WO2023233629A1 - Stator, electric motor, compressor, and refrigeration cycle device - Google Patents

Stator, electric motor, compressor, and refrigeration cycle device Download PDF

Info

Publication number
WO2023233629A1
WO2023233629A1 PCT/JP2022/022508 JP2022022508W WO2023233629A1 WO 2023233629 A1 WO2023233629 A1 WO 2023233629A1 JP 2022022508 W JP2022022508 W JP 2022022508W WO 2023233629 A1 WO2023233629 A1 WO 2023233629A1
Authority
WO
WIPO (PCT)
Prior art keywords
teeth
core
axial direction
stepped portion
stator
Prior art date
Application number
PCT/JP2022/022508
Other languages
French (fr)
Japanese (ja)
Inventor
優樹 東
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/022508 priority Critical patent/WO2023233629A1/en
Publication of WO2023233629A1 publication Critical patent/WO2023233629A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings

Definitions

  • the present disclosure relates to a stator, an electric motor, a compressor, and a refrigeration cycle device.
  • the stator of the electric motor includes a stator core having teeth, a winding wound around the teeth, and an insulating part interposed between the teeth and the winding. It is also known to provide a stepped portion at the axial end of the teeth in order to shorten the circumferential length of the winding (for example, Patent Document 1).
  • the insulating portions covering the teeth are locally thinned, making the insulating portions more likely to be damaged. If the thickness of the insulation part is increased to prevent damage, the circumference of the winding becomes longer.
  • the present disclosure has been made to solve the above problems, and aims to shorten the circumferential length of the winding.
  • a stator according to the present disclosure includes a stator core having an annular core back, teeth extending radially inward from the core back, slots adjacent to the teeth in the circumferential direction of the core back, and an insulating core provided in the teeth. and a winding wound around the teeth via an insulating part.
  • the teeth have an end face facing in the axial direction of the stator core, a side face facing the slot, and a step portion formed between the end face and the side face.
  • the insulating part has a first surface that covers the end surface of the teeth, a second surface facing the slot, and a third surface that is a curved surface or an inclined surface extending from the first surface to the second surface. has.
  • the boundary between the first surface and the third surface is a point P
  • the boundary between the second surface and the third surface is a point Q
  • passing through point P Let U be the intersection of a first straight line parallel to the axial direction and a second straight line passing through point Q and perpendicular to the axial direction.
  • the height A of the stepped portion in the axial direction, the width B of the stepped portion in the direction orthogonal to the axial direction, the distance D1 from point P to intersection U, and the distance D2 from point Q to intersection U are D1 ⁇ A and D2 ⁇ B are satisfied.
  • the distance D1 from point P to intersection U, and the distance D2 from point Q to intersection U satisfy D1 ⁇ A and D2 ⁇ B, Point P does not face the end face of the teeth, and point Q does not face the side faces of the teeth. Therefore, stress concentration in the insulating portion can be suppressed. As a result, the thickness of the insulating portion can be reduced and the circumferential length of the winding can be shortened.
  • FIG. 1 is a cross-sectional view showing an electric motor of Embodiment 1.
  • FIG. 3 is a diagram showing the axial positional relationship between the stator core and rotor core of the first embodiment.
  • FIG. 3 is a plan view showing the stator core of the first embodiment.
  • FIG. 2 is a perspective view showing a split core of Embodiment 1.
  • FIG. 3 is a perspective view showing a split core and an insulating part in the first embodiment.
  • FIG. 3 is a cross-sectional view showing the teeth and the insulating portion of the first embodiment.
  • FIG. 7 is a cross-sectional view showing another example of the teeth and the insulating portion of the first embodiment.
  • FIG. 3 is an enlarged view showing a stepped portion of the teeth of the first embodiment.
  • FIG. 5 is a graph showing the relationship between the dimension ratio A/B of the stepped portion and the torque constant in Embodiment 1.
  • FIG. 7 is a graph showing the relationship between the ratio A/L1 of the height A of the stepped portion and the length L1 of the teeth and the rate of change in loss in the first embodiment.
  • FIG. 7 is a diagram showing an axial positional relationship between a stator core and a rotor core according to a second embodiment.
  • FIG. 7 is a cross-sectional view showing teeth and an insulating portion according to a second embodiment. 7 is a diagram showing another example of the axial positional relationship between the stator core and the rotor core according to the second embodiment.
  • FIG. FIG. 7 is a perspective view showing a split core and an insulating part in Embodiment 3;
  • FIG. 7 is a cross-sectional view showing teeth and an insulating part in Embodiment 3.
  • FIG. 7 is a cross-sectional view showing teeth and an insulating portion of Comparative Example 3.
  • FIG. 2 is a longitudinal sectional view showing a compressor to which the electric motor of each embodiment can be applied.
  • FIG. 19 is a diagram showing a refrigeration cycle device to which the compressor of FIG. 18 can be applied.
  • FIG. 1 is a sectional view showing an electric motor 100 according to the first embodiment.
  • the electric motor 100 shown in FIG. 1 is an embedded permanent magnet electric motor, and is used, for example, in the compressor 8 (FIG. 18).
  • the electric motor 100 includes a rotor 5 having a shaft 65 that is a rotating shaft, and a stator 1 provided so as to surround the rotor 5.
  • An air gap of, for example, 0.3 to 1.0 mm is formed between the stator 1 and the rotor 5.
  • the stator 1 is assembled inside a cylindrical shell 80 of a compressor 8 (FIG. 18), which will be described later.
  • the direction of the axis Ax which is the center of rotation of the rotor 5, will be referred to as the "axial direction.”
  • the radial direction centered on the axis Ax is defined as the “radial direction.”
  • the circumferential direction centered on the axis Ax is defined as the “circumferential direction.”
  • the rotor 5 has a cylindrical rotor core 50 centered on the axis Ax, and a permanent magnet 60 attached to the rotor core 50.
  • the rotor core 50 is made by laminating a plurality of electromagnetic steel plates in the axial direction and fixing them by caulking or the like.
  • the thickness of the electromagnetic steel plate is 0.1 to 0.7 mm.
  • a center hole 53 is formed at the radial center of the rotor core 50.
  • the shaft 65 described above is fixed to the center hole 53 of the rotor core 50 by shrink fitting, press fitting, adhesive, or the like.
  • the rotor core 50 has a circumferential outer periphery centered on the axis Ax.
  • a plurality of magnet insertion holes 51 into which permanent magnets 60 are inserted are formed along the outer periphery of the rotor core 50.
  • One magnet insertion hole 51 corresponds to one magnetic pole.
  • the circumferential center of the magnet insertion hole 51 corresponds to the pole center.
  • An interpolar portion is defined between adjacent magnet insertion holes 51 .
  • the number of magnet insertion holes 51 is six here. In other words, the number of poles is six. However, the number of poles is not limited to six, but may be two or more.
  • the magnet insertion hole 51 extends linearly in a direction perpendicular to a straight line passing through the center of the magnet insertion hole 51 in the circumferential direction.
  • the magnet insertion hole 51 is not limited to such a shape, and may extend in a V-shape, for example.
  • the permanent magnet 60 is arranged in each magnet insertion hole 51.
  • the permanent magnet 60 has a flat plate shape, has a width in the circumferential direction of the rotor core 50, and has a thickness in the radial direction. Each permanent magnet 60 is magnetized in the thickness direction.
  • the permanent magnet 60 is made of, for example, a rare earth magnet.
  • the rare earth magnet is, for example, a neodymium magnet containing neodymium (Nd), iron (Fe), and boron (B). Note that two or more permanent magnets 60 may be arranged in each magnet insertion hole 51.
  • flux barriers 52 which are holes, are formed at both ends of the magnet insertion hole 51 in the circumferential direction.
  • a thin wall portion is formed between each flux barrier 52 and the outer periphery of the rotor core 50.
  • the width of the thin portion in the radial direction is set, for example, to be the same as the thickness of the electromagnetic steel sheet.
  • a slit 54 is formed between the magnet insertion hole 51 and the outer periphery of the rotor core 50.
  • the slit 54 is formed to adjust the flow of magnetic flux emitted from the permanent magnet 60.
  • seven slits 54 are formed symmetrically with respect to the circumferential center of the magnet insertion hole 51.
  • the number and arrangement of slits 54 are not limited to the example described here.
  • the rotor core 50 does not necessarily have to have the slit 54.
  • hole portions 57 and 58 are formed radially inside the magnet insertion hole 51.
  • the holes 57 and 58 are used as air holes through which a refrigerant passes or holes through which a jig is inserted. Both of the hole portions 57 and 58 are formed in the same number as the number of poles.
  • the circumferential position of each hole 57 coincides with the circumferential center of the magnet insertion hole 51.
  • the circumferential position of each hole portion 58 coincides with the interpolar portion.
  • the number and arrangement of the holes 57 and 58 are not limited to the example described here.
  • the rotor core 50 does not necessarily have to have the holes 57 and 58.
  • a caulking portion 56 for fixing the electromagnetic steel plate of the rotor core 50 is formed on the radially outer side of each hole portion 58.
  • the arrangement of the caulking portion 56 is not limited to the example described here.
  • the electromagnetic steel plates of the rotor core 50 may be fixed by a method other than caulking.
  • the stator 1 includes a stator core 10 that surrounds a rotor core 50 from the outside in the radial direction, and a winding 30 that is wound around the stator core 10.
  • the stator core 10 is made by laminating a plurality of electromagnetic steel plates in the axial direction and fixing them by caulking or the like.
  • the thickness of the electromagnetic steel plate is 0.1 to 0.7 mm.
  • the stator core 10 has an annular core back 11 centered on the axis Ax, and a plurality of teeth 12 extending radially inward from the core back 11.
  • the teeth 12 are arranged at regular intervals in the circumferential direction.
  • the number of teeth 12 is nine here. However, the number of teeth 12 is not limited to nine, and may be two or more.
  • a slot 14 is formed between teeth 12 adjacent to each other in the circumferential direction. The number of slots 14 is nine, which is the same as the number of teeth 12.
  • the winding 30 is made of magnet wire, and is wound around each tooth 12 in a concentrated manner.
  • the outer diameter, ie, wire diameter, of the magnet wire is, for example, 1.0 mm.
  • the number of turns of the winding 30 around one tooth 12 is, for example, 80 turns.
  • the winding 30 is made of aluminum wire or copper wire.
  • Aluminum wire is particularly desirable because it is softer than copper wire and can be wrapped tightly around the teeth 12. Furthermore, since aluminum wire is cheaper than copper wire, it is advantageous in reducing manufacturing costs.
  • FIG. 2 is a diagram showing the axial positional relationship between the stator core 10 and the rotor core 50. As shown in FIG. 2, stator core 10 and rotor core 50 are at the same position in the axial direction. That is, both axial end surfaces 10e of stator core 10 are located at the same axial positions as both axial end surfaces 50e of rotor core 50, respectively.
  • stator core 10 and the rotor core 50 are not limited to the example shown in FIG. good. A case where the axial center position of stator core 10 and the axial center position of rotor core 50 are different will be described in a second embodiment.
  • FIG. 3 is a plan view showing the stator core 10.
  • the core back 11 has an inner circumferential surface 11a and an outer circumferential surface.
  • An inner peripheral surface 11a of the core back 11 faces the slot 14.
  • the outer peripheral surface of the core back 11 fits into the shell 80 of the compressor 8 (FIG. 18).
  • the teeth 12 extend radially inward from the core back 11.
  • a straight line in the radial direction passing through the circumferential center of each tooth 12 is referred to as a tooth center line T1.
  • the teeth 12 have a pair of side surfaces 12a on both sides in the circumferential direction. Side surfaces 12a of the teeth 12 face the slots 14.
  • Each tooth 12 also has a tooth tip 13 that faces the rotor 5 (FIG. 1).
  • the tooth tip portion 13 is wider in the circumferential direction than other portions of the teeth 12 and protrudes further than the side surfaces 12a of the teeth 12 in the circumferential direction.
  • An outer surface 13a is formed on the radially outer side of the protruding portion of the tooth tip 13.
  • the outer surface 13a of the tooth tip 13 faces the slot 14.
  • tooth tip 13 is a part of the tooth 12, it has a different shape from other parts of the tooth 12, so the tooth tip 13 may be explained separately from other parts of the tooth 12.
  • a stepped portion 12S is formed at the axial end of the teeth 12.
  • the stepped portion 12S is formed on the side surface 12a side of the teeth 12, that is, on the slot 14 side. Therefore, the circumferential width of the teeth 12 is narrower at the axial ends than at the axial center.
  • a stepped portion 11S is formed at the axial end of the core back 11.
  • the stepped portion 11S is formed on the inner peripheral surface 11a side of the core back 11, that is, on the slot 14 side. Therefore, the radial width of the core back 11 is narrower at the axial ends than at the axial center.
  • a stepped portion 13S is formed at the axial end of the tooth tip portion 13.
  • the stepped portion 13S is formed on the outer surface 13a side of the tooth tip portion 13, that is, on the slot 14 side. Therefore, the radial width of the protruding portion of the tooth tip 13 is narrower at the axial end than at the axial center.
  • a dividing surface 15 that divides the stator core 10 is formed on the core back 11.
  • the dividing surface 15 is formed at an intermediate position between two teeth 12 adjacent to each other in the circumferential direction. Furthermore, the dividing surface 15 is formed from the inner circumferential surface 11a of the core back 11 to the outer circumferential surface.
  • stator core 10 is divided into nine divided cores 10A each including one tooth 12 by a dividing surface 15. In other words, stator core 10 is configured by combining a plurality of divided cores 10A.
  • the split core 10A is joined at the split surface 15 by welding or the like.
  • the split cores 10A may be connected to each other by a thin wall portion formed on the outer peripheral side of the split surface 15.
  • FIG. 4 is a perspective view showing the split core 10A.
  • the direction of the axis Ax (FIG. 1), that is, the axial direction, is indicated by an arrow Z.
  • the core back 11 has an end surface 11e facing in the axial direction.
  • the teeth 12 have end faces 12e facing in the axial direction.
  • the tooth tip portion 13 has an end surface 13e facing in the axial direction.
  • end surfaces 11e, 12e, and 13e are on the same plane and correspond to the end surface 10e of the stator core 10 shown in FIG. 2. Further, the end surfaces 11e, 12e, and 13e are all surfaces perpendicular to the axial direction.
  • the stepped portion 12S of the tooth 12 is formed between the end surface 12e and the side surface 12a of the tooth 12.
  • the stepped portion 12S includes a wall surface 12b facing the slot 14 and a bottom surface 12c facing the axial direction.
  • the wall surface 12b is parallel to the axial direction, and the bottom surface 12c is perpendicular to the axial direction.
  • the step portion 11S of the core back 11 is formed between the end surface 11e of the core back 11 and the inner peripheral surface 11a.
  • the step portion 11S includes a wall surface 11b facing the slot 14 and a bottom surface 11c facing the axial direction.
  • the wall surface 11b is parallel to the axial direction, and the bottom surface 11c is perpendicular to the axial direction.
  • the stepped portion 13S of the tooth tip 13 is formed between the end surface 13e and the outer surface 13a of the tooth tip 13.
  • the stepped portion 13S includes a wall surface 13b facing the slot 14 and a bottom surface 13c facing the axial direction.
  • the wall surface 13b is parallel to the axial direction, and the bottom surface 13c is perpendicular to the axial direction.
  • the bottom surfaces 11c, 12c, and 13c of the stepped portions 11S, 12S, and 13S are located on the same plane. Therefore, the axial heights (height A, which will be described later) of the stepped portions 11S, 12S, and 13S are the same.
  • the split core 10A is composed of a first electromagnetic steel sheet 101 laminated at the center in the axial direction, and a second electromagnetic steel sheet 102 laminated at both ends in the axial direction.
  • the width of the core back 11, the width of the teeth 12, and the width of the protrusion of the tooth tip 13 are narrower than those of the first electromagnetic steel sheet 101.
  • FIG. 5 is a perspective view showing the split core 10A and the insulating section 20.
  • An insulating portion 20 is attached to the split core 10A so as to cover the teeth 12 from both sides in the axial direction and both sides in the circumferential direction.
  • the insulating section 20 is made of resin such as polybutylene terephthalate (PBT) or liquid crystal polymer (LCP), for example.
  • the insulating part 20 has a body part 22 that covers the teeth 12, a wall part 21 arranged on the radially outer side of the body part 22, and a flange part 23 arranged on the radially inner side of the body part 22.
  • the wall portion 21 and the flange portion 23 face each other in the radial direction with the body portion 22 in between.
  • the wall portion 21 is provided to cover the inner circumferential surface 11a of the core back 11, and further protrudes to both sides in the axial direction.
  • the wall portion 21 has an engaging portion 21a that engages with the stepped portion 11S of the core back 11.
  • the body portion 22 is provided to cover the end surface 12e and side surface 12a (FIG. 4) of the teeth 12.
  • the body portion 22 has an engaging portion 22a (FIG. 6) that engages with the stepped portion 12S (FIG. 4) of the teeth 12.
  • the flange portion 23 is provided so as to cover the end surface 13e (FIG. 4) and the outer surface 13a of the tooth tip portion 13.
  • the flange portion 23 has an engaging portion 23a that engages with the stepped portion 13S of the tooth tip portion 13.
  • a winding 30 is wound around the body 22.
  • the wall portion 21 and the flange portion 23 guide the winding 30 wound around the body portion 22 from both sides in the radial direction.
  • the insulating portion 20 is formed, for example, by integrally molding resin with the split core 10A.
  • the insulating section 20 may also be formed by attaching a resin molded body to the split core 10A.
  • the insulating section 20 that is integrally constructed will be described here, it may be constructed of an insulator and an insulating film. This will be explained in the third embodiment.
  • FIG. 6 is a cross-sectional view of the teeth 12 and the insulating portion 20 in a plane perpendicular to the direction in which the teeth 12 extend.
  • the extending direction of the teeth 12 refers to a radial straight line passing through the circumferential center of the teeth 12, that is, the direction of the teeth center line T1 (FIG. 3).
  • the teeth 12 have a length L1 in the axial direction.
  • the length L1 is the distance between both end surfaces 12e of the teeth 12.
  • the teeth 12 have a width W1 at the center in the axial direction, and a width W2 at the end in the axial direction where the step portion 12S is formed.
  • the width W1 is the distance between both side surfaces 12a of the teeth 12.
  • the width W2 is the distance between the wall surfaces 12b of the two stepped portions 12S of the teeth 12.
  • the widths W1 and W2 have a relationship of W1>W2.
  • the insulating portion 20 has a first surface 201 that is a plane that covers the end surface 12e of the tooth 12, a second surface 202 that is a plane that faces the slot 14, and a second surface that extends from the first surface 201 to the second surface 202. and a third surface 203 that is a curved surface or an inclined surface.
  • the first surface 201 is a plane extending in a plane perpendicular to the axial direction, and faces the end surface 12e of the teeth 12.
  • the second surface 202 is a plane extending in a plane parallel to the axial direction, and faces the side surface 12a of the teeth 12.
  • the third surface 203 is a curved surface that connects the first surface 201 and the second surface 202 in a curve, or a curved surface that connects the first surface 201 and the second surface 202 in a plane perpendicular to the extending direction of the teeth 12. This is an inclined surface that linearly connects the surface 202. Although the case where the third surface 203 is a curved surface will be described below, it may be an inclined surface.
  • the axial dimension of the stepped portion 12S is defined as height A. This height A corresponds to the distance from the bottom surface 12c of the stepped portion 12S to the end surface 12e of the teeth 12.
  • width B corresponds to the distance from the wall surface 12b of the stepped portion 12S to the side surface 12a of the tooth 12.
  • the height A and width B of the stepped portion 12S of the teeth 12 have a relationship of A ⁇ B.
  • the third surface 203 extends in an arc shape.
  • the shape of the teeth 12 is not limited to the shape shown in FIG. 6.
  • the height A and width B of the stepped portion 12S of the teeth 12 may have a relationship of A>B.
  • the third surface 203 extends in the axial direction to form a long elliptical arc.
  • FIG. 8 is an enlarged view showing the periphery of the stepped portion 12S of the teeth 12.
  • the first surface 201 of the insulating portion 20 covers the end surface 12e of the tooth 12 and further extends to the stepped portion 12S.
  • the second surface 202 of the insulating portion 20 covers the side surface 12a of the tooth 12 and further extends to the stepped portion 12S.
  • a point P is the boundary between the first surface 201 and the third surface 203 on a surface perpendicular to the extending direction of the teeth 12. Further, a point that forms the boundary between the second surface 202 and the third surface 203 is defined as a point Q.
  • the distance in the axial direction between point P and point Q is defined as distance D1.
  • the distance between point P and point Q in the direction perpendicular to the axial direction is defined as distance D2. That is, if U is the intersection of a first straight line L1 that passes through point P and is parallel to the axial direction and a second straight line L2 that passes through point Q and is perpendicular to the axial direction, then distance D1 is from point P to intersection U.
  • the distance D2 corresponds to the distance from the point Q to the intersection U.
  • the height A and width B of the stepped portion 12S and the distances D1 and D2 satisfy D1 ⁇ A and D2 ⁇ B. That is, point P does not oppose the end surface 12e of the tooth 12, and point Q does not oppose the side surface 12a of the tooth 12. Therefore, the insulating portion 20 does not have any locally thinned portions.
  • FIG. 9(A) is a cross-sectional view showing the teeth 121 and the insulating portion 20C of Comparative Example 1.
  • FIG. 9(B) is a cross-sectional view showing the teeth 122 and the insulating portion 20D of Comparative Example 2.
  • the teeth 121 of Comparative Example 1 shown in FIG. 9(A) do not have a stepped portion at the axial end. That is, a 90 degree corner is formed between the end surface 12e and the side surface 12a.
  • the insulating portion 20C has a first surface 201 that covers the end surface 12e of the tooth 121, a second surface 202 facing the slot 14, and a third surface 203 between these surfaces 201 and 202. The third surface 203 faces the corner.
  • the radius of curvature of the third surface 203 is large.
  • the tooth 122 of Comparative Example 2 shown in FIG. 9(B) has a stepped portion 12S between the end surface 12e and the side surface 12a.
  • the insulating portion 20D has a first surface 201 that covers the end surface 12e of the tooth 122, a second surface 202 facing the slot 14, and a third surface 203 between these surfaces 201 and 202.
  • the third surface 203 faces the stepped portion 12S.
  • the thickness t1 from the end surface 12e of the teeth 122 to the first surface 201 of the insulating portion 20D is reduced while increasing the radius of curvature of the third surface 203 of the insulating portion 20D. be able to.
  • FIG. 9(C) is an enlarged view showing the periphery of the stepped portion 12S of the teeth 122 of Comparative Example 2.
  • a point P which is the boundary between the first surface 201 and the third surface 203, is located at a position opposite to the end surface 12e of the tooth 122 on a surface perpendicular to the extending direction of the tooth 122.
  • a point Q which is the boundary between the second surface 202 and the third surface 203, is located at a position opposite to the side surface 12a of the teeth 122.
  • the width B in the direction perpendicular to the axial direction satisfies D1>A and D2>B.
  • the insulating portion 20D is likely to be damaged.
  • the height A of the stepped portion 12S and the width B of the stepped portion 12S satisfy D1 ⁇ A and D2 ⁇ B. That is, point P does not oppose the end surface 12e of the tooth 12, and point Q does not oppose the side surface 12a of the tooth 12.
  • the radius of curvature of the third surface 203 of the insulating section 20 can be increased, no portion where the thickness is locally thinned occurs. Therefore, even if the thickness t1 from the end surface 12e of the teeth 12 to the first surface 201 of the insulating section 20 is made thin, the insulating section 20 can be prevented from being damaged. Thereby, the radius of curvature of the third surface 203 can be increased to suppress the bulge of the winding 30, and the thickness t1 can be reduced to shorten the circumferential length of the winding 30. As a result, copper loss can be effectively reduced.
  • FIG. 10 is a graph showing the relationship between the dimensional ratio A/B, which is the ratio of the height A to the width B, and the torque constant of the electric motor 100.
  • the torque constant is the torque generated per unit current.
  • the torque constant of the electric motor 100 is determined by the ratio ((A ⁇ B)/(L1 ⁇ W1) of the cross-sectional area (A ⁇ B) of the stepped portion 12S to the cross-sectional area (L1 ⁇ W1) of the teeth 12 without the stepped portion 12S. ) is the value obtained by performing an analysis by changing the height A and width B of the stepped portion 12S so that the height A and the width B are constant.
  • a core portion sandwiched between an end surface 12e and wall surfaces 12b on both sides thereof is formed at the axial end of the tooth 12.
  • the wider the width B of the stepped portion 12S the narrower the width of the core portion, which makes magnetic saturation more likely to occur, and therefore makes it more difficult for the magnetic flux of the rotor 5 to flow into the teeth 12.
  • the width B of the stepped portion 12S becomes narrower, the width of the core portion becomes wider, which makes it difficult for magnetic saturation to occur, and therefore, it becomes easier for the magnetic flux of the rotor 5 to flow into the teeth 12.
