WO2024089866A1 - Stator, electric motor, compressor and refrigeration cycle apparatus - Google Patents

Stator, electric motor, compressor and refrigeration cycle apparatus Download PDF

Info

Publication number
WO2024089866A1
WO2024089866A1 PCT/JP2022/040310 JP2022040310W WO2024089866A1 WO 2024089866 A1 WO2024089866 A1 WO 2024089866A1 JP 2022040310 W JP2022040310 W JP 2022040310W WO 2024089866 A1 WO2024089866 A1 WO 2024089866A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
teeth
wound around
stator
inner winding
Prior art date
Application number
PCT/JP2022/040310
Other languages
French (fr)
Japanese (ja)
Inventor
浩二 矢部
勇二 廣澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/040310 priority Critical patent/WO2024089866A1/en
Publication of WO2024089866A1 publication Critical patent/WO2024089866A1/en

Links

Images

Definitions

  • This disclosure relates to a stator, an electric motor, a compressor, and a refrigeration cycle device.
  • the stator of an electric motor has a stator core and windings.
  • the stator core has multiple teeth, and slots are formed between adjacent teeth.
  • the windings are wound around the teeth and housed in the slots.
  • Patent Document 1 discloses providing a first three-phase winding on the inner layer side and a second three-phase winding on the outer layer side, each of which is delta-connected.
  • the winding portions of the U-phase, V-phase, and W-phase of the first three-phase winding skip over two teeth and are wound with concentrated winding on the teeth on both sides.
  • the second three-phase winding is wound in a similar manner.
  • This disclosure has been made to solve the above problems, and aims to simplify the wiring of the windings and improve workability.
  • the stator of the present disclosure is a stator that constitutes an electric motor together with a rotor having 10 ⁇ N magnetic poles (N is a natural number).
  • the stator has an annular stator core with 12 ⁇ N teeth arranged in the circumferential direction, an inner winding wound on each of the 12 ⁇ N teeth, and an outer winding wound outside the inner winding.
  • the inner winding and the outer winding are connected in parallel.
  • the inner winding wound on the first tooth of the 12 ⁇ N teeth and the inner winding wound on the second tooth are connected in series.
  • the outer winding wound on the first tooth and the outer winding wound on the second tooth are connected in series.
  • the inner windings wound around two teeth are connected in series, and the outer windings wound around two teeth are also connected in series, and the inner windings and outer windings are connected in parallel, making wiring easy and improving workability.
  • FIG. 1 is a cross-sectional view showing an electric motor according to a first embodiment of the present invention
  • 3 is a cross-sectional view showing the arrangement of windings in the stator of the first embodiment.
  • FIG. 2 is a diagram showing a winding portion wound around two teeth of a stator according to the first embodiment;
  • FIG. 4 is a diagram showing a connection state between an inner winding and an outer winding in the first embodiment.
  • FIG. FIG. 2 is a diagram showing a connection state of the winding parts of each phase according to the first embodiment;
  • FIG. 2 is a diagram showing conductors constituting an inner winding and an outer winding in the first embodiment.
  • 11A and 11B are diagrams illustrating another configuration example of the core segment of the first embodiment.
  • FIG. 2 is a perspective view showing a stator according to the first embodiment.
  • 2 is a perspective view showing a core segment and an insulator according to the first embodiment.
  • FIG. FIG. 2 is a perspective view showing a portion of the stator according to the first embodiment.
  • 11 is a perspective view showing another part of the stator according to the first embodiment, different from that shown in FIG. 10 .
  • 1 is a vertical cross-sectional view showing a compressor to which the electric motor of embodiment 1 can be applied;
  • FIG. 13 is a diagram showing a refrigeration cycle device including the compressor shown in FIG. 12 .
  • Embodiment 1 is a cross-sectional view showing an electric motor 100 according to a first embodiment.
  • the electric motor 100 includes a rotor 5 and an annular stator 1 provided to surround the rotor 5. An air gap is provided between the stator 1 and the rotor 5.
  • the central axis of rotation of the rotor 5 will be referred to as the axis Ax.
  • the direction of the axis Ax will be referred to as the "axial direction.”
  • the circumferential direction centered on the axis Ax will be referred to as the “circumferential direction,” and the radial direction centered on the axis Ax will be referred to as the "radial direction.”
  • the rotor 5 has a rotor core 50, a permanent magnet 55, and a shaft 60.
  • the rotor core 50 is made of a plurality of steel plates laminated in the axial direction.
  • the steel plates are, for example, electromagnetic steel plates.
  • the thickness of the steel plates is, for example, 0.1 mm to 1.0 mm.
  • a number of magnet insertion holes 51 are formed along the outer periphery of the rotor core 50.
  • the number of magnet insertion holes 51 is 10 x N (N is a natural number).
  • the magnet insertion holes 51 are formed at equal intervals in the circumferential direction.
  • One flat permanent magnet 55 is inserted into each magnet insertion hole 51.
  • the permanent magnets 55 are made of rare earth magnets.
  • the rare earth magnets are, for example, neodymium magnets containing neodymium (Nd), iron (Fe) and boron (B).
  • the permanent magnets 55 have a thickness in the radial direction of the rotor core 50, and are magnetized in that thickness direction.
  • the permanent magnet 55 placed in each magnet insertion hole 51 constitutes one magnetic pole. Since the number of magnet insertion holes 51 is 10 x N, the number of poles of the rotor 5 is 10 x N.
  • N the number of magnet insertion holes 51 (i.e., the number of permanent magnets 55) is 10, and the number of poles of the rotor 5 is 10.
  • N may be 2 or more.
  • each magnet insertion hole 51 one permanent magnet 55 is placed in each magnet insertion hole 51, but two or more permanent magnets 55 may be placed in each magnet insertion hole 51.
  • the magnet insertion hole 51 extends linearly in a plane perpendicular to the axis Ax, but it may also extend, for example, in a V-shape.
  • the rotor core 50 has a central hole 53 at its radial center.
  • the central hole 53 is a circular hole into which the shaft 60 is fixed by shrink fitting.
  • the shaft 60 is made of, for example, metal.
  • the stator 1 has an annular stator core 10 and a winding 20 wound around the stator core 10.
  • the stator core 10 is composed of a plurality of steel plates laminated in the axial direction.
  • the steel plates are, for example, electromagnetic steel plates.
  • the thickness of the steel plates is, for example, 0.1 mm to 1.0 mm.
  • the stator core 10 has a yoke 11 extending in the circumferential direction and a number of teeth 12 extending radially inward from the yoke 11.
  • the teeth 12 are arranged at equal intervals in the circumferential direction and have tooth tips 12a at their radially inner tips that face the rotor 5.
  • Slots 13, which are areas that accommodate the windings 20, are formed between the circumferentially adjacent teeth 12.
  • the stator core 10 is formed by connecting multiple split cores 10A in a ring shape.
  • Each split core 10A is a block including one tooth 12.
  • the split cores 10A are joined at a joint surface 14 formed on the yoke 11, for example by welding.
  • the arc-shaped portion of the yoke 11 that is included in one of the split cores 10A is called the yoke portion 11A.
  • the joint surfaces 14 are formed on both circumferential ends of the yoke portion 11A.
  • the split cores 10A are also called core segments.
  • the number of teeth 12 is 12 x N (N is a natural number), and the number of slots 13 is also 12 x N.
  • N 1. That is, the number of teeth 12 is 12, and the number of slots 13 is also 12.
  • N may be 2 or more.
  • the electric motor 100 of the first embodiment is therefore a 10 x N pole, 12 x N slot electric motor, and as an example, a 10 pole, 12 slot electric motor.
  • ⁇ Winding configuration> 2 is a diagram showing the arrangement of the windings 20 on the stator core 10.
  • the windings 20 are wound in a concentrated manner around each of the teeth 12 of the stator core 10.
  • An insulator 30 (FIG. 9), which will be described later, is arranged between the windings 20 and the stator core 10.
  • the winding 20 is a collective term for the U-phase winding 20U as the first phase winding, the V-phase winding 20V as the second phase winding, and the W-phase winding 20W as the third phase winding.
  • the portion wound around one tooth 12 is referred to as the "winding section.”
  • the U-phase winding 20U has four winding sections U1, U2, U3, and U4.
  • the winding sections U1 and U4 are wound clockwise (CW as shown in FIG. 5) when viewed from the rotor 5 side.
  • the winding sections U2 and U3 are wound counterclockwise (CCW as shown in FIG. 5) when viewed from the rotor 5 side.
  • the winding sections U1 and U4 are also referred to as the U-phase
  • the winding sections U2 and U3 are also referred to as the U-bar phase.
  • the V-phase winding 20V has four winding sections V1, V2, V3, and V4. Winding sections V2 and V3 are wound clockwise when viewed from the rotor 5 side. On the other hand, winding sections V1 and V4 are wound counterclockwise when viewed from the rotor 5 side. Winding sections V2 and V3 are also referred to as the V-phase, and winding sections V1 and V4 are also referred to as the V-bar phase.
  • the W-phase winding 20W has four winding sections W1, W2, W3, and W4.
  • the winding sections W1 and W4 are wound clockwise when viewed from the rotor 5 side.
  • the winding sections W2 and W3 are wound counterclockwise when viewed from the rotor 5 side.
  • the winding sections W1 and W4 are also referred to as the W-phase, and the winding sections W2 and W3 are also referred to as the W-bar phase.
  • the winding sections are arranged in the following order in the circumferential direction: U1, U2, V1, V2, W1, W2, U3, U4, V3, V4, W3, W4.
  • U1, U2, V1, V2, etc. the teeth 12 around which each winding section is wound are given the symbols U1, U2, V1, V2, etc., indicating the winding section.
  • Each winding section of windings 20U, 20V, 20W has an inner winding 21 and an outer winding 22 of the same phase.
  • the inner winding 21 is wound around the teeth 12, and the outer winding 22 is wound around the outside of the inner winding 21.
  • winding section U1 has a U-phase inner winding 21 and a U-phase outer winding 22.
  • Winding section U2 has a U-bar phase inner winding 21 and a U-bar phase outer winding 22.
  • the inner winding 21 and the outer winding 22 wound around the same tooth 12 are wound in the same direction.
  • the inner winding 21 and the outer winding 22 of the winding section U1 are wound clockwise when viewed from the rotor 5 side.
  • the inner winding 21 and the outer winding 22 of the winding section U2 are wound counterclockwise when viewed from the rotor 5 side.
  • the inner windings 21 of the same phase wound around two adjacent teeth 12 are connected in series.
  • the outer windings 22 of the same phase wound around two adjacent teeth 12 are connected in series.
  • connection section 41 the inner winding 21 of the winding section U1 and the inner winding 21 of the winding section U2 are connected in series via a connection section 41.
  • outer winding 22 of the winding section U1 and the outer winding 22 of the winding section U2 are connected in series via a connection section 42.
  • connection portion 41 is not a jumper wire, but is part of the inner winding 21.
  • the inner winding 21 of the winding portion U1 extends through the yoke 11 to the adjacent tooth 12, and is wound around that tooth 12 to form the inner winding 21 of the winding portion U2.
  • connection portion 42 is not a jumper wire, but is part of the outer winding 22.
  • the outer winding 22 of the winding portion U1 extends through the yoke 11 to the adjacent tooth 12, and is wound around that tooth 12 to form the outer winding 22 of the winding portion U2.
  • Figure 3 is a diagram showing winding sections U1 and U2 wound around two adjacent teeth 12.
  • the inner winding 21 of winding section U1 is referred to as inner winding section 211
  • the inner winding 21 of winding section U2 is referred to as inner winding section 212
  • the outer winding 22 of winding section U1 is referred to as outer winding section 221
  • the outer winding 22 of winding section U2 is referred to as outer winding section 222.
  • Figure 4 is a diagram showing the electrical connection state between the inner winding 21 and the outer winding 22. As shown in Figure 4, the inner winding 21 and the outer winding 22 are connected in parallel. In addition, the inner winding portion 211 of winding portion U1 and the inner winding portion 212 of winding portion U2 are connected in series, and the outer winding portion 221 of winding portion U1 and the outer winding portion 222 of winding portion U2 are also connected in series.
  • connection part 41 is part of the inner winding 21, and the connection part 42 is part of the outer winding 22.
  • connection part 41 is part of the inner winding 21
  • connection part 42 is part of the outer winding 22.
  • winding sections U3, U4, V3, V4, W3, and W4 also have inner windings 21 and outer windings 22 similar to those of winding sections U1 to W2.
  • the number of turns of the inner winding 21 and the outer winding 22 of each winding section is determined according to the required characteristics of the motor 100 (rotation speed, torque, etc.), the supply voltage, and the cross-sectional area of each slot 13.
  • FIG. 5 is a diagram showing an example of the connection state of the windings 20 of each phase.
  • the outer winding and inner winding of each winding section are shown together with symbols according to the direction of current flow.
  • the winding sections U1, U2 and the winding sections U3, U4 of the U phase are arranged on opposite sides of the axis Ax and are connected to each other by a jumper wire 80U.
  • the jumper wire 80U is a lead wire and extends, for example, between the winding section U2 and the winding section U3.
  • V-phase winding sections V1, V2 and the winding sections V3, V4 are arranged on opposite sides of the axis Ax and are connected to each other by a jumper wire 80V.
  • the jumper wire 80V is a lead wire and extends, for example, between the winding section V2 and the winding section V3.
  • the W-phase windings W1, W2 and W3, W4 are arranged on opposite sides of the axis Ax and are connected to each other by a jumper wire 80W.
  • the jumper wire 80W is a lead wire and extends, for example, between the windings W2 and W3.
  • winding sections U4, V4, and W4 are connected to neutral terminal N by jumper wire 81 shown in FIG. 5.
  • U-phase input terminal 82U is connected to winding section U1
  • V-phase input terminal 82V is connected to winding section V1
  • W-phase input terminal 82W is connected to winding section W1.
  • windings 20U, 20V, and 20W are connected in a Y-connection.
  • wiring example shown in Figure 5 is merely one example, and other wiring connections are possible.
  • a delta connection may be used instead of a wye connection.
  • FIG. 6 is a diagram showing the conductors 21a, 22a that make up the inner winding 21 and the outer winding 22.
  • the conductor 21a that makes up the inner winding 21 has a conductor made of copper or aluminum and an insulating coating that covers the conductor.
  • the outer diameter of the conductor portion of the conductor 21a is D1. Because the thickness of the insulating coating is small, the outer diameter D1 can also be considered to be the outer diameter of the conductor 21a.
  • the conductor 22a that constitutes the outer winding 22 has a conductor made of copper or aluminum and an insulating coating that covers the conductor.
  • the outer diameter of the conductor portion of the conductor 22a is D2. Because the thickness of the insulating coating is small, the outer diameter D2 can also be considered as the outer diameter of the conductor 22a.
  • the outer diameter D2 of the conductor 22a of the outer winding 22 is larger than the outer diameter D1 of the conductor 21a of the inner winding 21.
  • the cross-sectional area of the conductor 22a of the outer winding 22 is larger than the cross-sectional area of the conductor 21a of the inner winding 21.
  • the outer winding 22 is wound further outward than the inner winding 21, and therefore has a longer circumference than the inner winding 21.
  • the tooth 12 wound with the inner winding 21 of the same phase and the outer winding 22 of the same phase one may be referred to as the "first tooth” and the other as the “second tooth.”
  • the tooth 12 wound with the inner winding 21 and outer winding 22 of the winding section U1 may be referred to as the "first tooth”
  • the tooth 12 wound with the inner winding 21 and outer winding 22 of the winding section U2 may be referred to as the "second tooth.”
  • stator core 10 is divided into 12 ⁇ N divided cores (core segments) 10A, each of which includes one tooth 12.
  • core segments core segments
  • stator core 10 is not limited to this configuration.
  • FIG. 7 is a diagram showing a coupled core (core segment) 10B including two teeth 12.
  • the coupled core 10B is formed by combining two of the split cores 10A described above.
  • a split surface 15 is formed on the opposing ends of the yoke portions 11A of the two split cores 10A.
  • a connecting portion 16 that connects the two split cores 10A is formed on the outer periphery of the split surface 15.
  • the connecting portion 16 is, for example, a thin-walled portion.
  • a joining surface 14 is formed at the end of each yoke portion 11A opposite the dividing surface 15, where the connecting core 10B is joined.
  • the two teeth 12 of the linked core 10B are wound with windings of the same phase, for example, U-phase windings U1 and U2.
  • the inner winding 21 wound on one tooth 12 and the inner winding 21 wound on the other tooth 12 are connected in series, and the outer winding 22 wound on one tooth 12 and the outer winding 22 wound on the other tooth 12 are connected in series.
  • the inner winding 21 and outer winding 22 of the same phase can be wound around the two teeth 12 of one connected core 10B, simplifying winding processing and further improving workability.
  • the number of connected cores 10B that make up the stator core 10 is half the number of teeth 12, or 6 x N, which makes it easier to handle the connected cores 10B and assemble the stator core 10.
