 31 is reheated by the heat input from the upper welded layer 31, and the toughness of the lower welded layer 31 is increased. Each time a plurality of welded layers 31 are sequentially laminated, the entire welded portion 30 is finally reheated by the heat input from the upper welded layer 31, and the toughness is increased. As a result, the toughness can be increased more uniformly throughout the entire welded portion 30. In addition, by reheating the entire welded portion 30, the residual stress in the welded portion 30 can also be reduced.
 また、上記実施形態では、上層の溶接層31を溶接により積層する際、上層の溶接層31からの入熱により、表層部31aの一部が除去された下層の溶接層31を再熱することによって、下層の溶接層31の全体を再熱することができる。 In addition, in the above embodiment, when the upper welded layer 31 is laminated by welding, the lower welded layer 31 from which part of the surface layer 31a has been removed is reheated by heat input from the upper welded layer 31, thereby reheating the entire lower welded layer 31.
 また、上記実施形態では、下層の溶接層31に対して上層の溶接層31を積層した際に、上層の溶接層31からの入熱による再熱範囲Aが、表層部31aの一部を除去した後の下層の溶接層31の全体に及ぶので、下層の溶接層31の全体の靱性を高めることができる。 In addition, in the above embodiment, when the upper welded layer 31 is laminated on the lower welded layer 31, the reheat range A due to the heat input from the upper welded layer 31 extends to the entire lower welded layer 31 after removing part of the surface layer 31a, thereby improving the overall toughness of the lower welded layer 31.
 また、上記実施形態では、上層の溶接層31からの入熱による、下層の溶接層31における再熱範囲Aを取得しておく。これにより、上層の溶接層31からの入熱が、表層部31aの一部を除去した後の下層の溶接層31の全体に及ぶよう、下層の溶接層31の表層部31aの一部を除去する範囲を適切に設定することができる。 In addition, in the above embodiment, the reheat range A in the lower welding layer 31 due to the heat input from the upper welding layer 31 is acquired. This makes it possible to appropriately set the range in which the part of the surface layer 31a of the lower welding layer 31 is removed so that the heat input from the upper welding layer 31 covers the entire lower welding layer 31 after the part of the surface layer 31a has been removed.
 また、上記実施形態では、板材20の表面20f側に位置する溶接層316の少なくとも一部を除去することによって、表面20f側に位置する溶接層316において、再熱されていない部分を除去し、残留応力を局所的に低減することができる。 In addition, in the above embodiment, by removing at least a portion of the welded layer 316 located on the surface 20f side of the plate material 20, the portion of the welded layer 316 located on the surface 20f side that has not been reheated can be removed, and residual stress can be locally reduced.
(その他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 なお、上記実施形態では、開先部21Vを断面V字状としたが、これに限られない。例えば、開先部を断面X字状としてもよい。
Other Embodiments
Although the embodiments of the present disclosure have been described in detail above with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like that do not deviate from the gist of the present disclosure are also included.
In the above embodiment, the groove portion 21V has a V-shaped cross section, but is not limited thereto. For example, the groove portion may have an X-shaped cross section.
<付記>
 実施形態に記載のタンク1の製造方法は、例えば以下のように把握される。
<Additional Notes>
A manufacturing method of the tank 1 described in the embodiment can be understood, for example, as follows.
(1)第1の態様に係るタンク1の製造方法は、タンク1を構成する鋼製の板材20を継手溶接することで前記タンク1を製造するタンク1の製造方法であって、互いに対向する前記板材20の端部20a同士の間に、前記板材20の表面20f側に向かって複数の溶接層31が順次積層されるように溶接を行う工程S13と、下層の前記溶接層31に対して上層の前記溶接層31が積層されるに先立ち、前記下層の溶接層31の表層部31aの一部を除去する工程S14と、
 を含む。
(1) A manufacturing method of a tank 1 according to a first aspect is a manufacturing method of a tank 1 for manufacturing the tank 1 by joint-welding steel plates 20 constituting the tank 1, the manufacturing method including a step S13 of welding between the ends 20a of the plates 20 facing each other so that a plurality of welded layers 31 are sequentially stacked toward the surface 20f side of the plates 20, and a step S14 of removing a part of the surface layer 31a of the lower welded layer 31 before the upper welded layer 31 is stacked on the lower welded layer 31.
including.
 このタンク1の製造方法は、下層の溶接層31に対して上層の溶接層31が積層されるのに先立ち、下層の溶接層31の表層部31aの一部を除去する。これにより、下層の溶接層31を再熱しようとした場合に、下層の溶接層31の全体に入熱することができるため、下層の溶接層31の靱性を高めることができる。その結果、より均一に溶接部30の靱性を高めることができる。また、溶接部30を再熱することによって、溶接部30における残留応力を低減することもできる。 In this manufacturing method of the tank 1, a portion of the surface portion 31a of the lower welded layer 31 is removed before the upper welded layer 31 is laminated on the lower welded layer 31. As a result, when attempting to reheat the lower welded layer 31, heat can be input to the entire lower welded layer 31, thereby increasing the toughness of the lower welded layer 31. As a result, the toughness of the welded portion 30 can be increased more uniformly. Furthermore, by reheating the welded portion 30, residual stress in the welded portion 30 can also be reduced.
(2)第2の態様に係るタンク1の製造方法は、(1)のタンク1の製造方法であって、前記溶接を行う工程S13では、前記下層の溶接層31に対して前記上層の溶接層31を溶接により積層する際、前記上層の溶接層31からの入熱により、前記表層部31aの一部が除去された前記下層の溶接層31を再熱する。 (2) The manufacturing method of the tank 1 according to the second aspect is the manufacturing method of the tank 1 according to (1), and in the welding step S13, when the upper welding layer 31 is laminated to the lower welding layer 31 by welding, the lower welding layer 31 from which a part of the surface layer 31a has been removed is reheated by the heat input from the upper welding layer 31.