  • the width B decreases as the height A of the stepped portion 12S increases.
  • the width B decreases, magnetic saturation becomes less likely to occur, so it becomes easier for the magnetic flux of the rotor 5 to flow into the teeth 12, and as a result, the generated torque increases. Therefore, the larger the value of A/B, the larger the torque constant.
  • the torque constant increases as the value of A/B increases, it can be seen that, for example, the case where A/B>1 is preferable to the case where A/B ⁇ 1. That is, as shown in FIG. 7, the height A and width B of the stepped portion 12S satisfy A>B rather than the configuration in which the height A and the width B of the stepped portion 12S satisfy A ⁇ B as shown in FIG. It can be seen that the configuration that satisfies B is preferable.
  • FIG. 11 is a graph showing the relationship between the ratio A/L1 of the axial height A of the stepped portion 12S to the axial length L1 of the teeth 12 and the rate of change in iron loss and copper loss.
  • the values of iron loss and copper loss are determined by the ratio ((A ⁇ B)/(L1 ⁇ This value was obtained by performing an analysis while changing the height A and width B so that W1)) was constant. Further, the values of iron loss and copper loss are expressed as relative values to the values of iron loss and copper loss when the teeth 12 do not have the stepped portion 12S.
  • the reason why the iron loss increases as the value of A/L1 increases is that as the ratio of the height A of the stepped portion 12S to the length L1 of the teeth 12 increases, the narrower width of the teeth 12 increases. This is because the ratio increases, and the magnetic resistance of the teeth 12 as a whole increases.
  • the range of A/L1 ⁇ 0.157 in which the increase in iron loss is the same as or smaller than the increase in copper loss is desirable.
  • the electric motor 100 used in the compressor is designed according to the required specifications of the compressor, but the shape of the stator core 10 is common, and the width of the core back 11 or teeth 12, the number of turns of the winding 30, etc. It is desirable to respond to various required specifications through adjustment. In this embodiment, copper loss and iron loss can be reduced due to the shape of stator core 10 described above, so it is possible to realize a highly efficient electric motor 100 that meets various required specifications.
  • the core back 11 has a stepped portion 11S
  • the teeth 12 has a stepped portion 12S
  • the tooth tip portion 13 has a stepped portion 13S.
  • the stepped portion 11S of the core back 11 has a width E1 in the radial direction centered on the axis Ax (FIG. 1).
  • the width E1 corresponds to the amount of displacement in the radial direction of the wall surface 11b of the stepped portion 11S from the inner circumferential surface 11a of the core back 11.
  • the stepped portion 13S of the tooth tip portion 13 has a width E2 in the radial direction centered on the axis Ax.
  • the width E2 corresponds to the amount of displacement in the radial direction of the wall surface 13b of the stepped portion 13S from the outer surface 13a of the tooth tip portion 13.
  • the stepped portion 12S of the teeth 12 has a width B as described above.
  • a winding 30 is wound around the body part 22 of the insulating part 20 that covers the teeth 12.
  • the winding 30 is not wound around the wall portion 21 attached to the core back 11 and the flange portion 23 attached to the tooth tip portion 13. Therefore, the width B of the stepped portion 12S of the teeth 12 is related to the winding swell state of the winding 30, but the widths E1 and E2 of the stepped portions 11S and 13S of the core back 11 and the tooth tip 13 are related to the winding swell state of the winding 30. Not related to condition.
  • the width B of the stepped portion 12S of the teeth 12 is preferably wider than the width E1 of the stepped portion 11S of the core back 11, and also wider than the width E2 of the stepped portion 13S of the tooth tip 13. That is, it is desirable that B>E1 and B>E2 hold true. Thereby, the magnetic resistance at the core back 11 and the tooth tip portion 13 can be reduced while suppressing the winding 30 wound around the teeth 12 from expanding.
  • stator core 10 is not limited to such a configuration. That is, the stator core 10 may be an integral core formed by stacking annularly punched electromagnetic steel plates in the axial direction.
  • the step portions 12S may be formed on at least one side of the teeth 12 in the circumferential direction.
  • the stepped portions 11S and 13S are provided in the core back 11 and the tooth tip portion 13 here, these stepped portions 11S and 13S do not necessarily need to be provided.
  • the stator 1 of the first embodiment includes the core back 11 and the teeth 12, and the winding 30 is wound around the teeth 12 via the insulating part 20.
  • the teeth 12 have an end surface 12e facing in the axial direction, a side surface 12a facing the slot 14, and a stepped portion 12S formed between the end surface 12e and the side surface 12a.
  • the insulating section 20 includes a first surface 201 that covers the end surface 12e of the teeth 12, a second surface 202 facing the slot 14, and a curved or inclined surface extending from the first surface 201 to the second surface 202. and a third surface 203 which is a surface.
  • the boundary between the first surface 201 and the third surface 203 of the insulating section 20 is defined as a point P
  • the boundary between the second surface 202 and the third surface 203 is defined as a point P.
  • the point Q be a point of intersection between a first straight line L1 passing through the point P and parallel to the axial direction and a second straight line L2 passing through the point Q and orthogonal to the axial direction.
  • the height A of the stepped portion 12S in the axial direction, the width B of the stepped portion 12S in the direction perpendicular to the axial direction, the distance D1 from the point P to the intersection U, and the distance D2 from the point Q to the intersection U are: D1 ⁇ A and D2 ⁇ B are satisfied.
  • the point P of the insulating part 20 does not face the end surface 12e of the tooth 12, and the point Q of the insulating part 20 does not face the side surface 12a of the tooth 12. Therefore, even if the radius of curvature of the third surface 203 of the insulating section 20 is increased, no portion where the thickness is locally thinned occurs, and stress concentration can be suppressed. This allows the thickness of the insulating section 20 to be reduced while preventing the winding 30 from bulging. That is, the circumferential length of the winding 30 can be shortened and copper loss can be reduced.
  • the insulating portion 20 is integrally formed with a portion that covers the end surface 12e of the teeth 12, a portion that covers the side surface 12a, and a portion that covers the stepped portion 12S. Therefore, the insulating portion 20 can be formed in a simple process by integral molding using resin, for example.
  • the winding 30 is made of aluminum wire, the winding 30 can be tightly wound around the teeth 12 by utilizing the softness of the aluminum wire.
  • Aluminum wire has a higher electrical resistance than copper wire, but in this embodiment, the circumference of the winding 30 can be shortened, so even when aluminum wire is used, increase in copper loss can be avoided. Can be suppressed.
  • Embodiment 2 Next, a second embodiment will be described.
  • the step portions 12S are formed at both ends of the stator 1 in the axial direction.
  • the stepped portion 12S is formed only at one end of the stator 1 in the axial direction.
  • FIG. 12 is a diagram showing the relationship between the stator core 10 and rotor core 50 of the electric motor according to the second embodiment.
  • the direction of the compressor 8 toward the compression mechanism 9 (FIG. 18) is shown as a -Z direction, and the opposite direction is shown as a +Z direction. Note that in FIG. 12, the +Z direction is upward and the -Z direction is downward, but the present invention is not limited thereto.
  • the +Z direction end surface 50e of the rotor core 50 is located further in the +Z direction than the +Z direction end surface 10e of the stator core 10.
  • An end face 50e of the rotor core 50 in the ⁇ Z direction is located further in the +Z direction than an end face 10e of the stator core 10 in the ⁇ Z direction.
  • the rotor core 50 protrudes more than the stator core 10 in the +Z direction. That is, the axial center position of rotor core 50 is displaced in the +Z direction from the axial center position of stator core 10 .
  • a magnetic attraction force acts between the stator core 10 and the rotor core 50 in a direction that causes the center positions of the two to approach each other in the axial direction.
  • This magnetic attraction force urges the rotor 5 in the ⁇ Z direction, that is, toward the compression mechanism 9, and vibrations of the rotor 5 are suppressed.
  • the stepped portion 12S is not formed at the end of the teeth 120 in the +Z direction in the second embodiment.
  • a stepped portion 12S is formed at the end of the teeth 120 in the ⁇ Z direction.
  • the shape and dimensions of the stepped portion 12S are as described in the first embodiment.
  • the axial length of the stepped portion 12S of the teeth 120 is the height A, as described in the first embodiment.
  • the axial length of the region facing the rotor core 50 is defined as L1.
  • the axial length of the region facing the rotor core 50 is defined as L2.
  • the core region R1 is also referred to as a first region
  • the core region R2 is also referred to as a second region.
  • the lengths L1 and L2 of the regions facing the rotor core 50 satisfy L1 ⁇ L2.
  • the ratio of the region facing the rotor core 50 in the core regions R1 and R2 is small. formed on the side.
  • the step portion 12S is provided in the teeth 120 only in the core region R1 where there is little inflow magnetic flux from the rotor core 50. That is, the stepped portion 12S is provided in the teeth 120 only at the end of the stator core 10 in the ⁇ Z direction. Further, although not shown, the stepped portion 11S of the core back 11 and the stepped portion 13S of the tooth tip portion 13 are also provided only at the end of the stator core 10 in the ⁇ Z direction.
  • FIG. 13 is a cross-sectional view of the teeth 120 and the insulating portion 20A of the second embodiment in a plane perpendicular to the extending direction of the teeth 120. As shown in FIG. 13, a stepped portion 12S is provided at the end of the teeth 120 in the ⁇ Z direction. The shape and dimensions of the stepped portion 12S are as described in the first embodiment.
  • the step portion 12S is not provided at the end of the teeth 120 in the +Z direction. Therefore, a 90 degree corner is formed between the +Z direction end surface 12e and side surface 12a of the teeth 120.
  • the insulating portion 20A includes a first surface 201 that covers the end surface 12e of the tooth 120, a second surface 202 facing the slot 14, and a third surface extending from the first surface 201 to the second surface 202. 203.
  • the thickness t1 from the end surface 12e of the teeth 120 to the first surface 201 of the insulating portion 20A is longer at the end in the +Z direction than at the end in the ⁇ Z direction.
  • the electric motor of Embodiment 2 is configured similarly to electric motor 100 of Embodiment 1.
  • the teeth 120 there is a step in the teeth 120 at the end where the opposing area with the rotor core 50 is smaller when the axial length is the same among both axial ends of the stator core 10.
  • a section 12S is provided. Therefore, while suppressing magnetic saturation in the teeth 120, the circumferential length of the winding 30 can be shortened and copper loss can be reduced.
  • FIG. 14 is a diagram showing the relationship between stator core 10 and rotor core 50 in a modification of the second embodiment.
  • the rotor core 50 protrudes from the stator core 10 on both sides in the axial direction, that is, in the +Z direction and the -Z direction.
  • the protrusion amount Z2 of the rotor core 50 in the +Z direction is larger than the protrusion amount Z1 in the -Z direction.
  • the axial length of the stator core 10 can be shortened and the material cost of the stator core 10 can be reduced.
  • magnetic flux from the protruding portion of the rotor core 50 also flows into the stator core 10 . Therefore, more magnetic flux from the rotor core 50 flows into the +Z-direction end of the stator core 10 than at the -Z-direction end of the stator core 10.
  • the stepped portions 12S are provided in the teeth 120 only at the ends in the -Z direction of the stator core 10 where there is less magnetic flux flowing in from the rotor core 50. Further, although not shown, the stepped portion 11S of the core back 11 and the stepped portion 13S of the tooth tip portion 13 are also provided only at the end of the stator core 10 in the ⁇ Z direction.
  • the circumferential length of the winding 30 can be shortened and copper loss can be reduced while suppressing magnetic saturation in the teeth 120.
  • FIG. 15 is a perspective view showing the teeth 12 and the insulating portion 20B of the third embodiment.
  • the insulating section 20B of the third embodiment includes an insulator 25 that covers the end surface 12e of the tooth 12, and an insulating film 26 that covers the side surface 12a of the tooth 12.
  • insulators 25 are provided on both sides of the teeth 12 in the axial direction
  • insulating films 26 are provided on both sides of the teeth 12 in the circumferential direction.
  • Each insulator 25 is made of a resin such as polybutylene terephthalate (PBT) or liquid crystal polymer (LCP), for example.
  • Each insulating film 26 is, for example, a film formed of a resin such as polyethylene terephthalate (PET). The thickness of the insulating film 26 is, for example, 0.35 mm.
  • Each insulator 25 has a wall portion 27 attached to the core back 11 , a body portion 28 attached to the teeth 12 , and a flange portion 29 attached to the tooth tips 13 .
  • the wall portion 27 engages with the stepped portion 11S of the core back 11 and further protrudes in the axial direction.
  • a portion of the wall portion 27 that engages with the stepped portion 11S of the core back 11 is referred to as an engaging portion 27a.
  • the body portion 28 covers the end surface 12e of the tooth 12 and engages with the stepped portion 12S of the tooth 12.
  • a portion of the body portion 28 that engages with the stepped portion 11S of the core back 11 is referred to as an engaging portion 28a.
  • the body 28 has a first surface 201 facing in the axial direction, a second surface 202 facing the slot 14, and a third surface 203 extending from the first surface 201 to the second surface 202.
  • the flange portion 29 covers the end surface 13e of the tooth tip portion 13 and engages with the stepped portion 13S of the tooth tip portion 13.
  • a portion of the flange portion 29 that engages with the stepped portion 13S of the tooth tip portion 13 is referred to as an engaging portion 29a.
  • the insulator 25 also has an extending portion 24 that extends radially outward from the wall portion 21.
  • the extension portion 24 has a protrusion 24 a that fits into the fitting hole 16 formed in the core back 11 . By fitting the protrusion 24a into the fitting hole 16, the insulator 25 is fixed to the split core 10A. Note that the insulator 25 does not necessarily need to be provided with the protrusion 24a.
  • the insulating film 26 is provided to cover the inner peripheral surface 11a of the core back 11, the side surface 12a of the tooth 12, and the outer surface 13a of the tooth tip 13. In other words, the insulating film 26 is provided to cover the inner surface of the slot 14.
  • a winding 30 is wound around the body 28 and the insulating film 26 of the insulator 25. Further, the wall portion 27 and the flange portion 29 of the insulator 25 guide the winding 30 from both sides in the radial direction.
  • FIG. 16 is a cross-sectional view of the teeth 12 and the insulating portion 20B of the third embodiment in a plane perpendicular to the extending direction of the teeth 12. Since the insulating section 20B of the third embodiment is formed of the insulator 25 and the insulating film 26 made of different materials, it is necessary to ensure an insulating distance from the stator core 10 to the winding 30. Insulation distance is the shortest distance between conductors measured along the surface of an insulator, and is also referred to as creepage distance.
  • the insulating film 26 further protrudes from the side surface 12a of the teeth 12 in the axial direction. In other words, the insulating film 26 extends not only to cover the side surface 12a of the teeth 12 but also to partially cover the second surface 202 of the insulator 25.
  • the amount of axial protrusion of the stepped portion 12S of the insulating film 26 from the bottom surface 12c is defined as D.
  • the amount D of protrusion of the insulating film 26 is set to be equal to or greater than the creepage distance from the stator core 10 to the winding 30.
  • the insulation distance is, for example, 2.5 mm.
  • FIG. 17 is a cross-sectional view of the teeth 121 and the insulating portion 20E of Comparative Example 3. Teeth 121 of Comparative Example 3 does not have a stepped portion.
  • the insulating portion 20E includes an insulator 25 that covers the end surface 12e of the tooth 121, and an insulating film 26 that covers the side surface 12a of the tooth 121.
  • the insulating film 26 is provided so as to protrude from the end surface 12e of the teeth 121 in the axial direction.
  • D be the amount of axial protrusion of the insulating film 26 from the end surface 12e of the teeth 121.
  • the amount of protrusion D is greater than or equal to the above-mentioned insulation distance.
  • the thickness t1 from the end surface 12e of the teeth 121 to the first surface 201 of the insulating portion 20E must be greater than or equal to the protrusion amount D, which increases the thickness t1.
  • the teeth 12 have the stepped portions 12S, even if the insulating film 26 protrudes by the protrusion amount D from the bottom surface 12c of the stepped portions 12S, the first The thickness t1 up to the surface 201 can be made thinner. Thereby, the circumferential length of the winding 30 can be shortened.
  • the teeth 12 have the stepped portions 12S, and the insulating portions 20 have the insulating films 26 that cover the side surfaces 12a of the teeth 12. Therefore, while ensuring the insulation distance, the windings 30 It is possible to shorten the circumferential length and reduce copper loss.
  • FIG. 18 is a sectional view showing the configuration of the compressor 8.
  • the compressor 8 is a rotary compressor here, and transmits power between the shell 80, the compression mechanism 9 disposed in the shell 80, an electric motor 100 that drives the compression mechanism 9, and the electric motor 100 and the compression mechanism 9. and a shaft 90 that can be connected to each other.
  • the shaft 90 is the shaft 65 shown in FIG. 1 etc., and fits into the center hole 53 of the rotor 5 of the electric motor 100.
  • the shell 80 is a closed container made of, for example, a steel plate, and covers the electric motor 100 and the compression mechanism 9.
  • Shell 80 has an upper shell 80a and a lower shell 80b.
  • the upper shell 80a includes a glass terminal 81 as a terminal section for supplying power to the electric motor 100 from the outside of the compressor 8, and a discharge pipe 85 for discharging the refrigerant compressed in the compressor 8 to the outside. is installed.
  • the electric motor 100 and the compression mechanism 9 are housed in the lower shell 80b.
  • the compression mechanism 9 has an annular first cylinder 91 and a second cylinder 92 along a shaft 90.
  • the first cylinder 91 and the second cylinder 92 are fixed to the inner circumference of the shell 80 (lower shell 80b).
  • An annular first piston 93 is arranged on the inner circumferential side of the first cylinder 91, and an annular second piston 94 is arranged on the inner circumferential side of the second cylinder 92.
  • the first piston 93 and the second piston 94 are rotary pistons that rotate together with the shaft 90.
  • a partition plate 97 is provided between the first cylinder 91 and the second cylinder 92.
  • the partition plate 97 is a disc-shaped member having a through hole in the center.
  • the cylinder chambers of the first cylinder 91 and the second cylinder 92 are provided with vanes (not shown) that divide the cylinder chambers into a suction side and a compression side.
  • the first cylinder 91, the second cylinder 92, and the partition plate 97 are fixed together with bolts 98.
  • An upper frame 95 is arranged above the first cylinder 91 so as to close the upper side of the cylinder chamber of the first cylinder 91.
  • a lower frame 96 is arranged below the second cylinder 92 so as to close the lower side of the cylinder chamber of the second cylinder 92.
  • Upper frame 95 and lower frame 96 rotatably support shaft 90.
  • Refrigerating machine oil rises in a hole 90a formed in the axial direction inside the shaft 90, and is supplied to each sliding portion from oil supply holes 90b formed at a plurality of locations on the shaft 90.
  • the stator 1 of the electric motor 100 is attached to the inside of the shell 80 by shrink fitting. Power is supplied to the winding 30 of the stator 1 from a glass terminal 81 attached to the upper shell 80a. A shaft 90 is fixed to the center hole 53 (FIG. 1) of the rotor 5.
  • An accumulator 87 that stores refrigerant gas is attached to the shell 80.
  • the accumulator 87 is held, for example, by a holding portion 80c provided on the outside of the lower shell 80b.
  • a pair of suction pipes 88 and 89 are attached to the shell 80, and refrigerant gas is supplied from the accumulator 87 to the cylinders 91 and 92 via the suction pipes 88 and 89.
  • refrigerant for example, R410A, R407C, or R22 may be used, but from the viewpoint of preventing global warming, it is desirable to use a refrigerant with a low GWP (global warming potential).
  • GWP global warming potential
  • the low GWP refrigerant for example, the following refrigerants can be used.
  • GWP of HFO-1234yf is 4.
  • a hydrocarbon having a carbon double bond in its composition such as R1270 (propylene), may also be used.
  • the GWP of R1270 is 3, lower than that of HFO-1234yf, but the flammability is higher than that of HFO-1234yf.
  • a mixture containing at least either a halogenated hydrocarbon having a carbon double bond in its composition or a hydrocarbon having a carbon double bond in its composition for example, a mixture of HFO-1234yf and R32.
  • HFO-1234yf is a low-pressure refrigerant, it tends to have a large pressure drop, which may lead to a decrease in the performance of the refrigeration cycle (particularly the evaporator). Therefore, it is practically preferable to use a mixture with R32 or R41, which is a higher pressure refrigerant, than HFO-1234yf.
  • the basic operation of the compressor 8 is as follows. Refrigerant gas supplied from the accumulator 87 is supplied to each cylinder chamber of the first cylinder 91 and the second cylinder 92 through suction pipes 88 and 89.
  • the shaft 90 rotates together with the rotor 5.
  • the first piston 93 and the second piston 94 that fit into the shaft 90 rotate eccentrically within each cylinder chamber, compressing the refrigerant within each cylinder chamber.
  • the compressed refrigerant passes through the holes 57 and 58 (FIG. 1) of the rotor 5, rises within the shell 80, and is discharged to the outside from the discharge pipe 85.
  • the compressor in which the electric motor 100 is used is not limited to a rotary compressor, and may be, for example, a scroll compressor.
  • the electric motor 100 of each embodiment has high motor efficiency due to the reduction in copper loss in the winding 30, so the operating efficiency of the compressor 8 can be improved.
  • FIG. 19 is a diagram showing a refrigeration cycle device 400.
  • the refrigeration cycle device 400 is, for example, an air conditioner, but is not limited to this, and may be, for example, a refrigerator.
  • the refrigeration cycle device 400 shown in FIG. 19 includes a compressor 401, a condenser 402 that condenses refrigerant, a pressure reducing device 403 that reduces the pressure of the refrigerant, and an evaporator 404 that evaporates the refrigerant.
  • Compressor 401, condenser 402, and pressure reducing device 403 are provided in outdoor unit 410, and evaporator 404 is provided in indoor unit 420.
  • the compressor 401, condenser 402, pressure reducing device 403, and evaporator 404 are connected by a refrigerant pipe 407, and constitute a refrigerant circuit.
  • Compressor 401 is comprised of compressor 8 shown in FIG.
  • the refrigeration cycle device 400 also includes an outdoor blower 405 facing the condenser 402 and an indoor fan 406 facing the evaporator 404.
  • the operation of the refrigeration cycle device 400 is as follows.
  • the compressor 401 compresses the sucked refrigerant and sends it out as high-temperature, high-pressure refrigerant gas.
  • the condenser 402 exchanges heat between the refrigerant sent out from the compressor 401 and the outdoor air sent by the outdoor blower 405, condenses the refrigerant, and sends it out as a liquid refrigerant.
  • the pressure reducing device 403 expands the liquid refrigerant sent out from the condenser 402 and sends it out as a low-temperature, low-pressure liquid refrigerant.
  • the evaporator 404 exchanges heat between the low-temperature, low-pressure liquid refrigerant sent out from the pressure reducing device 403 and indoor air, evaporates the refrigerant, and sends it out as refrigerant gas.
  • the air from which heat has been removed by the evaporator 404 is supplied indoors by the indoor blower 406.
  • the electric motor 100 described in each embodiment can be applied to the compressor 401 of the refrigeration cycle device 400, the operating efficiency of the refrigeration cycle device 400 can be improved.
  • stator core 20A, 20B insulation part, 5 rotor, 8 compressor, 9 compression mechanism, 10 stator core, 10A split core, 11 core back, 11S step part, 12, 120 teeth, 12S step, 12a side, 12e End face, 13 tooth tip, 13S step, 14 slot, 15 dividing surface, 21 wall, 22 body, 23 flange, 25 insulator, 26 insulating film, 30 winding, 5 0 Rotor core, 51 Magnet insertion hole, 60 Permanent magnet, 65 shaft, 80 shell, 100 electric motor, 201 first surface, 202 second surface, 203 third surface, 400 refrigeration cycle device, 401 compressor, 402 condenser, 40 3 Pressure reducing device, 404 Evaporator .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This stator core has an annular core back, a tooth extending from the core back to the inside in the radial direction, and a slot adjacent to the tooth in the circumferential direction. A winding is wound around the tooth with an insulating portion interposed therebetween. The tooth has an end surface facing in the axial direction of the stator core, a side surface facing a slot, and a step portion formed between the end surface and the side surface. The insulating portion has a first surface covering the end surface of the tooth, a second surface facing the slot, and a third surface that is a curved surface or a sloped surface extending from the first surface to the second surface. In a cross-section orthogonal to the extending direction of the tooth, the boundary between the first surface and the third surface is denoted by point P, the boundary between the second surface and the third surface is denoted by point Q, and the intersection of a first line that passes through the point P and is parallel with the axial direction and a second line that passes through the point Q and is orthogonal to the axial direction is denoted by U. The height A of the step portion in the axial direction, the width B of the step portion in a direction orthogonal to the axial direction, the distance D1 from the point P to the intersection U, and the distance D2 from the point Q to the intersection U satisfy the relationships of D1 ≤ A and D2 ≤ B.