  • coupled core 10B shown in FIG. 7 has two teeth 12, the coupled core 10B may have three or more teeth 12.
  • Fig. 8 is a perspective view showing the stator 1.
  • Fig. 9 is a view showing a split core 10A of the stator core 10 and an insulator 30 as an insulating part attached thereto.
  • Fig. 10 is a view of the stator 1 as seen from the direction indicated by the arrow A in Fig. 9.
  • Fig. 11 is a view of the stator 1 as seen from the direction indicated by the arrow B in Fig. 9.
  • the insulator 30 has a body portion 33 that surrounds the teeth 12, an outer wall portion 31 located radially outside the body portion 33, and an inner wall portion 32 located radially inside the body portion 33.
  • the winding 20 ( Figure 8) is wound around the body 33.
  • the outer wall 31 guides the winding 20 from the radial outside, and the inner wall 32 guides the winding 20 from the radial inside.
  • the outer wall portion 31 is formed with a groove portion 31a as a wire passage for passing the windings 20, etc.
  • the outer wall portion 31 is also formed with a holding portion 31b for holding the jumper wires 81, etc.
  • the inner wall portion 32 is formed with wire guides 32a, 32b for guiding the windings 20, etc.
  • connection 42 between the outer winding 22 of winding section V3 and the outer winding 22 of winding section V4 extends outside the outer wall section 31. Also, as shown in FIG. 11, the connection 42 between the outer winding 22 of winding section U1 and the outer winding 22 of winding section U2 extends outside the outer wall section 31.
  • connection portion 41 between the inner windings 21 of the same phase wound around two adjacent teeth 12 extends outside the outer wall portion 31.
  • connection portion 42 between the outer windings 22 of the same phase wound around two adjacent teeth 12 also extends outside the outer wall portion 31.
  • the crossover wires 80U, 80V, and 80W extend along the inner wall portion 32 or the outer wall portion 31.
  • the crossover wire 81 is held, for example, by a holding portion 31b (FIG. 8) provided on the outer wall portion 31.
  • the input terminals 82U, 82V, and 82W are attached to the outer wall portion 31.
  • connection parts 41, 42, jumper wires 80U, 80V, 80W, jumper wire 81, and input terminals 82U, 82V, 82W described here is merely an example and can be changed as appropriate.
  • ⁇ Stator assembly process> In the process of assembling the stator 1, steel plates are laminated to form the split cores 10A, and the insulators 30 are attached. Next, as shown in Fig. 3, the split cores 10A are arranged in pairs, and the inner windings 21 of the same phase are wound around the two teeth 12, and the outer windings 22 of the same phase are wound around the inner windings 21.
  • the inner winding 21 wound around one tooth 12 is extended to the other tooth 12 and is also wound around the other tooth 12.
  • the outer winding 22 wound around one tooth 12 is extended to the other tooth 12 and is also wound around the other tooth 12.
  • the inner windings 21 and the outer windings 22 are wound around the teeth 12 of the two split cores 10A, the inner windings 21 are connected to each other at the connection parts 41, and the outer windings 22 are connected to each other at the connection parts 42.
  • 12 x N split cores 10A are assembled into a ring shape and joined at the joint surfaces 14 by welding or the like to obtain the stator core 10. Furthermore, the jumper wires 80U, 80V, 80W and jumper wire 81 shown in FIG. 5 are wired, and input terminals 82U, 82V, 82W are attached to complete the stator 1.
  • embodiment 1 As shown in Fig. 2, the inner windings 21 wound around two teeth 12 are connected in series, and the outer windings 22 wound around two teeth 12 are also connected in series, and these inner windings 21 and outer windings 22 are connected in parallel.
  • the inner winding 21 wound around the two teeth 12 is connected in series
  • the outer winding 22 is also connected in series
  • the inner winding 21 and the outer winding 22 are connected in parallel, so the number of terminals that need to be connected in the inner winding 21 and the outer winding 22 is small. This requires fewer jumper wires, and wiring can be easily performed. This improves workability.
  • the inner windings 21 wound around the two teeth 12 are connected in series, and the outer windings 22 are also connected in series, so electrical resistance can be reduced compared to when the inner windings 21 are connected separately for each tooth 12, and the outer windings 22 are also connected separately. As a result, copper loss can be reduced, and motor efficiency can be improved.
  • the inner winding 21 of the same phase and the outer winding 22 of the same phase can be wound around two adjacent teeth 12. Therefore, the inner winding 21 and the outer winding 22 can be wound so as not to straddle other teeth 12, and the length of the connection parts 41, 42 is shortened. This simplifies the process of arranging the connection parts 41, 42 so as not to interfere with other windings, improving workability.
  • connection parts 41, 42 because the inner windings 21 wound around the two teeth 12 are connected to each other and the outer windings 22 are connected to each other, there is no need to cross the connection parts 41, 42, making it easier to arrange the connection parts 41, 42. As a result, workability is further improved.
  • the inner winding 21 wound around one of the two teeth 12 extends to the other tooth 12 and is wound around the other tooth 12 to form the inner winding 21 of the other tooth 12.
  • the outer winding 22 wound around one of the two teeth 12 extends to the other tooth 12 and is wound around the other tooth 12 to form the outer winding 22 of the other tooth 12.
  • the outer winding 22 is wound outside the inner winding 21, so it has a longer circumference than the inner winding 21. If the cross-sectional areas of the conductor 21a of the inner winding 21 and the conductor 22a of the outer winding 22 are the same, the electrical resistance of the outer winding 22 (more specifically, the electrical resistance of the conductor 22a) will be greater than the electrical resistance of the inner winding 21 (more specifically, the electrical resistance of the conductor 21a). If the electrical resistances of the inner winding 21 and the outer winding 22 differ, a circulating current will flow when the two are connected in parallel due to the difference in voltage drop, which may increase copper loss.
  • the electrical resistance of the outer winding 22 and the electrical resistance of the inner winding 21 can be made closer to each other, improving the imbalance in electrical resistance. This makes it possible to suppress the generation of circulating currents when the inner winding 21 and the outer winding 22 are connected in parallel, and to reduce copper loss.
  • the stator core 10 is made by combining 12 x N split cores 10A, each with one tooth 12, in the circumferential direction. Therefore, the split cores 10A are lined up in pairs (see Figure 3), and the same-phase inner winding 21 and the same-phase outer winding 22 are wound around the teeth 12.
  • the stator core 10 is then obtained by assembling the 12 x N split cores 10A into a ring shape. This further improves workability.
  • stator core 10 is a circumferential combination of 6 x N connected cores 10B, each having two teeth 12 (see FIG. 7), the inner winding 21 of the same phase and the outer winding 22 of the same phase are wound around the two teeth 12 of each connected core 10B, and then the 6 x N connected cores 10B are assembled into a ring shape to obtain the stator core 10. Because the number of connected cores 10B is half the number of teeth 12, handling of the connected cores 10B and assembly of the stator core 10 are made easier, further improving workability.
  • connection 41 between the inner winding 21 wound around the two teeth 12 and the connection 42 between the outer winding 22 wound around the two teeth 12 are wound along the insulator 30 attached to the stator core 10, so that the connection 41, 42 can be routed so as not to protrude radially outward from the stator core 10.
  • the stator 1 of the first embodiment is a stator 1 that constitutes an electric motor 100 together with the rotor 5 having 10 ⁇ N magnetic poles (N is a natural number), and has an annular stator core 10 on which 12 ⁇ N teeth 12 are arranged in the circumferential direction, an inner winding 21 wound around each of the 12 ⁇ N teeth 12, and an outer winding 22 wound around the inner winding 21.
  • the inner winding 21 and the outer winding 22 are connected in parallel, and the inner winding 21 wound around one tooth 12 (first tooth) and the inner winding 21 wound around the other tooth 12 (second tooth) of the two teeth 12 are connected in series, and the outer winding 22 wound around the one tooth 12 and the outer winding 22 wound around the other tooth 12 are connected in series.
  • This configuration reduces the number of terminals that require wiring work, simplifies the wiring work, and improves workability.
  • the inner windings 21 wound around the two teeth 12 are connected in series, and the outer windings 22 are connected in series, so the electrical resistance of the inner windings 21 and the outer windings 22 can be reduced. This reduces copper loss and improves motor efficiency.
  • the number of teeth 12 is 12 x N and the number of poles of the rotor 5 is 10 x N, it is possible to wind the inner winding 21 of the same phase and the outer winding 22 of the same phase around two adjacent teeth 12.
  • the inner winding 21 and the outer winding 22 can be wound without straddling other teeth 12, further improving workability.
  • the first embodiment described above can be modified as appropriate.
  • the inner windings 21 wound around two adjacent teeth 12 are connected in series, and the outer windings 22 wound around two adjacent teeth 12 are connected in series, but the two teeth 12 do not necessarily have to be adjacent to each other.
  • the inner windings 21 wound around two adjacent teeth 12 on either side of one tooth 12 may be connected in series, and the outer windings 22 wound around the two adjacent teeth 12 may be connected in series.
  • connection portion 41 is part of the inner winding 21, and the connection portion 42 is part of the outer winding 22, but the connection portion 41 may be formed of a lead wire that is a separate member from the inner winding 21, and the connection portion 42 may be formed of a lead wire that is a separate member from the outer winding 22.
  • the cross-sectional area of the conductor 22a of the outer winding 22 is larger than the cross-sectional area of the conductor 21a of the inner winding 21, but the cross-sectional areas may be reversed, or the cross-sectional areas may be the same.
  • a compressor 300 to which the electric motor 100 can be applied will be described.
  • Fig. 12 is a vertical cross-sectional view showing the compressor 300 equipped with the electric motor 100.
  • the compressor 300 is a rotary compressor in this example, but may be a scroll compressor.
  • the compressor 300 includes a sealed container 307, a compression mechanism 301 disposed within the sealed container 307, and an electric motor 100 that drives the compression mechanism 301.
  • the compression mechanism 301 has a cylinder 302 with a cylinder chamber 303, a rolling piston 304 fixed to the shaft 60 of the electric motor 100, a vane that divides the inside of the cylinder chamber 303 into an intake side and a compression side, and an upper frame 305 and a lower frame 306 into which the shaft 60 is inserted and which close the axial end faces of the cylinder chamber 303.
  • An upper discharge muffler 308 and a lower discharge muffler 309 are attached to the upper frame 305 and the lower frame 306, respectively.
  • the sealed container 307 is a cylindrical container. Refrigeration oil (not shown) that lubricates each sliding part of the compression mechanism 301 is stored in the bottom of the sealed container 307.
  • the shaft 60 is rotatably supported by the upper frame 305 and the lower frame 306, which serve as bearings.
  • the cylinder 302 has a cylinder chamber 303 inside, and the rolling piston 304 rotates eccentrically within the cylinder chamber 303.
  • the shaft 60 has an eccentric shaft portion, and the rolling piston 304 is fitted into the eccentric shaft portion.
  • the stator 1 of the electric motor 100 is assembled inside the sealed container 307 by a method such as shrink fitting, press fitting, or welding. Power is supplied to the windings 20 of the stator 1 from glass terminals 311 fixed to the sealed container 307.
  • the shaft 60 is fixed to the rotor core 50 as described above.
  • An accumulator 310 is attached to the outside of the sealed container 307. Refrigerant gas flows into the accumulator 310 from the refrigerant circuit via a suction pipe 314. When liquid refrigerant flows in together with the refrigerant gas from the suction pipe 314, the liquid refrigerant is stored in the accumulator 310, and the refrigerant gas is supplied to the compressor 300.
  • a suction pipe 313 is fixed to the sealed container 307, and refrigerant gas is supplied from the accumulator 310 to the cylinder 302 via this suction pipe 313.
  • a discharge pipe 312 that discharges the refrigerant to the outside is provided at the top of the sealed container 307.
  • the refrigerant for the compressor 300 may be, for example, R410A, R407C, or R22, but from the perspective of preventing global warming, it is preferable to use a refrigerant with a low GWP (global warming potential).
  • GWP global warming potential
  • the following refrigerants can be used as refrigerants with a low GWP.
  • a halogenated hydrocarbon having a carbon double bond in its composition such as HFO (Hydro-Fluoro-Orefin)-1234yf (CF 3 CF ⁇ CH 2 ), can be used.
  • the GWP of HFO-1234yf is 4.
  • Hydrocarbons having carbon double bonds in their composition such as R1270 (propylene), may also be used.
  • R1270 has a GWP of 3, which is lower than HFO-1234yf, but is more flammable than HFO-1234yf.
  • a mixture containing at least one of a halogenated hydrocarbon having a carbon-carbon double bond in its composition or a hydrocarbon having a carbon-carbon double bond in its composition for example, a mixture of HFO-1234yf and R32 may be used.
  • the above-mentioned HFO-1234yf is a low-pressure refrigerant and tends to cause large pressure loss, which may lead to a decrease in the performance of the refrigeration cycle (especially the evaporator). For this reason, it is practically desirable to use a mixture of HFO-1234yf and R32 or R41, which are refrigerants at higher pressures than HFO-1234yf.
  • the operation of the compressor 300 is as follows. Refrigerant gas supplied from the accumulator 310 is supplied through the suction pipe 313 into the cylinder chamber 303 of the cylinder 302. When the electric motor 100 is driven by supplying current to the windings 20, the shaft 60 rotates together with the rotor 5. Then, the rolling piston 304 fitted to the shaft 60 rotates eccentrically within the cylinder chamber 303, compressing the refrigerant within the cylinder chamber 303.
  • the refrigerant compressed in the cylinder chamber 303 passes through the discharge mufflers 308 and 309, and then through the gap or through-hole (not shown) between the rotor 5 and the stator 1, and rises inside the sealed container 307.
  • the refrigerant that has risen inside the sealed container 307 is discharged from the discharge pipe 312 and supplied to the high-pressure side of the refrigeration cycle.
  • the electric motor 100 of the first embodiment has high motor efficiency due to the reduced electrical resistance of the windings 20. Therefore, by using the electric motor 100 as the driving source of the compressor 300, the operating efficiency of the compressor 300 can be improved.
  • the compressor 300 shown in FIG. 12 is a single rotary compressor having a single cylinder 302, but it may also be a twin rotary compressor having two cylinders with opposite eccentric directions.
  • the electric motor 100 of the first embodiment can improve the operating efficiency when used in any type of compressor.
  • a refrigeration cycle apparatus 400 having the compressor 300 shown in Fig. 12 will be described.
  • Fig. 13 is a diagram showing the refrigeration cycle apparatus 400.
  • the refrigeration cycle apparatus 400 is, for example, an air conditioner, but is not limited thereto, and may be, for example, a refrigerator.
  • the refrigeration cycle device 400 shown in FIG. 13 includes a compressor 401, a condenser 402 that condenses the refrigerant, a pressure reducing device 403 that reduces the pressure of the refrigerant, and an evaporator 404 that evaporates the refrigerant.
  • the compressor 401, the condenser 402, and the pressure reducing device 403 are provided in the outdoor unit 410, and the evaporator 404 is provided in the indoor unit 420.
  • the compressor 401, condenser 402, pressure reducing device 403, and evaporator 404 are connected by refrigerant piping 407 to form a refrigerant circuit.
  • the compressor 401 is formed by the compressor 300 shown in FIG. 12.
  • the refrigeration cycle device 400 also includes an outdoor blower 405 facing the condenser 402, and an indoor blower 406 facing the evaporator 404.
  • the operation of the refrigeration cycle device 400 is as follows.
  • the compressor 401 compresses the sucked refrigerant and sends it out as high-temperature, high-pressure refrigerant gas.
  • the condenser 402 exchanges heat between the refrigerant sent out from the compressor 401 and the outdoor air sent by the outdoor blower 405, condenses the refrigerant, and sends it out as liquid refrigerant.
  • the pressure reducing device 403 expands the liquid refrigerant sent out from the condenser 402, and sends it out as low-temperature, low-pressure liquid refrigerant.
  • the evaporator 404 exchanges heat between the low-temperature, low-pressure liquid refrigerant sent from the pressure reducing device 403 and the indoor air, evaporating the refrigerant and sending it out as refrigerant gas.
  • the air from which the heat has been removed by the evaporator 404 is supplied by the indoor blower 406 to the room, which is the space to be air-conditioned.
  • the compressor 401 of the refrigeration cycle device 400 is equipped with the electric motor 100 of the first embodiment, and the electric motor 100 has high motor efficiency. Therefore, by using the electric motor 100 as the driving source of the compressor 300 of the refrigeration cycle device 400, the operating efficiency of the refrigeration cycle device 400 can be improved.

