WO2024089815A1 - Robot - Google Patents

Robot Download PDF

Info

Publication number
WO2024089815A1
WO2024089815A1 PCT/JP2022/039972 JP2022039972W WO2024089815A1 WO 2024089815 A1 WO2024089815 A1 WO 2024089815A1 JP 2022039972 W JP2022039972 W JP 2022039972W WO 2024089815 A1 WO2024089815 A1 WO 2024089815A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
switch
direct teaching
hand
operator
Prior art date
Application number
PCT/JP2022/039972
Other languages
French (fr)
Japanese (ja)
Inventor
佳宏 白川
直史 吉田
泰弘 山下
宗 石川
友汰 松本
匡隆 由村
啓祐 名桐
伸哉 近藤
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2022/039972 priority Critical patent/WO2024089815A1/en
Publication of WO2024089815A1 publication Critical patent/WO2024089815A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators

Definitions

  • This specification discloses a robot.
  • robots are usually equipped with various monitoring functions, such as monitoring for interference with obstacles.
  • monitoring functions such as monitoring for interference with obstacles.
  • the primary objective of this disclosure is to prevent the robot's monitoring function from malfunctioning while ensuring safety during direct teaching.
  • the robot of the present disclosure is An arm portion; A hand portion provided at a tip portion of the arm portion; a monitoring unit capable of executing an external force monitoring function for monitoring an external force acting on the hand; A switch operated by an operator; a control unit that permits execution of direct teaching and disables the external force monitoring function while the switch is on;
  • the gist of the invention is to provide the following:
  • the external force monitoring function is disabled while the switch is on, so that it is possible to prevent the monitoring function from malfunctioning during direct teaching, even when the operator is manually operating the hand properly.
  • direct teaching can be performed only while the switch is on, so safety during direct teaching can be guaranteed.
  • FIG. 1 is an external perspective view of a robot system according to an embodiment of the present invention.
  • FIG. 1 is a schematic configuration diagram of a robot.
  • FIG. 2 is a partial enlarged view of the robot including the hand portion.
  • FIG. 2 is a partial enlarged view of the robot including the hand portion.
  • FIG. 2 is a block diagram showing electrical connections of the robot system.
  • FIG. 4 is an explanatory diagram showing the arrangement of direct teaching switches.
  • 5 is an explanatory diagram showing the transition of the on/off state for each position of the direct teaching switch;
  • FIG. 13 is a flowchart illustrating an example of a robot control process.
  • FIG. 1 is an external perspective view of the robot system 10 of this embodiment.
  • FIG. 2 is a schematic diagram of the robot 20.
  • FIGS. 3 and 4 are partial enlarged views of the robot 20 including the hand unit 60.
  • FIG. 5 is a cross-sectional view of the housing 54.
  • FIG. 6 is a block diagram showing the electrical connections of the robot system 10.
  • the front-to-back direction is the X-axis
  • the left-to-right direction is the Y-axis
  • the up-down direction is the Z-axis.
  • the robot system 10 of this embodiment includes a robot 20 having a multi-joint robot arm 21, a foot switch 91, and a tablet terminal 93.
  • the robot system 10 holds the ultrasonic probe 101 of the ultrasonic diagnostic device 100 at the tip of the robot arm 21, and controls the robot 20 to move while placing the ultrasonic probe 101 on the surface of the human body, thereby making the ultrasonic diagnostic device 100 acquire ultrasonic echo images of the human body.
  • the robot system 10 is used as an ultrasonic echo guide during surgery, such as catheter surgery.
  • the operator (surgeon) who operates the catheter guide wire instructs the robot 20 to place the ultrasonic probe 101 on the surface of the human body (patient), and while recognizing the positional relationship between the tip of the guide wire and the blood vessel from the obtained ultrasonic echo image, advances the guide wire, thereby allowing the guide wire to accurately pass through the center of the occlusion or stenosis of the blood vessel.
