WO2022196585A1 - Adhesive composition, and adhesive sheet, laminate and printed circuit board containing this - Google Patents

Adhesive composition, and adhesive sheet, laminate and printed circuit board containing this Download PDF

Info

Publication number
WO2022196585A1
WO2022196585A1 PCT/JP2022/011089 JP2022011089W WO2022196585A1 WO 2022196585 A1 WO2022196585 A1 WO 2022196585A1 JP 2022011089 W JP2022011089 W JP 2022011089W WO 2022196585 A1 WO2022196585 A1 WO 2022196585A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
adhesive composition
adhesive
polyester resin
parts
Prior art date
Application number
PCT/JP2022/011089
Other languages
French (fr)
Japanese (ja)
Inventor
晃一 坂本
哲生 川楠
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to JP2022529965A priority Critical patent/JP7120498B1/en
Priority to CN202280021311.9A priority patent/CN116981744A/en
Priority to KR1020237034926A priority patent/KR20230158031A/en
Publication of WO2022196585A1 publication Critical patent/WO2022196585A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J161/00Adhesives based on condensation polymers of aldehydes or ketones; Adhesives based on derivatives of such polymers
    • C09J161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09J161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J167/00Adhesives based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J171/00Adhesives based on polyethers obtained by reactions forming an ether link in the main chain; Adhesives based on derivatives of such polymers
    • C09J171/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C09J171/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C09J171/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition

