WO2024090234A1 - Method for recovering superabsorbent polymer from superabsorbent-polymer-containing constituent materials constituting used hygiene products, and method for producing recycled superabsorbent polymer using recovered superabsorbent polymer - Google Patents
Method for recovering superabsorbent polymer from superabsorbent-polymer-containing constituent materials constituting used hygiene products, and method for producing recycled superabsorbent polymer using recovered superabsorbent polymer Download PDFInfo
- Publication number
- WO2024090234A1 WO2024090234A1 PCT/JP2023/037136 JP2023037136W WO2024090234A1 WO 2024090234 A1 WO2024090234 A1 WO 2024090234A1 JP 2023037136 W JP2023037136 W JP 2023037136W WO 2024090234 A1 WO2024090234 A1 WO 2024090234A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- superabsorbent polymer
- sieve
- superabsorbent
- polymer
- constituent materials
- Prior art date
Links
- 229920000247 superabsorbent polymer Polymers 0.000 title claims abstract description 425
- 239000000463 material Substances 0.000 title claims abstract description 218
- 239000000470 constituent Substances 0.000 title claims abstract description 191
- 238000000034 method Methods 0.000 title claims abstract description 154
- 238000004519 manufacturing process Methods 0.000 title claims description 19
- 238000000926 separation method Methods 0.000 claims abstract description 142
- 238000002360 preparation method Methods 0.000 claims abstract description 24
- 230000018044 dehydration Effects 0.000 claims description 110
- 238000006297 dehydration reaction Methods 0.000 claims description 110
- 239000007788 liquid Substances 0.000 claims description 109
- 239000007864 aqueous solution Substances 0.000 claims description 95
- 239000000835 fiber Substances 0.000 claims description 56
- 239000002250 absorbent Substances 0.000 claims description 49
- 230000002745 absorbent Effects 0.000 claims description 48
- 229910021645 metal ion Inorganic materials 0.000 claims description 48
- 230000002378 acidificating effect Effects 0.000 claims description 43
- 238000005119 centrifugation Methods 0.000 claims description 36
- 230000002779 inactivation Effects 0.000 claims description 33
- 230000000415 inactivating effect Effects 0.000 claims description 27
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 23
- 230000007420 reactivation Effects 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 10
- 238000011084 recovery Methods 0.000 abstract description 27
- 230000008569 process Effects 0.000 description 50
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 39
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 35
- 239000007800 oxidant agent Substances 0.000 description 32
- 239000004583 superabsorbent polymers (SAPs) Substances 0.000 description 23
- 238000007873 sieving Methods 0.000 description 21
- 239000002253 acid Substances 0.000 description 20
- 238000010790 dilution Methods 0.000 description 18
- 239000012895 dilution Substances 0.000 description 18
- 239000000428 dust Substances 0.000 description 18
- 239000004745 nonwoven fabric Substances 0.000 description 17
- 238000005406 washing Methods 0.000 description 16
- -1 i.e. Polymers 0.000 description 14
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 241000894006 Bacteria Species 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000000853 adhesive Substances 0.000 description 6
- 230000001070 adhesive effect Effects 0.000 description 6
- 238000003113 dilution method Methods 0.000 description 6
- 239000008187 granular material Substances 0.000 description 6
- 150000007524 organic acids Chemical class 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- 239000012530 fluid Substances 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 3
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 3
- 239000001110 calcium chloride Substances 0.000 description 3
- 229910001628 calcium chloride Inorganic materials 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 235000015165 citric acid Nutrition 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000007522 mineralic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 229920003002 synthetic resin Polymers 0.000 description 3
- 239000000057 synthetic resin Substances 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 229910001428 transition metal ion Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 229920001131 Pulp (paper) Polymers 0.000 description 2
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000010808 liquid waste Substances 0.000 description 2
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- YNVZDODIHZTHOZ-UHFFFAOYSA-K 2-hydroxypropanoate;iron(3+) Chemical compound [Fe+3].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O YNVZDODIHZTHOZ-UHFFFAOYSA-K 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- JJLJMEJHUUYSSY-UHFFFAOYSA-L Copper hydroxide Chemical compound [OH-].[OH-].[Cu+2] JJLJMEJHUUYSSY-UHFFFAOYSA-L 0.000 description 1
- 239000005750 Copper hydroxide Substances 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 229910001422 barium ion Inorganic materials 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- FACXGONDLDSNOE-UHFFFAOYSA-N buta-1,3-diene;styrene Chemical compound C=CC=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 FACXGONDLDSNOE-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 150000004697 chelate complex Chemical class 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- 229940011182 cobalt acetate Drugs 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 1
- 229910001429 cobalt ion Inorganic materials 0.000 description 1
- 229910001981 cobalt nitrate Inorganic materials 0.000 description 1
- 229910000428 cobalt oxide Inorganic materials 0.000 description 1
- 229910000152 cobalt phosphate Inorganic materials 0.000 description 1
- 229910000361 cobalt sulfate Inorganic materials 0.000 description 1
- 229940044175 cobalt sulfate Drugs 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- ZBDSFTZNNQNSQM-UHFFFAOYSA-H cobalt(2+);diphosphate Chemical compound [Co+2].[Co+2].[Co+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O ZBDSFTZNNQNSQM-UHFFFAOYSA-H 0.000 description 1
- AMFIJXSMYBKJQV-UHFFFAOYSA-L cobalt(2+);octadecanoate Chemical compound [Co+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O AMFIJXSMYBKJQV-UHFFFAOYSA-L 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- ASKVAEGIVYSGNY-UHFFFAOYSA-L cobalt(ii) hydroxide Chemical compound [OH-].[OH-].[Co+2] ASKVAEGIVYSGNY-UHFFFAOYSA-L 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 229910001956 copper hydroxide Inorganic materials 0.000 description 1
- 229910001431 copper ion Inorganic materials 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- 229910000398 iron phosphate Inorganic materials 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical compound [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- BFDHFSHZJLFAMC-UHFFFAOYSA-L nickel(ii) hydroxide Chemical compound [OH-].[OH-].[Ni+2] BFDHFSHZJLFAMC-UHFFFAOYSA-L 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000019645 odor Nutrition 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 229910001427 strontium ion Inorganic materials 0.000 description 1
- 229920001935 styrene-ethylene-butadiene-styrene Polymers 0.000 description 1
- 229920003047 styrene-styrene-butadiene-styrene Polymers 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
- B09B3/70—Chemical treatment, e.g. pH adjustment or oxidation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B17/00—Recovery of plastics or other constituents of waste material containing plastics
- B29B17/02—Separating plastics from other materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B2101/00—Type of solid waste
- B09B2101/65—Medical waste
- B09B2101/67—Diapers or nappies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Definitions
- the present invention relates to a method for recovering a superabsorbent polymer from a constituent material containing the superabsorbent polymer that constitutes a used sanitary product, and a method for producing a recycled superabsorbent polymer using the recovered superabsorbent polymer.
- Patent Document 1 discloses a method for treating used sanitary products, which includes at least a step of disintegrating the sanitary products and dispersing them in water, and a step of separating and recovering the fibers and SAP contained in the sanitary products, and is characterized in that a crosslinking agent and an acidic substance are added in the step of disintegrating the sanitary products and dispersing them in water.
- Patent Document 1 first, the sanitary product is disintegrated and dispersed in water by putting the raw material, used disposable diapers, into a pulper and dispersing them in water. Then, in the process of separating and recovering the fibers and SAP contained in the disposable diapers, the diapers are processed using a screen and a cleaner, and the SAP portion is recovered first.
- the screen is a method in which a fluid (liquid, gas) containing the disintegrated constituent materials of sanitary products is supplied, and the fluid is separated into rejects and accepts using a round-hole screen or a slit screen.
- the cleaner is a method in which a fluid (liquid, gas) containing the disintegrated constituent materials of sanitary products is supplied, and the fluid is separated into materials with different specific gravities using centrifugation.
- screens and cleaners can separate and recover superabsorbent polymers from a mixture of disaggregated sanitary product constituent materials (including SAP, i.e., superabsorbent polymers), it is not easy to increase the recovery rate and purity.
- the object of the present invention is to provide a method for recovering superabsorbent polymers from constituent materials that contain superabsorbent polymers and that constitute used sanitary products (hereinafter also simply referred to as a "method for recovering superabsorbent polymers") that improves the recovery rate and purity, and a method for producing recycled superabsorbent polymers using the recovered superabsorbent polymers (hereinafter also simply referred to as a "method for producing recycled superabsorbent polymers").
- One aspect of the present invention is a method for recovering a superabsorbent polymer from a constituent material that contains the superabsorbent polymer and that constitutes a used sanitary product, the method comprising a preparation step of preparing a wet aggregate that contains the constituent material that contains the inactivated superabsorbent polymer, and a separation step of vibrating the aggregate to separate the superabsorbent polymer from the constituent material.
- Another aspect of the present invention is a method for producing a recycled superabsorbent polymer, the method comprising a reactivation step of reactivating the superabsorbent polymer obtained by the above-mentioned method for recovering a superabsorbent polymer from a constituent material containing a superabsorbent polymer that constitutes a used sanitary product, by contacting the superabsorbent polymer with an alkali metal ion source capable of supplying alkali metal ions.
- the present invention makes it possible to provide a method for recovering superabsorbent polymers from constituent materials that contain superabsorbent polymers and that constitute used sanitary products, a method for improving the recovery rate and purity, and a method for producing recycled superabsorbent polymers using the recovered superabsorbent polymers.
- FIG. 1 is a flow chart showing an example of a method for recovering a superabsorbent polymer according to an embodiment and a method for producing a recycled superabsorbent polymer.
- FIG. 2 is a flow diagram showing an example of an inactivation step according to an embodiment.
- FIG. 1 is a block diagram showing an example of the configuration of a system used in a method for recovering a superabsorbent polymer and a method for producing a recycled superabsorbent polymer according to an embodiment.
- 10 is a flowchart showing a modified example of the first dehydration step according to the embodiment.
- FIG. 13 is a block diagram showing a modified example of a first dehydration device used in the first dehydration step according to the embodiment.
- a method for recovering a superabsorbent polymer from a constituent material containing the superabsorbent polymer that constitutes a used sanitary product comprising: a preparation step of preparing a wet agglomerate containing the constituent material containing the inactivated superabsorbent polymer; and a separation step of vibrating the agglomerate to separate the superabsorbent polymer from the constituent material.
- the superabsorbent polymer is inactivated (dehydrated) and is in the form of a granule with a small particle size, so that its shape is significantly different from that of the other constituent materials.
- the aggregate containing the constituent materials containing the superabsorbent polymer is in a wet state, and therefore moisture is present between the constituent materials. Therefore, the superabsorbent polymer is in a state where it has almost no hydrogen bonds with the other constituent materials. By applying vibration to the aggregate in such a state, the superabsorbent polymer, which has a significantly different (smaller) shape from the other constituent materials and has no hydrogen bonds, can be easily separated from the other constituent materials and separated.
- At least the superabsorbent polymer and the other constituent materials can be substantially separated.
- the superabsorbent polymer has a shape that is significantly different (smaller) from the other constituent materials, and is in a state in which it has almost no hydrogen bonds. Therefore, when the superabsorbent polymer is sieved, the vibration of the sieve makes it easier to separate the superabsorbent polymer from the other constituent materials. In other words, the superabsorbent polymer and the other constituent materials can be substantially separated. By creating such a state on the sieve, the separated superabsorbent polymer can be more easily sieved out from the other constituent materials. This makes it possible to selectively extract the superabsorbent polymer from the constituent materials, and improve the recovery rate and purity of the superabsorbent polymer. In this case, for example, the other constituent materials such as pulp fibers and sheet members remain on the sieve and are recovered, and the superabsorbent polymer falls below the sieve and is recovered.
- the preparation step includes a solid-liquid separation step in which an aqueous solution containing constituent materials including an inactivated superabsorbent polymer is subjected to solid-liquid separation to obtain a solid aggregate.
- the aggregate (solid) is formed from the constituent materials and can retain moisture. Therefore, the amount of liquid (moisture) in the aggregate can be kept to an appropriate amount to create an appropriately moist state. This prevents the superabsorbent polymer from being substantially separated from the other constituent materials, which would otherwise occur if the amount of liquid (moisture) in the aggregate is too much and vibrations are damped, or if the amount is too little and hydrogen bonds between the constituent materials are too strong, making it difficult to separate the superabsorbent polymer.
- This method includes a centrifugation step for centrifuging an aqueous solution containing the constituent materials as a solid-liquid separation step.
- centrifugation it is relatively easy to control the force applied to the constituent materials, making it easy to prevent the superabsorbent polymer from being crushed and to make the moisture content (moisture content) of the aggregates within the desired numerical range. This makes it possible to keep the aggregates in an appropriately moist state while minimizing damage to the superabsorbent polymer.
- the moisture content of the superabsorbent polymer after the centrifugation process is 80% by mass or less, so the superabsorbent polymer is in the form of granules with a small particle size. Also, considering that the moisture content of the inactivated superabsorbent polymer hardly changes before and after the centrifugation process, since the moisture content of the superabsorbent polymer after the centrifugation process is 80% by mass or less, it can be said that the moisture content of the superabsorbent polymer before the centrifugation process is also roughly 80% by mass or less.
- the superabsorbent polymer can be made less likely to be damaged during solid-liquid separation (centrifugation). This makes it easier to recover the superabsorbent polymer in the separation process.
- a sieving device having a sieve for the sieving separation process is placed under the centrifuge device that performs the centrifugation in the centrifugation process. Therefore, the aggregates after the centrifugation process can be immediately sieved, and the sieving separation process can be performed while suppressing fluctuations in the state of the aggregates after centrifugation (the state of the superabsorbent polymer and the moisture content of the aggregates). This makes it easier to recover the superabsorbent polymer.
- the superabsorbent polymer is recovered from the liquid obtained in the solid-liquid separation process using a screen. This makes it possible to improve the recovery rate of the superabsorbent polymer.
- composition 8 The method according to any one of aspects 1 to 7, wherein the preparation step includes an inactivation step of inactivating the superabsorbent polymer, and the inactivation step includes a dehydration step of dehydrating the superabsorbent polymer in the constituent material by contacting the constituent material with a polyvalent metal ion source capable of supplying polyvalent metal ions.
- the preparation step includes an inactivation step in which the superabsorbent polymer is inactivated, and the inactivation step includes a dehydration step in which the superabsorbent polymer in the constituent material is dehydrated by contacting the constituent material with a polyvalent metal ion source capable of supplying polyvalent metal ions.
- a polyvalent metal ion source capable of supplying polyvalent metal ions.
- the inactivation step further includes a pre-dehydration step in which the constituent material is immersed in an acidic aqueous solution prior to the dehydration step to pre-dehydrate the superabsorbent polymer in the constituent material.
- a pre-dehydration step in which the constituent material is immersed in an acidic aqueous solution prior to the dehydration step to pre-dehydrate the superabsorbent polymer in the constituent material.
- the dehydration rate of the superabsorbent polymer obtained in the inactivation step can be made higher (the moisture content can be made lower).
- the vibration of the sieve includes not only vertical vibration, i.e., vibration perpendicular to the sieve surface, but also horizontal vibration, i.e., vibration in the in-plane direction parallel to the sieve surface. Therefore, the agglomerates can be shaken not only in a direction perpendicular to the sieve surface, but also in a direction parallel to it. This makes it easier to separate the superabsorbent polymer from the other constituent materials, and makes it easier to make the superabsorbent polymer and the other constituent materials substantially disintegrate. By creating such a state on the sieve, the separated superabsorbent polymer can be more easily sieved away from the other constituent materials.
- the sieve comprises a first sieve portion having meshes through which the superabsorbent polymer can pass, and a second sieve portion located below the first sieve portion and having finer meshes than the first sieve portion and through which the superabsorbent polymer can pass, and the sieving step includes a step of passing the agglomerates through a vibrating sieve to sieve the superabsorbent polymer in two stages, the first sieve portion and the second sieve portion.
- the sieve has a first sieve portion at the top with meshes through which the superabsorbent polymer can pass, and a second sieve portion at the bottom with meshes finer than the first sieve portion and through which the superabsorbent polymer can pass, and in the sieving process, the superabsorbent polymer is sieved in two stages through the first sieve portion and the second sieve portion. This makes it possible to further increase the purity of the superabsorbent polymer that is recovered.
- the superabsorbent polymer has a shape significantly different from that of the pulp fibers and is in a state in which there are almost no hydrogen bonds. Therefore, when the superabsorbent polymer is sieved, the vibration of the sieve makes it easier to separate the superabsorbent polymer from the pulp fibers, and the separated superabsorbent polymer can be selectively removed from among the constituent materials. This makes it easier to sieve the superabsorbent polymer from the other constituent materials, and improves the recovery rate and purity of the superabsorbent polymer. In this case, for example, the pulp fibers and sheet members remain on the sieve and are collected, and the superabsorbent polymer falls below the sieve and is collected.
- the superabsorbent polymer obtained in the separation process is brought into contact with an alkali metal ion source capable of supplying alkali metal ions, thereby reactivating the superabsorbent polymer obtained in the separation process so that it can be used as a water-absorbing material.
- a method for producing a recycled superabsorbent polymer comprising a reactivation step of contacting the superabsorbent polymer obtained by the method for recovering a superabsorbent polymer from a constituent material containing the superabsorbent polymer constituting a used sanitary product according to any one of aspects 1 to 12 with an alkali metal ion source capable of supplying alkali metal ions, thereby reactivating the superabsorbent polymer.
- the superabsorbent polymer obtained by the method for recovering superabsorbent polymer from constituent materials containing superabsorbent polymer that constitute used sanitary products is reactivated by contacting it with an alkali metal ion source capable of supplying alkali metal ions, and it is possible to produce a recycled superabsorbent polymer that can be used as a water-absorbing material using the recovered superabsorbent polymer as a raw material.
- the superabsorbent polymer with improved recovery rate and purity is reactivated, and the recovery rate and purity of the recycled superabsorbent polymer can also be improved.
- a sanitary product refers to an article that contributes to hygiene and contains a superabsorbent polymer.
- a used sanitary product e.g., absorbent article
- a sanitary product refers to a sanitary product that has been used by a user and that has absorbed and retained liquids (e.g., excrement) released from the user, and includes sanitary products that have been used but do not absorb or retain liquids, and unused but discarded products.
- a used superabsorbent polymer refers to a superabsorbent polymer that was contained in a used sanitary product.
- an absorbent article will be described as an example of a sanitary product.
- absorbent articles include paper diapers, urine pads, sanitary napkins, bed sheets, and pet sheets, and contain a superabsorbent polymer and may further contain pulp fibers.
- the absorbent article includes a top sheet, a back sheet, and an absorbent body that is disposed between the top sheet and the back sheet and contains a superabsorbent polymer.
- the absorbent body further contains pulp fibers.
- the absorbent article includes, as its constituent materials, a top sheet, a back sheet, and an absorbent body that contains a superabsorbent polymer and pulp fibers.
- An example of the size of the absorbent article is a length of about 15 to 100 cm and a width of 5 to 100 cm.
- the absorbent article may further include, as its constituent materials, other members that are included in general absorbent articles, such as a diffusion sheet, a leak-proof wall, a side sheet, an exterior sheet, and a waistband.
- the constituent material of the surface sheet may be, for example, a liquid-permeable nonwoven fabric, a synthetic resin film having liquid-permeable holes, or a composite sheet of these.
- the constituent material of the back sheet or the exterior sheet may be, for example, a liquid-impermeable nonwoven fabric, a liquid-impermeable synthetic resin film, or a composite sheet of these.
- the constituent material of the diffusion sheet may be, for example, a liquid-permeable nonwoven fabric.
- the constituent material of the leak-proof wall, side sheet, or waistband may be, for example, a liquid-impermeable nonwoven fabric, and the waistband or the leak-proof wall may include an elastic material such as rubber.
- the material of the nonwoven fabric or synthetic resin film there is no particular restriction on the material of the nonwoven fabric or synthetic resin film as long as it can be used as an absorbent article, and examples of the material include olefin-based resins such as polyethylene and polypropylene, polyamide-based resins such as 6-nylon and 6,6-nylon, and polyester-based resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Natural fibers such as cotton and rayon may be used as the material of the nonwoven fabric.
- PET polyethylene terephthalate
- PBT polybutylene terephthalate
- Natural fibers such as cotton and rayon may be used as the material of the nonwoven fabric.
- an absorbent article in which the constituent material of the back sheet is a film and the constituent material of the surface sheet is a nonwoven fabric will be described as an example.
- pulp fibers and superabsorbent polymers in the absorbent there are no particular limitations on the pulp fibers as long as they can be used as absorbent articles, and examples include cellulosic fibers.
- cellulosic fibers include wood pulp, crosslinked pulp, non-wood pulp, regenerated cellulose, and semi-synthetic cellulose.
- the size of the pulp fibers includes an average fiber major axis of several tens of ⁇ m, preferably 20 to 40 ⁇ m, and an average fiber length of several mm, preferably 2 to 5 mm.
- the superabsorbent polymer (SAP) as long as it can be used as an absorbent material in absorbent articles, but examples include polyacrylate-based, polysulfonate-based, and maleic anhydride-based absorbent polymers.
- the size of the superabsorbent polymer (when dry) can be, for example, an average particle size of several hundred ⁇ m, with 200 to 500 ⁇ m being preferred.
- the absorbent may be formed of a liquid-permeable sheet and may include an arrap that encases the absorbent material.
- a part or all of the absorbent, and therefore at least a part or all of the superabsorbent polymer often absorbs liquid excrement (e.g. urine). In such cases, the superabsorbent polymer that has absorbed the liquid excrement swells to a size of several tens to several hundreds times its original size.
- One side and the other side of the absorbent are respectively bonded to the top sheet and the back sheet via an adhesive.
- the portion (peripheral portion) of the top sheet that extends outwardly from the absorbent so as to surround the absorbent is bonded to the portion (peripheral portion) of the back sheet that extends outwardly from the absorbent so as to surround the absorbent via an adhesive.
- the absorbent is enclosed inside the bond between the top sheet and the back sheet.
- the adhesive include hot melt adhesives.
- hot melt adhesives include pressure-sensitive adhesives or heat-sensitive adhesives that are mainly rubber-based, such as styrene-ethylene-butadiene-styrene, styrene-butadiene-styrene, and styrene-isoprene-styrene, or mainly olefin-based, such as polyethylene.
- FIG. 1 is a flow diagram showing an example of a method for recovering superabsorbent polymers according to an embodiment, and a method for producing recycled superabsorbent polymers.
- FIG. 2 is a flow diagram showing an example of an inactivation step in the above method according to an embodiment.
- FIG. 3 is a block diagram showing an example of the configuration of a system used in the method for recovering superabsorbent polymers according to an embodiment, and a method for producing recycled superabsorbent polymers.
- the method for recovering superabsorbent polymer includes a preparation step S30 and a separation step S40, and may further include a reactivation step S50.
- the system 20 used in the method for recovering superabsorbent polymer includes a preparation device 30 and a separation device 40, and may further include a reactivation device 50.
- the method for producing recycled superabsorbent polymer includes a reactivation step S50, and may further include a preparation step S30 and a separation step S40.
- the system 20 used in the method for producing recycled superabsorbent polymer includes a reactivation device 50, and may further include a preparation device 30 and a separation device 40. Note that each device may be a combination of multiple devices. Each step will be described in detail below.
- the preparation step S30 is performed by the preparation device 30.
- the preparation step S30 is a step of preparing a wet aggregate containing a constituent material including an inactivated superabsorbent polymer.
- the preparation device 30 is a device (including a combination of multiple devices) that can provide a wet aggregate containing a constituent material including an inactivated superabsorbent polymer.
- Inactivated superabsorbent polymers are superabsorbent polymers whose absorbency has been reduced. Such superabsorbent polymers are in a state where it is difficult for them to absorb moisture internally, so a superabsorbent polymer that has absorbed moisture (e.g. liquid excrement) will expel the moisture (dehydrate) from its interior by inactivation, and will change from a swollen state to a roughly granular state.
- moisture e.g. liquid excrement
- the inactivation method is not particularly limited, but includes a method of immersing the superabsorbent polymer or a constituent material containing the superabsorbent polymer in an aqueous solution containing an inactivating agent (inactivating aqueous solution).
- an inactivating agent include acids such as inorganic acids and organic acids, and polyvalent metal ion sources capable of supplying polyvalent metal ions.
- the constituent materials include at least some of the above-mentioned top sheet, back sheet, superabsorbent polymer, pulp fiber, etc., and at least superabsorbent polymer is included.
- Each constituent material (except superabsorbent polymer) forming the aggregate is almost entirely broken into small pieces by decomposing a plurality of used absorbent articles by physical impact or peeling off the adhesive parts with chemicals, etc., and/or crushing or shredding.
- the size (maximum dimension) of the small pieces is made smaller than a predetermined size.
- the predetermined size (maximum dimension) is, for example, 2 to 30 mm, preferably 3 to 20 mm, and more preferably 4 to 10 mm or less.
- the aggregate is a lump formed by at least a part of the above-mentioned constituent materials. However, the aggregate is in a state where at least the superabsorbent polymer can be separated by vibration described later, and preferably in a state where it can be separated into individual constituent materials.
- the density of the aggregate is not particularly limited as long as it can be separated by vibration, but the lower limit is 0.10 g/cm 3 , preferably 0.11 g/cm 3 , more preferably 0.12 g/cm 3 , even more preferably 0.13 g/cm 3 , and even more preferably 0.15 g/cm 3.
- the upper limit is 1.5 g/cm 3 , preferably 1.2 g/cm 3 , more preferably 1.0 g/cm 3 , and even more preferably 0.80 g/cm 3. If the density is too high, the constituent materials will adhere to each other and the aggregate will be difficult to decompose, and if the density is too low, the amount of the constituent materials will be reduced and the recovery rate will decrease.
- the aggregates are in a wet state, and the moisture content of the aggregates is not particularly limited as long as they can be separated by vibration, but the lower limit is 10% by mass, with 13% being preferred, 15% being more preferred, and 20% being even more preferred.
- the upper limit is 85% by mass, with 80% being preferred, with 75% by mass or less being more preferred, and 70% by mass or less being even more preferred.
- the method for measuring the moisture content of the aggregates is as follows. If the moisture content is too high, the vibration is attenuated and it becomes difficult to separate the individual materials, and if a sieve is used, the materials tend to stick to the sieve, which can easily cause clogging of the sieve or a decrease in the recovery rate due to sticking, and also tends to decrease production efficiency. If the moisture content is too low, the constituent materials are directly hydrogen bonded to each other, making it difficult to break down the aggregates.
- the moisture content of the aggregates was measured as follows. (1) Approximately 5 g of the aggregate is weighed out and used as a sample. (2) The above sample is placed on the sample stage of an infrared moisture meter (FD-720, manufactured by Kett Electric Laboratory). (3) Set the moisture meter to 120°C and measure the moisture content. The moisture content (mass %) is calculated by (weight before drying - weight after drying) / weight before drying x 100.
- the separation step S40 is performed by the separation device 40.
- the separation step S40 is a step in which vibration is applied to the aggregate to separate the superabsorbent polymer from the constituent materials.
- the separation device 40 There are no particular limitations on the separation device 40, so long as it is a device (including a combination of multiple devices) that can apply vibration to the aggregate and separate the superabsorbent polymer from the constituent materials.
- the vibration is applied to the aggregates through a container or sieve on which the aggregates are placed by vibrating the container or sieve.
- the direction of the vibration can be lateral vibration in a plane parallel to the placement surface (width and/or depth direction of the placement surface), vertical vibration in a direction perpendicular to the placement surface, and/or a combination of these (three-dimensional vibration).
- the frequency of the vibration there is no restriction on the frequency of the vibration as long as it can be separated, but examples of the frequency include 5 Hz (300 v.p.m) to 500 Hz (30,000 v.p.m), preferably 10 Hz (600 v.p.m) to 250 Hz (15,000 v.p.m), and more preferably 15 Hz (900 v.p.m) to 100 Hz (6,000 v.p.m).
- the vibration and the separation of the superabsorbent polymer from the remaining constituent materials may be performed simultaneously or separately.
- the agglomerates of the constituent materials may be placed in a container and vibrated to turn the agglomerates into aggregates in which the constituent materials are separated from each other and gathered together, and the aggregates may then be separated using a screen or the like, or the agglomerates may be sieved from the beginning and vibration and separation may be performed simultaneously.
- the superabsorbent polymer is inactivated (dehydrated) and is in the form of a granule with a small particle size, so that its shape is significantly different from that of the other constituent materials.
- the aggregate containing the constituent materials containing the superabsorbent polymer is in a wet state, and therefore moisture is present between the constituent materials. Therefore, the superabsorbent polymer is in a state where it has almost no hydrogen bonds with the other constituent materials. By applying vibration to the aggregate in such a state, the superabsorbent polymer, which has a significantly different (smaller) shape from the other constituent materials and has no hydrogen bonds, can be easily separated from the other constituent materials.
- At least the superabsorbent polymer and the other constituent materials can be substantially separated.
- the reactivation step S50 is carried out by a reactivation device 50.
- the reactivation step S50 reactivates the superabsorbent polymer by contacting the superabsorbent polymer obtained in the preparation step S30 and the separation step S40 (a method for recovering a superabsorbent polymer) with an alkali metal ion source capable of supplying alkali metal ions.
- the superabsorbent polymer obtained by the preparation step S30 and separation step S40 (method of recovering a superabsorbent polymer) is inactivated, and therefore has low water absorption, making it difficult to use as a polymer that absorbs moisture as is. Therefore, in the reactivation step S50, the inactivated superabsorbent polymer is reactivated by contacting it with an alkali metal ion source.
- the superabsorbent polymer When the superabsorbent polymer is brought into contact with the alkali metal ion source, it may be brought into direct contact with the alkali metal ion source, or it may be immersed in an aqueous solution containing the alkali metal ion source.
- the superabsorbent polymer obtained by the above-mentioned method for recovering a superabsorbent polymer is reactivated by contacting it with an alkali metal ion source capable of supplying alkali metal ions, and the recovered superabsorbent polymer can be used as a raw material to produce a recycled superabsorbent polymer that can be used as a water-absorbing material.
- This reactivates the superabsorbent polymer with improved recovery rate and purity, and therefore the recovery rate and purity of the recycled superabsorbent polymer can also be improved.
- the preparation process S30 includes an inactivation process S31 and a solid-liquid separation process S32.
- the inactivation step S31 is carried out by the inactivation device 31.
- the inactivation step S31 is a step for inactivating the superabsorbent polymer in the constituent material.
- the superabsorbent polymer When the superabsorbent polymer is derived from used sanitary products, it has absorbed moisture such as liquid excrement inside, but this is discharged (dehydrated) by inactivation. As a result, the superabsorbent polymer changes from a swollen state to a roughly granular state. Therefore, in the inactivation step S31, a constituent material containing an inactivated (dehydrated) superabsorbent polymer (hereinafter simply referred to as an "inactivated material”) is produced.
- the inactivation process S31 includes a first dehydration process S311, a second dehydration process S312, and a dilution process S313.
- the first dehydration process S311, the second dehydration process S312, and the dilution process S313 are respectively performed by the first dehydration device 311, the second dehydration device 312, and the dilution device 313 of the inactivation device 31.
- the first dehydration device 311, the second dehydration device 312, and the dilution device 313 may be independent devices, any two of them may be one device, or they may be one device as a whole.
- the constituent material is immersed in an aqueous solution containing an acid as an inactivating agent, i.e., an acidic aqueous solution, to inactivate and dehydrate the superabsorbent polymer in the constituent material.
