WO2024090291A1 - Adhesive composition, and adhesive sheet, layered body and printed circuit board containing same - Google Patents

Adhesive composition, and adhesive sheet, layered body and printed circuit board containing same Download PDF

Info

Publication number
WO2024090291A1
WO2024090291A1 PCT/JP2023/037559 JP2023037559W WO2024090291A1 WO 2024090291 A1 WO2024090291 A1 WO 2024090291A1 JP 2023037559 W JP2023037559 W JP 2023037559W WO 2024090291 A1 WO2024090291 A1 WO 2024090291A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
parts
mass
epoxy resin
adhesive composition
Prior art date
Application number
PCT/JP2023/037559
Other languages
French (fr)
Japanese (ja)
Inventor
晃一 坂本
哲生 川楠
Original Assignee
東洋紡エムシー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡エムシー株式会社 filed Critical 東洋紡エムシー株式会社
Publication of WO2024090291A1 publication Critical patent/WO2024090291A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present invention relates to an adhesive composition. More specifically, the present invention relates to an adhesive composition used for bonding a resin substrate to a resin substrate or a metal substrate. In particular, the present invention relates to an adhesive composition for flexible printed wiring boards (hereinafter abbreviated as FPC), as well as an adhesive sheet, a laminate, and a printed wiring board containing the same.
  • FPC flexible printed wiring boards
  • Flexible printed circuit boards are boards that have electrical circuits formed on a base material made by bonding a thin, soft insulating film, such as polyimide, to a conductive metal, such as copper foil, with an adhesive. Unlike rigid boards, they are extremely thin and flexible, making them suitable for use in small gaps and bending moving parts of electronic devices, and therefore are used in many of the electronic devices around us, such as personal computers and smartphones. Many FPCs are also installed in automobiles, and the adhesives used there often require high long-term heat resistance.
  • Non-Patent Document 1 In recent years, the use of power semiconductors that generate high heat has increased along with the spread of electric vehicles, and the printed wiring board materials used to mount these semiconductors are required to have even higher standards of long-term heat resistance than before (for example, Non-Patent Document 1).
  • Polyester resins are generally composed of polycarboxylic acids and polyhydric alcohols. They are widely used in a variety of applications, including coatings and adhesives, because of their flexibility and the ability to freely control the molecular weight and the selection and combination of polycarboxylic acids and polyhydric alcohols.
  • Polyester resins have excellent adhesion to metals, including copper, and have been used as adhesives for FPCs when mixed with a hardener (see, for example, Patent Document 1).
  • the adhesive using the polyester resin described in Patent Document 1 has poor solder heat resistance and does not have the high standard of long-term heat resistance required for modern automotive applications.
  • FPC adhesives are required to have circuit embedding properties that allow them to conform to the circuit pattern and ensure insulation between wiring. For this reason, when a substrate on which a circuit has been formed and a substrate having an adhesive layer are thermocompression bonded and laminated, a certain degree of flow of the adhesive components in a planar direction (hereafter referred to as resin flow) is necessary. On the other hand, excessive resin flow must be suppressed, as the adhesive components may flow out from between the wiring and cover areas outside the application range, causing problems such as poor conductivity. Improving circuit embedding properties and suppressing resin flow are mutually contradictory requirements, and the problem is that they are difficult to meet simultaneously.
  • the object of the present invention is to provide an adhesive composition that has excellent adhesion and solder heat resistance, and further exhibits excellent adhesion even after being exposed to a high-temperature environment for a long period of time, and that is capable of suppressing excessive resin flow while having good circuit embedding properties, as well as an adhesive sheet, laminate, and printed wiring board that contain the same.
  • the present invention comprises the following: (1) An adhesive composition comprising a polyester resin (A) and an epoxy resin (B), the epoxy resin (B) comprising at least two types of epoxy resins (b) having a nitrogen atom, one of which is the following epoxy resin (b1) and the other is the following epoxy resin (b2).
  • (b1) a resin having three or less functionalities; (b2) a resin having four or more functionalities; (2) an adhesive composition containing a polyester resin (A) and an epoxy resin (B), the epoxy resin (B) containing at least two kinds of epoxy resins (b) having a nitrogen atom, one of the two kinds being the following epoxy resin (b3) and the other being the following epoxy resin (b4).
  • (b3) A resin having a nitrogen atom that is not contained in an aromatic ring and is not adjacent to an aromatic ring.
  • (b4) A resin having a nitrogen atom excluding (b3).
  • the adhesive composition of the present invention has excellent adhesion, solder heat resistance, and long-term heat resistance, and also satisfies the requirements for circuit embedding and resin flow suppression. For this reason, it is suitable for FPC adhesives, adhesive sheets, laminates, and printed wiring boards for automotive applications.
  • polyester resin (A) From the viewpoint of satisfying long-term heat resistance, the present invention uses a polyester resin (A) as the base resin.
  • the polyester resin (A) used in the present invention has a chemical structure obtained by polycondensation of a polycarboxylic acid component and a polyhydric alcohol component, and each of the polycarboxylic acid component and the polyhydric alcohol component is composed of one or more selected components.
  • the polycarboxylic acid component constituting the polyester resin (A) is not particularly limited, but the following polycarboxylic acids or their esters, and polycarboxylic acid anhydrides can be used.
  • examples of the polycarboxylic acid include aliphatic polycarboxylic acids, alicyclic polycarboxylic acids, and aromatic polycarboxylic acids.
  • Examples of the aliphatic polycarboxylic acids include adipic acid, sebacic acid, dimer acid, 1,2,3,4-butanetetracarboxylic acid, fumaric acid, maleic acid, and succinic acid.
  • Examples of the alicyclic polycarboxylic acids include 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, tetrahydrophthalic acid, hexahydrophthalic acid, and methyltetrahydrophthalic acid.
  • aromatic polycarboxylic acids examples include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 2,5-furandicarboxylic acid, 5-sodium sulfodimethylisophthalic acid, trimellitic acid, pyromellitic acid, and benzophenonetetracarboxylic acid, as well as esters and acid anhydrides thereof (pyromellitic anhydride (PMDA), etc.).
  • PMDA pyromellitic anhydride
  • the polyester resin (A) preferably contains a monomer unit derived from an aromatic polycarboxylic acid, and among these, the aromatic polycarboxylic acid preferably contains naphthalenedicarboxylic acid, terephthalic acid, or isophthalic acid.
  • the monomer unit derived from the aromatic polycarboxylic acid is preferably 60 mol% or more, more preferably 85 mol% or more, and even more preferably 96 mol% or more, and is preferably 100 mol% or less, and may be 98 mol% or less.
  • the use of an aromatic polycarboxylic acid can improve the solder heat resistance of the adhesive composition.
  • the polyhydric alcohol constituting the polyester resin (A) is not particularly limited, but examples thereof include aliphatic polyhydric alcohols, alicyclic polyhydric alcohols, aromatic polyhydric alcohols, etc.
  • aliphatic polyhydric alcohols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2-methyl-1,3-hexanediol, 2-methyl-2-ethyl-1,3-propanediol, 2,2-diethyl-1 ,3-propanediol, 2-ethy
  • the polyester resin (A) preferably contains a monomer unit derived from a polyhydric alcohol having an alkylene group having 4 or more carbon atoms.
  • polyhydric alcohols having an alkylene group having 4 or more carbon atoms include 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2-methyl-1,3-hexanediol, 2,4-diethyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, dimer diol, polytetramethylene glycol, and the like.
  • the monomer unit derived from a polyhydric alcohol having an alkylene group having 4 or more carbon atoms is preferably 20 to 80 mol%, more preferably 30 to 65 mol%, and even more preferably 40 to 60 mol%.
  • the adhesive strength of the adhesive composition can be improved.
  • the polyester resin (A) used in the present invention can also be copolymerized with lactones or lactams.
  • lactones or lactams for example, ⁇ -caprolactone or ⁇ -caprolactam can be used.
  • the polymerization condensation reaction method for producing the polyester resin (A) used in the present invention includes, for example, 1) a method in which a polycarboxylic acid and a polyhydric alcohol are heated in the presence of a known catalyst, and a dehydration esterification process is performed, followed by a polyhydric alcohol removal/polycondensation reaction; 2) a method in which an alcohol ester of a polycarboxylic acid and a polyhydric alcohol are heated in the presence of a known catalyst, and a transesterification reaction is performed, followed by a polyhydric alcohol removal/polycondensation reaction; and 3) a method in which depolymerization is performed.
  • a part or all of the acid component may be replaced with an acid anhydride.
  • polyester resin (A) used in the present invention conventionally known polymerization catalysts such as titanium compounds, antimony compounds, germanium compounds, and metal acetates can be used.
  • titanium compounds such as tetra-n-butyl titanate, tetraisopropyl titanate, and titanium oxyacetylcetonate can be used; antimony compounds such as antimony trioxide and tributoxyantimony can be used; germanium compounds such as germanium oxide and tetra-n-butoxygermanium can be used; and metal acetates such as magnesium, iron, zinc, manganese, cobalt, and aluminum can be used.
  • These catalysts can be used alone or in combination of two or more.
  • the number average molecular weight of the polyester resin (A) used in the present invention is preferably less than 100,000, more preferably 50,000 or less, and even more preferably 25,000 or less. It is also preferably 3,000 or more, more preferably 5,000 or more, and even more preferably 9,000 or more. If it is within the above range, it is easy to handle when dissolved in a solvent, and an adhesive composition with excellent adhesion can be obtained.
  • the glass transition temperature of the polyester resin (A) used in the present invention is preferably 0°C or higher, more preferably 10°C or higher, and even more preferably 20°C or higher. It is also preferably 200°C or lower, more preferably 100°C or lower, and even more preferably 50°C or lower. If it is within the above range, an adhesive composition with excellent adhesion can be obtained.
  • the acid value of the polyester resin (A) used in the present invention is preferably 50 eq/10 6 g or more, more preferably 80 eq/10 6 g or more.
  • the acid value 50 eq/10 6 g or more By making the acid value 50 eq/10 6 g or more, the number of reaction points with the epoxy resin (B) increases, and a tough adhesive layer with high crosslink density can be formed after curing, resulting in excellent solder heat resistance.
  • the upper limit of the acid value is not particularly limited, but is usually 1000 eq/10 6 g or less, more preferably 500 eq/10 6 g or less, and even more preferably 400 eq/10 6 g or less.
  • the acid value of the polyester resin (A) can be increased by any of the following methods: (1) adding a polyvalent carboxylic acid having a valence of three or more and/or an anhydride polyvalent carboxylic acid having a valence of three or more after the polycondensation reaction is completed and reacting (acid addition); or (2) intentionally modifying the resin by applying heat, oxygen, water, or the like during the polycondensation reaction.
  • the polyvalent carboxylic acid anhydride used in the acid addition method is not particularly limited, but examples include trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3,3,4,4-benzophenonetetracarboxylic dianhydride, 3,3,4,4-biphenyltetracarboxylic dianhydride, and ethylene glycol bistrimellitic anhydride. One or more of these can be used. Trimellitic anhydride is preferred.
  • Epoxy resin (B) contains an epoxy resin (b) having a nitrogen atom.
  • epoxy resin is not particularly limited as long as it has one or more epoxy groups in the molecule. By using an epoxy resin having a nitrogen atom, the long-term heat resistance is improved.
  • the nitrogen atoms in the skeleton of the epoxy resin (b) that contains nitrogen atoms have a catalytic effect, and as a result, it has a higher reactivity with polyester resins than other epoxy resins. Due to this high reactivity, when the adhesive composition is applied to a substrate and dried, curing progresses to a certain extent, and excessive resin flow can be suppressed when the resin is attached to a substrate on which a circuit has been formed.
  • epoxy resin (b) having a nitrogen atom examples include glycidylamine type epoxy resins, triazine derivative epoxy resins, etc., and glycidylamine type epoxy resins are preferred in order to obtain the effects of the present invention more significantly.
  • glycidylamine type epoxy resins include aliphatic glycidylamine type epoxy resins, alicyclic glycidylamine type epoxy resins, and aromatic glycidylamine type epoxy resins.
  • Examples of alicyclic glycidylamine type epoxy resins include 1,3-bis(diglycidylaminomethyl)cyclohexane, and examples of aromatic glycidylamine type epoxy resins include N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, N,N,N',N'-tetraglycidyl-(4,4'-methylenebisaniline), N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, and N,N,N',N'-tetraglycidyl-m-xylylenediamine.
  • aromatic glycidylamine type epoxy resins include N,N-diglycidylaniline, N,N-digly
  • triazine derivative epoxy resins include 1,3,5-triglycidyl isocyanurate.
  • the adhesive composition of the present invention is characterized by containing at least two types of epoxy resins (b) having nitrogen atoms.
  • one of the two types of nitrogen-atom-containing epoxy resins (b) be a resin with three or fewer functionalities (hereinafter referred to as b1) and the other be a resin with four or more functionalities (hereinafter referred to as b2).
  • the number of functionalities refers to the number of epoxy groups in one molecule.
  • (b1) include N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, and 1,3,5-triglycidyl isocyanurate
  • specific examples of (b2) include 1,3-bis(diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-(4,4'-methylenebisaniline), N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, and N,N,N',N'-tetraglycidyl-m-xylylenediamine.
  • the content of (b1) per 100 parts by mass of the epoxy resin (b) having nitrogen atoms is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 50 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 75 parts by mass or less, and even more preferably 70 parts by mass or less.
  • the content of (b2) per 100 parts by mass of the epoxy resin (b) having a nitrogen atom is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 30 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and even more preferably 50 parts by mass or less.
  • the content of (b1) is preferably 20 parts by mass or more and 300 parts by mass or less, more preferably 60 parts by mass or more and 250 parts by mass or less, and even more preferably 120 parts by mass or more and 240 parts by mass or less, per 100 parts by mass of (b2).
  • the two types of epoxy resins (b) having nitrogen atoms are particularly preferably such that one is a resin having nitrogen atoms that are not contained in an aromatic ring and are not adjacent to an aromatic ring (hereinafter referred to as b3), and the other is a resin having nitrogen atoms other than (b3) (hereinafter referred to as b4), i.e., a resin having nitrogen atoms contained in an aromatic ring or adjacent to an aromatic ring and excluding (b3).
  • (b3) include 1,3-bis(diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-m-xylylenediamine, etc.
  • Specific examples of (b4) include N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, N,N,N',N'-tetraglycidyl-(4,4'-methylenebisaniline), N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, 1,3,5-triglycidyl isocyanurate, etc.
  • the content of (b3) per 100 parts by mass of the epoxy resin (b) having a nitrogen atom is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 30 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and even more preferably 50 parts by mass or less.
  • the content of (b4) per 100 parts by mass of the epoxy resin (b) having a nitrogen atom is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 50 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 75 parts by mass or less, and even more preferably 70 parts by mass or less.
  • the content of (b3) is preferably 20 parts by mass or more and 300 parts by mass or less, more preferably 30 parts by mass or more and 200 parts by mass or less, and even more preferably 40 parts by mass or more and 90 parts by mass or less, per 100 parts by mass of (b4).
  • the nitrogen-containing epoxy resin (b) it is particularly preferable from the viewpoint of circuit embedding properties and suppression of resin flow that one of the two types is a resin having two or more nitrogen atoms and the other is a resin having one nitrogen atom.
  • the resin having two or more nitrogen atoms include glycidylamine-type epoxy resins such as 1,3-bis(diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-(4,4'-methylenebisaniline), N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, and N,N,N',N'-tetraglycidyl-m-xylylenediamine, and examples of triazine derivative epoxy resins include 1,3,5-triglycidyl isocyanurate.
  • resins having one nitrogen atom include N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine, N,N,O-triglycidyl-p-aminophenol, and N,N,O-triglycidyl-4-amino-3-methylphenol.
  • the content of the resin having one nitrogen atom per 100 parts by mass of the nitrogen-containing epoxy resin (b) is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 50 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 75 parts by mass or less, and even more preferably 70 parts by mass or less.
  • the content of the resin having two or more nitrogen atoms per 100 parts by mass of the nitrogen-containing epoxy resin (b) is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 30 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and even more preferably 50 parts by mass or less.
  • the content of the resin having one nitrogen atom is preferably 20 parts by mass or more and 300 parts by mass or less, more preferably 60 parts by mass or more and 250 parts by mass or less, and even more preferably 120 parts by mass or more and 240 parts by mass or less, per 100 parts by mass of the resin having two or more nitrogen atoms.
  • the content of the resin (b) having a nitrogen atom is preferably 40 parts by mass or more per 100 parts by mass of the epoxy resin (B), more preferably 60 parts by mass or more, and even more preferably 70 parts by mass or more, and may be 100 parts by mass.
  • the content is equal to or more than the lower limit, the long-term heat resistance is particularly good.
  • the adhesive composition of the present invention may contain an epoxy resin other than the nitrogen-atom-containing epoxy resin (b).
  • the epoxy resin other than the nitrogen-atom-containing epoxy resin (b) is not particularly limited as long as it has an epoxy group in the molecule, but is preferably one having two or more epoxy groups in the molecule. Specifically, it is not particularly limited, but at least one selected from the group consisting of biphenyl-type epoxy resin, naphthalene-type epoxy resin, bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, novolac-type epoxy resin, alicyclic epoxy resin, dicyclopentadiene-type epoxy resin, dimer acid-modified epoxy resin, and epoxy-modified polybutadiene can be used.
  • the content of epoxy resin (B) is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, per 100 parts by mass of polyester resin (A) in total. If it is equal to or more than the lower limit, a sufficient curing effect can be obtained, and excellent adhesion and solder heat resistance can be exhibited. Also, it is preferably 20 parts by mass or less, more preferably 10 parts by mass or less. If it is equal to or less than the upper limit, long-term heat resistance becomes good. In other words, by keeping it within the above range, an adhesive composition having better adhesion, solder heat resistance, and long-term heat resistance can be obtained.
  • the adhesive composition of the present invention may contain a flame retardant.
  • the flame retardant is not particularly limited, but may be an organic phosphorus compound or an organic metal phosphinate (C). Since the organic metal phosphinate (C) is particularly effective in achieving both flame retardancy and long-term heat resistance, the organic metal phosphinate (C) is preferred.
  • organic phosphorus compounds include 9,10-dihydro-10-benzyl-9-oxa-10-phosphaphenanthrene-10-oxide, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, etc.
  • organic metal phosphinate examples include dimethylphosphinate, ethylmethylphosphinate, diethylphosphinate, methyl-n-propylphosphinate, methylphenylphosphinate, diphenylphosphinate, methane di(methylphosphinic acid) salt, and benzene-1,4-di(methylphosphinic acid) salt.
  • dimethylphosphinates include magnesium dimethylphosphinate, calcium dimethylphosphinate, zinc dimethylphosphinate, and aluminum dimethylphosphinate.
  • Examples of ethylmethylphosphinates include magnesium ethylmethylphosphinate, calcium ethylmethylphosphinate, zinc ethylmethylphosphinate, and aluminum ethylmethylphosphinate.
  • Examples of diethylphosphinates include magnesium diethylphosphinate, calcium diethylphosphinate, zinc diethylphosphinate, and aluminum diethylphosphinate.
  • Examples of methyl-n-propylphosphinates include magnesium methyl-n-propylphosphinate, calcium methyl-n-propylphosphinate, zinc methyl-n-propylphosphinate, and aluminum methyl-n-propylphosphinate.
  • Examples of methylphenylphosphinates include magnesium methylphenylphosphinate.
  • Examples of diphenylphosphinates that can be used include magnesium diphenylphosphinate, calcium diphenylphosphinate, zinc diphenylphosphinate, and aluminum diphenylphosphinate;
  • examples of methane di(methylphosphinic acid) salts include magnesium methane di(methylphosphinic acid), calcium methane di(methylphosphinic acid), zinc methane di(methylphosphinic acid), and aluminum methane di(methylphosphinic acid);
  • examples of benzene-1,4-di(methylphosphinic acid) salts include magnesium benzene-1,4-di(methylphosphinic acid), calcium benzene-1,4-di(methylphosphinic acid), zinc benzene-1,4-di(methylphosphinic acid), and aluminum benzene-1,4-di(methylphosphinic acid
  • the content of the flame retardant is preferably 1 to 40 parts by mass, and more preferably 5 to 20 parts by mass, per 100 parts by mass of polyester resin (A) in total.
  • the adhesive composition of the present invention may further contain an organic solvent.
  • the organic solvent used in the present invention is not particularly limited as long as it dissolves the polyester resin (A) and the epoxy resin (B).
  • Specific examples of the organic solvent include aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohol solvents, ketone solvents, ester solvents, and glycol ether solvents.
  • aromatic hydrocarbons include benzene, toluene, and xylene.
  • Examples of aliphatic hydrocarbons include hexane, heptane, octane, and decane.
  • Examples of alicyclic hydrocarbons include cyclohexane, cyclohexene, methylcyclohexane, and ethylcyclohexane.
  • Examples of halogenated hydrocarbons include trichloroethylene, dichloroethylene, chlorobenzene, and chloroform.
  • Examples of alcohol solvents include methanol, ethanol, isopropyl alcohol, butanol, pentanol, hexanol, propanediol, and phenol.
  • Examples of ketone solvents include acetone and methyl isopropyl alcohol.
  • solvents examples include isobutyl ketone, methyl ethyl ketone, pentanone, hexanone, cyclohexanone, isophorone, acetophenone, etc.
  • ester solvents include methyl acetate, ethyl acetate, butyl acetate, methyl propionate, butyl formate, etc.