Definitions

  • the present invention relates to adhesive compositions. More particularly, it relates to an adhesive composition used for bonding a resin base material and a resin base material or a metal base material. In particular, it relates to an adhesive composition for flexible printed wiring boards (hereinafter abbreviated as FPC), and adhesive sheets, laminates and printed wiring boards containing the same.
  • FPC flexible printed wiring boards
  • Copolyester is widely used as a raw material for resin compositions used in coating agents, inks, adhesives, etc., and is generally composed of polycarboxylic acids and polyhydric alcohols. You can freely control the flexibility and molecular weight by selecting and combining polyhydric carboxylic acid and polyhydric alcohol.
  • Copolyester has excellent adhesion to metals including copper, and has been used as an adhesive for FPCs, etc. by blending curing agents such as epoxy resin. (For example, Patent Document 1).
  • FPC has excellent flexibility, so it can be used for multi-functionality and miniaturization of personal computers (PCs) and smartphones.
  • PCs personal computers
  • electronic devices have become smaller, lighter, denser, and higher in output, and the demand for the performance of wiring boards (electronic circuit boards) has become more and more sophisticated.
  • high-frequency signals are being used to increase the transmission speed in FPC.
  • FPCs are increasingly required to have low dielectric properties (low dielectric constant, low dielectric loss tangent) in a high frequency region. In order to achieve such low dielectric properties, measures have been taken to reduce the dielectric loss of FPC substrates and adhesives.
  • the copolyester described in Patent Document 1 has a high dielectric constant and a high dielectric loss tangent, and does not have the above-mentioned low dielectric characteristics, making it unsuitable for FPC in a high frequency range.
  • the adhesive described in Patent Document 2 has excellent heat resistance as an FPC adhesive, and its dielectric properties are also insufficient.
  • an object of the present invention is to provide an adhesive composition having excellent heat resistance, adhesive strength, low dielectric constant and dielectric loss tangent, and excellent dielectric properties, and an adhesive sheet, a laminate and a printed wiring board containing the same. It is to be.
  • the present invention consists of the following configurations.
  • An adhesive composition comprising a polyester resin, compound A and compound B.
  • Compound A a compound having a terminal unsaturated hydrocarbon group and a 5% weight loss temperature of 260° C. or higher
  • Compound B a compound having an epoxy group and a terminal unsaturated hydrocarbon group
  • the adhesive composition according to [1] above which is a compound having an aromatic ring structure or an alicyclic structure as a structural unit.
  • the adhesive composition of the present invention is excellent in dielectric properties, adhesive strength, and solder heat resistance. Therefore, it is suitable for printed wiring board adhesives, adhesive sheets, laminates and printed wiring boards in the high frequency range.
  • the adhesive composition of the present invention is an adhesive composition comprising a polyester resin, compound A and compound B.
  • compound A and compound B are the following compounds, respectively.
  • Compound A a compound having a terminal unsaturated hydrocarbon group and a 5% weight loss temperature of 260°C or higher
  • Compound B a compound having an epoxy group and a terminal unsaturated hydrocarbon group Terminals of compound A and compound B Since the unsaturated hydrocarbon groups react with each other to cure without generating hydroxyl groups that deteriorate the dielectric properties, both excellent solder heat resistance and dielectric properties can be achieved.
  • the polyester resin in the present invention has a chemical structure obtained by polycondensation of a polyhydric carboxylic acid component and a polyhydric alcohol component. It consists of selected ingredients.
  • the polycarboxylic acid component constituting the polyester resin of the present invention is preferably an aromatic polycarboxylic acid or an alicyclic polycarboxylic acid, and is preferably an aromatic dicarboxylic acid or an alicyclic dicarboxylic acid. more preferred.
  • aromatic polycarboxylic acid component or the alicyclic polycarboxylic acid component By using only the aromatic polycarboxylic acid component or the alicyclic polycarboxylic acid component as the polycarboxylic acid component, excellent dielectric properties can be exhibited.
  • the aromatic dicarboxylic acid component is not particularly limited, but terephthalic acid, isophthalic acid, orthophthalic acid, 4,4'-dicarboxybiphenyl, 5-sodiumsulfoisophthalic acid, naphthalenedicarboxylic acid, or esters thereof may be used. can be done.
  • Naphthalenedicarboxylic acid is preferable, and can exhibit excellent dielectric properties. More preferably, 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 80 mol% or more of naphthalene dicarboxylic acid as a polyvalent carboxylic acid component constituting the polyester resin is contained to improve the dielectric properties. can be done.
  • the alicyclic dicarboxylic acid is not particularly limited, but 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride , hydrogenated naphthalenedicarboxylic acids, and the like can be used.
  • the polyhydric alcohol constituting the polyester resin in the present invention is not particularly limited, but ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8 -octanediol, 2-methyl-2-ethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-n-propyl-1,3-propanediol, 2 , 2-di-n-propyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,
  • dimer diol and tricyclodecanedimethanol which can exhibit excellent dielectric properties. More preferably, the total content of dimer diol and tricyclodecanedimethanol as polyhydric alcohol components constituting the polyester resin is 20 mol% or more, more preferably 30 mol% or more, and particularly preferably 40 mol% or more. Dielectric properties can be improved. Only one of dimer diol and tricyclodecanedimethanol may be contained, or both may be contained.
  • a polyhydric carboxylic acid component having a valence of 3 or more and/or a polyhydric alcohol component having a valence of 3 or more can be copolymerized.
  • trivalent or higher polycarboxylic acid components include aromatic carboxylic acids such as trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid, trimesic acid, trimellitic anhydride (TMA), and pyromellitic anhydride (PMDA). , 1,2,3,4-butanetetracarboxylic acid and other aliphatic carboxylic acids, and one or more of these can be used.
  • trihydric or higher polyhydric alcohol components examples include glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, ⁇ -methylglucose, mannitol, and sorbitol, and one or more of these may be used. It is possible. However, if the copolymerization amount of the polyhydric carboxylic acid component having a valence of 3 or more and/or the polyhydric alcohol component having a valence of 3 or more is large, the dielectric properties of the polyester resin may deteriorate, which is not preferable.
  • polyhydric carboxylic acid and polyhydric alcohol are heated in the presence of a known catalyst, and depolyhydric alcohol / 2)
  • part or all of the acid component may be replaced with an acid anhydride.
  • polymerization catalysts for example, titanium compounds such as tetra-n-butyl titanate, tetraisopropyl titanate, titaniumoxyacetylcetonate, antimony trioxide, tributoxyantimony, etc.
  • Antimony compounds, germanium compounds such as germanium oxide and tetra-n-butoxygermanium, and acetates such as magnesium, iron, zinc, manganese, cobalt and aluminum can be used.
  • These catalysts can be used singly or in combination of two or more.
  • the number average molecular weight of the polyester resin in the present invention is preferably 5,000 or more, more preferably 10,000 or more. Also, it is preferably 100,000 or less, more preferably 50,000 or less, and even more preferably 30,000 or less. Within the above range, it is easy to handle when dissolved in a solvent, and excellent in dielectric properties, which is preferable.
  • the polyester resin in the present invention preferably has a dielectric loss tangent of 0.005 or less at 10 GHz. It is preferably 0.004 or less, more preferably 0.003 or less. Although the lower limit is not particularly defined, it is practically 0.001 or more.
  • naphthalene dicarboxylic acid, dimer diol, or tricyclodecanedimethanol may be included as a constituent unit of the polyester resin.
  • Compound A in the present invention is a compound having a terminal unsaturated hydrocarbon group and a 5% weight loss temperature of 260° C. or higher.
  • a terminal unsaturated hydrocarbon group By having a terminal unsaturated hydrocarbon group, it is possible to increase crosslink density and improve solder heat resistance by reaction with compound B described later.
  • the adhesive can have excellent dielectric properties.
  • Having two or more terminal unsaturated hydrocarbon groups in one molecule is preferable because the crosslink density can be further increased.
  • the 5% weight loss temperature of compound A must be 260°C or higher. It is preferably 270° C. or higher, more preferably 280° C. or higher, and still more preferably 290° C. or higher. When the 5% weight loss temperature is equal to or higher than the above value, soldering can be performed without causing poor appearance even at a temperature exceeding the melting point of solder.
  • Compound A preferably has an aromatic ring structure or an alicyclic structure as a structural unit.
  • solder heat resistance can be improved, and dielectric properties are also excellent.
  • polyphenylene ethers having terminal unsaturated hydrocarbon groups include SA-9000 from SABIC and OPE-2St from Mitsubishi Gas Chemical.
  • As the phenolic resin having a terminal unsaturated hydrocarbon group Resitop FTC-809AE manufactured by Gun Ei Chemical Industry Co., Ltd. is exemplified.
  • the number average molecular weight of compound A is preferably 500 or more, more preferably 1000 or more. Also, it is preferably 100,000 or less, more preferably 10,000 or less, and even more preferably 5,000 or less. Within the above range, the solubility in a solvent is good, and a uniform adhesive coating film can be formed.
  • the content of compound A in the adhesive composition of the present invention is preferably 1 part by mass or more, more preferably 10 parts by mass or more, relative to 100 parts by mass of the polyester resin. Also, it is preferably 100 parts by mass or less, more preferably 50 parts by mass or less. Within the above range, both excellent adhesiveness and soldering heat resistance can be achieved.
  • Compound B in the present invention is a compound having an epoxy group and a terminal unsaturated hydrocarbon group.
  • an epoxy group By having an epoxy group, it can be reacted with a polyester resin or polycarbodiimide described later, and by having a terminal unsaturated hydrocarbon group, it can be reacted with compound A, so that the crosslink density is further increased between these compounds.
  • the compound B preferably has a ring structure.
  • the ring structure of compound B is preferably an aromatic ring structure or an isocyanuric ring structure from the viewpoint of heat resistance.
  • Specific examples of such compound B include diallyl monoglycidyl isocyanurate and diglycidyl monoallyl isocyanurate. By using these, the crosslink density can be increased and the solder heat resistance can be improved.
  • the molecular weight of compound B is preferably 500 or less. It is more preferably 400 or less. When the molecular weight is equal to or less than the above value, the solubility in solvents and the reactivity with compound A, polyester resin, and polycarbodiimide are improved, the crosslink density is increased, and solder heat resistance can be improved.
  • the content of compound B in the adhesive composition of the present invention is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, relative to 100 parts by mass of the polyester resin. Also, it is preferably 50 parts by mass or less, more preferably 20 parts by mass or less. Within the above range, both excellent adhesiveness and soldering heat resistance can be achieved. Moreover, the content of the compound B is preferably 1 equivalent or more of the terminal unsaturated hydrocarbon group with respect to the terminal unsaturated hydrocarbon group of the compound A. When the amount is 1 equivalent or more, the crosslink density can be increased and excellent solder heat resistance can be exhibited.
  • the adhesive composition of the present invention also preferably contains a radical generator.
  • a radical generator In the adhesive composition of the present invention, compound A and compound B can be reacted by heating, but the radicals generated by the radical generator cause the terminal unsaturated hydrocarbon groups of compound A and compound B to efficiently react with each other. By increasing the crosslink density, solder heat resistance and dielectric properties can be improved.
  • the radical generator is not particularly limited, it is preferable to use an organic peroxide.
  • organic peroxides include, but are not limited to, di-tert-butyl peroxyphthalate, tert-butyl hydroperoxide, dicumyl peroxide, benzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxy- Peroxides such as 2-ethylhexanoate, tert-butyl peroxypivalate, methyl ethyl ketone peroxide, di-tert-butyl peroxide, lauroyl peroxide; azobisisobutyronitrile, azobisisopropionitrile and the like azonitriles, and the like.
  • the one-minute half-life temperature of the radical generator used in the present invention is preferably 140°C or higher. By setting the temperature to 140° C. or higher, it is possible to prevent radical reaction from starting when the solvent of the adhesive composition varnish is volatilized to prepare an adhesive sheet, and excellent adhesiveness can be exhibited.
  • the blending amount of the radical generator used in the present invention is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, relative to 100 parts by mass of compound A. Also, it is preferably 50 parts by mass or less, more preferably 10 parts by mass or less. By setting it within the above range, it is possible to obtain an optimum cross-linking density and achieve both adhesion and soldering heat resistance.
  • the adhesive composition of the invention can contain polycarbodiimide.
  • Polycarbodiimide is not particularly limited as long as it has two or more carbodiimide bonds in the molecule.
  • the hydroxyl groups of the polyester resin react with the carbodiimide bonds, and heat resistance and adhesiveness can be improved.
  • the hydroxyl groups disappear, thereby contributing to the improvement of the dielectric properties.
  • the content of polycarbodiimide is preferably 1 part by mass or more, more preferably 3 parts by mass or more, relative to 100 parts by mass of the polyester resin.
  • a crosslink density can be raised and solder heat resistance becomes favorable.
  • it is preferably 20 parts by mass or less, more preferably 10 parts by mass or less.
  • the adhesive composition of the invention can contain an epoxy resin.
  • the epoxy resin used in the present invention is not particularly limited as long as it has an epoxy group in the molecule, but preferably has two or more epoxy groups in the molecule.
  • N,N,N',N'-tetraglycidyl-m-xylenediamine biphenyl type epoxy resin, novolac type epoxy resin, dicyclopentadiene type epoxy resin and epoxy-modified polybutadiene. More preferred is N,N,N',N'-tetraglycidyl-m-xylenediamine, which can exhibit excellent adhesiveness.
  • the content of the epoxy resin is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, relative to 100 parts by mass of the polyester resin. It is preferably 1 part by mass or more. By making it more than the said lower limit, sufficient hardening effect can be acquired and the outstanding adhesiveness and soldering heat resistance can be expressed. Also, it is preferably 10 parts by mass or less, more preferably 5 parts by mass or less. When the content is equal to or less than the above upper limit, good pot life and low dielectric properties are obtained. That is, within the above range, it is possible to obtain an adhesive composition having excellent low dielectric properties in addition to adhesiveness, solder heat resistance and pot life.
  • the adhesive composition of the present invention can further contain an organic solvent.
  • the organic solvent used in the present invention is not particularly limited as long as it dissolves the polyester resin, compound A and compound B.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • aliphatic hydrocarbons such as hexane, heptane, octane and decane
  • alicyclic hydrocarbons such as cyclohexane, cyclohexene, methylcyclohexane and ethylcyclohexane.
  • Halogenated hydrocarbons such as hydrogen, trichlorethylene, dichloroethylene, chlorobenzene, and chloroform
  • alcoholic solvents such as methanol, ethanol, isopropyl alcohol, butanol, pentanol, hexanol, propanediol, and phenol, acetone, methyl isobutyl ketone, ketone solvents such as methyl ethyl ketone, pentanone, hexanone, cyclohexanone, isophorone and acetophenone
  • cellosolves such as methyl cellosolve and ethyl cellosolve
  • ester solvents such as methyl acetate, ethyl acetate, butyl acetate, methyl propionate and butyl formate
  • Ethylene glycol mono-n-butyl ether ethylene glycol mono-iso-butyl ether, ethylene glycol mono-tert-butyl
  • the organic solvent is preferably in the range of 100 to 1000 parts by mass with respect to 100 parts by mass of the polyester resin. By making it more than the said lower limit, liquid state and pot-life property become favorable. Moreover, setting the content to the above upper limit or less is advantageous in terms of manufacturing costs and transportation costs.
  • the adhesive composition of the present invention may further contain other components as necessary.
  • specific examples of such components include flame retardants, tackifiers, fillers, and silane coupling agents.
  • the adhesive composition of the present invention may optionally contain a flame retardant.
  • flame retardants include bromine-based, phosphorus-based, nitrogen-based, and metal hydroxide compounds.
  • phosphorus-based flame retardants are preferable, and known phosphorus-based flame retardants such as phosphate esters such as trimethyl phosphate, triphenyl phosphate, tricresyl phosphate, etc., phosphates such as aluminum phosphinate, and phosphazenes can be used. . These may be used alone, or may be used in any combination of two or more.
  • a flame retardant When containing a flame retardant, it is preferable to contain a flame retardant in the range of 1 to 200 parts by mass, more preferably 5 to 150 parts by mass, based on a total of 100 parts by mass of the polyester resin, compound A and compound B. , 10 to 100 parts by weight is most preferred. By setting the content within the above range, it is possible to exhibit flame retardancy while maintaining adhesiveness, solder heat resistance, and electrical properties.
  • a tackifier may be added to the adhesive composition of the present invention, if necessary.
  • tackifiers include polyterpene resins, rosin resins, aliphatic petroleum resins, alicyclic petroleum resins, copolymer petroleum resins, styrene resins and hydrogenated petroleum resins. used in These may be used alone, or may be used in any combination of two or more.
  • a tackifier is contained, it is preferably contained in the range of 1 to 200 parts by mass, more preferably 5 to 150 parts by mass, with respect to the total 100 parts by mass of the polyester resin, compound A and compound B.
  • a range of to 100 parts by weight is most preferred.
  • the adhesive composition of the present invention may optionally contain a filler.
  • organic fillers include powders of heat-resistant resins such as polyimide, polyamideimide, fluororesin, and liquid crystal polyester.
  • inorganic fillers include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), boron nitride (BN), calcium carbonate ( CaCO3 ), calcium sulfate ( CaSO4 ), zinc oxide (ZnO), magnesium titanate (MgO- TiO2 ), barium sulfate ( BaSO4 ), organic bentonite, clay , mica, aluminum hydroxide, magnesium hydroxide, etc.
  • silica is preferable from the viewpoint of ease of dispersion and effect of improving heat resistance.
  • Hydrophobic silica and hydrophilic silica are generally known as silica, but here, hydrophobic silica treated with dimethyldichlorosilane, hexamethyldisilazane, octylsilane, etc. is used to impart moisture absorption resistance. is good.
  • the blending amount is preferably 0.05 to 30 parts by mass per 100 parts by mass of the copolyester, compound A and compound B in total. Further heat resistance can be expressed by making it more than the said lower limit.
  • the content is equal to or less than the above upper limit, poor dispersion of silica and excessive increase in solution viscosity are suppressed, and workability is improved.
  • a silane coupling agent may be added to the adhesive composition of the present invention, if necessary. Addition of a silane coupling agent is very preferable because it improves adhesion to metals and heat resistance.
  • the silane coupling agent is not particularly limited, examples thereof include those having an unsaturated group, those having an epoxy group, and those having an amino group.
  • epoxy such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and ⁇ -(3,4-epoxycyclohexyl)ethyltriethoxysilane is used from the viewpoint of heat resistance.
  • a silane coupling agent having a group is more preferred.
  • the blending amount is preferably 0.5 to 20 parts by mass per 100 parts by mass of the polyester resin, compound A and compound B in total. Soldering heat resistance and adhesiveness can be improved by making it into the said range.
  • the laminate of the present invention is obtained by laminating an adhesive composition on a base material (two-layer laminate of base material/adhesive layer), or further laminating a base material (base material/adhesive layer/ A three-layer laminate of substrates).
  • the adhesive layer refers to a layer of the adhesive composition after the adhesive composition of the present invention has been applied to a substrate and dried.
  • the laminate of the present invention can be obtained by applying the adhesive composition of the present invention to various substrates, drying it, and further laminating another substrate in accordance with conventional methods.
  • the substrate is not particularly limited as long as the adhesive composition of the present invention can be applied and dried to form an adhesive layer.
  • Examples include metal substrates such as plates and metal foils, papers, and the like.
  • resin substrates examples include polyester resins, polyamide resins, polyimide resins, polyamideimide resins, liquid crystal polymers, polyphenylene sulfides, syndiotactic polystyrene, polyolefin resins, fluorine resins, and the like.
  • a film-like resin hereinafter also referred to as a base film layer is preferable.
  • any conventionally known conductive material that can be used for circuit boards can be used as the metal base material.
  • materials include various metals such as SUS, copper, aluminum, iron, steel, zinc, and nickel, and their alloys, plated products, and metals treated with other metals such as zinc and chromium compounds.
  • Metal foil is preferred, and copper foil is more preferred.
  • the thickness of the metal foil is not particularly limited, it is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and still more preferably 10 ⁇ m or more. Also, it is preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and still more preferably 20 ⁇ m or less. If the thickness is too thin, it may be difficult to obtain sufficient electrical performance of the circuit.
  • Metal foils are usually provided in roll form.
  • the form of the metal foil used in manufacturing the printed wiring board of the present invention is not particularly limited.
  • the length is not particularly limited.
  • the width is not particularly limited, but it is preferably about 250 to 500 cm.
  • the surface roughness of the substrate is not particularly limited, but is preferably 3 ⁇ m or less, more preferably 2 ⁇ m or less, and still more preferably 1.5 ⁇ m or less. Moreover, it is practically preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 0.7 ⁇ m or more.
  • Examples of papers include high-quality paper, kraft paper, roll paper, and glassine paper. Moreover, glass epoxy etc. can be illustrated as a composite material.
  • polyester resin Based on adhesive strength and durability with the adhesive composition, polyester resin, polyamide resin, polyimide resin, polyamideimide resin, liquid crystal polymer, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resin, fluororesin, A SUS steel plate, copper foil, aluminum foil, or glass epoxy is preferred.
  • the adhesive sheet is obtained by laminating the laminate and the release substrate via an adhesive composition.
  • Specific configuration modes include laminate/adhesive layer/release substrate, or release substrate/adhesive layer/laminate/adhesive layer/release substrate.
  • the release base material By laminating the release base material, it functions as a protective layer for the base material.
  • the release base material can be released from the adhesive sheet, and the adhesive layer can be transferred to another base material.
  • the adhesive sheet of the present invention can be obtained by applying the adhesive composition of the present invention to various laminates and drying them according to a conventional method.
  • a release base material is applied to the adhesive layer after drying, it is possible to wind up the product without set-off to the base material, resulting in excellent workability and preservability due to the protection of the adhesive layer. excellent and easy to use.
  • the adhesive layer itself is applied to a release base material and dried, and if necessary, another release base material is applied, the adhesive layer itself can be transferred to another base material.
  • the release substrate is not particularly limited, but for example, a coated layer of filler such as clay, polyethylene, polypropylene, etc. is applied to both sides of paper such as woodfree paper, kraft paper, roll paper, and glassine paper. and a silicone type, fluorine type or alkyd type release agent is applied on each coating layer.
  • a coated layer of filler such as clay, polyethylene, polypropylene, etc.
  • paper such as woodfree paper, kraft paper, roll paper, and glassine paper.
  • a silicone type, fluorine type or alkyd type release agent is applied on each coating layer.
  • Other examples include various olefin films such as polyethylene, polypropylene, ethylene- ⁇ -olefin copolymer and propylene- ⁇ -olefin copolymer alone, and films such as polyethylene terephthalate coated with the release agent.
  • both sides of high-quality paper are filled with polypropylene and an alkyd-based release agent is used on top of it.
  • an alkyd release agent on polyethylene terephthalate.
  • the method of coating the substrate with the adhesive composition in the present invention is not particularly limited, but includes a comma coater, a reverse roll coater, and the like.
  • an adhesive layer can be provided directly or by a transfer method on the rolled copper foil or polyimide film, which are the constituent materials of the printed wiring board.
  • the thickness of the adhesive layer after drying may be changed as required, but is preferably in the range of 5 to 200 ⁇ m. Sufficient adhesive strength can be obtained by setting the thickness of the adhesive film to 5 ⁇ m or more. Further, by setting the thickness to 200 ⁇ m or less, it becomes easier to control the amount of residual solvent in the drying process, and blisters are less likely to occur during pressing in the manufacture of printed wiring boards.
  • the drying conditions are not particularly limited, but the residual solvent rate after drying is preferably 1% by mass or less. When the amount is 1% by mass or less, foaming of the residual solvent is suppressed during pressing of the printed wiring board, and blisters are less likely to occur.
  • the printed wiring board in the present invention includes, as constituent elements, a laminate formed of a metal foil forming a conductive circuit and a resin base material, and examples thereof include flexible substrates, rigid substrates, package substrates, and the like.
  • a printed wiring board is manufactured, for example, by a conventionally known method such as a subtractive method using a metal-clad laminate. If necessary, so-called flexible circuit boards (FPC), flat cables, tape automated bonding ( It is a general term for circuit boards for TAB).
  • FPC flexible circuit boards
  • TAB tape automated bonding
  • the printed wiring board of the present invention can have any laminated structure that can be employed as a printed wiring board.
  • it can be a printed wiring board composed of four layers: a base film layer, a metal foil layer, an adhesive layer, and a cover film layer.
  • a printed wiring board can be made up of five layers: a base film layer, an adhesive layer, a metal foil layer, an adhesive layer, and a cover film layer.
  • the adhesive composition of the present invention can be suitably used for each adhesive layer of printed wiring boards.
  • the adhesive composition of the present invention when used as an adhesive, it has high adhesiveness not only to conventional polyimides, polyester films, and copper foils constituting printed wiring boards, but also to low-polarity resin substrates such as LCP. , solder reflow resistance can be obtained, and the adhesive layer itself has excellent low dielectric properties. Therefore, it is suitable as an adhesive composition used for coverlay films, laminates, resin-coated copper foils and bonding sheets.
  • any resin film conventionally used as a base material for printed wiring boards can be used as the base film.
  • resins for the base film include polyester resins, polyamide resins, polyimide resins, polyamideimide resins, liquid crystal polymers, polyphenylene sulfides, syndiotactic polystyrene, polyolefin resins, fluorine resins, and the like.
  • it has excellent adhesion even to low-polarity substrates such as liquid crystal polymers, polyphenylene sulfide, syndiotactic polystyrene, and polyolefin resins.
  • any insulating film conventionally known as an insulating film for printed wiring boards can be used.
  • films made from various polymers such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, polyamideimide, liquid crystal polymer, syndiotactic polystyrene, and polyolefin resin are used. It is possible. Polyimide films or liquid crystal polymer films are more preferred.
  • the printed wiring board of the present invention can be manufactured using any conventionally known process except for using the materials for each layer described above.
  • a semi-finished product in which an adhesive layer is laminated on a cover film layer (hereinafter referred to as "cover film-side semi-finished product”) is manufactured.
  • a semi-finished product in which a desired circuit pattern is formed by laminating a metal foil layer on a base film layer (hereinafter referred to as a "two-layer semi-finished product on the base film side"), or a semi-finished product in which an adhesive layer is laminated on a base film layer.
  • a semi-finished product having a desired circuit pattern formed by laminating a metal foil layer thereon (hereinafter referred to as “base film side 3-layer semi-finished product”) (hereinafter referred to as “base film side 2-layer semi-finished product”). Together with the base film side three-layer semi-finished product, it is referred to as the “base film side semi-finished product”).
  • base film side semi-finished product By laminating the semi-finished product on the cover film side and the semi-finished product on the base film side thus obtained, a printed wiring board having four or five layers can be obtained.
  • the semi-finished product on the substrate film side includes, for example, (A) a step of applying a solution of a resin that will be the substrate film to the metal foil and initially drying the coating film, and (B) the metal foil obtained in (A) and It is obtained by a production method including a process of heat-treating and drying the laminate with the initially dried coating film (hereinafter referred to as "heat-treatment/solvent removal process").
  • a conventionally known method can be used to form a circuit in the metal foil layer.
  • An additive method may be used, or a subtractive method may be used.
  • a subtractive method is preferred.
  • the semi-finished product on the base film side thus obtained may be used as it is for lamination with the semi-finished product on the cover film side. may be used.
  • the semi-finished product on the cover film side is manufactured, for example, by applying an adhesive to the cover film. If desired, a cross-linking reaction in the applied adhesive can be performed. In a preferred embodiment, the adhesive layer is semi-cured.
  • the semi-finished product on the cover film side thus obtained may be used as it is for bonding to the semi-finished product on the base film side. may be used for
  • the semi-finished product on the base film side and the semi-finished product on the cover film side are each stored, for example, in the form of a roll, and then laminated together to manufacture a printed wiring board.
  • Any method can be used as the bonding method, and for example, the bonding can be performed using a press or a roll. Also, both can be bonded together while being heated by a method such as using a hot press or a hot roll device.
  • the semi-finished product on the reinforcing material side for example, in the case of a soft and windable reinforcing material such as a polyimide film, it is preferable to manufacture it by applying an adhesive to the reinforcing material.
  • an adhesive to the reinforcing material.
  • the adhesive applied in advance to the release base material can be transferred and applied. It is preferably manufactured. Also, if necessary, a cross-linking reaction in the applied adhesive can be carried out.
  • the adhesive layer is semi-cured.
  • the semi-finished product on the reinforcing material side thus obtained may be used as it is for bonding to the back surface of the printed wiring board, or it may be used for bonding to the semi-finished product on the base film side after being stored after being bonded with a release film. You may
  • the semi-finished product on the base film side, the semi-finished product on the cover film side, and the semi-finished product on the reinforcing material side are all printed wiring board laminates in the present invention.
  • the relative permittivity ( ⁇ c ) and dielectric loss tangent (tan ⁇ ) were measured by a cavity resonator perturbation method using a network analyzer (manufactured by Anritsu Corporation) at a temperature of 23° C. and a frequency of 10 GHz.
  • the pressure in the system was reduced to 5 mmHg over 20 minutes, and the temperature was further raised to 250°C. Then, the pressure was reduced to 0.3 mmHg or less, and after the polycondensation reaction was carried out for 60 minutes, the product was taken out.
  • the pressure in the system was reduced to 5 mmHg over 20 minutes, and the temperature was further raised to 250°C. Then, the pressure was reduced to 0.3 mmHg or less, and after the polycondensation reaction was carried out for 60 minutes, the product was taken out.
  • compound B As compound B, the following was used.
  • V-03 Polycarbodiimide (manufactured by Nisshinbo Chemical Co., Ltd.) Tetrad X: epoxy resin (manufactured by Mitsubishi Gas Chemical Company, glycidylamine type epoxy)
  • Perbutyl P radical generator (manufactured by NOF Corporation, bis(1-t-butylperoxy-1-methylethyl)benzene, 1 minute half-life temperature 175° C.)
  • Example 1 The polyester resin (c1) obtained in the above synthesis example was dissolved in toluene to prepare a toluene varnish having a solid concentration of 40% by mass. To this toluene varnish, (a1) as compound A, (b1) as compound B, and perbutyl P were blended so as to be 20 parts, 5 parts, and 3 parts, respectively, with respect to 100 parts of polyester resin (c1). A composition (S1) was obtained. The resulting adhesive composition (S1) was evaluated for dielectric constant, dielectric loss tangent, peel strength, solder heat resistance, and adhesive sheet flexibility. The results are listed in Table 1.
  • Adhesive compositions (S2) to (S19) were prepared in the same manner as in Example 1 except that the types and amounts of each component of the adhesive composition were changed as shown in Table 1, and each evaluation was performed. The results are listed in Table 1.
  • Adhesive Composition (Relative permittivity ( ⁇ c ) and dielectric loss tangent (tan ⁇ ))
  • the adhesive composition was applied to a Teflon (registered trademark) sheet having a thickness of 100 ⁇ m so that the thickness after drying was 25 ⁇ m, and dried at 130° C. for 3 minutes. After curing by heat treatment at 180° C. for 5 hours, the Teflon (registered trademark) sheet was peeled off to obtain an adhesive resin sheet for testing.
  • the test adhesive resin sheet thus obtained was cut into strips of 8 cm ⁇ 3 mm to obtain test samples.
  • the relative dielectric constant ( ⁇ c ) and dielectric loss tangent (tan ⁇ ) were measured by a cavity resonator perturbation method using a network analyzer (manufactured by Anritsu Corporation) under conditions of a temperature of 23° C. and a frequency of 10 GHz.
  • the adhesive composition was applied to a 12.5 ⁇ m thick polyimide film (manufactured by Kaneka Corporation, Apical (registered trademark)) so as to have a thickness of 25 ⁇ m after drying, and dried at 130° C. for 3 minutes.
  • the adhesive film (B stage product) thus obtained was laminated to a 18 ⁇ m thick rolled copper foil (manufactured by Nippon Steel Chemical & Materials Co., Ltd., Espanex series).
  • the bonding was performed by pressing the rolled copper foil so that the glossy surface of the rolled copper foil was in contact with the adhesive layer and pressing for 280 seconds under a pressure of 2 MPa at 170°C.
  • the adhesive composition is applied to a Teflon (registered trademark) sheet having a thickness of 100 ⁇ m so that the thickness after drying becomes 25 ⁇ m, and dried at 130° C. for 3 minutes. Next, the state of the coating film was checked when the sheet was bent 180°. ⁇ Evaluation Criteria> ⁇ : No cracks ⁇ : Cracks present
  • Examples 1 to 14 are excellent in dielectric properties, peel strength, solder heat resistance and adhesive sheet flexibility.
  • Comparative Example 1 since the compound B did not have an epoxy group, the curing was insufficient and the solder heat resistance was insufficient.
  • Comparative Example 2 since compound A did not have a terminal unsaturated hydrocarbon, the curing was insufficient and the solder heat resistance was insufficient. Also, the dielectric loss tangent was high due to the influence of the terminal hydroxyl group. Comparative Example 3 was inferior in solder heat resistance because the 5% weight loss temperature of compound A was low.
  • Comparative Example 4 since the polyester resin was not contained, the adhesive sheet was brittle, and the dielectric properties, peel strength, and solder heat resistance were insufficient. Comparative Example 5 did not contain the compound B and was cured with an epoxy resin, resulting in poor dielectric properties.
  • the adhesive composition of the present invention is excellent in heat resistance and adhesive strength, has a low dielectric constant and a low dielectric loss tangent, and has good sheet flexibility. Therefore, it is useful as an adhesive or an adhesive sheet for printed wiring boards applied to printed boards (flexible boards, rigid boards, package boards) in a high frequency range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

[Problem] To provide an adhesive composition with excellent heat resistance and adhesion strength, with low relative permittivity and dielectric loss tangent, and with excellent dielectric properties, and to provide an adhesive sheet, a laminate and a printed circuit board containing said adhesive composition. [Solution] This adhesive composition contains a polyester resin, a compound A and a compound B. Compound A: a compound that has a terminal unsaturated hydrocarbon group and that has a 5% weight reduction temperature of at least 260°C. Compound B: a compound that has an epoxy group and a terminal unsaturated hydrocarbon group.