- an acid as an inactivating agent i.e., an acidic aqueous solution
- the superabsorbent polymer in the constituent material is derived from used sanitary products, so the superabsorbent polymer is inactivated by immersing it in the acidic aqueous solution, and liquid waste and the like are expelled to form an inactivated superabsorbent polymer.
- the inactivation step further includes a pre-dehydration step in which the constituent material is immersed in an acidic aqueous solution prior to the dehydration step to pre-dehydrate the superabsorbent polymer in the constituent material.
- a pre-dehydration step in which the constituent material is immersed in an acidic aqueous solution prior to the dehydration step to pre-dehydrate the superabsorbent polymer in the constituent material.
- the dehydration rate of the superabsorbent polymer obtained in the inactivation step can be made higher (the moisture content can be made lower).
- the acid that is the inactivating agent is not particularly limited, and examples thereof include inorganic acids and organic acids.
- inorganic acids include sulfuric acid, hydrochloric acid, and nitric acid, but sulfuric acid is preferred from the viewpoint of not containing chlorine and from the viewpoint of cost, etc.
- the sulfuric acid concentration of the acidic aqueous solution is not particularly limited, and examples thereof include 0.1 to 0.5 mass% or less.
- examples of organic acids include carboxylic acids having multiple carboxyl groups in one molecule (examples: citric acid, tartaric acid, malic acid, succinic acid, oxalic acid), carboxylic acids having one carboxyl group in one molecule (examples: gluconic acid, pentanoic acid, butanoic acid, propionic acid, glycolic acid, acetic acid, formic acid), sulfonic acids (examples: methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid), etc.
- examples of organic acids include carboxylic acids having multiple carboxyl groups in one molecule (examples: citric acid, tartaric acid, malic acid, succinic acid, oxalic acid), carboxylic acids having one carboxyl group in one molecule (examples: gluconic acid, pentanoic acid, butanoi
- the organic acid it is preferable that the organic acid has multiple carboxyl groups, and citric acid is more preferable, from the viewpoint of easily forming a chelate complex with a divalent or higher metal (e.g., calcium) contained in excrement and not easily leaving ash in the superabsorbent polymer and pulp fibers.
- the citric acid concentration of the acidic aqueous solution is not particularly limited, but may be, for example, 0.5 to 4% by mass.
- sulfuric acid is used as the acid in the acidic aqueous solution.
- the acidic aqueous solution may be acidic, but preferably has a predetermined pH.
- the upper limit of the predetermined pH is preferably 4.5, more preferably 4.0, even more preferably 3.5, and even more preferably 3.0. If the predetermined pH is too high, the highly absorbent polymer is not sufficiently inactivated, and the water held by the highly absorbent polymer (e.g., liquid excrement) is likely to be insufficiently discharged, making it difficult to separate the highly absorbent polymer from other constituent materials.
- the lower limit of the predetermined pH is preferably 0.5, more preferably 1.0. If the predetermined pH is too low, the other constituent materials are likely to be damaged.
- pH refers to a value at 25°C. The pH can be measured using a pH meter (e.g., twin AS-711 manufactured by Horiba, Ltd.). The above-mentioned predetermined pH is measured at the end of the first dehydration step S311.
- the first dehydration device 311 that performs the first dehydration step S311 is not particularly limited in its specific configuration as long as it can immerse the superabsorbent polymer in the acidic aqueous solution.
- the first dehydration device 311 has, for example, a tank in which a constituent material containing a superabsorbent polymer can be placed and in which an acidic aqueous solution can be stored.
- the constituent material containing a superabsorbent polymer may be added after the acidic aqueous solution is stored in the tank, or the constituent material containing a superabsorbent polymer may be placed in the tank and then the acidic aqueous solution may be added.
- the constituent materials including the superabsorbent polymer are stirred in a tank containing the acidic aqueous solution for, for example, about 5 to 60 minutes to allow the reaction to proceed evenly, depending on the temperature, thereby inactivating the superabsorbent polymer.
- the temperature of the acidic aqueous solution is not particularly limited, and may be, for example, room temperature (25°C), preferably higher than room temperature, more preferably 60 to 95°C, and even more preferably 70 to 90°C.
- the acid in the acidic aqueous solution makes it easier to disinfect bacteria contained in the acidic aqueous solution that originate from excrement, etc.
- the first dehydration step S311 it is preferable to dehydrate the resulting superabsorbent polymer so that it has a moisture content of preferably 80 to 99% by mass, more preferably 80 to 97% by mass, and even more preferably 80 to 95% by mass. This makes it easier to reduce the moisture content of the superabsorbent polymer obtained in the second dehydration step S312.
- the moisture content of the superabsorbent polymer can be measured using an infrared moisture meter (FD-720: manufactured by Kett Electric Laboratory Co., Ltd.) in the same way as the moisture content of the aggregate described above.
- FD-720 manufactured by Kett Electric Laboratory Co., Ltd.
- the first dehydration step S311 may include an acid separation step in which the superabsorbent polymer in the constituent material is inactivated, dehydrated, and then the constituent material is separated from the acidic aqueous solution (solid-liquid separation using a screen or the like).
- the superabsorbent polymer may then be inactivated with a strong acid (e.g., pH 1 or so), and if the degree of inactivation is sufficient, the constituent material may be washed with water.
- a strong acid e.g., pH 1 or so
- the first washing step may further include washing the constituent material with water (hereinafter also referred to as “washing water”) several times (e.g., 2 to 10 times) the mass of the constituent material (multiple washings are also possible) and separating the constituent material from the washing water (solid-liquid separation using a screen or the like).
- washing water water
- the superabsorbent polymer can be separated from the other constituent materials in the separation step S40 if the moisture in the other constituent materials is also sufficiently removed in the solid-liquid separation step S32 or the like. In that case, the subsequent second dehydration step S312 (and dilution step S313) can be omitted.
- the first dehydration step S311 may be omitted and the second dehydration step S312 may be carried out.
- the constituent material is brought into contact with a polyvalent metal ion source capable of supplying polyvalent metal ions as an inactivating agent, thereby further inactivating and dehydrating the superabsorbent polymer in the constituent material.
- the superabsorbent polymer after the first dehydration step S311 is further brought into contact with polyvalent metal ions (e.g. calcium ions) from the polyvalent metal ion source, thereby further inactivating the polymer and allowing more liquid waste and the like to be discharged, forming a further inactivated superabsorbent polymer.
- polyvalent metal ions e.g. calcium ions
- the preparation step S30 includes an inactivation step for inactivating the superabsorbent polymer, and the inactivation step has a second dehydration step S312 for dehydrating the superabsorbent polymer in the constituent material by contacting the constituent material with a polyvalent metal ion source capable of supplying polyvalent metal ions.
- a polyvalent metal ion source for inactivation (dehydration)
- the superabsorbent polymer can be more reliably inactivated (dehydrated) to form granules having a small particle size.
- Examples of the polyvalent metal ions that are inactivating agents include alkaline earth metal ions and transition metal ions.
- alkaline earth metal ions include beryllium ions, magnesium ions, calcium ions, strontium ions, and barium ions.
- transition metal ions include iron ions, cobalt ions, nickel ions, and copper ions.
- examples of polyvalent metal ion sources capable of supplying the polyvalent metal ion include alkaline earth metal hydroxides (e.g., calcium hydroxide, magnesium hydroxide), alkaline earth metal hydroxide and acid salts (e.g., calcium chloride, calcium nitrate, magnesium chloride, magnesium nitrate), alkaline earth metal oxides (e.g., calcium oxide, magnesium oxide), etc., with calcium chloride being preferred.
- examples of the acid include the acid for the acidic aqueous solution described in the first dehydration step S311.
- examples of polyvalent metal ion sources capable of supplying the polyvalent metal ion include transition metal hydroxides (e.g., iron hydroxide, cobalt hydroxide, nickel hydroxide, copper hydroxide), transition metal hydroxide and acid salts, transition metal oxides (e.g., iron oxide, cobalt oxide, nickel oxide, copper oxide), etc.
- Examples of the acid include the acid for the acidic aqueous solution described in the first dehydration step S311.
- hydroxides and acid salts of the transition metals include inorganic acid salts or organic acid salts.
- the inorganic acid salts include iron salts such as iron chloride, iron sulfate, iron phosphate, and iron nitrate; cobalt salts such as cobalt chloride, cobalt sulfate, cobalt phosphate, and cobalt nitrate; nickel salts such as nickel chloride and nickel sulfate; and copper salts such as copper chloride and copper sulfate.
- the organic acid salts include iron lactate, cobalt acetate, cobalt stearate, nickel acetate, and copper acetate.
- the superabsorbent polymer dehydrated in the first dehydration step S311 can be directly contacted with a polyvalent metal ion source capable of supplying polyvalent metal ions to form a further inactivated (dehydrated) superabsorbent polymer.
- the superabsorbent polymer dehydrated in the first dehydration step S311 can be stirred in an aqueous solution containing a polyvalent metal ion source capable of supplying polyvalent metal ions for about 5 to 60 minutes, depending on the temperature, to form a further inactivated (dehydrated) superabsorbent polymer.
- the aqueous solution containing the polyvalent metal ion source in the second dehydration step S312 may or may not be heated.
- the temperature of the aqueous solution containing the polyvalent metal ion source is not particularly limited when it is not heated, and can be, for example, room temperature (25°C) to 40°C, or less than 60°C. When it is heated, it is preferably higher than room temperature, more preferably 60 to 100°C, even more preferably 70 to 95°C, and even more preferably 80 to 90°C.
- heating can efficiently supply polyvalent metal ions from the polyvalent metal ion source and further promote the formation of an inactivated (dehydrated) highly water-absorbent polymer.
- the superabsorbent polymer dehydrated in the first dehydration step S311 is further inactivated (dehydrated) so that the resulting superabsorbent polymer has a moisture content of preferably 50 to 80% by mass, more preferably 50 to 75% by mass, and even more preferably 50 to 70% by mass. This reduces the amount of waste remaining in the resulting superabsorbent polymer, and makes it easier to form a recycled superabsorbent polymer from the superabsorbent polymer.
- the moisture content of the superabsorbent polymer is too low, it becomes difficult for the superabsorbent polymer to react with the alkali metal ion source in the reactivation step S50, making it difficult to form a recycled superabsorbent polymer.
- the moisture content of the superabsorbent polymer is too high, it becomes difficult for the superabsorbent polymer to be separated from other constituent materials in the separation step S40.
- the second dehydration device 312 that performs the second dehydration step S312 is not particularly limited in its specific configuration as long as it can immerse the superabsorbent polymer in the polyvalent metal ions.
- the second dehydration device 312 has, for example, a tank in which a constituent material containing a superabsorbent polymer can be placed and in which a polyvalent metal ion source or an aqueous solution containing a polyvalent metal ion source can be stored.
- the constituent material containing a superabsorbent polymer may be added after the polyvalent metal ion source or the aqueous solution containing a polyvalent metal ion source is stored in the tank, or the constituent material containing a superabsorbent polymer may be placed in the tank and then the polyvalent metal ion source or the aqueous solution containing a polyvalent metal ion source may be added.
- the concentration of the polyvalent metal ion source in the aqueous solution is preferably 1.0 to 30.0% by mass, more preferably 3.0 to 25.0% by mass, and preferably 5.0 to 20.0% by mass. This makes it easier for the superabsorbent polymer obtained in the second dehydration step S312 to have the desired moisture content.
- the second dehydration step S312 may include a polyvalent metal ion separation step in which the superabsorbent polymer in the constituent material is inactivated, the constituent material is dehydrated, and then the constituent material is separated from the aqueous solution containing the polyvalent metal ions (solid-liquid separation using a screen or the like).
- the second dehydration step may further include a second washing step in which the constituent material is washed (multiple washings are also possible) with several times (e.g., 2 to 10 times) the mass of water (hereinafter also referred to as "washing water”) and the constituent material is separated from the washing water (solid-liquid separation using a screen or the like).
- the constituent material containing the inactivated superabsorbent polymer obtained in the second dehydration step S312 (or the first dehydration step S311) is diluted with water (hereinafter also referred to as "diluted water”) in an amount several times (e.g., 2 to 10 times) the mass of the constituent material. This makes solid-liquid separation easier in the subsequent solid-liquid separation step S32.
- the dilution step S313 may be omitted.
- the first washing step of the first dehydration step S311 (however, solid-liquid separation is not performed) may be substituted for the dilution step S313.
- the second washing step of the second dehydration step S312 (however, solid-liquid separation is not performed) may be substituted for the dilution step S313.
- the dilution device 313 that performs the dilution process S313 is not particularly limited in its specific configuration, as long as it can immerse the constituent materials in water several times its mass.
- the dilution device 313 has, for example, a tank that can store the constituent materials and water. Note that at least two of the first dehydration device 311, the second dehydration device 312, and the dilution device 313 may have the same tank.
- the dilution step S313 may also include an oxidizing agent treatment step in which the constituent material containing the superabsorbent polymer is treated with an oxidizing agent.
- the oxidizing agent is not particularly limited as long as it can remove impurities (e.g., odorous substances, colored substances, and germs) adhering to the surface of the superabsorbent polymer in the constituent material, and examples of the oxidizing agent include ozone and hydrogen peroxide.
- the concentration of the oxidizing agent in the aqueous solution may be, for example, 0.3 to 2 ppm by mass.
- the constituent material containing the inactivated superabsorbent polymer is contacted (immersed) for a predetermined time with an aqueous solution of the oxidizing agent, i.e., ozone water containing a predetermined concentration of ozone, to remove impurities on the surface of the superabsorbent polymer.
- an aqueous solution of the oxidizing agent i.e., ozone water containing a predetermined concentration of ozone
- the ozone concentration in the ozone water is not particularly limited as long as it is a concentration that can remove bacteria and other organic matter adhering to the surface of the superabsorbent polymer, but is preferably 0.3 to 2 mass ppm, more preferably 0.5 to 1.5 mass ppm. If the concentration is too low, it becomes difficult to remove bacteria, and if the concentration is too high, the superabsorbent polymer may begin to decompose.
- the contact time between the ozone water and the superabsorbent polymer is not particularly limited as long as it is a time that can remove bacteria and other organic matter adhering to the surface of the superabsorbent polymer, but it is shorter if the ozone concentration in the ozone water is high and longer if the ozone concentration is low.
- the contact time is preferably 0.3 seconds to 15 minutes, more preferably 3 seconds to 10 minutes.
- the product of the ozone concentration (mass ppm) and the contact time (minutes) in the ozone water (hereinafter also referred to as the "CT value”) is preferably 0.01 to 20 ppm/minute, more preferably 0.08 to 10 ppm/minute.
- ozone generators that supply ozone into water include the ED-OWX-2 Ozone Water Exposure Tester manufactured by Ecodesign Co., Ltd. and the OS-25V Ozone Generator manufactured by Mitsubishi Electric Corporation.
- the ozone water containing the superabsorbent polymer may be stirred in a tank to ensure that the reaction proceeds evenly.
- the temperature of the ozone water in the oxidizing agent treatment step may be room temperature (25°C), for example, and is preferably 10 to 40°C. If the ozone water is too hot, the ozone will easily escape as a gas and become inactivated, and if it is too cold, the ozone treatment time will tend to be longer. This makes it easier to remove bacteria and organic matter attached to the surface of the superabsorbent polymer with the ozone in the ozone water.
- the oxidant treatment device that performs the oxidant treatment process is not particularly limited in its specific configuration, as long as it can bring the inactivated superabsorbent polymer into contact (or immerse) the ozone water without destroying its shape.
- An example of an oxidant treatment device is a twin-shaft screw pump (BQ type: manufactured by Futora Metal Industries Co., Ltd.).
- the twin-shaft screw pump is a positive displacement self-priming pump.
- the twin-shaft screw pump comprises a casing and twin screws that are arranged in a chamber within the casing and extend parallel to each other.
- the ozone water containing the superabsorbent polymer is supplied into the chamber, reaches the twin screws from the radial direction, and is then pushed out in the axial direction by the rotation of the twin screws and discharged.
- the solid-liquid separation process S32 is performed by the solid-liquid separation device 32.
- solid-liquid separation is performed on an aqueous solution containing a constituent material containing an inactivated superabsorbent polymer to obtain a solid aggregate and a liquid.
- the constituent material containing an inactivated superabsorbent polymer is a constituent material containing a superabsorbent polymer inactivated in the first dehydration process S311 and/or the second dehydration process S312.
- Examples of the aqueous solution include the washing water of the first dehydration process S311 (e.g., washing water from the second dehydration process onward, when the second dehydration process S312 is not performed), the washing water of the second dehydration process S312 (e.g., washing water from the second dehydration process onward), and the dilution water of the dilution process S313.
- the washing water of the first dehydration process S311 e.g., washing water from the second dehydration process onward, when the second dehydration process S312 is not performed
- the washing water of the second dehydration process S312 e.g., washing water from the second dehydration process onward
- the preparation step S30 includes a solid-liquid separation step S32 in which an aqueous solution containing constituent materials including an inactivated superabsorbent polymer is subjected to solid-liquid separation to obtain a solid aggregate.
- the aggregate (solid) is formed from the constituent materials and can retain moisture. Therefore, the amount of liquid (moisture) in the aggregate can be kept to an appropriate amount to create an appropriate moist state. This prevents the superabsorbent polymer from being substantially separated from the other constituent materials due to the amount of moisture in the aggregate being too much, which would dampen vibrations, or the amount being too little, which would cause the hydrogen bonds between the constituent materials to be too strong, making it difficult to separate the superabsorbent polymer.
- the solid-liquid separation method in the solid-liquid separation step S32 is not particularly limited as long as it is a method that can obtain, as a solid, an aggregate of constituent materials containing an inactivated highly absorbent polymer, and as a liquid, an aqueous solution.
- Examples of devices that can realize such a solid-liquid separation method include a centrifugal separator, a vacuum dehydrator, a multiple disk dehydrator, a screw press, and a rotary drum screen.
- the solid-liquid separation method in the solid-liquid separation step S32 can be a solid-liquid separation method performed by these devices.
- the solid-liquid separation step S32 includes a centrifugation step in which an aqueous solution containing the constituent materials is centrifuged as a solid-liquid separation to obtain an aggregate and liquid.
- the moisture content of the separated aggregate can be adjusted by the rotation speed.
- This method includes a centrifugation step for centrifuging an aqueous solution containing the constituent materials as a solid-liquid separation step.
- centrifugation it is relatively easy to control the force applied to the constituent materials, so it is easy to prevent the superabsorbent polymer from being crushed, and it is also easy to adjust the moisture content (moisture content) of the aggregates to a desired range. This makes it possible to keep the aggregates in an appropriately moist state while minimizing damage to the superabsorbent polymer.
- centrifugal separation it is relatively easy to control the force applied to the constituent materials, so it is easy to adjust the density of the aggregates to a desired range.
- the moisture content of the aggregate adjusted by centrifugation is 10% by mass or more and less than 85% by mass, preferably 15% by mass or more and 80% by mass or less, more preferably 20% by mass or more and 75% by mass or less.
- the density of the aggregate adjusted by centrifugation is 0.1 g/ cm3 or more and 1.5 g/cm3 or less, preferably 0.13 g/ cm3 or more and 1.2 g/ cm3 or less, and more preferably 0.15 g/ cm3 or more and 1.0 g/ cm3 or less.
- the moisture content of the superabsorbent polymer separated in the solid-liquid separation step S32 is preferably 80% by mass or less, more preferably 75% by mass or less, and even more preferably 70% by mass or less.
- the moisture content of the superabsorbent polymer after the centrifugation process is 80% by mass or less, so the superabsorbent polymer is in the form of granules with a small particle size. Also, considering that the moisture content of the inactivated superabsorbent polymer hardly changes before and after the centrifugation process, since the moisture content of the superabsorbent polymer after the centrifugation process is 80% by mass or less, it can be said that the moisture content of the superabsorbent polymer before the centrifugation process is also roughly 80% by mass or less.
- the superabsorbent polymer can be made less likely to be damaged during solid-liquid separation (centrifugation). This makes it easier to recover the superabsorbent polymer in the separation process S40.
- the separation process S40 includes a sieving process S41.
- the sieving process S41 is a process in which the agglomerates are passed through a vibrating sieve with meshes through which the superabsorbent polymer can pass.
- the sieving process S41 is performed by a sieving device 41 (sieving device).
- a sieving device 41 There are no particular limitations on the sieving device 41, so long as it is a sieve (including a combination of multiple sieves) that can vibrate the agglomerates and separate the superabsorbent polymer from the constituent materials.
- the sieve separation device 41 vibrates the sieve to vibrate the aggregates on the sieve through the sieve.
- a Sato-type vibrating sieve machine (cassette type: manufactured by KS Links Co., Ltd.) is used as the sieve separation device 41.
- the vibration direction can be a lateral vibration in a plane parallel to the sieve surface (width direction and/or depth direction of the sieve surface), a vertical vibration in a direction perpendicular to the sieve surface, and/or a combination thereof (three-dimensional vibration).
- the sieve separation device 41 is equipped with a vibrating body that generates vibrations, an upper weight with one end attached to the upper part of the vibrating body, and a lower weight with one end attached to the lower part of the vibrating body.
- the rotation of the upper weight has the role of moving the material supplied to the center of the sieve surface in the rotational direction
- the rotation of the lower weight has the role of generating a vertical vibration of the sieve surface to move it in the outer circumferential direction.
- the sieve is vibrated by adjusting the relative position (phase difference) between the other end of the upper weight and the other end of the lower weight.
- the amplitude of the vibration is, for example, 1 to 20 mm for the lateral vibration in the in-plane direction parallel to the sieve surface (the width direction and/or depth direction of the sieve surface), preferably 1.5 to 15 mm, and more preferably 3 to 10 mm.
- the amplitude of the vertical vibration in the direction perpendicular to the sieve surface is, for example, 0.5 to 20 mm, preferably 1 to 15 mm, and more preferably 2 to 10 mm.
- the vibration frequency of the sieve is, for example, 5 Hz (300 v.p.m) to 500 Hz (60,000 v.p.m), preferably 10 Hz (600 v.p.m) to 250 Hz (15,000 v.p.m), and more preferably 15 Hz (900 v.p.m) to 100 Hz (6,000 v.p.m).
- the superabsorbent polymer has a shape that is significantly different (smaller) from the other constituent materials, and is in a state in which it has almost no hydrogen bonds. Therefore, when the superabsorbent polymer is sieved, the vibration of the sieve makes it easier to separate the superabsorbent polymer from the other constituent materials. In other words, the superabsorbent polymer and the other constituent materials can be substantially separated. By creating such a state on the sieve, the separated superabsorbent polymer can be more easily sieved from the other constituent materials. This makes it possible to selectively extract the superabsorbent polymer from the constituent materials, and improve the recovery rate and purity of the superabsorbent polymer.
- pulp fibers and sheet members (films, nonwoven fabrics, etc.) remain on the sieve and are collected, and the superabsorbent polymer falls below the sieve and is collected.
- the pulp fibers and sheet members (films, nonwoven fabrics, etc.) may be further separated from each other by another sieve.
- the vibration of the sieve includes not only vertical vibration, i.e., vibration in a direction perpendicular to the sieve surface, but also horizontal vibration, i.e., vibration in an in-plane direction parallel to the sieve surface. Therefore, the aggregates can be shaken not only in a direction perpendicular to the sieve surface, but also in a direction parallel to it. This makes it easier to separate the superabsorbent polymer from the other constituent materials, and makes it easier to bring the superabsorbent polymer and the other constituent materials into a substantially dispersed state. By creating such a state on the sieve, the separated superabsorbent polymer can be more easily sieved out from the other constituent materials.
- the size of the sieve openings there are no particular restrictions on the size of the sieve openings, so long as the superabsorbent polymer can be separated from the other constituent materials, but examples include 1 to 5 mm, with 1.3 to 4 mm being preferable, and 1.6 to 3 mm being more preferable. This allows the superabsorbent polymer to pass through the sieve more easily and the other constituent materials less likely to pass through. If the openings are too small, not only the other constituent materials but also the superabsorbent polymer will have difficulty passing through the sieve, and if they are too large, not only the superabsorbent polymer but also the other constituent materials will easily pass through.
- the sieve comprises a first sieve portion having meshes through which the superabsorbent polymer can pass, and a second sieve portion located below the first sieve portion and having finer meshes than the first sieve portion through which the superabsorbent polymer can pass.
- the sieve has two stages.
- the sieve separation step S41 includes a step of passing the agglomerates through a vibrating sieve to separate the superabsorbent polymer in two stages, the first sieve portion and the second sieve portion. This can further increase the purity of the recovered superabsorbent polymer.
- the number of stages of the sieve may be even greater, up to three or more stages.
- the size of the sieve openings of the first sieve portion can be, for example, 2.5 to 5 mm, preferably 2.8 to 4.5 mm, and more preferably 3 to 4 mm.
- the size of the sieve openings of the second sieve portion (lower side) can be, for example, 1 to 3 mm, preferably 1.2 to 2.8 mm, and more preferably 1.4 to 2.6 mm. This allows the superabsorbent polymer to be obtained that ultimately passes through the first sieve portion and the second sieve portion (below the second sieve portion) and is extremely low in contamination with other constituent materials.
- the sieve separation step S41 includes a step in which the pulp fibers move to the outside of the surface of the sieve and the superabsorbent polymer moves to the underside of the sieve, and are separated from each other.
- separation can be achieved by the operation of the sieve (the way in which it vibrates, for example, a combination of horizontal and vertical vibrations (phase difference between the upper and lower weights)).
- the superabsorbent polymer has a shape significantly different from that of the pulp fibers, and is in a state in which there are almost no hydrogen bonds. Therefore, when the superabsorbent polymer is sieved, the vibration of the sieve makes it easier to separate the superabsorbent polymer from the pulp fibers, and the separated superabsorbent polymer can be selectively removed from among the constituent materials. This makes it easier to sieve the superabsorbent polymer from the other constituent materials, and improves the recovery rate and purity of the superabsorbent polymer. In this case, for example, the pulp fibers and sheet members remain on the sieve and are collected, and the superabsorbent polymer falls below the sieve and is collected.
- a sieving device 41 (sieving device) (e.g., a Sato-type vibrating sieve machine) having a sieve for the sieving separation process S41 is placed under a centrifuge device (e.g., a Gina continuous centrifuge device) that performs the centrifugation in the centrifugation process. Therefore, the aggregates after the centrifugation process can be immediately sieved, and the sieving separation process S41 can be performed while suppressing fluctuations in the state of the aggregates after centrifugation (the state of the superabsorbent polymer and the moisture content of the aggregates). This makes it easier to recover the superabsorbent polymer.
- a centrifuge device e.g., a Gina continuous centrifuge device
- a step of recovering the superabsorbent polymer from the liquid (aqueous solution) obtained in the solid-liquid separation step S32 using a screen is further included.
- the recovered superabsorbent polymer may be supplied to the separation step S40 or returned to the inactivation step S31. This can improve the recovery rate of the superabsorbent polymer.
- the first dehydration step S311 i.e., the method for extracting constituent materials from used sanitary products and inactivating the superabsorbent polymer in the constituent materials with an acidic aqueous solution
- any method can be used.
- a method i.e., a modified example of the first dehydration step S311 (first dehydration device 311) of the inactivation step S31 (inactivation device 31) will be described with reference to Figures 4 and 5.
- FIG. 4 is a flow chart showing a modified example of the first dehydration step S311 according to the embodiment.
- This modified example includes a step of separating a constituent material A containing a superabsorbent polymer, such as a film or nonwoven fabric, and pulp fibers from a used sanitary product.
- FIG. 5 is a block diagram showing a modified example of the first dehydration device used in the first dehydration step S311 according to the embodiment.
- This modified example includes a device for separating a constituent material A containing a superabsorbent polymer, such as a film or nonwoven fabric, and pulp fibers from a used sanitary product.
- FIG. 4 is a flow chart showing a modified example of the first dehydration step S311 according to the embodiment.
- This modified example includes a step of separating a constituent material A containing a superabsorbent polymer, such as a film or nonwoven fabric, and pulp fibers from a used sanitary product.
- the modified example of the first dehydration step S311 includes an opening forming step P11 to a second separation step P17 (preferably a third separation step P18 to a fourth separation step P20), and correspondingly, as shown in FIG. 5, the modified example of the first dehydration device 311 includes a bag breaking device 11 to a second separation device 17 (preferably a third separation device 18 to a fourth separation device 20).
- a second separation step P17 preferably a third separation step P18 to a fourth separation step P20
- the modified example of the first dehydration device 311 includes a bag breaking device 11 to a second separation device 17 (preferably a third separation device 18 to a fourth separation device 20).
- used sanitary products are collected and obtained from outside for reuse (recycling).
- multiple used sanitary products particularly used absorbent articles and wet wipes used in connection therewith, are bundled together and sealed in a collection bag to prevent excrement, bacteria, and odors from leaking to the outside.
- the opening forming process P11 is carried out by the bag breaking device 11.
- the bag breaking device 11 is equipped with a solution tank that stores an inactivating aqueous solution containing an inactivating agent, and a bag breaking blade that rotates in the solution tank.
- the bag breaking device 11 forms an opening in the collection bag placed in the solution tank using the bag breaking blade in the inactivating aqueous solution (or cuts the collection bag). This produces a mixture 91 of the collection bag into which the inactivating aqueous solution has penetrated through the opening, and the inactivating aqueous solution.
- the inactivating aqueous solution inactivates the superabsorbent polymer of the used absorbent article in the collection bag.
- an acidic aqueous solution (acid-containing aqueous solution) is used as the inactivating aqueous solution.
- the crushing process P12 is performed by the crushing device 12.
- the crushing device 12 is equipped with a biaxial crusher (e.g., a biaxial rotary crusher, etc.).
- the crushing device 12 crushes the collection bags containing the used absorbent articles in the mixed liquid 91 together with the collection bags.
- a mixed liquid 92 containing crushed pieces of the collection bags containing the used absorbent articles and an acidic aqueous solution is generated.
- almost all of the superabsorbent polymer in the used absorbent articles is inactivated by the acidic aqueous solution.
- the crushed pieces are small pieces of the constituent materials containing the superabsorbent polymer, i.e., the superabsorbent polymer, pulp fibers, films/nonwoven fabrics, etc., and some or all of the collection bags.
- the size (maximum dimension) of the small pieces can be, for example, 2 to 30 mm, preferably 2 to 20 mm, and more preferably 2 to 10 mm or less.
- the opening formation process P11 and the crushing process S12 may be performed almost simultaneously.
- the superabsorbent polymer may be inactivated while the collection bag is crushed in an acidic aqueous solution.
- the first separation process P13 is carried out by the first separation device 13.
- the first separation device 13 is equipped with a pulper separator having an agitation separation tank that functions as a washing tank and a sieve tank.
- the first separation device 13 agitates the mixed liquid 92, removing waste and the like from the crushed material, while separating the pulp fibers and superabsorbent polymer, which are among the constituent materials, as well as the waste and acidic aqueous solution, from the mixed liquid 92.
- the film, nonwoven fabric, and other constituent materials, as well as the material of the collection bags are recovered.
- the hole forming process P11 and the crushing process P12 process the used absorbent article in an acidic aqueous solution to inactivate the superabsorbent polymer. Therefore, if the superabsorbent polymer is sufficiently inactivated and dehydrated at this stage, the hole forming process P11 and the crushing process P12 can be considered as the first dehydration process S311.
- the mixed liquid 92 may be subjected to solid-liquid separation, and a constituent material containing the superabsorbent polymer may be extracted from the mixed liquid and supplied to the second dehydration process S312, the dilution process S313, or the solid-liquid separation process S32.
- the crushing process P12 may crush the used absorbent articles together with the collection bag in gas (e.g., in air) rather than crushing the used absorbent articles in the inactivating aqueous solution.