Landscapes

  • Windings For Motors And Generators (AREA)

Abstract

This stator constitutes an electric motor together with a rotor having 10 × N magnetic poles (N is a natural number). The stator includes an annular stator core in which 12 × N teeth are arranged in the circumferential direction, an inner winding wound around each of the 12 × N teeth, and an outer winding wound around the outside of the inner winding. The inner winding and the outer winding are connected in parallel. The inner winding wound around the first tooth of the 12 × N teeth and the inner winding wound around the second tooth are connected in series. The outer winding wound around the first tooth and the outer winding wound around the second tooth are connected in series.

Description

固定子、電動機、圧縮機および冷凍サイクル装置Stator, motor, compressor and refrigeration cycle device
 本開示は、固定子、電動機、圧縮機および冷凍サイクル装置に関する。 This disclosure relates to a stator, an electric motor, a compressor, and a refrigeration cycle device.
 電動機の固定子は、固定子コアと巻線とを有する。固定子コアは複数のティースを有し、隣り合うティースの間にはスロットが形成される。巻線はティースに巻かれ、スロットに収容される。 The stator of an electric motor has a stator core and windings. The stator core has multiple teeth, and slots are formed between adjacent teeth. The windings are wound around the teeth and housed in the slots.
 例えば特許文献1には、内層側の第1の三相巻線と、外層側の第2の三相巻線とを設け、それぞれをデルタ結線することが開示されている。第1の三相巻線のU相、V相およびW相の各巻線部は、2つのティースを飛び越えてその両側のティースに集中巻きで巻かれる。第2の三相巻線も同様に巻かれる。 For example, Patent Document 1 discloses providing a first three-phase winding on the inner layer side and a second three-phase winding on the outer layer side, each of which is delta-connected. The winding portions of the U-phase, V-phase, and W-phase of the first three-phase winding skip over two teeth and are wound with concentrated winding on the teeth on both sides. The second three-phase winding is wound in a similar manner.
特開2008-193785号公報(図5,7参照)JP 2008-193785 A (see Figs. 5 and 7)
 しかしながら、従来の技術では、巻線部同士を接続するために渡り線が多く必要になり、渡り線の長さも長くなる。そのため、巻線部および渡り線の相互の干渉を避けるために複雑な結線が必要になり、作業性が低いという問題がある。 However, with conventional technology, many jumper wires are required to connect the winding sections, and the jumper wires are also long. This requires complex wiring to avoid interference between the winding sections and the jumper wires, resulting in a problem of low workability.
 本開示は、上記の課題を解決するためになされたものであり、巻線の結線を簡単にし、作業性を向上することを目的とする。 This disclosure has been made to solve the above problems, and aims to simplify the wiring of the windings and improve workability.
 本開示の固定子は、10×N個(Nは自然数)の磁極を有する回転子と共に電動機を構成する固定子である。固定子は、12×N個のティースが周方向に配列された環状の固定子コアと、12×N個のティースの各ティースに巻かれた内側巻線と、内側巻線の外側に巻かれた外側巻線とを有する。内側巻線と外側巻線とは、並列に接続されている。12×N個のティースのうちの第1のティースに巻かれた内側巻線と、第2のティースに巻かれた内側巻線とは、直列に接続されている。また、第1のティースに巻かれた外側巻線と、第2のティースに巻かれた外側巻線とは、直列に接続されている。 The stator of the present disclosure is a stator that constitutes an electric motor together with a rotor having 10×N magnetic poles (N is a natural number). The stator has an annular stator core with 12×N teeth arranged in the circumferential direction, an inner winding wound on each of the 12×N teeth, and an outer winding wound outside the inner winding. The inner winding and the outer winding are connected in parallel. The inner winding wound on the first tooth of the 12×N teeth and the inner winding wound on the second tooth are connected in series. Furthermore, the outer winding wound on the first tooth and the outer winding wound on the second tooth are connected in series.
 本開示では、2つのティースに巻かれた内側巻線が直列に接続され、同じく2つのティースに巻かれた外側巻線も直列に接続され、内側巻線と外側巻線とが並列に接続されているため、結線を簡単に行うことができ、作業性を向上することができる。 In the present disclosure, the inner windings wound around two teeth are connected in series, and the outer windings wound around two teeth are also connected in series, and the inner windings and outer windings are connected in parallel, making wiring easy and improving workability.
実施の形態1の電動機を示す断面図である。1 is a cross-sectional view showing an electric motor according to a first embodiment of the present invention; 実施の形態1の固定子における巻線の配置を示す断面図である。3 is a cross-sectional view showing the arrangement of windings in the stator of the first embodiment. FIG. 実施の形態1の固定子の2つのティースに巻かれた巻線部を示す図である。2 is a diagram showing a winding portion wound around two teeth of a stator according to the first embodiment; FIG. 実施の形態1の内側巻線と外側巻線との接続状態を示す図である。4 is a diagram showing a connection state between an inner winding and an outer winding in the first embodiment. FIG. 実施の形態1の各相の巻線部の結線状態を示す図である。FIG. 2 is a diagram showing a connection state of the winding parts of each phase according to the first embodiment; 実施の形態1の内側巻線および外側巻線を構成する導線を示す図である。FIG. 2 is a diagram showing conductors constituting an inner winding and an outer winding in the first embodiment. 実施の形態1のコアセグメントの他の構成例を示す図である。11A and 11B are diagrams illustrating another configuration example of the core segment of the first embodiment. 実施の形態1の固定子を示す斜視図である。FIG. 2 is a perspective view showing a stator according to the first embodiment. 実施の形態1のコアセグメントとインシュレータとを示す斜視図である。2 is a perspective view showing a core segment and an insulator according to the first embodiment. FIG. 実施の形態1の固定子の一部を示す斜視図である。FIG. 2 is a perspective view showing a portion of the stator according to the first embodiment. 実施の形態1の固定子の図10とは別の一部を示す斜視図である。11 is a perspective view showing another part of the stator according to the first embodiment, different from that shown in FIG. 10 . 実施の形態1の電動機が適用可能な圧縮機を示す縦断面図である。1 is a vertical cross-sectional view showing a compressor to which the electric motor of embodiment 1 can be applied; 図12の圧縮機を備えた冷凍サイクル装置を示す図である。FIG. 13 is a diagram showing a refrigeration cycle device including the compressor shown in FIG. 12 .
実施の形態1.
<電動機の構成>
 図1は、実施の形態1の電動機100を示す横断面図である。電動機100は、回転子5と、回転子5を囲むように設けられた環状の固定子1とを備える。固定子1と回転子5との間には、エアギャップが設けられている。
Embodiment 1.
<Motor configuration>
1 is a cross-sectional view showing an electric motor 100 according to a first embodiment. The electric motor 100 includes a rotor 5 and an annular stator 1 provided to surround the rotor 5. An air gap is provided between the stator 1 and the rotor 5.
 以下では、回転子5の回転中心軸を、軸線Axと称する。軸線Axの方向を「軸方向」と称する。軸線Axを中心とする周方向を「周方向」と称し、軸線Axを中心とする径方向を「径方向」と称する。 Hereinafter, the central axis of rotation of the rotor 5 will be referred to as the axis Ax. The direction of the axis Ax will be referred to as the "axial direction." The circumferential direction centered on the axis Ax will be referred to as the "circumferential direction," and the radial direction centered on the axis Ax will be referred to as the "radial direction."
<回転子5の構成>
 回転子5は、回転子コア50と、永久磁石55と、シャフト60とを有する。回転子コア50は、軸方向に積層された複数の鋼板で構成されている。鋼板は、例えば電磁鋼板である。鋼板の板厚は、例えば、0.1mm~1.0mmである。
<Configuration of Rotor 5>
The rotor 5 has a rotor core 50, a permanent magnet 55, and a shaft 60. The rotor core 50 is made of a plurality of steel plates laminated in the axial direction. The steel plates are, for example, electromagnetic steel plates. The thickness of the steel plates is, for example, 0.1 mm to 1.0 mm.
 回転子コア50の外周に沿って、複数の磁石挿入孔51が形成されている。磁石挿入孔51の数は、10×N(Nは自然数)である。磁石挿入孔51は、周方向に等間隔に形成されている。各磁石挿入孔51には、平板状の永久磁石55が1つずつ挿入されている。 A number of magnet insertion holes 51 are formed along the outer periphery of the rotor core 50. The number of magnet insertion holes 51 is 10 x N (N is a natural number). The magnet insertion holes 51 are formed at equal intervals in the circumferential direction. One flat permanent magnet 55 is inserted into each magnet insertion hole 51.
 永久磁石55は、希土類磁石で構成されている。希土類磁石は、例えば、ネオジム(Nd)、鉄(Fe)およびホウ素(B)を含むネオジム磁石等である。永久磁石55は回転子コア50の径方向に厚さを有し、その厚さ方向に着磁されている。 The permanent magnets 55 are made of rare earth magnets. The rare earth magnets are, for example, neodymium magnets containing neodymium (Nd), iron (Fe) and boron (B). The permanent magnets 55 have a thickness in the radial direction of the rotor core 50, and are magnetized in that thickness direction.
 各磁石挿入孔51内に配置された永久磁石55は、1磁極を構成する。磁石挿入孔51の数は10×Nであるため、回転子5の極数は10×Nである。 The permanent magnet 55 placed in each magnet insertion hole 51 constitutes one magnetic pole. Since the number of magnet insertion holes 51 is 10 x N, the number of poles of the rotor 5 is 10 x N.
 図1に示した例では、N=1である。すなわち、磁石挿入孔51の数(すなわち永久磁石55の数)は10個であり、回転子5の極数は10である。但し、Nは2以上であってもよい。 In the example shown in FIG. 1, N=1. That is, the number of magnet insertion holes 51 (i.e., the number of permanent magnets 55) is 10, and the number of poles of the rotor 5 is 10. However, N may be 2 or more.
 ここでは各磁石挿入孔51に1つの永久磁石55を配置しているが、各磁石挿入孔51に2つ以上の永久磁石55を配置してもよい。また、磁石挿入孔51は、ここでは、軸線Axに直交する面内で直線状に延在しているが、例えばV字状に延在していてもよい。 Here, one permanent magnet 55 is placed in each magnet insertion hole 51, but two or more permanent magnets 55 may be placed in each magnet insertion hole 51. Also, here, the magnet insertion hole 51 extends linearly in a plane perpendicular to the axis Ax, but it may also extend, for example, in a V-shape.
 回転子コア50は、その径方向中心に中心孔53を有する。中心孔53は、シャフト60が焼き嵌めによって固定される円形の穴である。シャフト60は、例えば金属で構成される。 The rotor core 50 has a central hole 53 at its radial center. The central hole 53 is a circular hole into which the shaft 60 is fixed by shrink fitting. The shaft 60 is made of, for example, metal.
<固定子の構成>
 固定子1は、環状の固定子コア10と、固定子コア10に巻き付けられた巻線20とを有する。固定子コア10は、軸方向に積層された複数の鋼板で構成されている。鋼板は、例えば電磁鋼板である。鋼板の板厚は、例えば、0.1mm~1.0mmである。
<Configuration of stator>
The stator 1 has an annular stator core 10 and a winding 20 wound around the stator core 10. The stator core 10 is composed of a plurality of steel plates laminated in the axial direction. The steel plates are, for example, electromagnetic steel plates. The thickness of the steel plates is, for example, 0.1 mm to 1.0 mm.
 固定子コア10は、周方向に延在するヨーク11と、ヨーク11から径方向内側に延在する複数のティース12とを有する。ティース12は、周方向に等間隔に配置されているティース12は、径方向内側の先端に、回転子5に対向する歯先部12aを有する。周方向に隣り合うティース12の間には、巻線20を収容する領域であるスロット13が形成される。 The stator core 10 has a yoke 11 extending in the circumferential direction and a number of teeth 12 extending radially inward from the yoke 11. The teeth 12 are arranged at equal intervals in the circumferential direction and have tooth tips 12a at their radially inner tips that face the rotor 5. Slots 13, which are areas that accommodate the windings 20, are formed between the circumferentially adjacent teeth 12.
 固定子コア10は、複数の分割コア10Aを環状に連結することにより形成される。分割コア10Aは、1つのティース12を含むブロックである。分割コア10Aは、ヨーク11に形成された接合面14において、例えば溶接によって接合されている。 The stator core 10 is formed by connecting multiple split cores 10A in a ring shape. Each split core 10A is a block including one tooth 12. The split cores 10A are joined at a joint surface 14 formed on the yoke 11, for example by welding.
 ヨーク11のうち、1つの分割コア10Aに含まれる円弧状の部分を、ヨーク部11Aと称する。接合面14は、ヨーク部11Aの周方向両端に形成されている。分割コア10Aは、コアセグメントとも称する。 The arc-shaped portion of the yoke 11 that is included in one of the split cores 10A is called the yoke portion 11A. The joint surfaces 14 are formed on both circumferential ends of the yoke portion 11A. The split cores 10A are also called core segments.
 ティース12の数は12×N(Nは自然数)であり、スロット13の数も12×Nである。図1に示した例では、N=1である。すなわち、ティース12の数は12個であり、スロット13の数も12個である。但し、Nは2以上であってもよい。 The number of teeth 12 is 12 x N (N is a natural number), and the number of slots 13 is also 12 x N. In the example shown in FIG. 1, N = 1. That is, the number of teeth 12 is 12, and the number of slots 13 is also 12. However, N may be 2 or more.