Description

ステータ、電動機、圧縮機および冷凍サイクル装置Stators, electric motors, compressors and refrigeration cycle equipment
 本開示は、ステータ、電動機、圧縮機および冷凍サイクル装置に関する。 The present disclosure relates to a stator, an electric motor, a compressor, and a refrigeration cycle device.
 電動機のステータは、ティースを有するステータコアと、ティースに巻き付けられる巻線と、ティースと巻線との間に介在する絶縁部とを有する。巻線の周長を短くするため、ティースの軸方向端部に段差部を設けることも知られている(例えば、特許文献1)。 The stator of the electric motor includes a stator core having teeth, a winding wound around the teeth, and an insulating part interposed between the teeth and the winding. It is also known to provide a stepped portion at the axial end of the teeth in order to shorten the circumferential length of the winding (for example, Patent Document 1).
特開2016-82683号公報(要約参照)JP 2016-82683 (see abstract)
 しかしながら、ティースに段差部を設けると、ティースを覆う絶縁部に局所的に厚さの薄い部分が生じ、絶縁部の破損が生じ易くなる。破損を防止するために絶縁部の厚さを厚くすると、巻線の周長が長くなる。 However, when the teeth are provided with stepped portions, the insulating portions covering the teeth are locally thinned, making the insulating portions more likely to be damaged. If the thickness of the insulation part is increased to prevent damage, the circumference of the winding becomes longer.
 本開示は、上記の課題を解決するためになされたものであり、巻線の周長を短くすることを目的とする。 The present disclosure has been made to solve the above problems, and aims to shorten the circumferential length of the winding.
 本開示によるステータは、環状のコアバックと、コアバックからその径方向の内側に延在するティースと、コアバックの周方向においてティースに隣接するスロットとを有するステータコアと、ティースに設けられた絶縁部と、ティースに絶縁部を介して巻き付けられた巻線とを有する。ティースは、ステータコアの軸方向を向く端面と、スロットに面する側面と、端面と側面との間に形成された段差部とを有する。絶縁部は、ティースの端面を覆う第1の面と、スロットに面する第2の面と、第1の面から第2の面まで延在する湾曲面または傾斜面である第3の面とを有する。ティースの延在方向に直交する断面において、第1の面と第3の面との境界を点Pとし、第2の面と第3の面との境界を点Qとし、点Pを通って軸方向に平行な第1の直線と点Qを通って軸方向に直交する第2の直線との交点をUとする。段差部の軸方向の高さAと、段差部の軸方向に直交する方向の幅Bと、点Pから交点Uまでの距離D1と、点Qから交点Uまでの距離D2とは、D1≦AおよびD2≦Bを満足する。 A stator according to the present disclosure includes a stator core having an annular core back, teeth extending radially inward from the core back, slots adjacent to the teeth in the circumferential direction of the core back, and an insulating core provided in the teeth. and a winding wound around the teeth via an insulating part. The teeth have an end face facing in the axial direction of the stator core, a side face facing the slot, and a step portion formed between the end face and the side face. The insulating part has a first surface that covers the end surface of the teeth, a second surface facing the slot, and a third surface that is a curved surface or an inclined surface extending from the first surface to the second surface. has. In the cross section perpendicular to the extending direction of the teeth, the boundary between the first surface and the third surface is a point P, the boundary between the second surface and the third surface is a point Q, and passing through point P Let U be the intersection of a first straight line parallel to the axial direction and a second straight line passing through point Q and perpendicular to the axial direction. The height A of the stepped portion in the axial direction, the width B of the stepped portion in the direction orthogonal to the axial direction, the distance D1 from point P to intersection U, and the distance D2 from point Q to intersection U are D1≦ A and D2≦B are satisfied.
 本開示では、段差部の高さAおよび幅Bと、点Pから交点Uまでの距離D1と、点Qから交点Uまでの距離D2とが、D1≦AおよびD2≦Bを満足するため、点Pがティースの端面に対向せず、点Qがティースの側面に対向しない。そのため、絶縁部における応力集中を抑制することができる。その結果、絶縁部の厚さを薄くして、巻線の周長を短くすることができる。 In the present disclosure, since the height A and width B of the stepped portion, the distance D1 from point P to intersection U, and the distance D2 from point Q to intersection U satisfy D1≦A and D2≦B, Point P does not face the end face of the teeth, and point Q does not face the side faces of the teeth. Therefore, stress concentration in the insulating portion can be suppressed. As a result, the thickness of the insulating portion can be reduced and the circumferential length of the winding can be shortened.
実施の形態1の電動機を示す断面図である。1 is a cross-sectional view showing an electric motor of Embodiment 1. FIG. 実施の形態1のステータコアとロータコアとの軸方向の位置関係を示す図である。FIG. 3 is a diagram showing the axial positional relationship between the stator core and rotor core of the first embodiment. 実施の形態1のステータコアを示す平面図である。FIG. 3 is a plan view showing the stator core of the first embodiment. 実施の形態1の分割コアを示す斜視図である。FIG. 2 is a perspective view showing a split core of Embodiment 1. FIG. 実施の形態1の分割コアおよび絶縁部を示す斜視図である。FIG. 3 is a perspective view showing a split core and an insulating part in the first embodiment. 実施の形態1のティースおよび絶縁部を示す断面図である。FIG. 3 is a cross-sectional view showing the teeth and the insulating portion of the first embodiment. 実施の形態1のティースおよび絶縁部の他の例を示す断面図である。FIG. 7 is a cross-sectional view showing another example of the teeth and the insulating portion of the first embodiment. 実施の形態1のティースの段差部を拡大して示す図である。FIG. 3 is an enlarged view showing a stepped portion of the teeth of the first embodiment. 比較例1のティースおよび絶縁部を示す断面図(A)、比較例2のティースおよび絶縁部を示す断面図(B)、および比較例2のティースの段差部を拡大して示す図(C)である。Cross-sectional view (A) showing the teeth and the insulating part of Comparative Example 1, (B) a cross-sectional view showing the teeth and the insulating part of Comparative Example 2, and (C) an enlarged view showing the stepped part of the teeth of Comparative Example 2. It is. 実施の形態1における段差部の寸法比A/Bと、トルク定数との関係を示すグラフである。5 is a graph showing the relationship between the dimension ratio A/B of the stepped portion and the torque constant in Embodiment 1. FIG. 実施の形態1における段差部の高さAとティースの長さL1との比A/L1と、損失変化率との関係を示すグラフである。7 is a graph showing the relationship between the ratio A/L1 of the height A of the stepped portion and the length L1 of the teeth and the rate of change in loss in the first embodiment. 実施の形態2のステータコアとロータコアとの軸方向の位置関係を示す図である。FIG. 7 is a diagram showing an axial positional relationship between a stator core and a rotor core according to a second embodiment. 実施の形態2のティースおよび絶縁部を示す断面図である。FIG. 7 is a cross-sectional view showing teeth and an insulating portion according to a second embodiment. 実施の形態2のステータコアとロータコアとの軸方向の位置関係の他の例を示す図である。7 is a diagram showing another example of the axial positional relationship between the stator core and the rotor core according to the second embodiment. FIG. 実施の形態3の分割コアおよび絶縁部を示す斜視図である。FIG. 7 is a perspective view showing a split core and an insulating part in Embodiment 3; 実施の形態3のティースおよび絶縁部を示す断面図である。FIG. 7 is a cross-sectional view showing teeth and an insulating part in Embodiment 3. 比較例3のティースおよび絶縁部を示す断面図である。FIG. 7 is a cross-sectional view showing teeth and an insulating portion of Comparative Example 3. 各実施の形態の電動機が適用可能な圧縮機を示す縦断面図である。FIG. 2 is a longitudinal sectional view showing a compressor to which the electric motor of each embodiment can be applied. 図18の圧縮機が適用可能な冷凍サイクル装置を示す図である。FIG. 19 is a diagram showing a refrigeration cycle device to which the compressor of FIG. 18 can be applied.
実施の形態1.
<電動機の構成>
 まず、実施の形態1について説明する。図1は、実施の形態1の電動機100を示す断面図である。図1に示す電動機100は、永久磁石埋込型電動機であり、例えば圧縮機8(図18)に用いられる。
Embodiment 1.
<Configuration of electric motor>
First, Embodiment 1 will be described. FIG. 1 is a sectional view showing an electric motor 100 according to the first embodiment. The electric motor 100 shown in FIG. 1 is an embedded permanent magnet electric motor, and is used, for example, in the compressor 8 (FIG. 18).
 電動機100は、回転軸であるシャフト65を有するロータ5と、ロータ5を囲むように設けられたステータ1とを有する。ステータ1とロータ5との間には、例えば0.3~1.0mmのエアギャップが形成されている。ステータ1は、後述する圧縮機8(図18)の円筒状のシェル80の内側に組み込まれている。 The electric motor 100 includes a rotor 5 having a shaft 65 that is a rotating shaft, and a stator 1 provided so as to surround the rotor 5. An air gap of, for example, 0.3 to 1.0 mm is formed between the stator 1 and the rotor 5. The stator 1 is assembled inside a cylindrical shell 80 of a compressor 8 (FIG. 18), which will be described later.
 以下では、ロータ5の回転中心である軸線Axの方向を「軸方向」とする。軸線Axを中心とする径方向を「径方向」とする。軸線Axを中心とする周方向を「周方向」とする。 Hereinafter, the direction of the axis Ax, which is the center of rotation of the rotor 5, will be referred to as the "axial direction." The radial direction centered on the axis Ax is defined as the "radial direction." The circumferential direction centered on the axis Ax is defined as the "circumferential direction."
<ロータの構成>
 ロータ5は、軸線Axを中心とする円筒状のロータコア50と、ロータコア50に取り付けられた永久磁石60とを有する。ロータコア50は、複数の電磁鋼板を軸方向に積層し、カシメ等により固定したものである。
<Rotor configuration>
The rotor 5 has a cylindrical rotor core 50 centered on the axis Ax, and a permanent magnet 60 attached to the rotor core 50. The rotor core 50 is made by laminating a plurality of electromagnetic steel plates in the axial direction and fixing them by caulking or the like.
 電磁鋼板の板厚は、0.1~0.7mmである。ロータコア50の径方向中心には中心孔53が形成されている。ロータコア50の中心孔53には、上記のシャフト65が、焼嵌め、圧入または接着等により固定されている。ロータコア50は、軸線Axを中心とする円周状の外周を有する。 The thickness of the electromagnetic steel plate is 0.1 to 0.7 mm. A center hole 53 is formed at the radial center of the rotor core 50. The shaft 65 described above is fixed to the center hole 53 of the rotor core 50 by shrink fitting, press fitting, adhesive, or the like. The rotor core 50 has a circumferential outer periphery centered on the axis Ax.
 ロータコア50の外周に沿って、永久磁石60が挿入される複数の磁石挿入孔51が形成されている。1つの磁石挿入孔51は、1磁極に相当する。磁石挿入孔51の周方向中心は、極中心に相当する。隣り合う磁石挿入孔51の間には、極間部が規定される。磁石挿入孔51の数は、ここでは6である。言い換えると、極数は6である。但し、極数は6に限定されるものではなく、2以上であればよい。 A plurality of magnet insertion holes 51 into which permanent magnets 60 are inserted are formed along the outer periphery of the rotor core 50. One magnet insertion hole 51 corresponds to one magnetic pole. The circumferential center of the magnet insertion hole 51 corresponds to the pole center. An interpolar portion is defined between adjacent magnet insertion holes 51 . The number of magnet insertion holes 51 is six here. In other words, the number of poles is six. However, the number of poles is not limited to six, but may be two or more.
 磁石挿入孔51は、磁石挿入孔51の周方向の中心を通る直線に直交する方向に、直線状に延在している。但し、磁石挿入孔51はこのような形状には限定されず、例えばV字状に延在していてもよい。 The magnet insertion hole 51 extends linearly in a direction perpendicular to a straight line passing through the center of the magnet insertion hole 51 in the circumferential direction. However, the magnet insertion hole 51 is not limited to such a shape, and may extend in a V-shape, for example.
 各磁石挿入孔51には、1つの永久磁石60が配置されている。永久磁石60は、平板状であり、ロータコア50の周方向に幅を有し、径方向に厚さを有する。各永久磁石60は、厚さ方向に着磁されている。 One permanent magnet 60 is arranged in each magnet insertion hole 51. The permanent magnet 60 has a flat plate shape, has a width in the circumferential direction of the rotor core 50, and has a thickness in the radial direction. Each permanent magnet 60 is magnetized in the thickness direction.
 永久磁石60は、例えば、希土類磁石で構成される。希土類磁石は、例えば、ネオジウム(Nd)、鉄(Fe)およびボロン(B)を含有するネオジム磁石である。なお、各磁石挿入孔51に2つ以上の永久磁石60を配置してもよい。 The permanent magnet 60 is made of, for example, a rare earth magnet. The rare earth magnet is, for example, a neodymium magnet containing neodymium (Nd), iron (Fe), and boron (B). Note that two or more permanent magnets 60 may be arranged in each magnet insertion hole 51.
 ロータコア50において、磁石挿入孔51の周方向両端部には、穴部であるフラックスバリア52が形成されている。各フラックスバリア52とロータコア50の外周との間には、薄肉部が形成される。薄肉部の径方向の幅は、例えば、電磁鋼板の板厚と同じに設定される。 In the rotor core 50, flux barriers 52, which are holes, are formed at both ends of the magnet insertion hole 51 in the circumferential direction. A thin wall portion is formed between each flux barrier 52 and the outer periphery of the rotor core 50. The width of the thin portion in the radial direction is set, for example, to be the same as the thickness of the electromagnetic steel sheet.
 磁石挿入孔51とロータコア50の外周との間には、スリット54が形成されている。スリット54は、永久磁石60から出た磁束の流れを整えるために形成される。ここでは7つのスリット54が、磁石挿入孔51の周方向中心に対して対称に形成されている。但し、スリット54の数および配置はここで説明した例には限定されない。また、ロータコア50は必ずしもスリット54を有さなくてもよい。 A slit 54 is formed between the magnet insertion hole 51 and the outer periphery of the rotor core 50. The slit 54 is formed to adjust the flow of magnetic flux emitted from the permanent magnet 60. Here, seven slits 54 are formed symmetrically with respect to the circumferential center of the magnet insertion hole 51. However, the number and arrangement of slits 54 are not limited to the example described here. Further, the rotor core 50 does not necessarily have to have the slit 54.
 ロータコア50において、磁石挿入孔51よりも径方向内側には、穴部57,58が形成されている。穴部57,58は、冷媒を通過させる風穴または治具を挿通する穴として用いられる。穴部57,58はいずれも、極数と同数だけ形成されている。各穴部57の周方向位置は、磁石挿入孔51の周方向中心と一致している。各穴部58の周方向位置は、極間部と一致している。但し、穴部57,58の数および配置はここで説明した例には限定されない。また、ロータコア50は必ずしも穴部57,58を有さなくてもよい。 In the rotor core 50, hole portions 57 and 58 are formed radially inside the magnet insertion hole 51. The holes 57 and 58 are used as air holes through which a refrigerant passes or holes through which a jig is inserted. Both of the hole portions 57 and 58 are formed in the same number as the number of poles. The circumferential position of each hole 57 coincides with the circumferential center of the magnet insertion hole 51. The circumferential position of each hole portion 58 coincides with the interpolar portion. However, the number and arrangement of the holes 57 and 58 are not limited to the example described here. Furthermore, the rotor core 50 does not necessarily have to have the holes 57 and 58.
 また、各穴部58の径方向外側には、ロータコア50の電磁鋼板を固定するカシメ部56が形成されている。但し、カシメ部56の配置はここで説明した例には限定されない。また、ロータコア50の電磁鋼板は、カシメ以外の方法で固定されていてもよい。 Further, a caulking portion 56 for fixing the electromagnetic steel plate of the rotor core 50 is formed on the radially outer side of each hole portion 58. However, the arrangement of the caulking portion 56 is not limited to the example described here. Furthermore, the electromagnetic steel plates of the rotor core 50 may be fixed by a method other than caulking.
<ステータの構成>
 ステータ1は、ロータコア50を径方向外側から囲むステータコア10と、ステータコア10に巻き付けられた巻線30とを有する。ステータコア10は、複数の電磁鋼板を軸方向に積層し、カシメ等により固定したものである。電磁鋼板の板厚は、0.1~0.7mmである。
<Stator configuration>
The stator 1 includes a stator core 10 that surrounds a rotor core 50 from the outside in the radial direction, and a winding 30 that is wound around the stator core 10. The stator core 10 is made by laminating a plurality of electromagnetic steel plates in the axial direction and fixing them by caulking or the like. The thickness of the electromagnetic steel plate is 0.1 to 0.7 mm.
 ステータコア10は、軸線Axを中心とする環状のコアバック11と、コアバック11から径方向内側に延在する複数のティース12とを有する。ティース12は、周方向に一定間隔で配置されている。ティース12の数は、ここでは9である。但し、ティース12の数は9に限定されるものではなく、2以上であればよい。周方向に隣り合うティース12の間には、スロット14が形成される。スロット14の数は、ティース12の数と同じ9である。 The stator core 10 has an annular core back 11 centered on the axis Ax, and a plurality of teeth 12 extending radially inward from the core back 11. The teeth 12 are arranged at regular intervals in the circumferential direction. The number of teeth 12 is nine here. However, the number of teeth 12 is not limited to nine, and may be two or more. A slot 14 is formed between teeth 12 adjacent to each other in the circumferential direction. The number of slots 14 is nine, which is the same as the number of teeth 12.
 巻線30は、マグネットワイヤで構成されており、各ティース12に集中巻きで巻かれている。マグネットワイヤの外径すなわち線径は、例えば1.0mmである。1つのティース12への巻線30の巻き数は、例えば80ターンである。 The winding 30 is made of magnet wire, and is wound around each tooth 12 in a concentrated manner. The outer diameter, ie, wire diameter, of the magnet wire is, for example, 1.0 mm. The number of turns of the winding 30 around one tooth 12 is, for example, 80 turns.
 巻線30は、アルミニウム線または銅線で構成されている。アルミニウム線は、銅線よりも柔らかく、ティース12に密に巻き付けることができるため、特に望ましい。また、アルミニウム線は、銅線よりも安価であるため、製造コストの低減に有利である。 The winding 30 is made of aluminum wire or copper wire. Aluminum wire is particularly desirable because it is softer than copper wire and can be wrapped tightly around the teeth 12. Furthermore, since aluminum wire is cheaper than copper wire, it is advantageous in reducing manufacturing costs.
 図2は、ステータコア10とロータコア50との軸方向の位置関係を示す図である。図2に示すように、ステータコア10とロータコア50とは、軸方向において同じ位置にある。すなわち、ステータコア10の軸方向の両端面10eは、ロータコア50の軸方向の両端面50eとそれぞれ同じ軸方向位置にある。 FIG. 2 is a diagram showing the axial positional relationship between the stator core 10 and the rotor core 50. As shown in FIG. 2, stator core 10 and rotor core 50 are at the same position in the axial direction. That is, both axial end surfaces 10e of stator core 10 are located at the same axial positions as both axial end surfaces 50e of rotor core 50, respectively.
 なお、ステータコア10とロータコア50との軸方向の位置関係は、図2に示した例に限らず、ステータコア10の軸方向の中心位置とロータコア50の軸方向の中心位置とが一致していればよい。ステータコア10の軸方向の中心位置とロータコア50の軸方向の中心位置とが異なる場合については、実施の形態2で説明する。 Note that the axial positional relationship between the stator core 10 and the rotor core 50 is not limited to the example shown in FIG. good. A case where the axial center position of stator core 10 and the axial center position of rotor core 50 are different will be described in a second embodiment.
 図3は、ステータコア10を示す平面図である。コアバック11は、内周面11aと外周面とを有する。コアバック11の内周面11aは、スロット14に面している。コアバック11の外周面は、圧縮機8(図18)のシェル80に嵌合する。 FIG. 3 is a plan view showing the stator core 10. The core back 11 has an inner circumferential surface 11a and an outer circumferential surface. An inner peripheral surface 11a of the core back 11 faces the slot 14. The outer peripheral surface of the core back 11 fits into the shell 80 of the compressor 8 (FIG. 18).
 ティース12は、上記の通り、コアバック11から径方向内側に延在している。各ティース12の周方向中心を通る径方向の直線を、ティース中心線T1と称する。ティース12は、その周方向の両側に一対の側面12aを有する。ティース12の側面12aは、スロット14に面している。 As described above, the teeth 12 extend radially inward from the core back 11. A straight line in the radial direction passing through the circumferential center of each tooth 12 is referred to as a tooth center line T1. The teeth 12 have a pair of side surfaces 12a on both sides in the circumferential direction. Side surfaces 12a of the teeth 12 face the slots 14.
 各ティース12は、また、ロータ5(図1)に対向する歯先部13を有する。歯先部13は、ティース12の他の部分よりも周方向幅が広く、ティース12の側面12aよりも周方向に突出している。歯先部13の突出部分の径方向外側には、外側面13aが形成されている。歯先部13の外側面13aは、スロット14に面している。 Each tooth 12 also has a tooth tip 13 that faces the rotor 5 (FIG. 1). The tooth tip portion 13 is wider in the circumferential direction than other portions of the teeth 12 and protrudes further than the side surfaces 12a of the teeth 12 in the circumferential direction. An outer surface 13a is formed on the radially outer side of the protruding portion of the tooth tip 13. The outer surface 13a of the tooth tip 13 faces the slot 14.
 なお、歯先部13はティース12の一部であるが、ティース12の他の部分と形状が異なるため、歯先部13をティース12の他の部分と分けて説明する場合もある。 Although the tooth tip 13 is a part of the tooth 12, it has a different shape from other parts of the tooth 12, so the tooth tip 13 may be explained separately from other parts of the tooth 12.
 ティース12の軸方向端部には、段差部12Sが形成されている。段差部12Sは、ティース12の側面12a側、すなわちスロット14側に形成されている。そのため、ティース12の周方向の幅は、軸方向中央部よりも軸方向端部で狭い。 A stepped portion 12S is formed at the axial end of the teeth 12. The stepped portion 12S is formed on the side surface 12a side of the teeth 12, that is, on the slot 14 side. Therefore, the circumferential width of the teeth 12 is narrower at the axial ends than at the axial center.
 コアバック11の軸方向端部には、段差部11Sが形成されている。段差部11Sは、コアバック11の内周面11a側、すなわちスロット14側に形成されている。そのため、コアバック11の径方向の幅は、軸方向中央部よりも軸方向端部で狭い。 A stepped portion 11S is formed at the axial end of the core back 11. The stepped portion 11S is formed on the inner peripheral surface 11a side of the core back 11, that is, on the slot 14 side. Therefore, the radial width of the core back 11 is narrower at the axial ends than at the axial center.
 歯先部13の軸方向端部には、段差部13Sが形成されている。段差部13Sは、歯先部13の外側面13a側、すなわちスロット14側に形成されている。そのため、歯先部13の突出部分の径方向の幅は、軸方向中央部よりも軸方向端部で狭い。 A stepped portion 13S is formed at the axial end of the tooth tip portion 13. The stepped portion 13S is formed on the outer surface 13a side of the tooth tip portion 13, that is, on the slot 14 side. Therefore, the radial width of the protruding portion of the tooth tip 13 is narrower at the axial end than at the axial center.
 また、コアバック11には、ステータコア10を分割する分割面15が形成されている。分割面15は、周方向に隣り合う2つのティース12の中間位置に形成されている。また、分割面15は、コアバック11の内周面11aから外周面まで形成されている。 Furthermore, a dividing surface 15 that divides the stator core 10 is formed on the core back 11. The dividing surface 15 is formed at an intermediate position between two teeth 12 adjacent to each other in the circumferential direction. Furthermore, the dividing surface 15 is formed from the inner circumferential surface 11a of the core back 11 to the outer circumferential surface.
 ステータコア10は、分割面15によって、ティース12を1つずつ含む9つの分割コア10Aに分割されている。言い換えると、ステータコア10は、複数の分割コア10Aを組み合わせて構成されている。 The stator core 10 is divided into nine divided cores 10A each including one tooth 12 by a dividing surface 15. In other words, stator core 10 is configured by combining a plurality of divided cores 10A.
 分割コア10Aは、分割面15で溶接等により接合されている。あるいは、分割コア10Aは、分割面15の外周側に形成した薄肉部で互いに連結されていてもよい。 The split core 10A is joined at the split surface 15 by welding or the like. Alternatively, the split cores 10A may be connected to each other by a thin wall portion formed on the outer peripheral side of the split surface 15.
 図4は、分割コア10Aを示す斜視図である。図4では、軸線Ax(図1)の方向すなわち軸方向を、矢印Zで示す。コアバック11は、軸方向を向く端面11eを有する。ティース12は、軸方向を向く端面12eを有する。歯先部13は、軸方向を向く端面13eを有する。 FIG. 4 is a perspective view showing the split core 10A. In FIG. 4, the direction of the axis Ax (FIG. 1), that is, the axial direction, is indicated by an arrow Z. The core back 11 has an end surface 11e facing in the axial direction. The teeth 12 have end faces 12e facing in the axial direction. The tooth tip portion 13 has an end surface 13e facing in the axial direction.