- the opening forming process P11 bag breaking device 11
- the crushed material from the crushing process P12 (crushing device 12) and the inactivating aqueous solution are supplied to the first separation device 13 (first separation process P13), where the superabsorbent polymer is inactivated.
- the steps up to the first separation step P13 are carried out in an acidic aqueous solution, during which the superabsorbent polymer is inactivated. If the superabsorbent polymer is sufficiently inactivated and dehydrated at this stage, the first separation device 13 (first separation step P13) or the steps up to that point can be regarded as the first dehydration step S311. In that case, the mixed liquid 93 may be subjected to solid-liquid separation, and a constituent material containing the superabsorbent polymer may be extracted from the mixed liquid and supplied to the second dehydration step S312, the dilution step S313, or the solid-liquid separation step S32.
- the first dust removal process P14 is performed by the first dust removal device 14.
- the first dust removal device 14 is equipped with a screen separator, and the mixed liquid 93 is separated by a screen into pulp fibers, superabsorbent polymer, excrement, and other materials (foreign matter) in the acidic aqueous solution.
- a mixed liquid 94 containing pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution with a reduced amount of foreign matter is generated, and other materials are removed.
- the second dust removal process P15 is performed by the second dust removal device 15.
- the second dust removal device 15 is equipped with a screen separator, and the mixed liquid 94 is separated by a screen finer than that of the first dust removal device 14 into pulp fibers, superabsorbent polymer, excrement, and other materials (small foreign matter) in the acidic aqueous solution.
- a mixed liquid 95 containing pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution with a further reduced amount of foreign matter is generated, and other materials are further removed.
- the third dust removal process P16 is performed by the third dust removal device 16.
- the third dust removal device 16 is equipped with a cyclone separator, and separates the mixed liquid 95 into pulp fibers, superabsorbent polymer, excrement, and other materials (heavy foreign matter) in the acidic aqueous solution by centrifugation. As a result, a mixed liquid 96 containing pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution with a reduced amount of foreign matter is generated, and other materials with a high specific gravity are removed. Note that at least one of the first dust removal process P14 to the third dust removal process P16 (first dust removal device 14 to third dust removal device 16) may be omitted depending on the state of the mixed liquid 93, etc. (e.g., the amount and size of foreign matter).
- the superabsorbent polymer in each mixed liquid is inactivated (or maintained in an inactivated state) because each mixed liquid contains an acidic aqueous solution. Therefore, if the superabsorbent polymer is sufficiently inactivated and dehydrated in any of these processes, that process (or the processes up to that point) can be considered as the first dehydration process S311.
- the mixed liquid in that process may be subjected to solid-liquid separation, and a constituent material containing the superabsorbent polymer may be extracted from the mixed liquid and supplied to the second dehydration process S312, the dilution process S313, or the solid-liquid separation process S32.
- the second separation step P17 is performed by the second separation device 17.
- the second separation device 17 is equipped with a drum screen separator, and the mixed liquid 96 is separated into the superabsorbent polymer in the acidic aqueous solution and the pulp fibers by the drum screen.
- a mixed liquid 97 containing the superabsorbent polymer, excrement, and the acidic aqueous solution is generated, and the pulp fibers are removed as a mixture 98.
- the superabsorbent polymer in the mixed liquid 97 is inactivated by the acidic aqueous solution and is in a dehydrated state.
- the solid 99 is the constituent material A containing the superabsorbent polymer.
- the obtained constituent material A containing the superabsorbent polymer contains pulp fibers (pulp components) and/or films, nonwoven fabrics, etc. (plastic components) that cannot be completely separated.
- the constituent material A is supplied to the second dehydration step S312.
- the constituent material A may be supplied to the dilution step S313 or the solid-liquid separation step S32.
- the third separation step P18 is carried out by the third separator 18.
- the third separator 18 is equipped with an inclined screen, and while spraying the cleaning liquid onto the mixture 98, the screen separates the mixture 98 into a solid containing pulp fibers and a liquid containing the cleaning liquid. This produces a mixture 101 containing pulp fibers with reduced dirt and the like, and also removes dirt and the like.
- the oxidizing agent treatment process P19 is performed by the oxidizing agent treatment device 19.
- the oxidizing agent treatment device 19 includes a treatment tank that stores an oxidizing agent aqueous solution, and an oxidizing agent supply device that supplies an oxidizing agent into the treatment tank.
- the oxidizing agent treatment device 19 introduces the mixture 101 into the treatment tank from the top or bottom of the treatment tank and mixes it with the oxidizing agent aqueous solution in the treatment tank.
- the oxidizing agent supplied from the bottom of the treatment tank by the oxidizing agent supply device decomposes the superabsorbent polymer contained in the pulp fiber in the oxidizing agent aqueous solution, and solubilizes it in the oxidizing agent aqueous solution.
- the oxidizing agent is an oxidizing agent that can decompose the superabsorbent polymer, such as ozone, which is preferable because of its high sterilizing and bleaching power.
- the ozone concentration in the aqueous oxidizing agent solution is preferably 1 to 50 ppm by mass. If the concentration is too low, the superabsorbent polymer cannot be completely solubilized, and there is a risk that the superabsorbent polymer will remain in the pulp fibers, and if the concentration is too high, there is a risk that the pulp fibers will be damaged.
- the treatment time with ozone is shorter if the ozone concentration in the aqueous oxidizing agent solution is high, and longer if the ozone concentration is low, typically 5 to 120 minutes.
- the product of the ozone concentration (ppm) in the aqueous oxidizing agent solution and the treatment time (minutes) (hereinafter also referred to as the "CT value”) is preferably 100 to 6000 ppm ⁇ min. If the CT value is too small, the remaining superabsorbent polymer in the pulp fibers cannot be completely solubilized, and if the CT value is too large, there is a risk that the pulp fibers will be damaged.
- the fourth separation process P20 is carried out by the fourth separation device 20.
- the fourth separation device 20 is equipped with a screen separator, and separates the mixed liquid 102 into pulp fibers and an aqueous oxidizing agent solution using a screen. This produces recycled pulp fibers and removes the aqueous oxidizing agent solution containing decomposition products of the superabsorbent polymer.
- an aqueous solution containing a polyvalent metal ion source may be used as the inactivating aqueous solution instead of an acidic aqueous solution.
- the modified example in Figure 4 is a flow chart showing a modified example of the second dehydration step S312 according to the embodiment
- Figure 5 is a block diagram showing a modified example of the second dehydration device used in the second dehydration step S312 according to the embodiment.
- the first dehydration step S311 is omitted.
- the obtained constituent material A containing the inactivated superabsorbent polymer is supplied to the dilution step S313 or the solid-liquid separation step S32.
- the superabsorbent polymer is separated and recovered by the separation step S40, and at the same time, plastic components (e.g., film, nonwoven fabric, etc.) and/or pulp components can also be recovered.
- the aggregate obtained by the solid-liquid separation step S32 contains, in addition to the superabsorbent polymer, other substances such as film, nonwoven fabric, etc. (plastic components) and/or pulp fibers (pulp components). Therefore, at the same time as or after the superabsorbent polymer is separated from other substances by sieving in the sieving separation step S41, the film, nonwoven fabric, etc. (plastic components) and/or pulp fibers (pulp components) may be separated from the other separated substances by sieving or other methods. Therefore, this embodiment includes a method for recovering plastic components and also includes a method for recovering pulp components.
- the first dehydration step S311 in FIG. 4 was performed on the used absorbent article to generate the constituent material A.
- the second dehydration step S312 and the dilution step S313 in FIG. 2 were performed on the constituent material A (a part of which was excluded for measuring the recovery rate (described later)) to generate an inactivated product.
- the inactivated product was subjected to the solid-liquid separation step S32 in FIG. 1 to generate an aggregate.
- the aggregate was subjected to the sieve separation step S41 to recover the superabsorbent polymer.
- a 0.1% by mass sulfuric acid aqueous solution was used as the inactivating aqueous solution.
- the second dehydration step S312 a 7% by mass calcium hydroxide aqueous solution was used as the inactivating aqueous solution.
- the dilution step S313 only water was used.
- a Gina centrifuge was used in the solid-liquid separation step S32 .
- a Sato-type vibrating sieve machine (sieve: two stages) was used.
- the moisture content of the aggregates was set to 10% by mass or more and less than 85% by mass by adjusting the rotation speed of the Guiner centrifuge, and in Comparative Examples 1 and 2, the moisture content of the aggregates was set to less than 10% by mass and 85% by mass or more by adjusting the rotation speed of the Guiner centrifuge.
- the purity of the superabsorbent polymer was high in Examples 1 and 2, and medium in Examples 3 and 4. In other words, superabsorbent polymers of relatively high purity were obtained in Examples 1 to 4. On the other hand, the purity of the superabsorbent polymer was low in Comparative Examples 1 and 2. In other words, only superabsorbent polymers of low purity were obtained in Comparative Examples 1 and 2.
- the recovery rate of the superabsorbent polymer was measured as follows. ⁇ Recovery rate of superabsorbent polymer> (1) A predetermined amount (e.g., 100 g) of the constituent material A after the first dehydration step S311 is weighed out as an original material, and two original materials are prepared. (2) One of the raw materials is dried as is (120°C x 60 minutes) to prepare sample 1. (3) On the other hand, another raw material is treated with an ozone-containing aqueous solution (ozone concentration in the aqueous solution: 30 ppm x treatment time: 60 minutes (CT value: 1800)) to decompose and remove the contained superabsorbent polymer, and then dried (120°C x 60 minutes) to obtain sample 2.
- ozone concentration in the aqueous solution 30 ppm x treatment time: 60 minutes (CT value: 1800)
- the purity of the superabsorbent polymer is measured as follows. ⁇ Purity of superabsorbent polymer> (1) A predetermined amount (e.g., 100 g) is weighed out from the superabsorbent polymer ((8) in the method for measuring the recovery rate of superabsorbent polymer) recovered in each batch (each example and each comparative example) and dried (120°C x 60 minutes) to obtain a purity measurement sample 1.
- a predetermined amount e.g. 100 g
- 100 g is weighed out from the superabsorbent polymer ((8) in the method for measuring the recovery rate of superabsorbent polymer) recovered in each batch (each example and each comparative example) and dried (120°C x 60 minutes) to obtain a purity measurement sample 1.
- Purity measurement sample 1 is treated with an ozone-containing aqueous solution (ozone concentration in the aqueous solution: 30 ppm x treatment time: 60 minutes (CT value: 1800)) to decompose and remove the contained superabsorbent polymer, and then dried (120°C x 60 minutes) to obtain purity measurement sample 2.
- the mass difference between purity measurement sample 1 and purity measurement sample 2 is the content of superabsorbent polymer in purity measurement sample 1.
- the absorbent article of the present invention is not limited to the above-mentioned embodiments, and can be appropriately combined or modified without departing from the purpose and spirit of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Processing Of Solid Wastes (AREA)
- Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
Abstract
Provided is a method for improving the recovery rate and purity in a method for recovering a superabsorbent polymer from superabsorbent-polymer-containing constituent materials constituting used hygiene products. This method includes recovering a superabsorbent polymer from superabsorbent-polymer-containing constituent materials constituting used hygiene products, the method comprising a preparation step (S30) for preparing a moist aggregate that contains inactivated-superabsorbent-polymer-containing constituent materials, and a separation step (S20) for applying vibration to the aggregate to separate the superabsorbent polymer from the constituent materials.
Description
本発明は、使用済み衛生用品を構成する、高吸水性ポリマーを含む構成材料から高吸水性ポリマーを回収する方法、及び、回収された高吸水性ポリマーを用いてリサイクル高吸水性ポリマーを製造する方法に関する。
The present invention relates to a method for recovering a superabsorbent polymer from a constituent material containing the superabsorbent polymer that constitutes a used sanitary product, and a method for producing a recycled superabsorbent polymer using the recovered superabsorbent polymer.
使用済み衛生用品から高吸水性ポリマーを回収する方法が知られている。例えば、特許文献1に、使用済み衛生用品の処理方法であって、衛生用品を離解して水に分散させる工程と、衛生用品に含まれる繊維およびSAPを分離回収する工程とを少なくとも含み、前記衛生用品を離解して水に分散させる工程において、架橋剤および酸性物質を加えることを特徴とする、処理方法が開示されている。
Methods for recovering superabsorbent polymers from used sanitary products are known. For example, Patent Document 1 discloses a method for treating used sanitary products, which includes at least a step of disintegrating the sanitary products and dispersing them in water, and a step of separating and recovering the fibers and SAP contained in the sanitary products, and is characterized in that a crosslinking agent and an acidic substance are added in the step of disintegrating the sanitary products and dispersing them in water.
特許文献1では、まず、衛生用品を離解して水に分散させる工程として、原料である使用済み紙おむつをパルパーに投入し、水に分散する。その後、紙おむつに含まれる繊維およびSAPを分離回収する工程として、スクリーン、クリーナーを用い処理し、まずSAP分を回収する。
In Patent Document 1, first, the sanitary product is disintegrated and dispersed in water by putting the raw material, used disposable diapers, into a pulper and dispersing them in water. Then, in the process of separating and recovering the fibers and SAP contained in the disposable diapers, the diapers are processed using a screen and a cleaner, and the SAP portion is recovered first.
ここで、特許文献1によれば、スクリーンは、離解した衛生用品の構成材料を含む流体(液体、気体)を供給され、丸穴スクリーン又はスリットスクリーンにより、リジェクトとアクセプトに分離する方法である。クリーナーは、離解した衛生用品の構成材料を含む流体(液体、気体)を供給され、遠心分離により、比重の異なる材料に分離する方法である。
According to Patent Document 1, the screen is a method in which a fluid (liquid, gas) containing the disintegrated constituent materials of sanitary products is supplied, and the fluid is separated into rejects and accepts using a round-hole screen or a slit screen. The cleaner is a method in which a fluid (liquid, gas) containing the disintegrated constituent materials of sanitary products is supplied, and the fluid is separated into materials with different specific gravities using centrifugation.
ところが、発明者の検討によれば、スクリーンやクリーナーは、離解した衛生用品の構成材料(SAP、すなわち高吸水性ポリマーを含む)の混合物の中から、高吸水性ポリマーを分離、回収することはできるが、回収率を高め、かつ、純度を高めることは容易ではなかった。
However, according to the inventor's research, while screens and cleaners can separate and recover superabsorbent polymers from a mixture of disaggregated sanitary product constituent materials (including SAP, i.e., superabsorbent polymers), it is not easy to increase the recovery rate and purity.
本発明の目的は、使用済み衛生用品を構成する、高吸水性ポリマーを含む構成材料から高吸水性ポリマーを回収する方法(以下、単に「高吸水性ポリマーを回収する方法」とも記す。)において、回収率及び純度を向上させる方法、及び、回収された高吸水性ポリマーを用いてリサイクル高吸水性ポリマーを製造する方法(以下、単に「リサイクル高吸水性ポリマーを製造する方法」とも記す。)を提供することにある。
The object of the present invention is to provide a method for recovering superabsorbent polymers from constituent materials that contain superabsorbent polymers and that constitute used sanitary products (hereinafter also simply referred to as a "method for recovering superabsorbent polymers") that improves the recovery rate and purity, and a method for producing recycled superabsorbent polymers using the recovered superabsorbent polymers (hereinafter also simply referred to as a "method for producing recycled superabsorbent polymers").
本発明の一態様は、使用済み衛生用品を構成する、高吸水性ポリマーを含んだ構成材料から前記高吸水性ポリマーを回収する方法であって、不活化された前記高吸水性ポリマーを含んだ前記構成材料を含有した、湿潤な状態の凝集物を準備する準備工程と、前記凝集物に振動を与えて、前記構成材料から前記高吸水性ポリマーを分離する分離工程と、を具備する、方法、である。
One aspect of the present invention is a method for recovering a superabsorbent polymer from a constituent material that contains the superabsorbent polymer and that constitutes a used sanitary product, the method comprising a preparation step of preparing a wet aggregate that contains the constituent material that contains the inactivated superabsorbent polymer, and a separation step of vibrating the aggregate to separate the superabsorbent polymer from the constituent material.
本発明の他の態様は、リサイクル高吸水性ポリマーを製造する方法であって、上記の、使用済み衛生用品を構成する、高吸水性ポリマーを含む構成材料から高吸水性ポリマーを回収する方法で得られた前記高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させることにより、前記高吸水性ポリマーを再活性化する再活性化工程を具備する、方法、である。
Another aspect of the present invention is a method for producing a recycled superabsorbent polymer, the method comprising a reactivation step of reactivating the superabsorbent polymer obtained by the above-mentioned method for recovering a superabsorbent polymer from a constituent material containing a superabsorbent polymer that constitutes a used sanitary product, by contacting the superabsorbent polymer with an alkali metal ion source capable of supplying alkali metal ions.
本発明によれば、使用済み衛生用品を構成する、高吸水性ポリマーを含む構成材料から高吸水性ポリマーを回収する方法において、回収率及び純度を向上させる方法、及び、回収された高吸水性ポリマーを用いてリサイクル高吸水性ポリマーを製造する方法を提供することが可能となる。
The present invention makes it possible to provide a method for recovering superabsorbent polymers from constituent materials that contain superabsorbent polymers and that constitute used sanitary products, a method for improving the recovery rate and purity, and a method for producing recycled superabsorbent polymers using the recovered superabsorbent polymers.
本実施形態は、以下の態様に関する。
[態様1]
使用済み衛生用品を構成する、高吸水性ポリマーを含んだ構成材料から高吸水性ポリマーを回収する方法であって、不活化された前記高吸水性ポリマーを含んだ前記構成材料を含有した、湿潤な状態の凝集物を準備する準備工程と、前記凝集物に振動を与えて、前記構成材料から前記高吸水性ポリマーを分離する分離工程と、を具備する、方法。 The present embodiment relates to the following aspects.
[Aspect 1]
A method for recovering a superabsorbent polymer from a constituent material containing the superabsorbent polymer that constitutes a used sanitary product, the method comprising: a preparation step of preparing a wet agglomerate containing the constituent material containing the inactivated superabsorbent polymer; and a separation step of vibrating the agglomerate to separate the superabsorbent polymer from the constituent material.
[態様1]
使用済み衛生用品を構成する、高吸水性ポリマーを含んだ構成材料から高吸水性ポリマーを回収する方法であって、不活化された前記高吸水性ポリマーを含んだ前記構成材料を含有した、湿潤な状態の凝集物を準備する準備工程と、前記凝集物に振動を与えて、前記構成材料から前記高吸水性ポリマーを分離する分離工程と、を具備する、方法。 The present embodiment relates to the following aspects.
[Aspect 1]
A method for recovering a superabsorbent polymer from a constituent material containing the superabsorbent polymer that constitutes a used sanitary product, the method comprising: a preparation step of preparing a wet agglomerate containing the constituent material containing the inactivated superabsorbent polymer; and a separation step of vibrating the agglomerate to separate the superabsorbent polymer from the constituent material.
本方法では、高吸水性ポリマーは、不活化(脱水)されて、小さな粒子径を有する粒状物であるので、他の構成材料とは形状が大きく異なっている。また、その高吸水性ポリマーを含んだ構成材料を含有する凝集物は湿潤な状態であり、したがって、構成材料間には水分が存在する。それゆえ、高吸水性ポリマーは、他の構成材料と水素結合をほとんどしていない状態である。そのような状態の凝集物に振動を与えることで、他の構成材料とは形状が大きく異なり(小さく)、水素結合をしていない高吸水性ポリマーを、他の構成材料から容易に引き離して、分離することができる。すなわち、少なくとも高吸水性ポリマーと他の構成材料とを実質的にばらけた状態にすることができる。そのような状態を作ることで、構成材料の中から高吸水性ポリマーを選択的に取り出し易くすることができる。それにより、高吸水性ポリマーの回収率及び純度を向上させることができる。
In this method, the superabsorbent polymer is inactivated (dehydrated) and is in the form of a granule with a small particle size, so that its shape is significantly different from that of the other constituent materials. In addition, the aggregate containing the constituent materials containing the superabsorbent polymer is in a wet state, and therefore moisture is present between the constituent materials. Therefore, the superabsorbent polymer is in a state where it has almost no hydrogen bonds with the other constituent materials. By applying vibration to the aggregate in such a state, the superabsorbent polymer, which has a significantly different (smaller) shape from the other constituent materials and has no hydrogen bonds, can be easily separated from the other constituent materials and separated. In other words, at least the superabsorbent polymer and the other constituent materials can be substantially separated. By creating such a state, it is possible to easily selectively extract the superabsorbent polymer from the constituent materials. This makes it possible to improve the recovery rate and purity of the superabsorbent polymer.
[態様2]
前記分離工程は、前記凝集物を、前記高吸水性ポリマーが通過可能な目を有する、振動する篩にかける篩分離工程を備える、態様1に記載の方法。 [Aspect 2]
2. The method ofclaim 1, wherein the separating step comprises a sieving step of forcing the agglomerates through a vibrating sieve having openings through which the superabsorbent polymer can pass.
前記分離工程は、前記凝集物を、前記高吸水性ポリマーが通過可能な目を有する、振動する篩にかける篩分離工程を備える、態様1に記載の方法。 [Aspect 2]
2. The method of
本方法では、高吸水性ポリマーは、他の構成材料とは形状が大きく異なり(小さく)、水素結合をほとんどしていない状態である。そのため、高吸水性ポリマーを篩に掛けると、篩の振動により、高吸水性ポリマーを他の構成材料からより容易に引き離すことができる。すなわち、高吸水性ポリマーと他の構成材料とを実質的にばらけた状態にすることができる。そのような状態を篩の上で作ることで、引き離された高吸水性ポリマーを他の構成材料からより容易に篩い分けることができる。それにより、構成材料の中から高吸水性ポリマーを選択的に取り出すことができ、高吸水性ポリマーの回収率及び純度を向上させることができる。その場合、例えば、パルプ繊維やシート部材のような他の構成材料は、篩の上に残って回収され、高吸水性ポリマーは、篩の下に落ちて回収される。
In this method, the superabsorbent polymer has a shape that is significantly different (smaller) from the other constituent materials, and is in a state in which it has almost no hydrogen bonds. Therefore, when the superabsorbent polymer is sieved, the vibration of the sieve makes it easier to separate the superabsorbent polymer from the other constituent materials. In other words, the superabsorbent polymer and the other constituent materials can be substantially separated. By creating such a state on the sieve, the separated superabsorbent polymer can be more easily sieved out from the other constituent materials. This makes it possible to selectively extract the superabsorbent polymer from the constituent materials, and improve the recovery rate and purity of the superabsorbent polymer. In this case, for example, the other constituent materials such as pulp fibers and sheet members remain on the sieve and are recovered, and the superabsorbent polymer falls below the sieve and is recovered.
[態様3]
前記準備工程は、不活化された前記高吸水性ポリマーを含んだ前記構成材料を含有する水溶液に、固液分離を行い、固体である前記凝集物と液体とを得る固液分離工程を備える、態様2に記載の方法。 [Aspect 3]
The method according to aspect 2, wherein the preparation step includes a solid-liquid separation step of performing solid-liquid separation on an aqueous solution containing the constituent material including the inactivated superabsorbent polymer to obtain the aggregate, which is a solid, and a liquid.
前記準備工程は、不活化された前記高吸水性ポリマーを含んだ前記構成材料を含有する水溶液に、固液分離を行い、固体である前記凝集物と液体とを得る固液分離工程を備える、態様2に記載の方法。 [Aspect 3]
The method according to aspect 2, wherein the preparation step includes a solid-liquid separation step of performing solid-liquid separation on an aqueous solution containing the constituent material including the inactivated superabsorbent polymer to obtain the aggregate, which is a solid, and a liquid.
本方法では、準備工程が、不活化された高吸水性ポリマーを含んだ構成材料を含有する水溶液を、固液分離して、固体である凝集物を得る固液分離工程を備えている。ここで、凝集物(固体)は、構成材料で形成されており、水分を保持し得る。そのため、凝集物中の液体(水分)の量を適度な量に抑えて、適度な湿潤な状態を作ることができる。それにより、凝集物中の液体(水分)の量が多過ぎて振動が減衰されたり、少な過ぎて構成材料間の水素結合が強すぎたりして、高吸水性ポリマーと他の構成材料とを実質的にばらけた状態することができず、高吸水性ポリマーが分離し難くなることを抑制できる。
In this method, the preparation step includes a solid-liquid separation step in which an aqueous solution containing constituent materials including an inactivated superabsorbent polymer is subjected to solid-liquid separation to obtain a solid aggregate. Here, the aggregate (solid) is formed from the constituent materials and can retain moisture. Therefore, the amount of liquid (moisture) in the aggregate can be kept to an appropriate amount to create an appropriately moist state. This prevents the superabsorbent polymer from being substantially separated from the other constituent materials, which would otherwise occur if the amount of liquid (moisture) in the aggregate is too much and vibrations are damped, or if the amount is too little and hydrogen bonds between the constituent materials are too strong, making it difficult to separate the superabsorbent polymer.
[態様4]
前記固液分離工程は、前記固液分離として前記構成材料を含有する水溶液の遠心分離を行い、前記凝集物と前記液体とを得る遠心分離工程を含む、態様3に記載の方法。 [Aspect 4]
The method according to aspect 3, wherein the solid-liquid separation step includes a centrifugation step of centrifuging an aqueous solution containing the constituent materials to obtain the aggregate and the liquid.
前記固液分離工程は、前記固液分離として前記構成材料を含有する水溶液の遠心分離を行い、前記凝集物と前記液体とを得る遠心分離工程を含む、態様3に記載の方法。 [Aspect 4]
The method according to aspect 3, wherein the solid-liquid separation step includes a centrifugation step of centrifuging an aqueous solution containing the constituent materials to obtain the aggregate and the liquid.
本方法では、固液分離として、構成材料を含有する水溶液の遠心分離を行う遠心分離工程を含んでいる。遠心分離では、構成材料に掛かる力の制御が比較的容易であるため、高吸水性ポリマーが潰れないようにし易く、かつ凝集物に含まれる水分(水分率)を所望の数値範囲にし易い。それにより、高吸水性ポリマーの損傷を抑えつつ、凝集物を適度な湿潤な状態にすることができる。
This method includes a centrifugation step for centrifuging an aqueous solution containing the constituent materials as a solid-liquid separation step. In centrifugation, it is relatively easy to control the force applied to the constituent materials, making it easy to prevent the superabsorbent polymer from being crushed and to make the moisture content (moisture content) of the aggregates within the desired numerical range. This makes it possible to keep the aggregates in an appropriately moist state while minimizing damage to the superabsorbent polymer.
[態様5]
前記遠心分離工程で分離された前記高吸水性ポリマーの水分率は80質量%以下である、態様4に記載の方法。 [Aspect 5]
The method according to claim 4, wherein the moisture content of the superabsorbent polymer separated in the centrifugation step is 80% by mass or less.
前記遠心分離工程で分離された前記高吸水性ポリマーの水分率は80質量%以下である、態様4に記載の方法。 [Aspect 5]
The method according to claim 4, wherein the moisture content of the superabsorbent polymer separated in the centrifugation step is 80% by mass or less.
本方法では、遠心分離工程後の高吸水性ポリマーの水分率が80質量%以下であるため、高吸水性ポリマーは小さな粒子径を有する粒状物となっている。また、遠心分離工程の前後で不活化された高吸水性ポリマーの水分率がほとんど変化しないと考えると、遠心分離工程後の高吸水性ポリマーの水分率が80質量%以下であるので、遠心分離工程前の高吸水性ポリマーの水分率も概ね80質量%以下といえる。すなわち、高吸水性ポリマーがほとんど水分を含有していない状態で遠心分離を行うため、固液分離(遠心分離)において、高吸水性ポリマーを損傷し難くすることができる。それにより、分離工程において、高吸水性ポリマーをより回収し易くすることができる。
In this method, the moisture content of the superabsorbent polymer after the centrifugation process is 80% by mass or less, so the superabsorbent polymer is in the form of granules with a small particle size. Also, considering that the moisture content of the inactivated superabsorbent polymer hardly changes before and after the centrifugation process, since the moisture content of the superabsorbent polymer after the centrifugation process is 80% by mass or less, it can be said that the moisture content of the superabsorbent polymer before the centrifugation process is also roughly 80% by mass or less. In other words, because the centrifugation is performed in a state in which the superabsorbent polymer contains almost no moisture, the superabsorbent polymer can be made less likely to be damaged during solid-liquid separation (centrifugation). This makes it easier to recover the superabsorbent polymer in the separation process.
[態様6]
前記遠心分離工程の前記遠心分離を行う遠心分離装置の下に、前記篩分離工程の前記篩を有する篩装置が配置されている、態様4記載の方法。 [Aspect 6]
The method according to claim 4, wherein a sieve device having the sieve in the sieving step is disposed below a centrifuge device that performs the centrifugation in the centrifugal separation step.
前記遠心分離工程の前記遠心分離を行う遠心分離装置の下に、前記篩分離工程の前記篩を有する篩装置が配置されている、態様4記載の方法。 [Aspect 6]
The method according to claim 4, wherein a sieve device having the sieve in the sieving step is disposed below a centrifuge device that performs the centrifugation in the centrifugal separation step.
本方法では、遠心分離工程の遠心分離を行う遠心分離装置の下に、篩分離工程の篩を有する篩装置が配置されている。そのため、遠心分離工程後の凝集物を直ちに篩にかけることができ、それにより、遠心分離後の凝集物の状態(高吸水性ポリマーの状態や凝集物の水分率)が変動するのを抑制しつつ、篩分離工程を実行できる。それにより、高吸水性ポリマーをより回収し易くすることができる。
In this method, a sieving device having a sieve for the sieving separation process is placed under the centrifuge device that performs the centrifugation in the centrifugation process. Therefore, the aggregates after the centrifugation process can be immediately sieved, and the sieving separation process can be performed while suppressing fluctuations in the state of the aggregates after centrifugation (the state of the superabsorbent polymer and the moisture content of the aggregates). This makes it easier to recover the superabsorbent polymer.
[態様7]
前記固液分離工程で得られる前記液体からスクリーンにより前記高吸水性ポリマーを回収する工程を更に具備する、態様3に記載の方法。 [Aspect 7]
4. The method of claim 3, further comprising recovering the superabsorbent polymer from the liquid obtained in the solid-liquid separation step through a screen.
前記固液分離工程で得られる前記液体からスクリーンにより前記高吸水性ポリマーを回収する工程を更に具備する、態様3に記載の方法。 [Aspect 7]
4. The method of claim 3, further comprising recovering the superabsorbent polymer from the liquid obtained in the solid-liquid separation step through a screen.
本方法では、固液分離工程で得られる液体からスクリーンにより高吸水性ポリマーを回収する。それにより、高吸水性ポリマーの回収率を向上させることができる。
In this method, the superabsorbent polymer is recovered from the liquid obtained in the solid-liquid separation process using a screen. This makes it possible to improve the recovery rate of the superabsorbent polymer.
[態様8]
前記準備工程は、前記高吸水性ポリマーの不活化を行う不活化工程を含み、前記不活化工程は、前記構成材料を、多価金属イオンを供給可能な多価金属イオン供給源に接触させることにより、前記構成材料中の前記高吸水性ポリマーを脱水させる脱水工程を有する、態様1乃至7のいずれか一項に記載の方法。 [Aspect 8]
The method according to any one ofaspects 1 to 7, wherein the preparation step includes an inactivation step of inactivating the superabsorbent polymer, and the inactivation step includes a dehydration step of dehydrating the superabsorbent polymer in the constituent material by contacting the constituent material with a polyvalent metal ion source capable of supplying polyvalent metal ions.