  • the operator manually operates the robot arm 21, places the ultrasonic probe 101 held by the robot arm 21 on the patient, and while checking the acquired ultrasonic echo image, determines the points (images) to be reproduced during surgery and performs direct teaching to register them in the robot 20 (robot control device 80).
  • the ultrasound diagnostic device 100 comprises an ultrasound probe 101 and an ultrasound diagnostic device main body 110 connected to the ultrasound probe 101 via a cable 102.
  • the ultrasound diagnostic device main body 110 comprises an ultrasound diagnosis control unit 111 that controls the entire device, an image processing unit 112 that processes the received signal from the ultrasound probe 101 to generate an ultrasound echo image, an image display unit 113 that displays the ultrasound echo image, and various operation switches (not shown).
  • the robot 20 includes a base 25, a robot arm 21 mounted on the base 25, a hand 60 attached to the tip of the robot arm 21, a height adjustment mechanism 45 that manually adjusts the height of the robot arm 21, a robot control device 80 that controls the robot arm 21, and an operation panel 90.
  • casters 26 with stoppers are attached to the four corners of the back surface of the base 25.
  • the robot 20 can be moved freely by the casters 26.
  • locking parts 28 are provided at multiple points (e.g., three points) on the back surface of the base 25, which protrude vertically downward when a lever 27 is pressed down to lock (fix) the robot 20 so that it cannot move.
  • the robot arm 21 is a seven-axis articulated arm, and as shown in Figures 1 and 2, has a first arm 22, a second arm 23, a base 24, a first arm driver 35, a second arm driver 36, a position holding device 37, and a three-axis rotating mechanism 50.
  • the base end of the first arm 22 is connected to the base 24 via a first joint shaft 31 that extends in the vertical direction (Z-axis direction).
  • the first arm driving device 35 includes a motor 35a, an encoder 35b, and an amplifier 35c.
  • the rotation shaft of the motor 35a is connected to the first joint shaft 31 via a reduction gear (not shown).
  • the first arm driving device 35 rotates (pivots) the first arm 22 along a horizontal plane (XY plane) around the first joint shaft 31 as a fulcrum by driving the first joint shaft 31 to rotate with the motor 35a.
  • the encoder 35b is attached to the rotation shaft of the motor 35a and is configured as a rotary encoder that detects the amount of rotational displacement of the motor 35a.
  • the amplifier 35c is a driving unit for driving the motor 35a by switching the switching element.
  • the base end of the second arm 23 is connected to the tip end of the first arm 22 via a second joint shaft 32 extending in the vertical direction.
  • the second arm driving device 36 includes a motor 36a, an encoder 36b, and an amplifier 36c.
  • the rotating shaft of the motor 36a is connected to the second joint shaft 32 via a reduction gear (not shown).
  • the second arm driving device 36 rotates (pivots) the second arm 23 along a horizontal plane around the second joint shaft 32 as a fulcrum by driving the second joint shaft 32 to rotate with the motor 36a.
  • the encoder 36b is attached to the rotating shaft of the motor 36a and is configured as a rotary encoder that detects the amount of rotational displacement of the motor 36a.
  • the amplifier 35c is a driving unit for driving the motor 35a by switching the switching element.
  • the base 24 is provided so as to be movable up and down with respect to the base 25 by a lifting device 40 installed on the base 25.
  • the lifting device 40 includes a first slider 41 fixed to the base 24, a first guide member 42 extending in the vertical direction to guide the movement of the first slider 41, a first ball screw shaft 43 (lifting shaft) extending in the vertical direction and screwed into a ball screw nut (not shown) fixed to the first slider 41, a motor 44a that rotates the first ball screw shaft 43, an encoder 44b (see FIG. 3), and an amplifier 44c that drives the motor 44a.
  • the lifting device 40 moves the base 24 fixed to the first slider 41 up and down along the first guide member 42 by rotating the first ball screw shaft 43 with the motor 44a.