  • glycol ether solvents include ethylene glycol monomethyl ether, ethylene glycol mono n-butyl ether, ethylene glycol mono iso-butyl ether, ethylene glycol mono tert-butyl ether, diethylene glycol mono n-butyl ether, diethylene glycol mono iso-butyl ether, triethylene glycol mono n-butyl ether, tetraethylene glycol mono n-butyl ether, etc., and these can be used alone or in combination of two or more.
  • aromatic hydrocarbons or ketone solvents are examples of aromatic hydrocarbon
  • the content of the organic solvent is preferably in the range of 100 to 1000 parts by mass per 100 parts by mass of polyester resin (A) in total.
  • the content is preferably in the range of 100 to 1000 parts by mass per 100 parts by mass of polyester resin (A) in total.
  • the adhesive composition of the present invention may further contain other components as necessary.
  • specific examples of such components include a tackifier, a filler, and a silane coupling agent.
  • the adhesive composition of the present invention may contain a tackifier as necessary.
  • tackifiers include polyterpene resins, rosin resins, aliphatic petroleum resins, alicyclic petroleum resins, copolymerized petroleum resins, styrene resins, and hydrogenated petroleum resins, and are used for the purpose of improving adhesive strength. These may be used alone or in any combination of two or more.
  • a tackifier When a tackifier is contained, it is preferably contained in a range of 1 to 200 parts by mass, more preferably in a range of 5 to 150 parts by mass, and most preferably in a range of 10 to 100 parts by mass, relative to a total of 100 parts by mass of the polyester resin (A) and the epoxy resin (B). By keeping it within the above range, the effect of the tackifier can be expressed while maintaining adhesion and solder heat resistance.
  • the adhesive composition of the present invention may contain a filler as necessary.
  • the filler include organic fillers and inorganic fillers.
  • the organic fillers include heat-resistant resins such as polyimide, polyamideimide, fluororesin, and liquid crystal polyester powders
  • the inorganic fillers include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), boron nitride (BN), calcium carbonate (CaCO 3 ), calcium sulfate (CaSO 4 ), zinc oxide (ZnO), magnesium titanate (MgO.TiO 2 ), barium sulfate (BaSO 4 ), organic bentonite, clay, mica, aluminum hydroxide, and magnesium hydroxide.
  • silica is preferred because of its ease of dispersion and its effect of improving solder heat resistance.
  • hydrophobic silica and hydrophilic silica are known as silica, but in this case, hydrophobic silica treated with dimethyldichlorosilane, hexamethyldisilazane, octylsilane, etc. is better in order to impart moisture absorption resistance.
  • the blending amount is preferably 0.05 to 50 parts by mass per 100 parts by mass of the polyester resin (A) and the epoxy resin (B) combined. By making the amount equal to or greater than the lower limit, further solder heat resistance can be achieved. Also, by making the amount equal to or less than the upper limit, poor dispersion of the filler and excessively high solution viscosity can be suppressed, and workability can be improved.
  • the adhesive composition of the present invention may contain a silane coupling agent as necessary.
  • the incorporation of a silane coupling agent is highly preferred because it improves the adhesiveness to metals and solder heat resistance.
  • the silane coupling agent is not particularly limited, but examples include those having an unsaturated group, those having an epoxy group, and those having an amino group.
  • silane coupling agents include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and ⁇ -(3,4-epoxycyclohexyl)ethyltriethoxysilane.
  • the amount of the silane coupling agent is preferably 0.5 to 20 parts by mass per 100 parts by mass of the total of the polyester resin (A) and the epoxy resin (B). By keeping the amount within the above range, the solder heat resistance and adhesiveness can be improved.
  • the laminate of the present invention is a laminate of the adhesive composition on a substrate (a two-layer laminate of substrate/adhesive layer), or a three-layer laminate of substrate/adhesive layer/substrate.
  • the adhesive layer refers to a layer of the adhesive composition after the adhesive composition of the present invention is applied to a substrate and dried.
  • the adhesive composition of the present invention can be applied to various substrates according to a conventional method, dried, and then laminated with another substrate to obtain the laminate of the present invention.
  • the substrate is not particularly limited as long as it is capable of forming an adhesive layer by applying and drying the adhesive composition of the present invention
  • examples of the substrate include resin substrates such as film-like resins, metal substrates such as metal plates and metal foils, papers, etc.
  • the substrate in the present invention may be made of a composite material.
  • resin substrates examples include polyester resins, polyamide resins, polyimide resins, polyamideimide resins, liquid crystal polymers, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resins, and fluorine resins.
  • a film-like resin hereinafter also referred to as a substrate film layer is preferred.
  • any conventionally known conductive material that can be used for a circuit board can be used as the metal substrate.
  • materials include various metals such as SUS, copper, aluminum, iron, steel, zinc, and nickel, as well as their alloys, plated products, and metals treated with other metals such as zinc and chromium compounds.
  • Metal foil is preferred, and copper foil is more preferred.
  • the thickness of the metal foil is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and even more preferably 10 ⁇ m or more. It is also preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and even more preferably 20 ⁇ m or less.
  • Metal foil is usually provided in a rolled form.
  • the form of the metal foil used in manufacturing the printed wiring board of the present invention there is no particular limitation on its length.
  • the surface roughness of the substrate it is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and even more preferably 1.5 ⁇ m or less. In practical terms, it is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.7 ⁇ m or more.
  • Examples of paper include fine paper, craft paper, roll paper, glassine paper, etc.
  • Examples of composite materials include glass epoxy, etc.
  • the substrate is preferably polyester resin, polyamide resin, polyimide resin, polyamideimide resin, liquid crystal polymer, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resin, fluorine resin, SUS steel plate, copper foil, aluminum foil, or glass epoxy.
  • the adhesive sheet is a laminate of the substrate and the release substrate via an adhesive composition.
  • Specific configurations include substrate/adhesive layer/release substrate, or release substrate/adhesive layer/substrate/adhesive layer/release substrate.
  • the release substrate functions as a protective layer for the adhesive layer by laminating it.
  • the release substrate can be released from the adhesive sheet and the adhesive layer can be transferred to another substrate.
  • the adhesive sheet of the present invention can be obtained by applying the adhesive composition of the present invention to various laminates and drying them in the usual manner. Furthermore, by attaching a release substrate to the adhesive layer after drying, it is possible to wind it up without causing offset onto the substrate, which is excellent in operability, and since the adhesive layer is protected, it is excellent in storage stability and easy to use. Furthermore, if a release substrate is attached after application and drying, it is also possible to transfer the adhesive layer itself to another substrate if another release substrate is attached as necessary.
  • the release substrate is not particularly limited, but examples thereof include those in which a coating layer of a filler such as clay, polyethylene, or polypropylene is provided on both sides of paper such as fine paper, craft paper, roll paper, or glassine paper, and a silicone-based, fluorine-based, or alkyd-based release agent is further applied on each coating layer.
  • a coating layer of a filler such as clay, polyethylene, or polypropylene
  • paper such as fine paper, craft paper, roll paper, or glassine paper
  • a silicone-based, fluorine-based, or alkyd-based release agent is further applied on each coating layer.
  • Other examples include various olefin films such as polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer, and propylene- ⁇ -olefin copolymer alone, and films such as polyethylene terephthalate on which the release agent is applied.
  • the method of coating the adhesive composition on the substrate is not particularly limited, but examples thereof include a comma coater and a reverse roll coater.
  • an adhesive layer can be provided directly or by a transfer method on the rolled copper foil or polyimide film that is the printed wiring board constituent material.
  • the thickness of the adhesive layer after drying can be appropriately changed as necessary, but is preferably in the range of 5 to 200 ⁇ m. By making the adhesive film thickness 5 ⁇ m or more, sufficient adhesive strength can be obtained. In addition, by making it 200 ⁇ m or less, it becomes easier to control the amount of residual solvent in the drying process, and swelling is less likely to occur during pressing in the production of printed wiring boards.
  • the drying conditions are not particularly limited, but the residual solvent rate after drying is preferably 1 mass % or less. By making it 1 mass % or less, foaming of the residual solvent is suppressed during pressing of the printed wiring board, and swelling is less likely to occur.
  • the printed wiring board in the present invention includes, as a component, a laminate formed from a metal foil forming a conductor circuit and a resin substrate.
  • the printed wiring board is manufactured by a conventionally known method such as a subtractive method using a metal-clad laminate. If necessary, the printed wiring board is a general term for so-called flexible circuit boards (FPC), flat cables, circuit boards for tape automated bonding (TAB), etc., in which a conductor circuit formed by a metal foil is partially or entirely covered with a cover film, screen printing ink, etc.
  • FPC flexible circuit boards
  • TAB tape automated bonding
  • the printed wiring board of the present invention can have any laminated structure that can be used as a printed wiring board.
  • it can be a printed wiring board consisting of four layers: a base film layer, a metal foil layer, an adhesive layer, and a cover film layer.
  • It can also be a printed wiring board consisting of five layers: a base film layer, an adhesive layer, a metal foil layer, an adhesive layer, and a cover film layer.
  • the adhesive composition of the present invention can be suitably used for each adhesive layer of a printed wiring board.
  • the adhesive composition of the present invention when used as an adhesive, it has high adhesion to conventional resin substrates such as polyimide, polyester film, copper foil, and aluminum foil that constitute printed wiring boards, and can provide solder reflow resistance. Therefore, it is suitable as an adhesive composition for use in coverlay films, laminates, resin-coated copper foil, bonding sheets, and reinforcing materials.
  • any resin film that has been conventionally used as a substrate for printed wiring boards can be used as the substrate film.
  • resins for the substrate film include polyester resins, polyamide resins, polyimide resins, polyamideimide resins, liquid crystal polymers, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resins, and fluorine-based resins.
  • any insulating film conventionally known as an insulating film for printed wiring boards can be used.
  • films made of various polymers such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, polyamideimide, liquid crystal polymer, syndiotactic polystyrene, and polyolefin resin can be used. More preferably, it is a polyimide film.
  • the printed wiring board of the present invention can be manufactured using any conventionally known process, except for using the materials for each layer described above.
  • a semi-finished product is manufactured in which an adhesive layer is laminated on a cover film layer (hereinafter referred to as a "cover film side semi-finished product").
  • a semi-finished product is manufactured in which a metal foil layer is laminated on a base film layer to form a desired circuit pattern (hereinafter referred to as a "base film side two-layer semi-finished product”), or a semi-finished product is manufactured in which an adhesive layer is laminated on a base film layer and a metal foil layer is laminated on top of it to form a desired circuit pattern (hereinafter referred to as a "base film side three-layer semi-finished product”) (hereinafter, the base film side two-layer semi-finished product and the base film side three-layer semi-finished product are collectively referred to as the "base film side semi-finished product").
  • the semi-finished product on the base film side can be obtained, for example, by a manufacturing method including a process (A) of applying a solution of the resin that will become the base film to the metal foil and initially drying the coating, and a process (B) of heat-treating and drying the laminate of the metal foil and the initially dried coating obtained in (A) (hereinafter referred to as the "heat treatment/solvent removal process").
  • the formation of the circuit in the metal foil layer can be achieved by a conventional method. Either an additive method or a subtractive method can be used. A subtractive method is preferred.
  • the obtained semi-finished product on the base film side may be used as is for bonding to the semi-finished product on the cover film side, or it may be used for bonding to the semi-finished product on the cover film side after bonding a release film and storing it.
  • the cover film side semi-finished product is produced, for example, by applying an adhesive to the cover film. If necessary, a crosslinking reaction can be carried out in the applied adhesive. In a preferred embodiment, the adhesive layer is semi-cured.
  • the obtained semi-finished product on the cover film side may be used as is for bonding to the semi-finished product on the base film side, or it may be used for bonding to the semi-finished product on the base film side after bonding a release film and storing it.
  • the semi-finished product on the base film side and the semi-finished product on the cover film side are stored, for example, in the form of a roll, and then laminated together to produce a printed wiring board. Any method can be used for laminating them together, and for example, they can be laminated together using a press or roll. They can also be laminated together while heating them, for example, using a heated press or a heated roll device.
  • the semi-finished reinforcing material is preferably manufactured by applying an adhesive to the reinforcing material.
  • an adhesive such as a metal plate such as SUS or aluminum, or a plate made of glass fiber cured with epoxy resin
  • it is preferably manufactured by transfer-coating an adhesive that has been applied in advance to a release substrate. If necessary, a crosslinking reaction can be carried out in the applied adhesive.
  • the adhesive layer is semi-cured.
  • the obtained semi-finished product on the reinforcing material side may be used as is for bonding to the back surface of a printed wiring board, or it may be used for bonding to the semi-finished product on the base film side after a release film has been applied and stored.
  • the base film semi-finished product, the cover film semi-finished product, and the reinforcing material semi-finished product are all laminates for printed wiring boards according to the present invention.
  • polyester resin (A) was dissolved and/or diluted with tetrahydrofuran so that the resin concentration was about 0.5% by mass, and filtered through a polytetrafluoroethylene membrane filter with a pore size of 0.5 ⁇ m to prepare a measurement sample.
  • the molecular weight was measured by gel permeation chromatography (GPC) using tetrahydrofuran as the mobile phase and a differential refractometer as the detector. The flow rate was 1 mL/min, and the column temperature was 30° C.
  • the columns used were KF-802, 804L, and 806L manufactured by Showa Denko. Monodisperse polystyrene was used as the molecular weight standard.
  • polyester resin (A) used in the present invention is a synthesis example of the polyester resin (A) used in the present invention.
  • the glass transition temperature was 35 ° C.
  • the acid value was 150 eq / 10 6 g
  • the number average molecular weight was 14,200.
  • the pressure in the system was reduced to 5 mmHg over 20 minutes, and the temperature was further increased to 250°C.
  • the pressure was reduced to 0.3 mmHg or less, and a polycondensation reaction was carried out for 60 minutes, after which the system was cooled to 220°C, and 0.79 parts of trimellitic anhydride was added, reacted for 30 minutes, and then taken out.
  • the liquid containing the resin was centrifuged to separate and purify the acid-modified propylene-butene copolymer in which maleic anhydride was graft-polymerized, (poly)maleic anhydride, and low molecular weight substances. Thereafter, the mixture was dried under reduced pressure at 70 ° C. for 5 hours to obtain a maleic anhydride-modified propylene-butene copolymer (e1).
  • the acid value was 338 eq / 10 6 g
  • the number average molecular weight was 25,000
  • the melting point was 80 ° C.
  • EP-3950E (N,N,O-triglycidyl-p-aminophenol, manufactured by ADEKA Corporation)
  • TETRAD X (N,N,N',N'-tetraglycidyl-m-xylylenediamine, manufactured by Mitsubishi Gas Chemical Company, Inc.)
  • jER604 (N,N,N',N'-tetraglycidyl-(4,4'-methylenebisaniline), manufactured by Mitsubishi Chemical Corporation)
  • YDCN-700-10 (cresol novolac epoxy, manufactured by Nippon Steel Chemical & Material Co., Ltd.)
  • the following flame retardants were used: Exolit (registered trademark) OP-930: (organophosphinic acid metal salt, Clariant)
  • BCA (organophosphorus compound, 9,10-dihydro-10-benzyl-9-oxa-10-phosphaphen
  • Example 1 40 parts by mass of the copolymerized polyester (a1) obtained in the above synthesis example was dissolved in toluene to prepare a toluene varnish having a solid content concentration of 40% by mass.
  • EP-3950E and TETRAD X as curing agents and Exolit OP930 as an organic phosphinic acid metal salt were mixed into this varnish in amounts of 2 parts by mass, 1 part by mass, and 10 parts by mass, respectively, per 100 parts by mass of the polyester resin (a1), to obtain an adhesive composition (F1).
  • the adhesive composition (F1) thus obtained was evaluated for adhesion, solder heat resistance, resin flow, flame retardancy, and long-term heat resistance. The results are shown in Table 1.
  • Adhesive compositions (F2) to (F16) were prepared and evaluated in the same manner as in Example 1, except that the types and amounts of the polyester resin (A) and epoxy resin (B) were changed as shown in Table 1. The results are shown in Table 1.
  • Adhesiveness peel strength
  • the adhesive composition was applied to one side of a 12.5 ⁇ m thick polyimide film (Apical (registered trademark) manufactured by Kaneka Corporation) so that the thickness after drying was 25 ⁇ m, and dried at 130 ° C for 3 minutes.
  • the adhesive film (B stage product) obtained in this way was laminated with a rolled copper foil (ESPANEX series manufactured by Nippon Steel Chemical & Material Co., Ltd.) having a thickness of 18 ⁇ m.
  • the laminate was pressed at 170 ° C under a pressure of 2 MPa for 280 seconds so that the glossy side of the rolled copper foil was in contact with the adhesive layer, and the adhesive was bonded.
  • the adhesive composition was applied to one side of a 12.5 ⁇ m thick polyimide film (Apical (registered trademark), manufactured by Kaneka Corporation) so that the thickness after drying was 25 ⁇ m, and dried at 130 ° C for 3 minutes.
  • the adhesive film (B stage product) obtained in this manner was laminated to a substrate in which a circuit was formed at a pitch of 100 ⁇ m on a rolled copper foil (ESPANEX series, manufactured by Nippon Steel Chemical & Material Co., Ltd.) having a thickness of 18 ⁇ m.
  • the lamination was performed by pressing for 280 seconds at 170 ° C under a pressure of 2 MPa so that the circuit surface was in contact with the adhesive layer.
  • the amount of adhesive flowing out from the lamination surface along the circuit was measured with a microscope.
  • the circuit embedding property and resin flow suppression were evaluated by this test. If the measured value is less than 0.050 mm, the circuit embedding property is not satisfactory. Also, if the measured value is 1.00 mm or more, the resin flow is excessive.
  • ⁇ Evaluation criteria> ⁇ : 0.10 mm or more and less than 0.30 mm ⁇ : 0.050 mm or more and less than 0.10 mm or 0.30 mm or more and less than 0.50 mm ⁇ : 0.50 mm or more and less than 1.00 mm ⁇ : Less than 0.050 mm or 1.00 mm or more
  • the adhesive composition was applied to both sides of a 12.5 ⁇ m thick polyimide film (Apical 12.5NPI, manufactured by Kaneka Corporation) so that the thickness after drying would be 16 ⁇ m, and the film was dried at 130° C. for 3 minutes in a fan oven, and then heated and cured at 170° C. for 3 hours to prepare a sample. Flame retardancy was evaluated in accordance with the UL-94 VTM flame retardancy standard. ⁇ Evaluation criteria> ⁇ : Equivalent to UL94 VTM-0. ⁇ : Does not satisfy UL94 VTM-0.
  • the adhesive composition was applied to one side of a 12.5 ⁇ m thick polyimide film (Apical (registered trademark) manufactured by Kaneka Corporation) so that the thickness after drying was 25 ⁇ m, and dried at 130 ° C for 3 minutes.
  • the adhesive film (B stage product) obtained in this manner was laminated with a rolled copper foil (ESPANEX series manufactured by Nippon Steel Chemical & Material Co., Ltd.) having a thickness of 18 ⁇ m.
  • the laminate was pressed for 280 seconds at 170 ° C under a pressure of 2 MPa so that the glossy side of the rolled copper foil was in contact with the adhesive layer, and the adhesive was bonded.
  • the laminate was then heat-treated at 170 ° C for 3 hours to harden the film, and a peel strength evaluation sample was obtained.
  • the sample was left in an oven at 150 ° C in an air atmosphere for 1000 hours, and the peel strength after 1000 hours was measured.
  • the peel strength was measured under the conditions of 25 ° C, film pulling, tensile speed 50 mm / min, and 90 ° peeling. This test shows the long-term reliability of the adhesive strength.
  • ⁇ Evaluation criteria> ⁇ : 0.5 N/mm or more ⁇ : 0.2 N/mm or more, less than 0.5 N/mm ⁇ : less than 0.2 N/mm
  • Examples 1 to 9 are adhesive compositions containing polyester resin (A) and at least two kinds of epoxy resin (b) having nitrogen atoms, one of the two kinds being (b1) and the other being (b2) or one being (b3) and the other being (b4), and all of them are excellent in adhesion, solder heat resistance, and long-term heat resistance, and also satisfy circuit embedding and resin flow suppression.
  • the adhesive compositions of Comparative Examples 1 to 3 cannot satisfy circuit embedding and resin flow suppression because only one kind of epoxy resin (b) having nitrogen atoms is used, and Comparative Example 4 cannot satisfy long-term heat resistance because it uses cresol novolac type epoxy resin as epoxy resin (B) and does not use epoxy resin (b) having nitrogen atoms.
  • Comparative Example 5 does not contain epoxy resin (B), so it is not satisfactory except for the evaluation of flame retardancy, Comparative Example 6 uses polyamideimide instead of polyester resin (A), and Comparative Example 7 uses acid-modified polypropylene, so it cannot satisfy long-term heat resistance.
  • Comparative Examples 1 to 7 were unable to simultaneously satisfy all of the following characteristics: adhesion, solder heat resistance, long-term heat resistance, circuit embedding ability, and resin flow inhibition.
  • the adhesive composition of the present invention has excellent adhesion and solder heat resistance, and also exhibits long-term heat resistance. It also has good circuit embedding properties while suppressing excessive resin flow, making it useful as an adhesive for FPCs in automotive applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