Description

接着剤組成物、ならびにこれを含有する接着シート、積層体およびプリント配線板Adhesive composition, and adhesive sheet, laminate and printed wiring board containing same
 本発明は、接着剤組成物に関する。より詳しくは、樹脂基材と、樹脂基材または金属基材との接着に用いられる接着剤組成物に関する。特にフレキシブルプリント配線板(以下、FPCと略す)用接着剤組成物、並びにそれを含む接着シート、積層体およびプリント配線板に関する。 The present invention relates to adhesive compositions. More particularly, it relates to an adhesive composition used for bonding a resin base material and a resin base material or a metal base material. In particular, it relates to an adhesive composition for flexible printed wiring boards (hereinafter abbreviated as FPC), and adhesive sheets, laminates and printed wiring boards containing the same.
 共重合ポリエステルはコーティング剤、インキおよび接着剤等に用いられる樹脂組成物の原料として広く使用されており、一般に多価カルボン酸と多価アルコールから構成される。多価カルボン酸と多価アルコールの選択と組み合わせによる柔軟性や、分子量の高低を自由にコントロールできる。 Copolyester is widely used as a raw material for resin compositions used in coating agents, inks, adhesives, etc., and is generally composed of polycarboxylic acids and polyhydric alcohols. You can freely control the flexibility and molecular weight by selecting and combining polyhydric carboxylic acid and polyhydric alcohol.
 共重合ポリエステルは銅を含む金属との接着性に優れており、エポキシ樹脂などの硬化剤を配合してFPCなどの接着剤にも使用されてきた。(例えば、特許文献1)。 Copolyester has excellent adhesion to metals including copper, and has been used as an adhesive for FPCs, etc. by blending curing agents such as epoxy resin. (For example, Patent Document 1).
 FPCは、優れた屈曲性を有することから、パソコン(PC)やスマートフォンなどの多機能化、小型化に対応することができ、狭く複雑な内部に電子回路基板を組み込むために多く使用されている。近年、電子機器の小型化、軽量化、高密度化、高出力化が進み、配線板(電子回路基板)の性能に対する要求がますます高度なものとなっている。特に、FPCにおける伝送速度高速化のために、高い周波数の信号が使用されるようになっている。これに伴い、FPCには高周波領域での低誘電特性(低誘電率、低誘電正接)の要求が高まっている。このような低誘電特性を達成するため、FPCの基材や接着剤の誘電体損失を低減する方策がなされており、FPCで用いられる基材については、従来のポリイミド(PI)やポリエチレンテレフタレート(PET)だけでなく、低誘電特性を有する液晶ポリマー(LCP)やシンジオタクチックポリスチレン(SPS)などの基材フィルムが提案されている。接着剤としてはポリフェニレンエーテルを使用した接着剤(特許文献2)等の開発が進められている。 FPC has excellent flexibility, so it can be used for multi-functionality and miniaturization of personal computers (PCs) and smartphones. . In recent years, electronic devices have become smaller, lighter, denser, and higher in output, and the demand for the performance of wiring boards (electronic circuit boards) has become more and more sophisticated. In particular, high-frequency signals are being used to increase the transmission speed in FPC. Along with this, FPCs are increasingly required to have low dielectric properties (low dielectric constant, low dielectric loss tangent) in a high frequency region. In order to achieve such low dielectric properties, measures have been taken to reduce the dielectric loss of FPC substrates and adhesives. In addition to PET), base films such as liquid crystal polymer (LCP) and syndiotactic polystyrene (SPS) having low dielectric properties have been proposed. As an adhesive, development of an adhesive using polyphenylene ether (Patent Document 2) and the like is underway.
特公平6-104813Tokuho 6-104813 WO2020/196718号公報WO2020/196718
 しかしながら、特許文献1に記載の共重合ポリエステルは、比誘電率および誘電正接が高いものであり、上述の低誘電特性を有しておらず高周波領域のFPCに不適である。また、特許文献2に記載の接着剤はFPC接着剤として優れた耐熱性を有しているとは言い難く、また誘電特性に関しても不十分である。 However, the copolyester described in Patent Document 1 has a high dielectric constant and a high dielectric loss tangent, and does not have the above-mentioned low dielectric characteristics, making it unsuitable for FPC in a high frequency range. Moreover, it is difficult to say that the adhesive described in Patent Document 2 has excellent heat resistance as an FPC adhesive, and its dielectric properties are also insufficient.
 本発明は、かかる従来技術課題を背景になされたものである。すなわち、本発明の目的は、耐熱性、接着強度に優れ、比誘電率および誘電正接の低い、誘電特性に優れた接着剤組成物、並びにそれを含む接着シート、積層体およびプリント配線板を提供することである。 The present invention was made against the background of such prior art problems. That is, an object of the present invention is to provide an adhesive composition having excellent heat resistance, adhesive strength, low dielectric constant and dielectric loss tangent, and excellent dielectric properties, and an adhesive sheet, a laminate and a printed wiring board containing the same. It is to be.
 本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
 すなわち、本発明は、以下の構成からなる。
As a result of intensive studies, the inventors of the present invention have found that the above problems can be solved by means shown below, and have completed the present invention.
That is, the present invention consists of the following configurations.
[1] ポリエステル樹脂、化合物Aおよび化合物Bを含んでなる接着剤組成物。
化合物A:末端不飽和炭化水素基を有し、かつ5%重量減少温度が260℃以上である化合物
化合物B:エポキシ基と、末端不飽和炭化水素基とを有する化合物
[2] 前記化合物Aが構造単位として芳香環構造または脂環構造を有する化合物である、前記[1]の接着剤組成物。
[3] 前記化合物Aが、末端不飽和炭化水素基を有する、ポリフェニレンエーテルまたはフェノール樹脂である、前記[1]の接着剤組成物。
[4] 前記化合物Bがイソシアヌル環を有する化合物である、前記[1]~[3]の接着剤組成物。
[5] 前記ポリエステル樹脂の誘電正接が0.005以下である、前記[1]~[4]の接着剤組成物。
[6] さらにポリカルボジイミドを含んでなる前記[1]~[5]の接着剤組成物。
[7] 前記[1]~[6]の接着剤組成物からなる接着剤層を有する接着シート。
[8] 前記[1]~[6]の接着剤組成物からなる接着剤層を有する積層体。
[9] 前記[8]の積層体を構成要素として含むプリント配線板。
[1] An adhesive composition comprising a polyester resin, compound A and compound B.
Compound A: a compound having a terminal unsaturated hydrocarbon group and a 5% weight loss temperature of 260° C. or higher Compound B: a compound having an epoxy group and a terminal unsaturated hydrocarbon group [2] The adhesive composition according to [1] above, which is a compound having an aromatic ring structure or an alicyclic structure as a structural unit.
[3] The adhesive composition of [1] above, wherein the compound A is a polyphenylene ether or a phenolic resin having a terminal unsaturated hydrocarbon group.
[4] The adhesive composition of [1] to [3], wherein the compound B is a compound having an isocyanuric ring.
[5] The adhesive composition according to [1] to [4], wherein the polyester resin has a dielectric loss tangent of 0.005 or less.
[6] The adhesive composition of [1] to [5], further comprising polycarbodiimide.
[7] An adhesive sheet having an adhesive layer comprising the adhesive composition of [1] to [6].
[8] A laminate having an adhesive layer comprising the adhesive composition of [1] to [6].
[9] A printed wiring board comprising the laminate of [8] as a component.
 本発明の接着剤組成物は、誘電特性、接着強度、はんだ耐熱性に優れている。このため、高周波領域のプリント配線板用接着剤、接着シート、積層体およびプリント配線板に好適である。 The adhesive composition of the present invention is excellent in dielectric properties, adhesive strength, and solder heat resistance. Therefore, it is suitable for printed wiring board adhesives, adhesive sheets, laminates and printed wiring boards in the high frequency range.
 以下、本発明の実施の一形態について以下に詳述する。ただし、本発明はこれに限定されるものではなく、既述した範囲内で種々の変形を加えた態様で実施できる。 One embodiment of the present invention will be described in detail below. However, the present invention is not limited to this, and can be implemented in various modifications within the scope described above.
<接着剤組成物>
 本発明の接着剤組成物はポリエステル樹脂、化合物Aおよび化合物Bを含んでなる接着剤組成物である。ここで、化合物Aと化合物Bはそれぞれ下記の化合物である。
化合物A:末端不飽和炭化水素基を有し、かつ5%重量減少温度が260℃以上である化合物
化合物B:エポキシ基と、末端不飽和炭化水素基とを有する化合物
 化合物Aと化合物Bの末端不飽和炭化水素基同士が反応することで、誘電特性を悪化させる水酸基を発生させることなく硬化できるため、優れたはんだ耐熱性と誘電特性を両立することができる。
<Adhesive composition>
The adhesive composition of the present invention is an adhesive composition comprising a polyester resin, compound A and compound B. Here, compound A and compound B are the following compounds, respectively.
Compound A: a compound having a terminal unsaturated hydrocarbon group and a 5% weight loss temperature of 260°C or higher Compound B: a compound having an epoxy group and a terminal unsaturated hydrocarbon group Terminals of compound A and compound B Since the unsaturated hydrocarbon groups react with each other to cure without generating hydroxyl groups that deteriorate the dielectric properties, both excellent solder heat resistance and dielectric properties can be achieved.
<ポリエステル樹脂>
 本発明におけるポリエステル樹脂は、多価カルボン酸成分と多価アルコール成分との重縮合物によって得られる化学構造からなり、多価カルボン酸成分と多価アルコール成分とはそれぞれ1種または2種以上の選択された成分からなるものである。
<Polyester resin>
The polyester resin in the present invention has a chemical structure obtained by polycondensation of a polyhydric carboxylic acid component and a polyhydric alcohol component. It consists of selected ingredients.
 本発明のポリエステル樹脂を構成する多価カルボン酸成分としては、芳香族多価カルボン酸または脂環族多価カルボン酸であることが好ましく、芳香族ジカルボン酸または脂環族ジカルボン酸であることがより好ましい。多価カルボン酸成分として芳香族多価カルボン酸成分または脂環族多価カルボン酸成分のみを使用することで優れた誘電特性を発現することができる。 The polycarboxylic acid component constituting the polyester resin of the present invention is preferably an aromatic polycarboxylic acid or an alicyclic polycarboxylic acid, and is preferably an aromatic dicarboxylic acid or an alicyclic dicarboxylic acid. more preferred. By using only the aromatic polycarboxylic acid component or the alicyclic polycarboxylic acid component as the polycarboxylic acid component, excellent dielectric properties can be exhibited.
 芳香族ジカルボン酸成分としては、特に限定されないが、テレフタル酸、イソフタル酸、オルトフタル酸、4,4’-ジカルボキシビフェニル、5-ナトリウムスルホイソフタル酸、ナフタレンジカルボン酸またはこれらのエステルなどを使用することができる。好ましくは、ナフタレンジカルボン酸であり、優れた誘電特性を発現することができる。より好ましくは、ポリエステル樹脂を構成する多価カルボン酸成分としてナフタレンジカルボン酸を50モル%以上、さらに好ましくは70モル%以上、特に好ましくは80モル%以上含有することで、誘電特性を向上させることができる。 The aromatic dicarboxylic acid component is not particularly limited, but terephthalic acid, isophthalic acid, orthophthalic acid, 4,4'-dicarboxybiphenyl, 5-sodiumsulfoisophthalic acid, naphthalenedicarboxylic acid, or esters thereof may be used. can be done. Naphthalenedicarboxylic acid is preferable, and can exhibit excellent dielectric properties. More preferably, 50 mol% or more, more preferably 70 mol% or more, and particularly preferably 80 mol% or more of naphthalene dicarboxylic acid as a polyvalent carboxylic acid component constituting the polyester resin is contained to improve the dielectric properties. can be done.
 脂環族ジカルボン酸としては、特に限定されないが、1,4-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、水素添加ナフタレンジカルボン酸などを使用することができる。 The alicyclic dicarboxylic acid is not particularly limited, but 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, tetrahydrophthalic acid, methyltetrahydrophthalic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride , hydrogenated naphthalenedicarboxylic acids, and the like can be used.
 本発明におけるポリエステル樹脂を構成する多価アルコールとしては、特に限定されないが、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2-メチル-1,3-プロパンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,8-オクタンジオール、2-メチル-2-エチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、2-エチル-2-n-プロピル-1,3-プロパンジオール、2,2-ジ-n-プロピル-1,3-プロパンジオール、2-n-ブチル-2-エチル-1,3-プロパンジオール、2,2-ジ-n-ブチル-1,3-プロパンジオール、2,4-ジエチル-1,5-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ダイマージオールなどの脂肪族多価アルコール、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノールなどの脂環族多価アルコール、ポリテトラメチレングリコール、ポリプロピレングリコールなどのポリアルキレンエーテルグリコールなどが使用でき、これらの内から、1種、または2種以上を使用できる。好ましくは、ダイマージオール、トリシクロデカンジメタノールであり、優れた誘電特性を発現することができる。より好ましくは、ポリエステル樹脂を構成する多価アルコール成分としてダイマージオールおよびトリシクロデカンジメタノールの合計で20モル%以上、さらに好ましくは30モル%以上、特に好ましくは40モル%以上含有することで、誘電特性を向上させることができる。ダイマージオールとトリシクロデカンジメタノールはそれぞれ一方だけを含有してもよく、両方を含有してもよい。 The polyhydric alcohol constituting the polyester resin in the present invention is not particularly limited, but ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2-methyl-1,3-propanediol, neopentyl glycol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, 1,8 -octanediol, 2-methyl-2-ethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2-ethyl-2-n-propyl-1,3-propanediol, 2 , 2-di-n-propyl-1,3-propanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-di-n-butyl-1,3-propanediol, Aliphatic polyhydric alcohols such as 2,4-diethyl-1,5-pentanediol, 2-ethyl-1,3-hexanediol and dimer diol; Cyclic polyhydric alcohols, polytetramethylene glycol, polyalkylene ether glycols such as polypropylene glycol, and the like can be used, and one or more of these can be used. Preferred are dimer diol and tricyclodecanedimethanol, which can exhibit excellent dielectric properties. More preferably, the total content of dimer diol and tricyclodecanedimethanol as polyhydric alcohol components constituting the polyester resin is 20 mol% or more, more preferably 30 mol% or more, and particularly preferably 40 mol% or more. Dielectric properties can be improved. Only one of dimer diol and tricyclodecanedimethanol may be contained, or both may be contained.
 本発明におけるポリエステル樹脂には、3価以上の多価カルボン酸成分および/または3価以上の多価アルコール成分を共重合することもできる。3価以上の多価カルボン酸成分としては、例えばトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、トリメシン酸、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)などの芳香族カルボン酸、1,2,3,4-ブタンテトラカルボン酸などの脂肪族カルボン酸などが挙げられ、これらを1種、又は2種以上の使用が可能である。3価以上の多価アルコール成分としては、例えば、グリセリン、トリメチロールプロパン、トリメチロールエタン、ペンタエリスリトール、α-メチルグルコース、マンニトール、ソルビトールが挙げられ、これらより1種、又は2種以上の使用が可能である。ただし、3価以上の多価カルボン酸成分および/または3価以上の多価アルコール成分の共重合量が多いと、ポリエステル樹脂の誘電特性が悪化する場合があるため好ましくない。 In the polyester resin of the present invention, a polyhydric carboxylic acid component having a valence of 3 or more and/or a polyhydric alcohol component having a valence of 3 or more can be copolymerized. Examples of trivalent or higher polycarboxylic acid components include aromatic carboxylic acids such as trimellitic acid, pyromellitic acid, benzophenonetetracarboxylic acid, trimesic acid, trimellitic anhydride (TMA), and pyromellitic anhydride (PMDA). , 1,2,3,4-butanetetracarboxylic acid and other aliphatic carboxylic acids, and one or more of these can be used. Examples of trihydric or higher polyhydric alcohol components include glycerin, trimethylolpropane, trimethylolethane, pentaerythritol, α-methylglucose, mannitol, and sorbitol, and one or more of these may be used. It is possible. However, if the copolymerization amount of the polyhydric carboxylic acid component having a valence of 3 or more and/or the polyhydric alcohol component having a valence of 3 or more is large, the dielectric properties of the polyester resin may deteriorate, which is not preferable.
 本発明のポリエステル樹脂を製造する重合縮合反応の方法としては、例えば、1)多価カルボン酸と多価アルコールを公知の触媒存在下で加熱し、脱水エステル化工程を経て、脱多価アルコール・重縮合反応を行う方法、2)多価カルボン酸のアルコールエステル体と多価アルコールを公知の触媒存在下で加熱、エステル交換反応を経て、脱多価アルコール・重縮合反応を行う方法、3)解重合を行う方法などがある。前記1)2)の方法において、酸成分の一部またはすべてを酸無水物に置換しても良い。 As a method of polymerization condensation reaction for producing the polyester resin of the present invention, for example, 1) polyhydric carboxylic acid and polyhydric alcohol are heated in the presence of a known catalyst, and depolyhydric alcohol / 2) A method of heating an alcohol ester of a polyhydric carboxylic acid and a polyhydric alcohol in the presence of a known catalyst to conduct an ester exchange reaction, followed by a depolyhydric alcohol/polycondensation reaction, 3) There is a method of performing depolymerization, and the like. In the methods 1) and 2) above, part or all of the acid component may be replaced with an acid anhydride.
 本発明におけるポリエステル樹脂を製造する際には、従来公知の重合触媒、例えば、テトラ-n-ブチルチタネート、テトライソプロピルチタネート、チタンオキシアセチルセトネートなどのチタン化合物、三酸化アンチモン、トリブトキシアンチモンなどのアンチモン化合物、酸化ゲルマニウム、テトラ-n-ブトキシゲルマニウムなどのゲルマニウム化合物、その他、マグネシウム、鉄、亜鉛、マンガン、コバルト、アルミニウムなどの酢酸塩などを使用することが出来る。これらの触媒は1種、または2種以上を併用することができる。 When producing the polyester resin of the present invention, conventionally known polymerization catalysts, for example, titanium compounds such as tetra-n-butyl titanate, tetraisopropyl titanate, titaniumoxyacetylcetonate, antimony trioxide, tributoxyantimony, etc. Antimony compounds, germanium compounds such as germanium oxide and tetra-n-butoxygermanium, and acetates such as magnesium, iron, zinc, manganese, cobalt and aluminum can be used. These catalysts can be used singly or in combination of two or more.