 従って、実施の形態1の電動機100は、10×N極、12×Nスロットの電動機であり、一例としては、10極12スロットの電動機である。 The electric motor 100 of the first embodiment is therefore a 10 x N pole, 12 x N slot electric motor, and as an example, a 10 pole, 12 slot electric motor.
<巻線の構成>
 図2は、固定子コア10における巻線20の配置を示す図である。巻線20は、固定子コア10の各ティース12に集中巻きで巻かれる。巻線20と固定子コア10との間には、後述するインシュレータ30(図9)が配置される。
<Winding configuration>
2 is a diagram showing the arrangement of the windings 20 on the stator core 10. The windings 20 are wound in a concentrated manner around each of the teeth 12 of the stator core 10. An insulator 30 (FIG. 9), which will be described later, is arranged between the windings 20 and the stator core 10.
 巻線20は、第1相の巻線としてのU相巻線20Uと、第2相の巻線としてのV相巻線20Vと、第3相の巻線としてのW相巻線20Wとの総称である。各相の巻線20U,20V,20Wにおいて、1つのティース12に巻かれた部分を、「巻線部」と称する。 The winding 20 is a collective term for the U-phase winding 20U as the first phase winding, the V-phase winding 20V as the second phase winding, and the W-phase winding 20W as the third phase winding. In each of the windings 20U, 20V, 20W of each phase, the portion wound around one tooth 12 is referred to as the "winding section."
 U相の巻線20Uは、4つの巻線部U1,U2,U3,U4を有する。巻線部U1,U4は、回転子5側から見て時計回り(図5に示すCW)に巻かれている。一方、巻線部U2,U3は、回転子5側から見て反時計回り(図5に示すCCW)に巻かれている。巻線部U1,U4はU相とも称し、巻線部U2,U3はUバー相とも称する。 The U-phase winding 20U has four winding sections U1, U2, U3, and U4. The winding sections U1 and U4 are wound clockwise (CW as shown in FIG. 5) when viewed from the rotor 5 side. On the other hand, the winding sections U2 and U3 are wound counterclockwise (CCW as shown in FIG. 5) when viewed from the rotor 5 side. The winding sections U1 and U4 are also referred to as the U-phase, and the winding sections U2 and U3 are also referred to as the U-bar phase.
 V相の巻線20Vは、4つの巻線部V1,V2,V3,V4を有する。巻線部V2,V3は、回転子5側から見て時計回りに巻かれている。一方、巻線部V1,V4は、回転子5側から見て反時計回りに巻かれている。巻線部V2,V3はV相とも称し、巻線部V1,V4はVバー相とも称する。 The V-phase winding 20V has four winding sections V1, V2, V3, and V4. Winding sections V2 and V3 are wound clockwise when viewed from the rotor 5 side. On the other hand, winding sections V1 and V4 are wound counterclockwise when viewed from the rotor 5 side. Winding sections V2 and V3 are also referred to as the V-phase, and winding sections V1 and V4 are also referred to as the V-bar phase.
 W相の巻線20Wは、4つの巻線部W1,W2,W3,W4を有する。巻線部W1,W4は、回転子5側から見て時計回りに巻かれている。一方、巻線部W2,W3は、回転子5側から見て反時計回りに巻かれている。巻線部W1,W4はW相とも称し、巻線部W2,W3はWバー相とも称する。 The W-phase winding 20W has four winding sections W1, W2, W3, and W4. The winding sections W1 and W4 are wound clockwise when viewed from the rotor 5 side. On the other hand, the winding sections W2 and W3 are wound counterclockwise when viewed from the rotor 5 side. The winding sections W1 and W4 are also referred to as the W-phase, and the winding sections W2 and W3 are also referred to as the W-bar phase.
 10×N極、12×Nスロットの電動機100では、同一相で且つ巻き方向が反対の2つの巻線部が隣り合う。例えば、周方向に、巻線部U1,U2,V1,V2,W1,W2,U3,U4,V3,V4,W3,W4の順に配列される。なお、図2および後述する図5では、図示の便宜上、各巻線部が巻かれたティース12に、巻線部を示すU1,U2,V1,V2等の符号を付している。 In the 10 x N pole, 12 x N slot electric motor 100, two winding sections of the same phase but with opposite winding directions are adjacent to each other. For example, the winding sections are arranged in the following order in the circumferential direction: U1, U2, V1, V2, W1, W2, U3, U4, V3, V4, W3, W4. For ease of illustration, in FIG. 2 and FIG. 5 described later, the teeth 12 around which each winding section is wound are given the symbols U1, U2, V1, V2, etc., indicating the winding section.
 巻線20U,20V,20Wの各巻線部は、同一相の内側巻線21と外側巻線22とを有する。内側巻線21はティース12に巻かれ、外側巻線22は内側巻線21の外側に巻かれている。例えば、巻線部U1は、U相の内側巻線21とU相の外側巻線22とを有する。また、巻線部U2は、Uバー相の内側巻線21とUバー相の外側巻線22とを有する。 Each winding section of windings 20U, 20V, 20W has an inner winding 21 and an outer winding 22 of the same phase. The inner winding 21 is wound around the teeth 12, and the outer winding 22 is wound around the outside of the inner winding 21. For example, winding section U1 has a U-phase inner winding 21 and a U-phase outer winding 22. Winding section U2 has a U-bar phase inner winding 21 and a U-bar phase outer winding 22.
 同じティース12に巻かれた内側巻線21と外側巻線22とは、同じ方向に巻かれている。例えば、巻線部U1の内側巻線21と外側巻線22とは、回転子5側から見て時計回りに巻かれている。また、巻線部U2の内側巻線21と外側巻線22とは、回転子5側から見て反時計回りに巻かれている。 The inner winding 21 and the outer winding 22 wound around the same tooth 12 are wound in the same direction. For example, the inner winding 21 and the outer winding 22 of the winding section U1 are wound clockwise when viewed from the rotor 5 side. Also, the inner winding 21 and the outer winding 22 of the winding section U2 are wound counterclockwise when viewed from the rotor 5 side.
 隣り合う2つのティース12に巻かれた同一相の内側巻線21は、直列に接続されている。同様に、隣り合う2つのティース12に巻かれた同一相の外側巻線22は、直列に接続されている。 The inner windings 21 of the same phase wound around two adjacent teeth 12 are connected in series. Similarly, the outer windings 22 of the same phase wound around two adjacent teeth 12 are connected in series.
 例えば、巻線部U1の内側巻線21と、巻線部U2の内側巻線21とは、接続部41を介して直列に接続されている。また、巻線部U1の外側巻線22と、巻線部U2の外側巻線22とは、接続部42を介して直列に接続されている。 For example, the inner winding 21 of the winding section U1 and the inner winding 21 of the winding section U2 are connected in series via a connection section 41. Also, the outer winding 22 of the winding section U1 and the outer winding 22 of the winding section U2 are connected in series via a connection section 42.
 接続部41は、渡り線ではなく、内側巻線21の一部である。すなわち、巻線部U1の内側巻線21は、ヨーク11を通って隣のティース12まで延在し、そのティース12に巻かれることにより、巻線部U2の内側巻線21を構成している。 The connection portion 41 is not a jumper wire, but is part of the inner winding 21. In other words, the inner winding 21 of the winding portion U1 extends through the yoke 11 to the adjacent tooth 12, and is wound around that tooth 12 to form the inner winding 21 of the winding portion U2.
 また、接続部42は、渡り線ではなく、外側巻線22の一部である。すなわち、巻線部U1の外側巻線22は、ヨーク11を通って隣のティース12まで延在し、そのティース12に巻かれることにより、巻線部U2の外側巻線22を構成している。 In addition, the connection portion 42 is not a jumper wire, but is part of the outer winding 22. In other words, the outer winding 22 of the winding portion U1 extends through the yoke 11 to the adjacent tooth 12, and is wound around that tooth 12 to form the outer winding 22 of the winding portion U2.
 図3は、隣り合う2つのティース12に巻かれた巻線部U1,U2を示す図である。図3において、巻線部U1の内側巻線21を内側巻線部211とし、巻線部U2の内側巻線21を内側巻線部212とする。また、巻線部U1の外側巻線22を外側巻線部221とし、巻線部U2の外側巻線22を外側巻線部222とする。 Figure 3 is a diagram showing winding sections U1 and U2 wound around two adjacent teeth 12. In Figure 3, the inner winding 21 of winding section U1 is referred to as inner winding section 211, and the inner winding 21 of winding section U2 is referred to as inner winding section 212. Additionally, the outer winding 22 of winding section U1 is referred to as outer winding section 221, and the outer winding 22 of winding section U2 is referred to as outer winding section 222.
 図4は、内側巻線21と外側巻線22との電気的な接続状態を示す図である。図4に示すように、内側巻線21と外側巻線22とは、並列に接続されている。また、巻線部U1の内側巻線部211と巻線部U2の内側巻線部212は直列に接続され、巻線部U1の外側巻線部221と巻線部U2の外側巻線部222も直列に接続されている。 Figure 4 is a diagram showing the electrical connection state between the inner winding 21 and the outer winding 22. As shown in Figure 4, the inner winding 21 and the outer winding 22 are connected in parallel. In addition, the inner winding portion 211 of winding portion U1 and the inner winding portion 212 of winding portion U2 are connected in series, and the outer winding portion 221 of winding portion U1 and the outer winding portion 222 of winding portion U2 are also connected in series.
 図2に示すように、巻線部V1の内側巻線21と、巻線部V2の内側巻線21とは、接続部41を介して直列に接続されている。また、巻線部V1の外側巻線22と、巻線部V2の外側巻線22とは、接続部42を介して直列に接続されている。接続部41は内側巻線21の一部であり、接続部42は外側巻線22の一部である。 As shown in FIG. 2, the inner winding 21 of winding section V1 and the inner winding 21 of winding section V2 are connected in series via a connection part 41. The outer winding 22 of winding section V1 and the outer winding 22 of winding section V2 are connected in series via a connection part 42. The connection part 41 is part of the inner winding 21, and the connection part 42 is part of the outer winding 22.
 また、巻線部W1の内側巻線21と、巻線部W2の内側巻線21とは、接続部41を介して直列に接続されている。また、巻線部W1の外側巻線22と、巻線部W2の外側巻線22とは、接続部42を介して直列に接続されている。接続部41は内側巻線21の一部であり、接続部42は外側巻線22の一部である。 In addition, the inner winding 21 of winding section W1 and the inner winding 21 of winding section W2 are connected in series via a connection part 41. In addition, the outer winding 22 of winding section W1 and the outer winding 22 of winding section W2 are connected in series via a connection part 42. The connection part 41 is part of the inner winding 21, and the connection part 42 is part of the outer winding 22.
 また、巻線部U3,U4,V3,V4,W3,W4も、巻線部U1~W2と同様の内側巻線21と外側巻線22とを有している。 In addition, winding sections U3, U4, V3, V4, W3, and W4 also have inner windings 21 and outer windings 22 similar to those of winding sections U1 to W2.
 なお、各巻線部の内側巻線21の巻き数および外側巻線22の巻き数は、電動機100の要求特性(回転数、トルク等)、供給電圧、および各スロット13の断面積に応じて決定される。 The number of turns of the inner winding 21 and the outer winding 22 of each winding section is determined according to the required characteristics of the motor 100 (rotation speed, torque, etc.), the supply voltage, and the cross-sectional area of each slot 13.
 図5は、各相の巻線20の結線状態の一例を示す図である。図5では、各巻線部の外側巻線および内側巻線を合わせて、電流の流れる方向に応じた記号で示している。U相の巻線部U1,U2と巻線部U3,U4とは、軸線Axを挟んで反対側に配置されており、渡り線80Uによって互いに接続されている。渡り線80Uはリード線であり、例えば、巻線部U2と巻線部U3との間で延在している。 FIG. 5 is a diagram showing an example of the connection state of the windings 20 of each phase. In FIG. 5, the outer winding and inner winding of each winding section are shown together with symbols according to the direction of current flow. The winding sections U1, U2 and the winding sections U3, U4 of the U phase are arranged on opposite sides of the axis Ax and are connected to each other by a jumper wire 80U. The jumper wire 80U is a lead wire and extends, for example, between the winding section U2 and the winding section U3.
 また、V相の巻線部V1,V2と巻線部V3,V4とは、軸線Axを挟んで反対側に配置されており、渡り線80Vによって互いに接続されている。渡り線80Vはリード線であり、例えば、巻線部V2と巻線部V3との間で延在している。 Furthermore, the V-phase winding sections V1, V2 and the winding sections V3, V4 are arranged on opposite sides of the axis Ax and are connected to each other by a jumper wire 80V. The jumper wire 80V is a lead wire and extends, for example, between the winding section V2 and the winding section V3.
 また、W相の巻線部W1,W2と巻線部W3,W4とは、軸線Axを挟んで反対側に配置されており、渡り線80Wによって互いに接続されている。渡り線80Wはリード線であり、例えば、巻線部W2と巻線部W3との間で延在している。 Furthermore, the W-phase windings W1, W2 and W3, W4 are arranged on opposite sides of the axis Ax and are connected to each other by a jumper wire 80W. The jumper wire 80W is a lead wire and extends, for example, between the windings W2 and W3.
 また、巻線部U4,V4,W4は、図5に示す渡り線81によって中性用端子Nに接続されている。巻線部U1にはU相の入力端子82Uが接続され、巻線部V1にはV相の入力端子82Vが接続され、巻線部W1にはW相の入力端子82Wが接続されている。これにより、巻線20U,20V,20Wは、Y結線で結線される。 In addition, winding sections U4, V4, and W4 are connected to neutral terminal N by jumper wire 81 shown in FIG. 5. U-phase input terminal 82U is connected to winding section U1, V-phase input terminal 82V is connected to winding section V1, and W-phase input terminal 82W is connected to winding section W1. As a result, windings 20U, 20V, and 20W are connected in a Y-connection.
 なお、図5に示した結線例はあくまでも一例であり、他の結線も可能である。例えば、Y結線の代わりにデルタ結線を用いてもよい。 Note that the wiring example shown in Figure 5 is merely one example, and other wiring connections are possible. For example, a delta connection may be used instead of a wye connection.