  • the encoder 44b is configured as a linear encoder that detects the vertical position (lifted position) of the first slider 41 (base 24).
  • the height adjustment mechanism 45 includes a second slider 46 fixed to the first guide member 42 of the lifting device 40, a second guide member 47 fixed to the base 25 and extending in the vertical direction to guide the movement of the second slider 46, a second ball screw shaft 48 (lifting shaft) extending in the vertical direction and screwed into a ball screw nut (not shown) fixed to the second slider 46, and a rotating handle 49 connected to the second ball screw shaft 48 via a power transmission mechanism (bevel gear).
  • the height adjustment mechanism 45 moves the first guide member 42 of the lifting device 40 fixed to the second slider 46 up and down along the second guide member 47 by manually operating the rotating handle 49 to rotate the second ball screw shaft 48.
  • the base end of the robot arm 21 is fixed to the base 24, and the base 24 is supported by the first guide member 42, so the height of the robot arm 21 can be adjusted by moving the first guide member 42 up and down using the height adjustment mechanism 45. This allows the height of the robot arm 21 to be adjusted according to the height of a bed on which a patient for ultrasound diagnosis lies, for example.
  • the three-axis rotating mechanism 50 is connected to the tip of the second arm 23 via the attitude-maintaining shaft 33 extending in the vertical direction.
  • the three-axis rotating mechanism 50 includes a first rotation shaft 51, a second rotation shaft 52, and a third rotation shaft 53 that are perpendicular to one another, a first rotation device 55 that rotates the first rotation shaft 51, a second rotation device 56 that rotates the second rotation shaft 52, and a third rotation device 57 as a hand drive device that rotates the third rotation shaft 53 to which the hand portion 60 is connected.
  • the first rotation shaft 51 is supported in an orthogonal position relative to the attitude-maintaining shaft 33.
  • the second rotation shaft 52 is supported in an orthogonal position relative to the first rotation shaft 51.
  • the third rotation shaft 53 is supported in an orthogonal position relative to the second rotation shaft 52.
  • the first rotating device 55 has a motor 55a that rotates the first rotating shaft 51, an encoder 55b that is attached to the rotating shaft of the motor 55a and detects the amount of rotational displacement of the motor 55a, and an amplifier 55c that drives the motor 55a.
  • the second rotating device 56 has a motor 56a that rotates the second rotating shaft 52, an encoder 56b that is attached to the rotating shaft of the motor 56a and detects the amount of rotational displacement of the motor 56a, and an amplifier 56c that drives the motor 56a.
  • the third rotating device 57 has a motor 57a that rotates the third rotating shaft 53, an encoder 57b that is attached to the rotating shaft of the motor 57a and detects the amount of rotational displacement of the motor 57a, and an amplifier 57c that drives the motor 56a.
  • the third rotation device 57 (hand drive device) includes a housing 54 to which the second rotation shaft 52 is connected and which rotatably supports the third rotation shaft 53 so that the third rotation shaft 53 extends in a direction perpendicular to the second rotation shaft 52, a motor 57a that rotates the third rotation shaft 53, a force sensor 65, an operating handle 66, a stop button 67, etc.
  • the housing 54 is a box-shaped member having a first surface 54b, a second surface 54t, a third surface 54r, and a fourth surface 54f that are connected in the circumferential direction.
  • the second rotating shaft 52 is connected to the third surface 54r of the housing 54.
  • the first surface 54b and the second surface 54t which are perpendicular to the third surface 54r and face each other, have openings 541 and 542 that penetrate coaxially, as shown in FIG. 5.
  • the third rotating shaft 53 is rotatably supported in the housing 54 so as to extend outward through the opening 541.
  • the robot arm 21 is in the reference posture (the posture shown in FIG.
  • the first surface 54b is the lower surface
  • the second surface 54t is the upper surface
  • the third surface 54r is the back surface
  • the fourth surface 54f is the front surface.
  • An operating handle 66 and a stop button 67 are arranged on the second surface 54t (upper surface) of the housing 54.