Provided are an adhesive composition that has excellent adhesion and solder heat resistance, exerts excellent adhesion even after being exposed to high temperatures for a long period of time, and has good circuit embeddability while suppressing excessive resin flow, and an adhesive sheet, a layered body and a printed circuit board containing the adhesive composition. The adhesive composition contains a polyester resin (A) and an epoxy resin (B); the epoxy resin (B) contains at least two types of epoxy resins (b) having nitrogen atoms; and one of the two types is the following epoxy resin (b1) and the other is the following epoxy resin (b2). (b1) A resin having a functionality of 3 or less. (b2) A resin having a functionality of 4 or more.

Description

接着剤組成物、ならびにこれを含有する接着シート、積層体及びプリント配線板Adhesive composition, and adhesive sheet, laminate, and printed wiring board containing the same
 本発明は、接着剤組成物に関する。より詳しくは、樹脂基材と、樹脂基材又は金属基材との接着に用いられる接着剤組成物に関する。特にフレキシブルプリント配線板(以下、FPCと略す)用接着剤組成物、並びにそれを含む接着シート、積層体及びプリント配線板に関する。 The present invention relates to an adhesive composition. More specifically, the present invention relates to an adhesive composition used for bonding a resin substrate to a resin substrate or a metal substrate. In particular, the present invention relates to an adhesive composition for flexible printed wiring boards (hereinafter abbreviated as FPC), as well as an adhesive sheet, a laminate, and a printed wiring board containing the same.
 フレキシブルプリント配線板(FPC)は、ポリイミドなど、絶縁性を持つ薄く柔らかいフィルムと銅箔などの導電性金属を接着剤で張り合わせた基材に電気回路を形成した基板のことを指す。リジッド基板と異なり、非常に薄く柔軟であるため電子機器のわずかな隙間や屈曲する可動部での使用が可能であるため、パソコンやスマートフォンなどの身の周りの多くの電子機器に使用されている。また、自動車にも多くのFPCが搭載され、接着剤に対しては高い長期耐熱性が要求されることが多い。 Flexible printed circuit boards (FPCs) are boards that have electrical circuits formed on a base material made by bonding a thin, soft insulating film, such as polyimide, to a conductive metal, such as copper foil, with an adhesive. Unlike rigid boards, they are extremely thin and flexible, making them suitable for use in small gaps and bending moving parts of electronic devices, and therefore are used in many of the electronic devices around us, such as personal computers and smartphones. Many FPCs are also installed in automobiles, and the adhesives used there often require high long-term heat resistance.
 近年、電気自動車の普及とともに,高熱を発するパワー半導体の使用が増加しており、その実装に用いるプリント配線板材料には、従来よりもさらに高い基準の長期耐熱性が要求される(例えば、非特許文献1)。 In recent years, the use of power semiconductors that generate high heat has increased along with the spread of electric vehicles, and the printed wiring board materials used to mount these semiconductors are required to have even higher standards of long-term heat resistance than before (for example, Non-Patent Document 1).
 ポリエステル樹脂は一般に多価カルボン酸と多価アルコールから構成される。多価カルボン酸と多価アルコールの選択と組合せによる柔軟性や、分子量の高低を自由にコントロールできるため、コーティング剤用途や接着剤用途をはじめ、様々な用途で広く使用されている。  Polyester resins are generally composed of polycarboxylic acids and polyhydric alcohols. They are widely used in a variety of applications, including coatings and adhesives, because of their flexibility and the ability to freely control the molecular weight and the selection and combination of polycarboxylic acids and polyhydric alcohols.
 ポリエステル樹脂は銅を含む金属との接着性に優れており、硬化剤を配合してFPC用接着剤に使用されてきた。(例えば、特許文献1)。 Polyester resins have excellent adhesion to metals, including copper, and have been used as adhesives for FPCs when mixed with a hardener (see, for example, Patent Document 1).
特公平6-104813号公報Japanese Patent Publication No. 6-104813
 しかしながら、特許文献1に記載のポリエステル樹脂を用いた接着剤は、はんだ耐熱性に劣り、また近年の自動車用途で必要とされる高基準の長期耐熱性を有していない。 However, the adhesive using the polyester resin described in Patent Document 1 has poor solder heat resistance and does not have the high standard of long-term heat resistance required for modern automotive applications.
 さらに、FPC用接着剤は、回路パターンに追従し配線間の絶縁性を担保する回路埋め込み性が求められる。そのため、回路が形成された基材と接着剤層を有する基材とを熱圧着しラミネートする際、接着剤成分が平面方向に流れ出す現象(以下レジンフローという)がある程度必要となる。一方、過剰なレジンフローは、接着剤成分が配線間から流れ出し、塗布範囲外を被覆することにより導通不良などの問題が生じ得るため、抑制する必要がある。回路埋め込み性の向上とレジンフロー抑制は互いに相反する要求であり、同時に満たすことが難しいという問題がある。 Furthermore, FPC adhesives are required to have circuit embedding properties that allow them to conform to the circuit pattern and ensure insulation between wiring. For this reason, when a substrate on which a circuit has been formed and a substrate having an adhesive layer are thermocompression bonded and laminated, a certain degree of flow of the adhesive components in a planar direction (hereafter referred to as resin flow) is necessary. On the other hand, excessive resin flow must be suppressed, as the adhesive components may flow out from between the wiring and cover areas outside the application range, causing problems such as poor conductivity. Improving circuit embedding properties and suppressing resin flow are mutually contradictory requirements, and the problem is that they are difficult to meet simultaneously.
 本発明は、かかる従来技術課題を背景になされたものである。すなわち、本発明の目的は、接着性とはんだ耐熱性に優れ、さらには長時間高温環境下に晒された後にも、優れた接着性を発現し、なおかつ回路埋め込み性が良好でありながら過剰なレジンフローを抑制可能な接着剤組成物、並びにそれを含む接着シート、積層体及びプリント配線板を提供することである。 The present invention has been made against the background of such problems in the conventional technology. In other words, the object of the present invention is to provide an adhesive composition that has excellent adhesion and solder heat resistance, and further exhibits excellent adhesion even after being exposed to a high-temperature environment for a long period of time, and that is capable of suppressing excessive resin flow while having good circuit embedding properties, as well as an adhesive sheet, laminate, and printed wiring board that contain the same.
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明は、以下の構成からなる。
(1)ポリエステル樹脂(A)とエポキシ樹脂(B)とを含有し、前記エポキシ樹脂(B)が窒素原子を有するエポキシ樹脂(b)を少なくとも2種類含有し、前記2種類の内一方が以下のエポキシ樹脂(b1)であり、他方が以下のエポキシ樹脂(b2)である接着剤組成物。
(b1)3官能以下の樹脂
(b2)4官能以上の樹脂
(2)ポリエステル樹脂(A)とエポキシ樹脂(B)とを含有し、前記エポキシ樹脂(B)が窒素原子を有するエポキシ樹脂(b)を少なくとも2種類含有し、前記2種類の内一方が以下のエポキシ樹脂(b3)であり、他方が以下のエポキシ樹脂(b4)である接着剤組成物。
(b3)芳香環に含まれず、かつ芳香環と隣接しない窒素原子を有する樹脂
(b4)(b3)を除く窒素原子を有する樹脂
(3)前記窒素原子を有するエポキシ樹脂(b)が、グリシジルアミン型エポキシ樹脂を含む(1)又は(2)に記載の接着剤組成物。
(4)前記エポキシ樹脂(B)の含有量が、ポリエステル樹脂(A)100質量部に対して、0.1質量部以上20質量部以下である(1)~(3)のいずれか1つに記載の接着剤組成物。
(5)さらに、有機ホスフィン酸金属塩(C)を含む(1)~(4)のいずれか1つに記載の接着剤組成物。
(6)(1)~(5)のいずれか1つに記載の接着剤組成物からなる接着層を有する接着シート。
(7)(6)に記載の接着シートを有する積層体。
(8)(7)に記載の積層体を構成要素として含むプリント配線板。
As a result of extensive investigations, the present inventors have found that the above problems can be solved by the means described below, and have arrived at the present invention.
That is, the present invention comprises the following:
(1) An adhesive composition comprising a polyester resin (A) and an epoxy resin (B), the epoxy resin (B) comprising at least two types of epoxy resins (b) having a nitrogen atom, one of which is the following epoxy resin (b1) and the other is the following epoxy resin (b2).
(b1) a resin having three or less functionalities; (b2) a resin having four or more functionalities; (2) an adhesive composition containing a polyester resin (A) and an epoxy resin (B), the epoxy resin (B) containing at least two kinds of epoxy resins (b) having a nitrogen atom, one of the two kinds being the following epoxy resin (b3) and the other being the following epoxy resin (b4).
(b3) A resin having a nitrogen atom that is not contained in an aromatic ring and is not adjacent to an aromatic ring. (b4) A resin having a nitrogen atom excluding (b3). (3) The adhesive composition according to (1) or (2), wherein the epoxy resin having a nitrogen atom (b) contains a glycidyl amine type epoxy resin.
(4) The adhesive composition according to any one of (1) to (3), wherein the content of the epoxy resin (B) is 0.1 parts by mass or more and 20 parts by mass or less per 100 parts by mass of the polyester resin (A).
(5) The adhesive composition according to any one of (1) to (4), further comprising an organic phosphinic acid metal salt (C).
(6) An adhesive sheet having an adhesive layer made of the adhesive composition according to any one of (1) to (5).
(7) A laminate having the adhesive sheet according to (6).
(8) A printed wiring board comprising the laminate according to (7) as a component.
 本発明の接着剤組成物は、接着性、はんだ耐熱性、長期耐熱性に優れ、なおかつ回路埋め込み性及びレジンフロー抑制を満たすことができる。このため、自動車用途のFPC用接着剤、接着シート、積層体及びプリント配線板に好適である。 The adhesive composition of the present invention has excellent adhesion, solder heat resistance, and long-term heat resistance, and also satisfies the requirements for circuit embedding and resin flow suppression. For this reason, it is suitable for FPC adhesives, adhesive sheets, laminates, and printed wiring boards for automotive applications.
 以下、本発明の実施の一形態について以下に詳述する。ただし、本発明はこれに限定されない。 Below, one embodiment of the present invention is described in detail. However, the present invention is not limited to this.
<ポリエステル樹脂(A)>
 長期耐熱性を満足する観点から、本発明ではベース樹脂としてポリエステル樹脂(A)を使用する。
<Polyester resin (A)>
From the viewpoint of satisfying long-term heat resistance, the present invention uses a polyester resin (A) as the base resin.
 本発明に用いられるポリエステル樹脂(A)は、多価カルボン酸成分と多価アルコール成分との重縮合物によって得られる化学構造を有するものであり、多価カルボン酸成分と多価アルコール成分とはそれぞれ1種又は2種以上の選択された成分からなるものである。ポリエステル樹脂(A)を構成する多価カルボン酸成分としては、特に限定されないが、以下に示す多価カルボン酸又はそれらのエステル、及び多価カルボン酸無水物を使用できる。具体的には、多価カルボン酸としては、脂肪族多価カルボン酸、脂環族多価カルボン酸、芳香族多価カルボン酸等が挙げられ、脂肪族多価カルボン酸としてはアジピン酸、セバシン酸、ダイマー酸、1,2,3,4-ブタンテトラカルボン酸、フマル酸、マレイン酸、コハク酸等、脂環族多価カルボン酸としては、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルテトラヒドロフタル酸等、芳香族多価カルボン酸としては、テレフタル酸、イソフタル酸、オルソフタル酸、ナフタレンジカルボン酸、2,5-フランジカルボン酸、5-ナトリウムスルホジメチルイソフタル酸、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸等、及びこれらのエステル、酸無水物(無水ピロメリット酸(PMDA)等)が使用できる。特に、ポリエステル樹脂(A)は芳香族多価カルボン酸由来のモノマーユニットを含むことが好ましく、中でも芳香族多価カルボン酸としては、ナフタレンジカルボン酸、テレフタル酸、イソフタル酸を含むことがより好ましい。ポリエステル樹脂(A)を構成する多価カルボン酸成分100モル%中、芳香族多価カルボン酸に由来するモノマーユニットは、好ましくは60モル%以上、より好ましくは85モル%以上、さらに好ましくは96モル%以上であり、100モル%以下が好ましく、98モル%以下であってもよい。芳香族多価カルボン酸を使用することで接着剤組成物のはんだ耐熱性を向上させることができる。 The polyester resin (A) used in the present invention has a chemical structure obtained by polycondensation of a polycarboxylic acid component and a polyhydric alcohol component, and each of the polycarboxylic acid component and the polyhydric alcohol component is composed of one or more selected components. The polycarboxylic acid component constituting the polyester resin (A) is not particularly limited, but the following polycarboxylic acids or their esters, and polycarboxylic acid anhydrides can be used. Specifically, examples of the polycarboxylic acid include aliphatic polycarboxylic acids, alicyclic polycarboxylic acids, and aromatic polycarboxylic acids. Examples of the aliphatic polycarboxylic acids include adipic acid, sebacic acid, dimer acid, 1,2,3,4-butanetetracarboxylic acid, fumaric acid, maleic acid, and succinic acid. Examples of the alicyclic polycarboxylic acids include 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, tetrahydrophthalic acid, hexahydrophthalic acid, and methyltetrahydrophthalic acid. Examples of the aromatic polycarboxylic acids include terephthalic acid, isophthalic acid, orthophthalic acid, naphthalenedicarboxylic acid, 2,5-furandicarboxylic acid, 5-sodium sulfodimethylisophthalic acid, trimellitic acid, pyromellitic acid, and benzophenonetetracarboxylic acid, as well as esters and acid anhydrides thereof (pyromellitic anhydride (PMDA), etc.). In particular, the polyester resin (A) preferably contains a monomer unit derived from an aromatic polycarboxylic acid, and among these, the aromatic polycarboxylic acid preferably contains naphthalenedicarboxylic acid, terephthalic acid, or isophthalic acid. In 100 mol% of the polycarboxylic acid components constituting the polyester resin (A), the monomer unit derived from the aromatic polycarboxylic acid is preferably 60 mol% or more, more preferably 85 mol% or more, and even more preferably 96 mol% or more, and is preferably 100 mol% or less, and may be 98 mol% or less. The use of an aromatic polycarboxylic acid can improve the solder heat resistance of the adhesive composition.
 ポリエステル樹脂(A)を構成する多価アルコールとしては、特に限定されないが、脂肪族多価アルコール、脂環族多価アルコール、芳香族多価アルコール等が挙げられ、脂肪族多価アルコールとしてはエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル-1,3-ヘキサンジオール、2-メチル-2-エチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-n-プロピル-1,3-プロパンジオール、2,2-ジn-プロピル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-ジn-ブチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、マンニトール、ソルビトール、ダイマージオール、ポリテトラメチレングリコール、ポリプロピレングリコール、ペンタエリスリトール等、脂環族多価アルコールとしては1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノール、α-メチルグルコース等、芳香族多価アルコールとしてはジフェノール酸等が使用できる。特に、ポリエステル樹脂(A)は炭素数4以上のアルキレン基を有している多価アルコール由来のモノマーユニットを含むことが好ましく、炭素数4以上のアルキレン基を有している多価アルコールとしては、1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル-1,3-ヘキサンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ダイマージオール、ポリテトラメチレングリコール等が挙げられ、中でも1,4-ブタンジオールやダイマージオールがより好ましい。ポリエステル樹脂(A)を構成する多価アルコール成分100モル%中、炭素数4以上のアルキレン基を有している多価アルコール由来のモノマーユニットは、好ましくは20~80モル%、より好ましくは30~65モル%、さらに好ましくは40~60モル%である。炭素数4以上の多価アルコールを使用することで、接着剤組成物の接着強度を向上させることができる。 The polyhydric alcohol constituting the polyester resin (A) is not particularly limited, but examples thereof include aliphatic polyhydric alcohols, alicyclic polyhydric alcohols, aromatic polyhydric alcohols, etc. Examples of aliphatic polyhydric alcohols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2-methyl-1,3-hexanediol, 2-methyl-2-ethyl-1,3-propanediol, 2,2-diethyl-1 ,3-propanediol, 2-ethyl-2-n-propyl-1,3-propanediol, 2,2-di-n-propyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, 2,4-diethyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, mannitol, sorbitol, dimer diol, polytetramethylene glycol, polypropylene glycol, pentaerythritol, etc.; alicyclic polyhydric alcohols such as 1,4-cyclohexanedimethanol, tricyclodecane dimethanol, α-methylglucose, etc.; and aromatic polyhydric alcohols such as diphenolic acid can be used. In particular, the polyester resin (A) preferably contains a monomer unit derived from a polyhydric alcohol having an alkylene group having 4 or more carbon atoms. Examples of polyhydric alcohols having an alkylene group having 4 or more carbon atoms include 1,4-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8-octanediol, 2-methyl-1,3-hexanediol, 2,4-diethyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol, dimer diol, polytetramethylene glycol, and the like. Among these, 1,4-butanediol and dimer diol are more preferable. In 100 mol% of the polyhydric alcohol component constituting the polyester resin (A), the monomer unit derived from a polyhydric alcohol having an alkylene group having 4 or more carbon atoms is preferably 20 to 80 mol%, more preferably 30 to 65 mol%, and even more preferably 40 to 60 mol%. By using a polyhydric alcohol having 4 or more carbon atoms, the adhesive strength of the adhesive composition can be improved.
 本発明に用いられるポリエステル樹脂(A)は、ラクトンやラクタムを共重合することもできる。例えば、ε-カプロラクトンやε-カプロラクタムの使用が可能である。 The polyester resin (A) used in the present invention can also be copolymerized with lactones or lactams. For example, ε-caprolactone or ε-caprolactam can be used.
 本発明に用いられるポリエステル樹脂(A)を製造する重合縮合反応の方法としては、例えば、1)多価カルボン酸と多価アルコールを公知の触媒存在下で加熱し、脱水エステル化工程を経て、脱多価アルコール・重縮合反応を行う方法、2)多価カルボン酸のアルコールエステル体と多価アルコールを公知の触媒存在下で加熱、エステル交換反応を経て、脱多価アルコール・重縮合反応を行う方法、3)解重合を行う方法などがある。前記1)2)の方法において、酸成分の一部又はすべてを酸無水物に置換しても良い。  The polymerization condensation reaction method for producing the polyester resin (A) used in the present invention includes, for example, 1) a method in which a polycarboxylic acid and a polyhydric alcohol are heated in the presence of a known catalyst, and a dehydration esterification process is performed, followed by a polyhydric alcohol removal/polycondensation reaction; 2) a method in which an alcohol ester of a polycarboxylic acid and a polyhydric alcohol are heated in the presence of a known catalyst, and a transesterification reaction is performed, followed by a polyhydric alcohol removal/polycondensation reaction; and 3) a method in which depolymerization is performed. In the above methods 1) and 2), a part or all of the acid component may be replaced with an acid anhydride.
 本発明に用いられるポリエステル樹脂(A)を製造する際には、従来公知の重合触媒であるチタン化合物、アンチモン化合物、ゲルマニウム化合物、金属酢酸塩等を使用できる。例えば、チタン化合物としてはテトラ-n-ブチルチタネート、テトライソプロピルチタネート、チタンオキシアセチルセトネート等、アンチモン化合物としては三酸化アンチモン、トリブトキシアンチモン等、ゲルマニウム化合物としては酸化ゲルマニウム、テトラ-n-ブトキシゲルマニウム等、金属酢酸塩としてはマグネシウム、鉄、亜鉛、マンガン、コバルト、アルミニウム等の酢酸塩を使用することが出来る。これらの触媒は1種、又は2種以上を併用することができる。 When producing the polyester resin (A) used in the present invention, conventionally known polymerization catalysts such as titanium compounds, antimony compounds, germanium compounds, and metal acetates can be used. For example, titanium compounds such as tetra-n-butyl titanate, tetraisopropyl titanate, and titanium oxyacetylcetonate can be used; antimony compounds such as antimony trioxide and tributoxyantimony can be used; germanium compounds such as germanium oxide and tetra-n-butoxygermanium can be used; and metal acetates such as magnesium, iron, zinc, manganese, cobalt, and aluminum can be used. These catalysts can be used alone or in combination of two or more.
 本発明に用いられるポリエステル樹脂(A)の数平均分子量は好ましくは100,000未満であり、より好ましくは50,000以下であり、さらに好ましくは25,000以下である。また、3,000以上であることが好ましく、5,000以上であることがより好ましく、さらに好ましくは9,000以上である。前記の範囲内であると、溶剤へ溶解した際の取り扱いがしやすく、接着性にも優れる接着剤組成物とすることができる。 The number average molecular weight of the polyester resin (A) used in the present invention is preferably less than 100,000, more preferably 50,000 or less, and even more preferably 25,000 or less. It is also preferably 3,000 or more, more preferably 5,000 or more, and even more preferably 9,000 or more. If it is within the above range, it is easy to handle when dissolved in a solvent, and an adhesive composition with excellent adhesion can be obtained.
 本発明に用いられるポリエステル樹脂(A)のガラス転移温度は好ましくは0℃以上であり、より好ましくは10℃以上であり、さらに好ましくは20℃以上である。また、200℃以下であることが好ましく、より好ましくは100℃以下であり、さらに好ましくは50℃以下である。前記の範囲内であると、接着性に優れる接着剤組成物とすることができる。 The glass transition temperature of the polyester resin (A) used in the present invention is preferably 0°C or higher, more preferably 10°C or higher, and even more preferably 20°C or higher. It is also preferably 200°C or lower, more preferably 100°C or lower, and even more preferably 50°C or lower. If it is within the above range, an adhesive composition with excellent adhesion can be obtained.
 本発明に用いられるポリエステル樹脂(A)の酸価は好ましくは50eq/10g以上であり、さらに好ましくは80eq/10g以上である。酸価を50eq/10g以上とすることで、エポキシ樹脂(B)との反応点が増え、硬化後に架橋密度の高い強靭な接着剤層を形成することができ、はんだ耐熱性に優れる。酸価の上限は特に限定されないが、通常1000eq/106g以下、より好ましくは500eq/106g以下、さらに好ましくは400eq/106g以下である。 The acid value of the polyester resin (A) used in the present invention is preferably 50 eq/10 6 g or more, more preferably 80 eq/10 6 g or more. By making the acid value 50 eq/10 6 g or more, the number of reaction points with the epoxy resin (B) increases, and a tough adhesive layer with high crosslink density can be formed after curing, resulting in excellent solder heat resistance. The upper limit of the acid value is not particularly limited, but is usually 1000 eq/10 6 g or less, more preferably 500 eq/10 6 g or less, and even more preferably 400 eq/10 6 g or less.
 ポリエステル樹脂(A)の酸価を上げる方法としては、例えば、(1)重縮合反応終了後に、3価以上の多価カルボン酸及び/又は3価以上の無水多価カルボン酸を添加し、反応させる方法(酸付加)や、(2)重縮合反応時に、熱、酸素、水などを作用させ、意図的に樹脂変質を行う、などの方法があり、これらを任意で行うことが出来る。前記酸付加方法での酸付加に用いられる多価カルボン酸無水物としては、特に限定されないが、例えば、トリメリット酸無水物、ピロメリット酸無水物、ヘキサヒドロフタル酸無水物、3,3,4,4-ベンゾフェノンテトラカルボン酸二無水物、3,3,4,4-ビフェニルテトラカルボン酸二無水物、エチレングリコールビストリメリット酸無水物などが挙げられ、これらを1種、又は2種以上の使用が可能である。好ましくはトリメリット酸無水物である。 The acid value of the polyester resin (A) can be increased by any of the following methods: (1) adding a polyvalent carboxylic acid having a valence of three or more and/or an anhydride polyvalent carboxylic acid having a valence of three or more after the polycondensation reaction is completed and reacting (acid addition); or (2) intentionally modifying the resin by applying heat, oxygen, water, or the like during the polycondensation reaction. The polyvalent carboxylic acid anhydride used in the acid addition method is not particularly limited, but examples include trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3,3,4,4-benzophenonetetracarboxylic dianhydride, 3,3,4,4-biphenyltetracarboxylic dianhydride, and ethylene glycol bistrimellitic anhydride. One or more of these can be used. Trimellitic anhydride is preferred.