 図6は、内側巻線21および外側巻線22を構成する導線21a,22aを示す図である。内側巻線21を構成する導線21aは、銅またはアルミニウムで構成された導体と、導体を覆う絶縁被膜とを有する。導線21aの導体部分の外径はD1である。絶縁被膜の厚さは僅かであるため、外径D1は、導線21aの外径と考えることもできる。 FIG. 6 is a diagram showing the conductors 21a, 22a that make up the inner winding 21 and the outer winding 22. The conductor 21a that makes up the inner winding 21 has a conductor made of copper or aluminum and an insulating coating that covers the conductor. The outer diameter of the conductor portion of the conductor 21a is D1. Because the thickness of the insulating coating is small, the outer diameter D1 can also be considered to be the outer diameter of the conductor 21a.
 外側巻線22を構成する導線22aは、銅またはアルミニウムで構成された導体と、導体を覆う絶縁被膜とを有する。導線22aの導体部分の外径はD2である。絶縁被膜の厚さは僅かであるため、外径D2は、導線22aの外径と考えることもできる。 The conductor 22a that constitutes the outer winding 22 has a conductor made of copper or aluminum and an insulating coating that covers the conductor. The outer diameter of the conductor portion of the conductor 22a is D2. Because the thickness of the insulating coating is small, the outer diameter D2 can also be considered as the outer diameter of the conductor 22a.
 外側巻線22の導線22aの外径D2は、内側巻線21の導線21aの外径D1よりも大きい。すなわち、外側巻線22の導線22aの断面積は、内側巻線21の導線21aの断面積よりも大きい。 The outer diameter D2 of the conductor 22a of the outer winding 22 is larger than the outer diameter D1 of the conductor 21a of the inner winding 21. In other words, the cross-sectional area of the conductor 22a of the outer winding 22 is larger than the cross-sectional area of the conductor 21a of the inner winding 21.
 外側巻線22は内側巻線21よりも外側に巻かれるため、内側巻線21よりも周長が長い。上記のように導線22aの断面積を導線21aの断面積よりも大きくすることにより、外側巻線22の電気抵抗と内側巻線21の電気抵抗とを近づけることができる。 The outer winding 22 is wound further outward than the inner winding 21, and therefore has a longer circumference than the inner winding 21. By making the cross-sectional area of the conductor 22a larger than the cross-sectional area of the conductor 21a as described above, the electrical resistance of the outer winding 22 and the electrical resistance of the inner winding 21 can be made closer to each other.
 なお、同一相の内側巻線21および同一相の外側巻線22が巻かれた2つのティース12のうち、一方を「第1のティース」と称し、他方を「第2のティース」と称する場合もある。例えば、図3において、巻線部U1の内側巻線21および外側巻線22が巻かれたティース12を「第1のティース」と称し、巻線部U2の内側巻線21および外側巻線22が巻かれたティース12を「第2のティース」と称する場合もある。 Note that of the two teeth 12 wound with the inner winding 21 of the same phase and the outer winding 22 of the same phase, one may be referred to as the "first tooth" and the other as the "second tooth." For example, in FIG. 3, the tooth 12 wound with the inner winding 21 and outer winding 22 of the winding section U1 may be referred to as the "first tooth," and the tooth 12 wound with the inner winding 21 and outer winding 22 of the winding section U2 may be referred to as the "second tooth."
<コアセグメントの構成例>
 上記の通り、固定子コア10は、それぞれが1つのティース12を含む12×N個の分割コア(コアセグメント)10Aに分割されている。但し、固定子コア10は、このような構成には限定されない。
<Example of core segment configuration>
As described above, the stator core 10 is divided into 12×N divided cores (core segments) 10A, each of which includes one tooth 12. However, the stator core 10 is not limited to this configuration.
 図7は、2つのティース12を含む連結コア(コアセグメント)10Bを示す図である。連結コア10Bは、上述した分割コア10Aを2つ組み合わせたものである。2つの分割コア10Aのヨーク部11Aの相対する端部には、分割面15が形成されている。分割面15の外周側には、2つの分割コア10Aを連結する連結部16が形成されている。連結部16は、例えば、薄肉部である。 FIG. 7 is a diagram showing a coupled core (core segment) 10B including two teeth 12. The coupled core 10B is formed by combining two of the split cores 10A described above. A split surface 15 is formed on the opposing ends of the yoke portions 11A of the two split cores 10A. A connecting portion 16 that connects the two split cores 10A is formed on the outer periphery of the split surface 15. The connecting portion 16 is, for example, a thin-walled portion.
 各ヨーク部11Aの分割面15と反対側の端部には、他の連結コア10Bと接合される接合面14が形成されている。 A joining surface 14 is formed at the end of each yoke portion 11A opposite the dividing surface 15, where the connecting core 10B is joined.
 連結コア10Bの2つのティース12には、同一相の巻線部、例えばU相の巻線部U1,U2が巻かれる。一方のティース12に巻かれた内側巻線21と他方のティース12に巻かれた内側巻線21とは直列に接続され、一方のティース12に巻かれた外側巻線22と他方のティース12に巻かれた外側巻線22とは直列に接続される。 The two teeth 12 of the linked core 10B are wound with windings of the same phase, for example, U-phase windings U1 and U2. The inner winding 21 wound on one tooth 12 and the inner winding 21 wound on the other tooth 12 are connected in series, and the outer winding 22 wound on one tooth 12 and the outer winding 22 wound on the other tooth 12 are connected in series.
 1つの連結コア10Bの2つのティース12に、同一相の内側巻線21と外側巻線22とを巻き付けることができるため、巻線処理が簡単になり、作業性がさらに向上する。また、固定子コア10を構成する連結コア10Bの数は、ティース12の数の半数の6×N個となるため、連結コア10Bの取り扱い、固定子コア10の組み立て等も容易になる。 The inner winding 21 and outer winding 22 of the same phase can be wound around the two teeth 12 of one connected core 10B, simplifying winding processing and further improving workability. In addition, the number of connected cores 10B that make up the stator core 10 is half the number of teeth 12, or 6 x N, which makes it easier to handle the connected cores 10B and assemble the stator core 10.
 なお、図7に示した連結コア10Bは2つのティース12を有しているが、連結コア10Bは3つ以上のティース12を有していても良い。 Note that although the coupled core 10B shown in FIG. 7 has two teeth 12, the coupled core 10B may have three or more teeth 12.
<インシュレータ>
 図8は、固定子1を示す斜視図である。図9は、固定子コア10の分割コア10Aと、これに取り付けられる絶縁部としてのインシュレータ30を示す図である。図10は、固定子1を図9に矢印Aで示した方向から見た図である。図11は、固定子1を図9に矢印Bで示した方向から見た図である。
<Insulator>
Fig. 8 is a perspective view showing the stator 1. Fig. 9 is a view showing a split core 10A of the stator core 10 and an insulator 30 as an insulating part attached thereto. Fig. 10 is a view of the stator 1 as seen from the direction indicated by the arrow A in Fig. 9. Fig. 11 is a view of the stator 1 as seen from the direction indicated by the arrow B in Fig. 9.
 図9に示すように、インシュレータ30は、ティース12を囲む胴部33と、胴部33の径方向外側に位置する外壁部31と、胴部33の径方向内側に位置する内壁部32とを有する。 As shown in FIG. 9, the insulator 30 has a body portion 33 that surrounds the teeth 12, an outer wall portion 31 located radially outside the body portion 33, and an inner wall portion 32 located radially inside the body portion 33.
 胴部33には、巻線20(図8)が巻かれる。外壁部31は巻線20を径方向外側からガイドし、内壁部32は巻線20を径方向内側からガイドする。 The winding 20 (Figure 8) is wound around the body 33. The outer wall 31 guides the winding 20 from the radial outside, and the inner wall 32 guides the winding 20 from the radial inside.
 外壁部31には、巻線20等を通過させるワイヤ通路としての溝部31aが形成されている。また、外壁部31には、渡り線81等を保持する保持部31bが形成されている。内壁部32には、巻線20等を案内するワイヤガイド32a,32bが形成されている。 The outer wall portion 31 is formed with a groove portion 31a as a wire passage for passing the windings 20, etc. The outer wall portion 31 is also formed with a holding portion 31b for holding the jumper wires 81, etc. The inner wall portion 32 is formed with wire guides 32a, 32b for guiding the windings 20, etc.
 図10に示すように、巻線部V3の外側巻線22と巻線部V4の外側巻線22との間の接続部42は、外壁部31の外側を通って延在している。また、図11に示すように、巻線部U1の外側巻線22と巻線部U2の外側巻線22との間の接続部42は、外壁部31の外側を通って延在している。 As shown in FIG. 10, the connection 42 between the outer winding 22 of winding section V3 and the outer winding 22 of winding section V4 extends outside the outer wall section 31. Also, as shown in FIG. 11, the connection 42 between the outer winding 22 of winding section U1 and the outer winding 22 of winding section U2 extends outside the outer wall section 31.
 図9~11では一部のみを示しているが、隣り合う2つのティース12に巻かれた同一相の内側巻線21の間の接続部41は、外壁部31の外側を通って延在している。また、隣り合う2つのティース12に巻かれた同一相の外側巻線22の間の接続部42も、外壁部31の外側を通って延在している。 Although only a portion is shown in Figures 9 to 11, the connection portion 41 between the inner windings 21 of the same phase wound around two adjacent teeth 12 extends outside the outer wall portion 31. In addition, the connection portion 42 between the outer windings 22 of the same phase wound around two adjacent teeth 12 also extends outside the outer wall portion 31.
 渡り線80U,80V,80Wは、内壁部32または外壁部31に沿って延在する。渡り線81は、例えば、外壁部31に設けられた保持部31b(図8)によって保持されている。また、入力端子82U,82V,82Wは、外壁部31に取り付けられている。 The crossover wires 80U, 80V, and 80W extend along the inner wall portion 32 or the outer wall portion 31. The crossover wire 81 is held, for example, by a holding portion 31b (FIG. 8) provided on the outer wall portion 31. The input terminals 82U, 82V, and 82W are attached to the outer wall portion 31.
 なお、ここで説明した接続部41,42、渡り線80U,80V,80W、渡り線81および入力端子82U,82V,82Wの配置はあくまでも一例であり、適宜、変更可能である。 Note that the arrangement of the connection parts 41, 42, jumper wires 80U, 80V, 80W, jumper wire 81, and input terminals 82U, 82V, 82W described here is merely an example and can be changed as appropriate.
<固定子の組み立て工程>
 固定子1の組み立て工程では、鋼板を積層して分割コア10Aを形成し、インシュレータ30を取り付ける。次に、図3に示したように、分割コア10Aを2つ1組で並べ、2つのティース12に同一相の内側巻線21を巻き付け、その外側に同一相の外側巻線22を巻き付ける。
<Stator assembly process>
In the process of assembling the stator 1, steel plates are laminated to form the split cores 10A, and the insulators 30 are attached. Next, as shown in Fig. 3, the split cores 10A are arranged in pairs, and the inner windings 21 of the same phase are wound around the two teeth 12, and the outer windings 22 of the same phase are wound around the inner windings 21.
 このとき、一方のティース12に巻き付けた内側巻線21を、他方のティース12まで延在させ、当該他方のティース12にも巻き付ける。また、一方のティース12に巻き付けた外側巻線22を、他方のティース12まで延在させ、当該他方のティース12にも巻き付ける。 At this time, the inner winding 21 wound around one tooth 12 is extended to the other tooth 12 and is also wound around the other tooth 12. Also, the outer winding 22 wound around one tooth 12 is extended to the other tooth 12 and is also wound around the other tooth 12.
 これにより、2つの分割コア10Aのティース12に内側巻線21および外側巻線22が巻かれ、内側巻線21同士が接続部41で接続され、外側巻線22同士が接続部42で接続された構成が得られる。 As a result, the inner windings 21 and the outer windings 22 are wound around the teeth 12 of the two split cores 10A, the inner windings 21 are connected to each other at the connection parts 41, and the outer windings 22 are connected to each other at the connection parts 42.
 その後、12×N個の分割コア10Aを環状に組み立て、接合面14で溶接等により接合することにより、固定子コア10を得る。さらに、図5に示した渡り線80U,80V,80Wおよび渡り線81を配線し、入力端子82U,82V,82Wを取り付けることにより、固定子1が完成する。 Then, 12 x N split cores 10A are assembled into a ring shape and joined at the joint surfaces 14 by welding or the like to obtain the stator core 10. Furthermore, the jumper wires 80U, 80V, 80W and jumper wire 81 shown in FIG. 5 are wired, and input terminals 82U, 82V, 82W are attached to complete the stator 1.
 また、図7に示した連結コア10Bを用いる場合には、鋼板を積層して連結コア10Bを形成し、インシュレータ30を取り付ける。次に、各連結コア10Bの2つのティース12に同一相の内側巻線21を巻き付け、その外側に同一相の外側巻線22を巻き付ける。その後、6×N個の連結コア10Bを環状に組み立て、接合面14で溶接等により接合することにより、固定子コア10を得る。この場合、連結コア10Bの数がティース12の数の半数であるため、連結コア10Bの取り扱い、固定子コア10の組み立て等が容易になる。 When using the linked core 10B shown in FIG. 7, steel plates are laminated to form the linked core 10B, and an insulator 30 is attached. Next, the inner winding 21 of the same phase is wound around the two teeth 12 of each linked core 10B, and the outer winding 22 of the same phase is wound around the outer side of that. After that, 6 x N linked cores 10B are assembled into a ring shape and joined at the joint surfaces 14 by welding or the like to obtain the stator core 10. In this case, since the number of linked cores 10B is half the number of teeth 12, handling of the linked cores 10B and assembly of the stator core 10 are made easier.
<作用>
 次に、実施の形態1の作用について説明する。実施の形態1では、図2に示したように、2つのティース12に巻かれた内側巻線21が直列に接続され、2つのティース12に巻かれた外側巻線22も直列に接続され、これら内側巻線21と外側巻線22とが並列に接続されている。
<Action>