  • the operation handle 66 is a part that is held by an operator when the operator manually operates the ultrasound probe 101 held by the robot arm 21 during direct teaching.
  • the stop button 67 is for temporarily stopping the operation of the robot arm 21 by the operator's operation when an unexpected operation occurs in the robot arm 21.
  • the motor 57a drives the third rotating shaft 53 to rotate, and as shown in FIG. 5, the rotating shaft 572 of the motor 57a is fixed to the housing 54 so that it is parallel to the third rotating shaft 53.
  • the rotating shaft 572 of the motor 57a is connected via a belt 573 to a hollow transmission shaft 574 arranged parallel to the rotating shaft 572.
  • the transmission shaft 574 is coaxially connected to the third rotating shaft 53 via the force sensor 65.
  • the force sensor 65 transmits the power from the motor 57a to the third rotating shaft 53 (hand part 60) and detects the force components acting in the axial directions of the X-axis, Y-axis, and Z-axis as an external force and the torque components acting around each axis.
  • the force sensor 65 has an action part 651 on which a force acts, an annular support part 652 that supports the action part 651 on the inner periphery, and a detection part (not shown) that is arranged at a predetermined interval in the circumferential direction between the action part 651 and the support part 652 and detects the force acting on the action part 651.
  • a hollow support shaft 576 through which the third rotating shaft 53 is coaxially inserted is connected to one end face (lower face in the figure) of the annular support part 652, and a hollow transmission shaft 574 is connected to the other end face (upper face in the figure) of the support part 652.
  • the transmission shaft 574 and the support shaft 576 are rotatably supported relative to the housing 54 by bearings 577 and 578, respectively.
  • the base end of the third rotating shaft 53 is connected to one end surface (the bottom surface in the figure) of the acting part 651.
  • the base end of an acting shaft 575 that extends coaxially with the third rotating shaft 53 and is inserted into a hollow transmission shaft 574 is connected to the other end surface (the top surface in the figure) of the acting part 651.
  • the acting shaft 575 is supported by a bearing so as to be freely rotatable relative to the housing 54.
  • the acting shaft 575 extends to an opening 542 formed in the second surface 54t of the housing 54, and the base end of the operating handle 66 is fixed to the tip of the acting shaft 575.
  • the hand 60 is attached to the tip of the third rotating shaft 53.
  • the hand 60 has a base 601, a holding part 602 that holds the ultrasonic probe 101 so as to be coaxial with the third rotating shaft 53, and a gripping part 603 that is a part that is held by the operator.
  • the base 601 is a plate-shaped member and is detachably attached to the third rotating shaft 53 by a snap lock 64.
  • the hand 60 (base 601) may be attached to the third rotating shaft 53 by other fixing devices (e.g., a ratchet-type fixing device, a screw, etc.).
  • the holding part 602 has a holder provided on one surface of the base 601, and holds the ultrasonic probe 101 by the holder.
  • the gripping part 603 is held by the operator when the operator moves the ultrasonic probe 101 held by the robot arm 21 by hand, for example, in direct teaching.
  • the gripping portion 603 is provided on the surface of the base 601 opposite to the surface on which the holding portion 602 is provided, and is formed so as to protrude outward in a convex shape from the other surface.
  • the gripping portion 603 is formed with a convex curved surface as shown in Figures 3 and 4, but it may be formed in any shape, such as a rod shape, a hemisphere shape, a rectangular parallelepiped shape, or a cube shape, as long as it is a shape that can be held by an operator.
  • a direct teaching switch 61 is provided at the top of the convex portion (convex curved surface portion) of the gripping portion 603 to allow the operator to manually operate the robot arm 21 in direct teaching.
  • the direct teaching switch 61 has a pressing member 611 that is pressed by the operator, as shown in FIG. 7.
  • the direct teaching switch 61 is a push button switch built into the gripping portion 603 so that the pressing member 611 can be pressed in the direction opposite to the direction in which the gripping portion 603 protrudes.