 これらの端面11e,12e,13eは同一面上にあり、図2に示したステータコア10の端面10eに対応する。また、端面11e,12e,13eはいずれも、軸方向に直交する面である。 These end surfaces 11e, 12e, and 13e are on the same plane and correspond to the end surface 10e of the stator core 10 shown in FIG. 2. Further, the end surfaces 11e, 12e, and 13e are all surfaces perpendicular to the axial direction.
 ティース12の段差部12Sは、ティース12の端面12eと側面12aとの間に形成されている。段差部12Sは、スロット14に面する壁面12bと、軸方向を向く底面12cとで構成されている。壁面12bは軸方向に平行であり、底面12cは軸方向に直交している。 The stepped portion 12S of the tooth 12 is formed between the end surface 12e and the side surface 12a of the tooth 12. The stepped portion 12S includes a wall surface 12b facing the slot 14 and a bottom surface 12c facing the axial direction. The wall surface 12b is parallel to the axial direction, and the bottom surface 12c is perpendicular to the axial direction.
 コアバック11の段差部11Sは、コアバック11の端面11eと内周面11aとの間に形成されている。段差部11Sは、スロット14に面する壁面11bと、軸方向を向く底面11cとで構成されている。壁面11bは軸方向に平行であり、底面11cは軸方向に直交している。 The step portion 11S of the core back 11 is formed between the end surface 11e of the core back 11 and the inner peripheral surface 11a. The step portion 11S includes a wall surface 11b facing the slot 14 and a bottom surface 11c facing the axial direction. The wall surface 11b is parallel to the axial direction, and the bottom surface 11c is perpendicular to the axial direction.
 歯先部13の段差部13Sは、歯先部13の端面13eと外側面13aとの間に形成されている。段差部13Sは、スロット14に面する壁面13bと、軸方向を向く底面13cとで構成されている。壁面13bは軸方向に平行であり、底面13cは軸方向に直交している。 The stepped portion 13S of the tooth tip 13 is formed between the end surface 13e and the outer surface 13a of the tooth tip 13. The stepped portion 13S includes a wall surface 13b facing the slot 14 and a bottom surface 13c facing the axial direction. The wall surface 13b is parallel to the axial direction, and the bottom surface 13c is perpendicular to the axial direction.
 段差部11S,12S,13Sの底面11c,12c,13cは、同一面上に位置している。そのため、段差部11S,12S,13Sの軸方向の高さ(後述する高さA)は、同じである。 The bottom surfaces 11c, 12c, and 13c of the stepped portions 11S, 12S, and 13S are located on the same plane. Therefore, the axial heights (height A, which will be described later) of the stepped portions 11S, 12S, and 13S are the same.
 分割コア10Aは、軸方向中央部に積層される第1の電磁鋼板101と、軸方向両端部に積層される第2の電磁鋼板102とで構成される。第2の電磁鋼板102では、第1の電磁鋼板101と比較して、コアバック11の幅、ティース12の幅および歯先部13の突出部の幅が狭い。 The split core 10A is composed of a first electromagnetic steel sheet 101 laminated at the center in the axial direction, and a second electromagnetic steel sheet 102 laminated at both ends in the axial direction. In the second electromagnetic steel sheet 102, the width of the core back 11, the width of the teeth 12, and the width of the protrusion of the tooth tip 13 are narrower than those of the first electromagnetic steel sheet 101.
 図5は、分割コア10Aと絶縁部20とを示す斜視図である。分割コア10Aには、ティース12を軸方向両側および周方向両側から覆うように、絶縁部20が取り付けられる。絶縁部20は、例えば、ポリブチレンテレフタレート(PBT)、液晶ポリマー(LCP)等の樹脂で構成される。 FIG. 5 is a perspective view showing the split core 10A and the insulating section 20. An insulating portion 20 is attached to the split core 10A so as to cover the teeth 12 from both sides in the axial direction and both sides in the circumferential direction. The insulating section 20 is made of resin such as polybutylene terephthalate (PBT) or liquid crystal polymer (LCP), for example.
 絶縁部20は、ティース12を覆う胴部22と、胴部22の径方向外側に配置された壁部21と、胴部22の径方向内側に配置されたフランジ部23とを有する。壁部21とフランジ部23とは、胴部22を挟んで径方向に対向している。 The insulating part 20 has a body part 22 that covers the teeth 12, a wall part 21 arranged on the radially outer side of the body part 22, and a flange part 23 arranged on the radially inner side of the body part 22. The wall portion 21 and the flange portion 23 face each other in the radial direction with the body portion 22 in between.
 壁部21は、コアバック11の内周面11aを覆うように設けられ、さらに軸方向両側に突出している。壁部21は、コアバック11の段差部11Sに係合する係合部21aを有する。 The wall portion 21 is provided to cover the inner circumferential surface 11a of the core back 11, and further protrudes to both sides in the axial direction. The wall portion 21 has an engaging portion 21a that engages with the stepped portion 11S of the core back 11.
 胴部22は、ティース12の端面12eおよび側面12a(図4)を覆うように設けられている。胴部22は、ティース12の段差部12S(図4)に係合する係合部22a(図6)を有する。 The body portion 22 is provided to cover the end surface 12e and side surface 12a (FIG. 4) of the teeth 12. The body portion 22 has an engaging portion 22a (FIG. 6) that engages with the stepped portion 12S (FIG. 4) of the teeth 12.
 フランジ部23は、歯先部13の端面13e(図4)および外側面13aを覆うように設けられている。フランジ部23は、歯先部13の段差部13Sに係合する係合部23aを有する。 The flange portion 23 is provided so as to cover the end surface 13e (FIG. 4) and the outer surface 13a of the tooth tip portion 13. The flange portion 23 has an engaging portion 23a that engages with the stepped portion 13S of the tooth tip portion 13.
 胴部22には、巻線30が巻き付けられる。壁部21およびフランジ部23は、胴部22に巻き付けられた巻線30を径方向両側からガイドする。 A winding 30 is wound around the body 22. The wall portion 21 and the flange portion 23 guide the winding 30 wound around the body portion 22 from both sides in the radial direction.
 絶縁部20は、例えば、樹脂を分割コア10Aと一体成形することによって形成される。絶縁部20は、また、樹脂の成形体を分割コア10Aに取り付けてもよい。 The insulating portion 20 is formed, for example, by integrally molding resin with the split core 10A. The insulating section 20 may also be formed by attaching a resin molded body to the split core 10A.
 ここでは、一体的に構成された絶縁部20について説明するが、インシュレータと絶縁フィルムとで構成してもよい。これについては、実施の形態3で説明する。 Although the insulating section 20 that is integrally constructed will be described here, it may be constructed of an insulator and an insulating film. This will be explained in the third embodiment.
 図6は、ティース12と絶縁部20とを示す、ティース12の延在方向に直交する面における断面図である。ティース12の延在方向とは、ティース12の周方向中心を通る径方向の直線、すなわちティース中心線T1(図3)の方向を言う。 FIG. 6 is a cross-sectional view of the teeth 12 and the insulating portion 20 in a plane perpendicular to the direction in which the teeth 12 extend. The extending direction of the teeth 12 refers to a radial straight line passing through the circumferential center of the teeth 12, that is, the direction of the teeth center line T1 (FIG. 3).
 ティース12は、軸方向に長さL1を有する。長さL1は、ティース12の両端面12e間の距離である。また、ティース12は、軸方向中央部において幅W1を有し、段差部12Sが形成された軸方向端部において幅W2を有する。幅W1は、ティース12の両側面12a間の距離である。幅W2は、ティース12の2つの段差部12Sの壁面12b間の距離である。幅W1,W2は、W1>W2の関係にある。 The teeth 12 have a length L1 in the axial direction. The length L1 is the distance between both end surfaces 12e of the teeth 12. Moreover, the teeth 12 have a width W1 at the center in the axial direction, and a width W2 at the end in the axial direction where the step portion 12S is formed. The width W1 is the distance between both side surfaces 12a of the teeth 12. The width W2 is the distance between the wall surfaces 12b of the two stepped portions 12S of the teeth 12. The widths W1 and W2 have a relationship of W1>W2.
 絶縁部20は、ティース12の端面12eを覆う平面である第1の面201と、スロット14に面する平面である第2の面202と、第1の面201から第2の面202まで延在する湾曲面または傾斜面である第3の面203とを有する。 The insulating portion 20 has a first surface 201 that is a plane that covers the end surface 12e of the tooth 12, a second surface 202 that is a plane that faces the slot 14, and a second surface that extends from the first surface 201 to the second surface 202. and a third surface 203 that is a curved surface or an inclined surface.
 第1の面201は、軸方向に直交する面内で延在する平面であり、ティース12の端面12eに対向している。第2の面202は、軸方向と平行な面内で延在する平面であり、ティース12の側面12aに対向している。 The first surface 201 is a plane extending in a plane perpendicular to the axial direction, and faces the end surface 12e of the teeth 12. The second surface 202 is a plane extending in a plane parallel to the axial direction, and faces the side surface 12a of the teeth 12.
 第3の面203は、ティース12の延在方向に直交する面において、第1の面201と第2の面202とを曲線的に結ぶ湾曲面、または、第1の面201と第2の面202とを直線的に結ぶ傾斜面である。以下では、第3の面203が湾曲面である場合について説明するが、傾斜面であってもよい。 The third surface 203 is a curved surface that connects the first surface 201 and the second surface 202 in a curve, or a curved surface that connects the first surface 201 and the second surface 202 in a plane perpendicular to the extending direction of the teeth 12. This is an inclined surface that linearly connects the surface 202. Although the case where the third surface 203 is a curved surface will be described below, it may be an inclined surface.
 段差部12Sの軸方向の寸法を、高さAとする。この高さAは、段差部12Sの底面12cから、ティース12の端面12eまでの距離に相当する。 The axial dimension of the stepped portion 12S is defined as height A. This height A corresponds to the distance from the bottom surface 12c of the stepped portion 12S to the end surface 12e of the teeth 12.
 ティース12の延在方向に直交する面において、軸方向に直交する方向における段差部12Sの寸法を、幅Bとする。この幅Bは、段差部12Sの壁面12bから、ティース12の側面12aまでの距離に相当する。 In the plane orthogonal to the extending direction of the teeth 12, the dimension of the stepped portion 12S in the direction orthogonal to the axial direction is defined as width B. This width B corresponds to the distance from the wall surface 12b of the stepped portion 12S to the side surface 12a of the tooth 12.
 図6に示した例では、ティース12の段差部12Sの高さAと幅Bとが、A≧Bの関係にある。一例としてはA=Bである。この場合、第3の面203は、円弧状に延在する。 In the example shown in FIG. 6, the height A and width B of the stepped portion 12S of the teeth 12 have a relationship of A≧B. An example is A=B. In this case, the third surface 203 extends in an arc shape.
 但し、ティース12の形状は、図6に示した形状には限定されない。例えば、図7に示すように、ティース12の段差部12Sの高さAと幅Bとが、A>Bの関係にあってもよい。この場合、第3の面203は、軸方向に長い楕円弧をなすように延在する。 However, the shape of the teeth 12 is not limited to the shape shown in FIG. 6. For example, as shown in FIG. 7, the height A and width B of the stepped portion 12S of the teeth 12 may have a relationship of A>B. In this case, the third surface 203 extends in the axial direction to form a long elliptical arc.
 図8は、ティース12の段差部12Sの周囲を拡大して示す図である。絶縁部20の第1の面201は、ティース12の端面12eを覆い、さらに段差部12Sに張り出している。絶縁部20の第2の面202は、ティース12の側面12aを覆い、さらに段差部12Sに張り出している。 FIG. 8 is an enlarged view showing the periphery of the stepped portion 12S of the teeth 12. The first surface 201 of the insulating portion 20 covers the end surface 12e of the tooth 12 and further extends to the stepped portion 12S. The second surface 202 of the insulating portion 20 covers the side surface 12a of the tooth 12 and further extends to the stepped portion 12S.
 ティース12の延在方向に直交する面において、第1の面201と第3の面203との境界となる点を、点Pとする。また、第2の面202と第3の面203との境界となる点を、点Qとする。 A point P is the boundary between the first surface 201 and the third surface 203 on a surface perpendicular to the extending direction of the teeth 12. Further, a point that forms the boundary between the second surface 202 and the third surface 203 is defined as a point Q.
 点Pと点Qとの軸方向の距離を、距離D1とする。点Pと点Qとの軸方向に直交する方向の距離を、距離D2とする。すなわち、点Pを通って軸方向に平行な第1の直線L1と、点Qを通って軸方向に直交する第2の直線L2との交点をUとすると、距離D1は点Pから交点Uまでの距離に相当し、距離D2は点Qから交点Uまでの距離に相当する。 The distance in the axial direction between point P and point Q is defined as distance D1. The distance between point P and point Q in the direction perpendicular to the axial direction is defined as distance D2. That is, if U is the intersection of a first straight line L1 that passes through point P and is parallel to the axial direction and a second straight line L2 that passes through point Q and is perpendicular to the axial direction, then distance D1 is from point P to intersection U. The distance D2 corresponds to the distance from the point Q to the intersection U.
 段差部12Sの高さAおよび幅Bと、距離D1,D2とは、D1≦AおよびD2≦Bを満足する。すなわち、点Pはティース12の端面12eに対向せず、点Qはティース12の側面12aに対向しない。そのため、絶縁部20には、厚さが局所的に薄くなる部分が生じない。 The height A and width B of the stepped portion 12S and the distances D1 and D2 satisfy D1≦A and D2≦B. That is, point P does not oppose the end surface 12e of the tooth 12, and point Q does not oppose the side surface 12a of the tooth 12. Therefore, the insulating portion 20 does not have any locally thinned portions.
<作用>
 実施の形態1の作用について、比較例と対比して説明する。図9(A)は、比較例1のティース121および絶縁部20Cを示す断面図である。図9(B)は、比較例2のティース122および絶縁部20Dを示す断面図である。
<Effect>
The effect of the first embodiment will be explained in comparison with a comparative example. FIG. 9(A) is a cross-sectional view showing the teeth 121 and the insulating portion 20C of Comparative Example 1. FIG. 9(B) is a cross-sectional view showing the teeth 122 and the insulating portion 20D of Comparative Example 2.
 図9(A)に示す比較例1のティース121は、軸方向端部に段差部を有さない。すなわち、端面12eと側面12aとの間には、90度の角部が形成されている。絶縁部20Cは、ティース121の端面12eを覆う第1の面201と、スロット14に面する第2の面202と、これらの面201,202の間の第3の面203とを有する。第3の面203は角部に対向する。 The teeth 121 of Comparative Example 1 shown in FIG. 9(A) do not have a stepped portion at the axial end. That is, a 90 degree corner is formed between the end surface 12e and the side surface 12a. The insulating portion 20C has a first surface 201 that covers the end surface 12e of the tooth 121, a second surface 202 facing the slot 14, and a third surface 203 between these surfaces 201 and 202. The third surface 203 faces the corner.
 巻線30を巻き膨らみが生じないように絶縁部20Cに巻き付けるためには、第3の面203の曲率半径が大きいことが望ましい。しかしながら、第3の面203の曲率半径が大きくするためには、ティース121の端面12eから絶縁部20Cの第1の面201までの厚さt1を厚くする必要がある。厚さt1を厚くすると巻線30の周長が長くなり、巻線30の周長が長くなると銅損が増加する。 In order to wind the winding 30 around the insulating part 20C without causing a bulge, it is desirable that the radius of curvature of the third surface 203 is large. However, in order to increase the radius of curvature of the third surface 203, it is necessary to increase the thickness t1 from the end surface 12e of the teeth 121 to the first surface 201 of the insulating portion 20C. Increasing the thickness t1 increases the circumferential length of the winding 30, and as the circumferential length of the winding 30 increases, copper loss increases.
 図9(B)に示す比較例2のティース122は、端面12eと側面12aとの間に、段差部12Sを有する。絶縁部20Dは、ティース122の端面12eを覆う第1の面201と、スロット14に面する第2の面202と、これらの面201,202の間の第3の面203とを有する。第3の面203は段差部12Sに対向する。 The tooth 122 of Comparative Example 2 shown in FIG. 9(B) has a stepped portion 12S between the end surface 12e and the side surface 12a. The insulating portion 20D has a first surface 201 that covers the end surface 12e of the tooth 122, a second surface 202 facing the slot 14, and a third surface 203 between these surfaces 201 and 202. The third surface 203 faces the stepped portion 12S.
 ティース122が段差部12Sを有するため、絶縁部20Dの第3の面203の曲率半径を大きくしながら、ティース122の端面12eから絶縁部20Dの第1の面201までの厚さt1を薄くすることができる。 Since the teeth 122 have the stepped portions 12S, the thickness t1 from the end surface 12e of the teeth 122 to the first surface 201 of the insulating portion 20D is reduced while increasing the radius of curvature of the third surface 203 of the insulating portion 20D. be able to.
 図9(C)は、比較例2のティース122の段差部12Sの周囲を拡大して示す図である。比較例2では、ティース122の延在方向に直交する面において、第1の面201と第3の面203との境界である点Pは、ティース122の端面12eに対向する位置にある。また、第2の面202と第3の面203との境界である点Qは、ティース122の側面12aに対向する位置にある。 FIG. 9(C) is an enlarged view showing the periphery of the stepped portion 12S of the teeth 122 of Comparative Example 2. In Comparative Example 2, a point P, which is the boundary between the first surface 201 and the third surface 203, is located at a position opposite to the end surface 12e of the tooth 122 on a surface perpendicular to the extending direction of the tooth 122. Further, a point Q, which is the boundary between the second surface 202 and the third surface 203, is located at a position opposite to the side surface 12a of the teeth 122.
 すなわち、点Pと点Qとの軸方向の距離D1と、点Pと点Qとの軸方向に直交する方向の距離D2と、段差部12Sの軸方向の高さAと、段差部12Sの軸方向に直交する方向の幅Bとは、D1>AおよびD2>Bを満足する。 That is, the distance D1 in the axial direction between the point P and the point Q, the distance D2 in the direction perpendicular to the axial direction between the point P and the point Q, the height A in the axial direction of the stepped portion 12S, and the height A of the stepped portion 12S in the axial direction. The width B in the direction perpendicular to the axial direction satisfies D1>A and D2>B.
 この場合、第3の面203とティース12の端面12eとの間に、符号Mで示すように厚さの薄い部分が生じる。同様に、第3の面203とティース12の側面12aとの間にも、符号Nで示すように厚さの薄い部分が生じる。 In this case, between the third surface 203 and the end surface 12e of the teeth 12, a thin portion is created as shown by the symbol M. Similarly, between the third surface 203 and the side surface 12a of the teeth 12, a thin portion as indicated by the symbol N is generated.
 このように厚さの薄い部分が生じると、絶縁部20Dの破損が生じ易くなる。絶縁部20Dの破損を防止するためには、端面12eから第1の面201までの厚さt1を厚くする必要がある。そのため、厚さt1が厚くなって巻線30の周長が増加し、銅損の低減が難しくなる。 If such a thin portion occurs, the insulating portion 20D is likely to be damaged. In order to prevent damage to the insulating portion 20D, it is necessary to increase the thickness t1 from the end surface 12e to the first surface 201. Therefore, the thickness t1 increases and the circumferential length of the winding 30 increases, making it difficult to reduce copper loss.
 これに対し、実施の形態1では、図8に示したように、点Pと点Qとの軸方向の距離D1と、点Pと点Qとの軸方向に直交する方向の距離D2と、段差部12Sの高さAと、段差部12Sの幅Bとが、D1≦AおよびD2≦Bを満足する。すなわち、点Pはティース12の端面12eに対向せず、点Qはティース12の側面12aに対向しない。 On the other hand, in the first embodiment, as shown in FIG. 8, the distance D1 in the axial direction between the point P and the point Q, the distance D2 in the direction orthogonal to the axial direction between the point P and the point Q, The height A of the stepped portion 12S and the width B of the stepped portion 12S satisfy D1≦A and D2≦B. That is, point P does not oppose the end surface 12e of the tooth 12, and point Q does not oppose the side surface 12a of the tooth 12.
 そのため、絶縁部20の第3の面203の曲率半径を大きくしても、厚さが局所的に薄くなる部分が生じない。従って、ティース12の端面12eから絶縁部20の第1の面201までの厚さt1を薄くしても、絶縁部20の破損を防止することができる。これにより、第3の面203の曲率半径を大きくして巻線30の巻き膨らみを抑制すると共に、厚さt1を薄くして巻線30の周長を短くすることができる。その結果、銅損を効果的に低減することができる。 Therefore, even if the radius of curvature of the third surface 203 of the insulating section 20 is increased, no portion where the thickness is locally thinned occurs. Therefore, even if the thickness t1 from the end surface 12e of the teeth 12 to the first surface 201 of the insulating section 20 is made thin, the insulating section 20 can be prevented from being damaged. Thereby, the radius of curvature of the third surface 203 can be increased to suppress the bulge of the winding 30, and the thickness t1 can be reduced to shorten the circumferential length of the winding 30. As a result, copper loss can be effectively reduced.
 次に、段差部12Sの高さAと幅Bとの関係について説明する。図10は、幅Bに対する高さAの比である寸法比A/Bと、電動機100のトルク定数との関係を示すグラフである。トルク定数は、単位電流当たりの発生トルクである。 Next, the relationship between the height A and the width B of the stepped portion 12S will be explained. FIG. 10 is a graph showing the relationship between the dimensional ratio A/B, which is the ratio of the height A to the width B, and the torque constant of the electric motor 100. The torque constant is the torque generated per unit current.
 電動機100のトルク定数は、段差部12Sを有さないティース12の断面積(L1×W1)に対する段差部12Sの断面積(A×B)の比((A×B)/(L1×W1))が一定となるように段差部12Sの高さAと幅Bを変更して解析を行って得た値である。 The torque constant of the electric motor 100 is determined by the ratio ((A×B)/(L1×W1) of the cross-sectional area (A×B) of the stepped portion 12S to the cross-sectional area (L1×W1) of the teeth 12 without the stepped portion 12S. ) is the value obtained by performing an analysis by changing the height A and width B of the stepped portion 12S so that the height A and the width B are constant.
 図10に示すように、A/Bの値が大きくなるほど、トルク定数が増加する。理由は、次の通りである。 As shown in FIG. 10, as the value of A/B increases, the torque constant increases. The reason is as follows.
 ティース12の軸方向端部には、端面12eとその両側の壁面12bとで挟まれたコア部分が形成される。段差部12Sの幅Bが広いほど、コア部分の幅が狭くなるため、磁気飽和が生じ易くなり、従ってティース12にロータ5の磁束が流入しにくくなる。段差部12Sの幅Bが狭いほど、コア部分の幅が広くなるため、磁気飽和が生じにくくなり、従ってティース12にロータ5の磁束が流入し易くなる。 A core portion sandwiched between an end surface 12e and wall surfaces 12b on both sides thereof is formed at the axial end of the tooth 12. The wider the width B of the stepped portion 12S, the narrower the width of the core portion, which makes magnetic saturation more likely to occur, and therefore makes it more difficult for the magnetic flux of the rotor 5 to flow into the teeth 12. As the width B of the stepped portion 12S becomes narrower, the width of the core portion becomes wider, which makes it difficult for magnetic saturation to occur, and therefore, it becomes easier for the magnetic flux of the rotor 5 to flow into the teeth 12.
 段差部12Sの断面積を一定とした場合、段差部12Sの高さAが増加するほど、幅Bが減少する。上記の通り、幅Bが減少するほど磁気飽和が生じにくくなるため、ティース12にロータ5の磁束が流入し易くなり、その結果、発生トルクが大きくなる。そのため、A/Bの値が大きくなるほどトルク定数が大きくなる。 If the cross-sectional area of the stepped portion 12S is constant, the width B decreases as the height A of the stepped portion 12S increases. As described above, as the width B decreases, magnetic saturation becomes less likely to occur, so it becomes easier for the magnetic flux of the rotor 5 to flow into the teeth 12, and as a result, the generated torque increases. Therefore, the larger the value of A/B, the larger the torque constant.
 A/Bの値が大きくなるほどトルク定数が増加することから、例えば、A/B≦1の場合よりも、A/B>1の場合の方が好ましいことが分かる。すなわち、図6に示したように段差部12Sの高さAと幅BがA≦Bを満足する構成よりも、図7に示したように段差部12Sの高さAと幅BがA>Bを満足する構成の方が好ましいことが分かる。 Since the torque constant increases as the value of A/B increases, it can be seen that, for example, the case where A/B>1 is preferable to the case where A/B≦1. That is, as shown in FIG. 7, the height A and width B of the stepped portion 12S satisfy A>B rather than the configuration in which the height A and the width B of the stepped portion 12S satisfy A≦B as shown in FIG. It can be seen that the configuration that satisfies B is preferable.