 これにより、上層の溶接層31を溶接により積層する際、上層の溶接層31からの入熱により、表層部31aの一部が除去された下層の溶接層31を再熱することができる。そのため、複数の溶接層31を順次積層する度に、上層の溶接層31から入熱され、最終的に、溶接部30の全体が再熱されて、溶接部30全体の靱性を高めることができる。 As a result, when the upper welded layer 31 is laminated by welding, the lower welded layer 31 from which part of the surface layer 31a has been removed can be reheated by the heat input from the upper welded layer 31. Therefore, each time multiple welded layers 31 are laminated in sequence, heat is input from the upper welded layer 31, and ultimately the entire welded portion 30 is reheated, thereby increasing the toughness of the entire welded portion 30.
(3)第3の態様に係るタンク1の製造方法は、(1)又は(2)のタンク1の製造方法であって、前記下層の溶接層31の表層部31aの一部を除去する工程S14では、前記下層の溶接層31に対して前記上層の溶接層31を積層した際に、前記上層の溶接層31からの入熱による再熱範囲Aが、前記表層部31aの一部を除去した後の前記下層の溶接層31の全体に及ぶよう、前記下層の溶接層31の表層部31aの一部を除去する。 (3) The manufacturing method of the tank 1 according to the third aspect is the manufacturing method of the tank 1 according to (1) or (2), and in step S14 of removing a portion of the surface layer 31a of the lower welded layer 31, the portion of the surface layer 31a of the lower welded layer 31 is removed so that when the upper welded layer 31 is laminated on the lower welded layer 31, the reheat range A due to the heat input from the upper welded layer 31 covers the entire lower welded layer 31 after the portion of the surface layer 31a has been removed.
 これにより、下層の溶接層31に対して上層の溶接層31を積層した際に、上層の溶接層31からの入熱による再熱範囲Aが、表層部31aの一部を除去した後の下層の溶接層31の全体に及ぶので、下層の溶接層31の全体の靱性を高めることができる。 As a result, when the upper welded layer 31 is laminated on the lower welded layer 31, the reheat range A due to the heat input from the upper welded layer 31 extends to the entire lower welded layer 31 after part of the surface layer 31a has been removed, thereby increasing the overall toughness of the lower welded layer 31.
(4)第4の態様に係るタンク1の製造方法は、(1)から(3)の何れか一つのタンク1の製造方法であって、前記下層の溶接層31に対して前記上層の溶接層31を積層した際に、前記上層の溶接層31からの入熱による、前記下層の溶接層31における再熱範囲Aを取得する工程S11と、前記再熱範囲Aを取得する工程S11で取得された前記再熱範囲Aに基づき、前記下層の溶接層31の表層部31aの一部を除去する工程S14で、前記下層の溶接層31の表層部31aの一部を除去する範囲を設定する工程S12と、を更に含む。 (4) The manufacturing method of the tank 1 according to the fourth aspect is a manufacturing method of the tank 1 according to any one of (1) to (3), and further includes a step S11 of acquiring a reheating range A in the lower welded layer 31 due to heat input from the upper welded layer 31 when the upper welded layer 31 is laminated on the lower welded layer 31, and a step S12 of setting a range for removing a portion of the surface layer 31a of the lower welded layer 31 based on the reheating range A acquired in the step S11 of acquiring the reheating range A, in a step S14 of removing a portion of the surface layer 31a of the lower welded layer 31.
 これにより、上層の溶接層31からの入熱が、表層部31aの一部を除去した後の下層の溶接層31の全体に及ぶよう、下層の溶接層31の表層部31aの一部を除去する範囲を適切に設定することができる。 This allows the range over which part of the surface layer 31a of the lower welded layer 31 is removed to be appropriately set so that the heat input from the upper welded layer 31 reaches the entire lower welded layer 31 after part of the surface layer 31a has been removed.
(5)第5の態様に係るタンク1の製造方法は、(1)から(4)の何れか一つのタンク1の製造方法であって、複数の前記溶接層31のうち、最も前記板材20の前記表面20f側に位置する前記溶接層316の少なくとも一部を除去する。 (5) The manufacturing method of the tank 1 according to the fifth aspect is any one of the manufacturing methods of the tank 1 according to (1) to (4), in which at least a portion of the welded layer 316, which is located closest to the surface 20f of the plate material 20, among the multiple welded layers 31, is removed.
 これにより、板材20の表面20f側に位置する溶接層316の少なくとも一部を除去することによって、表面20f側に位置する溶接層316において、再熱されていない部分を除去し、残留応力を局所的に低減することができる。 By removing at least a portion of the welded layer 316 located on the surface 20f side of the plate material 20, the portion of the welded layer 316 located on the surface 20f side that has not been reheated can be removed, and residual stress can be locally reduced.
 本開示のタンクの製造方法によれば、溶接部全体で、より均一に靱性を高めることができる。 The tank manufacturing method disclosed herein allows for more uniform toughness to be achieved throughout the entire weld.
1…タンク 2…筒状部 3…鏡板部 20…板材 20a…端部 20f…表面 20g…表面 20s…傾斜面 21V…開先部 30…溶接部 31…溶接層、311~316…溶接層 31A…下層の溶接層 31B…上層の溶接層 31a…表層部 A…再熱範囲 Da…対向方向 Dc…中心軸方向 Dt…板厚方向 Dt1…第一側 Dt2…第二側 K…除去する範囲 S10…タンクの製造方法 S11…溶接層における再熱範囲を取得する工程 S12…溶接層の表層部の一部を除去する範囲を設定する工程 S13…溶接を行う工程 S14…下層の溶接層の表層部の一部を除去する工程 S15…最表層の溶接層を形成する工程 S16…最表層の溶接層の少なくとも一部を除去する工程 1...tank 2...tubular section 3...head plate section 20...plate material 20a...end 20f...surface 20g...surface 20s...inclined surface 21V...groove section 30...welding section 31...welding layer, 311-316...welding layer 31A...lower welding layer 31B...upper welding layer 31a...surface A...reheating range Da...opposing direction Dc...central axis direction Dt...plate thickness direction Dt1...first side Dt2...second side K...removal range S10...tank manufacturing method S11...process of obtaining reheating range in welding layer S12...process of setting range of removal of part of surface of welding layer S13...process of welding S14...process of removing part of surface of lower welding layer S15...process of forming outermost welding layer S16...process of removing at least part of outermost welding layer