  • the direct teaching switch 61 has two independent detection circuits D1, D2 including a terminal contact and a movable contact that is linked to the pressing member 611. When the movable contact is disconnected from the terminal contact in both detection circuits D1, D2, the switch is in the OFF state, and when the movable contact is connected to the terminal contact in both detection circuits D1, D2, the switch is in the ON state.
  • the direct teaching switch 61 will not be in the ON state unless the operator presses the pressing member 611.
  • the two detection circuits D1, D2 are configured to output different pulse signals to the robot control device 80 when the movable contacts and terminal contacts are connected.
  • the robot control device 80 determines that the direct teaching switch 61 has been turned on by detecting the input of different pulse signals from the two detection circuits D1, D2.
  • the robot control device 80 does not determine that the direct teaching switch 61 has been turned on. In other words, direct teaching is not permitted.
  • the direct teaching switch 61 is configured as a three-position enable switch, and has a structure in which the switch body is embedded inside the gripping portion 603 to prevent unexpected mode changes. That is, when the operator is not pressing the pressing member 611, the direct teaching switch 61 is in a first position where the pressing surface of the pressing member 611 protrudes slightly beyond the surface of the gripping portion 603, and the movable contact is disconnected from the terminal contact and is in an OFF state. When the operator presses the pressing member 611, the direct teaching switch 61 is in a second position where the pressing surface of the pressing member 611 is pressed inward beyond the surface of the gripping portion 603, and the movable contact is connected to the terminal contact and switched to an ON state.
  • the direct teaching switch 61 changes to a third position where the pressing surface of the pressing member 611 is pressed further into the gripping portion 603 than in the second position, and the movable contact is again separated from the terminal contact, switching from the on state to the off state. Note that when the operator releases the pressing member 611 in the second or third position, the direct teaching switch 61 returns to the first position. This allows the operator to reflexively cancel permission for direct teaching in the event of an unexpected situation.
  • one end of a cable 62 is connected to the terminal of the direct teaching switch 61.
  • a cable guide 63 that guides one end of the cable 62 to the direct teaching switch 61 is fixed to the other surface of the base 601 of the hand 60, closer to the housing 54 than the grip 603.
  • the other end of the cable 62 is connected to wiring that runs from the housing 54 along the robot arm 21 to the robot control device 80.
  • a connector 621 is provided at the other end of the cable 62, and is removably connected to a connector provided on the housing 54. Therefore, by unlocking the snap lock 64 and pulling out the connector 621, the hand 60 can be easily detached from the housing 54, improving maintainability.
  • the robot 20 of this embodiment operates the robot arm 21 by a combination of translational motion in three directions, the X-axis direction, the Y-axis direction, and the Z-axis direction, by the first arm driving device 35, the second arm driving device 36, and the lifting device 40, and rotational motion in three directions, around the X-axis (pitching), around the Y-axis (rolling), and around the Z-axis (yawing), by the three-axis rotation mechanism 50.
  • This allows the robot 20 to move the ultrasound probe 101 in each of the X-axis, Y-axis, and Z-axis directions (both forward and reverse directions) and rotate it around each axis (both forward and reverse rotation directions).
  • the attitude holding device 37 holds the attitude of the three-axis rotating mechanism 50 (the orientation of the first rotating shaft 51) in a constant orientation regardless of the orientation of the first arm 22 and the second arm 23.
  • the attitude holding device 37 includes a motor 37a, an encoder 37b, and an amplifier 37c.
  • the rotating shaft of the motor 37a is connected to the attitude holding shaft 33 via a reduction gear (not shown).
  • the attitude holding device 37 sets a target rotation angle of the attitude holding shaft 33 based on the rotation angle of the first joint shaft 31 and the rotation angle of the second joint shaft 32 so that the axial direction of the first rotating shaft 51 is always in the left-right direction (X-axis direction), and drives and controls the motor 37a so that the attitude holding shaft 33 is at the target rotation angle. This makes it possible to control the translational motion in three directions and the rotational motion in three directions independently, making control easier.