 本発明におけるポリエステル樹脂の数平均分子量は5000以上であることが好ましく、10000以上であることがより好ましい。また、100000以下であることが好ましく、50000以下であることがより好ましく、30000以下であることがさらに好ましい。前記の範囲内であると、溶剤へ溶解した際の取り扱いがしやすく、また誘電特性に優れるため、好ましい。 The number average molecular weight of the polyester resin in the present invention is preferably 5,000 or more, more preferably 10,000 or more. Also, it is preferably 100,000 or less, more preferably 50,000 or less, and even more preferably 30,000 or less. Within the above range, it is easy to handle when dissolved in a solvent, and excellent in dielectric properties, which is preferable.
 本発明におけるポリエステル樹脂は、10GHzでの誘電正接が0.005以下であることが好ましい。好ましくは0.004以下、さらに好ましくは0.003以下である。下限は特に規定されないが、実用上は0.001以上である。ポリエステル樹脂の誘電正接を前記範囲内とするには、前述のとおり、ポリエステル樹脂の構成単位として、ナフタレンジカルボン酸やダイマージオール、トリシクロデカンジメタノールを含有させる方法が挙げられる。 The polyester resin in the present invention preferably has a dielectric loss tangent of 0.005 or less at 10 GHz. It is preferably 0.004 or less, more preferably 0.003 or less. Although the lower limit is not particularly defined, it is practically 0.001 or more. In order to make the dielectric loss tangent of the polyester resin within the above range, as described above, naphthalene dicarboxylic acid, dimer diol, or tricyclodecanedimethanol may be included as a constituent unit of the polyester resin.
<化合物A>
 本発明における化合物Aは、末端不飽和炭化水素基を有し、かつ5%重量減少温度が260℃以上である化合物である。末端不飽和炭化水素基を有することで、後記の化合物Bとの反応により、架橋密度を高め、はんだ耐熱性を向上することができる。また、反応後に誘電特性を悪化させる水酸基を発生させないため、優れた誘電特性を有する接着剤とすることができる。末端不飽和炭化水素基は、1分子中に2個以上有することが、より架橋密度を高められるため好ましい。ここで、末端不飽和炭化水素基とは、例えば、ビニル基、ビニリデン基や、アリル基、アクリル基、メタクリル基、スチレン基など、CH=Cの構造を有する基をいう。
<Compound A>
Compound A in the present invention is a compound having a terminal unsaturated hydrocarbon group and a 5% weight loss temperature of 260° C. or higher. By having a terminal unsaturated hydrocarbon group, it is possible to increase crosslink density and improve solder heat resistance by reaction with compound B described later. In addition, since hydroxyl groups that deteriorate the dielectric properties are not generated after the reaction, the adhesive can have excellent dielectric properties. Having two or more terminal unsaturated hydrocarbon groups in one molecule is preferable because the crosslink density can be further increased. Here, the terminal unsaturated hydrocarbon group refers to a group having a CH 2 =C structure such as vinyl group, vinylidene group, allyl group, acrylic group, methacrylic group, styrene group, and the like.
 化合物Aの5%重量減少温度は260℃以上であることが必要である。好ましくは270℃以上、より好ましくは280℃以上、さらに好ましくは290℃以上である。5%重量減少温度が前記値以上にあることで、はんだの融点を超える温度でも外観不良を発生させることなく、はんだ付けを行うことが可能となる。 The 5% weight loss temperature of compound A must be 260°C or higher. It is preferably 270° C. or higher, more preferably 280° C. or higher, and still more preferably 290° C. or higher. When the 5% weight loss temperature is equal to or higher than the above value, soldering can be performed without causing poor appearance even at a temperature exceeding the melting point of solder.
 化合物Aは、構造単位として芳香環構造または脂環構造を有していることが好ましい。構造単位として芳香環構造または脂環構造を有することではんだ耐熱性を向上でき、かつ誘電特性にも優れる。中でも芳香環構造または脂環構造を化合物Aの骨格として有することが好ましく、ポリフェニレンエーテルまたはフェノール樹脂であることが好ましい。末端不飽和炭化水素基を有するポリフェニレンエーテルの具体例としては、SABIC社のSA-9000や三菱ガス化学社のOPE-2Stが挙げられる。また、末端不飽和炭化水素基を有するフェノール樹脂としては、群栄化学工業社のレヂトップFTC-809AEが例示される。 Compound A preferably has an aromatic ring structure or an alicyclic structure as a structural unit. By having an aromatic ring structure or an alicyclic structure as a structural unit, solder heat resistance can be improved, and dielectric properties are also excellent. Among them, it is preferable to have an aromatic ring structure or an alicyclic structure as the skeleton of compound A, and polyphenylene ether or phenol resin is preferable. Specific examples of polyphenylene ethers having terminal unsaturated hydrocarbon groups include SA-9000 from SABIC and OPE-2St from Mitsubishi Gas Chemical. As the phenolic resin having a terminal unsaturated hydrocarbon group, Resitop FTC-809AE manufactured by Gun Ei Chemical Industry Co., Ltd. is exemplified.
 化合物Aの数平均分子量としては、500以上であることが好ましく、より好ましくは1000以上である。また、100000以下であることが好ましく、より好ましくは10000以下であり、さらに好ましくは5000以下である。前記の範囲内であると、溶剤への溶解性が良好であり、均一な接着剤塗膜を形成することができる。 The number average molecular weight of compound A is preferably 500 or more, more preferably 1000 or more. Also, it is preferably 100,000 or less, more preferably 10,000 or less, and even more preferably 5,000 or less. Within the above range, the solubility in a solvent is good, and a uniform adhesive coating film can be formed.
 本発明の接着剤組成物における化合物Aの含有量としては、ポリエステル樹脂100質量部に対し、1質量部以上であることが好ましく、より好ましくは10質量部以上である。また、100質量部以下であることが好ましく、より好ましくは50質量部以下である。前記の範囲内であると、優れた接着性とはんだ耐熱性を両立することができる。 The content of compound A in the adhesive composition of the present invention is preferably 1 part by mass or more, more preferably 10 parts by mass or more, relative to 100 parts by mass of the polyester resin. Also, it is preferably 100 parts by mass or less, more preferably 50 parts by mass or less. Within the above range, both excellent adhesiveness and soldering heat resistance can be achieved.
<化合物B>
 本発明における化合物Bは、エポキシ基と、末端不飽和炭化水素基とを有する化合物である。エポキシ基を有することでポリエステル樹脂や後記のポリカルボジイミドと反応させることができ、末端不飽和炭化水素基を有することで化合物Aと反応させることができるため、これらの化合物間でより架橋密度を高めることによって、優れたはんだ耐熱性を実現できる。ここで、末端不飽和炭化水素基とは、例えば、ビニル基、ビニリデン基や、アリル基、アクリル基、メタクリル基、スチレン基など、CH=Cの構造を有する基をいう。
<Compound B>
Compound B in the present invention is a compound having an epoxy group and a terminal unsaturated hydrocarbon group. By having an epoxy group, it can be reacted with a polyester resin or polycarbodiimide described later, and by having a terminal unsaturated hydrocarbon group, it can be reacted with compound A, so that the crosslink density is further increased between these compounds. Thus, excellent solder heat resistance can be realized. Here, the terminal unsaturated hydrocarbon group refers to a group having a CH 2 =C structure such as vinyl group, vinylidene group, allyl group, acrylic group, methacrylic group, styrene group, and the like.
 化合物Bは環構造を有していることが好ましい。化合物Bが環構造を有していると、耐熱性を向上でき、かつ誘電特性にも優れる。化合物Bの有する環構造としては、芳香環構造またはイソシアヌル環構造であること耐熱性の観点で好ましい。このような化合物Bの具体例としてはジアリルモノグリシジルイソシアヌレートやジグリシジルモノアリルイソシアヌレートが挙げられる。これらを使用することによって、架橋密度を高め、はんだ耐熱性を向上させることができる。 The compound B preferably has a ring structure. When the compound B has a ring structure, the heat resistance can be improved and the dielectric properties are also excellent. The ring structure of compound B is preferably an aromatic ring structure or an isocyanuric ring structure from the viewpoint of heat resistance. Specific examples of such compound B include diallyl monoglycidyl isocyanurate and diglycidyl monoallyl isocyanurate. By using these, the crosslink density can be increased and the solder heat resistance can be improved.
 化合物Bの分子量は500以下であることが好ましい。より好ましくは400以下である。分子量が前記値以下であることで、溶剤への溶解性や、化合物Aやポリエステル樹脂、ポリカルボジイミドとの反応性が良好となり、架橋密度を高め、はんだ耐熱性を向上させることができる。 The molecular weight of compound B is preferably 500 or less. It is more preferably 400 or less. When the molecular weight is equal to or less than the above value, the solubility in solvents and the reactivity with compound A, polyester resin, and polycarbodiimide are improved, the crosslink density is increased, and solder heat resistance can be improved.
 本発明の接着剤組成物における化合物Bの含有量としては、ポリエステル樹脂100質量部に対し、0.1質量部以上であることが好ましく、より好ましくは1質量部以上である。また、50質量部以下であることが好ましく、より好ましくは20質量部以下である。前記の範囲内であると、優れた接着性とはんだ耐熱性を両立することができる。また化合物Bの含有量は、化合物Aの末端不飽和炭化水素基に対し、1当量以上の末端不飽和炭化水素基とすることが好ましい。1当量以上とすることによって、架橋密度を高め、優れたはんだ耐熱性を発現することができる。 The content of compound B in the adhesive composition of the present invention is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, relative to 100 parts by mass of the polyester resin. Also, it is preferably 50 parts by mass or less, more preferably 20 parts by mass or less. Within the above range, both excellent adhesiveness and soldering heat resistance can be achieved. Moreover, the content of the compound B is preferably 1 equivalent or more of the terminal unsaturated hydrocarbon group with respect to the terminal unsaturated hydrocarbon group of the compound A. When the amount is 1 equivalent or more, the crosslink density can be increased and excellent solder heat resistance can be exhibited.
<ラジカル発生剤>
 本発明の接着剤組成物はラジカル発生剤を含むことも好ましい。本発明の接着剤組成物は加熱によって化合物Aおよび化合物Bを反応させることもできるが、ラジカル発生剤によって発生したラジカルが化合物Aおよび化合物Bの末端不飽和炭化水素基同士を効率的に反応させ、架橋密度を高めることで、はんだ耐熱性や誘電特性を向上させることができる。ラジカル発生剤としては、特に限定されないが、有機過酸化物を使用することが好ましい。有機過酸化物としては、特に限定されないが、ジ-tert-ブチルパーオキシフタレート、tert-ブチルヒドロパーオキサイド、ジクミルパーオキサイド、ベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシピバレート、メチルエチルケトンパーオキサイド、ジ-tert-ブチルパーオキサイド、ラウロイルパーオキサイド等の過酸化物;アゾビスイソブチロニトリル、アゾビスイソプロピオニトリル等のアゾニトリル類等が挙げられる。
<Radical generator>
The adhesive composition of the present invention also preferably contains a radical generator. In the adhesive composition of the present invention, compound A and compound B can be reacted by heating, but the radicals generated by the radical generator cause the terminal unsaturated hydrocarbon groups of compound A and compound B to efficiently react with each other. By increasing the crosslink density, solder heat resistance and dielectric properties can be improved. Although the radical generator is not particularly limited, it is preferable to use an organic peroxide. Examples of organic peroxides include, but are not limited to, di-tert-butyl peroxyphthalate, tert-butyl hydroperoxide, dicumyl peroxide, benzoyl peroxide, tert-butyl peroxybenzoate, tert-butyl peroxy- Peroxides such as 2-ethylhexanoate, tert-butyl peroxypivalate, methyl ethyl ketone peroxide, di-tert-butyl peroxide, lauroyl peroxide; azobisisobutyronitrile, azobisisopropionitrile and the like azonitriles, and the like.
 本発明に用いられるラジカル発生剤の1分間半減期温度としては、140℃以上であることが好ましい。140℃以上にすることで、接着剤組成物ワニスの溶剤を揮発させて接着剤シートを作成する際にラジカル反応が開始することを防ぎ、優れた接着性を発現することができる。 The one-minute half-life temperature of the radical generator used in the present invention is preferably 140°C or higher. By setting the temperature to 140° C. or higher, it is possible to prevent radical reaction from starting when the solvent of the adhesive composition varnish is volatilized to prepare an adhesive sheet, and excellent adhesiveness can be exhibited.
 本発明に用いられるラジカル発生剤の配合量としては、化合物A100質量部に対し、0.1質量部以上であることが好ましく、さらに好ましくは1質量部以上である。また、50質量部以下が好ましく、さらに好ましくは10質量部以下である。上記範囲内にすることによって、最適な架橋密度とすることができ、接着性とはんだ耐熱性を両立することができる。 The blending amount of the radical generator used in the present invention is preferably 0.1 parts by mass or more, more preferably 1 part by mass or more, relative to 100 parts by mass of compound A. Also, it is preferably 50 parts by mass or less, more preferably 10 parts by mass or less. By setting it within the above range, it is possible to obtain an optimum cross-linking density and achieve both adhesion and soldering heat resistance.
<ポリカルボジイミド>
 本発明の接着剤組成物はポリカルボジイミドを含有することができる。ポリカルボジイミドとしては、分子内にカルボジイミド結合を2個以上有するものであれば特に限定されない。ポリカルボジイミドを使用することによって、ポリエステル樹脂の水酸基とカルボジイミド結合とが反応し、耐熱性や接着性を向上することができる。また、ポリエステル樹脂の水酸基との反応によって水酸基を消失させることにより、誘電特性の向上にも寄与する。
<Polycarbodiimide>
The adhesive composition of the invention can contain polycarbodiimide. Polycarbodiimide is not particularly limited as long as it has two or more carbodiimide bonds in the molecule. By using polycarbodiimide, the hydroxyl groups of the polyester resin react with the carbodiimide bonds, and heat resistance and adhesiveness can be improved. In addition, by reacting with the hydroxyl groups of the polyester resin, the hydroxyl groups disappear, thereby contributing to the improvement of the dielectric properties.
 本発明の接着剤組成物において、ポリカルボジイミドの含有量は、ポリエステル樹脂100質量部に対して、1質量部以上であることが好ましく、より好ましくは3質量部以上である。前記下限値以上とすることで架橋密度を高めることができ、はんだ耐熱性が良好となる。また、20質量部以下であることが好ましく、より好ましくは10質量部以下である。前記上限値以下とすることで優れたはんだ耐熱性および低誘電特性を発現することができる。すなわち、上記範囲内とすることで、優れたはんだ耐熱性および低誘電特性を有する接着剤組成物を得ることができる。 In the adhesive composition of the present invention, the content of polycarbodiimide is preferably 1 part by mass or more, more preferably 3 parts by mass or more, relative to 100 parts by mass of the polyester resin. By making it more than the said lower limit, a crosslink density can be raised and solder heat resistance becomes favorable. Also, it is preferably 20 parts by mass or less, more preferably 10 parts by mass or less. By adjusting the content to the above upper limit or less, excellent solder heat resistance and low dielectric properties can be exhibited. That is, within the above range, an adhesive composition having excellent solder heat resistance and low dielectric properties can be obtained.
<エポキシ樹脂>
 本発明の接着剤組成物はエポキシ樹脂を含有することができる。本発明で用いるエポキシ樹脂としては、分子中にエポキシ基を有するものであれば、特に限定されないが、好ましくは分子中に2個以上のエポキシ基を有するものである。具体的には、特に限定されないが、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、テトラグリシジルビスアミノメチルシクロヘキサノン、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、およびエポキシ変性ポリブタジエンからなる群から選択される少なくとも1つを用いることができる。好ましくは、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、ビフェニル型エポキシ樹脂、ノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂またはエポキシ変性ポリブタジエンである。より好ましくは、N,N,N’,N’-テトラグリシジル-m-キシレンジアミンであり、優れた接着性を発現させることができる。
<Epoxy resin>
The adhesive composition of the invention can contain an epoxy resin. The epoxy resin used in the present invention is not particularly limited as long as it has an epoxy group in the molecule, but preferably has two or more epoxy groups in the molecule. Specifically, although not particularly limited, biphenyl type epoxy resin, naphthalene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, alicyclic epoxy resin, dicyclopentadiene type epoxy resin, at least one selected from the group consisting of tetraglycidyldiaminodiphenylmethane, triglycidyl para-aminophenol, tetraglycidylbisaminomethylcyclohexanone, N,N,N',N'-tetraglycidyl-m-xylenediamine, and epoxy-modified polybutadiene; can be used. Preferred are N,N,N',N'-tetraglycidyl-m-xylenediamine, biphenyl type epoxy resin, novolac type epoxy resin, dicyclopentadiene type epoxy resin and epoxy-modified polybutadiene. More preferred is N,N,N',N'-tetraglycidyl-m-xylenediamine, which can exhibit excellent adhesiveness.
 本発明の接着剤組成物において、エポキシ樹脂の含有量は、ポリエステル樹脂100質量部に対して、0.1質量部以上であることが好ましく、より好ましくは0.5質量部以上であり、さらに好ましくは1質量部以上である。前記下限値以上とすることで、十分な硬化効果が得られ、優れた接着性およびはんだ耐熱性を発現することができる。また、10質量部以下であることが好ましく、より好ましくは5質量部以下である。前記上限値以下とすることで、ポットライフ性および低誘電特性が良好となる。すなわち、上記範囲内とすることで、接着性、はんだ耐熱性およびポットライフ性に加え、優れた低誘電特性を有する接着剤組成物を得ることができる。 In the adhesive composition of the present invention, the content of the epoxy resin is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, relative to 100 parts by mass of the polyester resin. It is preferably 1 part by mass or more. By making it more than the said lower limit, sufficient hardening effect can be acquired and the outstanding adhesiveness and soldering heat resistance can be expressed. Also, it is preferably 10 parts by mass or less, more preferably 5 parts by mass or less. When the content is equal to or less than the above upper limit, good pot life and low dielectric properties are obtained. That is, within the above range, it is possible to obtain an adhesive composition having excellent low dielectric properties in addition to adhesiveness, solder heat resistance and pot life.