<エポキシ樹脂(B)>
 本発明に用いられるエポキシ樹脂(B)は、窒素原子を有するエポキシ樹脂(b)を含有する。また、「エポキシ樹脂」とは、分子中にエポキシ基を一つ以上有するものであれば特に限定されない。窒素原子を有するエポキシ樹脂を用いることにより、長期耐熱性が向上する。
<Epoxy resin (B)>
The epoxy resin (B) used in the present invention contains an epoxy resin (b) having a nitrogen atom. The term "epoxy resin" is not particularly limited as long as it has one or more epoxy groups in the molecule. By using an epoxy resin having a nitrogen atom, the long-term heat resistance is improved.
 窒素原子を有するエポキシ樹脂(b)は、その骨格中の窒素原子が触媒作用を有することより、他のエポキシ樹脂よりもポリエステル樹脂との高い反応性を有する。この反応性の高さから接着剤組成物として基材に塗工、乾燥する段階で硬化がある程度進行し、回路が形成された基材等に貼り合わせる際、過剰なレジンフローを抑制できる。 The nitrogen atoms in the skeleton of the epoxy resin (b) that contains nitrogen atoms have a catalytic effect, and as a result, it has a higher reactivity with polyester resins than other epoxy resins. Due to this high reactivity, when the adhesive composition is applied to a substrate and dried, curing progresses to a certain extent, and excessive resin flow can be suppressed when the resin is attached to a substrate on which a circuit has been formed.
 窒素原子を有するエポキシ樹脂(b)としては、具体的にはグリシジルアミン型エポキシ樹脂、トリアジン誘導体エポキシ樹脂等が挙げられ、本発明の効果を顕著に得るためグリシジルアミン型エポキシ樹脂が好ましい。グリシジルアミン型エポキシ樹脂としては、具体的には脂肪族グリシジルアミン型エポキシ樹脂、脂環族グリシジルアミン型エポキシ樹脂、芳香族グリシジルアミン型エポキシ樹脂等が挙げられ、脂環族グリシジルアミン型エポキシ樹脂としては1,3-ビス(ジグリシジルアミノメチル)シクロヘキサン等、芳香族グリシジルアミン型エポキシ樹脂としてはN,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール、N,N,N’,N’-テトラグリシジル-(4,4’-メチレンビスアニリン)、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等を用いることができる。 Specific examples of the epoxy resin (b) having a nitrogen atom include glycidylamine type epoxy resins, triazine derivative epoxy resins, etc., and glycidylamine type epoxy resins are preferred in order to obtain the effects of the present invention more significantly. Specific examples of glycidylamine type epoxy resins include aliphatic glycidylamine type epoxy resins, alicyclic glycidylamine type epoxy resins, and aromatic glycidylamine type epoxy resins. Examples of alicyclic glycidylamine type epoxy resins include 1,3-bis(diglycidylaminomethyl)cyclohexane, and examples of aromatic glycidylamine type epoxy resins include N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, N,N,N',N'-tetraglycidyl-(4,4'-methylenebisaniline), N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, and N,N,N',N'-tetraglycidyl-m-xylylenediamine.
 トリアジン誘導体エポキシ樹脂としては、具体的には1,3,5-トリグリシジルイソシアヌレート等が挙げられる。 Specific examples of triazine derivative epoxy resins include 1,3,5-triglycidyl isocyanurate.
 本発明の接着剤組成物は窒素原子を有するエポキシ樹脂(b)を少なくとも2種類含有することを特徴とする。窒素原子を有するエポキシ樹脂を少なくとも2種類併用することにより、長期耐熱性を損なうことなく、回路埋め込み性及びレジンフロー抑制を満たすことができる。 The adhesive composition of the present invention is characterized by containing at least two types of epoxy resins (b) having nitrogen atoms. By using at least two types of epoxy resins having nitrogen atoms in combination, it is possible to satisfy the requirements for circuit embedding and resin flow suppression without impairing long-term heat resistance.
 窒素原子を有するエポキシ樹脂(b)について前記2種類は、一方が3官能以下の樹脂(以下b1という)であり、他方が4官能以上の樹脂(以下b2という)であることが、回路埋め込み性、レジンフロー抑制及び長期耐熱性の観点から特に好ましい。ここで、官能数とは、1分子中に有するエポキシ基の数である。回路埋め込み性と過剰なレジンフロー抑制はトレードオフの関係にあり、(b1)のみでは回路埋め込み性が悪く、(b2)のみではレジンフロー抑制が十分なものとならない。回路埋め込み性及び過剰なレジンフロー抑制の点から、(b1)と(b2)の両方を配合する。 From the viewpoints of circuit embeddability, resin flow suppression, and long-term heat resistance, it is particularly preferable that one of the two types of nitrogen-atom-containing epoxy resins (b) be a resin with three or fewer functionalities (hereinafter referred to as b1) and the other be a resin with four or more functionalities (hereinafter referred to as b2). Here, the number of functionalities refers to the number of epoxy groups in one molecule. There is a trade-off between circuit embeddability and excessive resin flow suppression, with (b1) alone resulting in poor circuit embeddability and (b2) alone not providing sufficient resin flow suppression. From the viewpoints of circuit embeddability and excessive resin flow suppression, both (b1) and (b2) are blended.
 (b1)について、具体的には、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール、1,3,5-トリグリシジルイソシアヌレート等が挙げられ、(b2)について、具体的には、1,3-ビス(ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-(4,4’-メチレンビスアニリン)、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等が挙げられる。 Specific examples of (b1) include N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, and 1,3,5-triglycidyl isocyanurate, while specific examples of (b2) include 1,3-bis(diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-(4,4'-methylenebisaniline), N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, and N,N,N',N'-tetraglycidyl-m-xylylenediamine.
 窒素原子を有するエポキシ樹脂(b)として、(b1)を用いる場合、窒素原子を有するエポキシ樹脂(b)100質量部に占める(b1)の含有量としては5質量部以上が好ましく、より好ましくは10質量部以上、さらに好ましくは50質量部以上である。また、80質量部以下が好ましく、より好ましくは75質量部以下、さらに好ましくは70質量部以下である。前記範囲内とすることによって、回路埋め込み性及びレジンフロー抑制のバランスが特に良好となる。 When (b1) is used as the epoxy resin (b) having nitrogen atoms, the content of (b1) per 100 parts by mass of the epoxy resin (b) having nitrogen atoms is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 50 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 75 parts by mass or less, and even more preferably 70 parts by mass or less. By keeping it within the above range, a particularly good balance between circuit embedding properties and resin flow suppression is achieved.
 窒素原子を有するエポキシ樹脂(b)として、(b2)を用いる場合、窒素原子を有するエポキシ樹脂(b)100質量部に占める(b2)の含有量としては5質量部以上が好ましく、より好ましくは10質量部以上、さらに好ましくは30質量部以上である。また、80質量部以下が好ましく、より好ましくは70質量部以下、さらに好ましくは50質量部以下である。前記範囲内とすることによって、回路埋め込み性及びレジンフロー抑制のバランスが特に良好となる。 When (b2) is used as the epoxy resin (b) having a nitrogen atom, the content of (b2) per 100 parts by mass of the epoxy resin (b) having a nitrogen atom is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 30 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and even more preferably 50 parts by mass or less. By keeping it within the above range, a particularly good balance between circuit embedding properties and resin flow suppression is achieved.
 (b1)含有量は、(b2)100質量部に対し、好ましくは20質量部以上300質量部以下、より好ましくは60質量部以上250質量部以下、さらに好ましくは120質量部以上240質量部以下である。前記範囲内とすることによって、回路埋め込み性及びレジンフロー抑制のバランスが特に良好となる。 The content of (b1) is preferably 20 parts by mass or more and 300 parts by mass or less, more preferably 60 parts by mass or more and 250 parts by mass or less, and even more preferably 120 parts by mass or more and 240 parts by mass or less, per 100 parts by mass of (b2). By keeping it within the above range, a particularly good balance between circuit embedding properties and resin flow suppression is achieved.
 窒素原子を有するエポキシ樹脂(b)について前記2種類は、一方が芳香環に含まれずかつ芳香環と隣接しない窒素原子を有する樹脂(以下b3という)であり、他方が(b3)を除く窒素原子を有する樹脂(以下b4という)即ち芳香環に含まれ又は芳香環と隣接する窒素原子を有する樹脂であって、(b3)を除くものであることが回路埋め込み性及びレジンフロー抑制の観点から特に好ましい。その理由は定かではないが、(b4)よりも(b3)の方が、骨格中の窒素原子が有する触媒作用が大きいことが影響していると考えられ、(b3)と(b4)の両方を配合することで、回路埋め込み性及び過剰なレジンフロー抑制のバランスをとりやすくなるものと推察される。 The two types of epoxy resins (b) having nitrogen atoms are particularly preferably such that one is a resin having nitrogen atoms that are not contained in an aromatic ring and are not adjacent to an aromatic ring (hereinafter referred to as b3), and the other is a resin having nitrogen atoms other than (b3) (hereinafter referred to as b4), i.e., a resin having nitrogen atoms contained in an aromatic ring or adjacent to an aromatic ring and excluding (b3). The reason for this is unclear, but it is thought that this is due to the fact that the nitrogen atoms in the skeleton of (b3) have a greater catalytic effect than those of (b4), and it is presumed that blending both (b3) and (b4) makes it easier to balance the ability to embed circuits and the suppression of excessive resin flow.
 (b3)について、具体的には、1,3-ビス(ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等が挙げられる。(b4)について、具体的には、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール、N,N,N’,N’-テトラグリシジル-(4,4’-メチレンビスアニリン)、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、1,3,5-トリグリシジルイソシアヌレート等が挙げられる。 Specific examples of (b3) include 1,3-bis(diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-m-xylylenediamine, etc. Specific examples of (b4) include N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine, N,N,O-triglycidyl-p-aminophenol, N,N,O-triglycidyl-4-amino-3-methylphenol, N,N,N',N'-tetraglycidyl-(4,4'-methylenebisaniline), N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, 1,3,5-triglycidyl isocyanurate, etc.
 窒素原子を有するエポキシ樹脂(b)として、(b3)を用いる場合、窒素原子を有するエポキシ樹脂(b)100質量部に占める(b3)の含有量としては5質量部以上が好ましく、より好ましくは10質量部以上、さらに好ましくは30質量部以上である。また、80質量部以下が好ましく、より好ましくは70質量部以下、さらに好ましくは50質量部以下である。前記範囲内とすることによって、回路埋め込み性及びレジンフロー抑制のバランスが特に良好となる。 When (b3) is used as the epoxy resin (b) having a nitrogen atom, the content of (b3) per 100 parts by mass of the epoxy resin (b) having a nitrogen atom is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 30 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and even more preferably 50 parts by mass or less. By keeping it within the above range, a particularly good balance between circuit embedding properties and resin flow suppression is achieved.
 窒素原子を有するエポキシ樹脂(b)として、(b4)を用いる場合、窒素原子を有するエポキシ樹脂(b)100質量部に占める(b4)の含有量としては5質量部以上が好ましく、より好ましくは10質量部以上、さらに好ましくは50質量部以上である。また、80質量部以下が好ましく、より好ましくは75質量部以下、さらに好ましくは70質量部以下である。前記範囲内とすることによって、回路埋め込み性及びレジンフロー抑制のバランスが特に良好となる。 When (b4) is used as the epoxy resin (b) having a nitrogen atom, the content of (b4) per 100 parts by mass of the epoxy resin (b) having a nitrogen atom is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 50 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 75 parts by mass or less, and even more preferably 70 parts by mass or less. By keeping it within the above range, a particularly good balance between circuit embedding properties and resin flow suppression is achieved.
 (b3)含有量は、(b4)100質量部に対し、好ましくは20質量部以上300質量部以下、より好ましくは30質量部以上200質量部以下、さらに好ましくは40質量部以上90質量部以下である。前記範囲内とすることによって、回路埋め込み性及びレジンフロー抑制のバランスが特に良好となる。 The content of (b3) is preferably 20 parts by mass or more and 300 parts by mass or less, more preferably 30 parts by mass or more and 200 parts by mass or less, and even more preferably 40 parts by mass or more and 90 parts by mass or less, per 100 parts by mass of (b4). By keeping it within the above range, a particularly good balance between circuit embedding properties and resin flow suppression is achieved.
 窒素原子を有するエポキシ樹脂(b)について前記2種類は、一方が窒素原子を2個以上有する樹脂であり、他方が窒素原子を1個有する樹脂であることが、回路埋め込み性及びレジンフロー抑制の観点から特に好ましい。窒素原子を2個以上有する樹脂について、具体的には、グリシジルアミン型エポキシ樹脂としては、1,3-ビス(ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-(4,4’-メチレンビスアニリン)、N,N,N’,N’-テトラグリシジル-2,2’-ジエチル-4,4’-メチレンジアニリン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン等が挙げられ、トリアジン誘導体エポキシ樹脂としては、1,3,5-トリグリシジルイソシアヌレート等が挙げられる。窒素原子を1個有する樹脂について、具体的には、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、N,N,O-トリグリシジル-p-アミノフェノール、N,N,O-トリグリシジル-4-アミノ-3-メチルフェノール等が挙げられる。 Regarding the nitrogen-containing epoxy resin (b), it is particularly preferable from the viewpoint of circuit embedding properties and suppression of resin flow that one of the two types is a resin having two or more nitrogen atoms and the other is a resin having one nitrogen atom. Specific examples of the resin having two or more nitrogen atoms include glycidylamine-type epoxy resins such as 1,3-bis(diglycidylaminomethyl)cyclohexane, N,N,N',N'-tetraglycidyl-(4,4'-methylenebisaniline), N,N,N',N'-tetraglycidyl-2,2'-diethyl-4,4'-methylenedianiline, and N,N,N',N'-tetraglycidyl-m-xylylenediamine, and examples of triazine derivative epoxy resins include 1,3,5-triglycidyl isocyanurate. Specific examples of resins having one nitrogen atom include N,N-diglycidylaniline, N,N-diglycidyl-o-toluidine, N,N,O-triglycidyl-p-aminophenol, and N,N,O-triglycidyl-4-amino-3-methylphenol.
 窒素原子を有するエポキシ樹脂(b)として、窒素原子を1個有する樹脂を用いる場合、窒素原子を有するエポキシ樹脂(b)100質量部に占める窒素原子を1個有する樹脂の含有量としては5質量部以上が好ましく、より好ましくは10質量部以上、さらに好ましくは50質量部以上である。また、80質量部以下が好ましく、より好ましくは75質量部以下、さらに好ましくは70質量部以下である。前記範囲内とすることによって、回路埋め込み性及びレジンフロー抑制のバランスが特に良好となる。 When a resin having one nitrogen atom is used as the nitrogen-containing epoxy resin (b), the content of the resin having one nitrogen atom per 100 parts by mass of the nitrogen-containing epoxy resin (b) is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 50 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 75 parts by mass or less, and even more preferably 70 parts by mass or less. By keeping it within the above range, a particularly good balance between circuit embedding properties and resin flow suppression is achieved.
 窒素原子を有するエポキシ樹脂(b)として、窒素原子を2個以上有する樹脂を用いる場合、窒素原子を有するエポキシ樹脂(b)100質量部に占める窒素原子を2個以上有する樹脂の含有量としては5質量部以上が好ましく、より好ましくは10質量部以上、さらに好ましくは30質量部以上である。また、80質量部以下が好ましく、より好ましくは70質量部以下、さらに好ましくは50質量部以下である。前記範囲内とすることによって、回路埋め込み性及びレジンフロー抑制のバランスが特に良好となる。 When a resin having two or more nitrogen atoms is used as the nitrogen-containing epoxy resin (b), the content of the resin having two or more nitrogen atoms per 100 parts by mass of the nitrogen-containing epoxy resin (b) is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and even more preferably 30 parts by mass or more. Also, it is preferably 80 parts by mass or less, more preferably 70 parts by mass or less, and even more preferably 50 parts by mass or less. By keeping it within the above range, a particularly good balance between circuit embedding properties and resin flow suppression is achieved.
 窒素原子を1個有する樹脂の含有量は、窒素原子を2個以上有する樹脂100質量部に対し、好ましくは20質量部以上300質量部以下、より好ましくは60質量部以上250質量部以下、さらに好ましくは120質量部以上240質量部以下である。前記範囲内とすることによって、回路埋め込み性及びレジンフロー抑制のバランスが特に良好となる。 The content of the resin having one nitrogen atom is preferably 20 parts by mass or more and 300 parts by mass or less, more preferably 60 parts by mass or more and 250 parts by mass or less, and even more preferably 120 parts by mass or more and 240 parts by mass or less, per 100 parts by mass of the resin having two or more nitrogen atoms. By keeping it within the above range, a particularly good balance between circuit embedding properties and resin flow suppression is achieved.
 本発明の接着剤組成物において、窒素原子を有する樹脂(b)の含有量は、好ましくはエポキシ樹脂(B)100質量部中40質量部以上であり、より好ましくは60質量部以上であり、さらに好ましくは70質量部以上であり、100質量部であっても構わない。前記下限値以上とすると、長期耐熱性が特に良好となる。 In the adhesive composition of the present invention, the content of the resin (b) having a nitrogen atom is preferably 40 parts by mass or more per 100 parts by mass of the epoxy resin (B), more preferably 60 parts by mass or more, and even more preferably 70 parts by mass or more, and may be 100 parts by mass. When the content is equal to or more than the lower limit, the long-term heat resistance is particularly good.
 本発明の接着剤組成物は窒素原子を有するエポキシ樹脂(b)以外のエポキシ樹脂を含有しても良い。窒素原子を有するエポキシ樹脂(b)以外のエポキシ樹脂としては、分子中にエポキシ基を有するものであれば、特に限定されないが、好ましくは分子中に2個以上のエポキシ基を有するものである。具体的には、特に限定されないが、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ダイマー酸変性エポキシ樹脂、及びエポキシ変性ポリブタジエンからなる群から選択される少なくとも1つを用いることができる。 The adhesive composition of the present invention may contain an epoxy resin other than the nitrogen-atom-containing epoxy resin (b). The epoxy resin other than the nitrogen-atom-containing epoxy resin (b) is not particularly limited as long as it has an epoxy group in the molecule, but is preferably one having two or more epoxy groups in the molecule. Specifically, it is not particularly limited, but at least one selected from the group consisting of biphenyl-type epoxy resin, naphthalene-type epoxy resin, bisphenol A-type epoxy resin, bisphenol F-type epoxy resin, novolac-type epoxy resin, alicyclic epoxy resin, dicyclopentadiene-type epoxy resin, dimer acid-modified epoxy resin, and epoxy-modified polybutadiene can be used.
 本発明の接着剤組成物において、エポキシ樹脂(B)の含有量は、ポリエステル樹脂(A)合計100質量部に対して、0.1質量部以上であることが好ましく、より好ましくは1質量部以上である。前記下限値以上とすると、十分な硬化効果が得られ、優れた接着性及びはんだ耐熱性を発現することができる。また、20質量部以下であることが好ましく、より好ましくは10質量部以下である。前記上限値以下とすると、長期耐熱性が良好となる。すなわち、上記範囲内とすることで、より優れた接着性、はんだ耐熱性及び長期耐熱性を有する接着剤組成物を得ることができる。 In the adhesive composition of the present invention, the content of epoxy resin (B) is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, per 100 parts by mass of polyester resin (A) in total. If it is equal to or more than the lower limit, a sufficient curing effect can be obtained, and excellent adhesion and solder heat resistance can be exhibited. Also, it is preferably 20 parts by mass or less, more preferably 10 parts by mass or less. If it is equal to or less than the upper limit, long-term heat resistance becomes good. In other words, by keeping it within the above range, an adhesive composition having better adhesion, solder heat resistance, and long-term heat resistance can be obtained.
<難燃剤>
 本発明の接着剤組成物は、難燃剤を含有することが出来る。難燃剤としては特に限定されないが、有機リン化合物又は有機ホスフィン酸金属塩(C)が挙げられ、難燃性及び長期耐熱性の効果を両立する点において特に顕著な効果を有するため、有機ホスフィン酸金属塩(C)が好ましい。
<Flame retardants>
The adhesive composition of the present invention may contain a flame retardant. The flame retardant is not particularly limited, but may be an organic phosphorus compound or an organic metal phosphinate (C). Since the organic metal phosphinate (C) is particularly effective in achieving both flame retardancy and long-term heat resistance, the organic metal phosphinate (C) is preferred.
 有機リン化合物としては、具体的には9,10-ジヒドロ-10-ベンジル-9-オキサ-10-ホスファフェナントレン-10-オキサイド、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキシド等が挙げられる。 Specific examples of organic phosphorus compounds include 9,10-dihydro-10-benzyl-9-oxa-10-phosphaphenanthrene-10-oxide, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, etc.
 有機ホスフィン酸金属塩としては、具体的には、ジメチルホスフィン酸塩、エチルメチルホスフィン酸塩、ジエチルホスフィン酸塩、メチル-n-プロピルホスフィン酸塩、メチルフェニルホスフィン酸塩、ジフェニルホスフィン酸塩、メタンジ(メチルホスフィン酸)塩、ベンゼン-1,4-ジ(メチルホスフィン酸)塩等が挙げられる。
 ジメチルホスフィン酸塩としてはジメチルホスフィン酸マグネシウム、ジメチルホスフィン酸カルシウム、ジメチルホスフィン酸亜鉛、ジメチルホスフィン酸アルミニウム等、エチルメチルホスフィン酸塩としてはエチルメチルホスフィン酸マグネシウム、エチルメチルホスフィン酸カルシウム、エチルメチルホスフィン酸亜鉛、エチルメチルホスフィン酸アルミニウム等、ジエチルホスフィン酸塩としてはジエチルホスフィン酸マグネシウム、ジエチルホスフィン酸カルシウム、ジエチルホスフィン酸亜鉛、ジエチルホスフィン酸アルミニウム等、メチル-n-プロピルホスフィン酸塩としてはメチル-n-プロピルホスフィン酸マグネシウム、メチル-n-プロピルホスフィン酸カルシウム、メチル-n-プロピルホスフィン酸亜鉛、メチル-n-プロピルホスフィン酸アルミニウム等、メチルフェニルホスフィン酸塩としてはメチルフェニルホスフィン酸マグネシウム、メチルフェニルホスフィン酸カルシウム、メチルフェニルホスフィン酸亜鉛、メチルフェニルホスフィン酸アルミニウム等、ジフェニルホスフィン酸塩としてはジフェニルホスフィン酸マグネシウム、ジフェニルホスフィン酸カルシウム、ジフェニルホスフィン酸亜鉛、ジフェニルホスフィン酸アルミニウム等、メタンジ(メチルホスフィン酸)塩としてはメタンジ(メチルホスフィン酸)マグネシウム、メタンジ(メチルホスフィン酸)カルシウム、メタンジ(メチルホスフィン酸)亜鉛、メタンジ(メチルホスフィン酸)アルミニウム等、ベンゼン-1,4-ジ(メチルホスフィン酸)塩としてはベンゼン-1,4-ジ(メチルホスフィン酸)マグネシウム、ベンゼン-1,4-ジ(メチルホスフィン酸)カルシウム、ベンゼン-1,4-ジ(メチルホスフィン酸)亜鉛、ベンゼン-1,4-ジ(メチルホスフィン酸)アルミニウム等を使用できる。
Specific examples of the organic metal phosphinate include dimethylphosphinate, ethylmethylphosphinate, diethylphosphinate, methyl-n-propylphosphinate, methylphenylphosphinate, diphenylphosphinate, methane di(methylphosphinic acid) salt, and benzene-1,4-di(methylphosphinic acid) salt.