前記準備工程は、前記高吸水性ポリマーの不活化を行う不活化工程を含み、前記不活化工程は、前記構成材料を、多価金属イオンを供給可能な多価金属イオン供給源に接触させることにより、前記構成材料中の前記高吸水性ポリマーを脱水させる脱水工程を有する、態様1乃至7のいずれか一項に記載の方法。 [Aspect 8]
The method according to any one of
本方法では、準備工程が、高吸水性ポリマーの不活化を行う不活化工程を含み、不活化工程は、構成材料を、多価金属イオンを供給可能な多価金属イオン供給源に接触させることで、構成材料中の高吸水性ポリマーを脱水させる脱水工程を有している。不活化(脱水)のために、多価金属イオン供給源を用いることで、より確実に、高吸水性ポリマーを不活化(脱水)して、小さな粒子径を有する粒状物とすることができる。
In this method, the preparation step includes an inactivation step in which the superabsorbent polymer is inactivated, and the inactivation step includes a dehydration step in which the superabsorbent polymer in the constituent material is dehydrated by contacting the constituent material with a polyvalent metal ion source capable of supplying polyvalent metal ions. By using a polyvalent metal ion source for inactivation (dehydration), the superabsorbent polymer can be more reliably inactivated (dehydrated) to form granules having a small particle size.
[態様9]
前記不活化工程は、前記脱水工程の前に、前記構成材料を、酸性水溶液に浸漬させることにより、前記構成材料中の前記高吸水性ポリマーを事前に脱水する事前脱水工程を更に有する、態様8に記載の方法。 [Aspect 9]
The method according to aspect 8, wherein the inactivation step further includes a pre-dehydration step of pre-dehydrating the superabsorbent polymer in the constituent material by immersing the constituent material in an acidic aqueous solution before the dehydration step.
前記不活化工程は、前記脱水工程の前に、前記構成材料を、酸性水溶液に浸漬させることにより、前記構成材料中の前記高吸水性ポリマーを事前に脱水する事前脱水工程を更に有する、態様8に記載の方法。 [Aspect 9]
The method according to aspect 8, wherein the inactivation step further includes a pre-dehydration step of pre-dehydrating the superabsorbent polymer in the constituent material by immersing the constituent material in an acidic aqueous solution before the dehydration step.
本方法では、不活化工程が、脱水工程の前に、構成材料を、酸性水溶液に浸漬させることで、構成材料中の高吸水性ポリマーを事前に脱水する事前脱水工程を更に有している。ここで、酸で高吸水性ポリマーを不活化(脱水)する場合、多価金属イオンで高吸水性ポリマーを不活化(脱水)する場合と比較して、高吸水性ポリマーの脱水率は低い(水分率は高い)。とはいえ、多価金属イオン供給源による脱水工程の前に、事前に、酸による事前脱水工程を実施することで、不活化工程で得られる高吸水性ポリマーの脱水率をより高く(水分率をより低く)することができる。
In this method, the inactivation step further includes a pre-dehydration step in which the constituent material is immersed in an acidic aqueous solution prior to the dehydration step to pre-dehydrate the superabsorbent polymer in the constituent material. When the superabsorbent polymer is inactivated (dehydrated) with an acid, the dehydration rate of the superabsorbent polymer is lower (the moisture content is higher) than when the superabsorbent polymer is inactivated (dehydrated) with a polyvalent metal ion. However, by carrying out a pre-dehydration step with an acid prior to the dehydration step with a polyvalent metal ion source, the dehydration rate of the superabsorbent polymer obtained in the inactivation step can be made higher (the moisture content can be made lower).
[態様10]
前記篩分離工程において、前記篩の振動は横振動を含む、態様2に記載の方法。 [Aspect 10]
The method of claim 2, wherein in the sieve separation step, the vibration of the sieve comprises lateral vibration.
前記篩分離工程において、前記篩の振動は横振動を含む、態様2に記載の方法。 [Aspect 10]
The method of claim 2, wherein in the sieve separation step, the vibration of the sieve comprises lateral vibration.
本方法では、篩分離工程において、篩の振動は、縦振動、すなわち、篩面に垂直な方向の振動だけではなく、横振動、すなわち、篩面に平行な面内方向の振動を含んでいる。そのため、凝集物を篩面に垂直な方向だけでなく、平行な方向にも揺することができる。それにより、高吸水性ポリマーを他の構成材料からより容易に引き離すことができ、高吸水性ポリマーと他の構成材料とをより容易に実質的にばらけた状態にすることができる。そのような状態を篩の上で作ることで、引き離された高吸水性ポリマーを他の構成材料からより容易に篩い分けることができる。
In this method, in the sieve separation step, the vibration of the sieve includes not only vertical vibration, i.e., vibration perpendicular to the sieve surface, but also horizontal vibration, i.e., vibration in the in-plane direction parallel to the sieve surface. Therefore, the agglomerates can be shaken not only in a direction perpendicular to the sieve surface, but also in a direction parallel to it. This makes it easier to separate the superabsorbent polymer from the other constituent materials, and makes it easier to make the superabsorbent polymer and the other constituent materials substantially disintegrate. By creating such a state on the sieve, the separated superabsorbent polymer can be more easily sieved away from the other constituent materials.
[態様11]
前記篩は、前記高吸水性ポリマーが通過可能な目をする第1篩部分と、前記第1篩部分の下側に位置し、前記第1篩部分よりも細かく、前記高吸水性ポリマーが通過可能な目をする第2篩部分と、を備え、前記篩分離工程は、前記凝集物を、振動する前記篩にかけて、前記第1篩部分及び前記第2篩部分の二段階で前記高吸水性ポリマーを篩い分ける工程を含む、態様2又は10に記載の方法。 [Aspect 11]
The method according to claim 2 or 10, wherein the sieve comprises a first sieve portion having meshes through which the superabsorbent polymer can pass, and a second sieve portion located below the first sieve portion and having finer meshes than the first sieve portion and through which the superabsorbent polymer can pass, and the sieving step includes a step of passing the agglomerates through a vibrating sieve to sieve the superabsorbent polymer in two stages, the first sieve portion and the second sieve portion.
前記篩は、前記高吸水性ポリマーが通過可能な目をする第1篩部分と、前記第1篩部分の下側に位置し、前記第1篩部分よりも細かく、前記高吸水性ポリマーが通過可能な目をする第2篩部分と、を備え、前記篩分離工程は、前記凝集物を、振動する前記篩にかけて、前記第1篩部分及び前記第2篩部分の二段階で前記高吸水性ポリマーを篩い分ける工程を含む、態様2又は10に記載の方法。 [Aspect 11]
The method according to claim 2 or 10, wherein the sieve comprises a first sieve portion having meshes through which the superabsorbent polymer can pass, and a second sieve portion located below the first sieve portion and having finer meshes than the first sieve portion and through which the superabsorbent polymer can pass, and the sieving step includes a step of passing the agglomerates through a vibrating sieve to sieve the superabsorbent polymer in two stages, the first sieve portion and the second sieve portion.
本方法では、篩が、高吸水性ポリマーが通過可能な目をする上段の第1篩部分と、第1篩部分よりも細かく、高吸水性ポリマーが通過可能な目をする下段の第2篩部分とを備え、篩分離工程において、高吸水性ポリマーが第1篩部分及び第2篩部分の二段階で篩い分けられる。それにより、回収される高吸水性ポリマーの純度をより高めることができる。
In this method, the sieve has a first sieve portion at the top with meshes through which the superabsorbent polymer can pass, and a second sieve portion at the bottom with meshes finer than the first sieve portion and through which the superabsorbent polymer can pass, and in the sieving process, the superabsorbent polymer is sieved in two stages through the first sieve portion and the second sieve portion. This makes it possible to further increase the purity of the superabsorbent polymer that is recovered.
[態様12]
前記構成材料はパルプ繊維を含み、前記篩分離工程は、前記パルプ繊維が前記篩の表面上の外側へ移動し、前記高吸水性ポリマーは前記篩の下側へ移動して、互いに分離される工程を含む、態様2又は10に記載の方法。 [Aspect 12]
11. The method of claim 2 or 10, wherein the component material comprises pulp fibers, and the sieving step comprises the step of the pulp fibers moving to the outside on the surface of the sieve and the superabsorbent polymer moving to the underside of the sieve and being separated from one another.
前記構成材料はパルプ繊維を含み、前記篩分離工程は、前記パルプ繊維が前記篩の表面上の外側へ移動し、前記高吸水性ポリマーは前記篩の下側へ移動して、互いに分離される工程を含む、態様2又は10に記載の方法。 [Aspect 12]
11. The method of claim 2 or 10, wherein the component material comprises pulp fibers, and the sieving step comprises the step of the pulp fibers moving to the outside on the surface of the sieve and the superabsorbent polymer moving to the underside of the sieve and being separated from one another.
本方法では、高吸水性ポリマーは、パルプ繊維とは形状が大きく異なり、かつ、水素結合をほとんどしていない状態である。そのため、高吸水性ポリマーを篩に掛けると、篩の振動により、高吸水性ポリマーをパルプ繊維からより容易に引き離すことができ、引き離された高吸水性ポリマーを構成材料の中から選択的に取り出すことができる。それにより、高吸水性ポリマーを他の構成材料からより容易に篩い分けることができ、高吸水性ポリマーの回収率及び純度を向上させることができる。その場合、例えば、パルプ繊維やシート部材は、篩の上に残って回収され、高吸水性ポリマーは、篩の下に落ちて回収される。
In this method, the superabsorbent polymer has a shape significantly different from that of the pulp fibers and is in a state in which there are almost no hydrogen bonds. Therefore, when the superabsorbent polymer is sieved, the vibration of the sieve makes it easier to separate the superabsorbent polymer from the pulp fibers, and the separated superabsorbent polymer can be selectively removed from among the constituent materials. This makes it easier to sieve the superabsorbent polymer from the other constituent materials, and improves the recovery rate and purity of the superabsorbent polymer. In this case, for example, the pulp fibers and sheet members remain on the sieve and are collected, and the superabsorbent polymer falls below the sieve and is collected.
[態様13]
前記分離工程で得られた前記高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させることにより、前記高吸水性ポリマーを再活性化する再活性化工程を更に具備する、態様1乃至12のいずれか一項に記載の方法。 [Aspect 13]
The method according to any one ofclaims 1 to 12, further comprising a reactivation step of contacting the superabsorbent polymer obtained in the separation step with an alkali metal ion source capable of supplying alkali metal ions to reactivate the superabsorbent polymer.
前記分離工程で得られた前記高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させることにより、前記高吸水性ポリマーを再活性化する再活性化工程を更に具備する、態様1乃至12のいずれか一項に記載の方法。 [Aspect 13]
The method according to any one of
本方法では、分離工程で得られた高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させることにより、分離工程で得られた高吸水性ポリマーを吸水性材料として利用可能なように再活性化することができる。
In this method, the superabsorbent polymer obtained in the separation process is brought into contact with an alkali metal ion source capable of supplying alkali metal ions, thereby reactivating the superabsorbent polymer obtained in the separation process so that it can be used as a water-absorbing material.
[態様14]
リサイクル高吸水性ポリマーを製造する方法であって、態様1乃至12のいずれか一項に記載の、使用済み衛生用品を構成する、高吸水性ポリマーを含む構成材料から高吸水性ポリマーを回収する方法で得られた前記高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させることにより、前記高吸水性ポリマーを再活性化する再活性化工程を具備する、方法。 [Aspect 14]
A method for producing a recycled superabsorbent polymer, comprising a reactivation step of contacting the superabsorbent polymer obtained by the method for recovering a superabsorbent polymer from a constituent material containing the superabsorbent polymer constituting a used sanitary product according to any one ofaspects 1 to 12 with an alkali metal ion source capable of supplying alkali metal ions, thereby reactivating the superabsorbent polymer.
リサイクル高吸水性ポリマーを製造する方法であって、態様1乃至12のいずれか一項に記載の、使用済み衛生用品を構成する、高吸水性ポリマーを含む構成材料から高吸水性ポリマーを回収する方法で得られた前記高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させることにより、前記高吸水性ポリマーを再活性化する再活性化工程を具備する、方法。 [Aspect 14]
A method for producing a recycled superabsorbent polymer, comprising a reactivation step of contacting the superabsorbent polymer obtained by the method for recovering a superabsorbent polymer from a constituent material containing the superabsorbent polymer constituting a used sanitary product according to any one of
本方法では、使用済み衛生用品を構成する、高吸水性ポリマーを含む構成材料から高吸水性ポリマーを回収する方法で得られた高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させることで再活性化することにより、回収された高吸水性ポリマーを原料として、吸水性材料として利用可能なリサイクル高吸水性ポリマーを製造することができる。それにより、回収率及び純度が向上された高吸水性ポリマーを再活性化するので、リサイクル高吸水性ポリマーの回収率及び純度も向上できる。
In this method, the superabsorbent polymer obtained by the method for recovering superabsorbent polymer from constituent materials containing superabsorbent polymer that constitute used sanitary products is reactivated by contacting it with an alkali metal ion source capable of supplying alkali metal ions, and it is possible to produce a recycled superabsorbent polymer that can be used as a water-absorbing material using the recovered superabsorbent polymer as a raw material. As a result, the superabsorbent polymer with improved recovery rate and purity is reactivated, and the recovery rate and purity of the recycled superabsorbent polymer can also be improved.
以下、実施形態に係る、使用済み衛生用品を構成する、高吸水性ポリマーを含む構成材料から高吸水性ポリマーを回収する方法、及び、回収された高吸水性ポリマーを用いてリサイクル高吸水性ポリマーを製造する方法について説明する。ただし、本明細書では、衛生用品とは、衛生に資する物品であって、高吸水性ポリマーを含む物品をいう。使用済み衛生用品(例示:吸収性物品)とは、使用者により使用された衛生用品であって、主に使用者から放出された液状物(例示:排泄物)を吸収・保持した衛生用品をいい、使用されたが液状物を吸収・保持しないものや未使用だが廃棄されたものを含む。使用済み高吸水性ポリマーとは、使用済み衛生用品に含まれていた高吸水性ポリマーをいう。本実施形態では、衛生用品の例として吸収性物品について説明する。吸収性物品としては、例えば、紙おむつ、尿取りパッド、生理用ナプキン、ベッドシート、ペットシートが挙げられ、高吸水性ポリマーを含んでおり、パルプ繊維を更に含んでもよい。
Below, a method for recovering a superabsorbent polymer from a constituent material containing a superabsorbent polymer that constitutes a used sanitary product according to an embodiment, and a method for producing a recycled superabsorbent polymer using the recovered superabsorbent polymer will be described. However, in this specification, a sanitary product refers to an article that contributes to hygiene and contains a superabsorbent polymer. A used sanitary product (e.g., absorbent article) refers to a sanitary product that has been used by a user and that has absorbed and retained liquids (e.g., excrement) released from the user, and includes sanitary products that have been used but do not absorb or retain liquids, and unused but discarded products. A used superabsorbent polymer refers to a superabsorbent polymer that was contained in a used sanitary product. In this embodiment, an absorbent article will be described as an example of a sanitary product. Examples of absorbent articles include paper diapers, urine pads, sanitary napkins, bed sheets, and pet sheets, and contain a superabsorbent polymer and may further contain pulp fibers.
まず、吸収性物品の構成例について説明する。吸収性物品は、表面シートと、裏面シートと、表面シートと裏面シートとの間に配置され、高吸水性ポリマーを含む吸収体と、を備えている。本実施形態では、吸収体はパルプ繊維を更に含む。したがって、吸収性物品は、構成材料として、表面シートと、裏面シートと、高吸水性ポリマー及びパルプ繊維を含む吸収体と、を含んでいる。吸収性物品の大きさの一例としては長さ約15~100cm、幅5~100cmが挙げられる。なお、吸収性物品は、構成材料として、一般的な吸収性物品が備える他の部材、例えば拡散シートや防漏壁やサイドシートや外装シートやウエストバンドなどを更に含んでもよい。
First, an example of the configuration of an absorbent article will be described. The absorbent article includes a top sheet, a back sheet, and an absorbent body that is disposed between the top sheet and the back sheet and contains a superabsorbent polymer. In this embodiment, the absorbent body further contains pulp fibers. Thus, the absorbent article includes, as its constituent materials, a top sheet, a back sheet, and an absorbent body that contains a superabsorbent polymer and pulp fibers. An example of the size of the absorbent article is a length of about 15 to 100 cm and a width of 5 to 100 cm. The absorbent article may further include, as its constituent materials, other members that are included in general absorbent articles, such as a diffusion sheet, a leak-proof wall, a side sheet, an exterior sheet, and a waistband.
表面シートの構成部材としては、例えば液透過性の不織布、液透過孔を有する合成樹脂フィルム、これらの複合シート等が挙げられる。裏面シートや外装シートの構成部材としては、例えば液不透過性の不織布、液不透過性の合成樹脂フィルム、これらの複合シートが挙げられる。拡散シートの構成部材としては、例えば液透過性の不織布が挙げられる。防漏壁やサイドシートやウエストバンドの構成部材としては、例えば液不透過性の不織布が挙げられ、ウエストバンドや防漏壁はゴムのような弾性部材を含んでもよい。不織布や合成樹脂フィルムの材料としては、吸収性物品として使用可能であれば特に制限はないが、例えば、ポリエチレン、ポリプロピレン等のオレフィン系樹脂、6-ナイロン、6,6-ナイロン等のポリアミド系樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレタレート(PBT)等のポリエステル系樹脂等が挙げられる。不織布の材料として、コットンやレーヨンなどの天然繊維を用いてもよい。本実施形態では、裏面シートの構成部材をフィルムとし、表面シートの構成部材を不織布とする吸収性物品を例にして説明する。
The constituent material of the surface sheet may be, for example, a liquid-permeable nonwoven fabric, a synthetic resin film having liquid-permeable holes, or a composite sheet of these. The constituent material of the back sheet or the exterior sheet may be, for example, a liquid-impermeable nonwoven fabric, a liquid-impermeable synthetic resin film, or a composite sheet of these. The constituent material of the diffusion sheet may be, for example, a liquid-permeable nonwoven fabric. The constituent material of the leak-proof wall, side sheet, or waistband may be, for example, a liquid-impermeable nonwoven fabric, and the waistband or the leak-proof wall may include an elastic material such as rubber. There is no particular restriction on the material of the nonwoven fabric or synthetic resin film as long as it can be used as an absorbent article, and examples of the material include olefin-based resins such as polyethylene and polypropylene, polyamide-based resins such as 6-nylon and 6,6-nylon, and polyester-based resins such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Natural fibers such as cotton and rayon may be used as the material of the nonwoven fabric. In this embodiment, an absorbent article in which the constituent material of the back sheet is a film and the constituent material of the surface sheet is a nonwoven fabric will be described as an example.
吸収体のパルプ繊維及び高吸水性ポリマーのうち、パルプ繊維としては、吸収性物品として使用可能であれば特に制限はないが、例えば、セルロース系繊維が挙げられる。セルロース系繊維としては、例えば木材パルプ、架橋パルプ、非木材パルプ、再生セルロース、半合成セルロース等が挙げられる。パルプ繊維の大きさとしては、繊維の長径の平均値が例えば数十μmが挙げられ、20~40μmが好ましく、繊維長の平均値が例えば数mmが挙げられ、2~5mmが好ましい。
Of the pulp fibers and superabsorbent polymers in the absorbent, there are no particular limitations on the pulp fibers as long as they can be used as absorbent articles, and examples include cellulosic fibers. Examples of cellulosic fibers include wood pulp, crosslinked pulp, non-wood pulp, regenerated cellulose, and semi-synthetic cellulose. The size of the pulp fibers includes an average fiber major axis of several tens of μm, preferably 20 to 40 μm, and an average fiber length of several mm, preferably 2 to 5 mm.
高吸水性ポリマー(SuperAbsorbent Polymer:SAP)としては、吸収性物品において吸収性材料として使用可能であれば特に制限はないが、例えばポリアクリル酸塩系、ポリスルホン酸塩系、無水マレイン酸塩系の吸水性ポリマーが挙げられる。高吸水性ポリマーの大きさ(乾燥時)としては、粒径の平均値が例えば数百μmが挙げられ、200~500μmが好ましい。吸収体は、液透過性シートで形成され、吸収性材料を包むアラップを含んでもよい。ただし、使用済みの吸収性物品では、吸収体の一部又は全部、したがって、少なくとも高吸水性ポリマーの一部又は全部が、液体の排泄物(例示:尿)を吸収している場合が多い。その場合、液体の排泄物を吸収した高吸水性ポリマーは、膨潤して元の大きさの数十倍から数百倍程度の大きさになる。
There are no particular limitations on the superabsorbent polymer (SAP) as long as it can be used as an absorbent material in absorbent articles, but examples include polyacrylate-based, polysulfonate-based, and maleic anhydride-based absorbent polymers. The size of the superabsorbent polymer (when dry) can be, for example, an average particle size of several hundred μm, with 200 to 500 μm being preferred. The absorbent may be formed of a liquid-permeable sheet and may include an arrap that encases the absorbent material. However, in used absorbent articles, a part or all of the absorbent, and therefore at least a part or all of the superabsorbent polymer, often absorbs liquid excrement (e.g. urine). In such cases, the superabsorbent polymer that has absorbed the liquid excrement swells to a size of several tens to several hundreds times its original size.
吸収体の一方の面及び他方の面は、それぞれ表面シート及び裏面シートに接着剤を介して接合されている。平面視で、表面シートのうちの、吸収体を囲むように、吸収体の外側に延出した部分(周縁部分)は、裏面シートのうちの、吸収体を囲むように、吸収体の外側に延出した部分(周縁部分)と接着剤を介して接合されている。したがって、吸収体は表面シートと裏面シートとの接合体の内部に包み込まれている。接着剤としては、吸収性物品として使用可能であれば特に制限はないが、例えばホットメルト型接着剤が挙げられる。ホットメルト型接着剤としては、例えばスチレン-エチレン-ブタジエン-スチレン、スチレン-ブタジエン-スチレン、スチレン-イソプレン-スチレン等のゴム系主体、又はポリエチレン等のオレフィン系主体の感圧型接着剤又は感熱型接着剤が挙げられる。
One side and the other side of the absorbent are respectively bonded to the top sheet and the back sheet via an adhesive. In plan view, the portion (peripheral portion) of the top sheet that extends outwardly from the absorbent so as to surround the absorbent is bonded to the portion (peripheral portion) of the back sheet that extends outwardly from the absorbent so as to surround the absorbent via an adhesive. Thus, the absorbent is enclosed inside the bond between the top sheet and the back sheet. There are no particular limitations on the adhesive as long as it can be used as an absorbent article, and examples of the adhesive include hot melt adhesives. Examples of hot melt adhesives include pressure-sensitive adhesives or heat-sensitive adhesives that are mainly rubber-based, such as styrene-ethylene-butadiene-styrene, styrene-butadiene-styrene, and styrene-isoprene-styrene, or mainly olefin-based, such as polyethylene.
次に、実施形態に係る、使用済み衛生用品を構成する、高吸水性ポリマーを含んだ構成材料から高吸水性ポリマーを回収する方法(高吸水性ポリマーを回収する方法)及び、回収された高吸水性ポリマーを用いてリサイクル高吸水性ポリマーを製造する方法(リサイクル高吸水性ポリマーを製造する方法)について説明する。
Next, a method for recovering a superabsorbent polymer from a constituent material containing the superabsorbent polymer that constitutes a used sanitary product (method for recovering a superabsorbent polymer) and a method for producing a recycled superabsorbent polymer using the recovered superabsorbent polymer (method for producing a recycled superabsorbent polymer) according to an embodiment will be described.
図1は、実施形態に係る高吸水性ポリマーを回収する方法、及び、リサイクル高吸水性ポリマーを製造する方法の一例を示すフロー図である。図2は、実施形態に係る上記方法における不活化工程の一例を示すフロー図である。図3は、実施形態に係る高吸水性ポリマーを回収する方法、及び、リサイクル高吸水性ポリマーを製造する方法に使用されるシステムの構成例を示すブロック図である。
FIG. 1 is a flow diagram showing an example of a method for recovering superabsorbent polymers according to an embodiment, and a method for producing recycled superabsorbent polymers. FIG. 2 is a flow diagram showing an example of an inactivation step in the above method according to an embodiment. FIG. 3 is a block diagram showing an example of the configuration of a system used in the method for recovering superabsorbent polymers according to an embodiment, and a method for producing recycled superabsorbent polymers.
高吸水性ポリマーを回収する方法は、準備工程S30と分離工程S40とを備えており、再活性化工程S50を更に備えてもよい。高吸水性ポリマーを回収する方法に使用されるシステム20は、準備装置30と分離装置40とを備えており、再活性化装置50を更に備えてもよい。一方、リサイクル高吸水性ポリマーを製造する方法は、再活性化工程S50を備えており、準備工程S30及び分離工程S40を更に備えてもよい。リサイクル高吸水性ポリマーを製造する方法に使用されるシステム20は、再活性化装置50を備えており、準備装置30及び分離装置40を更に備えてもよい。なお、各装置は、複数の装置の組み合わせでもよい。以下、各工程について具体的に説明する。
The method for recovering superabsorbent polymer includes a preparation step S30 and a separation step S40, and may further include a reactivation step S50. The system 20 used in the method for recovering superabsorbent polymer includes a preparation device 30 and a separation device 40, and may further include a reactivation device 50. On the other hand, the method for producing recycled superabsorbent polymer includes a reactivation step S50, and may further include a preparation step S30 and a separation step S40. The system 20 used in the method for producing recycled superabsorbent polymer includes a reactivation device 50, and may further include a preparation device 30 and a separation device 40. Note that each device may be a combination of multiple devices. Each step will be described in detail below.
まず、準備工程S30について説明する。準備工程S30は、準備装置30により実行される。準備工程S30は、不活化された高吸水性ポリマーを含んだ構成材料を含有した、湿潤な状態の凝集物を準備する工程である。準備装置30については、不活化された高吸水性ポリマーを含んだ構成材料を含有した、湿潤な状態の凝集物を提供し得る装置(複数の装置の組み合わせを含む)であれば、特に制限はない。
First, the preparation step S30 will be described. The preparation step S30 is performed by the preparation device 30. The preparation step S30 is a step of preparing a wet aggregate containing a constituent material including an inactivated superabsorbent polymer. There are no particular limitations on the preparation device 30, so long as it is a device (including a combination of multiple devices) that can provide a wet aggregate containing a constituent material including an inactivated superabsorbent polymer.
不活化された高吸水性ポリマーは、その吸水性が低下された高吸水性ポリマーである。そのような高吸水性ポリマーは、内部に水分を吸収することが困難な状態であるから、内部に水分(例示:液体の排泄物)を吸水していた高吸水性ポリマーは、不活化により、内部の水分を排出して(脱水して)、膨潤した状態から概ね粒状の状態へ変化している。
Inactivated superabsorbent polymers are superabsorbent polymers whose absorbency has been reduced. Such superabsorbent polymers are in a state where it is difficult for them to absorb moisture internally, so a superabsorbent polymer that has absorbed moisture (e.g. liquid excrement) will expel the moisture (dehydrate) from its interior by inactivation, and will change from a swollen state to a roughly granular state.
不活化の方法としては、特に制限はないが、高吸水性ポリマー又は高吸水性ポリマーを含む構成材料を、不活化剤を含む水溶液(不活化水溶液)に浸漬させる方法が挙げられる。不活化剤としては、例えば、無機酸や有機酸のような酸、又は、多価金属イオンを供給可能な多価金属イオン供給源が挙げられる。
The inactivation method is not particularly limited, but includes a method of immersing the superabsorbent polymer or a constituent material containing the superabsorbent polymer in an aqueous solution containing an inactivating agent (inactivating aqueous solution). Examples of the inactivating agent include acids such as inorganic acids and organic acids, and polyvalent metal ion sources capable of supplying polyvalent metal ions.
構成材料としては、上述された、表面シート、裏面シート、高吸水性ポリマー、パルプ繊維などの少なくとも一部が挙げられ、少なくとも高吸水性ポリマーが含まれる。凝集物を形成する各構成材料(高吸水性ポリマーを除く)は、複数の使用済み吸収性物品が物理的衝撃や接着部分の薬剤等による剥離により分解される、及び/又は、破砕や細断をされる、ことにより、ほぼ全部が小片化されている。その小片の大きさ(最大寸法)は所定の大きさよりも小さくされている。ただし、所定の大きさ(最大寸法)としては、例えば、2~30mmが挙げられ、3~20mmが好ましく、4~10mm以下がより好ましい。小片の大きさが小さ過ぎると、高吸水性ポリマーと分離し難くなり、大き過ぎると、工程間を移送し難くなる。なお、本方法で取り扱われる複数の使用済み吸収性物品のすべてが高吸水性ポリマーを含む必要は無く、一部が高吸水性ポリマーを含んでいればよい。
The constituent materials include at least some of the above-mentioned top sheet, back sheet, superabsorbent polymer, pulp fiber, etc., and at least superabsorbent polymer is included. Each constituent material (except superabsorbent polymer) forming the aggregate is almost entirely broken into small pieces by decomposing a plurality of used absorbent articles by physical impact or peeling off the adhesive parts with chemicals, etc., and/or crushing or shredding. The size (maximum dimension) of the small pieces is made smaller than a predetermined size. However, the predetermined size (maximum dimension) is, for example, 2 to 30 mm, preferably 3 to 20 mm, and more preferably 4 to 10 mm or less. If the size of the small pieces is too small, it will be difficult to separate them from the superabsorbent polymer, and if it is too large, it will be difficult to transport them between processes. It is not necessary for all of the plurality of used absorbent articles handled in this method to contain superabsorbent polymer, and it is sufficient that some of them contain superabsorbent polymer.
凝集物は、上記の構成材料の少なくとも一部がまとまって塊状になったものである。ただし、凝集物は、後述される振動により、少なくとも高吸水性ポリマーが分離され得る状態であり、好ましくは個々の構成材料に分離され得る状態である。凝集物の密度は、振動で分離できれば特に制限されるものではないが、下限としては、0.10g/cm3が挙げられ、好ましくは0.11g/cm3、より好ましくは0.12g/cm3、更に好ましくは0.13g/cm3、更により好ましくは0.15g/cm3が挙げられる。上限としては、1.5g/cm3が挙げられ、1.2g/cm3が好ましく、1.0g/cm3がより好ましく、0.80g/cm3が更により好ましい。密度が高過ぎると、構成材料同士が密着して凝集物が分解され難くなり、密度が低過ぎると、構成材料の量が少なくなり、回収率が低下する。
The aggregate is a lump formed by at least a part of the above-mentioned constituent materials. However, the aggregate is in a state where at least the superabsorbent polymer can be separated by vibration described later, and preferably in a state where it can be separated into individual constituent materials. The density of the aggregate is not particularly limited as long as it can be separated by vibration, but the lower limit is 0.10 g/cm 3 , preferably 0.11 g/cm 3 , more preferably 0.12 g/cm 3 , even more preferably 0.13 g/cm 3 , and even more preferably 0.15 g/cm 3. The upper limit is 1.5 g/cm 3 , preferably 1.2 g/cm 3 , more preferably 1.0 g/cm 3 , and even more preferably 0.80 g/cm 3. If the density is too high, the constituent materials will adhere to each other and the aggregate will be difficult to decompose, and if the density is too low, the amount of the constituent materials will be reduced and the recovery rate will decrease.