 本発明の接着剤組成物は、さらに有機溶剤を含有することができる。本発明で用いる有機溶剤は、ポリエステル樹脂、化合物Aおよび化合物Bを溶解させるものであれば、特に限定されない。具体的には、例えば、ベンゼン、トルエン、キシレン等の芳香族炭化水素、ヘキサン、ヘプタン、オクタン、デカン等の脂肪族系炭化水素、シクロヘキサン、シクロヘキセン、メチルシクロヘキサン、エチルシクロへキサン等の脂環族炭化水素、トリクロルエチレン、ジクロルエチレン、クロルベンゼン、クロロホルム等のハロゲン化炭化水素、メタノール、エタノール、イソプロピルアルコール、ブタノール、ペンタノール、ヘキサノール、プロパンジオール、フェノール等のアルコール系溶剤、アセトン、メチルイソブチルケトン、メチルエチルケトン、ペンタノン、ヘキサノン、シクロヘキサノン、イソホロン、アセトフェノン等のケトン系溶剤、メチルセルソルブ、エチルセルソルブ等のセルソルブ類、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、ギ酸ブチル等のエステル系溶剤、エチレングリコールモノn-ブチルエーテル、エチレングリコールモノiso-ブチルエーテル、エチレングリコールモノtert-ブチルエーテル、ジエチレングリコールモノn-ブチルエーテル、ジエチレングリコールモノiso-ブチルエーテル、トリエチレングリコールモノn-ブチルエーテル、テトラエチレングリコールモノn-ブチルエーテル等のグリコールエーテル系溶剤等を使用することができ、これら1種または2種以上を併用することができる。特に作業環境性、乾燥性から、メチルシクロへキサンやトルエンが好ましい。 The adhesive composition of the present invention can further contain an organic solvent. The organic solvent used in the present invention is not particularly limited as long as it dissolves the polyester resin, compound A and compound B. Specifically, for example, aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as hexane, heptane, octane and decane; and alicyclic hydrocarbons such as cyclohexane, cyclohexene, methylcyclohexane and ethylcyclohexane. Halogenated hydrocarbons such as hydrogen, trichlorethylene, dichloroethylene, chlorobenzene, and chloroform, alcoholic solvents such as methanol, ethanol, isopropyl alcohol, butanol, pentanol, hexanol, propanediol, and phenol, acetone, methyl isobutyl ketone, ketone solvents such as methyl ethyl ketone, pentanone, hexanone, cyclohexanone, isophorone and acetophenone; cellosolves such as methyl cellosolve and ethyl cellosolve; ester solvents such as methyl acetate, ethyl acetate, butyl acetate, methyl propionate and butyl formate; Ethylene glycol mono-n-butyl ether, ethylene glycol mono-iso-butyl ether, ethylene glycol mono-tert-butyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono-iso-butyl ether, triethylene glycol mono-n-butyl ether, tetraethylene glycol mono-n-butyl ether, etc. A glycol ether solvent or the like can be used, and one or more of these can be used in combination. In particular, methylcyclohexane and toluene are preferred from the standpoint of working environment and drying properties.
 有機溶剤は、ポリエステル樹脂100質量部に対して、100~1000質量部の範囲であることが好ましい。前記下限値以上とすることで液状およびポットライフ性が良好となる。また、前記上限値以下とすることで製造コストや輸送コストの面から有利となる。 The organic solvent is preferably in the range of 100 to 1000 parts by mass with respect to 100 parts by mass of the polyester resin. By making it more than the said lower limit, liquid state and pot-life property become favorable. Moreover, setting the content to the above upper limit or less is advantageous in terms of manufacturing costs and transportation costs.
 また、本発明の接着剤組成物には、さらに他の成分を必要に応じて含有してもよい。このような成分の具体例としては、難燃剤、粘着付与剤、フィラー、シランカップリング剤が挙げられる。 In addition, the adhesive composition of the present invention may further contain other components as necessary. Specific examples of such components include flame retardants, tackifiers, fillers, and silane coupling agents.
<難燃剤>
 本発明の接着剤組成物には必要に応じて難燃剤を配合しても良い。難燃剤としては、臭素系、リン系、窒素系、水酸化金属化合物等が挙げられる。中でも、リン系難燃剤が好ましく、リン酸エステル、例えば、トリメチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート等、リン酸塩、例えばホスフィン酸アルミニウム等、ホスファゼン等の公知のリン系難燃剤を使用できる。これらは単独で用いても良いし、2種以上を任意に組み合わせて使用しても良い。難燃剤を含有させる場合、ポリエステル樹脂、化合物Aおよび化合物Bの合計100質量部に対し、難燃剤を1~200質量部の範囲で含有させることが好ましく、5~150質量部の範囲がより好ましく、10~100質量部の範囲が最も好ましい。前記範囲内とすることで接着性、はんだ耐熱性および電気特性を維持しつつ、難燃性を発現することができる。
<Flame retardant>
The adhesive composition of the present invention may optionally contain a flame retardant. Examples of flame retardants include bromine-based, phosphorus-based, nitrogen-based, and metal hydroxide compounds. Among them, phosphorus-based flame retardants are preferable, and known phosphorus-based flame retardants such as phosphate esters such as trimethyl phosphate, triphenyl phosphate, tricresyl phosphate, etc., phosphates such as aluminum phosphinate, and phosphazenes can be used. . These may be used alone, or may be used in any combination of two or more. When containing a flame retardant, it is preferable to contain a flame retardant in the range of 1 to 200 parts by mass, more preferably 5 to 150 parts by mass, based on a total of 100 parts by mass of the polyester resin, compound A and compound B. , 10 to 100 parts by weight is most preferred. By setting the content within the above range, it is possible to exhibit flame retardancy while maintaining adhesiveness, solder heat resistance, and electrical properties.
<粘着付与剤>
 本発明の接着剤組成物には必要に応じて粘着付与剤を配合しても良い。粘着付与剤としては、ポリテルペン樹脂、ロジン系樹脂、脂肪族系石油樹脂、脂環族系石油樹脂、共重合系石油樹脂、スチレン樹脂および水添石油樹脂等が挙げられ、接着強度を向上させる目的で用いられる。これらは単独で用いても良いし、2種以上を任意に組み合わせて使用しても良い。粘着付与剤を含有させる場合、ポリエステル樹脂、化合物Aおよび化合物Bの合計100質量部に対し、1~200質量部の範囲で含有させることが好ましく、5~150質量部の範囲がより好ましく、10~100質量部の範囲が最も好ましい。前記範囲内とすることで接着性、はんだ耐熱性および電気特性を維持しつつ、粘着付与剤の効果を発現することができる。
<Tackifier>
A tackifier may be added to the adhesive composition of the present invention, if necessary. Examples of tackifiers include polyterpene resins, rosin resins, aliphatic petroleum resins, alicyclic petroleum resins, copolymer petroleum resins, styrene resins and hydrogenated petroleum resins. used in These may be used alone, or may be used in any combination of two or more. When a tackifier is contained, it is preferably contained in the range of 1 to 200 parts by mass, more preferably 5 to 150 parts by mass, with respect to the total 100 parts by mass of the polyester resin, compound A and compound B. A range of to 100 parts by weight is most preferred. By setting the amount within the above range, the effect of the tackifier can be exhibited while maintaining adhesiveness, soldering heat resistance and electrical properties.
<フィラー>
 本発明の接着剤組成物には必要に応じてフィラーを配合しても良い。有機フィラーとしては、耐熱性樹脂であるポリイミド、ポリアミドイミド、フッ素樹脂、液晶ポリエステルなどの粉末が挙げられる。また、無機フィラーとしては、例えば、シリカ(SiO)、アルミナ(Al)、チタニア(TiO)、酸化タンタル(Ta)、ジルコニア(ZrO)、窒化硅素(Si)、窒化ホウ素(BN)、炭酸カルシウム(CaCO)、硫酸カルシウム(CaSO)、酸化亜鉛(ZnO)、チタン酸マグネシウム(MgO・TiO)、硫酸バリウム(BaSO)、有機ベントナイト、クレー、マイカ、水酸化アルミニウム、水酸化マグネシウムなどが挙げられ、この中では分散の容易さや耐熱性向上効果からシリカが好ましい。
<Filler>
The adhesive composition of the present invention may optionally contain a filler. Examples of organic fillers include powders of heat-resistant resins such as polyimide, polyamideimide, fluororesin, and liquid crystal polyester. Examples of inorganic fillers include silica (SiO 2 ), alumina (Al 2 O 3 ), titania (TiO 2 ), tantalum oxide (Ta 2 O 5 ), zirconia (ZrO 2 ), silicon nitride (Si 3 N 4 ), boron nitride (BN), calcium carbonate ( CaCO3 ), calcium sulfate ( CaSO4 ), zinc oxide (ZnO), magnesium titanate (MgO- TiO2 ), barium sulfate ( BaSO4 ), organic bentonite, clay , mica, aluminum hydroxide, magnesium hydroxide, etc. Among these, silica is preferable from the viewpoint of ease of dispersion and effect of improving heat resistance.
 シリカとしては一般に疎水性シリカと親水性シリカが知られているが、ここでは耐吸湿性を付与する上でジメチルジクロロシランやヘキサメチルジシラザン、オクチルシラン等で処理を行った疎水性シリカの方が良い。シリカを配合する場合、その配合量は、共重合ポリエステルと化合物Aおよび化合物Bの合計100質量部に対し、0.05~30質量部の配合量であることが好ましい。前記下限値以上とすることで更なる耐熱性を発現することができる。また、前記上限値以下とすることでシリカの分散不良や溶液粘度が高くなりすぎることを抑え、作業性が良好となる。 Hydrophobic silica and hydrophilic silica are generally known as silica, but here, hydrophobic silica treated with dimethyldichlorosilane, hexamethyldisilazane, octylsilane, etc. is used to impart moisture absorption resistance. is good. When silica is blended, the blending amount is preferably 0.05 to 30 parts by mass per 100 parts by mass of the copolyester, compound A and compound B in total. Further heat resistance can be expressed by making it more than the said lower limit. In addition, when the content is equal to or less than the above upper limit, poor dispersion of silica and excessive increase in solution viscosity are suppressed, and workability is improved.
<シランカップリング剤>
 本発明の接着剤組成物には必要に応じてシランカップリング剤を配合しても良い。シランカップリング剤を配合することにより金属への接着性や耐熱性の特性が向上するため非常に好ましい。シランカップリング剤としては特に限定されないが、不飽和基を有するもの、エポキシ基を有するもの、アミノ基を有するものなどが挙げられる。これらのうち耐熱性の観点からγ-グリシドキシプロピルトリメトキシシランやβ-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランやβ-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基を有したシランカップリング剤がさらに好ましい。シランカップリング剤を配合する場合、その配合量はポリエステル樹脂、化合物Aおよび化合物Bの合計100質量部に対して0.5~20質量部の配合量であることが好ましい。前記範囲内とすることではんだ耐熱性や接着性を向上することができる。
<Silane coupling agent>
A silane coupling agent may be added to the adhesive composition of the present invention, if necessary. Addition of a silane coupling agent is very preferable because it improves adhesion to metals and heat resistance. Although the silane coupling agent is not particularly limited, examples thereof include those having an unsaturated group, those having an epoxy group, and those having an amino group. Among these, epoxy such as γ-glycidoxypropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltriethoxysilane is used from the viewpoint of heat resistance. A silane coupling agent having a group is more preferred. When the silane coupling agent is blended, the blending amount is preferably 0.5 to 20 parts by mass per 100 parts by mass of the polyester resin, compound A and compound B in total. Soldering heat resistance and adhesiveness can be improved by making it into the said range.
<積層体>
 本発明の積層体は、基材に接着剤組成物を積層したもの(基材/接着剤層の2層積層体)、または、さらに基材を貼り合わせたもの(基材/接着剤層/基材の3層積層体)である。ここで、接着剤層とは、本発明の接着剤組成物を基材に塗布し、乾燥させた後の接着剤組成物の層をいう。本発明の接着剤組成物を、常法に従い、各種基材に塗布、乾燥すること、およびさらに他の基材を積層することにより、本発明の積層体を得ることができる。
<Laminate>
The laminate of the present invention is obtained by laminating an adhesive composition on a base material (two-layer laminate of base material/adhesive layer), or further laminating a base material (base material/adhesive layer/ A three-layer laminate of substrates). Here, the adhesive layer refers to a layer of the adhesive composition after the adhesive composition of the present invention has been applied to a substrate and dried. The laminate of the present invention can be obtained by applying the adhesive composition of the present invention to various substrates, drying it, and further laminating another substrate in accordance with conventional methods.
<基材>
 本発明において基材とは、本発明の接着剤組成物を塗布、乾燥し、接着剤層を形成できるものであれば特に限定されるものではないが、フィルム状樹脂等の樹脂基材、金属板や金属箔等の金属基材、紙類等を挙げることができる。
<Base material>
In the present invention, the substrate is not particularly limited as long as the adhesive composition of the present invention can be applied and dried to form an adhesive layer. Examples include metal substrates such as plates and metal foils, papers, and the like.
 樹脂基材としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、液晶ポリマー、ポリフェニレンスルフィド、シンジオタクチックポリスチレン、ポリオレフィン系樹脂、及びフッ素系樹脂等を例示することができる。好ましくはフィルム状樹脂(以下、基材フィルム層ともいう)である。 Examples of resin substrates include polyester resins, polyamide resins, polyimide resins, polyamideimide resins, liquid crystal polymers, polyphenylene sulfides, syndiotactic polystyrene, polyolefin resins, fluorine resins, and the like. A film-like resin (hereinafter also referred to as a base film layer) is preferable.
 金属基材としては、回路基板に使用可能な任意の従来公知の導電性材料が使用可能である。素材としては、SUS、銅、アルミニウム、鉄、スチール、亜鉛、ニッケル等の各種金属、及びそれぞれの合金、めっき品、亜鉛やクロム化合物など他の金属で処理した金属等を例示することができる。好ましくは金属箔であり、より好ましくは銅箔である。金属箔の厚みについては特に限定はないが、好ましくは1μm以上であり、より好ましくは、3μm以上であり、さらに好ましくは10μm以上である。また、好ましくは50μm以下であり、より好ましくは30μm以下であり、さらに好ましくは20μm以下である。厚さが薄すぎる場合には、回路の充分な電気的性能が得られにくい場合があり、一方、厚さが厚すぎる場合には回路作製時の加工能率等が低下する場合がある。金属箔は、通常、ロール状の形態で提供されている。本発明のプリント配線板を製造する際に使用される金属箔の形態は特に限定されない。リボン状の形態の金属箔を用いる場合、その長さは特に限定されない。また、その幅も特に限定されないが、250~500cm程度であるのが好ましい。基材の表面粗度は特に限定はないが、好ましくは3μm以下であり、より好ましくは2μm以下であり、さらに好ましくは1.5μm以下ある。また実用上好ましくは0.3μm以上であり、より好ましくは、0.5μm以上であり、さらに好ましくは0.7μm以上である。 Any conventionally known conductive material that can be used for circuit boards can be used as the metal base material. Examples of materials include various metals such as SUS, copper, aluminum, iron, steel, zinc, and nickel, and their alloys, plated products, and metals treated with other metals such as zinc and chromium compounds. Metal foil is preferred, and copper foil is more preferred. Although the thickness of the metal foil is not particularly limited, it is preferably 1 μm or more, more preferably 3 μm or more, and still more preferably 10 μm or more. Also, it is preferably 50 μm or less, more preferably 30 μm or less, and still more preferably 20 μm or less. If the thickness is too thin, it may be difficult to obtain sufficient electrical performance of the circuit. Metal foils are usually provided in roll form. The form of the metal foil used in manufacturing the printed wiring board of the present invention is not particularly limited. When using a ribbon-shaped metal foil, the length is not particularly limited. Also, the width is not particularly limited, but it is preferably about 250 to 500 cm. The surface roughness of the substrate is not particularly limited, but is preferably 3 μm or less, more preferably 2 μm or less, and still more preferably 1.5 μm or less. Moreover, it is practically preferably 0.3 μm or more, more preferably 0.5 μm or more, and still more preferably 0.7 μm or more.
 紙類として上質紙、クラフト紙、ロール紙、グラシン紙等を例示することができる。また複合素材として、ガラスエポキシ等を例示することができる。 Examples of papers include high-quality paper, kraft paper, roll paper, and glassine paper. Moreover, glass epoxy etc. can be illustrated as a composite material.
 接着剤組成物との接着力、耐久性から、基材としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、液晶ポリマー、ポリフェニレンスルフィド、シンジオタクチックポリスチレン、ポリオレフィン系樹脂、フッ素系樹脂、SUS鋼板、銅箔、アルミ箔、またはガラスエポキシが好ましい。 Based on adhesive strength and durability with the adhesive composition, polyester resin, polyamide resin, polyimide resin, polyamideimide resin, liquid crystal polymer, polyphenylene sulfide, syndiotactic polystyrene, polyolefin resin, fluororesin, A SUS steel plate, copper foil, aluminum foil, or glass epoxy is preferred.
<接着シート>
 本発明において、接着シートとは、前記積層体と離型基材とを接着剤組成物を介して積層したものである。具体的な構成態様としては、積層体/接着剤層/離型基材、または離型基材/接着剤層/積層体/接着剤層/離型基材が挙げられる。離型基材を積層することで基材の保護層として機能する。また離型基材を使用することで、接着シートから離型基材を離型して、さらに別の基材に接着剤層を転写することができる。
<Adhesive sheet>
In the present invention, the adhesive sheet is obtained by laminating the laminate and the release substrate via an adhesive composition. Specific configuration modes include laminate/adhesive layer/release substrate, or release substrate/adhesive layer/laminate/adhesive layer/release substrate. By laminating the release base material, it functions as a protective layer for the base material. Moreover, by using a release base material, the release base material can be released from the adhesive sheet, and the adhesive layer can be transferred to another base material.