Examples of dimethylphosphinates include magnesium dimethylphosphinate, calcium dimethylphosphinate, zinc dimethylphosphinate, and aluminum dimethylphosphinate. Examples of ethylmethylphosphinates include magnesium ethylmethylphosphinate, calcium ethylmethylphosphinate, zinc ethylmethylphosphinate, and aluminum ethylmethylphosphinate. Examples of diethylphosphinates include magnesium diethylphosphinate, calcium diethylphosphinate, zinc diethylphosphinate, and aluminum diethylphosphinate. Examples of methyl-n-propylphosphinates include magnesium methyl-n-propylphosphinate, calcium methyl-n-propylphosphinate, zinc methyl-n-propylphosphinate, and aluminum methyl-n-propylphosphinate. Examples of methylphenylphosphinates include magnesium methylphenylphosphinate. Examples of diphenylphosphinates that can be used include magnesium diphenylphosphinate, calcium diphenylphosphinate, zinc diphenylphosphinate, and aluminum diphenylphosphinate; examples of methane di(methylphosphinic acid) salts include magnesium methane di(methylphosphinic acid), calcium methane di(methylphosphinic acid), zinc methane di(methylphosphinic acid), and aluminum methane di(methylphosphinic acid); and examples of benzene-1,4-di(methylphosphinic acid) salts include magnesium benzene-1,4-di(methylphosphinic acid), calcium benzene-1,4-di(methylphosphinic acid), zinc benzene-1,4-di(methylphosphinic acid), and aluminum benzene-1,4-di(methylphosphinic acid).
 本発明の接着剤組成物に難燃剤を含有する場合の難燃剤の含有量は、ポリエステル樹脂(A)合計100質量部に対して、1~40質量部であることが好ましく、5~20質量部がより好ましい。前記下限値以上とすることで難燃性に優れた接着剤組成物が製造でき、前記上限値以下とすることで製造コストの面から有利となる。 When the adhesive composition of the present invention contains a flame retardant, the content of the flame retardant is preferably 1 to 40 parts by mass, and more preferably 5 to 20 parts by mass, per 100 parts by mass of polyester resin (A) in total. By making the content equal to or greater than the lower limit, an adhesive composition with excellent flame retardancy can be produced, and by making the content equal to or less than the upper limit, it is advantageous in terms of production costs.
<有機溶剤>
 本発明の接着剤組成物は、さらに有機溶剤を含有することができる。本発明で用いる有機溶剤は、ポリエステル樹脂(A)及びエポキシ樹脂(B)を溶解させるものであれば、特に限定されない。具体的には、芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素、ハロゲン化炭化水素、アルコール系溶剤、ケトン系溶剤、エステル系溶剤、グリコールエーテル系溶剤等が挙げられ、芳香族炭化水素としてはベンゼン、トルエン、キシレン等、脂肪族炭化水素としてはヘキサン、ヘプタン、オクタン、デカン等、脂環族炭化水素としてはシクロヘキサン、シクロヘキセン、メチルシクロヘキサン、エチルシクロへキサン等、ハロゲン化炭化水素としてはトリクロロエチレン、ジクロロエチレン、クロロベンゼン、クロロホルム等、アルコール系溶剤としてはメタノール、エタノール、イソプロピルアルコール、ブタノール、ペンタノール、ヘキサノール、プロパンジオール、フェノール等、ケトン系溶剤としてはアセトン、メチルイソブチルケトン、メチルエチルケトン、ペンタノン、ヘキサノン、シクロヘキサノン、イソホロン、アセトフェノン等、エステル系溶剤としては酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、ギ酸ブチル等、グリコールエーテル系溶剤としてはエチレングリコールモノメチルエーテル、エチレングリコールモノn-ブチルエーテル、エチレングリコールモノiso-ブチルエーテル、エチレングリコールモノtert-ブチルエーテル、ジエチレングリコールモノn-ブチルエーテル、ジエチレングリコールモノiso-ブチルエーテル、トリエチレングリコールモノn-ブチルエーテル、テトラエチレングリコールモノn-ブチルエーテル等を使用することができ、これら1種又は2種以上を併用することができる。特に作業環境性、乾燥性から、芳香族炭化水素またはケトン系溶剤が好ましく、トルエンやメチルエチルケトンがより好ましい。
<Organic Solvent>
The adhesive composition of the present invention may further contain an organic solvent. The organic solvent used in the present invention is not particularly limited as long as it dissolves the polyester resin (A) and the epoxy resin (B). Specific examples of the organic solvent include aromatic hydrocarbons, aliphatic hydrocarbons, alicyclic hydrocarbons, halogenated hydrocarbons, alcohol solvents, ketone solvents, ester solvents, and glycol ether solvents. Examples of aromatic hydrocarbons include benzene, toluene, and xylene. Examples of aliphatic hydrocarbons include hexane, heptane, octane, and decane. Examples of alicyclic hydrocarbons include cyclohexane, cyclohexene, methylcyclohexane, and ethylcyclohexane. Examples of halogenated hydrocarbons include trichloroethylene, dichloroethylene, chlorobenzene, and chloroform. Examples of alcohol solvents include methanol, ethanol, isopropyl alcohol, butanol, pentanol, hexanol, propanediol, and phenol. Examples of ketone solvents include acetone and methyl isopropyl alcohol. Examples of the solvents that can be used include isobutyl ketone, methyl ethyl ketone, pentanone, hexanone, cyclohexanone, isophorone, acetophenone, etc., ester solvents include methyl acetate, ethyl acetate, butyl acetate, methyl propionate, butyl formate, etc., and glycol ether solvents include ethylene glycol monomethyl ether, ethylene glycol mono n-butyl ether, ethylene glycol mono iso-butyl ether, ethylene glycol mono tert-butyl ether, diethylene glycol mono n-butyl ether, diethylene glycol mono iso-butyl ether, triethylene glycol mono n-butyl ether, tetraethylene glycol mono n-butyl ether, etc., and these can be used alone or in combination of two or more. In particular, aromatic hydrocarbons or ketone solvents are preferred from the viewpoints of working environment and drying property, and toluene and methyl ethyl ketone are more preferred.
 本発明の接着剤組成物に有機溶剤を含有する場合の有機溶剤の含有量は、ポリエステル樹脂(A)合計100質量部に対して、100~1000質量部の範囲であることが好ましい。前記下限値以上とすることで液状及びポットライフ性が良好となる。また、前記上限値以下とすることで製造コストや輸送コストの面から有利となる。 When the adhesive composition of the present invention contains an organic solvent, the content of the organic solvent is preferably in the range of 100 to 1000 parts by mass per 100 parts by mass of polyester resin (A) in total. By making the content equal to or greater than the lower limit, the liquid state and pot life are improved. Furthermore, by making the content equal to or less than the upper limit, it is advantageous in terms of manufacturing costs and transportation costs.
 また、本発明の接着剤組成物には、さらに他の成分を必要に応じて含有してもよい。このような成分の具体例としては、粘着付与剤、フィラー、シランカップリング剤が挙げられる。 The adhesive composition of the present invention may further contain other components as necessary. Specific examples of such components include a tackifier, a filler, and a silane coupling agent.
<粘着付与剤>
 本発明の接着剤組成物には必要に応じて粘着付与剤を配合しても良い。粘着付与剤としては、ポリテルペン樹脂、ロジン系樹脂、脂肪族系石油樹脂、脂環族系石油樹脂、共重合系石油樹脂、スチレン樹脂及び水添石油樹脂等が挙げられ、接着強度を向上させる目的で用いられる。これらは単独で用いても良いし、2種以上を任意に組み合わせて使用しても良い。粘着付与剤を含有させる場合、ポリエステル樹脂(A)及びエポキシ樹脂(B)の合計100質量部に対し、1~200質量部の範囲で含有させることが好ましく、5~150質量部の範囲がより好ましく、10~100質量部の範囲が最も好ましい。前記範囲内とすることで接着性、はんだ耐熱性を維持しつつ、粘着付与剤の効果を発現することができる。
<Tackifier>
The adhesive composition of the present invention may contain a tackifier as necessary. Examples of tackifiers include polyterpene resins, rosin resins, aliphatic petroleum resins, alicyclic petroleum resins, copolymerized petroleum resins, styrene resins, and hydrogenated petroleum resins, and are used for the purpose of improving adhesive strength. These may be used alone or in any combination of two or more. When a tackifier is contained, it is preferably contained in a range of 1 to 200 parts by mass, more preferably in a range of 5 to 150 parts by mass, and most preferably in a range of 10 to 100 parts by mass, relative to a total of 100 parts by mass of the polyester resin (A) and the epoxy resin (B). By keeping it within the above range, the effect of the tackifier can be expressed while maintaining adhesion and solder heat resistance.
<フィラー>
 本発明の接着剤組成物には必要に応じてフィラーを配合しても良い。フィラーとしては有機フィラー、無機フィラーが挙げられ、有機フィラーとしては耐熱性樹脂であるポリイミド、ポリアミドイミド、フッ素樹脂、液晶ポリエステル等の粉末、無機フィラーとしてはシリカ(SiO)、アルミナ(Al)、チタニア(TiO)、酸化タンタル(Ta)、ジルコニア(ZrO)、窒化硅素(Si)、窒化ホウ素(BN)、炭酸カルシウム(CaCO)、硫酸カルシウム(CaSO)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO)、硫酸バリウム(BaSO)、有機ベントナイト、クレー、マイカ、水酸化アルミニウム、水酸化マグネシウム等が使用でき、中でも分散の容易さやはんだ耐熱性向上効果からシリカが好ましい。シリカとしては一般に疎水性シリカと親水性シリカが知られているが、ここでは耐吸湿性を付与する上でジメチルジクロロシランやヘキサメチルジシラザン、オクチルシラン等で処理を行った疎水性シリカの方が良い。フィラーを配合する場合、その配合量は、ポリエステル樹脂(A)及びエポキシ樹脂(B)の合計100質量部に対し、0.05~50質量部の配合量であることが好ましい。前記下限値以上とすることで更なるはんだ耐熱性を発現することができる。また、前記上限値以下とすることでフィラーの分散不良や溶液粘度が高くなりすぎることを抑え、作業性が良好となる。
<Filler>
The adhesive composition of the present invention may contain a filler as necessary. Examples of the filler include organic fillers and inorganic fillers. Examples of the organic fillers include heat-resistant resins such as polyimide, polyamideimide, fluororesin, and liquid crystal polyester powders, and examples of the inorganic fillers include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), boron nitride (BN), calcium carbonate (CaCO 3 ), calcium sulfate (CaSO 4 ), zinc oxide (ZnO), magnesium titanate (MgO.TiO 2 ), barium sulfate (BaSO 4 ), organic bentonite, clay, mica, aluminum hydroxide, and magnesium hydroxide. Among these, silica is preferred because of its ease of dispersion and its effect of improving solder heat resistance. Generally, hydrophobic silica and hydrophilic silica are known as silica, but in this case, hydrophobic silica treated with dimethyldichlorosilane, hexamethyldisilazane, octylsilane, etc. is better in order to impart moisture absorption resistance. When a filler is blended, the blending amount is preferably 0.05 to 50 parts by mass per 100 parts by mass of the polyester resin (A) and the epoxy resin (B) combined. By making the amount equal to or greater than the lower limit, further solder heat resistance can be achieved. Also, by making the amount equal to or less than the upper limit, poor dispersion of the filler and excessively high solution viscosity can be suppressed, and workability can be improved.
<シランカップリング剤>
 本発明の接着剤組成物には必要に応じてシランカップリング剤を配合しても良い。シランカップリング剤を配合することにより金属への接着性やはんだ耐熱性の特性が向上するため非常に好ましい。シランカップリング剤としては特に限定されないが、不飽和基を有するもの、エポキシ基を有するもの、アミノ基を有するものなどが挙げられる。これらのうちエポキシ基を有するものは、はんだ耐熱性の観点からさらに好ましく、例としてγ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等が使用できる。シランカップリング剤を配合する場合、その配合量はポリエステル樹脂(A)及びエポキシ樹脂(B)の合計100質量部に対して0.5~20質量部の配合量であることが好ましい。前記範囲内とすることではんだ耐熱性や接着性を向上することができる。
<Silane coupling agent>
The adhesive composition of the present invention may contain a silane coupling agent as necessary. The incorporation of a silane coupling agent is highly preferred because it improves the adhesiveness to metals and solder heat resistance. The silane coupling agent is not particularly limited, but examples include those having an unsaturated group, those having an epoxy group, and those having an amino group. Among these, those having an epoxy group are more preferred from the viewpoint of solder heat resistance, and examples of usable silane coupling agents include γ-glycidoxypropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltriethoxysilane. When a silane coupling agent is incorporated, the amount of the silane coupling agent is preferably 0.5 to 20 parts by mass per 100 parts by mass of the total of the polyester resin (A) and the epoxy resin (B). By keeping the amount within the above range, the solder heat resistance and adhesiveness can be improved.
<積層体>
 本発明の積層体は、基材に接着剤組成物を積層したもの(基材/接着剤層の2層積層体)、又は、さらに基材を貼り合わせたもの(基材/接着剤層/基材の3層積層体)である。ここで、接着剤層とは、本発明の接着剤組成物を基材に塗布し、乾燥させた後の接着剤組成物の層をいう。本発明の接着剤組成物を、常法に従い、各種基材に塗布、乾燥すること、及びさらに他の基材を積層することにより、本発明の積層体を得ることができる。
<Laminate>
The laminate of the present invention is a laminate of the adhesive composition on a substrate (a two-layer laminate of substrate/adhesive layer), or a three-layer laminate of substrate/adhesive layer/substrate. Here, the adhesive layer refers to a layer of the adhesive composition after the adhesive composition of the present invention is applied to a substrate and dried. The adhesive composition of the present invention can be applied to various substrates according to a conventional method, dried, and then laminated with another substrate to obtain the laminate of the present invention.
<基材>
 本発明において基材とは、本発明の接着剤組成物を塗布、乾燥し、接着剤層を形成できるものであれば特に限定されるものではないが、フィルム状樹脂等の樹脂基材、金属板や金属箔等の金属基材、紙類等を挙げることができる。また、本発明における基材は複合素材からなるものであってもよい。
<Substrate>
In the present invention, the substrate is not particularly limited as long as it is capable of forming an adhesive layer by applying and drying the adhesive composition of the present invention, and examples of the substrate include resin substrates such as film-like resins, metal substrates such as metal plates and metal foils, papers, etc. In addition, the substrate in the present invention may be made of a composite material.
 樹脂基材としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、液晶ポリマー、ポリフェニレンスルフィド、シンジオタクチックポリスチレン、ポリオレフィン系樹脂、及びフッ素系樹脂等を例示することができる。好ましくはフィルム状樹脂(以下、基材フィルム層ともいう)である。 Examples of resin substrates include polyester resins, polyamide resins, polyimide resins, polyamideimide resins, liquid crystal polymers, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resins, and fluorine resins. A film-like resin (hereinafter also referred to as a substrate film layer) is preferred.
 金属基材としては、回路基板に使用可能な任意の従来公知の導電性材料が使用可能である。素材としては、SUS、銅、アルミニウム、鉄、スチール、亜鉛、ニッケル等の各種金属、及びそれぞれの合金、めっき品、亜鉛やクロム化合物など他の金属で処理した金属等を例示することができる。好ましくは金属箔であり、より好ましくは銅箔である。金属箔の厚みについては特に限定はないが、好ましくは1μm以上であり、より好ましくは3μm以上であり、さらに好ましくは10μm以上である。また、好ましくは50μm以下であり、より好ましくは30μm以下であり、さらに好ましくは20μm以下である。厚さが薄すぎる場合には、回路の充分な電気的性能が得られにくい場合があり、一方、厚さが厚すぎる場合には回路作製時の加工能率等が低下する場合がある。金属箔は、通常、ロール状の形態で提供されている。本発明のプリント配線板を製造する際に使用される金属箔の形態は特に限定されない。リボン状の形態の金属箔を用いる場合、その長さは特に限定されない。また、その幅も特に限定されないが、250~500cm程度であるのが好ましい。基材の表面粗度は特に限定はないが、好ましくは3μm以下であり、より好ましくは2μm以下であり、さらに好ましくは1.5μm以下である。また実用上好ましくは0.3μm以上であり、より好ましくは0.5μm以上であり、さらに好ましくは0.7μm以上である。 Any conventionally known conductive material that can be used for a circuit board can be used as the metal substrate. Examples of materials include various metals such as SUS, copper, aluminum, iron, steel, zinc, and nickel, as well as their alloys, plated products, and metals treated with other metals such as zinc and chromium compounds. Metal foil is preferred, and copper foil is more preferred. There is no particular limitation on the thickness of the metal foil, but it is preferably 1 μm or more, more preferably 3 μm or more, and even more preferably 10 μm or more. It is also preferably 50 μm or less, more preferably 30 μm or less, and even more preferably 20 μm or less. If the thickness is too thin, it may be difficult to obtain sufficient electrical performance of the circuit, while if the thickness is too thick, the processing efficiency during circuit fabrication may decrease. Metal foil is usually provided in a rolled form. There is no particular limitation on the form of the metal foil used in manufacturing the printed wiring board of the present invention. When a ribbon-shaped metal foil is used, there is no particular limitation on its length. There is also no particular limitation on its width, but it is preferably about 250 to 500 cm. There are no particular limitations on the surface roughness of the substrate, but it is preferably 3 μm or less, more preferably 2 μm or less, and even more preferably 1.5 μm or less. In practical terms, it is preferably 0.3 μm or more, more preferably 0.5 μm or more, and even more preferably 0.7 μm or more.
 紙類として上質紙、クラフト紙、ロール紙、グラシン紙等を例示することができる。また複合素材として、ガラスエポキシ等を例示することができる。 Examples of paper include fine paper, craft paper, roll paper, glassine paper, etc. Examples of composite materials include glass epoxy, etc.
 接着剤組成物との接着力及び耐久性から、基材としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、液晶ポリマー、ポリフェニレンスルフィド、シンジオタクチックポリスチレン、ポリオレフィン系樹脂、フッ素系樹脂、SUS鋼板、銅箔、アルミ箔、又はガラスエポキシが好ましい。 In terms of adhesion to the adhesive composition and durability, the substrate is preferably polyester resin, polyamide resin, polyimide resin, polyamideimide resin, liquid crystal polymer, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resin, fluorine resin, SUS steel plate, copper foil, aluminum foil, or glass epoxy.
<接着シート>
 本発明において、接着シートとは、前記基材と離型基材とを接着剤組成物を介して積層したものである。具体的な構成態様としては、基材/接着剤層/離型基材、又は離型基材/接着剤層/基材/接着剤層/離型基材が挙げられる。離型基材を積層することで接着剤層の保護層として機能する。また離型基材を使用することで、接着シートから離型基材を離型して、さらに別の基材に接着剤層を転写することができる。
<Adhesive sheet>
In the present invention, the adhesive sheet is a laminate of the substrate and the release substrate via an adhesive composition. Specific configurations include substrate/adhesive layer/release substrate, or release substrate/adhesive layer/substrate/adhesive layer/release substrate. The release substrate functions as a protective layer for the adhesive layer by laminating it. In addition, by using a release substrate, the release substrate can be released from the adhesive sheet and the adhesive layer can be transferred to another substrate.
 本発明の接着剤組成物を、常法に従い、各種積層体に塗布、乾燥することにより、本発明の接着シートを得ることができる。また乾燥後、接着剤層に離型基材を貼付けると、基材への裏移りを起こすことなく巻き取りが可能になり操業性に優れるとともに、接着剤層が保護されることから保存性に優れ、使用も容易である。また離型基材に塗布、乾燥後、必要に応じて別の離型基材を貼付すれば、接着剤層そのものを他の基材に転写することも可能になる。 The adhesive sheet of the present invention can be obtained by applying the adhesive composition of the present invention to various laminates and drying them in the usual manner. Furthermore, by attaching a release substrate to the adhesive layer after drying, it is possible to wind it up without causing offset onto the substrate, which is excellent in operability, and since the adhesive layer is protected, it is excellent in storage stability and easy to use. Furthermore, if a release substrate is attached after application and drying, it is also possible to transfer the adhesive layer itself to another substrate if another release substrate is attached as necessary.
<離型基材>
 離型基材としては、特に限定されるものではないが、例えば、上質紙、クラフト紙、ロール紙、グラシン紙などの紙の両面に、クレー、ポリエチレン、ポリプロピレンなどの目止剤の塗布層を設け、さらにその各塗布層の上にシリコーン系、フッ素系、アルキド系の離型剤が塗布されたものが挙げられる。また、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、プロピレン-α-オレフィン共重合体等の各種オレフィンフィルム単独、及びポリエチレンテレフタレート等のフィルム上に上記離型剤を塗布したものも挙げられる。離型基材と接着剤層との離型力、シリコーンが電気特性に悪影響を与える等の理由から、上質紙の両面にポリプロピレン目止処理しその上にアルキド系離型剤を用いたもの、又はポリエチレンテレフタレート上にアルキド系離型剤を用いたものが好ましい。
<Release substrate>
The release substrate is not particularly limited, but examples thereof include those in which a coating layer of a filler such as clay, polyethylene, or polypropylene is provided on both sides of paper such as fine paper, craft paper, roll paper, or glassine paper, and a silicone-based, fluorine-based, or alkyd-based release agent is further applied on each coating layer. Other examples include various olefin films such as polyethylene, polypropylene, ethylene-α-olefin copolymer, and propylene-α-olefin copolymer alone, and films such as polyethylene terephthalate on which the release agent is applied. Due to the release force between the release substrate and the adhesive layer, and the adverse effect of silicone on electrical properties, it is preferable to use a polypropylene-filled coating on both sides of fine paper and an alkyd-based release agent thereon, or an alkyd-based release agent on polyethylene terephthalate.
 なお、本発明において接着剤組成物を基材上にコーティングする方法としては、特に限定されないが、コンマコーター、リバースロールコーター等が挙げられる。もしくは、必要に応じて、プリント配線板構成材料である圧延銅箔、又はポリイミドフィルムに直接もしくは転写法で接着剤層を設けることもできる。乾燥後の接着剤層の厚みは、必要に応じて、適宜変更されるが、好ましくは5~200μmの範囲である。接着フィルム厚を5μm以上とすることで十分な接着強度が得られる。また、200μm以下とすることで乾燥工程の残留溶剤量を制御しやすくなり、プリント配線板製造のプレス時に膨れが生じにくくなる。乾燥条件は特に限定されないが、乾燥後の残留溶剤率は1質量%以下が好ましい。1質量%以下とすることで、プリント配線板プレス時に残留溶剤が発泡することを抑え、膨れが生じにくくなる。 In the present invention, the method of coating the adhesive composition on the substrate is not particularly limited, but examples thereof include a comma coater and a reverse roll coater. Alternatively, if necessary, an adhesive layer can be provided directly or by a transfer method on the rolled copper foil or polyimide film that is the printed wiring board constituent material. The thickness of the adhesive layer after drying can be appropriately changed as necessary, but is preferably in the range of 5 to 200 μm. By making the adhesive film thickness 5 μm or more, sufficient adhesive strength can be obtained. In addition, by making it 200 μm or less, it becomes easier to control the amount of residual solvent in the drying process, and swelling is less likely to occur during pressing in the production of printed wiring boards. The drying conditions are not particularly limited, but the residual solvent rate after drying is preferably 1 mass % or less. By making it 1 mass % or less, foaming of the residual solvent is suppressed during pressing of the printed wiring board, and swelling is less likely to occur.
<プリント配線板>
 本発明におけるプリント配線板は、導体回路を形成する金属箔と樹脂基材とから形成された積層体を構成要素として含むものである。プリント配線板は、例えば、金属張積層体を用いてサブトラクティブ法などの従来公知の方法により製造される。必要に応じて、金属箔によって形成された導体回路を部分的、或いは全面的にカバーフィルムやスクリーン印刷インキ等を用いて被覆した、いわゆるフレキシブル回路板(FPC)、フラットケーブル、テープオートメーティッドボンディング(TAB)用の回路板などを総称している。
<Printed Wiring Board>