凝集物は湿潤な状態にあり、その凝集物の水分率は、振動で分離できれば特に制限されるものではないが、下限としては、10質量%が挙げられ、13質量が%好ましく、15質量%がより好ましく、20質量%が更により好ましい。上限としては、85質量%が挙げられ、80質量%が好ましく、75質量%以下がより好ましく、70質量%以下がより好ましい。ただし、凝集物の水分率の測定方法は、以下のとおりである。水分率が大き過ぎると、振動が減衰されて個々の個性材料に分離され難くなり、篩を用いている場合には、篩に貼り付き易くなり、篩の目詰まりや貼り付きによる回収率低下が生じ易く、生産効率も低下し易くなる。水分率が小さ過ぎると構成材料同士が直接水素結合して凝集物が分解され難くなる。
The aggregates are in a wet state, and the moisture content of the aggregates is not particularly limited as long as they can be separated by vibration, but the lower limit is 10% by mass, with 13% being preferred, 15% being more preferred, and 20% being even more preferred. The upper limit is 85% by mass, with 80% being preferred, with 75% by mass or less being more preferred, and 70% by mass or less being even more preferred. However, the method for measuring the moisture content of the aggregates is as follows. If the moisture content is too high, the vibration is attenuated and it becomes difficult to separate the individual materials, and if a sieve is used, the materials tend to stick to the sieve, which can easily cause clogging of the sieve or a decrease in the recovery rate due to sticking, and also tends to decrease production efficiency. If the moisture content is too low, the constituent materials are directly hydrogen bonded to each other, making it difficult to break down the aggregates.
<凝集物の水分率>
凝集物の水分率の測定方法は、以下のとおりである。
(1)凝集物を約5g秤取り、試料とする。
(2)上記の試料を、赤外線水分計(FD-720:株式会社ケツト科学研究所製)の試料台に載置する。
(3)水分計の設定温度を120℃として水分率を測定する。
なお、水分率(質量%)は、(乾燥前重量-乾燥後重量)/乾燥前重量×100で算出されている。 <Moisture content of aggregates>
The moisture content of the aggregates was measured as follows.
(1) Approximately 5 g of the aggregate is weighed out and used as a sample.
(2) The above sample is placed on the sample stage of an infrared moisture meter (FD-720, manufactured by Kett Electric Laboratory).
(3) Set the moisture meter to 120°C and measure the moisture content.
The moisture content (mass %) is calculated by (weight before drying - weight after drying) / weight before drying x 100.
凝集物の水分率の測定方法は、以下のとおりである。
(1)凝集物を約5g秤取り、試料とする。
(2)上記の試料を、赤外線水分計(FD-720:株式会社ケツト科学研究所製)の試料台に載置する。
(3)水分計の設定温度を120℃として水分率を測定する。
なお、水分率(質量%)は、(乾燥前重量-乾燥後重量)/乾燥前重量×100で算出されている。 <Moisture content of aggregates>
The moisture content of the aggregates was measured as follows.
(1) Approximately 5 g of the aggregate is weighed out and used as a sample.
(2) The above sample is placed on the sample stage of an infrared moisture meter (FD-720, manufactured by Kett Electric Laboratory).
(3) Set the moisture meter to 120°C and measure the moisture content.
The moisture content (mass %) is calculated by (weight before drying - weight after drying) / weight before drying x 100.
次に、分離工程S40について説明する。分離工程S40は、分離装置40により実行される。分離工程S40は、凝集物に振動を与えて、構成材料から高吸水性ポリマーを分離する工程である。分離装置40としては、凝集物に振動を与え、構成材料から高吸水性ポリマーを分離し得る装置(複数の装置の組み合わせを含む)であれば特に制限はない。
Next, the separation step S40 will be described. The separation step S40 is performed by the separation device 40. The separation step S40 is a step in which vibration is applied to the aggregate to separate the superabsorbent polymer from the constituent materials. There are no particular limitations on the separation device 40, so long as it is a device (including a combination of multiple devices) that can apply vibration to the aggregate and separate the superabsorbent polymer from the constituent materials.
振動は、凝集物が載置された容器や篩などを振動させることにより、それら容器や篩を介して凝集物に与える。振動の方向としては、載置面に平行な面内方向の横振動(載置面の幅方向及び/若しくは奥行方向)、載置面に垂直な方向の縦振動、並びに/又は、それらの組み合わせ(三次元の振動)が挙げられる。振動の振動数としては、分離可能であれば制限はないが、例えば、5Hz(300v.p.m)~500Hz(30000v.p.m)が挙げられ、好ましくは、10Hz(600v.p.m)~250Hz(15000v.p.m)であり、より好ましくは、15Hz(900v.p.m)~100Hz(6000v.p.m)である。
The vibration is applied to the aggregates through a container or sieve on which the aggregates are placed by vibrating the container or sieve. The direction of the vibration can be lateral vibration in a plane parallel to the placement surface (width and/or depth direction of the placement surface), vertical vibration in a direction perpendicular to the placement surface, and/or a combination of these (three-dimensional vibration). There is no restriction on the frequency of the vibration as long as it can be separated, but examples of the frequency include 5 Hz (300 v.p.m) to 500 Hz (30,000 v.p.m), preferably 10 Hz (600 v.p.m) to 250 Hz (15,000 v.p.m), and more preferably 15 Hz (900 v.p.m) to 100 Hz (6,000 v.p.m).
構成材料から高吸水性ポリマーを分離する場合、上記の振動と、高吸水性ポリマーと残りの構成材料との分離と、を同時に行ってもよいし、別々に行ってもよい。例えば、凝集物を容器内に入れて振動することで、構成材料が凝集した凝集物を、構成材料が互いに分離したばらけた状態で集合した集合体にし、その後、集合物をスクリーンなどで分離してもよいし、当初から、凝集物を篩いにかけて、振動と分離とを同時に行ってもよい。
When separating the superabsorbent polymer from the constituent materials, the vibration and the separation of the superabsorbent polymer from the remaining constituent materials may be performed simultaneously or separately. For example, the agglomerates of the constituent materials may be placed in a container and vibrated to turn the agglomerates into aggregates in which the constituent materials are separated from each other and gathered together, and the aggregates may then be separated using a screen or the like, or the agglomerates may be sieved from the beginning and vibration and separation may be performed simultaneously.
本方法では、高吸水性ポリマーは、不活化(脱水)されて、小さな粒子径を有する粒状物であるので、他の構成材料とは形状が大きく異なっている。また、その高吸水性ポリマーを含んだ構成材料を含有する凝集物は湿潤な状態であり、したがって、構成材料間には水分が存在する。それゆえ、高吸水性ポリマーは、他の構成材料と水素結合をほとんどしていない状態である。そのような状態の凝集物に振動を与えることで、他の構成材料とは形状が大きく異なり(小さく)、かつ、水素結合をしていない高吸水性ポリマーを、他の構成材料から容易に引き離して、分離することができる。すなわち、少なくとも高吸水性ポリマーと他の構成材料とを実質的にばらけた状態にすることができる。そのような状態を作ることで、構成材料の中から高吸水性ポリマーを選択的に取り出し易くすることができる。それにより、高吸水性ポリマーの回収率及び純度を向上させることができる。
In this method, the superabsorbent polymer is inactivated (dehydrated) and is in the form of a granule with a small particle size, so that its shape is significantly different from that of the other constituent materials. In addition, the aggregate containing the constituent materials containing the superabsorbent polymer is in a wet state, and therefore moisture is present between the constituent materials. Therefore, the superabsorbent polymer is in a state where it has almost no hydrogen bonds with the other constituent materials. By applying vibration to the aggregate in such a state, the superabsorbent polymer, which has a significantly different (smaller) shape from the other constituent materials and has no hydrogen bonds, can be easily separated from the other constituent materials. In other words, at least the superabsorbent polymer and the other constituent materials can be substantially separated. By creating such a state, it is possible to easily selectively extract the superabsorbent polymer from the constituent materials. This makes it possible to improve the recovery rate and purity of the superabsorbent polymer.
次に、再活性化工程S50について説明する。再活性化工程S50は、再活性化装置50により実行される。再活性化工程S50は、準備工程S30及び分離工程S40(高吸水性ポリマーを回収する方法)により得られた高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させることにより、高吸水性ポリマーを再活性化する。
Next, the reactivation step S50 will be described. The reactivation step S50 is carried out by a reactivation device 50. The reactivation step S50 reactivates the superabsorbent polymer by contacting the superabsorbent polymer obtained in the preparation step S30 and the separation step S40 (a method for recovering a superabsorbent polymer) with an alkali metal ion source capable of supplying alkali metal ions.
準備工程S30及び分離工程S40(高吸水性ポリマーを回収する方法)により得られた高吸水性ポリマーは、不活化されているため、吸水性が低く、そのままでは、水分を吸収するポリマーとしては使用し難い。そこで、再活性化工程S50により、不活化された高吸水性ポリマーとアルカリ金属イオン供給源とを互いに接触させることで、再活性化している。高吸水性ポリマーをアルカリ金属イオン供給源に接触させる場合、直接接触させてもよいし、アルカリ金属イオン供給源を含む水溶液に浸漬させてもよい。
The superabsorbent polymer obtained by the preparation step S30 and separation step S40 (method of recovering a superabsorbent polymer) is inactivated, and therefore has low water absorption, making it difficult to use as a polymer that absorbs moisture as is. Therefore, in the reactivation step S50, the inactivated superabsorbent polymer is reactivated by contacting it with an alkali metal ion source. When the superabsorbent polymer is brought into contact with the alkali metal ion source, it may be brought into direct contact with the alkali metal ion source, or it may be immersed in an aqueous solution containing the alkali metal ion source.
本方法は、上記の高吸水性ポリマーを回収する方法で得られた高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させて再活性化することにより、回収された高吸水性ポリマーを原料として、吸水性材料として利用可能なリサイクル高吸水性ポリマーを製造することができる。それにより、回収率及び純度が向上された高吸水性ポリマーを再活性化するので、リサイクル高吸水性ポリマーの回収率及び純度も向上できる。
In this method, the superabsorbent polymer obtained by the above-mentioned method for recovering a superabsorbent polymer is reactivated by contacting it with an alkali metal ion source capable of supplying alkali metal ions, and the recovered superabsorbent polymer can be used as a raw material to produce a recycled superabsorbent polymer that can be used as a water-absorbing material. This reactivates the superabsorbent polymer with improved recovery rate and purity, and therefore the recovery rate and purity of the recycled superabsorbent polymer can also be improved.
以下、各工程について、詳細に説明する。
Each process is explained in detail below.
本実施形態では準備工程S30は不活化工程S31と固液分離工程S32とを備える。
In this embodiment, the preparation process S30 includes an inactivation process S31 and a solid-liquid separation process S32.
まず、不活化工程S31について説明する。不活化工程S31は、不活化装置31により実行される。不活化工程S31は、構成材料中の高吸水性ポリマーの不活化を行う工程である。高吸水性ポリマーが使用済み衛生用品由来の物である場合、液体の排泄物のような水分を内部に吸収しているが、不活化により、それらを排出させる(脱水させる)。それにより、高吸水性ポリマーは、膨潤した状態から概ね粒状の状態へ変化する。したがって、不活化工程S31では、不活化された(脱水された)高吸水性ポリマーを含む構成材料(以下、単に「不活化物」ともいう。)が生成される。
First, the inactivation step S31 will be described. The inactivation step S31 is carried out by the inactivation device 31. The inactivation step S31 is a step for inactivating the superabsorbent polymer in the constituent material. When the superabsorbent polymer is derived from used sanitary products, it has absorbed moisture such as liquid excrement inside, but this is discharged (dehydrated) by inactivation. As a result, the superabsorbent polymer changes from a swollen state to a roughly granular state. Therefore, in the inactivation step S31, a constituent material containing an inactivated (dehydrated) superabsorbent polymer (hereinafter simply referred to as an "inactivated material") is produced.
本実施形態では、不活化工程S31は、第1脱水工程S311と、第2脱水工程S312と、希釈工程S313と、を備えている。第1脱水工程S311、第2脱水工程S312、及び、希釈工程S313は、それぞれ、不活化装置31の第1脱水装置311、第2脱水装置312、及び、希釈装置313により実行される。ただし、第1脱水装置311、第2脱水装置312、及び、希釈装置313は、互いに独立の装置であってもよいし、いずれか二つが一つの装置であってもよいし、全体として一つの装置であってもよい。
In this embodiment, the inactivation process S31 includes a first dehydration process S311, a second dehydration process S312, and a dilution process S313. The first dehydration process S311, the second dehydration process S312, and the dilution process S313 are respectively performed by the first dehydration device 311, the second dehydration device 312, and the dilution device 313 of the inactivation device 31. However, the first dehydration device 311, the second dehydration device 312, and the dilution device 313 may be independent devices, any two of them may be one device, or they may be one device as a whole.
まず、第1脱水工程S311について説明する。第1脱水工程S311(事前脱水工程)は、構成材料を、不活化剤である酸を含む水溶液、すなわち、酸性水溶液に浸漬させることにより、構成材料中の高吸水性ポリマーを不活化し、脱水させる。構成材料中の高吸水性ポリマーは、使用済み衛生用品由来であるので、その高吸水性ポリマーを、酸性水溶液に浸漬することで、不活化され、液体の排泄物などを排出させて、不活化された高吸水性ポリマーを形成する。
First, the first dehydration step S311 will be described. In the first dehydration step S311 (pre-dehydration step), the constituent material is immersed in an aqueous solution containing an acid as an inactivating agent, i.e., an acidic aqueous solution, to inactivate and dehydrate the superabsorbent polymer in the constituent material. The superabsorbent polymer in the constituent material is derived from used sanitary products, so the superabsorbent polymer is inactivated by immersing it in the acidic aqueous solution, and liquid waste and the like are expelled to form an inactivated superabsorbent polymer.
本方法では、不活化工程が、脱水工程の前に、構成材料を、酸性水溶液に浸漬させることで、構成材料中の高吸水性ポリマーを事前に脱水する事前脱水工程を更に有している。ここで、酸で高吸水性ポリマーを不活化(脱水)する場合、多価金属イオンで高吸水性ポリマーを不活化(脱水)する場合と比較して、高吸水性ポリマーの脱水率は低い(水分率は高い)。とはいえ、多価金属イオン供給源による脱水工程の前に、事前に、酸による事前脱水工程を実施することで、不活化工程で得られる高吸水性ポリマーの脱水率をより高く(水分率をより低く)することができる。
In this method, the inactivation step further includes a pre-dehydration step in which the constituent material is immersed in an acidic aqueous solution prior to the dehydration step to pre-dehydrate the superabsorbent polymer in the constituent material. When the superabsorbent polymer is inactivated (dehydrated) with an acid, the dehydration rate of the superabsorbent polymer is lower (the moisture content is higher) than when the superabsorbent polymer is inactivated (dehydrated) with a polyvalent metal ion. However, by carrying out a pre-dehydration step with an acid prior to the dehydration step with a polyvalent metal ion source, the dehydration rate of the superabsorbent polymer obtained in the inactivation step can be made higher (the moisture content can be made lower).
不活化剤である酸としては、特に限定されず、例えば、無機酸及び有機酸が挙げられる。酸を用いて高吸水性ポリマーを不活化すると、石灰、塩化カルシウム等を用いて高吸水性ポリマーを不活化する場合と比較して、高吸水性ポリマーを含む高税材料に灰分を残留させ難い。無機酸としては、例えば硫酸、塩酸及び硝酸が挙げられるが、塩素を含まない観点や、コスト等の観点から硫酸が好ましい。酸性水溶液の硫酸濃度は、特に限定されないが、例えば、0.1~0.5質量%以下が挙げられる。一方、有機酸としては、例えば、1分子中に複数個のカルボキシル基を有するカルボン酸(例示:クエン酸、酒石酸、リンゴ酸、コハク酸、シュウ酸)、1分子中に1個のカルボキシル基を有するカルボン酸(例示:グルコン酸、ペンタン酸、ブタン酸、プロピオン酸、グリコール酸、酢酸、蟻酸)、スルホン酸(例示:メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸)等が挙げられる。有機酸としては、排泄物等に含まれる2価以上の金属(例示:カルシウム)とキレート錯体を形成し易く、高吸水性ポリマー及びパルプ繊維に灰分を残留させ難い観点から、複数個のカルボキシル基を有することが好ましく、クエン酸がより好ましい。酸性水溶液のクエン酸濃度は、特に限定されないが、例えば0.5~4質量%が挙げられる。本実施形態では酸性水溶液における酸として硫酸を用いる。
The acid that is the inactivating agent is not particularly limited, and examples thereof include inorganic acids and organic acids. When the superabsorbent polymer is inactivated using an acid, it is difficult to leave ash in the high-tax material containing the superabsorbent polymer, compared to when the superabsorbent polymer is inactivated using lime, calcium chloride, or the like. Examples of inorganic acids include sulfuric acid, hydrochloric acid, and nitric acid, but sulfuric acid is preferred from the viewpoint of not containing chlorine and from the viewpoint of cost, etc. The sulfuric acid concentration of the acidic aqueous solution is not particularly limited, and examples thereof include 0.1 to 0.5 mass% or less. On the other hand, examples of organic acids include carboxylic acids having multiple carboxyl groups in one molecule (examples: citric acid, tartaric acid, malic acid, succinic acid, oxalic acid), carboxylic acids having one carboxyl group in one molecule (examples: gluconic acid, pentanoic acid, butanoic acid, propionic acid, glycolic acid, acetic acid, formic acid), sulfonic acids (examples: methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid), etc. As the organic acid, it is preferable that the organic acid has multiple carboxyl groups, and citric acid is more preferable, from the viewpoint of easily forming a chelate complex with a divalent or higher metal (e.g., calcium) contained in excrement and not easily leaving ash in the superabsorbent polymer and pulp fibers. The citric acid concentration of the acidic aqueous solution is not particularly limited, but may be, for example, 0.5 to 4% by mass. In this embodiment, sulfuric acid is used as the acid in the acidic aqueous solution.
酸性水溶液は、酸性であればよいが、所定のpHを有することが好ましい。所定のpHの上限としては、好ましくは4.5、より好ましくは4.0、さらに好ましくは3.5、さらにいっそう好ましくは3.0である。所定のpHが高過ぎると、高吸水性ポリマーの不活化が十分に行われず、高吸水性ポリマーが保持する水分(例示:液体の排泄物)の排出が不十分になり易く、他の構成材料との分離がし難くなり易い。一方、所定のpHの下限としては、好ましくは0.5、より好ましくは1.0である。所定のpHが低過ぎると、他の構成材料が損傷し易くなる。なお、本明細書において、pHは、25℃における値を意味する。また、pHは、pHメーター(例示:株式会社堀場製作所製のtwin AS-711)を用いて測定することができる。上記の所定のpHは、第1脱水工程S311の終了時点で測定するものとする。
The acidic aqueous solution may be acidic, but preferably has a predetermined pH. The upper limit of the predetermined pH is preferably 4.5, more preferably 4.0, even more preferably 3.5, and even more preferably 3.0. If the predetermined pH is too high, the highly absorbent polymer is not sufficiently inactivated, and the water held by the highly absorbent polymer (e.g., liquid excrement) is likely to be insufficiently discharged, making it difficult to separate the highly absorbent polymer from other constituent materials. On the other hand, the lower limit of the predetermined pH is preferably 0.5, more preferably 1.0. If the predetermined pH is too low, the other constituent materials are likely to be damaged. In this specification, pH refers to a value at 25°C. The pH can be measured using a pH meter (e.g., twin AS-711 manufactured by Horiba, Ltd.). The above-mentioned predetermined pH is measured at the end of the first dehydration step S311.
第1脱水工程S311を実行する第1脱水装置311としては、高吸水性ポリマーを、酸性水溶液に浸漬させることができれば、具体的な構成は特に限定されない。第1脱水装置311は、例えば、高吸水性ポリマーを含む構成材料を配置可能、かつ、酸性水溶液を貯留可能な槽を有する。第1脱水装置311では、その槽に酸性水溶液が貯留された後に、高吸水性ポリマーを含む構成材料が投入されてもよいし、その槽に高吸水性ポリマーを含む構成材料が配置された後に、酸性水溶液が投入されてもよい。
The first dehydration device 311 that performs the first dehydration step S311 is not particularly limited in its specific configuration as long as it can immerse the superabsorbent polymer in the acidic aqueous solution. The first dehydration device 311 has, for example, a tank in which a constituent material containing a superabsorbent polymer can be placed and in which an acidic aqueous solution can be stored. In the first dehydration device 311, the constituent material containing a superabsorbent polymer may be added after the acidic aqueous solution is stored in the tank, or the constituent material containing a superabsorbent polymer may be placed in the tank and then the acidic aqueous solution may be added.
第1脱水工程S311では、温度にもよるが、ムラなく反応を進行させるために、酸性水溶液を含む槽中で、高吸水性ポリマーを含む構成材料を、例えば、約5~60分攪拌することにより、高吸水性ポリマーを不活化できる。第1脱水工程S311では、酸性水溶液の温度は、特に制限がなく、例えば、室温(25℃)が挙げられ、好ましくは室温よりも高温、より好ましくは60~95℃、さらに好ましくは70~90℃である。酸性水溶液中の酸により、酸性水溶液に含まれる、排泄物等に由来する菌を除菌し易くなる。
In the first dehydration step S311, the constituent materials including the superabsorbent polymer are stirred in a tank containing the acidic aqueous solution for, for example, about 5 to 60 minutes to allow the reaction to proceed evenly, depending on the temperature, thereby inactivating the superabsorbent polymer. In the first dehydration step S311, the temperature of the acidic aqueous solution is not particularly limited, and may be, for example, room temperature (25°C), preferably higher than room temperature, more preferably 60 to 95°C, and even more preferably 70 to 90°C. The acid in the acidic aqueous solution makes it easier to disinfect bacteria contained in the acidic aqueous solution that originate from excrement, etc.
第1脱水工程S311では、得られる高吸水性ポリマーが、好ましくは80~99質量%、より好ましくは80~97質量%、そしてさらに好ましくは80~95質量%の水分率を有するように脱水することが好ましい。それにより、第2脱水工程S312で得られる高吸水ポリマーの水分率を下げやすくなる。
In the first dehydration step S311, it is preferable to dehydrate the resulting superabsorbent polymer so that it has a moisture content of preferably 80 to 99% by mass, more preferably 80 to 97% by mass, and even more preferably 80 to 95% by mass. This makes it easier to reduce the moisture content of the superabsorbent polymer obtained in the second dehydration step S312.
ただし、高吸水性ポリマーの水分率は、上述された<凝集物の水分率>と同様に、赤外線水分計(FD-720:株式会社ケツト科学研究所製)を用いて測定できる。
However, the moisture content of the superabsorbent polymer can be measured using an infrared moisture meter (FD-720: manufactured by Kett Electric Laboratory Co., Ltd.) in the same way as the moisture content of the aggregate described above.
本実施形態では、第1脱水工程S311は、構成材料中の高吸水性ポリマーを不活化し、脱水した後に、構成材料を酸性水溶液から分離(スクリーンなどによる固液分離)する酸分離工程を備えていてもよい。また、その後、高吸水性ポリマーを強酸(例示:pH1程度)などで不活化して、不活化の程度が十分であれば、構成材料を水で洗浄してもよい。すなわち、構成材料を、構成材料の数倍(例示:2~10倍)の質量の水(以下、「洗浄水」ともいう。)で洗浄し(複数回の洗浄でも可)、その洗浄水から構成材料を分離(スクリーンなどによる固液分離)する第1洗浄工程を更に備えていてもよい。
In this embodiment, the first dehydration step S311 may include an acid separation step in which the superabsorbent polymer in the constituent material is inactivated, dehydrated, and then the constituent material is separated from the acidic aqueous solution (solid-liquid separation using a screen or the like). The superabsorbent polymer may then be inactivated with a strong acid (e.g., pH 1 or so), and if the degree of inactivation is sufficient, the constituent material may be washed with water. That is, the first washing step may further include washing the constituent material with water (hereinafter also referred to as "washing water") several times (e.g., 2 to 10 times) the mass of the constituent material (multiple washings are also possible) and separating the constituent material from the washing water (solid-liquid separation using a screen or the like).
なお、第1脱水工程S311の処理の終了段階で、高吸水性ポリマーの水分率が85質量%未満になっている場合には、他の構成材料の水分も固液分離工程S32などで十分に除去されれば、その高吸水性ポリマーは分離工程S40で他の構成材料から分離し得る。その場合には、次の第2脱水工程S312(及び希釈工程S313)を省略し得る。
If the moisture content of the superabsorbent polymer is less than 85% by mass at the end of the first dehydration step S311, the superabsorbent polymer can be separated from the other constituent materials in the separation step S40 if the moisture in the other constituent materials is also sufficiently removed in the solid-liquid separation step S32 or the like. In that case, the subsequent second dehydration step S312 (and dilution step S313) can be omitted.
なお、構成材料中の高吸水性ポリマーを不活化するのに、第1脱水工程S311を省略して、第2脱水工程S312を実施してもよい。
In addition, to inactivate the superabsorbent polymer in the constituent material, the first dehydration step S311 may be omitted and the second dehydration step S312 may be carried out.
次に、第2脱水工程S312について説明する。第2脱水工程S312(脱水工程)は、構成材料を、不活化剤である多価金属イオンを供給可能な多価金属イオン供給源に接触させることにより、構成材料中の高吸水性ポリマーを更に不活化し、脱水させる。第1脱水工程S311後の高吸水性ポリマーを、更に多価金属イオン供給源の多価金属イオン(例示:カルシウムイオン)に接触させることで、より不活化され、液体の排泄物などをより排出させて、更に不活化された高吸水性ポリマーを形成する。
Next, the second dehydration step S312 will be described. In the second dehydration step S312 (dehydration step), the constituent material is brought into contact with a polyvalent metal ion source capable of supplying polyvalent metal ions as an inactivating agent, thereby further inactivating and dehydrating the superabsorbent polymer in the constituent material. The superabsorbent polymer after the first dehydration step S311 is further brought into contact with polyvalent metal ions (e.g. calcium ions) from the polyvalent metal ion source, thereby further inactivating the polymer and allowing more liquid waste and the like to be discharged, forming a further inactivated superabsorbent polymer.
本方法では、準備工程S30が、高吸水性ポリマーの不活化を行う不活化工程を含み、不活化工程は、構成材料を、多価金属イオンを供給可能な多価金属イオン供給源に接触させることで、構成材料中の高吸水性ポリマーを脱水させる第2脱水工程S312を有している。不活化(脱水)のために、多価金属イオン供給源を用いることで、より確実に、高吸水性ポリマーを不活化(脱水)し、小さな粒子径を有する粒状物とすることができる。
In this method, the preparation step S30 includes an inactivation step for inactivating the superabsorbent polymer, and the inactivation step has a second dehydration step S312 for dehydrating the superabsorbent polymer in the constituent material by contacting the constituent material with a polyvalent metal ion source capable of supplying polyvalent metal ions. By using a polyvalent metal ion source for inactivation (dehydration), the superabsorbent polymer can be more reliably inactivated (dehydrated) to form granules having a small particle size.
不活化剤である多価金属イオンとしては、アルカリ土類金属イオン、遷移金属イオン等が挙げられる。上記アルカリ土類金属イオンとしては、ベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン及びバリウムイオンが挙げられる。上記遷移金属イオンとしては、例えば、鉄イオン、コバルトイオン、ニッケルイオン、銅イオン等が挙げられる。
Examples of the polyvalent metal ions that are inactivating agents include alkaline earth metal ions and transition metal ions. Examples of the alkaline earth metal ions include beryllium ions, magnesium ions, calcium ions, strontium ions, and barium ions. Examples of the transition metal ions include iron ions, cobalt ions, nickel ions, and copper ions.
上記多価金属イオンがアルカリ土類金属イオンである場合に、上記多価金属イオンを供給可能な多価金属イオン供給源としては、アルカリ土類金属の水酸化物(例示:水酸化カルシウム、水酸化マグネシウム)、アルカリ土類金属の水酸化物及び酸の塩(例示:塩化カルシウム、硝酸カルシウム、塩化マグネシウム、硝酸マグネシウム)、アルカリ土類金属の酸化物(例示:酸化カルシウム、酸化マグネシウム)等が挙げられ、塩化カルシウムが好ましい。上記酸としては、第1脱水工程S311で説明した、酸性水溶液用の酸が挙げられる。
When the polyvalent metal ion is an alkaline earth metal ion, examples of polyvalent metal ion sources capable of supplying the polyvalent metal ion include alkaline earth metal hydroxides (e.g., calcium hydroxide, magnesium hydroxide), alkaline earth metal hydroxide and acid salts (e.g., calcium chloride, calcium nitrate, magnesium chloride, magnesium nitrate), alkaline earth metal oxides (e.g., calcium oxide, magnesium oxide), etc., with calcium chloride being preferred. Examples of the acid include the acid for the acidic aqueous solution described in the first dehydration step S311.
上記多価金属イオンが遷移金属イオンである場合に、上記多価金属イオンを供給可能な多価金属イオン供給源としては、遷移金属の水酸化物(例えば、水酸化鉄、水酸化コバルト、水酸化ニッケル、水酸化銅)、遷移金属の水酸化物及び酸の塩、遷移金属の酸化物(例えば、酸化鉄、酸化コバルト、酸化ニッケル、酸化銅)等が挙げられる。上記酸としては、第1脱水工程S311で説明した、酸性水溶液用の酸が挙げられる。
When the polyvalent metal ion is a transition metal ion, examples of polyvalent metal ion sources capable of supplying the polyvalent metal ion include transition metal hydroxides (e.g., iron hydroxide, cobalt hydroxide, nickel hydroxide, copper hydroxide), transition metal hydroxide and acid salts, transition metal oxides (e.g., iron oxide, cobalt oxide, nickel oxide, copper oxide), etc. Examples of the acid include the acid for the acidic aqueous solution described in the first dehydration step S311.
上記遷移金属の水酸化物及び酸の塩の具体例として、無機酸塩又は有機酸塩が挙げられる。上記無機酸塩としては、例えば、塩化鉄、硫酸鉄、燐酸鉄、硝酸鉄等の鉄塩、塩化コバルト、硫酸コバルト、燐酸コバルト、硝酸コバルト等のコバルト塩、塩化ニッケル、硫酸ニッケル等のニッケル塩、塩化銅、硫酸銅等の銅塩等が挙げられる。上記有機酸塩類としては、例えば、乳酸鉄、酢酸コバルト、ステアリン酸コバルト、酢酸ニッケル、酢酸銅等が挙げられる。
Specific examples of the hydroxides and acid salts of the transition metals include inorganic acid salts or organic acid salts. Examples of the inorganic acid salts include iron salts such as iron chloride, iron sulfate, iron phosphate, and iron nitrate; cobalt salts such as cobalt chloride, cobalt sulfate, cobalt phosphate, and cobalt nitrate; nickel salts such as nickel chloride and nickel sulfate; and copper salts such as copper chloride and copper sulfate. Examples of the organic acid salts include iron lactate, cobalt acetate, cobalt stearate, nickel acetate, and copper acetate.
第2脱水工程S312では、例えば、第1脱水工程S311で脱水された高吸水性ポリマーを、多価金属イオンを供給可能な多価金属イオン供給源そのものと直接接触させ、更に不活化(脱水)された高吸水性ポリマーを形成することができる。あるいは、第2脱水工程S312では、多価金属イオンを供給可能な多価金属イオン供給源を含む水溶液中で、第1脱水工程S311で脱水された高吸水性ポリマーを、温度にもよるが、約5~60分攪拌することにより、更に不活化(脱水)された高吸水性ポリマーを形成することができる。
In the second dehydration step S312, for example, the superabsorbent polymer dehydrated in the first dehydration step S311 can be directly contacted with a polyvalent metal ion source capable of supplying polyvalent metal ions to form a further inactivated (dehydrated) superabsorbent polymer. Alternatively, in the second dehydration step S312, the superabsorbent polymer dehydrated in the first dehydration step S311 can be stirred in an aqueous solution containing a polyvalent metal ion source capable of supplying polyvalent metal ions for about 5 to 60 minutes, depending on the temperature, to form a further inactivated (dehydrated) superabsorbent polymer.