 本発明の接着剤組成物を、常法に従い、各種積層体に塗布、乾燥することにより、本発明の接着シートを得ることができる。また乾燥後、接着剤層に離型基材を貼付けると、基材への裏移りを起こすことなく巻き取りが可能になり操業性に優れるとともに、接着剤層が保護されることから保存性に優れ、使用も容易である。また離型基材に塗布、乾燥後、必要に応じて別の離型基材を貼付すれば、接着剤層そのものを他の基材に転写することも可能になる。 The adhesive sheet of the present invention can be obtained by applying the adhesive composition of the present invention to various laminates and drying them according to a conventional method. In addition, when a release base material is applied to the adhesive layer after drying, it is possible to wind up the product without set-off to the base material, resulting in excellent workability and preservability due to the protection of the adhesive layer. excellent and easy to use. Further, if the adhesive layer itself is applied to a release base material and dried, and if necessary, another release base material is applied, the adhesive layer itself can be transferred to another base material.
<離型基材>
 離型基材としては、特に限定されるものではないが、例えば、上質紙、クラフト紙、ロール紙、グラシン紙などの紙の両面に、クレー、ポリエチレン、ポリプロピレンなどの目止剤の塗布層を設け、さらにその各塗布層の上にシリコーン系、フッ素系、アルキド系の離型剤が塗布されたものが挙げられる。また、ポリエチレン、ポリプロピレン、エチレン-α-オレフィン共重合体、プロピレン-α-オレフィン共重合体等の各種オレフィンフィルム単独、及びポリエチレンテレフタレート等のフィルム上に上記離型剤を塗布したものも挙げられる。離型基材と接着剤層との離型力、シリコーンが電気特性に悪影響を与える等の理由から、上質紙の両面にポリプロピレン目止処理しその上にアルキド系離型剤を用いたもの、またはポリエチレンテレフタレート上にアルキド系離型剤を用いたものが好ましい。
<Release substrate>
The release substrate is not particularly limited, but for example, a coated layer of filler such as clay, polyethylene, polypropylene, etc. is applied to both sides of paper such as woodfree paper, kraft paper, roll paper, and glassine paper. and a silicone type, fluorine type or alkyd type release agent is applied on each coating layer. Other examples include various olefin films such as polyethylene, polypropylene, ethylene-α-olefin copolymer and propylene-α-olefin copolymer alone, and films such as polyethylene terephthalate coated with the release agent. For reasons such as the release force between the release base material and the adhesive layer, and the fact that silicone has an adverse effect on electrical properties, both sides of high-quality paper are filled with polypropylene and an alkyd-based release agent is used on top of it. Alternatively, it is preferable to use an alkyd release agent on polyethylene terephthalate.
 なお、本発明において接着剤組成物を基材上にコーティングする方法としては、特に限定されないが、コンマコーター、リバースロールコーター等が挙げられる。もしくは、必要に応じて、プリント配線板構成材料である圧延銅箔、またはポリイミドフィルムに直接もしくは転写法で接着剤層を設けることもできる。乾燥後の接着剤層の厚みは、必要に応じて、適宜変更されるが、好ましくは5~200μmの範囲である。接着フィルム厚を5μm以上とすることで十分な接着強度が得られる。また、200μm以下とすることで乾燥工程の残留溶剤量を制御しやすくなり、プリント配線板製造のプレス時にフクレが生じにくくなる。乾燥条件は特に限定されないが、乾燥後の残留溶剤率は1質量%以下が好ましい。1質量%以下とすることで、プリント配線板プレス時に残留溶剤が発泡することを抑え、フクレが生じにくくなる。 The method of coating the substrate with the adhesive composition in the present invention is not particularly limited, but includes a comma coater, a reverse roll coater, and the like. Alternatively, if necessary, an adhesive layer can be provided directly or by a transfer method on the rolled copper foil or polyimide film, which are the constituent materials of the printed wiring board. The thickness of the adhesive layer after drying may be changed as required, but is preferably in the range of 5 to 200 μm. Sufficient adhesive strength can be obtained by setting the thickness of the adhesive film to 5 μm or more. Further, by setting the thickness to 200 μm or less, it becomes easier to control the amount of residual solvent in the drying process, and blisters are less likely to occur during pressing in the manufacture of printed wiring boards. The drying conditions are not particularly limited, but the residual solvent rate after drying is preferably 1% by mass or less. When the amount is 1% by mass or less, foaming of the residual solvent is suppressed during pressing of the printed wiring board, and blisters are less likely to occur.
<プリント配線板>
 本発明におけるプリント配線板は、導体回路を形成する金属箔と樹脂基材とから形成された積層体を構成要素として含むものであり、例えばフレキシブル基板、リジッド基板、パッケージ基板などがある。プリント配線板は、例えば、金属張積層体を用いてサブトラクティブ法などの従来公知の方法により製造される。必要に応じて、金属箔によって形成された導体回路を部分的、或いは全面的にカバーフィルムやスクリーン印刷インキ等を用いて被覆した、いわゆるフレキシブル回路板(FPC)、フラットケーブル、テープオートメーティッドボンディング(TAB)用の回路板などを総称している。
<Printed wiring board>
The printed wiring board in the present invention includes, as constituent elements, a laminate formed of a metal foil forming a conductive circuit and a resin base material, and examples thereof include flexible substrates, rigid substrates, package substrates, and the like. A printed wiring board is manufactured, for example, by a conventionally known method such as a subtractive method using a metal-clad laminate. If necessary, so-called flexible circuit boards (FPC), flat cables, tape automated bonding ( It is a general term for circuit boards for TAB).
 本発明のプリント配線板は、プリント配線板として採用され得る任意の積層構成とすることができる。例えば、基材フィルム層、金属箔層、接着剤層、およびカバーフィルム層の4層から構成されるプリント配線板とすることができる。また例えば、基材フィルム層、接着剤層、金属箔層、接着剤層、およびカバーフィルム層の5層から構成されるプリント配線板とすることができる。 The printed wiring board of the present invention can have any laminated structure that can be employed as a printed wiring board. For example, it can be a printed wiring board composed of four layers: a base film layer, a metal foil layer, an adhesive layer, and a cover film layer. Further, for example, a printed wiring board can be made up of five layers: a base film layer, an adhesive layer, a metal foil layer, an adhesive layer, and a cover film layer.
 さらに、必要に応じて、上記のプリント配線板を2つもしくは3つ以上積層した構成とすることもできる。 Furthermore, if necessary, a configuration in which two or three or more of the above printed wiring boards are laminated can be used.
 本発明の接着剤組成物はプリント配線板の各接着剤層に好適に使用することが可能である。特に本発明の接着剤組成物を接着剤として使用すると、プリント配線板を構成する従来のポリイミド、ポリエステルフィルム、銅箔だけでなく、LCPなどの低極性の樹脂基材と高い接着性を有し、耐はんだリフロー性を得ることができ、接着剤層自身が低誘電特性に優れる。そのため、カバーレイフィルム、積層板、樹脂付き銅箔及びボンディングシートに用いる接着剤組成物として好適である。 The adhesive composition of the present invention can be suitably used for each adhesive layer of printed wiring boards. In particular, when the adhesive composition of the present invention is used as an adhesive, it has high adhesiveness not only to conventional polyimides, polyester films, and copper foils constituting printed wiring boards, but also to low-polarity resin substrates such as LCP. , solder reflow resistance can be obtained, and the adhesive layer itself has excellent low dielectric properties. Therefore, it is suitable as an adhesive composition used for coverlay films, laminates, resin-coated copper foils and bonding sheets.
 本発明のプリント配線板において、基材フィルムとしては、従来からプリント配線板の基材として使用されている任意の樹脂フィルムが使用可能である。基材フィルムの樹脂としては、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、液晶ポリマー、ポリフェニレンスルフィド、シンジオタクチックポリスチレン、ポリオレフィン系樹脂、及びフッ素系樹脂等を例示することができる。特に、液晶ポリマー、ポリフェニレンスルフィド、シンジオタクチックポリスチレン、ポリオレフィン系樹脂等の低極性基材に対しても、優れた接着性を有する。 In the printed wiring board of the present invention, any resin film conventionally used as a base material for printed wiring boards can be used as the base film. Examples of resins for the base film include polyester resins, polyamide resins, polyimide resins, polyamideimide resins, liquid crystal polymers, polyphenylene sulfides, syndiotactic polystyrene, polyolefin resins, fluorine resins, and the like. In particular, it has excellent adhesion even to low-polarity substrates such as liquid crystal polymers, polyphenylene sulfide, syndiotactic polystyrene, and polyolefin resins.
<カバーフィルム>
 カバーフィルムとしては、プリント配線板用の絶縁フィルムとして従来公知の任意の絶縁フィルムが使用可能である。例えば、ポリイミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルスルホン、ポリエーテルエーテルケトン、アラミド、ポリカーボネート、ポリアリレート、ポリアミドイミド、液晶ポリマー、シンジオタクチックポリスチレン、ポリオレフィン系樹脂等の各種ポリマーから製造されるフィルムが使用可能である。より好ましくは、ポリイミドフィルムまたは液晶ポリマーフィルムである。
<Cover film>
As the cover film, any insulating film conventionally known as an insulating film for printed wiring boards can be used. For example, films made from various polymers such as polyimide, polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aramid, polycarbonate, polyarylate, polyamideimide, liquid crystal polymer, syndiotactic polystyrene, and polyolefin resin are used. It is possible. Polyimide films or liquid crystal polymer films are more preferred.
 本発明のプリント配線板は、上述した各層の材料を用いる以外は、従来公知の任意のプ
ロセスを用いて製造することができる。
The printed wiring board of the present invention can be manufactured using any conventionally known process except for using the materials for each layer described above.
 好ましい実施態様では、カバーフィルム層に接着剤層を積層した半製品(以下、「カバーフィルム側半製品」という)を製造する。他方、基材フィルム層に金属箔層を積層して所望の回路パターンを形成した半製品(以下、「基材フィルム側2層半製品」という)または基材フィルム層に接着剤層を積層し、その上に金属箔層を積層して所望の回路パターンを形成した半製品(以下、「基材フィルム側3層半製品」という)を製造する(以下、基材フィルム側2層半製品と基材フィルム側3層半製品とを合わせて「基材フィルム側半製品」という)。このようにして得られたカバーフィルム側半製品と、基材フィルム側半製品とを貼り合わせることにより、4層または5層のプリント配線板を得ることができる。 In a preferred embodiment, a semi-finished product in which an adhesive layer is laminated on a cover film layer (hereinafter referred to as "cover film-side semi-finished product") is manufactured. On the other hand, a semi-finished product in which a desired circuit pattern is formed by laminating a metal foil layer on a base film layer (hereinafter referred to as a "two-layer semi-finished product on the base film side"), or a semi-finished product in which an adhesive layer is laminated on a base film layer. , a semi-finished product having a desired circuit pattern formed by laminating a metal foil layer thereon (hereinafter referred to as "base film side 3-layer semi-finished product") (hereinafter referred to as "base film side 2-layer semi-finished product"). Together with the base film side three-layer semi-finished product, it is referred to as the “base film side semi-finished product”). By laminating the semi-finished product on the cover film side and the semi-finished product on the base film side thus obtained, a printed wiring board having four or five layers can be obtained.
 基材フィルム側半製品は、例えば、(A)前記金属箔に基材フィルムとなる樹脂の溶液を塗布し、塗膜を初期乾燥する工程、(B)(A)で得られた金属箔と初期乾燥塗膜との積層物を熱処理・乾燥する工程(以下、「熱処理・脱溶剤工程」という)を含む製造法により得られる。 The semi-finished product on the substrate film side includes, for example, (A) a step of applying a solution of a resin that will be the substrate film to the metal foil and initially drying the coating film, and (B) the metal foil obtained in (A) and It is obtained by a production method including a process of heat-treating and drying the laminate with the initially dried coating film (hereinafter referred to as "heat-treatment/solvent removal process").
 金属箔層における回路の形成は、従来公知の方法を用いることができる。アディティブ法を用いてもよく、サブトラクティブ法を用いてもよい。好ましくは、サブトラクティブ法である。 A conventionally known method can be used to form a circuit in the metal foil layer. An additive method may be used, or a subtractive method may be used. A subtractive method is preferred.
 得られた基材フィルム側半製品は、そのままカバーフィルム側半製品との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後にカバーフィルム側半製品との貼り合わせに使用してもよい。 The semi-finished product on the base film side thus obtained may be used as it is for lamination with the semi-finished product on the cover film side. may be used.
 カバーフィルム側半製品は、例えば、カバーフィルムに接着剤を塗布して製造される。必要に応じて、塗布された接着剤における架橋反応を行うことができる。好ましい実施態様においては、接着剤層を半硬化させる。 The semi-finished product on the cover film side is manufactured, for example, by applying an adhesive to the cover film. If desired, a cross-linking reaction in the applied adhesive can be performed. In a preferred embodiment, the adhesive layer is semi-cured.
 得られたカバーフィルム側半製品は、そのまま基材フィルム側半製品との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後に基材フィルム側半製品との貼り合わせに使用してもよい。 The semi-finished product on the cover film side thus obtained may be used as it is for bonding to the semi-finished product on the base film side. may be used for
 基材フィルム側半製品とカバーフィルム側半製品とは、それぞれ、例えば、ロールの形態で保管された後、貼り合わされて、プリント配線板が製造される。貼り合わせる方法としては、任意の方法が使用可能であり、例えば、プレスまたはロールなどを用いて貼り合わせることができる。また、加熱プレス、または加熱ロ-ル装置を使用するなどの方法により加熱を行いながら両者を貼り合わせることもできる。 The semi-finished product on the base film side and the semi-finished product on the cover film side are each stored, for example, in the form of a roll, and then laminated together to manufacture a printed wiring board. Any method can be used as the bonding method, and for example, the bonding can be performed using a press or a roll. Also, both can be bonded together while being heated by a method such as using a hot press or a hot roll device.
 補強材側半製品は、例えば、ポリイミドフィルムのように柔らかく巻き取り可能な補強材の場合、補強材に接着剤を塗布して製造されることが好適である。また、例えばSUS、アルミ等の金属板、ガラス繊維をエポキシ樹脂で硬化させた板等のように硬く巻き取りできない補強板の場合、予め離型基材に塗布した接着剤を転写塗布することによって製造されることが好適である。また、必要に応じて、塗布された接着剤における架橋反応を行うことができる。好ましい実施態様においては、接着剤層を半硬化させる。 For the semi-finished product on the reinforcing material side, for example, in the case of a soft and windable reinforcing material such as a polyimide film, it is preferable to manufacture it by applying an adhesive to the reinforcing material. In addition, in the case of reinforcing plates such as metal plates such as SUS and aluminum, and glass fiber hardened plates with epoxy resin that cannot be rolled up, the adhesive applied in advance to the release base material can be transferred and applied. It is preferably manufactured. Also, if necessary, a cross-linking reaction in the applied adhesive can be carried out. In a preferred embodiment, the adhesive layer is semi-cured.
 得られた補強材側半製品は、そのままプリント配線板裏面との貼り合わせに使用されてもよく、また、離型フィルムを貼り合わせて保管した後に基材フィルム側半製品との貼り合わせに使用してもよい。 The semi-finished product on the reinforcing material side thus obtained may be used as it is for bonding to the back surface of the printed wiring board, or it may be used for bonding to the semi-finished product on the base film side after being stored after being bonded with a release film. You may
 基材フィルム側半製品、カバーフィルム側半製品、補強材側半製品はいずれも、本発明におけるプリント配線板用積層体である。 The semi-finished product on the base film side, the semi-finished product on the cover film side, and the semi-finished product on the reinforcing material side are all printed wiring board laminates in the present invention.
 以下、実施例を挙げて本発明を具体的に説明する。なお、本実施例および比較例において、単に部とあるのは質量部を示すこととする。 The present invention will be specifically described below with reference to examples. Incidentally, in the present examples and comparative examples, parts simply indicate parts by mass.
<物性評価方法>
(ポリエステル樹脂の組成の測定)
 400MHzのH-核磁気共鳴スペクトル装置(以下、NMRと略記することがある)を用い、ポリエステル樹脂を構成する多価カルボン酸成分、多価アルコール成分のモル比定量を行った。溶媒には重クロロホルムを使用した。なお、酸後付加により共重合ポリエステルの酸価を上げた場合には、酸後付加に用いた酸成分以外の酸成分の合計を100モル%として、各成分のモル比を算出した。
<Physical property evaluation method>
(Measurement of composition of polyester resin)
Using a 400 MHz 1 H-nuclear magnetic resonance spectrometer (hereinafter sometimes abbreviated as NMR), the molar ratio determination of the polyhydric carboxylic acid component and the polyhydric alcohol component constituting the polyester resin was carried out. Deuterated chloroform was used as the solvent. When the acid value of the copolyester was increased by post-acid addition, the molar ratio of each component was calculated assuming that the total amount of acid components other than the acid components used in the post-acid addition was 100 mol %.
(ガラス転移温度の測定)
 示差走査型熱量計(SII社、DSC-200)を用いて測定した。試料5mgをアルミニウム抑え蓋型容器に入れ密封し、液体窒素を用いて-50℃まで冷却した。次いで150℃まで20℃/分の昇温速度にて昇温させ、昇温過程にて得られる吸熱曲線において、吸熱ピークが出る前(ガラス転移温度以下)のベースラインの延長線と、吸熱ピークに向かう接線(ピークの立ち上がり部分からピークの頂点までの間での最大傾斜を示す接線)との交点の温度をもって、ガラス転移温度(単位:℃)とした。
(Measurement of glass transition temperature)