Next, a description will be given of the operation of embodiment 1. In embodiment 1, as shown in Fig. 2, the inner windings 21 wound around two teeth 12 are connected in series, and the outer windings 22 wound around two teeth 12 are also connected in series, and these inner windings 21 and outer windings 22 are connected in parallel.
 このように2つのティース12に巻かれた内側巻線21が直列に接続され、外側巻線22も直列に接続され、さらに内側巻線21と外側巻線22とが並列に接続されているため、内側巻線21および外側巻線22において接続が必要な端子の数が少ない。そのため、渡り線の数が少なくて済み、結線を簡単に行うことができる。これにより、作業性を向上することができる。 In this way, the inner winding 21 wound around the two teeth 12 is connected in series, the outer winding 22 is also connected in series, and the inner winding 21 and the outer winding 22 are connected in parallel, so the number of terminals that need to be connected in the inner winding 21 and the outer winding 22 is small. This requires fewer jumper wires, and wiring can be easily performed. This improves workability.
 また、2つのティース12に巻かれた内側巻線21が直列に接続され、外側巻線22も直列に接続されているため、ティース12毎に内側巻線21を別々に結線し、また外側巻線22を別々に結線した場合と比較して、電気抵抗を低減することができる。その結果、銅損を低減し、電動機効率を向上することができる。 In addition, the inner windings 21 wound around the two teeth 12 are connected in series, and the outer windings 22 are also connected in series, so electrical resistance can be reduced compared to when the inner windings 21 are connected separately for each tooth 12, and the outer windings 22 are also connected separately. As a result, copper loss can be reduced, and motor efficiency can be improved.
 特に、ティース12の数が12×N個(Nは自然数)であり、回転子5の極数が10×N個であるため、隣り合う2つのティース12に同一相の内側巻線21および同一相の外側巻線22を巻き付けることができる。そのため、内側巻線21および外側巻線22を、他のティース12を跨がないように巻き付けることができ、接続部41,42の長さが短くなる。これにより、接続部41,42を他の巻線と干渉しないように配置する等の処理を簡略化することができ、作業性が向上する。 In particular, since the number of teeth 12 is 12 x N (N is a natural number) and the number of poles of the rotor 5 is 10 x N, the inner winding 21 of the same phase and the outer winding 22 of the same phase can be wound around two adjacent teeth 12. Therefore, the inner winding 21 and the outer winding 22 can be wound so as not to straddle other teeth 12, and the length of the connection parts 41, 42 is shortened. This simplifies the process of arranging the connection parts 41, 42 so as not to interfere with other windings, improving workability.
 また、2つのティース12に巻かれた内側巻線21同士が接続され、外側巻線22同士が接続されるため、接続部41,42を交差させる必要がなく、接続部41,42の配置が容易になる。その結果、作業性がさらに向上する。 In addition, because the inner windings 21 wound around the two teeth 12 are connected to each other and the outer windings 22 are connected to each other, there is no need to cross the connection parts 41, 42, making it easier to arrange the connection parts 41, 42. As a result, workability is further improved.
 特に、2つのティース12のうちの一方のティース12に巻かれた内側巻線21が、他方のティース12まで延在し、当該他方のティース12に巻かれることで、当該他方のティース12の内側巻線21を構成する。また、2つのティース12のうちの一方のティース12に巻かれた外側巻線22が、他方のティース12まで延在し、当該他方のティース12に巻かれることで、当該他方のティース12の外側巻線22を構成する。 In particular, the inner winding 21 wound around one of the two teeth 12 extends to the other tooth 12 and is wound around the other tooth 12 to form the inner winding 21 of the other tooth 12. Also, the outer winding 22 wound around one of the two teeth 12 extends to the other tooth 12 and is wound around the other tooth 12 to form the outer winding 22 of the other tooth 12.
 そのため、2つのティース12の内側巻線21を接続する渡り線、および2つのティース12の外側巻線22を接続する渡り線を設ける必要がなく、部品点数を低減することができる。また、2つのティース12に内側巻線21と外側巻線22とを連続して巻き付けることができ、作業性がさらに向上する。 As a result, there is no need to provide a jumper wire connecting the inner windings 21 of the two teeth 12, and a jumper wire connecting the outer windings 22 of the two teeth 12, which reduces the number of parts. In addition, the inner windings 21 and the outer windings 22 can be wound continuously around the two teeth 12, further improving workability.
 外側巻線22は内側巻線21の外側に巻かれるため、内側巻線21よりも周長が長くなる。内側巻線21の導線21aと外側巻線22の導線22aの断面積が同じ場合、外側巻線22の電気抵抗(より具体的には導線22aの電気抵抗)が、内側巻線21の電気抵抗(より具体的には導線21aの電気抵抗)よりも大きくなる。内側巻線21と外側巻線22とで電気抵抗が異なると、電圧降下の違いにより、両者を並列に接続した際に循環電流が流れ、銅損が増加する可能性がある。 The outer winding 22 is wound outside the inner winding 21, so it has a longer circumference than the inner winding 21. If the cross-sectional areas of the conductor 21a of the inner winding 21 and the conductor 22a of the outer winding 22 are the same, the electrical resistance of the outer winding 22 (more specifically, the electrical resistance of the conductor 22a) will be greater than the electrical resistance of the inner winding 21 (more specifically, the electrical resistance of the conductor 21a). If the electrical resistances of the inner winding 21 and the outer winding 22 differ, a circulating current will flow when the two are connected in parallel due to the difference in voltage drop, which may increase copper loss.
 外側巻線22の導線22aの断面積を、内側巻線21の導線21aの断面積よりも大きくすることで(図6参照)、外側巻線22の電気抵抗と内側巻線21の電気抵抗とを近づけ、電気抵抗の不均衡を改善することができる。これにより、内側巻線21と外側巻線22とを並列に接続した際の循環電流の発生を抑制し、銅損を低減することができる。 By making the cross-sectional area of the conductor 22a of the outer winding 22 larger than the cross-sectional area of the conductor 21a of the inner winding 21 (see Figure 6), the electrical resistance of the outer winding 22 and the electrical resistance of the inner winding 21 can be made closer to each other, improving the imbalance in electrical resistance. This makes it possible to suppress the generation of circulating currents when the inner winding 21 and the outer winding 22 are connected in parallel, and to reduce copper loss.
 また、固定子コア10は、それぞれ1つのティース12を有する12×N個の分割コア10Aを周方向に組み合わせたものである。そのため、分割コア10Aを2つ1組で並べ(図3参照)、そのティース12に同一相の内側巻線21および同一相の外側巻線22を巻き付け、その後、12×N個の分割コア10Aを環状に組み立てることで、固定子コア10が得られる。そのため、作業性をさらに向上することができる。 The stator core 10 is made by combining 12 x N split cores 10A, each with one tooth 12, in the circumferential direction. Therefore, the split cores 10A are lined up in pairs (see Figure 3), and the same-phase inner winding 21 and the same-phase outer winding 22 are wound around the teeth 12. The stator core 10 is then obtained by assembling the 12 x N split cores 10A into a ring shape. This further improves workability.
 また、固定子コア10が、それぞれ2つのティース12を有する6×N個の連結コア10Bを周方向に組み合わせたものである場合(図7参照)、各連結コア10Bの2つのティース12に同一相の内側巻線21および同一相の外側巻線22を巻き付け、その後、6×N個の連結コア10Bを環状に組み立てることで、固定子コア10が得られる。連結コア10Bの数がティース12の数の半数であるため、連結コア10Bの取り扱いおよび固定子コア10の組み立てが容易になり、作業性をさらに向上することができる。 In addition, when the stator core 10 is a circumferential combination of 6 x N connected cores 10B, each having two teeth 12 (see FIG. 7), the inner winding 21 of the same phase and the outer winding 22 of the same phase are wound around the two teeth 12 of each connected core 10B, and then the 6 x N connected cores 10B are assembled into a ring shape to obtain the stator core 10. Because the number of connected cores 10B is half the number of teeth 12, handling of the connected cores 10B and assembly of the stator core 10 are made easier, further improving workability.
 また、2つのティース12に巻かれた内側巻線21の間の接続部41、および2つのティース12に巻かれた外側巻線22の間の接続部42が、固定子コア10に取り付けられたインシュレータ30に沿って巻かれているため、接続部41,42を固定子コア10から径方向外側に飛び出さないように引き回すことができる。 In addition, the connection 41 between the inner winding 21 wound around the two teeth 12 and the connection 42 between the outer winding 22 wound around the two teeth 12 are wound along the insulator 30 attached to the stator core 10, so that the connection 41, 42 can be routed so as not to protrude radially outward from the stator core 10.
<実施の形態の効果>
 以上説明したように、実施の形態1の固定子1は、10×N個(Nは自然数)の磁極を有する回転子5と共に電動機100を構成する固定子1であって、12×N個のティース12が周方向に配列された環状の固定子コア10と、12×N個のティース12の各ティース12に巻かれた内側巻線21と、その外側に巻かれた外側巻線22とを有する。内側巻線21と外側巻線22とは並列に接続され、2つのティース12のうち、一方のティース12(第1のティース)に巻かれた内側巻線21と他方のティース12(第2のティース)に巻かれた内側巻線21とが直列に接続され、当該一方のティース12に巻かれた外側巻線22と当該他方のティース12に巻かれた外側巻線22とが直列に接続されている。
<Effects of the embodiment>
As described above, the stator 1 of the first embodiment is a stator 1 that constitutes an electric motor 100 together with the rotor 5 having 10×N magnetic poles (N is a natural number), and has an annular stator core 10 on which 12×N teeth 12 are arranged in the circumferential direction, an inner winding 21 wound around each of the 12×N teeth 12, and an outer winding 22 wound around the inner winding 21. The inner winding 21 and the outer winding 22 are connected in parallel, and the inner winding 21 wound around one tooth 12 (first tooth) and the inner winding 21 wound around the other tooth 12 (second tooth) of the two teeth 12 are connected in series, and the outer winding 22 wound around the one tooth 12 and the outer winding 22 wound around the other tooth 12 are connected in series.
 このように構成されているため、結線作業が必要な端子の数が少なく、結線作業を簡単に行うことができ、作業性を向上することができる。また、2つのティース12に巻かれた内側巻線21同士が直列に接続され、外側巻線22同士が直列に接続されているため、内側巻線21および外側巻線22の電気抵抗を低減することができる。これにより、銅損を低減し、電動機効率を向上することができる。 This configuration reduces the number of terminals that require wiring work, simplifies the wiring work, and improves workability. In addition, the inner windings 21 wound around the two teeth 12 are connected in series, and the outer windings 22 are connected in series, so the electrical resistance of the inner windings 21 and the outer windings 22 can be reduced. This reduces copper loss and improves motor efficiency.
 特に、ティース12の数が12×N個であり、回転子5の極数が10×N個であるため、隣り合う2つのティース12に同一相の内側巻線21および同一相の外側巻線22を巻き付けることができる。内側巻線21および外側巻線22を、他のティース12を跨がないように巻き付けることができるため、作業性をさらに向上することができる。 In particular, since the number of teeth 12 is 12 x N and the number of poles of the rotor 5 is 10 x N, it is possible to wind the inner winding 21 of the same phase and the outer winding 22 of the same phase around two adjacent teeth 12. The inner winding 21 and the outer winding 22 can be wound without straddling other teeth 12, further improving workability.
<変形例等>
 上述した実施の形態1は、適宜、変形が可能である。例えば、上記の構成では、隣り合う2つのティース12に巻かれた内側巻線21が直列に接続され、隣り合う2つのティース12に巻かれた外側巻線22が直列に接続されていたが、2つのティース12は必ずしも隣り合っていなくてもよい。
<Modifications, etc.>
The first embodiment described above can be modified as appropriate. For example, in the above configuration, the inner windings 21 wound around two adjacent teeth 12 are connected in series, and the outer windings 22 wound around two adjacent teeth 12 are connected in series, but the two teeth 12 do not necessarily have to be adjacent to each other.
 例えば、1つのティース12を挟んで隣り合う2つのティース12に巻かれた内側巻線21が直列に接続され、当該2つのティース12に巻かれた外側巻線22が直列に接続されていてもよい。 For example, the inner windings 21 wound around two adjacent teeth 12 on either side of one tooth 12 may be connected in series, and the outer windings 22 wound around the two adjacent teeth 12 may be connected in series.
 また、上記の構成では、接続部41が内側巻線21の一部であり、接続部42が外側巻線22の一部であったが、接続部41を内側巻線21とは別部材のリード線で構成し、接続部42を外側巻線22とは別部材のリード線で構成してもよい。 In addition, in the above configuration, the connection portion 41 is part of the inner winding 21, and the connection portion 42 is part of the outer winding 22, but the connection portion 41 may be formed of a lead wire that is a separate member from the inner winding 21, and the connection portion 42 may be formed of a lead wire that is a separate member from the outer winding 22.
 また、上記の構成では、外側巻線22の導線22aの断面積が内側巻線21の導線21aの断面積よりも大きかったが、断面積の大小が逆でもよく、また、断面積が同じであってもよい。 In addition, in the above configuration, the cross-sectional area of the conductor 22a of the outer winding 22 is larger than the cross-sectional area of the conductor 21a of the inner winding 21, but the cross-sectional areas may be reversed, or the cross-sectional areas may be the same.
<圧縮機>
 次に、電動機100が適用可能な圧縮機300について説明する。図12は、電動機100を備えた圧縮機300を示す縦断面図である。圧縮機300は、ここではロータリ圧縮機であるが、スクロール圧縮機であってもよい。
<Compressor>