  • the operation panel 90 is a touch panel display that displays various information related to the robot system 10 and allows various instructions to be input to the robot system 10.
  • the operation panel 90 is installed on the top surface of the housing 29 that houses the lifting device 40 of the robot 20 and the robot control device 80.
  • the foot switch 91 is a pedal switch that is turned on when the operator steps on it, and is connected to the robot control device 80 of the robot 20 via a cable.
  • the foot switch 91 has four switches (a first switch 911, a second switch 912, a third switch 913, and a fourth switch 914) arranged horizontally.
  • the tablet terminal 93 is equipped with a control device including a CPU, ROM, RAM, and storage (SSD), a touch panel display that displays various information and allows the operator to input operations, and a communication unit.
  • the tablet terminal 93 is communicatively connected to the robot control device 80 of the robot 20 via wireless communication.
  • the tablet terminal 93 has a remote desktop function that allows the operation panel 90 to be remotely operated from the tablet terminal 93 via wireless communication.
  • the robot control device 80 comprises a robot control unit 81, a monitoring unit 82, an IO unit 83, a communication unit 84, and a memory unit 85.
  • the robot control unit 81 is configured as a processor including a CPU, ROM, RAM, peripheral circuits, etc.
  • the monitoring unit 82 is configured as a one-chip microcomputer including a CPU, ROM, RAM, peripheral circuits, etc. The monitoring unit 82 may also be duplicated.
  • the robot control unit 81 performs various processes related to the control of the robot arm 21 (motors 35a-37a, 44a, 55a-57a).
  • the monitoring unit 82 monitors the status of each unit, such as the IO unit 83, communication unit 84, amplifiers 35c-37c, 44c, 55c-57c, encoders 35b-37b, 44b, 55b-57b, and a sensor unit including a direct teaching switch 61, etc.
  • the IO unit 83 is an I/O port that inputs detection signals from the direct teaching switch 61, the stop switch 67, the force sensor 65, operation signals from the operation panel 90, etc., and outputs display signals to the operation panel 90.
  • the communication unit 84 communicates with the robot control device 80 and external devices (such as the foot switch 91 and tablet terminal 93) via wired or wireless means, and exchanges various signals and data.
  • Each of the amplifiers 35c-37c, 44c, 55c-57c includes a motor control unit 71, a drive power supply unit 72, and an IO unit 73.
  • the motor control unit 71 has switching elements, and controls the motors 35a-37a, 44a, 55a-57a by controlling the switching of the switching elements based on feedback signals from the encoders 35b-37b, 44b, 55b-57b, etc.
  • the drive power supply unit 72 supplies the power required to drive the motors 35a-37a, 44a, 55a-57a.
  • the IO unit 83 is an I/O port that inputs various signals such as position signals from the encoders 35b-37b, 44b, 55b-57b, current signals from current sensors that detect the current flowing through each of the motors 35a-37a, 44a, 55a-57a, and command signals (control signals) from the robot control unit 81 to each of the motors 35a-37a, 44a, 55a-57a.
  • the robot 20 has three robot statuses: control off, control on, and robot on.
  • Control off is a state in which the robot control unit 81 has stopped supplying power to the amplifiers 35c to 37c, 44c, and 55c to 57c, making the robot arm 21 (motor) uncontrollable.
  • Control on is a state in which the robot control unit 81 is supplying power to the amplifiers 35c to 37c, 44c, and 55c to 57c, making the robot arm 21 controllable. In this state, it is possible to change the posture of the robot arm 21 by directly touching it.
  • Robot on is a state in which the robot control unit 81, in the control on state, outputs a control signal to the amplifiers 35c to 37c, 44c, and 55c to 57c to control the robot arm 21.
  • the robot status is changed based on the operator's instructions and based on the monitoring results of the monitoring unit 82.