It was measured using a differential scanning calorimeter (DSC-200, SII). 5 mg of the sample was placed in an aluminum lid-type container, sealed, and cooled to -50°C using liquid nitrogen. Then, the temperature is raised to 150 ° C. at a rate of 20 ° C./min, and in the endothermic curve obtained in the heating process, the baseline extension line before the endothermic peak (below the glass transition temperature) and the endothermic peak The glass transition temperature (unit: °C) was defined as the temperature at the intersection with the tangent line (the tangent line indicating the maximum slope from the rising portion of the peak to the apex of the peak).
(5%重量減少温度の測定)
 示差熱・熱重量同時測定装置(株式会社島津製作所、DTG-60)を用いて測定した。アルミニウムパンに入れた5mgの試料を、空気雰囲気下、10℃/分の昇温速度で昇温させ、熱分解によって5%の重量が失われたときの温度を5%重量減少温度(単位:℃)とした。
(Measurement of 5% weight loss temperature)
It was measured using a differential thermal/thermogravimetric simultaneous measurement device (Shimadzu Corporation, DTG-60). A 5 mg sample placed in an aluminum pan was heated at a heating rate of 10 ° C./min in an air atmosphere, and the temperature when 5% weight was lost due to thermal decomposition was 5% weight loss temperature (unit: °C).
(酸価の測定)
 ポリエステル樹脂の試料0.2gを40mlのクロロホルムに溶解し、0.01Nの水酸化カリウムエタノール溶液で滴定し、ポリエステル樹脂10gあたりの当量(当量/10g)を求めた。指示薬にはフェノールフタレインを用いた。
(Measurement of acid value)
A 0.2 g sample of the polyester resin was dissolved in 40 ml of chloroform and titrated with a 0.01N potassium hydroxide ethanol solution to obtain the equivalent weight per 10 6 g of the polyester resin (equivalent weight/10 6 g). Phenolphthalein was used as an indicator.
(比誘電率(ε)及び誘電正接(tanδ))
 溶剤に溶解したポリエステル樹脂を厚さ100μmのテフロン(登録商標)シートに、乾燥後の厚みが25μmとなるように塗布し、130℃で3分乾燥した後、テフロン(登録商標)シートを剥離して試験用の樹脂シートを得た。その後得られた試験用樹脂シートを8cm×3mmの短冊状にサンプルを裁断し、試験用サンプルを得た。比誘電率(εc)及び誘電正接(tanδ)は、ネットワークアナライザー(アンリツ社製)を使用し、空洞共振器摂動法で、温度23℃、周波数10GHzの条件で測定した。
(Relative permittivity (ε c ) and dielectric loss tangent (tan δ))
A polyester resin dissolved in a solvent was applied to a Teflon (registered trademark) sheet having a thickness of 100 μm so that the thickness after drying was 25 μm, dried at 130° C. for 3 minutes, and then the Teflon (registered trademark) sheet was peeled off. to obtain a resin sheet for testing. The test resin sheet thus obtained was cut into strips of 8 cm×3 mm to obtain test samples. The relative permittivity (ε c ) and dielectric loss tangent (tan δ) were measured by a cavity resonator perturbation method using a network analyzer (manufactured by Anritsu Corporation) at a temperature of 23° C. and a frequency of 10 GHz.
 以下、本発明に用いるポリエステル樹脂の合成例を示す。 Synthesis examples of the polyester resin used in the present invention are shown below.
ポリエステル樹脂(c1)の合成例
 攪拌機、コンデンサー、温度計を具備した反応容器にナフタレンジカルボン酸ジメチル275部、トリメリット酸無水物5部、ダイマージオール264部、トリシクロデカンジメタノール125部、エチレングリコール76部、触媒としてオルトチタン酸テトラブチルを全酸成分に対して0.03モル%仕込み、160℃から220℃まで4時間かけて昇温、脱水工程を経ながらエステル化反応を行った。次に重縮合反応工程は、系内を20分かけて5mmHgまで減圧し、さらに250℃まで昇温を進めた。次いで、0.3mmHg以下まで減圧し、60分間の重縮合反応を行った後、これを取り出した。得られたポリエステル樹脂(c1)はNMRによる組成分析の結果、モル比でナフタレンジカルボン酸/トリメリット酸無水物/ダイマージオール/トリシクロデカンジメタノール/エチレングリコール=97/3/40/55/5の共重合ポリエステルであった。また、ガラス転移温度は17℃、酸価は3当量/10g、10GHzでの誘電正接は0.0035であった。
Synthesis Example of Polyester Resin (c1) Into a reaction vessel equipped with a stirrer, a condenser and a thermometer, 275 parts of dimethyl naphthalenedicarboxylate, 5 parts of trimellitic anhydride, 264 parts of dimer diol, 125 parts of tricyclodecanedimethanol, ethylene glycol 76 parts of tetrabutyl orthotitanate as a catalyst were added in an amount of 0.03 mol % based on the total acid components, and the temperature was raised from 160° C. to 220° C. over 4 hours, and an esterification reaction was carried out through a dehydration step. Next, in the polycondensation reaction step, the pressure in the system was reduced to 5 mmHg over 20 minutes, and the temperature was further raised to 250°C. Then, the pressure was reduced to 0.3 mmHg or less, and after the polycondensation reaction was carried out for 60 minutes, the product was taken out. As a result of composition analysis by NMR, the resulting polyester resin (c1) had a molar ratio of naphthalene dicarboxylic acid/trimellitic anhydride/dimerdiol/tricyclodecanedimethanol/ethylene glycol=97/3/40/55/5. was a copolymerized polyester of Further, the glass transition temperature was 17° C., the acid value was 3 equivalents/10 6 g, and the dielectric loss tangent at 10 GHz was 0.0035.
ポリエステル樹脂(c2)の合成例
 攪拌機、コンデンサー、温度計を具備した反応容器にテレフタル酸348部、イソフタル酸311部、セバシン酸99部、エチレングリコール228部、ネオペンチルグリコール313部、触媒としてオルトチタン酸テトラブチルを全酸成分に対して0.03モル%仕込み、160℃から220℃まで4時間かけて昇温、脱水工程を経ながらエステル化反応を行った。次に重縮合反応工程は、系内を20分かけて5mmHgまで減圧し、さらに250℃まで昇温を進めた。次いで、0.3mmHg以下まで減圧し、60分間の重縮合反応を行った後、これを取り出した。得られたポリエステル樹脂(c2)はNMRによる組成分析の結果、モル比でテレフタル酸/イソフタル酸/セバシン酸/エチレングリコール/ネオペンチルグリコール=47/42/11/55/45の共重合ポリエステルであった。また、ガラス転移温度は47℃、酸価は3当量/10g、10GHzでの誘電正接は0.0076であった。
Synthesis Example of Polyester Resin (c2) Into a reaction vessel equipped with a stirrer, a condenser and a thermometer, 348 parts of terephthalic acid, 311 parts of isophthalic acid, 99 parts of sebacic acid, 228 parts of ethylene glycol, 313 parts of neopentyl glycol, and orthotitanium as a catalyst Tetrabutyl acid was charged in an amount of 0.03 mol % based on the total acid components, and the temperature was raised from 160° C. to 220° C. over 4 hours, and an esterification reaction was carried out through a dehydration step. Next, in the polycondensation reaction step, the pressure in the system was reduced to 5 mmHg over 20 minutes, and the temperature was further raised to 250°C. Then, the pressure was reduced to 0.3 mmHg or less, and after the polycondensation reaction was carried out for 60 minutes, the product was taken out. As a result of composition analysis by NMR, the obtained polyester resin (c2) was a copolymer polyester with a molar ratio of terephthalic acid/isophthalic acid/sebacic acid/ethylene glycol/neopentyl glycol=47/42/11/55/45. rice field. Further, the glass transition temperature was 47° C., the acid value was 3 equivalents/10 6 g, and the dielectric loss tangent at 10 GHz was 0.0076.
 以下、本発明の実施例となる接着剤組成物、および比較例となる接着剤組成物の製造例を示す。 Production examples of adhesive compositions that serve as examples of the present invention and adhesive compositions that serve as comparative examples are shown below.
 化合物Aとしては、以下のものを用いた。
(a1):SA-9000(SABIC社製、ビニル基を有するポリフェニレンエーテル、数平均分子量1700、5%重量減少温度439℃)
(a2):FTC809AE(群栄化学工業社製、ビニル基を有するフェノール樹脂、数平均分子量1400、5%重量減少温度332℃)
(a3):PEGDA(Sigma-Aldrich社製、ポリエチレングリコールジアクリレート、重量平均分子量700、5%重量減少温度220℃)
(a4):SA-90(SABIC社製、水酸基末端を有するポリフェニレンエーテル(末端不飽和炭化水素基を有さない)、数平均分子量1700、5%重量減少温度430℃)
As compound A, the following was used.
(a1): SA-9000 (manufactured by SABIC, polyphenylene ether having a vinyl group, number average molecular weight of 1700, 5% weight loss temperature of 439°C)
(a2): FTC809AE (manufactured by Gunei Chemical Industry Co., Ltd., phenolic resin having a vinyl group, number average molecular weight of 1400, 5% weight loss temperature of 332°C)
(a3): PEGDA (manufactured by Sigma-Aldrich, polyethylene glycol diacrylate, weight average molecular weight 700, 5% weight loss temperature 220°C)
(a4): SA-90 (manufactured by SABIC, hydroxyl-terminated polyphenylene ether (having no terminal unsaturated hydrocarbon group), number average molecular weight of 1700, 5% weight loss temperature of 430°C)
 化合物Bとしては、以下のものを用いた。
(b1):DA-MGIC(四国化成工業社製、ジアリルモノグリシジルイソシアヌレート)
(b2):MA-DGIC(四国化成工業社製、モノアリルジグリシジルイソシアヌレート)
(b3):ジアリルイソシアヌレート(東京化成工業社製)
As compound B, the following was used.
(b1): DA-MGIC (manufactured by Shikoku Kasei Co., Ltd., diallyl monoglycidyl isocyanurate)
(b2): MA-DGIC (manufactured by Shikoku Chemical Industry Co., Ltd., monoallyl diglycidyl isocyanurate)
(b3): diallyl isocyanurate (manufactured by Tokyo Chemical Industry Co., Ltd.)
 上記以外のものとして、以下のものを用いた。
V-03:ポリカルボジイミド(日清紡ケミカル社製)
テトラッドX:エポキシ樹脂(三菱ガス化学社製、グリシジルアミン型エポキシ)
パーブチルP:ラジカル発生剤(日油社製、ビス(1-t-ブチルペルオキシ-1-メチルエチル)ベンゼン、1分間半減期温度175℃)
Other than the above, the following were used.
V-03: Polycarbodiimide (manufactured by Nisshinbo Chemical Co., Ltd.)
Tetrad X: epoxy resin (manufactured by Mitsubishi Gas Chemical Company, glycidylamine type epoxy)
Perbutyl P: radical generator (manufactured by NOF Corporation, bis(1-t-butylperoxy-1-methylethyl)benzene, 1 minute half-life temperature 175° C.)
<実施例1>
 前記の合成例で得たポリエステル樹脂(c1)をトルエンで溶解し、固形分濃度40質量%のトルエンワニスを作成した。このトルエンワニスに、化合物Aとして(a1)、化合物Bとして(b1)、およびパーブチルPをそれぞれポリエステル樹脂(c1)100部に対し20部、5部、3部となるように配合し、接着剤組成物(S1)を得た。
 得られた接着剤組成物(S1)について、比誘電率、誘電正接、ピール強度、はんだ耐熱性および接着シート柔軟性の各評価を実施した。結果を表1に記載した。
<Example 1>
The polyester resin (c1) obtained in the above synthesis example was dissolved in toluene to prepare a toluene varnish having a solid concentration of 40% by mass. To this toluene varnish, (a1) as compound A, (b1) as compound B, and perbutyl P were blended so as to be 20 parts, 5 parts, and 3 parts, respectively, with respect to 100 parts of polyester resin (c1). A composition (S1) was obtained.
The resulting adhesive composition (S1) was evaluated for dielectric constant, dielectric loss tangent, peel strength, solder heat resistance, and adhesive sheet flexibility. The results are listed in Table 1.
<実施例2~14、比較例1~5>
 接着剤組成物の各成分の種類および配合量を表1に示すように変更した以外は実施例1と同様に接着剤組成物(S2)~(S19)を作成し、各評価を実施した。結果を表1に記載した。
<Examples 2 to 14, Comparative Examples 1 to 5>
Adhesive compositions (S2) to (S19) were prepared in the same manner as in Example 1 except that the types and amounts of each component of the adhesive composition were changed as shown in Table 1, and each evaluation was performed. The results are listed in Table 1.
<接着剤組成物の評価>
(比誘電率(ε)及び誘電正接(tanδ))
 接着剤組成物を厚さ100μmのテフロン(登録商標)シートに、乾燥後の厚みが25μmとなるように塗布し、130℃で3分乾燥した。次いで180℃で5時間熱処理して硬化させた後、テフロン(登録商標)シートを剥離して試験用の接着剤樹脂シートを得た。その後得られた試験用接着剤樹脂シートを8cm×3mmの短冊状にサンプルを裁断し、試験用サンプルを得た。比誘電率(ε)及び誘電正接(tanδ)は、ネットワークアナライザー(アンリツ社製)を使用し、空洞共振器摂動法で、温度23℃、周波数10GHzの条件で測定した。
<比誘電率の評価基準>
 ○:3.0以下
 ×:3.0を超える  
<誘電正接の評価基準>
 ○:0.004未満
 △:0.004以上0.006以下
 ×:0.006を超える  
<Evaluation of Adhesive Composition>
(Relative permittivity (ε c ) and dielectric loss tangent (tan δ))
The adhesive composition was applied to a Teflon (registered trademark) sheet having a thickness of 100 μm so that the thickness after drying was 25 μm, and dried at 130° C. for 3 minutes. After curing by heat treatment at 180° C. for 5 hours, the Teflon (registered trademark) sheet was peeled off to obtain an adhesive resin sheet for testing. The test adhesive resin sheet thus obtained was cut into strips of 8 cm×3 mm to obtain test samples. The relative dielectric constant (ε c ) and dielectric loss tangent (tan δ) were measured by a cavity resonator perturbation method using a network analyzer (manufactured by Anritsu Corporation) under conditions of a temperature of 23° C. and a frequency of 10 GHz.
<Evaluation Criteria for Relative Permittivity>
○: 3.0 or less ×: more than 3.0
<Evaluation Criteria for Dielectric Loss Tangent>
○: less than 0.004 △: 0.004 or more and 0.006 or less ×: more than 0.006
(ピール強度(接着性))
 接着剤組成物を厚さ12.5μmのポリイミドフィルム(株式会社カネカ製、アピカル(登録商標))に、乾燥後の厚みが25μmとなるように塗布し、130℃で3分乾燥した。この様にして得られた接着性フィルム(Bステージ品)を厚さ18μmの圧延銅箔(日鉄ケミカル&マテリアル株式会社製、エスパネックスシリーズ)と貼り合わせた。貼り合わせは、圧延銅箔の光沢面が接着剤層と接する様にして、170℃で2MPaの加圧下に280秒間プレスし、接着した。次いで180℃で3時間熱処理して硬化させ、ピール強度評価用サンプルを得た。ピール強度は、25℃、フィルム引き、引張速度50mm/min、90°剥離の条件で測定した。この試験は常温での接着強度を示すものである。
<評価基準>
 ◎:1.0N/mm以上
 ○:0.7N/mm以上1.0N/mm未満
 △:0.5N/mm以上0.7N/mm未満
 ×:0.5N/mm未満
(Peel strength (adhesiveness))
The adhesive composition was applied to a 12.5 μm thick polyimide film (manufactured by Kaneka Corporation, Apical (registered trademark)) so as to have a thickness of 25 μm after drying, and dried at 130° C. for 3 minutes. The adhesive film (B stage product) thus obtained was laminated to a 18 μm thick rolled copper foil (manufactured by Nippon Steel Chemical & Materials Co., Ltd., Espanex series). The bonding was performed by pressing the rolled copper foil so that the glossy surface of the rolled copper foil was in contact with the adhesive layer and pressing for 280 seconds under a pressure of 2 MPa at 170°C. Then, it was cured by heat treatment at 180° C. for 3 hours to obtain a sample for peel strength evaluation. The peel strength was measured under the conditions of 25° C., film pulling, tensile speed of 50 mm/min, and 90° peeling. This test shows the bond strength at room temperature.
<Evaluation Criteria>
◎: 1.0 N / mm or more ○: 0.7 N / mm or more and less than 1.0 N / mm △: 0.5 N / mm or more and less than 0.7 N / mm ×: less than 0.5 N / mm
(はんだ耐熱性)
 上記のピール強度測定用と同じ方法で評価用サンプルを作製し、2.0cm×2.0cmのサンプル片を288℃で溶融したはんだ浴に浸漬し、膨れなどの外観変化の有無を確認した。
<評価基準>
 ◎:60秒以上膨れ無し
 ○:30秒以上60秒未満で膨れ有り
 △:10秒以上30秒未満で膨れ有り
 ×:10秒未満で膨れ有り
(solder heat resistance)
A sample for evaluation was prepared by the same method as for measuring the peel strength, and a sample piece of 2.0 cm×2.0 cm was immersed in a solder bath melted at 288° C., and the presence or absence of change in appearance such as blistering was confirmed.
<Evaluation Criteria>
◎: no swelling for 60 seconds or more ○: swelling for 30 seconds or more and less than 60 seconds △: swelling for 10 seconds or more and less than 30 seconds ×: swelling for less than 10 seconds
(接着シート柔軟性)
 接着剤組成物を厚さ100μmのテフロン(登録商標)シートに、乾燥後の厚みが25μmとなるように塗布し、130℃で3分乾燥する。次いで、そのシートを180°折り曲げた際の塗膜の状態を確認した。
<評価基準>
 ○:ひび割れ無し
 ×:ひび割れ有り
(Adhesive sheet flexibility)
The adhesive composition is applied to a Teflon (registered trademark) sheet having a thickness of 100 μm so that the thickness after drying becomes 25 μm, and dried at 130° C. for 3 minutes. Next, the state of the coating film was checked when the sheet was bent 180°.
<Evaluation Criteria>
○: No cracks ×: Cracks present
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~14は、誘電特性、ピール強度、はんだ耐熱性および接着シート柔軟性に優れる。一方、比較例1では、化合物Bがエポキシ基を有していないために、硬化不十分であり、はんだ耐熱性が不足した。比較例2では化合物Aが末端不飽和炭化水素を有していないため、硬化不十分であり、はんだ耐熱性が不足した。また水酸基末端の影響により誘電正接も高かった。比較例3は化合物Aの5%重量減少温度が低いために、はんだ耐熱性に劣った。比較例4はポリエステル樹脂を含んでいないために接着シートが脆いうえ、誘電特性、ピール強度、はんだ耐熱性が不足した。比較例5は化合物Bを含まず、エポキシ樹脂により硬化させたため、誘電特性に劣った。 As is clear from Table 1, Examples 1 to 14 are excellent in dielectric properties, peel strength, solder heat resistance and adhesive sheet flexibility. On the other hand, in Comparative Example 1, since the compound B did not have an epoxy group, the curing was insufficient and the solder heat resistance was insufficient. In Comparative Example 2, since compound A did not have a terminal unsaturated hydrocarbon, the curing was insufficient and the solder heat resistance was insufficient. Also, the dielectric loss tangent was high due to the influence of the terminal hydroxyl group. Comparative Example 3 was inferior in solder heat resistance because the 5% weight loss temperature of compound A was low. In Comparative Example 4, since the polyester resin was not contained, the adhesive sheet was brittle, and the dielectric properties, peel strength, and solder heat resistance were insufficient. Comparative Example 5 did not contain the compound B and was cured with an epoxy resin, resulting in poor dielectric properties.
 本発明の接着剤組成物は、耐熱性、接着強度に優れ、比誘電率および誘電正接が低く、またシートの柔軟性も良好である。そのため、高周波領域のプリント基板(フレキシブル基板,リジッド基板,パッケージ基板)に適用するプリント配線板用接着剤や接着シートとして有用である。