Next, a compressor 300 to which the electric motor 100 can be applied will be described. Fig. 12 is a vertical cross-sectional view showing the compressor 300 equipped with the electric motor 100. The compressor 300 is a rotary compressor in this example, but may be a scroll compressor.
 圧縮機300は、密閉容器307と、密閉容器307内に配設された圧縮機構301と、圧縮機構301を駆動する電動機100とを備えている。 The compressor 300 includes a sealed container 307, a compression mechanism 301 disposed within the sealed container 307, and an electric motor 100 that drives the compression mechanism 301.
 圧縮機構301は、シリンダ室303を有するシリンダ302と、電動機100のシャフト60に固定されたローリングピストン304と、シリンダ室303内を吸入側と圧縮側に分けるベーンと、シャフト60が挿入されてシリンダ室303の軸方向端面を閉鎖する上部フレーム305および下部フレーム306とを有する。上部フレーム305および下部フレーム306には、上部吐出マフラ308および下部吐出マフラ309がそれぞれ装着されている。 The compression mechanism 301 has a cylinder 302 with a cylinder chamber 303, a rolling piston 304 fixed to the shaft 60 of the electric motor 100, a vane that divides the inside of the cylinder chamber 303 into an intake side and a compression side, and an upper frame 305 and a lower frame 306 into which the shaft 60 is inserted and which close the axial end faces of the cylinder chamber 303. An upper discharge muffler 308 and a lower discharge muffler 309 are attached to the upper frame 305 and the lower frame 306, respectively.
 密閉容器307は円筒状の容器である。密閉容器307の底部には、圧縮機構301の各摺動部を潤滑する冷凍機油(図示せず)が貯留されている。シャフト60は、軸受部としての上部フレーム305および下部フレーム306によって回転可能に保持されている。 The sealed container 307 is a cylindrical container. Refrigeration oil (not shown) that lubricates each sliding part of the compression mechanism 301 is stored in the bottom of the sealed container 307. The shaft 60 is rotatably supported by the upper frame 305 and the lower frame 306, which serve as bearings.
 シリンダ302は、内部にシリンダ室303を備えており、ローリングピストン304は、シリンダ室303内で偏心回転する。シャフト60は偏心軸部を有し、その偏心軸部にローリングピストン304が嵌合している。 The cylinder 302 has a cylinder chamber 303 inside, and the rolling piston 304 rotates eccentrically within the cylinder chamber 303. The shaft 60 has an eccentric shaft portion, and the rolling piston 304 is fitted into the eccentric shaft portion.
 電動機100の固定子1は、焼き嵌め、圧入または溶接等の方法により、密閉容器307の内側に組み込まれている。固定子1の巻線20には、密閉容器307に固定されたガラス端子311から電力が供給される。シャフト60は、上記の通り、回転子コア50に固定されている。 The stator 1 of the electric motor 100 is assembled inside the sealed container 307 by a method such as shrink fitting, press fitting, or welding. Power is supplied to the windings 20 of the stator 1 from glass terminals 311 fixed to the sealed container 307. The shaft 60 is fixed to the rotor core 50 as described above.
 密閉容器307の外部には、アキュムレータ310が取り付けられている。アキュムレータ310には、吸入管314を介して冷媒回路から冷媒ガスが流入する。吸入管314から冷媒ガスと共に液冷媒が流入した場合には、液冷媒がアキュムレータ310内に貯留され、冷媒ガスが圧縮機300に供給される。 An accumulator 310 is attached to the outside of the sealed container 307. Refrigerant gas flows into the accumulator 310 from the refrigerant circuit via a suction pipe 314. When liquid refrigerant flows in together with the refrigerant gas from the suction pipe 314, the liquid refrigerant is stored in the accumulator 310, and the refrigerant gas is supplied to the compressor 300.
 密閉容器307には吸入パイプ313が固定され、この吸入パイプ313を介してアキュムレータ310からシリンダ302に冷媒ガスが供給される。また、密閉容器307の上部には、冷媒を外部に吐出する吐出パイプ312が設けられている。 A suction pipe 313 is fixed to the sealed container 307, and refrigerant gas is supplied from the accumulator 310 to the cylinder 302 via this suction pipe 313. In addition, a discharge pipe 312 that discharges the refrigerant to the outside is provided at the top of the sealed container 307.
 圧縮機300の冷媒としては、例えば、R410A、R407CまたはR22等を用いてもよいが、地球温暖化防止の観点からは、GWP(地球温暖化係数)の低い冷媒を用いることが望ましい。GWPの低い冷媒としては、例えば、以下の冷媒を用いることができる。 The refrigerant for the compressor 300 may be, for example, R410A, R407C, or R22, but from the perspective of preventing global warming, it is preferable to use a refrigerant with a low GWP (global warming potential). For example, the following refrigerants can be used as refrigerants with a low GWP.
(1)まず、組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro-Fluoro-Orefin)-1234yf(CFCF=CH)を用いることができる。HFO-1234yfのGWPは4である。
(2)また、組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO-1234yfより低いが、可燃性はHFO-1234yfより高い。
(3)また、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO-1234yfとR32との混合物を用いてもよい。上述したHFO-1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO-1234yfよりも高圧冷媒であるR32またはR41との混合物を用いることが実用上は望ましい。
(1) First, a halogenated hydrocarbon having a carbon double bond in its composition, such as HFO (Hydro-Fluoro-Orefin)-1234yf (CF 3 CF═CH 2 ), can be used. The GWP of HFO-1234yf is 4.
(2) Hydrocarbons having carbon double bonds in their composition, such as R1270 (propylene), may also be used. R1270 has a GWP of 3, which is lower than HFO-1234yf, but is more flammable than HFO-1234yf.
(3) Also, a mixture containing at least one of a halogenated hydrocarbon having a carbon-carbon double bond in its composition or a hydrocarbon having a carbon-carbon double bond in its composition, for example, a mixture of HFO-1234yf and R32 may be used. The above-mentioned HFO-1234yf is a low-pressure refrigerant and tends to cause large pressure loss, which may lead to a decrease in the performance of the refrigeration cycle (especially the evaporator). For this reason, it is practically desirable to use a mixture of HFO-1234yf and R32 or R41, which are refrigerants at higher pressures than HFO-1234yf.
 圧縮機300の動作は、以下の通りである。アキュムレータ310から供給された冷媒ガスは、吸入パイプ313を通ってシリンダ302のシリンダ室303内に供給される。巻線20への電流供給によって電動機100が駆動されると、回転子5と共にシャフト60が回転する。そして、シャフト60に嵌合するローリングピストン304がシリンダ室303内で偏心回転し、シリンダ室303内で冷媒が圧縮される。 The operation of the compressor 300 is as follows. Refrigerant gas supplied from the accumulator 310 is supplied through the suction pipe 313 into the cylinder chamber 303 of the cylinder 302. When the electric motor 100 is driven by supplying current to the windings 20, the shaft 60 rotates together with the rotor 5. Then, the rolling piston 304 fitted to the shaft 60 rotates eccentrically within the cylinder chamber 303, compressing the refrigerant within the cylinder chamber 303.
 シリンダ室303で圧縮された冷媒は、吐出マフラ308,309を通り、さらに回転子5と固定子1との空隙あるいは貫通穴(図示せず)を通って密閉容器307内を上昇する。密閉容器307内を上昇した冷媒は、吐出パイプ312から吐出され、冷凍サイクルの高圧側に供給される。 The refrigerant compressed in the cylinder chamber 303 passes through the discharge mufflers 308 and 309, and then through the gap or through-hole (not shown) between the rotor 5 and the stator 1, and rises inside the sealed container 307. The refrigerant that has risen inside the sealed container 307 is discharged from the discharge pipe 312 and supplied to the high-pressure side of the refrigeration cycle.
 実施の形態1の電動機100は、巻線20の電気抵抗の低減により、高い電動機効率を有する。そのため、圧縮機300の駆動源に電動機100を用いることにより、圧縮機300の運転効率を向上することができる。 The electric motor 100 of the first embodiment has high motor efficiency due to the reduced electrical resistance of the windings 20. Therefore, by using the electric motor 100 as the driving source of the compressor 300, the operating efficiency of the compressor 300 can be improved.
 図12に示した圧縮機300は、単一のシリンダ302を有するシングルロータリ圧縮機であるが、偏心方向が反対の2つのシリンダを有するツインロータリ圧縮機であってもよい。実施の形態1の電動機100は、いずれのタイプの圧縮機に用いても、運転効率を向上することができる。 The compressor 300 shown in FIG. 12 is a single rotary compressor having a single cylinder 302, but it may also be a twin rotary compressor having two cylinders with opposite eccentric directions. The electric motor 100 of the first embodiment can improve the operating efficiency when used in any type of compressor.
<冷凍サイクル装置>
 次に、図12に示した圧縮機300を有する冷凍サイクル装置400について説明する。図13は、冷凍サイクル装置400を示す図である。冷凍サイクル装置400は、例えば空気調和装置であるが、これには限定されず、例えば冷蔵庫であってもよい。
<Refrigeration cycle device>
Next, a refrigeration cycle apparatus 400 having the compressor 300 shown in Fig. 12 will be described. Fig. 13 is a diagram showing the refrigeration cycle apparatus 400. The refrigeration cycle apparatus 400 is, for example, an air conditioner, but is not limited thereto, and may be, for example, a refrigerator.
 図13に示した冷凍サイクル装置400は、圧縮機401と、冷媒を凝縮する凝縮器402と、冷媒を減圧する減圧装置403と、冷媒を蒸発させる蒸発器404とを備える。圧縮機401、凝縮器402および減圧装置403は室外機410に設けられ、蒸発器404は室内機420に設けられる。 The refrigeration cycle device 400 shown in FIG. 13 includes a compressor 401, a condenser 402 that condenses the refrigerant, a pressure reducing device 403 that reduces the pressure of the refrigerant, and an evaporator 404 that evaporates the refrigerant. The compressor 401, the condenser 402, and the pressure reducing device 403 are provided in the outdoor unit 410, and the evaporator 404 is provided in the indoor unit 420.
 圧縮機401、凝縮器402、減圧装置403および蒸発器404は、冷媒配管407によって連結され、冷媒回路を構成している。圧縮機401は、図12に示した圧縮機300で構成される。冷凍サイクル装置400は、また、凝縮器402に対向する室外送風機405と、蒸発器404に対向する室内送風機406とを備える。 The compressor 401, condenser 402, pressure reducing device 403, and evaporator 404 are connected by refrigerant piping 407 to form a refrigerant circuit. The compressor 401 is formed by the compressor 300 shown in FIG. 12. The refrigeration cycle device 400 also includes an outdoor blower 405 facing the condenser 402, and an indoor blower 406 facing the evaporator 404.
 冷凍サイクル装置400の動作は、次の通りである。圧縮機401は、吸入した冷媒を圧縮して高温高圧の冷媒ガスとして送り出す。凝縮器402は、圧縮機401から送り出された冷媒と、室外送風機405により送られた室外空気との熱交換を行い、冷媒を凝縮して液冷媒として送り出す。減圧装置403は、凝縮器402から送り出された液冷媒を膨張させて、低温低圧の液冷媒として送り出す。 The operation of the refrigeration cycle device 400 is as follows. The compressor 401 compresses the sucked refrigerant and sends it out as high-temperature, high-pressure refrigerant gas. The condenser 402 exchanges heat between the refrigerant sent out from the compressor 401 and the outdoor air sent by the outdoor blower 405, condenses the refrigerant, and sends it out as liquid refrigerant. The pressure reducing device 403 expands the liquid refrigerant sent out from the condenser 402, and sends it out as low-temperature, low-pressure liquid refrigerant.
 蒸発器404は、減圧装置403から送り出された低温低圧の液冷媒と室内空気との熱交換を行い、冷媒を蒸発させ、冷媒ガスとして送り出す。蒸発器404で熱が奪われた空気は、室内送風機406により、空調対象空間である室内に供給される。 The evaporator 404 exchanges heat between the low-temperature, low-pressure liquid refrigerant sent from the pressure reducing device 403 and the indoor air, evaporating the refrigerant and sending it out as refrigerant gas. The air from which the heat has been removed by the evaporator 404 is supplied by the indoor blower 406 to the room, which is the space to be air-conditioned.
 冷凍サイクル装置400の圧縮機401は、実施の形態1の電動機100を備えており、電動機100は高い電動機効率を有する。そのため、冷凍サイクル装置400の圧縮機300の駆動源に電動機100を用いることにより、冷凍サイクル装置400の運転効率を向上することができる。 The compressor 401 of the refrigeration cycle device 400 is equipped with the electric motor 100 of the first embodiment, and the electric motor 100 has high motor efficiency. Therefore, by using the electric motor 100 as the driving source of the compressor 300 of the refrigeration cycle device 400, the operating efficiency of the refrigeration cycle device 400 can be improved.
 以上、望ましい実施の形態について具体的に説明したが、本開示は上記の実施の形態に限定されるものではなく、種々の改良または変形を行なうことができる。 The above describes a preferred embodiment in detail, but the present disclosure is not limited to the above embodiment, and various improvements and modifications can be made.
 1 固定子、 5 回転子、 10 固定子コア、 10A 分割コア(コアセグメント)、 10B 連結コア(コアセグメント)、 11 ヨーク、 12 ティース(第1のティース、第2のティース)、 13 スロット、 14 接合面、 15 分割面、 16 連結部、 20 巻線、 20U U相巻線、 20V V相巻線、 20W W相巻線、 21 内側巻線、 21a 導線、 22 外側巻線、 22a 導線、 30 インシュレータ(絶縁部)、 31 外壁部、 32 内壁部、 33 胴部、 41 接続部、 42 接続部、 50 回転子コア、 51 磁石挿入孔、 55 永久磁石、 60 シャフト、 80U,80V,80W 渡り線、 81 渡り線、 82U,82V,82W 入力端子、 100 電動機、 300 圧縮機、 301 圧縮機構、 307 密閉容器、 400 冷凍サイクル装置、 401 圧縮機、 402 凝縮器、 403 減圧装置、 404 蒸発器、 U1,U2,U3,U4 巻線部、 V1,V2,V3,V4 巻線部、 W1,W2,W3,W4 巻線部。
 