The printed wiring board in the present invention includes, as a component, a laminate formed from a metal foil forming a conductor circuit and a resin substrate. The printed wiring board is manufactured by a conventionally known method such as a subtractive method using a metal-clad laminate. If necessary, the printed wiring board is a general term for so-called flexible circuit boards (FPC), flat cables, circuit boards for tape automated bonding (TAB), etc., in which a conductor circuit formed by a metal foil is partially or entirely covered with a cover film, screen printing ink, etc.
 本発明のプリント配線板は、プリント配線板として採用され得る任意の積層構成とすることができる。例えば、基材フィルム層、金属箔層、接着剤層、及びカバーフィルム層の4層から構成されるプリント配線板とすることができる。また例えば、基材フィルム層、接着剤層、金属箔層、接着剤層、及びカバーフィルム層の5層から構成されるプリント配線板とすることができる。 The printed wiring board of the present invention can have any laminated structure that can be used as a printed wiring board. For example, it can be a printed wiring board consisting of four layers: a base film layer, a metal foil layer, an adhesive layer, and a cover film layer. It can also be a printed wiring board consisting of five layers: a base film layer, an adhesive layer, a metal foil layer, an adhesive layer, and a cover film layer.
 さらに、必要に応じて、上記のプリント配線板を2つもしくは3つ以上積層した構成とすることもできる。 Furthermore, if necessary, two or more of the above printed wiring boards can be stacked together.
 本発明の接着剤組成物はプリント配線板の各接着剤層に好適に使用することが可能である。特に本発明の接着剤組成物を接着剤として使用すると、プリント配線板を構成する従来のポリイミド、ポリエステルフィルム、銅箔、アルミニウム箔などの樹脂基材と高い接着性を有し、耐はんだリフロー性を得ることができる。そのため、カバーレイフィルム、積層板、樹脂付き銅箔、ボンディングシート、及び補強材に用いる接着剤組成物として好適である。 The adhesive composition of the present invention can be suitably used for each adhesive layer of a printed wiring board. In particular, when the adhesive composition of the present invention is used as an adhesive, it has high adhesion to conventional resin substrates such as polyimide, polyester film, copper foil, and aluminum foil that constitute printed wiring boards, and can provide solder reflow resistance. Therefore, it is suitable as an adhesive composition for use in coverlay films, laminates, resin-coated copper foil, bonding sheets, and reinforcing materials.
 本発明のプリント配線板において、基材フィルムとしては、従来からプリント配線板の基材として使用されている任意の樹脂フィルムが使用可能である。基材フィルムの樹脂としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、液晶ポリマー、ポリフェニレンスルフィド、シンジオタクチックポリスチレン、ポリオレフィン系樹脂、及びフッ素系樹脂等を例示することができる。 In the printed wiring board of the present invention, any resin film that has been conventionally used as a substrate for printed wiring boards can be used as the substrate film. Examples of resins for the substrate film include polyester resins, polyamide resins, polyimide resins, polyamideimide resins, liquid crystal polymers, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resins, and fluorine-based resins.
<カバーフィルム>
 カバーフィルムとしては、プリント配線板用の絶縁フィルムとして従来公知の任意の絶縁フィルムが使用可能である。例えば、ポリイミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート、ポリアミドイミド、液晶ポリマー、シンジオタクチックポリスチレン、ポリオレフィン系樹脂等の各種ポリマーから製造されるフィルムが使用可能である。より好ましくは、ポリイミドフィルムである。
<Cover film>
As the cover film, any insulating film conventionally known as an insulating film for printed wiring boards can be used. For example, films made of various polymers such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, polyamideimide, liquid crystal polymer, syndiotactic polystyrene, and polyolefin resin can be used. More preferably, it is a polyimide film.
 本発明のプリント配線板は、上述した各層の材料を用いる以外は、従来公知の任意のプロセスを用いて製造することができる。 The printed wiring board of the present invention can be manufactured using any conventionally known process, except for using the materials for each layer described above.
 好ましい実施態様では、カバーフィルム層に接着剤層を積層した半製品(以下、「カバーフィルム側半製品」という)を製造する。他方、基材フィルム層に金属箔層を積層して所望の回路パターンを形成した半製品(以下、「基材フィルム側2層半製品」という)又は基材フィルム層に接着剤層を積層し、その上に金属箔層を積層して所望の回路パターンを形成した半製品(以下、「基材フィルム側3層半製品」という)を製造する(以下、基材フィルム側2層半製品と基材フィルム側3層半製品とを合わせて「基材フィルム側半製品」という)。このようにして得られたカバーフィルム側半製品と、基材フィルム側半製品とを貼り合わせることにより、4層又は5層のプリント配線板を得ることができる。 In a preferred embodiment, a semi-finished product is manufactured in which an adhesive layer is laminated on a cover film layer (hereinafter referred to as a "cover film side semi-finished product"). On the other hand, a semi-finished product is manufactured in which a metal foil layer is laminated on a base film layer to form a desired circuit pattern (hereinafter referred to as a "base film side two-layer semi-finished product"), or a semi-finished product is manufactured in which an adhesive layer is laminated on a base film layer and a metal foil layer is laminated on top of it to form a desired circuit pattern (hereinafter referred to as a "base film side three-layer semi-finished product") (hereinafter, the base film side two-layer semi-finished product and the base film side three-layer semi-finished product are collectively referred to as the "base film side semi-finished product"). By bonding the cover film side semi-finished product thus obtained and the base film side semi-finished product together, a four-layer or five-layer printed wiring board can be obtained.
 基材フィルム側半製品は、例えば、(A)前記金属箔に基材フィルムとなる樹脂の溶液を塗布し、塗膜を初期乾燥する工程、(B)(A)で得られた金属箔と初期乾燥塗膜との積層物を熱処理・乾燥する工程(以下、「熱処理・脱溶剤工程」という)を含む製造法により得られる。 The semi-finished product on the base film side can be obtained, for example, by a manufacturing method including a process (A) of applying a solution of the resin that will become the base film to the metal foil and initially drying the coating, and a process (B) of heat-treating and drying the laminate of the metal foil and the initially dried coating obtained in (A) (hereinafter referred to as the "heat treatment/solvent removal process").
 金属箔層における回路の形成は、従来公知の方法を用いることができる。アディティブ法を用いてもよく、サブトラクティブ法を用いてもよい。好ましくは、サブトラクティブ法である。 The formation of the circuit in the metal foil layer can be achieved by a conventional method. Either an additive method or a subtractive method can be used. A subtractive method is preferred.
 得られた基材フィルム側半製品は、そのままカバーフィルム側半製品との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後にカバーフィルム側半製品との貼り合わせに使用してもよい。 The obtained semi-finished product on the base film side may be used as is for bonding to the semi-finished product on the cover film side, or it may be used for bonding to the semi-finished product on the cover film side after bonding a release film and storing it.
 カバーフィルム側半製品は、例えば、カバーフィルムに接着剤を塗布して製造される。必要に応じて、塗布された接着剤における架橋反応を行うことができる。好ましい実施態様においては、接着剤層を半硬化させる。 The cover film side semi-finished product is produced, for example, by applying an adhesive to the cover film. If necessary, a crosslinking reaction can be carried out in the applied adhesive. In a preferred embodiment, the adhesive layer is semi-cured.
 得られたカバーフィルム側半製品は、そのまま基材フィルム側半製品との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後に基材フィルム側半製品との貼り合わせに使用してもよい。 The obtained semi-finished product on the cover film side may be used as is for bonding to the semi-finished product on the base film side, or it may be used for bonding to the semi-finished product on the base film side after bonding a release film and storing it.
 基材フィルム側半製品とカバーフィルム側半製品とは、それぞれ、例えば、ロールの形態で保管された後、貼り合わされて、プリント配線板が製造される。貼り合わせる方法としては、任意の方法が使用可能であり、例えば、プレス又はロールなどを用いて貼り合わせることができる。また、加熱プレス、又は加熱ロ-ル装置を使用するなどの方法により加熱を行いながら両者を貼り合わせることもできる。 The semi-finished product on the base film side and the semi-finished product on the cover film side are stored, for example, in the form of a roll, and then laminated together to produce a printed wiring board. Any method can be used for laminating them together, and for example, they can be laminated together using a press or roll. They can also be laminated together while heating them, for example, using a heated press or a heated roll device.
 補強材側半製品は、例えば、ポリイミドフィルムのように柔らかく巻き取り可能な補強材の場合、補強材に接着剤を塗布して製造されることが好適である。また、例えばSUS、アルミ等の金属板、ガラス繊維をエポキシ樹脂で硬化させた板等のように硬く巻き取りできない補強板の場合、予め離型基材に塗布した接着剤を転写塗布することによって製造されることが好適である。また、必要に応じて、塗布された接着剤における架橋反応を行うことができる。好ましい実施態様においては、接着剤層を半硬化させる。 In the case of a reinforcing material that is soft and can be rolled up, such as a polyimide film, the semi-finished reinforcing material is preferably manufactured by applying an adhesive to the reinforcing material. In the case of a reinforcing plate that is hard and cannot be rolled up, such as a metal plate such as SUS or aluminum, or a plate made of glass fiber cured with epoxy resin, it is preferably manufactured by transfer-coating an adhesive that has been applied in advance to a release substrate. If necessary, a crosslinking reaction can be carried out in the applied adhesive. In a preferred embodiment, the adhesive layer is semi-cured.
 得られた補強材側半製品は、そのままプリント配線板裏面との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後に基材フィルム側半製品との貼り合わせに使用してもよい。 The obtained semi-finished product on the reinforcing material side may be used as is for bonding to the back surface of a printed wiring board, or it may be used for bonding to the semi-finished product on the base film side after a release film has been applied and stored.
 基材フィルム側半製品、カバーフィルム側半製品、補強材側半製品はいずれも、本発明におけるプリント配線板用積層体である。 The base film semi-finished product, the cover film semi-finished product, and the reinforcing material semi-finished product are all laminates for printed wiring boards according to the present invention.
 本願は、2022年10月27日に出願された日本国特許出願第2022-172590号に基づく優先権の利益を主張するものである。2022年10月27日に出願された日本国特許出願第2022-172590号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2022-172590, filed on October 27, 2022. The entire contents of the specification of Japanese Patent Application No. 2022-172590, filed on October 27, 2022, are incorporated by reference into this application.
 以下、実施例を挙げて本発明を具体的に説明する。なお、本実施例及び比較例において、単に部とあるのは質量部を示すこととする。 The present invention will be specifically explained below with reference to examples. Note that in these examples and comparative examples, parts simply indicate parts by mass.
(物性評価方法)
(ポリエステル樹脂(A)の組成の測定)
 400MHzの1H-核磁気共鳴スペクトル装置(以下、NMRと略記することがある)を用い、ポリエステル樹脂(A)を構成する多価カルボン酸成分、多価アルコール成分のモル比定量を行った。溶媒には重クロロホルムを使用した。なお、酸後付加によりポリエステル樹脂(A)の酸価を上げた場合には、酸後付加に用いた酸成分以外の酸成分の合計を100モル%として、各成分のモル比を算出した。
(Physical property evaluation method)
(Measurement of composition of polyester resin (A))
A 400 MHz 1H-nuclear magnetic resonance spectrometer (hereinafter sometimes abbreviated as NMR) was used to quantitatively determine the molar ratios of the polyvalent carboxylic acid component and the polyhydric alcohol component constituting the polyester resin (A). Deuterated chloroform was used as the solvent. When the acid value of the polyester resin (A) was increased by post-acid addition, the molar ratios of each component were calculated by taking the total of the acid components other than the acid component used in the post-acid addition as 100 mol %.
(ガラス転移温度の測定)
 示差走査型熱量計(SII社、DSC-200)を用いて測定した。試料(ポリエステル樹脂(A))5mgをアルミニウム抑え蓋型容器に入れ密封し、液体窒素を用いて-50℃まで冷却した。次いで150℃まで20℃/分の昇温速度にて昇温させ、昇温過程にて得られる吸熱曲線において、吸熱ピークが出る前(ガラス転移温度以下)のベースラインの延長線と、吸熱ピークに向かう接線(ピークの立ち上がり部分からピークの頂点までの間での最大傾斜を示す接線)との交点の温度をもって、ガラス転移温度(単位:℃)とした。
(Measurement of Glass Transition Temperature)
Measurement was performed using a differential scanning calorimeter (DSC-200, SII). 5 mg of a sample (polyester resin (A)) was placed in an aluminum container with a lid and sealed, and cooled to -50°C using liquid nitrogen. The temperature was then increased to 150°C at a rate of 20°C/min, and the glass transition temperature (unit: °C) was determined as the temperature at the intersection of the extension of the baseline before the endothermic peak (below the glass transition temperature) and the tangent to the endothermic peak (the tangent showing the maximum slope between the rising part of the peak and the apex of the peak) in the endothermic curve obtained during the temperature increase process.
(数平均分子量の測定)
 ポリエステル樹脂(A)の試料を、樹脂濃度が0.5質量%程度となるようにテトラヒドロフランで溶解及び/又は希釈し、孔径0.5μmのポリ四フッ化エチレン製メンブレンフィルターで濾過したものを測定用試料とした。テトラヒドロフランを移動相とし、示差屈折計を検出器とするゲル浸透クロマトグラフィー(GPC)により分子量を測定した。流速は1mL/分、カラム温度は30℃とした。カラムには昭和電工製KF-802、804L、806Lを用いた。分子量標準には単分散ポリスチレンを使用した。
(Measurement of Number Average Molecular Weight)
A sample of polyester resin (A) was dissolved and/or diluted with tetrahydrofuran so that the resin concentration was about 0.5% by mass, and filtered through a polytetrafluoroethylene membrane filter with a pore size of 0.5 μm to prepare a measurement sample. The molecular weight was measured by gel permeation chromatography (GPC) using tetrahydrofuran as the mobile phase and a differential refractometer as the detector. The flow rate was 1 mL/min, and the column temperature was 30° C. The columns used were KF-802, 804L, and 806L manufactured by Showa Denko. Monodisperse polystyrene was used as the molecular weight standard.
 以下、本発明に用いるポリエステル樹脂(A)の合成例を示す。 The following is a synthesis example of the polyester resin (A) used in the present invention.
(ポリエステル樹脂(a1)の製造例)
 攪拌機、コンデンサー、温度計を具備した反応容器にテレフタル酸20.93部、トリメリット酸無水物0.81部、イソフタル酸43.25部、セバシン酸4.25部、ジフェノール酸2.41部、2-メチル-1,3-プロパンジオール24.51部、1,4-シクロヘキサンジメタノール13.78部、1,4-ブタンジオール33.11部、触媒としてオルトチタン酸テトラブチルを全多価カルボン酸成分に対して0.03モル%仕込み、160℃から220℃まで4時間かけて昇温、脱水工程を経ながらエステル化反応を行った。次に重縮合反応工程は、系内を20分かけて5mmHgまで減圧し、さらに250℃まで昇温を進めた。次いで、0.3mmHg以下まで減圧し、60分間の重縮合反応を行った後、220℃まで冷却し、トリメリット酸無水物0.82部、エチレングリコールビストリメリット酸無水物0.88部を投入し、30分間反応させ、これを取り出した。得られたポリエステル樹脂(a1)はNMRによる組成分析の結果、モル比でテレフタル酸/イソフタル酸/セバシン酸/ジフェノール酸/トリメリット酸無水物/2-メチル-1,3-プロパンジオール/1,4-ブタンジオール/1,4-シクロヘキサンジメタノール/トリメリット酸無水物/エチレングリコールビストリメリット酸無水物=30/62/5/2/1/28/55/17/1/0.5の共重合ポリエステルであった。また、ガラス転移温度は35℃、酸価は150eq/10g、数平均分子量は14,200であった。
(Production Example of Polyester Resin (a1))
A reactor equipped with a stirrer, a condenser, and a thermometer was charged with 20.93 parts of terephthalic acid, 0.81 parts of trimellitic anhydride, 43.25 parts of isophthalic acid, 4.25 parts of sebacic acid, 2.41 parts of diphenolic acid, 24.51 parts of 2-methyl-1,3-propanediol, 13.78 parts of 1,4-cyclohexanedimethanol, 33.11 parts of 1,4-butanediol, and 0.03 mol% of tetrabutyl orthotitanate as a catalyst relative to the total polyvalent carboxylic acid component, and the temperature was raised from 160 ° C. to 220 ° C. over 4 hours, and an esterification reaction was carried out through a dehydration process. Next, in the polycondensation reaction process, the pressure in the system was reduced to 5 mmHg over 20 minutes, and the temperature was further raised to 250 ° C. Next, the pressure was reduced to 0.3 mmHg or less, and polycondensation reaction was carried out for 60 minutes, followed by cooling to 220 ° C., and 0.82 parts of trimellitic anhydride and 0.88 parts of ethylene glycol bistrimellitic anhydride were added, reacted for 30 minutes, and then taken out. As a result of composition analysis by NMR, the obtained polyester resin (a1) was a copolymer polyester having a molar ratio of terephthalic acid / isophthalic acid / sebacic acid / diphenolic acid / trimellitic anhydride / 2-methyl-1,3-propanediol / 1,4-butanediol / 1,4-cyclohexanedimethanol / trimellitic anhydride / ethylene glycol bistrimellitic anhydride = 30 / 62 / 5 / 2 / 1 / 28 / 55 / 17 / 1 / 0.5. In addition, the glass transition temperature was 35 ° C., the acid value was 150 eq / 10 6 g, and the number average molecular weight was 14,200.
(ポリエステル樹脂(a2)の製造例)
 攪拌機、コンデンサー、温度計を具備した反応容器にテレフタル酸54.79部、イソフタル酸20.60部、トリメリット酸無水物0.79部、エチレングリコール11.54部、ネオペンチルグリコール45.20部、触媒としてオルトチタン酸テトラブチルを全多価カルボン酸成分に対して0.05モル%仕込み、160℃から220℃まで4時間かけて昇温、脱水工程を経ながらエステル化反応を行った。次に重縮合反応工程は、系内を20分かけて5mmHgまで減圧し、さらに250℃まで昇温を進めた。次いで、0.3mmHg以下まで減圧し、60分間の重縮合反応を行った後、220℃まで冷却し、トリメリット酸無水物0.79部、を投入し、30分間反応させ、これを取り出した。得られたポリエステル樹脂(a2)はNMRによる組成分析の結果、モル比でテレフタル酸/イソフタル酸/トリメリット酸無水物/エチレングリコール/ネオペンチルグリコール/トリメリット酸無水物=69/30/1/30/70/1の共重合ポリエステルであった。また、ガラス転移温度は63℃、酸価は100eq/10g、数平均分子量は10,000であった。
(Production Example of Polyester Resin (a2))
A reactor equipped with a stirrer, a condenser, and a thermometer was charged with 54.79 parts of terephthalic acid, 20.60 parts of isophthalic acid, 0.79 parts of trimellitic anhydride, 11.54 parts of ethylene glycol, 45.20 parts of neopentyl glycol, and 0.05 mol% of tetrabutyl orthotitanate as a catalyst relative to the total polyvalent carboxylic acid components, and the temperature was raised from 160°C to 220°C over 4 hours, and an esterification reaction was carried out through a dehydration process. Next, in the polycondensation reaction process, the pressure in the system was reduced to 5 mmHg over 20 minutes, and the temperature was further increased to 250°C. Next, the pressure was reduced to 0.3 mmHg or less, and a polycondensation reaction was carried out for 60 minutes, after which the system was cooled to 220°C, and 0.79 parts of trimellitic anhydride was added, reacted for 30 minutes, and then taken out. The composition of the obtained polyester resin (a2) was analyzed by NMR and found to be a copolymer polyester having a molar ratio of terephthalic acid/isophthalic acid/trimellitic anhydride/ethylene glycol/neopentyl glycol/trimellitic anhydride = 69/30/1/30/70/1, and had a glass transition temperature of 63°C, an acid value of 100 eq/10 6 g, and a number average molecular weight of 10,000.
(ポリアミドイミド(d1)の製造例)
 撹拌機、冷却管、窒素導入管及び温度計を備えた4ツ口のセパラブルフラスコに、無水トリメリット酸105.67g、セバシン酸80.09g、両末端がカルボン酸のアクリロニトリルブタジエンゴム(CTBN1300×13、数平均分子量3500、アクリロニトリル部位の割合26wt%)175g、4,4’-ジフェニルメタンジイソシアネート252.75g、ジメチルアセトアミド526gを仕込み、窒素気流下100℃まで昇温し、2時間反応させた。次いでジメチルアセトアミド117gを加えて、さらに150℃で5時間反応させた後、トルエン439gとジメチルアセトアミド146gを加えて希釈し、室温まで冷却することで、褐色であるが全く濁りがないポリアミドイミド樹脂溶液(d1)を得た。また、ガラス転移温度は145℃、酸価は463eq/10g、数平均分子量は20,000であった。
(Production Example of Polyamideimide (d1))
A four-necked separable flask equipped with a stirrer, a cooling tube, a nitrogen inlet tube and a thermometer was charged with 105.67 g of trimellitic anhydride, 80.09 g of sebacic acid, 175 g of acrylonitrile butadiene rubber (CTBN 1300 x 13, number average molecular weight 3500, proportion of acrylonitrile moiety 26 wt%) with both ends being carboxylic acid, 252.75 g of 4,4'-diphenylmethane diisocyanate, and 526 g of dimethylacetamide, and the mixture was heated to 100 ° C. under a nitrogen stream and reacted for 2 hours. Next, 117 g of dimethylacetamide was added, and the mixture was further reacted at 150 ° C. for 5 hours, after which 439 g of toluene and 146 g of dimethylacetamide were added to dilute the mixture, and the mixture was cooled to room temperature to obtain a brown but completely clear polyamideimide resin solution (d1). In addition, the glass transition temperature was 145 ° C., the acid value was 463 eq / 10 6 g, and the number average molecular weight was 20,000.
(酸変性ポリプロピレン(e1)の製造例)
 1Lオートクレーブに、プロピレン-ブテン共重合体(三井化学社製「タフマー(登録商標)XM7080」)100質量部、トルエン150質量部及び無水マレイン酸19質量部、ジ-tert-ブチルパーオキサイド6質量部を加え、140℃まで昇温した後、更に3時間撹拌した。その後、得られた反応液を冷却後、多量のメチルエチルケトンが入った容器に注ぎ、樹脂を析出させた。その後、当該樹脂を含有する液を遠心分離することにより、無水マレイン酸がグラフト重合した酸変性プロピレン-ブテン共重合体と(ポリ)無水マレイン酸及び低分子量物とを分離、精製した。その後、減圧下70℃で5時間乾燥させることにより、無水マレイン酸変性プロピレン-ブテン共重合体(e1)を得た。また、酸価338eq/10g、数平均分子量25,000、融点80℃であった。
(Production Example of Acid-Modified Polypropylene (e1))
In a 1L autoclave, 100 parts by mass of propylene-butene copolymer (Mitsui Chemicals "Tafmer (registered trademark) XM7080"), 150 parts by mass of toluene, 19 parts by mass of maleic anhydride, and 6 parts by mass of di-tert-butyl peroxide were added, and the temperature was raised to 140 ° C., and then the mixture was stirred for another 3 hours. Thereafter, the obtained reaction liquid was cooled and poured into a container containing a large amount of methyl ethyl ketone to precipitate a resin. Thereafter, the liquid containing the resin was centrifuged to separate and purify the acid-modified propylene-butene copolymer in which maleic anhydride was graft-polymerized, (poly)maleic anhydride, and low molecular weight substances. Thereafter, the mixture was dried under reduced pressure at 70 ° C. for 5 hours to obtain a maleic anhydride-modified propylene-butene copolymer (e1). In addition, the acid value was 338 eq / 10 6 g, the number average molecular weight was 25,000, and the melting point was 80 ° C.
 以下、本発明の実施例となる接着剤組成物、及び比較例となる接着剤組成物の製造例を示す。
なお、エポキシ樹脂(B)としては、以下のものを用いた。
EP-3950E:(N,N,O-トリグリシジル-p-アミノフェノール、株式会社ADEKA製)
Figure JPOXMLDOC01-appb-C000001