第2脱水工程S312における多価金属イオン供給源を含む水溶液は、加温しなくても、そして加温してもよい。また、その多価金属イオン供給源を含む水溶液の温度は、加温しない場合には、特に制限がなく、例えば、室温(25℃)~40℃、60℃未満等であることができる。加温する場合には、好ましくは室温よりも高温、より好ましくは60~100℃、さらに好ましくは70~95℃、そしてさらにいっそう好ましくは80~90℃である。多価金属イオン供給源の水への溶解性が低い場合には、加温とすることにより、多価金属イオン供給源から効率よく多価金属イオンを供給し、更に不活化(脱水)された高吸水性ポリマーの形成を促進することができる。
The aqueous solution containing the polyvalent metal ion source in the second dehydration step S312 may or may not be heated. In addition, the temperature of the aqueous solution containing the polyvalent metal ion source is not particularly limited when it is not heated, and can be, for example, room temperature (25°C) to 40°C, or less than 60°C. When it is heated, it is preferably higher than room temperature, more preferably 60 to 100°C, even more preferably 70 to 95°C, and even more preferably 80 to 90°C. When the solubility of the polyvalent metal ion source in water is low, heating can efficiently supply polyvalent metal ions from the polyvalent metal ion source and further promote the formation of an inactivated (dehydrated) highly water-absorbent polymer.
第2脱水工程S312では、得られる高吸水性ポリマーが、好ましくは50~80質量%、より好ましくは50~75質量%、そしてさらに好ましくは50~70質量%の水分率を有するように、第1脱水工程S311で脱水された高吸水性ポリマーを更に不活化(脱水)する。それにより、得られる高吸水性ポリマー中の排泄物の残存量を少なくすることができると共に、その高吸水性ポリマーから、リサイクル高吸水性ポリマーを形成しやすくなる。なお、その高吸水性ポリマーの水分率が低過ぎると、再活性化工程S50において、その高吸水性ポリマーが、アルカリ金属イオン供給源と反応し難くなり、サイクル高吸水性リポリマーを形成し難くなる。一方、その高吸水性ポリマーの水分率が高過ぎると、分離工程S40において、その高吸水性ポリマーが、他の構成材料から分離し難くなる。
In the second dehydration step S312, the superabsorbent polymer dehydrated in the first dehydration step S311 is further inactivated (dehydrated) so that the resulting superabsorbent polymer has a moisture content of preferably 50 to 80% by mass, more preferably 50 to 75% by mass, and even more preferably 50 to 70% by mass. This reduces the amount of waste remaining in the resulting superabsorbent polymer, and makes it easier to form a recycled superabsorbent polymer from the superabsorbent polymer. If the moisture content of the superabsorbent polymer is too low, it becomes difficult for the superabsorbent polymer to react with the alkali metal ion source in the reactivation step S50, making it difficult to form a recycled superabsorbent polymer. On the other hand, if the moisture content of the superabsorbent polymer is too high, it becomes difficult for the superabsorbent polymer to be separated from other constituent materials in the separation step S40.
第2脱水工程S312を実行する第2脱水装置312としては、高吸水性ポリマーを、上記多価金属イオンに浸漬させることができれば、具体的な構成は特に限定されない。第2脱水装置312は、例えば、高吸水性ポリマーを含む構成材料を配置可能、かつ、多価金属イオン供給源又は多価金属イオン供給源を含む水溶液を貯留可能な槽を有する。第2脱水装置312では、その槽に多価金属イオン供給源又は多価金属イオン供給源を含む水溶液が貯留された後に、高吸水性ポリマーを含む構成材料が投入されてもよいし、その槽に高吸水性ポリマーを含む構成材料が配置された後に、多価金属イオン供給源又は多価金属イオン供給源を含む水溶液が投入されてもよい。
The second dehydration device 312 that performs the second dehydration step S312 is not particularly limited in its specific configuration as long as it can immerse the superabsorbent polymer in the polyvalent metal ions. The second dehydration device 312 has, for example, a tank in which a constituent material containing a superabsorbent polymer can be placed and in which a polyvalent metal ion source or an aqueous solution containing a polyvalent metal ion source can be stored. In the second dehydration device 312, the constituent material containing a superabsorbent polymer may be added after the polyvalent metal ion source or the aqueous solution containing a polyvalent metal ion source is stored in the tank, or the constituent material containing a superabsorbent polymer may be placed in the tank and then the polyvalent metal ion source or the aqueous solution containing a polyvalent metal ion source may be added.
第2脱水工程S312において、第1脱水工程S311で脱水された高吸水性ポリマーを、多価金属イオン供給源を含む水溶液と接触させるとき、例えば、その高吸水性ポリマーを、その水溶液に投入する場合には、その水溶液における多価金属イオン供給源の濃度は、好ましくは1.0~30.0質量%、より好ましくは3.0~25.0質量%、そして好ましくは5.0~20.0質量%である。それにより、第2脱水工程S312で得られる高吸水性ポリマーが所望の水分率を有しやすくなる。
In the second dehydration step S312, when the superabsorbent polymer dehydrated in the first dehydration step S311 is brought into contact with an aqueous solution containing a polyvalent metal ion source, for example when the superabsorbent polymer is put into the aqueous solution, the concentration of the polyvalent metal ion source in the aqueous solution is preferably 1.0 to 30.0% by mass, more preferably 3.0 to 25.0% by mass, and preferably 5.0 to 20.0% by mass. This makes it easier for the superabsorbent polymer obtained in the second dehydration step S312 to have the desired moisture content.
本実施形態では、第2脱水工程S312は、構成材料中の高吸水性ポリマーを不活化し、脱水した後に、構成材料を、多価金属イオンを含む水溶液から分離(スクリーンなどによる固液分離)する多価金属イオン分離工程を備えていてもよい。また、その後、構成材料を、その数倍(例示:2~10倍)の質量の水(以下、「洗浄水」ともいう。)で洗浄し(複数回の洗浄も可)、その洗浄水から構成材料を分離(スクリーンなどによる固液分離)する第2洗浄工程を更に備えていてもよい。
In this embodiment, the second dehydration step S312 may include a polyvalent metal ion separation step in which the superabsorbent polymer in the constituent material is inactivated, the constituent material is dehydrated, and then the constituent material is separated from the aqueous solution containing the polyvalent metal ions (solid-liquid separation using a screen or the like). The second dehydration step may further include a second washing step in which the constituent material is washed (multiple washings are also possible) with several times (e.g., 2 to 10 times) the mass of water (hereinafter also referred to as "washing water") and the constituent material is separated from the washing water (solid-liquid separation using a screen or the like).
次に、希釈工程S313について説明する。希釈工程S313は、第2脱水工程S312(又は第1脱水工程S311)で得られた、不活化された高吸水性ポリマーを含む構成材料を構成材料の数倍(例示:2~10倍)の質量の水(以下、「希釈水」ともいう。)で希釈する。それにより、後続の固液分離工程S32において、固液分離が容易となる。
Next, the dilution step S313 will be described. In the dilution step S313, the constituent material containing the inactivated superabsorbent polymer obtained in the second dehydration step S312 (or the first dehydration step S311) is diluted with water (hereinafter also referred to as "diluted water") in an amount several times (e.g., 2 to 10 times) the mass of the constituent material. This makes solid-liquid separation easier in the subsequent solid-liquid separation step S32.
なお、希釈工程S313を省略してもよい。その場合であって、第2脱水工程S312を省略する場合には、第1脱水工程S311の第1洗浄工程(ただし、固液分離を行わない)を希釈工程S313の代わりとしてもよい。あるいは、第2脱水工程S312の第2洗浄工程(ただし、固液分離を行わない)を希釈工程S313の代わりとしてもよい。
The dilution step S313 may be omitted. In that case, if the second dehydration step S312 is omitted, the first washing step of the first dehydration step S311 (however, solid-liquid separation is not performed) may be substituted for the dilution step S313. Alternatively, the second washing step of the second dehydration step S312 (however, solid-liquid separation is not performed) may be substituted for the dilution step S313.
希釈工程S313を実行する希釈装置313としては、構成材料を、その数倍の質量の水に浸漬させることができれば、具体的な構成は特に限定されない。希釈装置313は、例えば、構成材料及び水を貯留可能な槽を有する。なお、第1脱水装置311、第2脱水装置312、及び、希釈装置313のうちの少なくとも二つの装置として、同一の槽を有してもよい。
The dilution device 313 that performs the dilution process S313 is not particularly limited in its specific configuration, as long as it can immerse the constituent materials in water several times its mass. The dilution device 313 has, for example, a tank that can store the constituent materials and water. Note that at least two of the first dehydration device 311, the second dehydration device 312, and the dilution device 313 may have the same tank.
また、希釈工程S313において、高吸水性ポリマーを含む構成材料を酸化剤で処理する酸化剤処理工程を有していてもよい。酸化剤としては、構成材料中の高吸水性ポリマーの表面に付着している不純物(例示:臭気物質、有色物質、雑菌)を除去可能であれば特に制限はないが、例えば、オゾンや過酸化水素が挙げられる。酸化剤を水に混入して水溶液として使用する場合、水溶液中の酸化剤の濃度は、例えば0.3~2質量ppmが挙げられる。本実施形態では、不活化された高吸水性ポリマーを含む構成材料を、酸化剤の水溶液、すなわちオゾンを所定濃度だけ含むオゾン水に、所定の時間だけ接触(浸漬)させることで、高吸水性ポリマーの表面の不純物が除去される。
The dilution step S313 may also include an oxidizing agent treatment step in which the constituent material containing the superabsorbent polymer is treated with an oxidizing agent. The oxidizing agent is not particularly limited as long as it can remove impurities (e.g., odorous substances, colored substances, and germs) adhering to the surface of the superabsorbent polymer in the constituent material, and examples of the oxidizing agent include ozone and hydrogen peroxide. When the oxidizing agent is mixed with water and used as an aqueous solution, the concentration of the oxidizing agent in the aqueous solution may be, for example, 0.3 to 2 ppm by mass. In this embodiment, the constituent material containing the inactivated superabsorbent polymer is contacted (immersed) for a predetermined time with an aqueous solution of the oxidizing agent, i.e., ozone water containing a predetermined concentration of ozone, to remove impurities on the surface of the superabsorbent polymer.
オゾン水中のオゾン濃度は、高吸水性ポリマーの表面に付着している菌や他の有機物などを除去することができる濃度であれば、特に限定されないが、好ましくは0.3~2質量ppm、より好ましくは0.5~1.5質量ppmである。濃度が低過ぎると、菌等の除去が難しくなり、濃度が高過ぎると、高吸水性ポリマーが分解し始めるおそれがある。オゾン水と高吸水性ポリマーとの接触時間は、高吸水性ポリマーの表面に付着している菌や他の有機物などを除去することができる時間であれば、特に限定されないが、オゾン水中のオゾン濃度が高ければ短く、オゾン濃度が低ければ長くする。その接触時間は、好ましくは0.3秒~15分、より好ましくは3秒~10分である。オゾン水中のオゾン濃度(質量ppm)と接触時間(分)の積(以下「CT値」ともいう。)は、好ましくは0.01~20ppm・分、より好ましくは0.08~10ppm・分である。CT値が小さ過ぎると、除菌が難しくなり、CT値が大き過ぎると、高吸水性ポリマーが分解するおそれがある。ただし、オゾン水による処理では、高吸水性ポリマーの表面に付着している不純物を除去することにより、菌などの除去と共に漂白も行うことができる。オゾンを水中に供給するオゾン発生装置としては、例えばエコデザイン株式会社製オゾン水曝露試験機ED-OWX-2、三菱電機株式会社製オゾン発生装置OS-25V等が挙げられる。
The ozone concentration in the ozone water is not particularly limited as long as it is a concentration that can remove bacteria and other organic matter adhering to the surface of the superabsorbent polymer, but is preferably 0.3 to 2 mass ppm, more preferably 0.5 to 1.5 mass ppm. If the concentration is too low, it becomes difficult to remove bacteria, and if the concentration is too high, the superabsorbent polymer may begin to decompose. The contact time between the ozone water and the superabsorbent polymer is not particularly limited as long as it is a time that can remove bacteria and other organic matter adhering to the surface of the superabsorbent polymer, but it is shorter if the ozone concentration in the ozone water is high and longer if the ozone concentration is low. The contact time is preferably 0.3 seconds to 15 minutes, more preferably 3 seconds to 10 minutes. The product of the ozone concentration (mass ppm) and the contact time (minutes) in the ozone water (hereinafter also referred to as the "CT value") is preferably 0.01 to 20 ppm/minute, more preferably 0.08 to 10 ppm/minute. If the CT value is too small, sterilization becomes difficult, and if the CT value is too large, the superabsorbent polymer may decompose. However, treatment with ozone water can remove impurities adhering to the surface of the superabsorbent polymer, and can also remove bacteria and bleach the polymer. Examples of ozone generators that supply ozone into water include the ED-OWX-2 Ozone Water Exposure Tester manufactured by Ecodesign Co., Ltd. and the OS-25V Ozone Generator manufactured by Mitsubishi Electric Corporation.
酸化剤処理工程では、ムラなく反応を進行させるため、高吸水性ポリマーを含むオゾン水を槽中で攪拌してもよい。酸化剤処理工程ではオゾン水の温度は、特に制限がなく、例えば、室温(25℃)が挙げられ、好ましくは10~40℃である。オゾン水は高温にし過ぎるとオゾンがガスとして抜け易くなり失活し易くなり、低温にし過ぎるとオゾン処理の時間が長くなり易くなる。それにより、オゾン水のオゾンにより、高吸水性ポリマー表面に付着した菌や有機物を除去し易くなる。
In the oxidizing agent treatment step, the ozone water containing the superabsorbent polymer may be stirred in a tank to ensure that the reaction proceeds evenly. There are no particular limitations on the temperature of the ozone water in the oxidizing agent treatment step, and it may be room temperature (25°C), for example, and is preferably 10 to 40°C. If the ozone water is too hot, the ozone will easily escape as a gas and become inactivated, and if it is too cold, the ozone treatment time will tend to be longer. This makes it easier to remove bacteria and organic matter attached to the surface of the superabsorbent polymer with the ozone in the ozone water.
酸化剤処理工程を実行する酸化剤処理装置としては、不活化された高吸水性ポリマーを、形状を壊さずにオゾン水に接触(又は浸漬)させることができれば、具体的な構成は特に限定されない。酸化剤処理装置としては、例えば、二軸スクリューポンプ(BQ型:伏虎金属工業株式会社製)が挙げられる。二軸スクリューポンプは容積式自吸ポンプである。二軸スクリューポンプは、ケーシングと、ケーシング内の部屋に配置され、互いに平行に延びる二軸のスクリューと、を備える。高吸水性ポリマーを含むオゾン水は、部屋内に供給され、径方向から、二軸のスクリューに到達した後、二軸のスクリューの回転によって軸方向に押し出され、吐出される。
The oxidant treatment device that performs the oxidant treatment process is not particularly limited in its specific configuration, as long as it can bring the inactivated superabsorbent polymer into contact (or immerse) the ozone water without destroying its shape. An example of an oxidant treatment device is a twin-shaft screw pump (BQ type: manufactured by Futora Metal Industries Co., Ltd.). The twin-shaft screw pump is a positive displacement self-priming pump. The twin-shaft screw pump comprises a casing and twin screws that are arranged in a chamber within the casing and extend parallel to each other. The ozone water containing the superabsorbent polymer is supplied into the chamber, reaches the twin screws from the radial direction, and is then pushed out in the axial direction by the rotation of the twin screws and discharged.
次に、固液分離工程S32について説明する。固液分離工程S32は、固液分離装置32により実行される。固液分離工程S32は、不活化された高吸水性ポリマーを含んだ構成材料を含有する水溶液に、固液分離を行い、固体である凝集物と液体とを得る。本実施形態では、不活化された高吸水性ポリマーを含んだ構成材料は、第1脱水工程S311及び/又は第2脱水工程S312で不活化された高吸水性ポリマーを含んだ構成材料である。水溶液は、第1脱水工程S311の洗浄水(例示:2回目以降の洗浄水、第2脱水工程S312を行わない場合)、第2脱水工程S312の洗浄水(例示:2回目以降の洗浄水)、希釈工程S313の希釈水が挙げられる。
Next, the solid-liquid separation process S32 will be described. The solid-liquid separation process S32 is performed by the solid-liquid separation device 32. In the solid-liquid separation process S32, solid-liquid separation is performed on an aqueous solution containing a constituent material containing an inactivated superabsorbent polymer to obtain a solid aggregate and a liquid. In this embodiment, the constituent material containing an inactivated superabsorbent polymer is a constituent material containing a superabsorbent polymer inactivated in the first dehydration process S311 and/or the second dehydration process S312. Examples of the aqueous solution include the washing water of the first dehydration process S311 (e.g., washing water from the second dehydration process onward, when the second dehydration process S312 is not performed), the washing water of the second dehydration process S312 (e.g., washing water from the second dehydration process onward), and the dilution water of the dilution process S313.
本方法では、準備工程S30が、不活化された高吸水性ポリマーを含んだ構成材料を含有する水溶液を、固液分離して、固体である凝集物を得る固液分離工程S32を備えている。ここで、凝集物(固体)は、構成材料で形成されており、水分を保持し得る。そのため、凝集物中の液体(水分)の量を適度な量に抑えて、適度な湿潤な状態を作ることができる。それにより、凝集物中の水分の量が多過ぎて振動が減衰されたり、少な過ぎて構成材料間の水素結合が強すぎたりして、高吸水性ポリマーと他の構成材料とを実質的にばらけた状態することができず、高吸水性ポリマーが分離し難くなることを抑制できる
In this method, the preparation step S30 includes a solid-liquid separation step S32 in which an aqueous solution containing constituent materials including an inactivated superabsorbent polymer is subjected to solid-liquid separation to obtain a solid aggregate. Here, the aggregate (solid) is formed from the constituent materials and can retain moisture. Therefore, the amount of liquid (moisture) in the aggregate can be kept to an appropriate amount to create an appropriate moist state. This prevents the superabsorbent polymer from being substantially separated from the other constituent materials due to the amount of moisture in the aggregate being too much, which would dampen vibrations, or the amount being too little, which would cause the hydrogen bonds between the constituent materials to be too strong, making it difficult to separate the superabsorbent polymer.
固液分離工程S32における固液分離方法としては、固体として、不活化された高吸水性ポリマーを含む構成材料の凝集物が得られ、液体として水溶液が得られる方法であれば、特に制限はない。その固液分離方法を実現する装置としては、例えば、遠心分離装置、真空脱水装置、多重円板脱水装置、スクリュープレス、ロータリードラムスクリーンなどが挙げられる。言い換えると、固液分離工程S32における固液分離方法としては、これらの装置で行われる固液分離方法を用いることができる。
The solid-liquid separation method in the solid-liquid separation step S32 is not particularly limited as long as it is a method that can obtain, as a solid, an aggregate of constituent materials containing an inactivated highly absorbent polymer, and as a liquid, an aqueous solution. Examples of devices that can realize such a solid-liquid separation method include a centrifugal separator, a vacuum dehydrator, a multiple disk dehydrator, a screw press, and a rotary drum screen. In other words, the solid-liquid separation method in the solid-liquid separation step S32 can be a solid-liquid separation method performed by these devices.
固液分離工程S32における固液分離方法としては、遠心分離装置を用いた方法(遠心分離法)が好ましい。本実施形態では、ギナ遠心分離装置を用いた方法(例示:IHI社製:N型ギナ連続遠心分離装置)を用いる。したがって、固液分離工程S32は、固液分離として構成材料を含有する水溶液の遠心分離を行い、凝集物と液体とを得る遠心分離工程を含んでいる。ギナ遠心分離装置では、回転速度により、分離される凝集物の水分率を調整できる。
As a solid-liquid separation method in the solid-liquid separation step S32, a method using a centrifugal separator (centrifugal separation method) is preferable. In this embodiment, a method using a Guiner centrifuge is used (example: N-type Guiner continuous centrifuge, manufactured by IHI Corporation). Therefore, the solid-liquid separation step S32 includes a centrifugation step in which an aqueous solution containing the constituent materials is centrifuged as a solid-liquid separation to obtain an aggregate and liquid. In the Guiner centrifuge, the moisture content of the separated aggregate can be adjusted by the rotation speed.
本方法では、固液分離として、構成材料を含有する水溶液の遠心分離を行う遠心分離工程を含んでいる。遠心分離では、構成材料に掛かる力の制御が比較的容易であるため、高吸水性ポリマーが潰れないようにし易く、かつ凝集物に含まれる水分(水分率)を所望の数値範囲に調整し易い。それにより、高吸水性ポリマーの損傷を抑えつつ、凝集物を適度な湿潤な状態にすることができる。更に、遠視分離では、構成材料に掛かる力の制御が比較的容易であるため、凝集物の密度を所望の数値範囲に調整し易い。
This method includes a centrifugation step for centrifuging an aqueous solution containing the constituent materials as a solid-liquid separation step. In centrifugation, it is relatively easy to control the force applied to the constituent materials, so it is easy to prevent the superabsorbent polymer from being crushed, and it is also easy to adjust the moisture content (moisture content) of the aggregates to a desired range. This makes it possible to keep the aggregates in an appropriately moist state while minimizing damage to the superabsorbent polymer. Furthermore, in centrifugal separation, it is relatively easy to control the force applied to the constituent materials, so it is easy to adjust the density of the aggregates to a desired range.
遠心分離により調整される凝集物の水分率としては、10質量%以上、85質量%未満が挙げられ、好ましくは、15質量%以上、80質量%以下であり、より好ましくは、20質量%以上、75質量%以下である。また、遠心分離により調整される凝集物の密度としては、0.1g/cm3以上、1.5g/cm3以下が挙げられ、0.13g/cm3以上、1.2g/cm3以下が好ましく、0.15g/cm3以上、1.0g/cm3以下がより好ましい。
The moisture content of the aggregate adjusted by centrifugation is 10% by mass or more and less than 85% by mass, preferably 15% by mass or more and 80% by mass or less, more preferably 20% by mass or more and 75% by mass or less. The density of the aggregate adjusted by centrifugation is 0.1 g/ cm3 or more and 1.5 g/cm3 or less, preferably 0.13 g/ cm3 or more and 1.2 g/ cm3 or less, and more preferably 0.15 g/ cm3 or more and 1.0 g/ cm3 or less.
固液分離工程S32(遠心分離工程)で分離された高吸水性ポリマーの水分率は、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。水分率は、低ければ低いほど良いので、特に下限はないが、例えば(現実的には)50質量%以上である。
The moisture content of the superabsorbent polymer separated in the solid-liquid separation step S32 (centrifugal separation step) is preferably 80% by mass or less, more preferably 75% by mass or less, and even more preferably 70% by mass or less. The lower the moisture content, the better, so there is no particular lower limit, but it is (in reality) 50% by mass or more, for example.
本方法では、遠心分離工程後の高吸水性ポリマーの水分率が80質量%以下であるため、高吸水性ポリマーは小さな粒子径を有する粒状物となっている。また、遠心分離工程の前後で不活化された高吸水性ポリマーの水分率がほとんど変化しないと考えると、遠心分離工程後の高吸水性ポリマーの水分率が80質量%以下であるので、遠心分離工程前の高吸水性ポリマーの水分率も概ね80質量%以下といえる。すなわち、高吸水性ポリマーがほとんど水分を含有していない状態で遠心分離を行うため、固液分離(遠心分離)において、高吸水性ポリマーを損傷し難くすることができる。それにより、分離工程S40において、高吸水性ポリマーをより回収し易くすることができる。
In this method, the moisture content of the superabsorbent polymer after the centrifugation process is 80% by mass or less, so the superabsorbent polymer is in the form of granules with a small particle size. Also, considering that the moisture content of the inactivated superabsorbent polymer hardly changes before and after the centrifugation process, since the moisture content of the superabsorbent polymer after the centrifugation process is 80% by mass or less, it can be said that the moisture content of the superabsorbent polymer before the centrifugation process is also roughly 80% by mass or less. In other words, because the centrifugation is performed in a state in which the superabsorbent polymer contains almost no moisture, the superabsorbent polymer can be made less likely to be damaged during solid-liquid separation (centrifugation). This makes it easier to recover the superabsorbent polymer in the separation process S40.
次に、分離工程S40について説明する。分離工程S40は、篩分離工程S41を備える。篩分離工程S41は、凝集物を、高吸水性ポリマーが通過可能な目を有する、振動する篩にかける工程である。篩分離工程S41は、篩分離装置41(篩装置)により実行される。篩分離装置41としては、凝集物に振動を与えて、構成材料から高吸水性ポリマーを分離し得る篩(複数の篩の組み合わせを含む)であれば特に制限はない。
Next, the separation process S40 will be described. The separation process S40 includes a sieving process S41. The sieving process S41 is a process in which the agglomerates are passed through a vibrating sieve with meshes through which the superabsorbent polymer can pass. The sieving process S41 is performed by a sieving device 41 (sieving device). There are no particular limitations on the sieving device 41, so long as it is a sieve (including a combination of multiple sieves) that can vibrate the agglomerates and separate the superabsorbent polymer from the constituent materials.
篩分離装置41(篩装置)は、篩を振動させることにより、篩を介して篩上の凝集物に振動を与える。本実施形態では、篩分離装置41としては、佐藤式振動篩機(カセット型:ケイエスリンクス株式会社製)を用いる。振動の方向としては、篩面に平行な面内方向の横振動(篩面の幅方向及び/若しくは奥行方向)、篩面に垂直な方向の縦振動、並びに/又は、それらの組み合わせ(三次元の振動)が挙げられる。篩分離装置41は、振動を発生させる振動体と、一端を振動体の上部に取り付けられた上部ウエイトと、一端を振動体の下部に取り付けられた下部ウエイトとを備えている。上部ウエイトの回転は、篩面の中心に供給された物質を回転方向に移動させる役割を有し、下部ウエイトの回転は、篩面の垂直振動を発生させて外周方向に移動させる役割を有する。篩の振動のさせ方には、上部ウエイトの他端の位置と下部ウエイトの他端の位置との相対的な位置関係(位相差)により行う。
The sieve separation device 41 (sieve device) vibrates the sieve to vibrate the aggregates on the sieve through the sieve. In this embodiment, a Sato-type vibrating sieve machine (cassette type: manufactured by KS Links Co., Ltd.) is used as the sieve separation device 41. The vibration direction can be a lateral vibration in a plane parallel to the sieve surface (width direction and/or depth direction of the sieve surface), a vertical vibration in a direction perpendicular to the sieve surface, and/or a combination thereof (three-dimensional vibration). The sieve separation device 41 is equipped with a vibrating body that generates vibrations, an upper weight with one end attached to the upper part of the vibrating body, and a lower weight with one end attached to the lower part of the vibrating body. The rotation of the upper weight has the role of moving the material supplied to the center of the sieve surface in the rotational direction, and the rotation of the lower weight has the role of generating a vertical vibration of the sieve surface to move it in the outer circumferential direction. The sieve is vibrated by adjusting the relative position (phase difference) between the other end of the upper weight and the other end of the lower weight.
振動の振幅としては、篩面に平行な面内方向の横振動(篩面の幅方向及び/若しくは奥行方向)の振幅では、例えば、1~20mmが挙げられ、1.5~15mmが好ましく、3~10mmがより好ましい。篩面に垂直な方向の縦振動の振幅では、例えば、0.5~20mmが挙げられ、1~15mmが好ましく、2~10mmがより好ましい。篩の振動数としては、例えば、5Hz(300v.p.m)~500Hz(60000v.p.m)が挙げられ、好ましくは、10Hz(600v.p.m)~250Hz(15000v.p.m)であり、より好ましくは、15Hz(900v.p.m)~100Hz(6000v.p.m)である。
The amplitude of the vibration is, for example, 1 to 20 mm for the lateral vibration in the in-plane direction parallel to the sieve surface (the width direction and/or depth direction of the sieve surface), preferably 1.5 to 15 mm, and more preferably 3 to 10 mm. The amplitude of the vertical vibration in the direction perpendicular to the sieve surface is, for example, 0.5 to 20 mm, preferably 1 to 15 mm, and more preferably 2 to 10 mm. The vibration frequency of the sieve is, for example, 5 Hz (300 v.p.m) to 500 Hz (60,000 v.p.m), preferably 10 Hz (600 v.p.m) to 250 Hz (15,000 v.p.m), and more preferably 15 Hz (900 v.p.m) to 100 Hz (6,000 v.p.m).
本方法では、高吸水性ポリマーは、他の構成材料とは形状が大きく異なり(小さく)、水素結合をほとんどしていない状態である。そのため、高吸水性ポリマーを篩に掛けると、篩の振動により、高吸水性ポリマーを他の構成材料からより容易に引き離すことができる。すなわち、高吸水性ポリマーと他の構成材料とを実質的にばらけた状態にすることができる。そのような状態を篩の上で作ることで、引き離された高吸水性ポリマーを他の構成材料からより容易に篩い分けることができる。それにより、構成材料の中から高吸水性ポリマーを選択的に取り出すことができ、高吸水性ポリマーの回収率及び純度を向上させることができる。その場合、例えば、パルプ繊維やシート部材(フィルム・不織布など)のような他の構成材料は、篩の上に残って回収され、高吸水性ポリマーは、篩の下に落ちて回収される。なお、パルプ繊維及びシート部材(フィルム・不織布など)は、他の篩により、更にそれぞれに分離されてもよい。
In this method, the superabsorbent polymer has a shape that is significantly different (smaller) from the other constituent materials, and is in a state in which it has almost no hydrogen bonds. Therefore, when the superabsorbent polymer is sieved, the vibration of the sieve makes it easier to separate the superabsorbent polymer from the other constituent materials. In other words, the superabsorbent polymer and the other constituent materials can be substantially separated. By creating such a state on the sieve, the separated superabsorbent polymer can be more easily sieved from the other constituent materials. This makes it possible to selectively extract the superabsorbent polymer from the constituent materials, and improve the recovery rate and purity of the superabsorbent polymer. In this case, for example, other constituent materials such as pulp fibers and sheet members (films, nonwoven fabrics, etc.) remain on the sieve and are collected, and the superabsorbent polymer falls below the sieve and is collected. The pulp fibers and sheet members (films, nonwoven fabrics, etc.) may be further separated from each other by another sieve.
本実施形態では、好ましい態様として、分離工程S40の篩分離工程S41において、篩の振動が、縦振動、すなわち、篩面に垂直な方向の振動だけではなく、横振動、すなわち、篩面に平行な面内方向の振動を含んでいる。そのため、凝集物を篩面に垂直な方向だけでなく、平行な方向にも揺することができる。それにより、高吸水性ポリマーを他の構成材料からより容易に引き離すことができ、高吸水性ポリマーと他の構成材料とをより容易に実質的にばらけた状態にすることができる。そのような状態を篩の上で作ることで、引き離された高吸水性ポリマーを他の構成材料からより容易に篩い分けることができる。
In this embodiment, as a preferred aspect, in the sieve separation step S41 of the separation step S40, the vibration of the sieve includes not only vertical vibration, i.e., vibration in a direction perpendicular to the sieve surface, but also horizontal vibration, i.e., vibration in an in-plane direction parallel to the sieve surface. Therefore, the aggregates can be shaken not only in a direction perpendicular to the sieve surface, but also in a direction parallel to it. This makes it easier to separate the superabsorbent polymer from the other constituent materials, and makes it easier to bring the superabsorbent polymer and the other constituent materials into a substantially dispersed state. By creating such a state on the sieve, the separated superabsorbent polymer can be more easily sieved out from the other constituent materials.