  • the functions of the monitoring unit 82 include a monitoring function, a fault detection function, and a safety IO function.
  • the monitoring unit 82 of the robot control device 80 determines that an abnormality has occurred in any of the functions, it transitions the state of the robot 20 to a safe state (e.g., control off).
  • the monitoring functions include sensor monitoring, microcomputer monitoring, and direct teaching switch monitoring.
  • Sensor monitoring is to determine failures in sensors such as the encoders 35b-37b, 44b, 55b-57b and current sensors.
  • Microcomputer monitoring is to determine the voltage supplied to the microcomputer (robot control unit 81, monitoring unit 82), the ambient temperature of the microcomputer, and failures in the microcomputer.
  • Direct teaching switch monitoring is to determine failures in the direct teaching switch 61. As described above, the direct teaching switch 61 is provided with two independent detection circuits, each including a terminal contact and a movable contact, and the two detection circuits output different pulse signals to the robot control device 80.
  • the monitoring unit 82 monitors the pulse signals output from the two detection circuits, and if the two pulse signals are the same, it determines that a failure has occurred in the direct teaching switch 61. The monitoring unit 82 also determines that a failure has occurred in the direct teaching switch 61 if a pulse signal is output from only one of the two detection circuits.
  • the obstacle detection function includes a torque obstacle detection function, a speed obstacle detection function, a position obstacle detection function, and an external force obstacle detection function.
  • the torque obstacle detection function detects a state in which a torque exceeding a set torque is output to each axis or hand of the robot arm 21.
  • the speed obstacle detection function detects a state in which each axis or hand of the robot arm 21 operates at a speed exceeding a set speed.
  • the position obstacle detection function detects a state in which each axis or hand of the robot arm 21 is positioned outside a set range.
  • the external force obstacle detection function detects a state in which each axis or hand of the robot arm 21 is subjected to an external force exceeding an allowable range.
  • the safety IO function includes the function of detecting the operation of an emergency stop switch (not shown) and monitoring various other signals input to the robot control device 80.
  • the operation modes of the robot 20 include a direct teaching mode and a playback mode in which points recorded in the direct teaching mode are played back.
  • the operator can directly operate the robot arm 21 by applying force by grasping the gripping portion 603 or the operating handle 66 of the hand portion 60, and the motor of each axis generates an assist force in the direction of the force applied so that the operator can operate with less force.
  • the direct teaching mode is executed only while the direct teaching switch 61 is on. When the direct teaching switch 61 is turned off, the motor assist is stopped, making it difficult for the operator to manually operate the robot arm 21.
  • the operator manually operates the robot arm 21 and can determine points (images) to be reproduced during surgery while checking the ultrasonic echo image obtained by placing the ultrasonic probe 101 held by the robot arm 21 on the patient and registering them in the memory of the robot control device 80 (point registration).
  • Point registration can be performed by operating the operation panel 90 or the remotely connected tablet terminal 93, or by stepping on the foot switch 91 (for example, the first switch 911). This allows the operator to reliably perform point registration operations even if both hands are occupied while manually operating the robot arm 21.
  • the playback mode is a mode in which registered points are played back.
  • ultrasound echo images for each point are automatically acquired, and the surgeon can operate the catheter while viewing the images.
  • the surgeon can move the point from the current point to the next point or the previous point by operating the operation panel 90 or the remotely connected tablet terminal 93, or by depressing the foot switch 91.
  • the surgeon can move the point from the current point to the next point by depressing the third switch 913 of the foot switch 91, and can move from the current point to the previous point by depressing the second switch 912 of the foot switch 91.
  • FIG. 9 is a flowchart showing an example of a robot control process executed by the robot control unit 81 of the robot control device 80.
  • the robot control unit 81 first determines whether the direct teaching switch 61 is on or not (S100). When the robot control unit 81 determines that the direct teaching switch 61 is on, it sets the operation mode of the robot 20 to the direct teaching mode (S102) and disables the external force obstacle detection function among the obstacle detection functions described above (S104).