 次に、段差部12Sの軸方向の高さAとティース12の軸方向の長さL1との関係について説明する。図11は、ティース12の軸方向の長さL1に対する段差部12Sの軸方向の高さAの比A/L1と、鉄損および銅損の変化率との関係を示すグラフである。 Next, the relationship between the axial height A of the stepped portion 12S and the axial length L1 of the teeth 12 will be described. FIG. 11 is a graph showing the relationship between the ratio A/L1 of the axial height A of the stepped portion 12S to the axial length L1 of the teeth 12 and the rate of change in iron loss and copper loss.
 鉄損および銅損の値は、段差部12Sを有さないティース12の断面積(L1×W1)に対する段差部12Sの断面積(A×B)の比((A×B)/(L1×W1))が一定となるように高さAと幅Bを変更して解析を行って得た値である。また、鉄損および銅損の値は、ティース12が段差部12Sを有さない場合の鉄損および銅損の値に対する相対値で表している。 The values of iron loss and copper loss are determined by the ratio ((A×B)/(L1× This value was obtained by performing an analysis while changing the height A and width B so that W1)) was constant. Further, the values of iron loss and copper loss are expressed as relative values to the values of iron loss and copper loss when the teeth 12 do not have the stepped portion 12S.
 図11に示すように、A/L1の値が増加するほど、銅損は減少し、鉄損は増加する。A/L1の値が増加するほど銅損が減少する理由は、段差部12Sの断面積(A×B)を一定とすると、段差部12Sの高さAが増加するほど(すなわち幅Bが減少するほど)、磁気飽和の抑制によってロータ5からの磁束が流入し易くなり、その分だけ電流値を小さくできるためである。 As shown in FIG. 11, as the value of A/L1 increases, copper loss decreases and iron loss increases. The reason why the copper loss decreases as the value of A/L1 increases is that if the cross-sectional area (A x B) of the stepped portion 12S is constant, as the height A of the stepped portion 12S increases (that is, the width B decreases). This is because by suppressing magnetic saturation, the magnetic flux from the rotor 5 becomes easier to flow in, and the current value can be reduced accordingly.
 また、A/L1の値が増加するほど鉄損が増加する理由は、ティース12の長さL1に対して段差部12Sの高さAの割合が増加するほど、ティース12の幅の狭い部分の割合が多くなり、ティース12の全体で磁気抵抗が大きくなるためである。 Also, the reason why the iron loss increases as the value of A/L1 increases is that as the ratio of the height A of the stepped portion 12S to the length L1 of the teeth 12 increases, the narrower width of the teeth 12 increases. This is because the ratio increases, and the magnetic resistance of the teeth 12 as a whole increases.
 図11から、ティース12が段差部12Sを有さない場合と比較して、鉄損の増加割合と銅損の減少割合が同じになるのは、A/L1=0.157のときである。すなわち、A/L1=0.157のときには、ティース12が段差部12Sを有さない場合と比較して、銅損が0.7%増加し、鉄損も0.7%増加する。 From FIG. 11, compared to the case where the teeth 12 do not have the stepped portion 12S, the increase rate of iron loss and the decrease rate of copper loss are the same when A/L1=0.157. That is, when A/L1=0.157, the copper loss increases by 0.7% and the iron loss also increases by 0.7% compared to the case where the teeth 12 do not have the step portion 12S.
 A/L1<0.157の場合には、ティース12が段差部12Sを有さない場合と比較して、銅損の増加が鉄損の増加よりも大きい。A/L1>0.157の場合には、ティース12が段差部12Sを有さない場合と比較して、鉄損の増加が銅損の増加よりも大きい。 When A/L1<0.157, the increase in copper loss is greater than the increase in iron loss compared to the case where the teeth 12 do not have the stepped portion 12S. When A/L1>0.157, the increase in iron loss is greater than the increase in copper loss compared to the case where the teeth 12 do not have the stepped portion 12S.
 この実施の形態では、巻線30の巻き膨らみの防止によって銅損を低減できるため、鉄損の増加が銅損の増加と同じかまたはそれよりも小さくなるA/L1≦0.157の範囲が望ましい。 In this embodiment, since the copper loss can be reduced by preventing the winding 30 from bulging, the range of A/L1≦0.157 in which the increase in iron loss is the same as or smaller than the increase in copper loss is desirable.
 なお、圧縮機に用いられる電動機100は、圧縮機の要求仕様に応じて設計されるが、ステータコア10の形状は共通とし、コアバック11またはティース12の幅、あるいは巻線30の巻き数等の調整により多様な要求仕様に対応することが望ましい。この実施の形態では、上記のステータコア10の形状によって銅損および鉄損を低減することができるため、多様な要求仕様に対応した高効率な電動機100を実現することができる。 The electric motor 100 used in the compressor is designed according to the required specifications of the compressor, but the shape of the stator core 10 is common, and the width of the core back 11 or teeth 12, the number of turns of the winding 30, etc. It is desirable to respond to various required specifications through adjustment. In this embodiment, copper loss and iron loss can be reduced due to the shape of stator core 10 described above, so it is possible to realize a highly efficient electric motor 100 that meets various required specifications.
 次に、コアバック11、ティース12および歯先部13の段差部11S,12S,13Sの関係について説明する。図4に示したように、コアバック11は段差部11Sを有し、ティース12は段差部12Sを有し、歯先部13は段差部13Sを有する。 Next, the relationship between the core back 11, the teeth 12, and the step portions 11S, 12S, and 13S of the tooth tips 13 will be described. As shown in FIG. 4, the core back 11 has a stepped portion 11S, the teeth 12 has a stepped portion 12S, and the tooth tip portion 13 has a stepped portion 13S.
 コアバック11の段差部11Sは、軸線Ax(図1)を中心とする径方向の幅E1を有する。幅E1は、コアバック11の内周面11aからの段差部11Sの壁面11bの径方向の変位量に相当する。 The stepped portion 11S of the core back 11 has a width E1 in the radial direction centered on the axis Ax (FIG. 1). The width E1 corresponds to the amount of displacement in the radial direction of the wall surface 11b of the stepped portion 11S from the inner circumferential surface 11a of the core back 11.
 歯先部13の段差部13Sは、軸線Axを中心とする径方向の幅E2を有する。幅E2は、歯先部13の外側面13aからの段差部13Sの壁面13bの径方向の変位量に相当する。また、ティース12の段差部12Sは、上記の通り、幅Bを有する。 The stepped portion 13S of the tooth tip portion 13 has a width E2 in the radial direction centered on the axis Ax. The width E2 corresponds to the amount of displacement in the radial direction of the wall surface 13b of the stepped portion 13S from the outer surface 13a of the tooth tip portion 13. Further, the stepped portion 12S of the teeth 12 has a width B as described above.
 絶縁部20のうち、ティース12を覆う胴部22には、巻線30が巻かれる。一方、コアバック11に取り付けられる壁部21および歯先部13に取り付けられるフランジ部23には、巻線30が巻かれない。そのため、ティース12の段差部12Sの幅Bは巻線30の巻き膨らみ状態に関係するが、コアバック11および歯先部13の段差部11S,13Sの幅E1,E2は巻線30の巻き膨らみ状態に関係しない。 A winding 30 is wound around the body part 22 of the insulating part 20 that covers the teeth 12. On the other hand, the winding 30 is not wound around the wall portion 21 attached to the core back 11 and the flange portion 23 attached to the tooth tip portion 13. Therefore, the width B of the stepped portion 12S of the teeth 12 is related to the winding swell state of the winding 30, but the widths E1 and E2 of the stepped portions 11S and 13S of the core back 11 and the tooth tip 13 are related to the winding swell state of the winding 30. Not related to condition.
 そのため、ティース12の段差部12Sの幅Bは、コアバック11の段差部11Sの幅E1よりも広く、また、歯先部13の段差部13Sの幅E2よりも広いことが望ましい。すなわち、B>E1およびB>E2が成り立つことが望ましい。これにより、ティース12に巻かれる巻線30の巻き膨らみを抑制しながら、コアバック11および歯先部13での磁気抵抗を低減することができる。 Therefore, the width B of the stepped portion 12S of the teeth 12 is preferably wider than the width E1 of the stepped portion 11S of the core back 11, and also wider than the width E2 of the stepped portion 13S of the tooth tip 13. That is, it is desirable that B>E1 and B>E2 hold true. Thereby, the magnetic resistance at the core back 11 and the tooth tip portion 13 can be reduced while suppressing the winding 30 wound around the teeth 12 from expanding.
 なお、ここではステータコア10を複数の分割コア10Aで構成した例について説明したが、ステータコア10はこのような構成には限定されない。すなわち、ステータコア10は、環状に打ち抜かれた電磁鋼板を軸方向に積層した一体型コアであってもよい。 Although an example in which the stator core 10 is configured with a plurality of divided cores 10A has been described here, the stator core 10 is not limited to such a configuration. That is, the stator core 10 may be an integral core formed by stacking annularly punched electromagnetic steel plates in the axial direction.
 また、ここではティース12の周方向両側に段差部12Sを形成した例について説明したが、ティース12の周方向の少なくとも一方の側に段差部12Sが形成されていればよい。また、ここではコアバック11および歯先部13に段差部11S,13Sを設けたが、これらの段差部11S,13Sは必ずしも設けられていなくても良い。 Although an example in which the step portions 12S are formed on both circumferential sides of the teeth 12 has been described here, the step portions 12S may be formed on at least one side of the teeth 12 in the circumferential direction. Moreover, although the stepped portions 11S and 13S are provided in the core back 11 and the tooth tip portion 13 here, these stepped portions 11S and 13S do not necessarily need to be provided.
<実施の形態の効果>
 以上説明したように、実施の形態1のステータ1は、コアバック11とティース12とを有し、ティース12には絶縁部20を介して巻線30が巻き付けられている。ティース12は、軸方向を向く端面12eと、スロット14に面する側面12aと、端面12eと側面12aとの間に形成された段差部12Sとを有する。絶縁部20は、ティース12の端面12eを覆う第1の面201と、スロット14に面する第2の面202と、第1の面201から第2の面202まで延在する湾曲面または傾斜面である第3の面203とを有する。ティース12の延在方向に直交する断面において、絶縁部20の第1の面201と第3の面203との境界を点Pとし、第2の面202と第3の面203との境界を点Qとし、点Pを通って軸方向に平行な第1の直線L1と点Qを通って軸方向に直交する第2の直線L2との交点をUとする。段差部12Sの軸方向の高さAと、段差部12Sの軸方向に直交する方向の幅Bと、点Pから交点Uまでの距離D1と、点Qから交点Uまでの距離D2とは、D1≦AおよびD2≦Bを満足する。
<Effects of the embodiment>
As described above, the stator 1 of the first embodiment includes the core back 11 and the teeth 12, and the winding 30 is wound around the teeth 12 via the insulating part 20. The teeth 12 have an end surface 12e facing in the axial direction, a side surface 12a facing the slot 14, and a stepped portion 12S formed between the end surface 12e and the side surface 12a. The insulating section 20 includes a first surface 201 that covers the end surface 12e of the teeth 12, a second surface 202 facing the slot 14, and a curved or inclined surface extending from the first surface 201 to the second surface 202. and a third surface 203 which is a surface. In a cross section perpendicular to the extending direction of the teeth 12, the boundary between the first surface 201 and the third surface 203 of the insulating section 20 is defined as a point P, and the boundary between the second surface 202 and the third surface 203 is defined as a point P. Let the point Q be a point of intersection between a first straight line L1 passing through the point P and parallel to the axial direction and a second straight line L2 passing through the point Q and orthogonal to the axial direction. The height A of the stepped portion 12S in the axial direction, the width B of the stepped portion 12S in the direction perpendicular to the axial direction, the distance D1 from the point P to the intersection U, and the distance D2 from the point Q to the intersection U are: D1≦A and D2≦B are satisfied.
 このように構成されているため、絶縁部20の点Pがティース12の端面12eに対向せず、絶縁部20の点Qがティース12の側面12aに対向しない。そのため、絶縁部20の第3の面203の曲率半径を大きくしても、厚さが局所的に薄くなる部分が生じず、応力集中を抑制することができる。これにより巻線30の巻き膨らみを防止しながら絶縁部20の厚さを薄くすることができる。すなわち、巻線30の周長を短くし、銅損を低減することができる。 With this configuration, the point P of the insulating part 20 does not face the end surface 12e of the tooth 12, and the point Q of the insulating part 20 does not face the side surface 12a of the tooth 12. Therefore, even if the radius of curvature of the third surface 203 of the insulating section 20 is increased, no portion where the thickness is locally thinned occurs, and stress concentration can be suppressed. This allows the thickness of the insulating section 20 to be reduced while preventing the winding 30 from bulging. That is, the circumferential length of the winding 30 can be shortened and copper loss can be reduced.
 また、段差部12Sの高さAと幅BがA>Bを満足するため、ティース12内での磁気飽和が生じにくく、ロータ5の磁束がティース12に流入し易くなるため、トルク定数を大きくすることができる。 In addition, since the height A and width B of the stepped portion 12S satisfy A>B, magnetic saturation is less likely to occur within the teeth 12, and the magnetic flux of the rotor 5 easily flows into the teeth 12, so the torque constant is increased. can do.
 加えて、段差部12Sの軸方向の高さAとステータコア10の軸方向の長さL1がA/L1≦0.157を満足するため、ティース12における鉄損および銅損の増加を抑えることができる。 In addition, since the axial height A of the stepped portion 12S and the axial length L1 of the stator core 10 satisfy A/L1≦0.157, increases in iron loss and copper loss in the teeth 12 can be suppressed. can.
 また、絶縁部20は、ティース12の端面12eを覆う部分と、側面12aを覆う部分と、段差部12Sを覆う部分とが一体に形成されている。そのため、例えば樹脂による一体成形により、簡単な工程で絶縁部20を形成することができる。 Further, the insulating portion 20 is integrally formed with a portion that covers the end surface 12e of the teeth 12, a portion that covers the side surface 12a, and a portion that covers the stepped portion 12S. Therefore, the insulating portion 20 can be formed in a simple process by integral molding using resin, for example.
 また、巻線30がアルミニウム線で構成されているため、アルミニウム線の柔らかさを利用してティース12に巻線30を密に巻き付けることができる。アルミニウム線は、銅線と比較して電気抵抗が大きいが、本実施の形態では巻線30の周長を短くすることができるため、アルミニウム線を用いた場合であっても銅損の増加を抑制することができる。 Furthermore, since the winding 30 is made of aluminum wire, the winding 30 can be tightly wound around the teeth 12 by utilizing the softness of the aluminum wire. Aluminum wire has a higher electrical resistance than copper wire, but in this embodiment, the circumference of the winding 30 can be shortened, so even when aluminum wire is used, increase in copper loss can be avoided. Can be suppressed.
実施の形態2.
 次に、実施の形態2について説明する。実施の形態1では、ステータ1の軸方向の両端部に段差部12Sが形成されていた。これに対し、実施の形態2では、ステータ1の軸方向の一端部にのみ段差部12Sが形成されている。
Embodiment 2.
Next, a second embodiment will be described. In the first embodiment, the step portions 12S are formed at both ends of the stator 1 in the axial direction. In contrast, in the second embodiment, the stepped portion 12S is formed only at one end of the stator 1 in the axial direction.
 図12は、実施の形態2の電動機のステータコア10とロータコア50との関係を示す図である。図12では、軸方向において、圧縮機8の圧縮機構9(図18)に向かう方向を-Z方向とし、その反対方向を+Z方向で示す。なお、図12では、+Z方向が上方であり、-Z方向が下方であるが、これには限定されない。 FIG. 12 is a diagram showing the relationship between the stator core 10 and rotor core 50 of the electric motor according to the second embodiment. In FIG. 12, in the axial direction, the direction of the compressor 8 toward the compression mechanism 9 (FIG. 18) is shown as a -Z direction, and the opposite direction is shown as a +Z direction. Note that in FIG. 12, the +Z direction is upward and the -Z direction is downward, but the present invention is not limited thereto.
 ロータコア50の+Z方向の端面50eは、ステータコア10の+Z方向の端面10eよりも+Z方向に位置している。ロータコア50の-Z方向の端面50eは、ステータコア10の-Z方向の端面10eよりも+Z方向に位置している。 The +Z direction end surface 50e of the rotor core 50 is located further in the +Z direction than the +Z direction end surface 10e of the stator core 10. An end face 50e of the rotor core 50 in the −Z direction is located further in the +Z direction than an end face 10e of the stator core 10 in the −Z direction.
 言い換えると、ロータコア50は、ステータコア10よりも+Z方向に突出している。すなわち、ロータコア50の軸方向の中心位置は、ステータコア10の軸方向の中心位置よりも+Z方向に変位している。 In other words, the rotor core 50 protrudes more than the stator core 10 in the +Z direction. That is, the axial center position of rotor core 50 is displaced in the +Z direction from the axial center position of stator core 10 .
 そのため、ステータコア10とロータコア50との間に、両者の中心位置を軸方向に接近させる方向に磁気吸引力が作用する。この磁気吸引力により、ロータ5が-Z方向すなわち圧縮機構9側に付勢され、ロータ5の振動が抑制される。 Therefore, a magnetic attraction force acts between the stator core 10 and the rotor core 50 in a direction that causes the center positions of the two to approach each other in the axial direction. This magnetic attraction force urges the rotor 5 in the −Z direction, that is, toward the compression mechanism 9, and vibrations of the rotor 5 are suppressed.
 実施の形態2のティース120の+Z方向の端部には、段差部12Sが形成されていない。一方、ティース120の-Z方向の端部には、段差部12Sが形成されている。段差部12Sの形状および寸法は、実施の形態1で説明した通りである。 The stepped portion 12S is not formed at the end of the teeth 120 in the +Z direction in the second embodiment. On the other hand, a stepped portion 12S is formed at the end of the teeth 120 in the −Z direction. The shape and dimensions of the stepped portion 12S are as described in the first embodiment.
 ティース120の段差部12Sの軸方向の長さは、実施の形態1で説明した通り、高さAである。ステータコア10の-Z方向の端面10eから軸方向に高さAのコア領域R1のうち、ロータコア50と対向する領域の軸方向の長さを、L1とする。 The axial length of the stepped portion 12S of the teeth 120 is the height A, as described in the first embodiment. Of the core region R1 having a height A in the axial direction from the -Z direction end surface 10e of the stator core 10, the axial length of the region facing the rotor core 50 is defined as L1.
 同様に、ステータコア10の+Z方向の端面10eから軸方向に高さAのコア領域R2のうち、ロータコア50と対向する領域の軸方向の長さを、L2とする。なお、コア領域R1は第1の領域、コア領域R2は第2の領域とも称する。 Similarly, among the core region R2 having a height A in the axial direction from the end surface 10e in the +Z direction of the stator core 10, the axial length of the region facing the rotor core 50 is defined as L2. Note that the core region R1 is also referred to as a first region, and the core region R2 is also referred to as a second region.
 ステータコア10のコア領域R1,R2において、ロータコア50との対向領域の長さL1,L2は、L1<L2を満足する。言い換えると、ティース120の段差部12Sは、ステータコア10の軸方向両端に同じ高さAのコア領域R1,R2を規定した場合に、コア領域R1,R2におけるロータコア50との対向領域の割合が小さい側に形成されている。 In the core regions R1 and R2 of the stator core 10, the lengths L1 and L2 of the regions facing the rotor core 50 satisfy L1<L2. In other words, when core regions R1 and R2 of the same height A are defined at both ends of the stator core 10 in the axial direction, the ratio of the region facing the rotor core 50 in the core regions R1 and R2 is small. formed on the side.
 ステータコア10のコア領域R2では、ロータコア50との対向領域の割合が大きいため、ロータ5からの磁束がより多く流入する。そのため、ティース120のコア領域R2に段差部12Sを設けると、磁気飽和が生じ易くなり、鉄損が増加する可能性がある。 In the core region R2 of the stator core 10, since the proportion of the region facing the rotor core 50 is large, a larger amount of magnetic flux from the rotor 5 flows into the core region R2. Therefore, when the stepped portion 12S is provided in the core region R2 of the teeth 120, magnetic saturation is likely to occur, and iron loss may increase.
 そこで、実施の形態2では、ロータコア50からの流入磁束の少ないコア領域R1においてのみ、ティース120に段差部12Sを設けている。すなわち、ステータコア10の-Z方向の端部においてのみ、ティース120に段差部12Sを設けている。また、図示は省略するが、コアバック11の段差部11Sおよび歯先部13の段差部13Sも、ステータコア10の-Z方向の端部のみに設けられている。 Therefore, in the second embodiment, the step portion 12S is provided in the teeth 120 only in the core region R1 where there is little inflow magnetic flux from the rotor core 50. That is, the stepped portion 12S is provided in the teeth 120 only at the end of the stator core 10 in the −Z direction. Further, although not shown, the stepped portion 11S of the core back 11 and the stepped portion 13S of the tooth tip portion 13 are also provided only at the end of the stator core 10 in the −Z direction.
 図13は、実施の形態2のティース120および絶縁部20Aを示す、ティース120の延在方向に直交する面における断面図である。図13に示すように、ティース120の-Z方向の端部には、段差部12Sが設けられている。段差部12Sの形状および寸法は、実施の形態1で説明した通りである。 FIG. 13 is a cross-sectional view of the teeth 120 and the insulating portion 20A of the second embodiment in a plane perpendicular to the extending direction of the teeth 120. As shown in FIG. 13, a stepped portion 12S is provided at the end of the teeth 120 in the −Z direction. The shape and dimensions of the stepped portion 12S are as described in the first embodiment.
 一方、ティース120の+Z方向の端部には、段差部12Sが設けられていない。そのため、ティース120の+Z方向の端面12eと側面12aとの間には、90度の角部が形成されている。 On the other hand, the step portion 12S is not provided at the end of the teeth 120 in the +Z direction. Therefore, a 90 degree corner is formed between the +Z direction end surface 12e and side surface 12a of the teeth 120.
 絶縁部20Aは、ティース120の端面12eを覆う第1の面201と、スロット14に面する第2の面202と、第1の面201から第2の面202まで延在する第3の面203とを有する。ティース120の端面12eから絶縁部20Aの第1の面201までの厚さt1は、+Z方向の端部の方が、-Z方向の端部よりも長い。 The insulating portion 20A includes a first surface 201 that covers the end surface 12e of the tooth 120, a second surface 202 facing the slot 14, and a third surface extending from the first surface 201 to the second surface 202. 203. The thickness t1 from the end surface 12e of the teeth 120 to the first surface 201 of the insulating portion 20A is longer at the end in the +Z direction than at the end in the −Z direction.
 上述した点を除き、実施の形態2の電動機は、実施の形態1の電動機100と同様に構成されている。 Except for the above-mentioned points, the electric motor of Embodiment 2 is configured similarly to electric motor 100 of Embodiment 1.
 以上説明したように、実施の形態2では、ステータコア10の軸方向両端部のうち、軸方向長さを同一とした場合にロータコア50との対向領域が小さい方の端部において、ティース120に段差部12Sが設けられている。そのため、ティース120における磁気飽和を抑制しながら、巻線30の周長を短くし、銅損を低減することができる。 As described above, in the second embodiment, there is a step in the teeth 120 at the end where the opposing area with the rotor core 50 is smaller when the axial length is the same among both axial ends of the stator core 10. A section 12S is provided. Therefore, while suppressing magnetic saturation in the teeth 120, the circumferential length of the winding 30 can be shortened and copper loss can be reduced.
変形例.
 図14は、実施の形態2の変形例におけるステータコア10とロータコア50との関係を示す図である。変形例では、ロータコア50がステータコア10から軸方向両側、すなわち+Z方向と-Z方向に突出している。但し、ロータコア50の+Z方向の突出量Z2が-Z方向の突出量Z1よりも大きい。
Variation example.
FIG. 14 is a diagram showing the relationship between stator core 10 and rotor core 50 in a modification of the second embodiment. In the modified example, the rotor core 50 protrudes from the stator core 10 on both sides in the axial direction, that is, in the +Z direction and the -Z direction. However, the protrusion amount Z2 of the rotor core 50 in the +Z direction is larger than the protrusion amount Z1 in the -Z direction.
 このようにロータコア50がステータコア10から軸方向両側に突出した構成により、ステータコア10の軸方向長さを短くし、ステータコア10の材料コストを低減することができる。 With this configuration in which the rotor core 50 protrudes from the stator core 10 on both sides in the axial direction, the axial length of the stator core 10 can be shortened and the material cost of the stator core 10 can be reduced.
 一方、ステータコア10には、ロータコア50の突出部分からの磁束も流入する。そのため、ステータコア10の+Z方向の端部には、ステータコア10の-Z方向の端部と比較して、ロータコア50からの磁束がより多く流入する。 On the other hand, magnetic flux from the protruding portion of the rotor core 50 also flows into the stator core 10 . Therefore, more magnetic flux from the rotor core 50 flows into the +Z-direction end of the stator core 10 than at the -Z-direction end of the stator core 10.