Claims (5)

  1.  タンクを構成する鋼製の板材を継手溶接することで前記タンクを製造するタンクの製造方法であって、
     互いに対向する前記板材の端部同士の間に、前記板材の表面側に向かって複数の溶接層が順次積層されるように溶接を行う工程と、
     下層の前記溶接層に対して上層の前記溶接層が積層されるに先立ち、前記下層の溶接層の表層部の一部を除去する工程と、
    を含むタンクの製造方法。
    A manufacturing method of a tank, comprising the steps of manufacturing a tank by joint welding of steel plate materials constituting the tank,
    A step of welding between the opposing ends of the plate materials such that a plurality of weld layers are sequentially stacked toward a front surface side of the plate materials;
    a step of removing a part of a surface layer of the lower welded layer prior to laminating the upper welded layer on the lower welded layer;
    A method for manufacturing a tank comprising the steps of:
  2.  前記溶接を行う工程では、前記下層の溶接層に対して前記上層の溶接層を溶接により積層する際、前記上層の溶接層からの入熱により、前記表層部の一部が除去された前記下層の溶接層を再熱する
    請求項1に記載のタンクの製造方法。
    2. The method for manufacturing a tank according to claim 1, wherein, in the welding step, when the upper weld layer is laminated onto the lower weld layer by welding, the lower weld layer from which a portion of the surface layer has been removed is reheated by heat input from the upper weld layer.
  3.  前記下層の溶接層の表層部の一部を除去する工程では、前記下層の溶接層に対して前記上層の溶接層を積層した際に、前記上層の溶接層からの入熱による再熱範囲が、前記表層部の一部を除去した後の前記下層の溶接層の全体に及ぶよう、前記下層の溶接層の表層部の一部を除去する
    請求項1又は2に記載のタンクの製造方法。
    3. The method for manufacturing a tank according to claim 1 or 2, wherein in the step of removing a portion of the surface portion of the lower welded layer, the portion of the surface portion of the lower welded layer is removed so that, when the upper welded layer is laminated on the lower welded layer, a reheat range due to heat input from the upper welded layer will cover the entire lower welded layer after the portion of the surface portion has been removed.
  4.  前記下層の溶接層に対して前記上層の溶接層を積層した際に、前記上層の溶接層からの入熱による、前記下層の溶接層における再熱範囲を取得する工程と、
     前記再熱範囲を取得する工程で取得された前記再熱範囲に基づき、前記下層の溶接層の表層部の一部を除去する工程で、前記下層の溶接層の表層部の一部を除去する範囲を設定する工程と、を更に含む
    請求項1又は2に記載のタンクの製造方法。
    acquiring a reheat range in the lower welding layer due to heat input from the upper welding layer when the upper welding layer is laminated on the lower welding layer;
    3. The method for manufacturing a tank according to claim 1 or 2, further comprising: a step of setting a range in which a portion of the surface portion of the lower welded layer is removed, in a step of removing a portion of the surface portion of the lower welded layer, based on the reheating range acquired in the step of acquiring the reheating range.
  5.  複数の前記溶接層のうち,最も前記板材の前記表面側に位置する前記溶接層の少なくとも一部を除去する
    請求項1又は2に記載のタンクの製造方法。
    The method for manufacturing a tank according to claim 1 or 2, further comprising removing at least a portion of the welded layer located closest to the surface side of the plate material among the plurality of welded layers.
PCT/JP2023/037696 2022-10-25 2023-10-18 Tank manufacturing method WO2024090305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-170369 2022-10-25
JP2022170369A JP2024062503A (en) 2022-10-25 2022-10-25 Tank manufacturing method