TETRAD X:(N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、三菱ガス化学株式会社製)
Figure JPOXMLDOC01-appb-C000002

jER604:(N,N,N’,N’-テトラグリシジル-(4,4’-メチレンビスアニリン)、三菱ケミカル株式会社製)
Figure JPOXMLDOC01-appb-C000003

YDCN-700-10:(クレゾールノボラック型エポキシ、日鉄ケミカル&マテリアル株式会社製)
また、難燃剤としては、以下のものを用いた。
Exolit(登録商標)OP-930:(有機ホスフィン酸金属塩、クラリアント社)BCA:(有機リン化合物、9,10-ジヒドロ-10-ベンジル-9-オキサ-10-ホスファフェナントレン-10-オキサイド、三光株式会社)
The following describes production examples of adhesive compositions according to the present invention and comparative adhesive compositions.
As the epoxy resin (B), the following was used.
EP-3950E: (N,N,O-triglycidyl-p-aminophenol, manufactured by ADEKA Corporation)
Figure JPOXMLDOC01-appb-C000001

TETRAD X: (N,N,N',N'-tetraglycidyl-m-xylylenediamine, manufactured by Mitsubishi Gas Chemical Company, Inc.)
Figure JPOXMLDOC01-appb-C000002

jER604: (N,N,N',N'-tetraglycidyl-(4,4'-methylenebisaniline), manufactured by Mitsubishi Chemical Corporation)
Figure JPOXMLDOC01-appb-C000003