 そこで、変形例では、ロータコア50からの流入磁束の少ないステータコア10の-Z方向の端部でのみ、ティース120に段差部12Sが設けられている。また、図示は省略するが、コアバック11の段差部11Sおよび歯先部13の段差部13Sも、ステータコア10の-Z方向の端部のみに設けられている。 Therefore, in the modified example, the stepped portions 12S are provided in the teeth 120 only at the ends in the -Z direction of the stator core 10 where there is less magnetic flux flowing in from the rotor core 50. Further, although not shown, the stepped portion 11S of the core back 11 and the stepped portion 13S of the tooth tip portion 13 are also provided only at the end of the stator core 10 in the −Z direction.
 この変形例においても、実施の形態2と同様、ティース120における磁気飽和を抑制しながら、巻線30の周長を短くし、銅損を低減することができる。 Also in this modification, as in the second embodiment, the circumferential length of the winding 30 can be shortened and copper loss can be reduced while suppressing magnetic saturation in the teeth 120.
実施の形態3.
 次に、実施の形態3について説明する。図15は、実施の形態3のティース12および絶縁部20Bを示す斜視図である。実施の形態3の絶縁部20Bは、ティース12の端面12eを覆うインシュレータ25と、ティース12の側面12aを覆う絶縁フィルム26とを有する。具体的には、ティース12の軸方向両側にインシュレータ25が設けられ、ティース12の周方向両側に絶縁フィルム26が設けられている。
Embodiment 3.
Next, Embodiment 3 will be described. FIG. 15 is a perspective view showing the teeth 12 and the insulating portion 20B of the third embodiment. The insulating section 20B of the third embodiment includes an insulator 25 that covers the end surface 12e of the tooth 12, and an insulating film 26 that covers the side surface 12a of the tooth 12. Specifically, insulators 25 are provided on both sides of the teeth 12 in the axial direction, and insulating films 26 are provided on both sides of the teeth 12 in the circumferential direction.
 各インシュレータ25は、例えば、ポリブチレンテレフタレート(PBT)、液晶ポリマー(LCP)等の樹脂で構成される。各絶縁フィルム26は、例えば、ポリエチレンテレフタレート(PET)等の樹脂で形成されたフィルムである。絶縁フィルム26の厚さは、例えば、0.35mmである。 Each insulator 25 is made of a resin such as polybutylene terephthalate (PBT) or liquid crystal polymer (LCP), for example. Each insulating film 26 is, for example, a film formed of a resin such as polyethylene terephthalate (PET). The thickness of the insulating film 26 is, for example, 0.35 mm.
 各インシュレータ25は、コアバック11に取り付けられる壁部27と、ティース12に取り付けられる胴部28と、歯先部13に取り付けられるフランジ部29とを有する。 Each insulator 25 has a wall portion 27 attached to the core back 11 , a body portion 28 attached to the teeth 12 , and a flange portion 29 attached to the tooth tips 13 .
 壁部27は、コアバック11の段差部11Sに係合し、さらに軸方向に突出している。壁部27のうち、コアバック11の段差部11Sに係合する部分を、係合部27aと称する。 The wall portion 27 engages with the stepped portion 11S of the core back 11 and further protrudes in the axial direction. A portion of the wall portion 27 that engages with the stepped portion 11S of the core back 11 is referred to as an engaging portion 27a.
 胴部28は、ティース12の端面12eを覆い、ティース12の段差部12Sに係合する。胴部28のうち、コアバック11の段差部11Sに係合する部分を、係合部28aと称する。胴部28は、軸方向を向く第1の面201と、スロット14に面する第2の面202と、第1の面201から第2の面202まで延在する第3の面203とを有する。 The body portion 28 covers the end surface 12e of the tooth 12 and engages with the stepped portion 12S of the tooth 12. A portion of the body portion 28 that engages with the stepped portion 11S of the core back 11 is referred to as an engaging portion 28a. The body 28 has a first surface 201 facing in the axial direction, a second surface 202 facing the slot 14, and a third surface 203 extending from the first surface 201 to the second surface 202. have
 フランジ部29は、歯先部13の端面13eを覆い、歯先部13の段差部13Sに係合する。フランジ部29のうち、歯先部13の段差部13Sに係合する部分を、係合部29aと称する。 The flange portion 29 covers the end surface 13e of the tooth tip portion 13 and engages with the stepped portion 13S of the tooth tip portion 13. A portion of the flange portion 29 that engages with the stepped portion 13S of the tooth tip portion 13 is referred to as an engaging portion 29a.
 インシュレータ25は、また、壁部21よりも径方向外側に延在する延在部24を有する。延在部24は、コアバック11に形成された嵌合穴16に嵌合する突起24aを有する。突起24aと嵌合穴16との嵌合により、インシュレータ25が分割コア10Aに固定される。なお、インシュレータ25には、必ずしも突起24aを設けなくても良い。 The insulator 25 also has an extending portion 24 that extends radially outward from the wall portion 21. The extension portion 24 has a protrusion 24 a that fits into the fitting hole 16 formed in the core back 11 . By fitting the protrusion 24a into the fitting hole 16, the insulator 25 is fixed to the split core 10A. Note that the insulator 25 does not necessarily need to be provided with the protrusion 24a.
 絶縁フィルム26は、コアバック11の内周面11a、ティース12の側面12aおよび歯先部13の外側面13aを覆うように設けられる。言い換えると、絶縁フィルム26は、スロット14の内面を覆うように設けられる。 The insulating film 26 is provided to cover the inner peripheral surface 11a of the core back 11, the side surface 12a of the tooth 12, and the outer surface 13a of the tooth tip 13. In other words, the insulating film 26 is provided to cover the inner surface of the slot 14.
 インシュレータ25の胴部28および絶縁フィルム26には、巻線30が巻き付けられる。また、インシュレータ25の壁部27およびフランジ部29は、巻線30を径方向両側からガイドする。 A winding 30 is wound around the body 28 and the insulating film 26 of the insulator 25. Further, the wall portion 27 and the flange portion 29 of the insulator 25 guide the winding 30 from both sides in the radial direction.
 図16は、実施の形態3のティース12および絶縁部20Bの、ティース12の延在方向に直交する面における断面図である。実施の形態3の絶縁部20Bは、材料の異なるインシュレータ25と絶縁フィルム26とで形成されているため、ステータコア10から巻線30までの絶縁距離を確保する必要がある。絶縁距離は、絶縁体の表面に沿って測定した導電体間の最短距離であり、沿面距離とも称する。 FIG. 16 is a cross-sectional view of the teeth 12 and the insulating portion 20B of the third embodiment in a plane perpendicular to the extending direction of the teeth 12. Since the insulating section 20B of the third embodiment is formed of the insulator 25 and the insulating film 26 made of different materials, it is necessary to ensure an insulating distance from the stator core 10 to the winding 30. Insulation distance is the shortest distance between conductors measured along the surface of an insulator, and is also referred to as creepage distance.
 絶縁フィルム26は、ティース12の側面12aからさらに軸方向に突出している。言い換えると、絶縁フィルム26は、ティース12の側面12aを覆うだけでなく、インシュレータ25の第2の面202を部分的に覆うように延在している。 The insulating film 26 further protrudes from the side surface 12a of the teeth 12 in the axial direction. In other words, the insulating film 26 extends not only to cover the side surface 12a of the teeth 12 but also to partially cover the second surface 202 of the insulator 25.
 絶縁フィルム26の段差部12Sの底面12cからの軸方向の突出量を、Dとする。絶縁フィルム26の突出量Dは、ステータコア10から巻線30までの沿面距離以上に設定される。絶縁距離は、例えば2.5mmである。 The amount of axial protrusion of the stepped portion 12S of the insulating film 26 from the bottom surface 12c is defined as D. The amount D of protrusion of the insulating film 26 is set to be equal to or greater than the creepage distance from the stator core 10 to the winding 30. The insulation distance is, for example, 2.5 mm.
 図17は、比較例3のティース121および絶縁部20Eの断面図である。比較例3のティース121は、段差部を有していない。絶縁部20Eは、ティース121の端面12eを覆うインシュレータ25と、ティース121の側面12aを覆う絶縁フィルム26とを有する。 FIG. 17 is a cross-sectional view of the teeth 121 and the insulating portion 20E of Comparative Example 3. Teeth 121 of Comparative Example 3 does not have a stepped portion. The insulating portion 20E includes an insulator 25 that covers the end surface 12e of the tooth 121, and an insulating film 26 that covers the side surface 12a of the tooth 121.
 絶縁フィルム26は、ティース121の端面12eから軸方向に突出するように設けられている。絶縁フィルム26のティース121の端面12eからの軸方向の突出量を、Dとする。突出量Dは、上述した絶縁距離以上である。 The insulating film 26 is provided so as to protrude from the end surface 12e of the teeth 121 in the axial direction. Let D be the amount of axial protrusion of the insulating film 26 from the end surface 12e of the teeth 121. The amount of protrusion D is greater than or equal to the above-mentioned insulation distance.
 絶縁フィルム26が絶縁部20Eよりも軸方向に突出すると、巻線30を巻き付ける際に絶縁フィルム26がスロット14の内側に折れ曲がる可能性がある。そのため、ティース121の端面12eから絶縁部20Eの第1の面201までの厚さt1を突出量D以上にしなければならず、当該厚さt1が厚くなる。 If the insulating film 26 protrudes beyond the insulating portion 20E in the axial direction, the insulating film 26 may be bent inside the slot 14 when winding the winding 30. Therefore, the thickness t1 from the end surface 12e of the teeth 121 to the first surface 201 of the insulating portion 20E must be greater than or equal to the protrusion amount D, which increases the thickness t1.
 これに対し、実施の形態3では、ティース12が段差部12Sを有しているため、絶縁フィルム26が段差部12Sの底面12cから突出量Dだけ突出しても、ティース12の端面12eから第1の面201までの厚さt1を薄くすることができる。これにより、巻線30の周長を短くすることができる。 In contrast, in the third embodiment, since the teeth 12 have the stepped portions 12S, even if the insulating film 26 protrudes by the protrusion amount D from the bottom surface 12c of the stepped portions 12S, the first The thickness t1 up to the surface 201 can be made thinner. Thereby, the circumferential length of the winding 30 can be shortened.
 以上説明したように、実施の形態3では、ティース12が段差部12Sを有し、絶縁部20がティース12の側面12aを覆う絶縁フィルム26を有するため、絶縁距離を確保しながら、巻線30の周長を短くし、銅損を低減することができる。 As described above, in Embodiment 3, the teeth 12 have the stepped portions 12S, and the insulating portions 20 have the insulating films 26 that cover the side surfaces 12a of the teeth 12. Therefore, while ensuring the insulation distance, the windings 30 It is possible to shorten the circumferential length and reduce copper loss.
<圧縮機>
 次に、電動機100を用いた圧縮機8について説明する。図18は、圧縮機8の構成を示す断面図である。圧縮機8は、ここではロータリー圧縮機であり、シェル80と、シェル80内に配設された圧縮機構9と、圧縮機構9を駆動する電動機100と、電動機100と圧縮機構9とを動力伝達可能に連結するシャフト90とを有する。シャフト90は、図1等に示したシャフト65であり、電動機100のロータ5の中心孔53に嵌合する。
<Compressor>
Next, the compressor 8 using the electric motor 100 will be explained. FIG. 18 is a sectional view showing the configuration of the compressor 8. As shown in FIG. The compressor 8 is a rotary compressor here, and transmits power between the shell 80, the compression mechanism 9 disposed in the shell 80, an electric motor 100 that drives the compression mechanism 9, and the electric motor 100 and the compression mechanism 9. and a shaft 90 that can be connected to each other. The shaft 90 is the shaft 65 shown in FIG. 1 etc., and fits into the center hole 53 of the rotor 5 of the electric motor 100.
 シェル80は、例えば鋼板で形成された密閉容器であり、電動機100および圧縮機構9を覆う。シェル80は、上部シェル80aと下部シェル80bとを有している。上部シェル80aには、圧縮機8の外部から電動機100に電力を供給するための端子部としてのガラス端子81と、圧縮機8内で圧縮された冷媒を外部に吐出するための吐出管85とが取り付けられている。下部シェル80bには、電動機100および圧縮機構9が収容されている。 The shell 80 is a closed container made of, for example, a steel plate, and covers the electric motor 100 and the compression mechanism 9. Shell 80 has an upper shell 80a and a lower shell 80b. The upper shell 80a includes a glass terminal 81 as a terminal section for supplying power to the electric motor 100 from the outside of the compressor 8, and a discharge pipe 85 for discharging the refrigerant compressed in the compressor 8 to the outside. is installed. The electric motor 100 and the compression mechanism 9 are housed in the lower shell 80b.
 圧縮機構9は、シャフト90に沿って、円環状の第1シリンダ91および第2シリンダ92を有している。第1シリンダ91および第2シリンダ92は、シェル80(下部シェル80b)の内周部に固定されている。第1シリンダ91の内周側には、円環状の第1ピストン93が配置され、第2シリンダ92の内周側には、円環状の第2ピストン94が配置されている。第1ピストン93および第2ピストン94は、シャフト90と共に回転するロータリーピストンである。 The compression mechanism 9 has an annular first cylinder 91 and a second cylinder 92 along a shaft 90. The first cylinder 91 and the second cylinder 92 are fixed to the inner circumference of the shell 80 (lower shell 80b). An annular first piston 93 is arranged on the inner circumferential side of the first cylinder 91, and an annular second piston 94 is arranged on the inner circumferential side of the second cylinder 92. The first piston 93 and the second piston 94 are rotary pistons that rotate together with the shaft 90.
 第1シリンダ91と第2シリンダ92との間には、仕切板97が設けられている。仕切板97は、中央に貫通穴を有する円板状の部材である。第1シリンダ91および第2シリンダ92のシリンダ室には、シリンダ室を吸入側と圧縮側とに分けるベーン(図示せず)が設けられている。第1シリンダ91、第2シリンダ92および仕切板97は、ボルト98によって一体に固定されている。 A partition plate 97 is provided between the first cylinder 91 and the second cylinder 92. The partition plate 97 is a disc-shaped member having a through hole in the center. The cylinder chambers of the first cylinder 91 and the second cylinder 92 are provided with vanes (not shown) that divide the cylinder chambers into a suction side and a compression side. The first cylinder 91, the second cylinder 92, and the partition plate 97 are fixed together with bolts 98.
 第1シリンダ91の上側には、第1シリンダ91のシリンダ室の上側を塞ぐように、上部フレーム95が配置されている。第2シリンダ92の下側には、第2シリンダ92のシリンダ室の下側を塞ぐように、下部フレーム96が配置されている。上部フレーム95および下部フレーム96は、シャフト90を回転可能に支持している。 An upper frame 95 is arranged above the first cylinder 91 so as to close the upper side of the cylinder chamber of the first cylinder 91. A lower frame 96 is arranged below the second cylinder 92 so as to close the lower side of the cylinder chamber of the second cylinder 92. Upper frame 95 and lower frame 96 rotatably support shaft 90.
 シェル80の下部シェル80bの底部には、圧縮機構9の各摺動部を潤滑する冷凍機油(図示せず)が貯留されている。冷凍機油は、シャフト90の内部に軸方向に形成された孔90a内を上昇し、シャフト90の複数箇所に形成された給油孔90bから各摺動部に供給される。 At the bottom of the lower shell 80b of the shell 80, refrigerating machine oil (not shown) for lubricating each sliding part of the compression mechanism 9 is stored. Refrigerating machine oil rises in a hole 90a formed in the axial direction inside the shaft 90, and is supplied to each sliding portion from oil supply holes 90b formed at a plurality of locations on the shaft 90.
 電動機100のステータ1は、焼き嵌めによりシェル80の内側に取り付けられている。ステータ1の巻線30には、上部シェル80aに取り付けられたガラス端子81から電力が供給される。ロータ5の中心孔53(図1)には、シャフト90が固定されている。 The stator 1 of the electric motor 100 is attached to the inside of the shell 80 by shrink fitting. Power is supplied to the winding 30 of the stator 1 from a glass terminal 81 attached to the upper shell 80a. A shaft 90 is fixed to the center hole 53 (FIG. 1) of the rotor 5.
 シェル80には、冷媒ガスを貯蔵するアキュムレータ87が取り付けられている。アキュムレータ87は、例えば、下部シェル80bの外側に設けられた保持部80cによって保持されている。シェル80には、一対の吸入パイプ88,89が取り付けられ、この吸入パイプ88,89を介してアキュムレータ87からシリンダ91,92に冷媒ガスが供給される。 An accumulator 87 that stores refrigerant gas is attached to the shell 80. The accumulator 87 is held, for example, by a holding portion 80c provided on the outside of the lower shell 80b. A pair of suction pipes 88 and 89 are attached to the shell 80, and refrigerant gas is supplied from the accumulator 87 to the cylinders 91 and 92 via the suction pipes 88 and 89.
 冷媒としては、例えば、R410A、R407CまたはR22等を用いてもよいが、地球温暖化防止の観点からは、低GWP(地球温暖化係数)の冷媒を用いることが望ましい。低GWPの冷媒としては、例えば、以下の冷媒を用いることができる。 As the refrigerant, for example, R410A, R407C, or R22 may be used, but from the viewpoint of preventing global warming, it is desirable to use a refrigerant with a low GWP (global warming potential). As the low GWP refrigerant, for example, the following refrigerants can be used.
(1)まず、組成中に炭素の二重結合を有するハロゲン化炭化水素、例えばHFO(Hydro-Fluoro-Orefin)-1234yf(CFCF=CH)を用いることができる。HFO-1234yfのGWPは4である。
(2)また、組成中に炭素の二重結合を有する炭化水素、例えばR1270(プロピレン)を用いてもよい。R1270のGWPは3であり、HFO-1234yfより低いが、可燃性はHFO-1234yfより高い。
(3)また、組成中に炭素の二重結合を有するハロゲン化炭化水素または組成中に炭素の二重結合を有する炭化水素の少なくとも何れかを含む混合物、例えばHFO-1234yfとR32との混合物を用いてもよい。上述したHFO-1234yfは低圧冷媒のため圧損が大きくなる傾向があり、冷凍サイクル(特に蒸発器)の性能低下を招く可能性がある。そのため、HFO-1234yfよりも高圧冷媒であるR32またはR41との混合物を用いることが実用上は望ましい。
(1) First, a halogenated hydrocarbon having a carbon double bond in its composition, such as HFO (Hydro-Fluoro-Orefin)-1234yf (CF 3 CF=CH 2 ), can be used. GWP of HFO-1234yf is 4.
(2) Additionally, a hydrocarbon having a carbon double bond in its composition, such as R1270 (propylene), may also be used. The GWP of R1270 is 3, lower than that of HFO-1234yf, but the flammability is higher than that of HFO-1234yf.
(3) Also, a mixture containing at least either a halogenated hydrocarbon having a carbon double bond in its composition or a hydrocarbon having a carbon double bond in its composition, for example, a mixture of HFO-1234yf and R32. May be used. Since the above-mentioned HFO-1234yf is a low-pressure refrigerant, it tends to have a large pressure drop, which may lead to a decrease in the performance of the refrigeration cycle (particularly the evaporator). Therefore, it is practically preferable to use a mixture with R32 or R41, which is a higher pressure refrigerant, than HFO-1234yf.
 圧縮機8の基本動作は、以下の通りである。アキュムレータ87から供給された冷媒ガスは、吸入パイプ88,89を通って第1シリンダ91および第2シリンダ92の各シリンダ室に供給される。電動機100が駆動されてロータ5が回転すると、ロータ5と共にシャフト90が回転する。そして、シャフト90に嵌合する第1ピストン93および第2ピストン94が各シリンダ室内で偏心回転し、各シリンダ室内で冷媒を圧縮する。圧縮された冷媒は、ロータ5の穴部57,58(図1)を通ってシェル80内を上昇し、吐出管85から外部に吐出される。 The basic operation of the compressor 8 is as follows. Refrigerant gas supplied from the accumulator 87 is supplied to each cylinder chamber of the first cylinder 91 and the second cylinder 92 through suction pipes 88 and 89. When the electric motor 100 is driven and the rotor 5 rotates, the shaft 90 rotates together with the rotor 5. Then, the first piston 93 and the second piston 94 that fit into the shaft 90 rotate eccentrically within each cylinder chamber, compressing the refrigerant within each cylinder chamber. The compressed refrigerant passes through the holes 57 and 58 (FIG. 1) of the rotor 5, rises within the shell 80, and is discharged to the outside from the discharge pipe 85.
 なお、電動機100が用いられる圧縮機は、ロータリー圧縮機に限定されるものではなく、例えばスクロール圧縮機等であってもよい。 Note that the compressor in which the electric motor 100 is used is not limited to a rotary compressor, and may be, for example, a scroll compressor.
 各実施の形態の電動機100は、巻線30の銅損低減により高い電動機効率を有しているため、圧縮機8の運転効率を向上することができる。 The electric motor 100 of each embodiment has high motor efficiency due to the reduction in copper loss in the winding 30, so the operating efficiency of the compressor 8 can be improved.
<冷凍サイクル装置>
 次に、図18に示した圧縮機8を有する冷凍サイクル装置400について説明する。図19は、冷凍サイクル装置400を示す図である。冷凍サイクル装置400は、例えば空気調和装置であるが、これには限定されず、例えば冷蔵庫であってもよい。
<Refrigerating cycle equipment>
Next, a refrigeration cycle apparatus 400 having the compressor 8 shown in FIG. 18 will be described. FIG. 19 is a diagram showing a refrigeration cycle device 400. The refrigeration cycle device 400 is, for example, an air conditioner, but is not limited to this, and may be, for example, a refrigerator.
 図19に示した冷凍サイクル装置400は、圧縮機401と、冷媒を凝縮する凝縮器402と、冷媒を減圧する減圧装置403と、冷媒を蒸発させる蒸発器404とを備える。圧縮機401、凝縮器402および減圧装置403は室外機410に設けられ、蒸発器404は室内機420に設けられる。 The refrigeration cycle device 400 shown in FIG. 19 includes a compressor 401, a condenser 402 that condenses refrigerant, a pressure reducing device 403 that reduces the pressure of the refrigerant, and an evaporator 404 that evaporates the refrigerant. Compressor 401, condenser 402, and pressure reducing device 403 are provided in outdoor unit 410, and evaporator 404 is provided in indoor unit 420.
 圧縮機401、凝縮器402、減圧装置403および蒸発器404は、冷媒配管407によって連結され、冷媒回路を構成している。圧縮機401は、図18に示した圧縮機8で構成される。冷凍サイクル装置400は、また、凝縮器402に対向する室外送風機405と、蒸発器404に対向する室内送風機406とを備える。 The compressor 401, condenser 402, pressure reducing device 403, and evaporator 404 are connected by a refrigerant pipe 407, and constitute a refrigerant circuit. Compressor 401 is comprised of compressor 8 shown in FIG. The refrigeration cycle device 400 also includes an outdoor blower 405 facing the condenser 402 and an indoor fan 406 facing the evaporator 404.
 冷凍サイクル装置400の動作は、次の通りである。圧縮機401は、吸入した冷媒を圧縮して高温高圧の冷媒ガスとして送り出す。凝縮器402は、圧縮機401から送り出された冷媒と、室外送風機405により送られた室外空気との熱交換を行い、冷媒を凝縮して液冷媒として送り出す。減圧装置403は、凝縮器402から送り出された液冷媒を膨張させて、低温低圧の液冷媒として送り出す。 The operation of the refrigeration cycle device 400 is as follows. The compressor 401 compresses the sucked refrigerant and sends it out as high-temperature, high-pressure refrigerant gas. The condenser 402 exchanges heat between the refrigerant sent out from the compressor 401 and the outdoor air sent by the outdoor blower 405, condenses the refrigerant, and sends it out as a liquid refrigerant. The pressure reducing device 403 expands the liquid refrigerant sent out from the condenser 402 and sends it out as a low-temperature, low-pressure liquid refrigerant.
 蒸発器404は、減圧装置403から送り出された低温低圧の液冷媒と室内空気との熱交換を行い、冷媒を蒸発させ、冷媒ガスとして送り出す。蒸発器404で熱が奪われた空気は、室内送風機406により、室内に供給される。 The evaporator 404 exchanges heat between the low-temperature, low-pressure liquid refrigerant sent out from the pressure reducing device 403 and indoor air, evaporates the refrigerant, and sends it out as refrigerant gas. The air from which heat has been removed by the evaporator 404 is supplied indoors by the indoor blower 406.
 冷凍サイクル装置400の圧縮機401には、各実施の形態で説明した電動機100が適用可能であるため、冷凍サイクル装置400の運転効率を向上することができる。 Since the electric motor 100 described in each embodiment can be applied to the compressor 401 of the refrigeration cycle device 400, the operating efficiency of the refrigeration cycle device 400 can be improved.
 以上、望ましい実施の形態について具体的に説明したが、本開示は上記の実施の形態に限定されるものではなく、各種の改良または変形を行なうことができる。 Although the preferred embodiments have been specifically described above, the present disclosure is not limited to the above embodiments, and various improvements and modifications can be made.
 1 ステータ、 20,20A,20B 絶縁部、 5 ロータ、 8 圧縮機、 9 圧縮機構、 10 ステータコア、 10A 分割コア、 11 コアバック、 11S 段差部、 12,120 ティース、 12S 段差部、 12a 側面、 12e 端面、 13 歯先部、 13S 段差部、 14 スロット、 15 分割面、 21 壁部、 22 胴部、 23 フランジ部、 25 インシュレータ、 26 絶縁フィルム、 30 巻線、 50 ロータコア、 51 磁石挿入孔、 60 永久磁石、 65 シャフト、 80 シェル、 100 電動機、 201 第1の面、 202 第2の面、 203 第3の面、 400 冷凍サイクル装置、 401 圧縮機、 402 凝縮器、 403 減圧装置、 404 蒸発器。 1 stator, 20, 20A, 20B insulation part, 5 rotor, 8 compressor, 9 compression mechanism, 10 stator core, 10A split core, 11 core back, 11S step part, 12, 120 teeth, 12S step, 12a side, 12e End face, 13 tooth tip, 13S step, 14 slot, 15 dividing surface, 21 wall, 22 body, 23 flange, 25 insulator, 26 insulating film, 30 winding, 5 0 Rotor core, 51 Magnet insertion hole, 60 Permanent magnet, 65 shaft, 80 shell, 100 electric motor, 201 first surface, 202 second surface, 203 third surface, 400 refrigeration cycle device, 401 compressor, 402 condenser, 40 3 Pressure reducing device, 404 Evaporator .