篩の目の大きさは、高吸水性ポリマーを他の構成材料から分離可能であれば、特に制限はないが、例えば、1~5mmが挙げられ、1.3~4mmが好ましく、1.6~3mmがより好ましい。それにより、高吸水性ポリマーが篩を通過し易く、他の構成材料が篩を通過し難くできる。目の大きさが小さ過ぎると、他の構成部材だけでなく高吸水性ポリマーも篩を通過し難くなり、大き過ぎると、高吸水性ポリマーだけでなく他の構成部材も通過し易くなる。
There are no particular restrictions on the size of the sieve openings, so long as the superabsorbent polymer can be separated from the other constituent materials, but examples include 1 to 5 mm, with 1.3 to 4 mm being preferable, and 1.6 to 3 mm being more preferable. This allows the superabsorbent polymer to pass through the sieve more easily and the other constituent materials less likely to pass through. If the openings are too small, not only the other constituent materials but also the superabsorbent polymer will have difficulty passing through the sieve, and if they are too large, not only the superabsorbent polymer but also the other constituent materials will easily pass through.
本実施形態では、好ましい態様として、篩が、高吸水性ポリマーが通過可能な目をする第1篩部分と、第1篩部分の下側に位置し、第1篩部分よりも細かく、高吸水性ポリマーが通過可能な目をする第2篩部分と、を備えている。すなわち、篩が二段になっている。そして、篩分離工程S41は、凝集物を、振動する篩にかけて、第1篩部分及び第2篩部分の二段階で高吸水性ポリマーを篩い分ける工程を含んでいる。それにより、回収される高吸水性ポリマーの純度をより高めることができる。なお、篩の段数としては、更に多く、三段以上であってもよい。
In this embodiment, as a preferred aspect, the sieve comprises a first sieve portion having meshes through which the superabsorbent polymer can pass, and a second sieve portion located below the first sieve portion and having finer meshes than the first sieve portion through which the superabsorbent polymer can pass. In other words, the sieve has two stages. The sieve separation step S41 includes a step of passing the agglomerates through a vibrating sieve to separate the superabsorbent polymer in two stages, the first sieve portion and the second sieve portion. This can further increase the purity of the recovered superabsorbent polymer. The number of stages of the sieve may be even greater, up to three or more stages.
篩が、第1篩部分及び第2篩部分を備える場合、第1篩部分(上側)の篩の目の大きさは、例えば、2.5~5mmが挙げられ、2.8~4.5mmが好ましく、3~4mmがより好ましい。第2篩部分(下側)の篩の目の大きさは、例えば、1~3mmが挙げられ、1.2~2.8mmが好ましく、1.4~2.6mmがより好ましい。それにより、最終的(第2篩部分の下)に、第1篩部分及び第2篩部分を通過し、他の構成材料の混入が極めて少ない高吸水性ポリマーを得ることができる。
When the sieve has a first sieve portion and a second sieve portion, the size of the sieve openings of the first sieve portion (upper side) can be, for example, 2.5 to 5 mm, preferably 2.8 to 4.5 mm, and more preferably 3 to 4 mm. The size of the sieve openings of the second sieve portion (lower side) can be, for example, 1 to 3 mm, preferably 1.2 to 2.8 mm, and more preferably 1.4 to 2.6 mm. This allows the superabsorbent polymer to be obtained that ultimately passes through the first sieve portion and the second sieve portion (below the second sieve portion) and is extremely low in contamination with other constituent materials.
本実施形態では、好ましい態様として、構成材料がパルプ繊維を含んでいる場合、篩分離工程S41は、パルプ繊維が篩の表面上の外側へ移動し、高吸水性ポリマーが篩の下側へ移動して、互いに分離される工程を含んでいる。このような分離は、篩の動作(振動のさせ方、例えば、横振動と縦振動との組み合わせ方(上部ウエイトと下部ウエイトの位相差))により実現できる。
In this embodiment, as a preferred aspect, when the constituent material contains pulp fibers, the sieve separation step S41 includes a step in which the pulp fibers move to the outside of the surface of the sieve and the superabsorbent polymer moves to the underside of the sieve, and are separated from each other. Such separation can be achieved by the operation of the sieve (the way in which it vibrates, for example, a combination of horizontal and vertical vibrations (phase difference between the upper and lower weights)).
本方法では、高吸水性ポリマーは、パルプ繊維とは形状が大きく異なり、水素結合をほとんどしていない状態である。そのため、高吸水性ポリマーを篩に掛けると、篩の振動により、高吸水性ポリマーをパルプ繊維からより容易に引き離すことができ、引き離された高吸水性ポリマーを構成材料の中から選択的に取り出すことができる。それにより、高吸水性ポリマーを他の構成材料からより容易に篩い分けることができ、高吸水性ポリマーの回収率及び純度を向上させることができる。その場合、例えば、パルプ繊維やシート部材は、篩の上に残って回収され、高吸水性ポリマーは、篩の下に落ちて回収される。
In this method, the superabsorbent polymer has a shape significantly different from that of the pulp fibers, and is in a state in which there are almost no hydrogen bonds. Therefore, when the superabsorbent polymer is sieved, the vibration of the sieve makes it easier to separate the superabsorbent polymer from the pulp fibers, and the separated superabsorbent polymer can be selectively removed from among the constituent materials. This makes it easier to sieve the superabsorbent polymer from the other constituent materials, and improves the recovery rate and purity of the superabsorbent polymer. In this case, for example, the pulp fibers and sheet members remain on the sieve and are collected, and the superabsorbent polymer falls below the sieve and is collected.
本実施形態では、好ましい態様として、遠心分離工程の遠心分離を行う遠心分離装置(例示:ギナ連続遠心分離装置)の下に、篩分離工程S41の篩を有する篩分離装置41(篩装置)(例示:佐藤式振動篩機)が配置されている。そのため、遠心分離工程後の凝集物を直ちに篩にかけることができ、それにより、遠心分離後の凝集物の状態(高吸水性ポリマーの状態や凝集物の水分率)が変動するのを抑制しつつ、篩分離工程S41を実行できる。それにより、高吸水性ポリマーをより回収し易くすることができる。
In this embodiment, as a preferred aspect, a sieving device 41 (sieving device) (e.g., a Sato-type vibrating sieve machine) having a sieve for the sieving separation process S41 is placed under a centrifuge device (e.g., a Gina continuous centrifuge device) that performs the centrifugation in the centrifugation process. Therefore, the aggregates after the centrifugation process can be immediately sieved, and the sieving separation process S41 can be performed while suppressing fluctuations in the state of the aggregates after centrifugation (the state of the superabsorbent polymer and the moisture content of the aggregates). This makes it easier to recover the superabsorbent polymer.
本実施形態では、好ましい態様として、固液分離工程S32で得られる液体(水溶液)からスクリーンにより高吸水性ポリマーを回収する工程を更に具備する。回収された高吸水性ポリマーは、分離工程S40に供給してもよいし、不活化工程S31に戻してもよい。それにより、高吸水性ポリマーの回収率を向上させることができる。
In this embodiment, as a preferred aspect, a step of recovering the superabsorbent polymer from the liquid (aqueous solution) obtained in the solid-liquid separation step S32 using a screen is further included. The recovered superabsorbent polymer may be supplied to the separation step S40 or returned to the inactivation step S31. This can improve the recovery rate of the superabsorbent polymer.
なお、本実施形態に係る高吸水性ポリマーを回収する方法(リサイクル高吸水性ポリマーを製造する方法)において、第1脱水工程S311、すなわち使用済み衛生用品から構成材料を取り出し、酸性水溶液で構成材料中の高吸水性ポリマーを不活化する方法については、特に制限はなく、任意の方法を採用できる。以下では、そのような方法、すなわち、不活化工程S31(不活化装置31)の第1脱水工程S311(第1脱水装置311)の変形例について、図4及び図5を参照して説明する。
In the method for recovering superabsorbent polymer according to this embodiment (method for producing recycled superabsorbent polymer), there is no particular limitation on the first dehydration step S311, i.e., the method for extracting constituent materials from used sanitary products and inactivating the superabsorbent polymer in the constituent materials with an acidic aqueous solution, and any method can be used. Below, such a method, i.e., a modified example of the first dehydration step S311 (first dehydration device 311) of the inactivation step S31 (inactivation device 31), will be described with reference to Figures 4 and 5.
図4は、実施形態に係る第1脱水工程S311の変形例を示すフローチャートである。この変形例は、使用済み衛生用品からフィルム・不織布など、高吸水性ポリマーを含む構成材料A、及び、パルプ繊維を分離する工程を備えている。また、図5は、実施形態に係る第1脱水工程S311に用いられる第1脱水装置の変形例を示すブロック図である。この変形例は、使用済み衛生用品からフィルム・不織布など、高吸水性ポリマーを含む構成材料A、及び、パルプ繊維を分離する装置を備えている。一方、そして、図4に示すように、第1脱水工程S311の変形例は開孔部形成工程P11~第2分離工程P17(好ましくは第3分離工程P18~第4分離工程P20)を備え、それらに対応して、図5に示すように、第1脱水装置311の変形例は破袋装置11~第2分離装置17(好ましくは第3分離装置18~第4分離装置20)を備える。以下、各工程について具体的に説明する。
FIG. 4 is a flow chart showing a modified example of the first dehydration step S311 according to the embodiment. This modified example includes a step of separating a constituent material A containing a superabsorbent polymer, such as a film or nonwoven fabric, and pulp fibers from a used sanitary product. FIG. 5 is a block diagram showing a modified example of the first dehydration device used in the first dehydration step S311 according to the embodiment. This modified example includes a device for separating a constituent material A containing a superabsorbent polymer, such as a film or nonwoven fabric, and pulp fibers from a used sanitary product. On the other hand, as shown in FIG. 4, the modified example of the first dehydration step S311 includes an opening forming step P11 to a second separation step P17 (preferably a third separation step P18 to a fourth separation step P20), and correspondingly, as shown in FIG. 5, the modified example of the first dehydration device 311 includes a bag breaking device 11 to a second separation device 17 (preferably a third separation device 18 to a fourth separation device 20). Each step will be described in detail below.
ただし、本実施形態では、使用済みの衛生用品を、再利用(リサイクル)のために外部から回収・取得して用いる。その際、使用済みの衛生用品、特に、使用済み吸収性物品及びそれに関連して使用されるウェットティッシュなどは、複数まとめて、排泄物や菌類や臭気が外部に漏れないように収集袋に封入される。以下では、主に使用済み吸収性物品に関して説明する。
However, in this embodiment, used sanitary products are collected and obtained from outside for reuse (recycling). At that time, multiple used sanitary products, particularly used absorbent articles and wet wipes used in connection therewith, are bundled together and sealed in a collection bag to prevent excrement, bacteria, and odors from leaking to the outside. The following mainly describes used absorbent articles.
開孔部形成工程P11は破袋装置11により実行される。破袋装置11は、不活化剤を含む不活化水溶液を貯留する溶液槽と、溶液槽内で回転する破袋刃と、を備える。破袋装置11は、溶液槽内に投入された収集袋に、不活化水溶液中で破袋刃により開孔部を形成する(あるいは、収集袋を切り裂く)。それにより、不活化水溶液が開孔部から浸入した収集袋と不活化水溶液との混合液91が生成される。不活化水溶液は、収集袋内の使用済み吸収性物品の高吸水性ポリマーを不活化する。以下、不活化水溶液として酸性水溶液(酸含有水溶液)を用いる場合を例に説明する。
The opening forming process P11 is carried out by the bag breaking device 11. The bag breaking device 11 is equipped with a solution tank that stores an inactivating aqueous solution containing an inactivating agent, and a bag breaking blade that rotates in the solution tank. The bag breaking device 11 forms an opening in the collection bag placed in the solution tank using the bag breaking blade in the inactivating aqueous solution (or cuts the collection bag). This produces a mixture 91 of the collection bag into which the inactivating aqueous solution has penetrated through the opening, and the inactivating aqueous solution. The inactivating aqueous solution inactivates the superabsorbent polymer of the used absorbent article in the collection bag. Below, an example is described in which an acidic aqueous solution (acid-containing aqueous solution) is used as the inactivating aqueous solution.
破砕工程P12は破砕装置12により実行される。破砕装置12は、二軸破砕機(例示:二軸回転式破砕機など)を備える。破砕装置12は、混合液91の使用済み吸収性物品を含む収集袋を、収集袋ごと破砕する。それにより、使用済み吸収性物品を含む収集袋の破砕物と酸性水溶液とを有する混合液92が生成される。それと共に、使用済み吸収性物品の概ねすべての高吸水性ポリマーが酸性水溶液により不活化される。ただし、破砕物は、高吸水性ポリマーを含む構成材料、すなわち、高吸水性ポリマー、パルプ繊維、フィルム・不織布など、及び、収集袋の一部又は全部が小片化されたものである。その小片の大きさ(最大寸法)は、例えば、2~30mmが挙げられ、2~20mmが好ましく、2~10mm以下がより好ましい。なお、開孔部形成工程P11と破砕工程S12とは概ね同時に行われてもよい。例えば、酸性水溶液中で収集袋を破砕しつつ、高吸水性ポリマーを不活化してもよい。
The crushing process P12 is performed by the crushing device 12. The crushing device 12 is equipped with a biaxial crusher (e.g., a biaxial rotary crusher, etc.). The crushing device 12 crushes the collection bags containing the used absorbent articles in the mixed liquid 91 together with the collection bags. As a result, a mixed liquid 92 containing crushed pieces of the collection bags containing the used absorbent articles and an acidic aqueous solution is generated. At the same time, almost all of the superabsorbent polymer in the used absorbent articles is inactivated by the acidic aqueous solution. However, the crushed pieces are small pieces of the constituent materials containing the superabsorbent polymer, i.e., the superabsorbent polymer, pulp fibers, films/nonwoven fabrics, etc., and some or all of the collection bags. The size (maximum dimension) of the small pieces can be, for example, 2 to 30 mm, preferably 2 to 20 mm, and more preferably 2 to 10 mm or less. The opening formation process P11 and the crushing process S12 may be performed almost simultaneously. For example, the superabsorbent polymer may be inactivated while the collection bag is crushed in an acidic aqueous solution.
第1分離工程P13は第1分離装置13により実行される。第1分離装置13は、洗浄槽兼ふるい槽として機能する撹拌分離槽を有するパルパー分離機を備える。第1分離装置13は、混合液92を撹拌し、破砕物から排泄物などを除去しつつ、混合液92から、構成材料のうちのパルプ繊維及び高吸水性ポリマー、並びに、排泄物及び酸性水溶液を分離する。それにより、構成材料のうちのパルプ繊維及び高吸水性ポリマー、並びに、排泄物及び酸性水溶液を含む混合液93が生成される。それとは別に、構成材料のうちのフィルム、不織布などや、収集袋の素材が回収される。
The first separation process P13 is carried out by the first separation device 13. The first separation device 13 is equipped with a pulper separator having an agitation separation tank that functions as a washing tank and a sieve tank. The first separation device 13 agitates the mixed liquid 92, removing waste and the like from the crushed material, while separating the pulp fibers and superabsorbent polymer, which are among the constituent materials, as well as the waste and acidic aqueous solution, from the mixed liquid 92. This produces a mixed liquid 93 containing the pulp fibers and superabsorbent polymer, which are among the constituent materials, as well as the waste and acidic aqueous solution. Separately from this, the film, nonwoven fabric, and other constituent materials, as well as the material of the collection bags, are recovered.
なお、開孔部形成工程P11及び破砕工程P12(破袋装置11及び破砕装置12)は、酸性水溶液中で使用済み吸収性物品を処理し、その高吸水性ポリマーを不活化している。したがって、この段階での高吸水性ポリマーの不活化・脱水が十分である場合には、開孔部形成工程P11及び破砕工程P12は第1脱水工程S311とみなすことができる。その場合には、混合液92を固液分離して、混合液から高吸水性ポリマーを含む構成材料を取り出して、第2脱水工程S312、希釈工程S313、又は固液分離工程S32へ供給してもよい。
In addition, the hole forming process P11 and the crushing process P12 (bag breaking device 11 and crushing device 12) process the used absorbent article in an acidic aqueous solution to inactivate the superabsorbent polymer. Therefore, if the superabsorbent polymer is sufficiently inactivated and dehydrated at this stage, the hole forming process P11 and the crushing process P12 can be considered as the first dehydration process S311. In that case, the mixed liquid 92 may be subjected to solid-liquid separation, and a constituent material containing the superabsorbent polymer may be extracted from the mixed liquid and supplied to the second dehydration process S312, the dilution process S313, or the solid-liquid separation process S32.
また、破砕工程P12(破砕装置12)は、不活化水溶液中で使用済み吸収性物品を破砕せず、気体中(例示:空気中)で収集袋ごと使用済み吸収性物品を破砕してもよい。その場合、開孔部形成工程P11(破袋装置11)は不要である。破砕の後、破砕工程P12(破砕装置12)の破砕物と不活化水溶液とが第1分離装置13(第1分離工程P13)に供給され、高吸水性ポリマーが不活化される。
In addition, the crushing process P12 (crushing device 12) may crush the used absorbent articles together with the collection bag in gas (e.g., in air) rather than crushing the used absorbent articles in the inactivating aqueous solution. In this case, the opening forming process P11 (bag breaking device 11) is not necessary. After crushing, the crushed material from the crushing process P12 (crushing device 12) and the inactivating aqueous solution are supplied to the first separation device 13 (first separation process P13), where the superabsorbent polymer is inactivated.
第1分離工程P13までの工程は、酸性水溶液中で行われ、その間に高吸水性ポリマーを不活化している。この段階での高吸水性ポリマーの不活化・脱水が十分である場合には、第1分離装置13(第1分離工程P13)又はそれまでの工程は第1脱水工程S311とみなすことができる。その場合には、混合液93を固液分離して、混合液から高吸水性ポリマーを含む構成材料を取り出して、第2脱水工程S312、希釈工程S313、又は固液分離工程S32へ供給してもよい。
The steps up to the first separation step P13 are carried out in an acidic aqueous solution, during which the superabsorbent polymer is inactivated. If the superabsorbent polymer is sufficiently inactivated and dehydrated at this stage, the first separation device 13 (first separation step P13) or the steps up to that point can be regarded as the first dehydration step S311. In that case, the mixed liquid 93 may be subjected to solid-liquid separation, and a constituent material containing the superabsorbent polymer may be extracted from the mixed liquid and supplied to the second dehydration step S312, the dilution step S313, or the solid-liquid separation step S32.
第1除塵工程P14は第1除塵装置14により実行される。第1除塵装置14は、スクリーン分離機を備え、混合液93を、スクリーンにより、酸性水溶液中のパルプ繊維、高吸水性ポリマー及び排泄物と他の資材(異物)とに分離する。それにより、異物の量が低減された、パルプ繊維、高吸水性ポリマー、排泄物及び酸性水溶液を含む混合液94が生成されると共に、他の資材が除去される。次いで、第2除塵工程P15は第2除塵装置15により実行される。第2除塵装置15は、スクリーン分離機を備え、混合液94を、第1除塵装置14より細かいスクリーンで、酸性水溶液中のパルプ繊維、高吸水性ポリマー及び排泄物と他の資材(小異物)とに分離する。それにより、異物の量が更に低減された、パルプ繊維、高吸水性ポリマー、排泄物及び酸性水溶液を含む混合液95が生成されると共に、他の資材が更に除去される。次いで、第3除塵工程P16は第3除塵装置16により実行される。第3除塵装置16は、サイクロン分離機を備え、混合液95を、遠心分離により、酸性水溶液中のパルプ繊維、高吸水性ポリマー及び排泄物と他の資材(比重の重い異物)とに分離する。それにより、異物の量がより低減された、パルプ繊維、高吸水性ポリマー、排泄物及び酸性水溶液を含む混合液96が生成されると共に、比重の大きい他の資材が除去される。なお、混合液93などの状態(例示:異物の量や大きさ)により、第1除塵工程P14~第3除塵工程P16(第1除塵装置14~第3除塵装置16)のうちの少なくとも一つを省略してもよい。
The first dust removal process P14 is performed by the first dust removal device 14. The first dust removal device 14 is equipped with a screen separator, and the mixed liquid 93 is separated by a screen into pulp fibers, superabsorbent polymer, excrement, and other materials (foreign matter) in the acidic aqueous solution. As a result, a mixed liquid 94 containing pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution with a reduced amount of foreign matter is generated, and other materials are removed. Next, the second dust removal process P15 is performed by the second dust removal device 15. The second dust removal device 15 is equipped with a screen separator, and the mixed liquid 94 is separated by a screen finer than that of the first dust removal device 14 into pulp fibers, superabsorbent polymer, excrement, and other materials (small foreign matter) in the acidic aqueous solution. As a result, a mixed liquid 95 containing pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution with a further reduced amount of foreign matter is generated, and other materials are further removed. Next, the third dust removal process P16 is performed by the third dust removal device 16. The third dust removal device 16 is equipped with a cyclone separator, and separates the mixed liquid 95 into pulp fibers, superabsorbent polymer, excrement, and other materials (heavy foreign matter) in the acidic aqueous solution by centrifugation. As a result, a mixed liquid 96 containing pulp fibers, superabsorbent polymer, excrement, and acidic aqueous solution with a reduced amount of foreign matter is generated, and other materials with a high specific gravity are removed. Note that at least one of the first dust removal process P14 to the third dust removal process P16 (first dust removal device 14 to third dust removal device 16) may be omitted depending on the state of the mixed liquid 93, etc. (e.g., the amount and size of foreign matter).
なお、第1除塵工程P14~第3除塵工程P16(第1除塵装置14~第3除塵装置16)は、各混合液が酸性水溶液を含んでいるので、各混合液中の高吸水性ポリマーを不活化している(又は不活化した状態を維持している)。したがって、これらの工程のうちのいずれかの工程における高吸水性ポリマーの不活化・脱水が十分である場合には、当該工程(又は、それまでの工程)は第1脱水工程S311とみなすことができる。その場合には、当該工程の混合液を固液分離して、混合液から高吸水性ポリマーを含む構成材料を取り出して、第2脱水工程S312、希釈工程S313、又は固液分離工程S32へ供給してもよい。
In the first dust removal process P14 to the third dust removal process P16 (first dust removal device 14 to third dust removal device 16), the superabsorbent polymer in each mixed liquid is inactivated (or maintained in an inactivated state) because each mixed liquid contains an acidic aqueous solution. Therefore, if the superabsorbent polymer is sufficiently inactivated and dehydrated in any of these processes, that process (or the processes up to that point) can be considered as the first dehydration process S311. In that case, the mixed liquid in that process may be subjected to solid-liquid separation, and a constituent material containing the superabsorbent polymer may be extracted from the mixed liquid and supplied to the second dehydration process S312, the dilution process S313, or the solid-liquid separation process S32.
第2分離工程P17は第2分離装置17により実行される。第2分離装置17は、ドラムスクリーン分離機を備え、混合液96を、ドラムスクリーンにより、酸性水溶液中の高吸水性ポリマーと、パルプ繊維とに分離する。それにより、高吸水性ポリマー、排泄物及び酸性水溶液を含む混合液97が生成され、パルプ繊維が混合物98として除去される。混合液97中の高吸水性ポリマーは、酸性水溶液による不活化がなされ、脱水された状態である。したがって、混合液97を固液分離して、混合液97から固体99を分離すると、その固体99は高吸水性ポリマーを含む構成材料Aである。ただし、得られた高吸水性ポリマーを含む構成材料Aには、分離し切れないパルプ繊維(パルプ成分)及び/又はフィルム・不織布など(プラスチック成分)等が含まれている。その構成材料Aは、第2脱水工程S312へ供給される。なお、構成材料Aは、希釈工程S313又は固液分離工程S32へ供給してもよい。
The second separation step P17 is performed by the second separation device 17. The second separation device 17 is equipped with a drum screen separator, and the mixed liquid 96 is separated into the superabsorbent polymer in the acidic aqueous solution and the pulp fibers by the drum screen. As a result, a mixed liquid 97 containing the superabsorbent polymer, excrement, and the acidic aqueous solution is generated, and the pulp fibers are removed as a mixture 98. The superabsorbent polymer in the mixed liquid 97 is inactivated by the acidic aqueous solution and is in a dehydrated state. Therefore, when the mixed liquid 97 is subjected to solid-liquid separation and the solid 99 is separated from the mixed liquid 97, the solid 99 is the constituent material A containing the superabsorbent polymer. However, the obtained constituent material A containing the superabsorbent polymer contains pulp fibers (pulp components) and/or films, nonwoven fabrics, etc. (plastic components) that cannot be completely separated. The constituent material A is supplied to the second dehydration step S312. The constituent material A may be supplied to the dilution step S313 or the solid-liquid separation step S32.
第3分離工程P18は、第3分離装置18により実行される。第3分離装置18は、傾斜スクリーンを備えており、混合物98に洗浄液を噴射しつつ、スクリーンにより、パルプ繊維を含む固体と、洗浄液を含む液体とに分離する。それにより、汚れなどが低減されたパルプ繊維を含む混合物101が生成されると共に、汚れなどが除去される。
The third separation step P18 is carried out by the third separator 18. The third separator 18 is equipped with an inclined screen, and while spraying the cleaning liquid onto the mixture 98, the screen separates the mixture 98 into a solid containing pulp fibers and a liquid containing the cleaning liquid. This produces a mixture 101 containing pulp fibers with reduced dirt and the like, and also removes dirt and the like.
酸化剤処理工程P19は酸化剤処理装置19により実行される。酸化剤処理装置19は、酸化剤水溶液を貯留する処理槽と、処理槽内に酸化剤を供給する酸化剤供給装置と、を備える。酸化剤処理装置19は、混合物101を、処理槽の上部又は下部から処理槽内に投入し、処理槽内の酸化剤水溶液と混合する。そして、酸化剤供給装置により処理槽の下部から供給される酸化剤により、酸化剤水溶液中でパルプ繊維に含まれる高吸水性ポリマーを分解して、酸化剤水溶液に可溶化する。それにより、高吸水性ポリマーが除去されたパルプ繊維と高吸水性ポリマーの分解物を含む酸化剤水溶液とを有する混合液102が生成される。酸化剤は、高吸水性ポリマーを分解可能な酸化剤であり、例えばオゾンが挙げられ、オゾンは殺菌力や漂白力も高く好ましい。
The oxidizing agent treatment process P19 is performed by the oxidizing agent treatment device 19. The oxidizing agent treatment device 19 includes a treatment tank that stores an oxidizing agent aqueous solution, and an oxidizing agent supply device that supplies an oxidizing agent into the treatment tank. The oxidizing agent treatment device 19 introduces the mixture 101 into the treatment tank from the top or bottom of the treatment tank and mixes it with the oxidizing agent aqueous solution in the treatment tank. The oxidizing agent supplied from the bottom of the treatment tank by the oxidizing agent supply device decomposes the superabsorbent polymer contained in the pulp fiber in the oxidizing agent aqueous solution, and solubilizes it in the oxidizing agent aqueous solution. This produces a mixed liquid 102 containing pulp fiber from which the superabsorbent polymer has been removed and an oxidizing agent aqueous solution containing a decomposition product of the superabsorbent polymer. The oxidizing agent is an oxidizing agent that can decompose the superabsorbent polymer, such as ozone, which is preferable because of its high sterilizing and bleaching power.
酸化剤水溶液中のオゾン濃度は、好ましくは1~50質量ppmである。濃度が低すぎると、高吸水性ポリマーを完全に可溶化できず、パルプ繊維に高吸水性ポリマーが残留するおそれがあり、濃度が高すぎると、パルプ繊維に損傷を与えるおそれがある。第オゾンでの処理時間は、酸化剤水溶液中のオゾン濃度が高ければ短く、オゾン濃度が低ければ長くし、典型的には5~120分である。酸化剤水溶液中のオゾン濃度(ppm)と処理時間(分)の積(以下、「CT値」ともいう。)は、好ましくは100~6000ppm・分である。CT値が小さすぎると、パルプ繊維の残存する高吸水性ポリマーを完全に可溶化できず、CT値が大きすぎると、パルプ繊維に損傷を与えるおそれがある。
The ozone concentration in the aqueous oxidizing agent solution is preferably 1 to 50 ppm by mass. If the concentration is too low, the superabsorbent polymer cannot be completely solubilized, and there is a risk that the superabsorbent polymer will remain in the pulp fibers, and if the concentration is too high, there is a risk that the pulp fibers will be damaged. The treatment time with ozone is shorter if the ozone concentration in the aqueous oxidizing agent solution is high, and longer if the ozone concentration is low, typically 5 to 120 minutes. The product of the ozone concentration (ppm) in the aqueous oxidizing agent solution and the treatment time (minutes) (hereinafter also referred to as the "CT value") is preferably 100 to 6000 ppm·min. If the CT value is too small, the remaining superabsorbent polymer in the pulp fibers cannot be completely solubilized, and if the CT value is too large, there is a risk that the pulp fibers will be damaged.
第4分離工程P20は、第4分離装置20により実行される。第4分離装置20は、スクリーン分離機を備え、混合液102を、スクリーンにより、パルプ繊維と酸化剤水溶液とに分離する。それにより、リサイクルパルプ繊維が生成されると共に、高吸水性ポリマーの分解物を含む酸化剤水溶液が除去される。
The fourth separation process P20 is carried out by the fourth separation device 20. The fourth separation device 20 is equipped with a screen separator, and separates the mixed liquid 102 into pulp fibers and an aqueous oxidizing agent solution using a screen. This produces recycled pulp fibers and removes the aqueous oxidizing agent solution containing decomposition products of the superabsorbent polymer.
なお、上記図4及び図5に示す変形例において、不活化水溶液として、酸性水溶液ではなく、多価金属イオン供給源を含む水溶液を用いてもよい。その場合、図4の変形例は、実施形態に係る第2脱水工程S312の変形例を示すフローチャートとなり、図5は、実施形態に係る第2脱水工程S312に用いられる第2脱水装置の変形例を示すブロック図となる。この場合、第1脱水工程S311は省略される。得られた不活化された高吸水性ポリマーを含む構成材料Aは、希釈工程S313又は固液分離工程S32へ供給される。
In the modified examples shown in Figures 4 and 5, an aqueous solution containing a polyvalent metal ion source may be used as the inactivating aqueous solution instead of an acidic aqueous solution. In that case, the modified example in Figure 4 is a flow chart showing a modified example of the second dehydration step S312 according to the embodiment, and Figure 5 is a block diagram showing a modified example of the second dehydration device used in the second dehydration step S312 according to the embodiment. In this case, the first dehydration step S311 is omitted. The obtained constituent material A containing the inactivated superabsorbent polymer is supplied to the dilution step S313 or the solid-liquid separation step S32.
本実施形態では、分離工程S40により高吸水性ポリマーを分離して、回収すると同時に、プラスチック成分(例示:フィルム・不織布など)及び/又はパルプ成分を回収することも可能である。例えば、固液分離工程S32により得られた凝集物には、高吸水性ポリマーの他に、他の物質として、フィルム・不織布など(プラスチック成分)及び/又はパルプ繊維(パルプ成分)を含んでいる。したがって、篩分離工程S41により、高吸水性ポリマーを篩いで他の物質から分離すると同時に又はその後に、篩い又は他の方法により、分離された他の物質から、フィルム・不織布など(プラスチック成分)及び/又はパルプ繊維(パルプ成分)に分離してもよい。したがって、本実施形態は、プラスチック成分の回収方法を含んでおり、パルプ成分の回収方法を含んでもいる。
In this embodiment, the superabsorbent polymer is separated and recovered by the separation step S40, and at the same time, plastic components (e.g., film, nonwoven fabric, etc.) and/or pulp components can also be recovered. For example, the aggregate obtained by the solid-liquid separation step S32 contains, in addition to the superabsorbent polymer, other substances such as film, nonwoven fabric, etc. (plastic components) and/or pulp fibers (pulp components). Therefore, at the same time as or after the superabsorbent polymer is separated from other substances by sieving in the sieving separation step S41, the film, nonwoven fabric, etc. (plastic components) and/or pulp fibers (pulp components) may be separated from the other separated substances by sieving or other methods. Therefore, this embodiment includes a method for recovering plastic components and also includes a method for recovering pulp components.