 
INDUSTRIAL APPLICABILITY The adhesive composition of the present invention is excellent in heat resistance and adhesive strength, has a low dielectric constant and a low dielectric loss tangent, and has good sheet flexibility. Therefore, it is useful as an adhesive or an adhesive sheet for printed wiring boards applied to printed boards (flexible boards, rigid boards, package boards) in a high frequency range.

Claims (9)

  1. ポリエステル樹脂、化合物Aおよび化合物Bを含んでなる接着剤組成物。
    化合物A:末端不飽和炭化水素基を有し、かつ5%重量減少温度が260℃以上である化合物
    化合物B:エポキシ基と、末端不飽和炭化水素基とを有する化合物
    An adhesive composition comprising a polyester resin, compound A and compound B.
    Compound A: A compound having a terminal unsaturated hydrocarbon group and having a 5% weight loss temperature of 260°C or higher Compound B: A compound having an epoxy group and a terminal unsaturated hydrocarbon group
  2. 前記化合物Aが構造単位として芳香環構造または脂環構造を有する化合物である、請求項1に記載の接着剤組成物。 2. The adhesive composition according to claim 1, wherein said compound A is a compound having an aromatic ring structure or an alicyclic structure as a structural unit.
  3. 前記化合物Aが、末端不飽和炭化水素基を有する、ポリフェニレンエーテルまたはフェノール樹脂である、請求項1に記載の接着剤組成物。 2. The adhesive composition according to claim 1, wherein said compound A is a polyphenylene ether or phenolic resin having terminal unsaturated hydrocarbon groups.
  4. 前記化合物Bがイソシアヌル環を有する化合物である、請求項1~3のいずれかに記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 3, wherein said compound B is a compound having an isocyanuric ring.
  5. 前記ポリエステル樹脂の誘電正接が0.005以下である、請求項1~4のいずれかに記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 4, wherein the polyester resin has a dielectric loss tangent of 0.005 or less.
  6. さらにポリカルボジイミドを含んでなる請求項1~5のいずれかに記載の接着剤組成物。 The adhesive composition according to any one of claims 1 to 5, further comprising polycarbodiimide.
  7. 請求項1~6のいずれかに記載の接着剤組成物からなる接着剤層を有する接着シート。 An adhesive sheet having an adhesive layer comprising the adhesive composition according to any one of claims 1 to 6.
  8. 請求項1~6のいずれかに記載の接着剤組成物からなる接着剤層を有する積層体。 A laminate having an adhesive layer comprising the adhesive composition according to any one of claims 1 to 6.
  9. 請求項8に記載の積層体を構成要素として含むプリント配線板。
     

     
    A printed wiring board comprising the laminate according to claim 8 as a component.


PCT/JP2022/011089 2021-03-16 2022-03-11 Adhesive composition, and adhesive sheet, laminate and printed circuit board containing this WO2022196585A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022529965A JP7120498B1 (en) 2021-03-16 2022-03-11 Adhesive composition, and adhesive sheet, laminate and printed wiring board containing same
CN202280021311.9A CN116981744A (en) 2021-03-16 2022-03-11 Adhesive composition, and adhesive sheet, laminate and printed wiring board each comprising same
KR1020237034926A KR20230158031A (en) 2021-03-16 2022-03-11 Adhesive composition, adhesive sheet containing the same, laminate, and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-042373 2021-03-16
JP2021042373 2021-03-16

Publications (1)

Publication Number Publication Date
WO2022196585A1 true WO2022196585A1 (en) 2022-09-22

Family

ID=83320666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011089 WO2022196585A1 (en) 2021-03-16 2022-03-11 Adhesive composition, and adhesive sheet, laminate and printed circuit board containing this

Country Status (2)

Country Link
TW (1) TW202248392A (en)
WO (1) WO2022196585A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011458A (en) * 2009-07-02 2011-01-20 Toyobo Co Ltd Copper-clad laminate having curable adhesive layer
WO2011125778A1 (en) * 2010-04-01 2011-10-13 日立化成工業株式会社 Adhesive composition, bonding sheet, and semiconductor device
JP2017047686A (en) * 2015-09-03 2017-03-09 株式会社プライマテック Method for manufacturing flexible copper-clad laminated sheet and flexible copper-clad laminated sheet
JP2017161837A (en) * 2016-03-11 2017-09-14 日立化成株式会社 Photosensitive adhesive composition, method for producing semiconductor device, and semiconductor device
WO2020080391A1 (en) * 2018-10-17 2020-04-23 ナミックス株式会社 Resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011458A (en) * 2009-07-02 2011-01-20 Toyobo Co Ltd Copper-clad laminate having curable adhesive layer
WO2011125778A1 (en) * 2010-04-01 2011-10-13 日立化成工業株式会社 Adhesive composition, bonding sheet, and semiconductor device
JP2017047686A (en) * 2015-09-03 2017-03-09 株式会社プライマテック Method for manufacturing flexible copper-clad laminated sheet and flexible copper-clad laminated sheet
JP2017161837A (en) * 2016-03-11 2017-09-14 日立化成株式会社 Photosensitive adhesive composition, method for producing semiconductor device, and semiconductor device
WO2020080391A1 (en) * 2018-10-17 2020-04-23 ナミックス株式会社 Resin composition

Also Published As

Publication number Publication date
TW202248392A (en) 2022-12-16

Similar Documents

Publication Publication Date Title
JP7120498B1 (en) Adhesive composition, and adhesive sheet, laminate and printed wiring board containing same
JP6941308B2 (en) Low Dielectric Adhesive Composition
JP6645431B2 (en) Low dielectric adhesive composition
JP7024923B1 (en) Polyester, film and adhesive compositions, as well as adhesive sheets, laminates and printed wiring boards
JP6981583B1 (en) Adhesive compositions and adhesive sheets, laminates and printed wiring boards
JP6981581B1 (en) Adhesive compositions, as well as adhesive sheets, laminates and printed wiring boards
JP7405298B2 (en) Polyester, film and adhesive compositions, as well as adhesive sheets, laminates and printed wiring boards
JP7120497B1 (en) Adhesive composition, and adhesive sheet, laminate and printed wiring board containing same
WO2022196585A1 (en) Adhesive composition, and adhesive sheet, laminate and printed circuit board containing this
JP7127757B1 (en) Adhesive composition, and adhesive sheet, laminate and printed wiring board containing same
JP7318838B2 (en) Adhesive composition, adhesive sheet, laminate and printed wiring board
WO2023167080A1 (en) Adhesive agent composition, adhesive sheet containing same, layered body, and printed circuit board
WO2024090291A1 (en) Adhesive composition, and adhesive sheet, layered body and printed circuit board containing same
KR20240155183A (en) Adhesive composition, and adhesive sheet, laminate and printed wiring board containing the same
WO2022196586A1 (en) Adhesive composition, and bonding sheet, multilayer body and printed wiring board each containing same
JP2023146985A (en) Thermoplastic polyester composition, adhesive, resin film, laminate, coverlay film, copper foil with resin, metal clad laminate and circuit board
JP2024137840A (en) Adhesive composition, film and laminate

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022529965

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22771333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280021311.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237034926

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237034926

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22771333

Country of ref document: EP

Kind code of ref document: A1