Claims (12)

  1.  環状のコアバックと、前記コアバックからその径方向の内側に延在するティースと、前記コアバックの周方向において前記ティースに隣接するスロットとを有するステータコアと、
     前記ティースに設けられた絶縁部と、
     前記ティースに前記絶縁部を介して巻き付けられた巻線と
     を有し、
     前記ティースは、前記ステータコアの軸方向を向く端面と、前記スロットに面する側面と、前記端面と前記側面との間に形成された段差部とを有し、
     前記絶縁部は、前記ティースの前記端面を覆う第1の面と、前記スロットに面する第2の面と、前記第1の面から前記第2の面まで延在する湾曲面または傾斜面である第3の面とを有し、
     前記ティースの延在方向に直交する断面において、前記第1の面と前記第3の面との境界を点Pとし、前記第2の面と前記第3の面との境界を点Qとし、前記点Pを通って前記軸方向に平行な第1の直線と前記点Qを通って前記軸方向に直交する第2の直線との交点をUとすると、
     前記段差部の前記軸方向の高さAと、前記段差部の前記軸方向に直交する方向の幅Bと、点Pから交点Uまでの距離D1と、点Qから交点Uまでの距離D2とが、
     D1≦AおよびD2≦Bを満足する
     ステータ。
    a stator core having an annular core back, teeth extending radially inward from the core back, and slots adjacent to the teeth in the circumferential direction of the core back;
    an insulating section provided on the teeth;
    and a winding wound around the teeth via the insulating part,
    The teeth have an end face facing in the axial direction of the stator core, a side face facing the slot, and a stepped portion formed between the end face and the side face,
    The insulating portion includes a first surface covering the end surface of the tooth, a second surface facing the slot, and a curved or inclined surface extending from the first surface to the second surface. has a certain third aspect,
    In a cross section perpendicular to the extending direction of the teeth, a boundary between the first surface and the third surface is a point P, a boundary between the second surface and the third surface is a point Q, If U is the intersection of a first straight line passing through the point P and parallel to the axial direction and a second straight line passing through the point Q and perpendicular to the axial direction,
    The height A of the stepped portion in the axial direction, the width B of the stepped portion in the direction orthogonal to the axial direction, the distance D1 from point P to intersection U, and the distance D2 from point Q to intersection U. but,
    A stator that satisfies D1≦A and D2≦B.
  2.  前記段差部の前記高さAと前記幅Bとが、A>Bを満足する
     請求項1に記載のステータ。
    The stator according to claim 1, wherein the height A and the width B of the stepped portion satisfy A>B.
  3.  前記ティースの前記軸方向の長さL1に対して、前記段差部の前記高さAが、
     A/L1≦0.157
     を満足する
     請求項2に記載のステータ。
    With respect to the axial length L1 of the teeth, the height A of the stepped portion is
    A/L1≦0.157
    The stator according to claim 2, which satisfies the following.
  4.  前記ステータコアは、ロータコアに対向し、
     前記ステータコアは、前記軸方向の一端部に高さAの第1の領域を有し、前記軸方向の他端部に高さAの第2の領域を有し、
     前記第1の領域のうち前記ロータコアに対向する範囲の長さは、前記第2の領域のうち前記ロータコアに対向する範囲の長さよりも短く、
     前記段差部は、前記ステータコアの前記第1の領域のみに設けられている
     請求項1から3までの何れか1項に記載のステータ。
    The stator core faces the rotor core,
    The stator core has a first region with a height A at one end in the axial direction, and a second region with a height A at the other end in the axial direction,
    The length of the range of the first region facing the rotor core is shorter than the length of the range of the second region facing the rotor core,
    The stator according to any one of claims 1 to 3, wherein the stepped portion is provided only in the first region of the stator core.
  5.  前記ステータコアは、ロータコアに対向し、
     前記ロータコアは、前記ステータコアから前記軸方向の一端部から距離Z1だけ突出し、前記ステータコアの前記軸方向の他端部から距離Z2だけ突出し、
     距離Z1は距離Z2よりも短く、
     前記段差部は、前記ステータコアの前記一端部の側のみに設けられている
     請求項1から4までの何れか1項に記載のステータ。
    The stator core faces the rotor core,
    The rotor core protrudes from the stator core by a distance Z1 from one end in the axial direction, and protrudes by a distance Z2 from the other end of the stator core in the axial direction,
    Distance Z1 is shorter than distance Z2,
    The stator according to any one of claims 1 to 4, wherein the step portion is provided only on the one end side of the stator core.
  6.  前記絶縁部は、前記ティースの前記端面を覆う部分と、前記ティースの前記側面を覆う部分と、前記ティースの前記段差部を覆う部分とが、一体に形成されている
     請求項1から5までの何れか1項に記載のステータ。
    Claims 1 to 5, wherein the insulating part has a part that covers the end surface of the tooth, a part that covers the side surface of the tooth, and a part that covers the stepped part of the tooth, which are integrally formed. The stator according to any one of the items.
  7.  前記絶縁部は、前記ティースの前記側面を覆う絶縁フィルムを有する
     請求項1から6までの何れか1項に記載のステータ。
    The stator according to any one of claims 1 to 6, wherein the insulating section includes an insulating film that covers the side surfaces of the teeth.
  8.  前記コアバックの前記軸方向の端部に、前記スロットに面する段差部を有し、
     前記ティースの前記径方向の先端に歯先部を有し、
     前記歯先部の前記軸方向の端部に、前記スロットに面する段差部を有し、
     前記コアバックの前記段差部は幅E1を有し、
     前記歯先部の前記段差部は幅E2を有し、
     前記幅E1および前記幅E2は、E1≦B、E2≦Bを満足する
     請求項1から7までの何れか1項に記載のステータ。
    The core back has a stepped portion facing the slot at the end in the axial direction,
    The tooth has a tooth tip portion at the tip in the radial direction,
    The tooth tip has a stepped portion facing the slot at the end in the axial direction,
    The stepped portion of the core back has a width E1,
    The stepped portion of the tooth tip has a width E2,
    The stator according to any one of claims 1 to 7, wherein the width E1 and the width E2 satisfy E1≦B and E2≦B.
  9.  前記巻線は、アルミニウム線で構成されている
     請求項1から8までの何れか1項に記載のステータ。
    The stator according to any one of claims 1 to 8, wherein the winding is made of aluminum wire.
  10.  請求項1から9までのいずれか1項に記載のステータと、
     前記ステータの内側に配置されたロータと
     を備えた電動機。
    A stator according to any one of claims 1 to 9,
    and a rotor disposed inside the stator.
  11.  請求項10に記載の電動機と、
     前記電動機によって駆動される圧縮機構と
     を備えた圧縮機。
    The electric motor according to claim 10;
    A compressor comprising: a compression mechanism driven by the electric motor.
  12.  請求項11に記載の圧縮機と、凝縮器と、減圧装置と、蒸発器とを備えた
     冷凍サイクル装置。
    A refrigeration cycle device comprising the compressor according to claim 11, a condenser, a pressure reducing device, and an evaporator.
PCT/JP2022/022508 2022-06-02 2022-06-02 Stator, electric motor, compressor, and refrigeration cycle device WO2023233629A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022508 WO2023233629A1 (en) 2022-06-02 2022-06-02 Stator, electric motor, compressor, and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/022508 WO2023233629A1 (en) 2022-06-02 2022-06-02 Stator, electric motor, compressor, and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023233629A1 true WO2023233629A1 (en) 2023-12-07