LIST OF SYMBOLS 1 stator, 5 rotor, 10 stator core, 10A split core (core segment), 10B connected core (core segment), 11 yoke, 12 teeth (first teeth, second teeth), 13 slot, 14 joint surface, 15 split surface, 16 connection portion, 20 winding, 20U U-phase winding, 20V V-phase winding, 20W W-phase winding, 21 inner winding, 21a conductor, 22 outer winding, 22a conductor, 30 insulator (insulating portion), 31 outer wall portion, 32 inner wall portion, 33 body portion, 41 connection portion, 42 connection portion, 50 rotor core, 51 magnet insertion hole, 55 permanent magnet, 60 shaft, 80U, 80V, 80W Crossover wire, 81 crossover wire, 82U, 82V, 82W input terminal, 100 electric motor, 300 compressor, 301 compression mechanism, 307 sealed container, 400 refrigeration cycle device, 401 compressor, 402 condenser, 403 pressure reducing device, 404 evaporator, U1, U2, U3, U4 winding section, V1, V2, V3, V4 winding section, W1, W2, W3, W4 winding section.

Claims (12)

  1.  10×N個(Nは自然数)の磁極を有する回転子と共に電動機を構成する固定子であって、
     12×N個のティースが周方向に配列された環状の固定子コアと、
     12×N個のティースの各ティースに巻かれた内側巻線と、前記内側巻線の外側に巻かれた外側巻線と
     を有し、
     前記内側巻線と前記外側巻線とは並列に接続され、
     12×N個のティースのうちの第1のティースに巻かれた内側巻線と、第2のティースに巻かれた内側巻線とが直列に接続され、
     前記第1のティースに巻かれた外側巻線と、前記第2のティースに巻かれた外側巻線とが直列に接続されている
     固定子。
    A stator constituting an electric motor together with a rotor having 10×N magnetic poles (N is a natural number),
    An annular stator core having 12×N teeth arranged in a circumferential direction;
    An inner winding is wound around each of the 12×N teeth, and an outer winding is wound around the outer side of the inner winding,
    the inner winding and the outer winding are connected in parallel;
    an inner winding wound around a first tooth and an inner winding wound around a second tooth of the 12×N teeth are connected in series;
    a stator in which an outer winding wound around the first teeth and an outer winding wound around the second teeth are connected in series.
  2.  前記第1のティースに巻かれた前記内側巻線が前記第2のティースまで延在し、前記第2のティースに巻かれることによって、前記第2のティースに巻かれた前記内側巻線を構成する
     請求項1に記載の固定子。
    2. The stator according to claim 1, wherein the inner winding wound around the first teeth extends to the second teeth and is wound around the second teeth to form the inner winding wound around the second teeth.
  3.  前記第1のティースに巻かれた前記外側巻線が前記第2のティースまで延在し、前記第2のティースに巻かれることによって、前記第2のティースに巻かれた前記外側巻線を構成する
     請求項1または2に記載の固定子。
    3. The stator according to claim 1, wherein the outer winding wound around the first teeth extends to the second teeth and is wound around the second teeth to form the outer winding wound around the second teeth.
  4.  前記第1のティースと前記第2のティースは、前記周方向に隣り合うティースである
     請求項1から3までのいずれか1項に記載の固定子。
    The stator according to claim 1 , wherein the first teeth and the second teeth are adjacent to each other in the circumferential direction.
  5.  前記外側巻線を構成する導線の断面積は、前記内側巻線を構成する導線の断面積よりも大きい
     請求項1から4までのいずれか1項に記載の固定子。
    5. The stator according to claim 1, wherein a cross-sectional area of a conductor constituting the outer winding is larger than a cross-sectional area of a conductor constituting the inner winding.
  6.  前記固定子コアは、それぞれ少なくとも1つのティースを有する複数の分割コアを、前記周方向に組み合わせたものである
     請求項1から5までのいずれか1項に記載の固定子。
    The stator according to claim 1 , wherein the stator core is formed by combining a plurality of split cores, each of which has at least one tooth, in the circumferential direction.
  7.  前記固定子コアは、それぞれ少なくとも2つのティースを有する複数の連結コアを、前記周方向に組み合わせたものである
     請求項1から5までのいずれか1項に記載の固定子。
    The stator according to claim 1 , wherein the stator core is formed by combining a plurality of coupled cores, each of which has at least two teeth, in the circumferential direction.
  8.  各連結コアの前記少なくとも2つのティースに、同じ相の前記内側巻線と同じ相の前記外側巻線とが巻かれている
     請求項7に記載の固定子。
    The stator according to claim 7 , wherein the inner winding of the same phase and the outer winding of the same phase are wound on the at least two teeth of each connecting core.
  9.  前記固定子コアに取り付けられた絶縁部をさらに有し、
     前記第1のティースに巻かれた前記内側巻線と、前記第2のティースに巻かれた前記内側巻線との間の部分は、前記絶縁部に沿って巻かれている
     請求項1から8までのいずれか1項に記載の固定子。
    Further comprising an insulation portion attached to the stator core;
    9. The stator according to claim 1, wherein a portion between the inner winding wound around the first teeth and the inner winding wound around the second teeth is wound along the insulating portion.
  10.  請求項1から9までの何れか1項に記載の固定子と、
     前記固定子の内側に回転可能に設けられた前記回転子と
     を備えた
     電動機。
    A stator according to any one of claims 1 to 9;
    The rotor is rotatably provided inside the stator.
  11.  請求項10に記載の電動機と、
     前記電動機によって駆動される圧縮機構と
     を備えた圧縮機。
    An electric motor according to claim 10;
    a compression mechanism driven by the electric motor.
  12.  請求項11に記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを有する
     冷凍サイクル装置。
     
    A refrigeration cycle apparatus comprising the compressor according to claim 11, a condenser, a pressure reducing device, and an evaporator.
PCT/JP2022/040310 2022-10-28 2022-10-28 Stator, electric motor, compressor and refrigeration cycle apparatus WO2024089866A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040310 WO2024089866A1 (en) 2022-10-28 2022-10-28 Stator, electric motor, compressor and refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/040310 WO2024089866A1 (en) 2022-10-28 2022-10-28 Stator, electric motor, compressor and refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2024089866A1 true WO2024089866A1 (en) 2024-05-02

Family

ID=90830383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/040310 WO2024089866A1 (en) 2022-10-28 2022-10-28 Stator, electric motor, compressor and refrigeration cycle apparatus

Country Status (1)

Country Link
WO (1) WO2024089866A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348522A (en) * 2004-06-03 2005-12-15 Hitachi Ltd Motor for electric power steering and its manufacturing method
WO2007052385A1 (en) * 2005-11-01 2007-05-10 Matsushita Electric Industrial Co., Ltd. Motor and method of producing stator used for the motor
JP2007202263A (en) * 2006-01-25 2007-08-09 Hitachi Ltd Electric power steering motor
JP2008301652A (en) * 2007-06-01 2008-12-11 Mitsubishi Electric Corp Permanent magnet type rotating electric machine and electric power steering arrangement using the same
WO2012039028A1 (en) * 2010-09-22 2012-03-29 三菱電機株式会社 Rotating electrical machine and method of manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005348522A (en) * 2004-06-03 2005-12-15 Hitachi Ltd Motor for electric power steering and its manufacturing method
WO2007052385A1 (en) * 2005-11-01 2007-05-10 Matsushita Electric Industrial Co., Ltd. Motor and method of producing stator used for the motor
JP2007202263A (en) * 2006-01-25 2007-08-09 Hitachi Ltd Electric power steering motor
JP2008301652A (en) * 2007-06-01 2008-12-11 Mitsubishi Electric Corp Permanent magnet type rotating electric machine and electric power steering arrangement using the same
WO2012039028A1 (en) * 2010-09-22 2012-03-29 三菱電機株式会社 Rotating electrical machine and method of manufacturing same

Similar Documents

Publication Publication Date Title
JP6537623B2 (en) Stator, motor, compressor, and refrigeration air conditioner
CN109155545B (en) Stator, motor, compressor and refrigeration air conditioner
US7902713B2 (en) Self-starting type permanent magnet synchronous motor and a compressor using the same
JP6109338B2 (en) Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
JP6742402B2 (en) Electric motor, compressor, and refrigeration cycle device
CN109155544B (en) Stator, motor, compressor, and refrigeration and air-conditioning apparatus
WO2015166726A1 (en) Electric motor, hermetic compressor, and refrigerating cycle device
US11863020B2 (en) Motor, compressor, and air conditioner
JP7195408B2 (en) Rotors, motors, compressors, and air conditioners
JP7150181B2 (en) motors, compressors, and air conditioners
WO2024089866A1 (en) Stator, electric motor, compressor and refrigeration cycle apparatus
JP7204897B2 (en) Rotors, motors, compressors, and air conditioners
WO2020021693A1 (en) Electric motor, compressor, and air conditioner
JP7292441B2 (en) Stator, electric motor, compressor, air conditioner, and stator manufacturing method
JP7486613B2 (en) Stator, motor, compressor and refrigeration cycle device
US20220224193A1 (en) Compressor and air conditioner
WO2022153362A1 (en) Stator, motor, compressor, and refrigeration cycle device
WO2023181238A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
JP7353508B2 (en) Stators, electric motors, compressors and air conditioners
WO2024004202A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
WO2023233629A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
US11916438B2 (en) Magnetization ring, magnetization method, magnetization apparatus, rotor, motor, compressor, and air conditioner
US11949291B2 (en) Motor having rotor with different core regions, compressor, and air conditioner having the motor
WO2023032134A1 (en) Electric motor, compressor, and refrigeration cycle device
JP7154373B2 (en) Electric motors, compressors, and air conditioners