以下、実施例に基づき、本発明を説明するが、本発明は実施例に限定されない。
The present invention will be explained below based on examples, but the present invention is not limited to these examples.
(1)試料
まず、使用済み吸収性物品に図4の第1脱水工程S311を行って構成材料Aを生成した。次に、構成材料A(一部、回収率の測定用に除外(後述))に図2の第2脱水工程S312及び希釈工程S313を行って不活化物を生成した。次に、不活化物に図1の固液分離工程S32を行って凝集物を生成した。次に、凝集物に篩分離工程S41を行って高吸水性ポリマーを回収した。ただし、第1脱水工程S311では、不活化水溶液として、0.1質量%の硫酸水溶液を用いた。第2脱水工程S312では、不活化水溶液として、7質量%の水酸化カルシウム水溶液を用いた。希釈工程S313では、水のみを用いた。固液分離工程S32では、ギナ遠心分離装置を用いた。篩分離工程S41では、佐藤式振動篩機(篩:2段)を用いた。ここで、実施例1~4は、ギナ遠心分離装置の回転速度により、凝集物の水分率を10質量%以上、85質量%未満としたものであり、比較例1~2は、ギナ遠心分離装置の回転速度により、凝集物の水分率を10質量%未満、85質量%以上としたものである。 (1) Sample First, the first dehydration step S311 in FIG. 4 was performed on the used absorbent article to generate the constituent material A. Next, the second dehydration step S312 and the dilution step S313 in FIG. 2 were performed on the constituent material A (a part of which was excluded for measuring the recovery rate (described later)) to generate an inactivated product. Next, the inactivated product was subjected to the solid-liquid separation step S32 in FIG. 1 to generate an aggregate. Next, the aggregate was subjected to the sieve separation step S41 to recover the superabsorbent polymer. However, in the first dehydration step S311, a 0.1% by mass sulfuric acid aqueous solution was used as the inactivating aqueous solution. In the second dehydration step S312, a 7% by mass calcium hydroxide aqueous solution was used as the inactivating aqueous solution. In the dilution step S313, only water was used. In the solid-liquid separation step S32, a Gina centrifuge was used. In the sieve separation step S41, a Sato-type vibrating sieve machine (sieve: two stages) was used. Here, in Examples 1 to 4, the moisture content of the aggregates was set to 10% by mass or more and less than 85% by mass by adjusting the rotation speed of the Guiner centrifuge, and in Comparative Examples 1 and 2, the moisture content of the aggregates was set to less than 10% by mass and 85% by mass or more by adjusting the rotation speed of the Guiner centrifuge.
まず、使用済み吸収性物品に図4の第1脱水工程S311を行って構成材料Aを生成した。次に、構成材料A(一部、回収率の測定用に除外(後述))に図2の第2脱水工程S312及び希釈工程S313を行って不活化物を生成した。次に、不活化物に図1の固液分離工程S32を行って凝集物を生成した。次に、凝集物に篩分離工程S41を行って高吸水性ポリマーを回収した。ただし、第1脱水工程S311では、不活化水溶液として、0.1質量%の硫酸水溶液を用いた。第2脱水工程S312では、不活化水溶液として、7質量%の水酸化カルシウム水溶液を用いた。希釈工程S313では、水のみを用いた。固液分離工程S32では、ギナ遠心分離装置を用いた。篩分離工程S41では、佐藤式振動篩機(篩:2段)を用いた。ここで、実施例1~4は、ギナ遠心分離装置の回転速度により、凝集物の水分率を10質量%以上、85質量%未満としたものであり、比較例1~2は、ギナ遠心分離装置の回転速度により、凝集物の水分率を10質量%未満、85質量%以上としたものである。 (1) Sample First, the first dehydration step S311 in FIG. 4 was performed on the used absorbent article to generate the constituent material A. Next, the second dehydration step S312 and the dilution step S313 in FIG. 2 were performed on the constituent material A (a part of which was excluded for measuring the recovery rate (described later)) to generate an inactivated product. Next, the inactivated product was subjected to the solid-liquid separation step S32 in FIG. 1 to generate an aggregate. Next, the aggregate was subjected to the sieve separation step S41 to recover the superabsorbent polymer. However, in the first dehydration step S311, a 0.1% by mass sulfuric acid aqueous solution was used as the inactivating aqueous solution. In the second dehydration step S312, a 7% by mass calcium hydroxide aqueous solution was used as the inactivating aqueous solution. In the dilution step S313, only water was used. In the solid-liquid separation step S32, a Gina centrifuge was used. In the sieve separation step S41, a Sato-type vibrating sieve machine (sieve: two stages) was used. Here, in Examples 1 to 4, the moisture content of the aggregates was set to 10% by mass or more and less than 85% by mass by adjusting the rotation speed of the Guiner centrifuge, and in Comparative Examples 1 and 2, the moisture content of the aggregates was set to less than 10% by mass and 85% by mass or more by adjusting the rotation speed of the Guiner centrifuge.
(2)結果
実施例1~4では、凝集物の水分率が10質量%,55質量%,65質量%,75質量%であったが、篩分離工程S41で良好な分離ができて、高吸水性ポリマーの回収率として45質量%,60質量%,40質量%,22質量%が得られた。すなわち、凝集物の水分率を10質量%以上、85質量%未満とすることで、高吸水性ポリマーの高い回収率が得られた。一方、比較例1,2では、凝集物の水分率が0質量%、85質量%であったが、篩分離工程S41で良好な分離ができず、高吸水性ポリマーの回収率8質量%,5質量%しか得られなかった。すなわち、凝集物の水分率を10質量%未満又は85質量%以上とすることで、高吸水性ポリマーの回収率が低くなった。 (2) Results In Examples 1 to 4, the moisture content of the aggregate was 10 mass%, 55 mass%, 65 mass%, and 75 mass%, but good separation was possible in the sieve separation step S41, and the recovery rates of the superabsorbent polymer were 45 mass%, 60 mass%, 40 mass%, and 22 mass%. That is, by setting the moisture content of the aggregate to 10 mass% or more and less than 85 mass%, a high recovery rate of the superabsorbent polymer was obtained. On the other hand, in Comparative Examples 1 and 2, the moisture content of the aggregate was 0 mass% and 85 mass%, but good separation was not possible in the sieve separation step S41, and only 8 mass% and 5 mass% of the superabsorbent polymer were obtained. That is, by setting the moisture content of the aggregate to less than 10 mass% or 85 mass% or more, the recovery rate of the superabsorbent polymer was low.
実施例1~4では、凝集物の水分率が10質量%,55質量%,65質量%,75質量%であったが、篩分離工程S41で良好な分離ができて、高吸水性ポリマーの回収率として45質量%,60質量%,40質量%,22質量%が得られた。すなわち、凝集物の水分率を10質量%以上、85質量%未満とすることで、高吸水性ポリマーの高い回収率が得られた。一方、比較例1,2では、凝集物の水分率が0質量%、85質量%であったが、篩分離工程S41で良好な分離ができず、高吸水性ポリマーの回収率8質量%,5質量%しか得られなかった。すなわち、凝集物の水分率を10質量%未満又は85質量%以上とすることで、高吸水性ポリマーの回収率が低くなった。 (2) Results In Examples 1 to 4, the moisture content of the aggregate was 10 mass%, 55 mass%, 65 mass%, and 75 mass%, but good separation was possible in the sieve separation step S41, and the recovery rates of the superabsorbent polymer were 45 mass%, 60 mass%, 40 mass%, and 22 mass%. That is, by setting the moisture content of the aggregate to 10 mass% or more and less than 85 mass%, a high recovery rate of the superabsorbent polymer was obtained. On the other hand, in Comparative Examples 1 and 2, the moisture content of the aggregate was 0 mass% and 85 mass%, but good separation was not possible in the sieve separation step S41, and only 8 mass% and 5 mass% of the superabsorbent polymer were obtained. That is, by setting the moisture content of the aggregate to less than 10 mass% or 85 mass% or more, the recovery rate of the superabsorbent polymer was low.
その際、高吸水性ポリマーの純度は、実施例1~2では高純度、実施例3~4では中純度であった。すなわち、実施例1~4では比較的純度の高い高吸水性ポリマーが得られた。一方、高吸水性ポリマーの純度は、比較例1,2では低純度であった。すなわち、比較例1、2では純度の低い高吸水性ポリマーしか得られなかった。
In this case, the purity of the superabsorbent polymer was high in Examples 1 and 2, and medium in Examples 3 and 4. In other words, superabsorbent polymers of relatively high purity were obtained in Examples 1 to 4. On the other hand, the purity of the superabsorbent polymer was low in Comparative Examples 1 and 2. In other words, only superabsorbent polymers of low purity were obtained in Comparative Examples 1 and 2.
ただし、高吸水性ポリマーの回収率の測定は以下のとおりである。
<高吸水性ポリマーの回収率>
(1)第1脱水工程S311後の構成材料Aから所定量(例示:100g)秤量して元原料とし、元原料を2個準備する。
(2)一つの元原料を、そのまま乾燥(120℃×60分)して、試料1とする。
(3)一方、別の元原料を、オゾン含有水溶液で処理(水溶液中オゾン濃度30ppm×処理時間60分(CT値:1800))して含まれている高吸水性ポリマーを分解除去し、その後に乾燥(120℃×60分)して、試料2とする。
(4)試料1と試料2との質量差(試料1の質量-試料2の質量)を元原料における高吸水性ポリマーの含有量とする。
(5)元原料における高吸水性ポリマーの含有率(質量%)を、次の式で算出する。
高吸水性ポリマーの含有率(質量%)
=(高吸水性ポリマーの含有量)/(試料1の質量)×100
(6)1バッチ(各実施例、各比較例)当たりの構成材料A(ただし、元原料2個分を除く)を乾燥(120℃×60分)して、その質量を測定する。
(7)構成材料Aの質量に、高吸水性ポリマーの含有率(質量%)を掛けて、構成材料Aにおける高吸水性ポリマーの質量を算出して、高吸水性ポリマーの元質量(乾燥質量)とする。
(8)各バッチ(各実施例、各比較例)で回収された高吸水性ポリマーを乾燥(120℃×60分)し、その質量を測定して、高吸水性ポリマーの回収量(乾燥質量)とする。
(9)構成材料Aの高吸水性ポリマーの回収率(質量%)を、次の式で算出する。
高吸水性ポリマーの回収率(質量%)
=高吸水性ポリマーの回収量(乾燥質量)/高吸水性ポリマーの元質量(乾燥質量)×100 However, the recovery rate of the superabsorbent polymer was measured as follows.
<Recovery rate of superabsorbent polymer>
(1) A predetermined amount (e.g., 100 g) of the constituent material A after the first dehydration step S311 is weighed out as an original material, and two original materials are prepared.
(2) One of the raw materials is dried as is (120°C x 60 minutes) to preparesample 1.
(3) On the other hand, another raw material is treated with an ozone-containing aqueous solution (ozone concentration in the aqueous solution: 30 ppm x treatment time: 60 minutes (CT value: 1800)) to decompose and remove the contained superabsorbent polymer, and then dried (120°C x 60 minutes) to obtain sample 2.
(4) The mass difference betweenSample 1 and Sample 2 (mass of Sample 1 - mass of Sample 2) is the content of the superabsorbent polymer in the raw material.
(5) Calculate the content (mass%) of the superabsorbent polymer in the raw material using the following formula.
Content of superabsorbent polymer (mass%)
= (content of superabsorbent polymer) / (mass of sample 1) × 100
(6) Constituent material A (excluding two pieces of the original raw material) per batch (each of the Examples and Comparative Examples) is dried (120° C.×60 minutes) and its mass is measured.
(7) Multiply the mass of constituent material A by the content (mass %) of the superabsorbent polymer to calculate the mass of the superabsorbent polymer in constituent material A, which is the original mass (dry mass) of the superabsorbent polymer.
(8) The superabsorbent polymer recovered in each batch (each Example and each Comparative Example) is dried (120°C x 60 minutes), and its mass is measured to obtain the recovered amount (dry mass) of the superabsorbent polymer.
(9) The recovery rate (mass%) of the superabsorbent polymer of component material A is calculated using the following formula.
Recovery rate of superabsorbent polymer (mass%)
= Amount of superabsorbent polymer recovered (dry mass) / Original mass of superabsorbent polymer (dry mass) × 100
<高吸水性ポリマーの回収率>
(1)第1脱水工程S311後の構成材料Aから所定量(例示:100g)秤量して元原料とし、元原料を2個準備する。
(2)一つの元原料を、そのまま乾燥(120℃×60分)して、試料1とする。
(3)一方、別の元原料を、オゾン含有水溶液で処理(水溶液中オゾン濃度30ppm×処理時間60分(CT値:1800))して含まれている高吸水性ポリマーを分解除去し、その後に乾燥(120℃×60分)して、試料2とする。
(4)試料1と試料2との質量差(試料1の質量-試料2の質量)を元原料における高吸水性ポリマーの含有量とする。
(5)元原料における高吸水性ポリマーの含有率(質量%)を、次の式で算出する。
高吸水性ポリマーの含有率(質量%)
=(高吸水性ポリマーの含有量)/(試料1の質量)×100
(6)1バッチ(各実施例、各比較例)当たりの構成材料A(ただし、元原料2個分を除く)を乾燥(120℃×60分)して、その質量を測定する。
(7)構成材料Aの質量に、高吸水性ポリマーの含有率(質量%)を掛けて、構成材料Aにおける高吸水性ポリマーの質量を算出して、高吸水性ポリマーの元質量(乾燥質量)とする。
(8)各バッチ(各実施例、各比較例)で回収された高吸水性ポリマーを乾燥(120℃×60分)し、その質量を測定して、高吸水性ポリマーの回収量(乾燥質量)とする。
(9)構成材料Aの高吸水性ポリマーの回収率(質量%)を、次の式で算出する。
高吸水性ポリマーの回収率(質量%)
=高吸水性ポリマーの回収量(乾燥質量)/高吸水性ポリマーの元質量(乾燥質量)×100 However, the recovery rate of the superabsorbent polymer was measured as follows.
<Recovery rate of superabsorbent polymer>
(1) A predetermined amount (e.g., 100 g) of the constituent material A after the first dehydration step S311 is weighed out as an original material, and two original materials are prepared.
(2) One of the raw materials is dried as is (120°C x 60 minutes) to prepare
(3) On the other hand, another raw material is treated with an ozone-containing aqueous solution (ozone concentration in the aqueous solution: 30 ppm x treatment time: 60 minutes (CT value: 1800)) to decompose and remove the contained superabsorbent polymer, and then dried (120°C x 60 minutes) to obtain sample 2.
(4) The mass difference between
(5) Calculate the content (mass%) of the superabsorbent polymer in the raw material using the following formula.
Content of superabsorbent polymer (mass%)
= (content of superabsorbent polymer) / (mass of sample 1) × 100
(6) Constituent material A (excluding two pieces of the original raw material) per batch (each of the Examples and Comparative Examples) is dried (120° C.×60 minutes) and its mass is measured.
(7) Multiply the mass of constituent material A by the content (mass %) of the superabsorbent polymer to calculate the mass of the superabsorbent polymer in constituent material A, which is the original mass (dry mass) of the superabsorbent polymer.
(8) The superabsorbent polymer recovered in each batch (each Example and each Comparative Example) is dried (120°C x 60 minutes), and its mass is measured to obtain the recovered amount (dry mass) of the superabsorbent polymer.
(9) The recovery rate (mass%) of the superabsorbent polymer of component material A is calculated using the following formula.
Recovery rate of superabsorbent polymer (mass%)
= Amount of superabsorbent polymer recovered (dry mass) / Original mass of superabsorbent polymer (dry mass) × 100
ただし、高吸水性ポリマーの純度の測定は以下のとおりである。
<高吸水性ポリマーの純度>
(1)各バッチ(各実施例、各比較例)で回収され、乾燥(120℃×60分)した高吸水性ポリマー(高吸水性ポリマーの回収率の測定方法における(8))から所定量(例示:100g)秤量して純度測定試料1とする。
(2)純度測定試料1をオゾン含有水溶液で処理(水溶液中オゾン濃度30ppm×処理時間60分(CT値:1800))して含まれている高吸水性ポリマーを分解除去し、その後に乾燥(120℃×60分)して、純度測定試料2とする。
(3)純度測定試料1と純度測定試料2との質量差(純度測定試料1の質量-純度測定試料2の質量)を純度測定試料1における高吸水性ポリマーの含有量とする。
(4)純度測定試料1における高吸水性ポリマーの含有率(質量%)を、次の式で算出する。
高吸水性ポリマーの含有率(質量%)
=(高吸水性ポリマーの含有量)/(純度測定試料1の質量)×100
この数値を以て、高吸水性ポリマーの純度とする。 However, the purity of the superabsorbent polymer is measured as follows.
<Purity of superabsorbent polymer>
(1) A predetermined amount (e.g., 100 g) is weighed out from the superabsorbent polymer ((8) in the method for measuring the recovery rate of superabsorbent polymer) recovered in each batch (each example and each comparative example) and dried (120°C x 60 minutes) to obtain apurity measurement sample 1.
(2)Purity measurement sample 1 is treated with an ozone-containing aqueous solution (ozone concentration in the aqueous solution: 30 ppm x treatment time: 60 minutes (CT value: 1800)) to decompose and remove the contained superabsorbent polymer, and then dried (120°C x 60 minutes) to obtain purity measurement sample 2.
(3) The mass difference betweenpurity measurement sample 1 and purity measurement sample 2 (mass of purity measurement sample 1 - mass of purity measurement sample 2) is the content of superabsorbent polymer in purity measurement sample 1.
(4) Purity Measurement The content (mass%) of the superabsorbent polymer insample 1 is calculated using the following formula.
Content of superabsorbent polymer (mass%)
= (content of superabsorbent polymer) / (mass of purity measurement sample 1) × 100
This value is taken as the purity of the superabsorbent polymer.
<高吸水性ポリマーの純度>
(1)各バッチ(各実施例、各比較例)で回収され、乾燥(120℃×60分)した高吸水性ポリマー(高吸水性ポリマーの回収率の測定方法における(8))から所定量(例示:100g)秤量して純度測定試料1とする。
(2)純度測定試料1をオゾン含有水溶液で処理(水溶液中オゾン濃度30ppm×処理時間60分(CT値:1800))して含まれている高吸水性ポリマーを分解除去し、その後に乾燥(120℃×60分)して、純度測定試料2とする。
(3)純度測定試料1と純度測定試料2との質量差(純度測定試料1の質量-純度測定試料2の質量)を純度測定試料1における高吸水性ポリマーの含有量とする。
(4)純度測定試料1における高吸水性ポリマーの含有率(質量%)を、次の式で算出する。
高吸水性ポリマーの含有率(質量%)
=(高吸水性ポリマーの含有量)/(純度測定試料1の質量)×100
この数値を以て、高吸水性ポリマーの純度とする。 However, the purity of the superabsorbent polymer is measured as follows.
<Purity of superabsorbent polymer>
(1) A predetermined amount (e.g., 100 g) is weighed out from the superabsorbent polymer ((8) in the method for measuring the recovery rate of superabsorbent polymer) recovered in each batch (each example and each comparative example) and dried (120°C x 60 minutes) to obtain a
(2)
(3) The mass difference between
(4) Purity Measurement The content (mass%) of the superabsorbent polymer in
Content of superabsorbent polymer (mass%)
= (content of superabsorbent polymer) / (mass of purity measurement sample 1) × 100
This value is taken as the purity of the superabsorbent polymer.
本発明の吸収性物品は、上述した各実施形態に制限されることなく、本発明の目的、趣旨を逸脱しない範囲内において、適宜組合せや変更等が可能である。
The absorbent article of the present invention is not limited to the above-mentioned embodiments, and can be appropriately combined or modified without departing from the purpose and spirit of the present invention.
S30 準備工程
S40 分離工程 S30 Preparation step S40 Separation step
S40 分離工程 S30 Preparation step S40 Separation step
Claims (14)
- 使用済み衛生用品を構成する、高吸水性ポリマーを含んだ構成材料から前記高吸水性ポリマーを回収する方法であって、
不活化された前記高吸水性ポリマーを含んだ前記構成材料を含有した、湿潤な状態の凝集物を準備する準備工程と、
前記凝集物に振動を与えて、前記構成材料から前記高吸水性ポリマーを分離する分離工程と、
を具備する、
方法。 A method for recovering a superabsorbent polymer from a component material that contains the superabsorbent polymer and that constitutes a used sanitary product, comprising the steps of:
preparing a wet aggregate containing the component material including the inactivated superabsorbent polymer;
a separation step of vibrating the agglomerate to separate the superabsorbent polymer from the constituent materials;
Equipped with
Method. - 前記分離工程は、前記凝集物を、前記高吸水性ポリマーが通過可能な目を有する、振動する篩にかける篩分離工程を備える、
請求項1に記載の方法。 The separation step includes a sieve separation step of passing the agglomerate through a vibrating sieve having openings through which the superabsorbent polymer can pass.
The method of claim 1. - 前記準備工程は、不活化された前記高吸水性ポリマーを含んだ前記構成材料を含有する水溶液に、固液分離を行い、固体である前記凝集物と液体とを得る固液分離工程を備える、
請求項2に記載の方法。 The preparation step includes a solid-liquid separation step of performing solid-liquid separation on an aqueous solution containing the constituent materials including the inactivated superabsorbent polymer to obtain the aggregate, which is a solid, and a liquid.
The method of claim 2. - 前記固液分離工程は、前記固液分離として前記構成材料を含有する水溶液の遠心分離を行い、前記凝集物と前記液体とを得る遠心分離工程を含む、
請求項3に記載の方法。 The solid-liquid separation step includes a centrifugation step of centrifuging an aqueous solution containing the constituent materials to obtain the aggregate and the liquid,
The method according to claim 3. - 前記遠心分離工程で分離された前記高吸水性ポリマーの水分率は80質量%以下である、
請求項4に記載の方法。 The moisture content of the superabsorbent polymer separated in the centrifugation step is 80% by mass or less.
The method according to claim 4. - 前記遠心分離工程の前記遠心分離を行う遠心分離装置の下に、前記篩分離工程の前記篩を有する篩装置が配置されている、
請求項4記載の方法。 A sieve device having the sieve of the sieve separation step is disposed below a centrifuge device that performs the centrifugation of the centrifugation step.
The method of claim 4. - 前記固液分離工程で得られる前記液体からスクリーンにより前記高吸水性ポリマーを回収する工程を更に具備する、
請求項3に記載の方法。 The method further includes a step of recovering the superabsorbent polymer from the liquid obtained in the solid-liquid separation step using a screen.
The method according to claim 3. - 前記準備工程は、前記高吸水性ポリマーの不活化を行う不活化工程を含み、
前記不活化工程は、前記構成材料を、多価金属イオンを供給可能な多価金属イオン供給源に接触させることにより、前記構成材料中の前記高吸水性ポリマーを脱水させる脱水工程を有する、
請求項1又は2に記載の方法。 The preparation step includes an inactivation step of inactivating the superabsorbent polymer,
The inactivation step includes a dehydration step of contacting the constituent material with a polyvalent metal ion source capable of supplying polyvalent metal ions, thereby dehydrating the superabsorbent polymer in the constituent material.
The method according to claim 1 or 2. - 前記不活化工程は、前記脱水工程の前に、前記構成材料を、酸性水溶液に浸漬させることにより、前記構成材料中の前記高吸水性ポリマーを事前に脱水する事前脱水工程を更に有する、
請求項8に記載の方法。 The inactivation step further includes a pre-dehydration step of pre-dehydrating the superabsorbent polymer in the constituent material by immersing the constituent material in an acidic aqueous solution before the dehydration step.
The method according to claim 8. - 前記篩分離工程において、前記篩の振動は横振動を含む、
請求項2に記載の方法。 In the sieve separation step, the vibration of the sieve includes lateral vibration.
The method of claim 2. - 前記篩は、
前記高吸水性ポリマーが通過可能な目をする第1篩部分と、
前記第1篩部分の下側に位置し、前記第1篩部分よりも細かく、前記高吸水性ポリマーが通過可能な目をする第2篩部分と、
を備え、
前記篩分離工程は、
前記凝集物を、振動する前記篩にかけて、前記第1篩部分及び前記第2篩部分の二段階で前記高吸水性ポリマーを篩い分ける工程を含む、
請求項2又は10に記載の方法。 The sieve is
A first sieve portion having an opening through which the highly absorbent polymer can pass;
a second sieve portion located below the first sieve portion and having a mesh size smaller than that of the first sieve portion and allowing the superabsorbent polymer to pass through;
Equipped with
The sieve separation step includes:
The agglomerate is passed through the vibrating sieve to sieve the superabsorbent polymer in two stages, the first sieve portion and the second sieve portion.
The method according to claim 2 or 10. - 前記構成材料はパルプ繊維を含み、
前記篩分離工程は、前記パルプ繊維が前記篩の表面上の外側へ移動し、前記高吸水性ポリマーは前記篩の下側へ移動して、互いに分離される工程を含む、
請求項2又は10に記載の方法。 The component material includes pulp fibers,
The sieve separation step includes a step in which the pulp fibers move to the outside on the surface of the sieve and the superabsorbent polymer moves to the underside of the sieve and are separated from each other.
The method according to claim 2 or 10. - 前記分離工程で得られた前記高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させることにより、前記高吸水性ポリマーを再活性化する再活性化工程を更に具備する、
請求項1又は2に記載の方法。 The method further includes a reactivation step of contacting the superabsorbent polymer obtained in the separation step with an alkali metal ion source capable of supplying alkali metal ions to reactivate the superabsorbent polymer.
The method according to claim 1 or 2. - リサイクル高吸水性ポリマーを製造する方法であって、
請求項1又は2に記載の、使用済み衛生用品を構成する、高吸水性ポリマーを含む構成材料から高吸水性ポリマーを回収する方法で得られた前記高吸水性ポリマーを、アルカリ金属イオンを供給可能なアルカリ金属イオン供給源に接触させることにより、前記高吸水性ポリマーを再活性化する再活性化工程を具備する、
方法。 1. A method for producing a recycled superabsorbent polymer, comprising:
The method includes a reactivation step of contacting the superabsorbent polymer obtained by the method for recovering a superabsorbent polymer from a constituent material containing the superabsorbent polymer constituting a used sanitary product according to claim 1 or 2 with an alkali metal ion source capable of supplying alkali metal ions to reactivate the superabsorbent polymer.
Method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022169799A JP2024062047A (en) | 2022-10-24 | 2022-10-24 | Method for recovering superabsorbent polymer from constituent material containing superabsorbent polymer constituting used sanitary product, and method for producing recycled superabsorbent polymer using recovered superabsorbent polymer |
JP2022-169799 | 2022-10-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024090234A1 true WO2024090234A1 (en) | 2024-05-02 |
Family
ID=90830658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/037136 WO2024090234A1 (en) | 2022-10-24 | 2023-10-13 | Method for recovering superabsorbent polymer from superabsorbent-polymer-containing constituent materials constituting used hygiene products, and method for producing recycled superabsorbent polymer using recovered superabsorbent polymer |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024062047A (en) |
WO (1) | WO2024090234A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003200147A (en) * | 2001-12-28 | 2003-07-15 | Daiki:Kk | Method for recovering raw material from fouled hygienic article |
WO2016059964A1 (en) * | 2014-10-15 | 2016-04-21 | ユニ・チャーム株式会社 | Method for manufacturing recycled pulp from used sanitary article |
JP2021007910A (en) * | 2019-06-28 | 2021-01-28 | 花王株式会社 | Separation recovery method of component material of absorbent article |
WO2021044690A1 (en) * | 2019-09-06 | 2021-03-11 | ユニ・チャーム株式会社 | Method for producing recycled superabsorbent polymer, method for producing superabsorbent polymer using recycled superabsorbent polymer, and recycled superabsorbent polymer |
-
2022
- 2022-10-24 JP JP2022169799A patent/JP2024062047A/en active Pending
-
2023
- 2023-10-13 WO PCT/JP2023/037136 patent/WO2024090234A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003200147A (en) * | 2001-12-28 | 2003-07-15 | Daiki:Kk | Method for recovering raw material from fouled hygienic article |
WO2016059964A1 (en) * | 2014-10-15 | 2016-04-21 | ユニ・チャーム株式会社 | Method for manufacturing recycled pulp from used sanitary article |
JP2021007910A (en) * | 2019-06-28 | 2021-01-28 | 花王株式会社 | Separation recovery method of component material of absorbent article |
WO2021044690A1 (en) * | 2019-09-06 | 2021-03-11 | ユニ・チャーム株式会社 | Method for producing recycled superabsorbent polymer, method for producing superabsorbent polymer using recycled superabsorbent polymer, and recycled superabsorbent polymer |
Also Published As
Publication number | Publication date |
---|---|
JP2024062047A (en) | 2024-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2112096C1 (en) | Method of treatment of hygienic products from absorbing paper, method of treatment of superabsorbing polymer, solidified superabsorbing polymer and device for treatment of hygienic products | |
JP7115933B2 (en) | Method for regenerating superabsorbent polymer, method for producing recycled superabsorbent polymer, and use of alkali metal ion source | |
JP7378374B2 (en) | Method for regenerating superabsorbent polymer derived from used absorbent articles and recycled superabsorbent polymer derived from used absorbent articles | |
JP6580116B2 (en) | Method for producing recycled pulp fiber | |
JP6847028B2 (en) | Methods for producing recycled pulp fibers, use of peracids for inactivating and decomposing superabsorbent polymers, and inactivating and decomposing agents of superabsorbent polymers containing peracids. | |
CN110656523B (en) | Regenerated pulp | |
JP7168350B2 (en) | Method and system for recovering pulp fibers from used absorbent articles | |
JP6843030B2 (en) | Methods and systems for recovering pulp fibers and superabsorbent polymers from used absorbent articles | |
JP7231522B2 (en) | Method for producing regenerated superabsorbent polymer, method for producing superabsorbent polymer using regenerated superabsorbent polymer, and regenerated superabsorbent polymer | |
CN106460327A (en) | Method for manufacturing recycled pulp from used sanitary products | |
WO2019151538A1 (en) | Method for regenerating highly water-absorbing polymer, method for producing highly water-absorbing recycled polymer, and use of alkali metal ion source | |
JP6762287B2 (en) | Methods and systems for recovering pulp fibers from used absorbent articles | |
JP3222462B2 (en) | Processing of absorbent physiological paper products | |
WO2024090234A1 (en) | Method for recovering superabsorbent polymer from superabsorbent-polymer-containing constituent materials constituting used hygiene products, and method for producing recycled superabsorbent polymer using recovered superabsorbent polymer | |
JP7517817B2 (en) | Cellulose nanofiber manufacturing method and cellulose nanofiber | |
JP6818164B2 (en) | Manufacturing method of pulp fiber for saccharification | |
WO2023210528A1 (en) | Method for producing plastic material derived from used sanitary product suitable for material recycling or chemical recycling, and plastic material derived from used sanitary product | |
AU2022414582A1 (en) | Method for producing recycled pulp fibers from used absorbent articles | |
JP2024088438A (en) | Method of separating between fibrous matter and particulate matter in used sanitary article |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23882442 Country of ref document: EP Kind code of ref document: A1 |