Family

ID=89026109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022508 WO2023233629A1 (en) 2022-06-02 2022-06-02 Stator, electric motor, compressor, and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2023233629A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299289A (en) * 2002-04-01 2003-10-17 Nissan Motor Co Ltd Armature structure of electric motor
JP2004248440A (en) * 2003-02-14 2004-09-02 Yaskawa Electric Corp Stator piece and stator of motor
JP2004304928A (en) * 2003-03-31 2004-10-28 Mitsuba Corp Brushless motor
JP2009065823A (en) * 2007-08-13 2009-03-26 Mitsuba Corp Permanent magnet motor
JP2010268586A (en) * 2009-05-14 2010-11-25 Yaskawa Electric Corp Stator of electric motor, manufacturing method of the stator, and electric motor using the stator
WO2020021702A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Stator, electric motor, compressor and air conditioning apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299289A (en) * 2002-04-01 2003-10-17 Nissan Motor Co Ltd Armature structure of electric motor
JP2004248440A (en) * 2003-02-14 2004-09-02 Yaskawa Electric Corp Stator piece and stator of motor
JP2004304928A (en) * 2003-03-31 2004-10-28 Mitsuba Corp Brushless motor
JP2009065823A (en) * 2007-08-13 2009-03-26 Mitsuba Corp Permanent magnet motor
JP2010268586A (en) * 2009-05-14 2010-11-25 Yaskawa Electric Corp Stator of electric motor, manufacturing method of the stator, and electric motor using the stator
WO2020021702A1 (en) * 2018-07-27 2020-01-30 三菱電機株式会社 Stator, electric motor, compressor and air conditioning apparatus

Similar Documents

Publication Publication Date Title
CN108141091B (en) Stator, motor, compressor, and refrigeration and air-conditioning apparatus
US10483816B2 (en) Motor, rotor, compressor, and refrigeration and air conditioning apparatus
JP7003267B2 (en) Motors, compressors and air conditioners
JP6824333B2 (en) Electric motors, rotors, compressors and refrigeration and air conditioners
WO2020170390A1 (en) Motor, compressor, and air conditioning device
JP7038827B2 (en) Stator, motor, compressor and air conditioner
JP7237178B2 (en) Rotors, electric motors, compressors, and air conditioners
JP2023168510A (en) Motor, compressor, air blower, and refrigerating air conditioner
JP7204897B2 (en) Rotors, motors, compressors, and air conditioners
JP7150181B2 (en) motors, compressors, and air conditioners
WO2020021693A1 (en) Electric motor, compressor, and air conditioner
WO2023233629A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
JP7433420B2 (en) Rotors, motors, compressors and air conditioners
JP7154373B2 (en) Electric motors, compressors, and air conditioners
JP7450805B2 (en) Motors, compressors and refrigeration cycle equipment
JP7286019B2 (en) Stator, electric motor, compressor, refrigeration cycle device and air conditioner
WO2023112078A1 (en) Stator, motor, compressor, and refrigeration cycle device
JP7345562B2 (en) Stators, motors, compressors, and air conditioners
WO2024004202A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
WO2023248466A1 (en) Stator, electric motor, compressor, refrigeration cycle device, and method of producing electric motor
WO2023181238A1 (en) Stator, electric motor, compressor, and refrigeration cycle device
WO2023175670A1 (en) Stator for electric motor, compressor, and refrigeration air conditioning device
JP7486613B2 (en) Stator, motor, compressor and refrigeration cycle device
CN110366809B (en) Rotating electric machine, compressor, and refrigeration cycle device
CN116848754A (en) Motor, compressor and refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944910

Country of ref document: EP

Kind code of ref document: A1