Publications (1)

Publication Number Publication Date
WO2024090305A1 true WO2024090305A1 (en) 2024-05-02

Family

ID=90830803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037696 WO2024090305A1 (en) 2022-10-25 2023-10-18 Tank manufacturing method

Country Status (2)

Country Link
JP (1) JP2024062503A (en)
WO (1) WO2024090305A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216095A (en) * 1996-02-08 1997-08-19 Nippon Steel Weld Prod & Eng Co Ltd Automatic weld slag removing device
JP2008068274A (en) * 2006-09-12 2008-03-27 Kobe Steel Ltd High strength weld metal having excellent low temperature toughness
JP2011056539A (en) * 2009-09-09 2011-03-24 Kobe Steel Ltd Welding solid wire and weld metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09216095A (en) * 1996-02-08 1997-08-19 Nippon Steel Weld Prod & Eng Co Ltd Automatic weld slag removing device
JP2008068274A (en) * 2006-09-12 2008-03-27 Kobe Steel Ltd High strength weld metal having excellent low temperature toughness
JP2011056539A (en) * 2009-09-09 2011-03-24 Kobe Steel Ltd Welding solid wire and weld metal

Also Published As

Publication number Publication date
JP2024062503A (en) 2024-05-10

Similar Documents

Publication Publication Date Title
US4348131A (en) Welded structure having improved mechanical strength and process for making same
JP5909097B2 (en) Welding method
JP5940247B2 (en) Welding structure and welding method
WO2024090305A1 (en) Tank manufacturing method
US10648607B2 (en) Process for lining a steel pipe for the subsea transport of fluids
JP2007021530A (en) Method for repairing steel casting by welding and steel casting having part repaired by welding
KR20190074989A (en) Method of manufacturing ultra thin and wide width steel sheet
WO2024024679A1 (en) Tank manufacturing method
WO2021210303A1 (en) Method for producing resistance-welded member
KR102200160B1 (en) Method of manufacturing ultra thin and wide width steel sheet
KR20190072993A (en) Method of manufacturing thick steel plate using welded metal plate
JP2006231339A (en) Repairing method of structure and repairing structure
JP2007044698A (en) Welded structure, and welding method of structure
KR102245230B1 (en) Manufacturing method for thin and wide steel plate
US10035217B2 (en) Joint configuration
JP2012240059A (en) Weld portion repairing method
WO2024090319A1 (en) Tank for low-temperature gas and method for manufacturing tank for low-temperature gas
JP7104368B2 (en) Welded joint
CN110026661A (en) The butt welding method and interfacing part of double-sided composite plate and two phase stainless steel
Sterjovski Pad-weld repairs of in-service high-strength steel plate used in seawater environments
JP6688947B1 (en) Pressure vessel
JPS60180667A (en) Circumferential welding method of stainless steel clad pipe
WO2021210541A1 (en) Method for producing resistance-welded member
JPS59170562A (en) Hydrogen resistant pressure container
US10442036B2 (en) Test plate for approving steel or metal welding parameters: method of approving steel and metal welding parameters: under matched butt welded plates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882510

Country of ref document: EP

Kind code of ref document: A1