YDCN-700-10: (cresol novolac epoxy, manufactured by Nippon Steel Chemical & Material Co., Ltd.)
The following flame retardants were used:
Exolit (registered trademark) OP-930: (organophosphinic acid metal salt, Clariant) BCA: (organophosphorus compound, 9,10-dihydro-10-benzyl-9-oxa-10-phosphaphenanthrene-10-oxide, Sanko Co., Ltd.)
(実施例1)
 前記の合成例で得た共重合ポリエステル(a1)40質量部をトルエンで溶解し、固形分濃度40質量%のトルエンワニスを作成した。このワニスに、硬化剤としてEP-3950EとTETRAD X、有機ホスフィン酸金属塩としてExolit OP930をポリエステル樹脂(a1)100質量部に対しそれぞれ2質量部、1質量部、10質量部となるように配合し、接着剤組成物(F1)を得た。
 得られた接着剤組成物(F1)について、接着性、はんだ耐熱性、レジンフロー、難燃性、長期耐熱性の各評価を実施した。結果を表1に記載した。
Example 1
40 parts by mass of the copolymerized polyester (a1) obtained in the above synthesis example was dissolved in toluene to prepare a toluene varnish having a solid content concentration of 40% by mass. EP-3950E and TETRAD X as curing agents and Exolit OP930 as an organic phosphinic acid metal salt were mixed into this varnish in amounts of 2 parts by mass, 1 part by mass, and 10 parts by mass, respectively, per 100 parts by mass of the polyester resin (a1), to obtain an adhesive composition (F1).
The adhesive composition (F1) thus obtained was evaluated for adhesion, solder heat resistance, resin flow, flame retardancy, and long-term heat resistance. The results are shown in Table 1.
(実施例2~9、比較例1~7)
 ポリエステル樹脂(A)及びエポキシ樹脂(B)の種類及び配合量を表1に示すように変更した以外は実施例1と同様に接着剤組成物(F2)~(F16)を作成し、各評価を実施した。結果を表1に記載した。
(Examples 2 to 9, Comparative Examples 1 to 7)
Adhesive compositions (F2) to (F16) were prepared and evaluated in the same manner as in Example 1, except that the types and amounts of the polyester resin (A) and epoxy resin (B) were changed as shown in Table 1. The results are shown in Table 1.
(接着剤組成物の評価)
(接着性(ピール強度))
 厚さ12.5μmのポリイミドフィルム(株式会社カネカ製、アピカル(登録商標))の片面に、乾燥後の厚みが25μmとなるように接着剤組成物を塗布し、130℃で3分乾燥した。この様にして得られた接着性フィルム(Bステージ品)を厚さ18μmの圧延銅箔(日鉄ケミカル&マテリアル株式会社製、エスパネックスシリーズ)と貼り合わせた。貼り合わせは、圧延銅箔の光沢面が接着剤層と接する様にして、170℃で2MPaの加圧下に280秒間プレスし、接着した。次いで170℃で3時間熱処理して硬化させ、ピール強度評価用サンプルを得た。ピール強度は、25℃、フィルム引き、引張速度50mm/min、90°剥離の条件で測定した。この試験は常温での接着強度を示すものである。
<評価基準>
 ○:1.0N/mm以上
 △:0.5N/mm以上1.0N/mm未満
 ×:0.5N/mm未満
(Evaluation of Adhesive Compositions)
(Adhesiveness (peel strength))
The adhesive composition was applied to one side of a 12.5 μm thick polyimide film (Apical (registered trademark) manufactured by Kaneka Corporation) so that the thickness after drying was 25 μm, and dried at 130 ° C for 3 minutes. The adhesive film (B stage product) obtained in this way was laminated with a rolled copper foil (ESPANEX series manufactured by Nippon Steel Chemical & Material Co., Ltd.) having a thickness of 18 μm. The laminate was pressed at 170 ° C under a pressure of 2 MPa for 280 seconds so that the glossy side of the rolled copper foil was in contact with the adhesive layer, and the adhesive was bonded. The laminate was then heat-treated at 170 ° C for 3 hours to harden the film, and a sample for peel strength evaluation was obtained. The peel strength was measured under the conditions of 25 ° C, film pulling, tensile speed 50 mm / min, and 90 ° peeling. This test shows the adhesive strength at room temperature.
<Evaluation criteria>
○: 1.0 N/mm or more △: 0.5 N/mm or more and less than 1.0 N/mm ×: Less than 0.5 N/mm
(はんだ耐熱性)
 上記と同じ方法でサンプルを作製し、2.0cm×2.0cmのサンプル片を288℃で溶融したはんだ浴に浸漬し、膨れなどの外観変化の有無を確認した。
<評価基準>
 ◎:60秒以上膨れ無し
 ○:30秒以上60秒未満で膨れあり
 ×:30秒未満で膨れ有り
(solder heat resistance)
Samples were prepared in the same manner as above, and a 2.0 cm×2.0 cm sample piece was immersed in a bath of molten solder at 288° C., and the presence or absence of any change in appearance, such as blistering, was confirmed.
<Evaluation criteria>
◎: No swelling for 60 seconds or more ○: Swelling occurs for 30 seconds or more but less than 60 seconds ×: Swelling occurs for less than 30 seconds
(レジンフロー)
 厚さ12.5μmのポリイミドフィルム(株式会社カネカ製、アピカル(登録商標))の片面に、乾燥後の厚みが25μmとなるように接着剤組成物を塗布し、130℃で3分乾燥した。この様にして得られた接着性フィルム(Bステージ品)を厚さ18μmの圧延銅箔(日鉄ケミカル&マテリアル株式会社製、エスパネックスシリーズ)に100μmのピッチで回路が形成された基材と貼り合わせた。貼り合わせは、回路面が接着剤層と接する様にして、170℃で2MPaの加圧下に280秒間プレスし、接着した。回路に沿って、貼り合わせ面から流れ出した接着剤の流れ出し量をマイクロスコープで計測した。この試験により、回路埋め込み性及びレジンフロー抑制を評価した。測定値が0.050mm未満の場合、回路埋め込み性を満足できない。また、測定値が1.00mm以上の場合レジンフローが過剰である。
<評価基準>
 ◎:0.10mm以上0.30mm未満
 ○:0.050mm以上0.10mm未満又は0.30mm以上0.50mm未満
 △:0.50mm以上1.00mm未満
 ×:0.050mm未満又は1.00mm以上
(Resin Flow)
The adhesive composition was applied to one side of a 12.5 μm thick polyimide film (Apical (registered trademark), manufactured by Kaneka Corporation) so that the thickness after drying was 25 μm, and dried at 130 ° C for 3 minutes. The adhesive film (B stage product) obtained in this manner was laminated to a substrate in which a circuit was formed at a pitch of 100 μm on a rolled copper foil (ESPANEX series, manufactured by Nippon Steel Chemical & Material Co., Ltd.) having a thickness of 18 μm. The lamination was performed by pressing for 280 seconds at 170 ° C under a pressure of 2 MPa so that the circuit surface was in contact with the adhesive layer. The amount of adhesive flowing out from the lamination surface along the circuit was measured with a microscope. The circuit embedding property and resin flow suppression were evaluated by this test. If the measured value is less than 0.050 mm, the circuit embedding property is not satisfactory. Also, if the measured value is 1.00 mm or more, the resin flow is excessive.
<Evaluation criteria>
◎: 0.10 mm or more and less than 0.30 mm ○: 0.050 mm or more and less than 0.10 mm or 0.30 mm or more and less than 0.50 mm △: 0.50 mm or more and less than 1.00 mm ×: Less than 0.050 mm or 1.00 mm or more
(難燃性)
 厚さ12.5μmのポリイミドフィルム((株)カネカ製、アピカル12.5NPI)の両面にそれぞれ乾燥後の厚みが16μmとなるように接着剤組成物を塗布し、130℃で3分間、送風オーブン内で乾燥した後、170℃で3時間、加熱硬化させることによりサンプルを作成した。UL-94VTM難燃性規格に準拠して、難燃性を評価した。
<評価基準>
 ○:UL94 VTM-0相当であるもの。
 ×:UL94 VTM-0を満足しないもの。
(Flame retardance)
The adhesive composition was applied to both sides of a 12.5 μm thick polyimide film (Apical 12.5NPI, manufactured by Kaneka Corporation) so that the thickness after drying would be 16 μm, and the film was dried at 130° C. for 3 minutes in a fan oven, and then heated and cured at 170° C. for 3 hours to prepare a sample. Flame retardancy was evaluated in accordance with the UL-94 VTM flame retardancy standard.
<Evaluation criteria>
◯: Equivalent to UL94 VTM-0.
×: Does not satisfy UL94 VTM-0.
(長期耐熱性(ピール強度))
 厚さ12.5μmのポリイミドフィルム(株式会社カネカ製、アピカル(登録商標))の片面に、乾燥後の厚みが25μmとなるように接着剤組成物を塗布し、130℃で3分乾燥した。この様にして得られた接着性フィルム(Bステージ品)を厚さ18μmの圧延銅箔(日鉄ケミカル&マテリアル株式会社製、エスパネックスシリーズ)と貼り合わせた。貼り合わせは、圧延銅箔の光沢面が接着剤層と接する様にして、170℃で2MPaの加圧下に280秒間プレスし、接着した。次いで170℃で3時間熱処理して硬化させ、ピール強度評価用サンプルを得た。このサンプルを空気雰囲気で150℃のオーブン中に1000時間静置し、1000時間後のピール強度を測定した。ピール強度は、25℃、フィルム引き、引張速度50mm/min、90°剥離の条件で測定した。この試験は接着強度の長期信頼性を示すものである。
<評価基準>
 ◎:0.5N/mm以上
 ○:0.2N/mm以上、0.5N/mm未満
 ×:0.2N/mm未満
(Long-term heat resistance (peel strength))
The adhesive composition was applied to one side of a 12.5 μm thick polyimide film (Apical (registered trademark) manufactured by Kaneka Corporation) so that the thickness after drying was 25 μm, and dried at 130 ° C for 3 minutes. The adhesive film (B stage product) obtained in this manner was laminated with a rolled copper foil (ESPANEX series manufactured by Nippon Steel Chemical & Material Co., Ltd.) having a thickness of 18 μm. The laminate was pressed for 280 seconds at 170 ° C under a pressure of 2 MPa so that the glossy side of the rolled copper foil was in contact with the adhesive layer, and the adhesive was bonded. The laminate was then heat-treated at 170 ° C for 3 hours to harden the film, and a peel strength evaluation sample was obtained. The sample was left in an oven at 150 ° C in an air atmosphere for 1000 hours, and the peel strength after 1000 hours was measured. The peel strength was measured under the conditions of 25 ° C, film pulling, tensile speed 50 mm / min, and 90 ° peeling. This test shows the long-term reliability of the adhesive strength.
<Evaluation criteria>
◎: 0.5 N/mm or more ○: 0.2 N/mm or more, less than 0.5 N/mm ×: less than 0.2 N/mm
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1から明らかなように、実施例1~9は、ポリエステル樹脂(A)と窒素原子を有するエポキシ樹脂(b)を少なくとも2種類含有し、前記2種類の内一方が(b1)であり他方が(b2)又は一方が(b3)であり他方が(b4)である接着剤組成物であり、いずれも接着性、はんだ耐熱性、長期耐熱性に優れ、なおかつ回路埋め込み性及びレジンフロー抑制を満たす。一方、比較例1~3の接着剤組成物は、用いられる窒素原子を有するエポキシ樹脂(b)が1種類のみであるため回路埋め込み性及びレジンフロー抑制を満足できず、比較例4はエポキシ樹脂(B)としてクレゾールノボラック型エポキシ樹脂を用い、窒素原子を有するエポキシ樹脂(b)を用いないため長期耐熱性を満足できない。比較例5はエポキシ樹脂(B)を含まないため難燃性の評価以外満足できず、比較例6はポリエステル樹脂(A)の代わりにポリアミドイミド、比較例7では酸変性ポリプロピレンを用いるため長期耐熱性を満足できない。このように、比較例1~7では接着性、はんだ耐熱性、長期耐熱性、回路埋め込み性及びレジンフロー抑制のすべての特性を同時に満足することができなかった。 As is clear from Table 1, Examples 1 to 9 are adhesive compositions containing polyester resin (A) and at least two kinds of epoxy resin (b) having nitrogen atoms, one of the two kinds being (b1) and the other being (b2) or one being (b3) and the other being (b4), and all of them are excellent in adhesion, solder heat resistance, and long-term heat resistance, and also satisfy circuit embedding and resin flow suppression. On the other hand, the adhesive compositions of Comparative Examples 1 to 3 cannot satisfy circuit embedding and resin flow suppression because only one kind of epoxy resin (b) having nitrogen atoms is used, and Comparative Example 4 cannot satisfy long-term heat resistance because it uses cresol novolac type epoxy resin as epoxy resin (B) and does not use epoxy resin (b) having nitrogen atoms. Comparative Example 5 does not contain epoxy resin (B), so it is not satisfactory except for the evaluation of flame retardancy, Comparative Example 6 uses polyamideimide instead of polyester resin (A), and Comparative Example 7 uses acid-modified polypropylene, so it cannot satisfy long-term heat resistance. Thus, Comparative Examples 1 to 7 were unable to simultaneously satisfy all of the following characteristics: adhesion, solder heat resistance, long-term heat resistance, circuit embedding ability, and resin flow inhibition.
 本発明の接着剤組成物は、接着性とはんだ耐熱性に優れ、さらには長期耐熱性を発現し、なおかつ回路埋め込み性が良好でありながら過剰なレジンフローを抑制可能であるため、自動車用途のFPC用接着剤として有用である。 The adhesive composition of the present invention has excellent adhesion and solder heat resistance, and also exhibits long-term heat resistance. It also has good circuit embedding properties while suppressing excessive resin flow, making it useful as an adhesive for FPCs in automotive applications.

Claims (8)

  1. ポリエステル樹脂(A)とエポキシ樹脂(B)とを含有し、前記エポキシ樹脂(B)が窒素原子を有するエポキシ樹脂(b)を少なくとも2種類含有し、前記2種類の内一方が以下のエポキシ樹脂(b1)であり、他方が以下のエポキシ樹脂(b2)である接着剤組成物。
    (b1)3官能以下の樹脂
    (b2)4官能以上の樹脂
    An adhesive composition comprising a polyester resin (A) and an epoxy resin (B), the epoxy resin (B) comprising at least two kinds of epoxy resins (b) having a nitrogen atom, one of the two kinds being the following epoxy resin (b1) and the other being the following epoxy resin (b2).
    (b1) Resin having 3 or less functional groups (b2) Resin having 4 or more functional groups
  2. ポリエステル樹脂(A)とエポキシ樹脂(B)とを含有し、前記エポキシ樹脂(B)が窒素原子を有するエポキシ樹脂(b)を少なくとも2種類含有し、前記2種類の内一方が以下のエポキシ樹脂(b3)であり、他方が以下のエポキシ樹脂(b4)である接着剤組成物。
    (b3)芳香環に含まれず、かつ芳香環と隣接しない窒素原子を有する樹脂
    (b4)(b3)を除く窒素原子を有する樹脂
    An adhesive composition comprising a polyester resin (A) and an epoxy resin (B), the epoxy resin (B) comprising at least two kinds of epoxy resins (b) having a nitrogen atom, one of the two kinds being the following epoxy resin (b3) and the other being the following epoxy resin (b4).
    (b3) A resin having a nitrogen atom that is not contained in an aromatic ring and is not adjacent to an aromatic ring. (b4) A resin having a nitrogen atom other than (b3).
  3. 前記窒素原子を有するエポキシ樹脂(b)が、グリシジルアミン型エポキシ樹脂を含む請求項1又は2に記載の接着剤組成物。 The adhesive composition according to claim 1 or 2, wherein the nitrogen-containing epoxy resin (b) includes a glycidyl amine-type epoxy resin.
  4. 前記エポキシ樹脂(B)の含有量が、ポリエステル樹脂(A)100質量部に対して、0.1質量部以上20質量部以下である請求項1又は2に記載の接着剤組成物。 The adhesive composition according to claim 1 or 2, wherein the content of the epoxy resin (B) is 0.1 parts by mass or more and 20 parts by mass or less per 100 parts by mass of the polyester resin (A).
  5. さらに、有機ホスフィン酸金属塩(C)を含む請求項1又は2に記載の接着剤組成物。 The adhesive composition according to claim 1 or 2, further comprising an organic phosphinic acid metal salt (C).
  6. 請求項1又は2に記載の接着剤組成物からなる接着層を有する接着シート。 An adhesive sheet having an adhesive layer made of the adhesive composition according to claim 1 or 2.
  7. 請求項6に記載の接着シートを有する積層体。 A laminate having the adhesive sheet according to claim 6.
  8. 請求項7に記載の積層体を構成要素として含むプリント配線板。 A printed wiring board comprising the laminate according to claim 7 as a component.
PCT/JP2023/037559 2022-10-27 2023-10-17 Adhesive composition, and adhesive sheet, layered body and printed circuit board containing same WO2024090291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022172590 2022-10-27
JP2022-172590 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024090291A1 true WO2024090291A1 (en) 2024-05-02

Family

ID=90830707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/037559 WO2024090291A1 (en) 2022-10-27 2023-10-17 Adhesive composition, and adhesive sheet, layered body and printed circuit board containing same

Country Status (1)

Country Link
WO (1) WO2024090291A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141603A (en) * 2013-01-25 2014-08-07 Toyo Ink Sc Holdings Co Ltd Adhesive agent composition excellent in dielectric property, adhesive agent sheet using the same and printed wiring board
JP2019038929A (en) * 2017-08-24 2019-03-14 東洋インキScホールディングス株式会社 Adhesive composition, laminate, laminate for packaging, and container for packaging
JP2022051543A (en) * 2020-09-18 2022-03-31 三菱ケミカル株式会社 Polyester-based resin, adhesive composition and adhesive
JP7120498B1 (en) * 2021-03-16 2022-08-17 東洋紡株式会社 Adhesive composition, and adhesive sheet, laminate and printed wiring board containing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014141603A (en) * 2013-01-25 2014-08-07 Toyo Ink Sc Holdings Co Ltd Adhesive agent composition excellent in dielectric property, adhesive agent sheet using the same and printed wiring board
JP2019038929A (en) * 2017-08-24 2019-03-14 東洋インキScホールディングス株式会社 Adhesive composition, laminate, laminate for packaging, and container for packaging
JP2022051543A (en) * 2020-09-18 2022-03-31 三菱ケミカル株式会社 Polyester-based resin, adhesive composition and adhesive
JP7120498B1 (en) * 2021-03-16 2022-08-17 東洋紡株式会社 Adhesive composition, and adhesive sheet, laminate and printed wiring board containing same

Similar Documents

Publication Publication Date Title
KR102433526B1 (en) Polyester-based adhesive composition containing carboxylic acid groups
KR102237222B1 (en) Polyurethane resin composition and adhesive composition, laminate, and printed wiring board using same
JP6032318B2 (en) RESIN COMPOSITION FOR ADHESIVE, ADHESIVE CONTAINING THE SAME, ADHESIVE SHEET AND A PRINTED WIRING BOARD CONTAINING THE SAME AS ADHESIVE LAYER
KR101660083B1 (en) Resin composition for adhesive agent, adhesive agent comprising the resin composition, adhesive sheet, and printed wiring board involving the adhesive sheet as adhesive layer
JP7120498B1 (en) Adhesive composition, and adhesive sheet, laminate and printed wiring board containing same
TW202144454A (en) Polyester, film, and adhesive composition, and adhesive sheet, laminate, and printed wiring board
WO2021200713A1 (en) Adhesive composition and adhesive sheet, laminate, and printed wiring board
TW202146514A (en) Polyester, film, and adhesive composition, and adhesive sheet, laminate, and printed wiring board
JP6380710B1 (en) Carboxylic acid group-containing polymer compound and adhesive composition containing the same
JP2008143925A (en) Polyamide resin and resin composition containing the same
WO2024090291A1 (en) Adhesive composition, and adhesive sheet, layered body and printed circuit board containing same
JP7318838B2 (en) Adhesive composition, adhesive sheet, laminate and printed wiring board
JP7127757B1 (en) Adhesive composition, and adhesive sheet, laminate and printed wiring board containing same
WO2023063386A1 (en) Crosslinked polyester resin, adhesive composition, and adhesive sheet
WO2022196585A1 (en) Adhesive composition, and adhesive sheet, laminate and printed circuit board containing this
KR20240033256A (en) Laminates, adhesive compositions and circuit board materials
JP2011219590A (en) Adhesive resin composition, laminate using the same, and flexible printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23882496

Country of ref document: EP

Kind code of ref document: A1