  • other functions executed by the monitoring unit 82 including the direct teaching switch monitoring function and the remaining obstacle detection functions are enabled.
  • the robot control unit 81 determines whether an external force is detected by the force sensor 65 (S106). When the robot control unit 81 determines that an external force is detected, it executes assist control to generate an assist force in the direction of the detected external force (S108). In the direct teaching mode, the operator manually operates the robot arm 21 by gripping the gripper 603 or the operating handle 66, so that the assist control detects the operating force of the operator using the force sensor 65 and controls the motors 35a to 37a, 44a, 55a to 57a of the robot arm 21 so that the assist force acts in the direction of the operating force. On the other hand, if the robot control unit 81 determines that no external force has been detected, it skips S108.
  • the robot control unit 81 determines whether or not a point registration has been instructed (S110). As described above, the point registration can be instructed by operating the operation panel 90, the remotely connected tablet terminal 93, or the foot switch 91 (first switch 911). If the robot control unit 81 determines that a point registration has not been instructed, it ends the robot control process, and if it determines that a point registration has been instructed, it stores the current point in the storage unit 85 based on the detection values of the encoders 35b to 37b, 44b, 55b to 57b (S112) and ends the robot control process.
  • the registered points include the position and orientation of the ultrasound probe 101 (X, Y, Z coordinate values and angle values around the X, Y, and Z axes), the position of each axis of the robot arm 21 (angle values and elevation coordinate values), etc.
  • the robot control unit 81 determines in S100 that the direct teaching switch 61 is in the off state, not the on state, it sets the operation mode of the robot 20 to the playback mode (S114) and activates the external force failure detection function (S116). This activates all functions executed by the monitoring unit 82.
  • the robot control unit 81 determines whether or not a point regeneration command has been issued (S118). As described above, a point regeneration command can be issued by operating the operation panel 90, the remotely connected tablet terminal 93, or the foot switch 91 (second switch 912, third switch 913).
  • the robot control unit 81 determines that a point regeneration command has not been issued, it ends the robot control process.
  • it determines that a point regeneration command has been issued it controls the axis motors 35a to 37a, 44a, 55a to 57a of the robot arm 21 so that the recorded points are regenerated (S120), and ends the robot control process.
  • the operation mode of the robot 20 is the direct teaching mode when the direct teaching switch 61 is in the on state, and the playback mode when the direct teaching switch 61 is in the off state.
  • This allows the operator to smoothly switch between modes without the need for special operations.
  • the external force obstacle detection function is disabled in the direct teaching mode, it is possible to avoid the external force obstacle detection function malfunctioning and the monitoring unit 82 determining that the robot arm 21 has collided with an obstacle, even if the operator is gripping the gripping unit 603 or the operating handle 66 and manually operating the robot arm 21 appropriately.
  • other obstacle detection functions are enabled even in the direct teaching mode, collisions with obstacles, etc.
  • the direct teaching switch monitoring function is also provided as a monitoring function, it is possible to properly respond to failures of the direct teaching switch 61. As a result, it is possible to improve usability while ensuring safety.
  • the robot arm 21 of this embodiment corresponds to the arm section of the present disclosure
  • the hand section 60 corresponds to the hand section
  • the monitoring section 82 corresponds to the monitoring section
  • the direct teaching switch 61 corresponds to the switch
  • the robot control section 81 corresponds to the control section.
  • the gripping section 603 corresponds to the gripping section.
  • the base section 601 corresponds to the base
  • the holding section 602 corresponds to the holding section.
  • the housing 54 corresponds to the housing
  • the cable 62 corresponds to the cable
  • the cable guide 63 corresponds to the cable guide.
  • the robot 20 is configured as a seven-axis articulated robot capable of translational movement in three directions and rotational movement in three directions.
  • the number of axes can be any number.
  • the robot 20 may also be configured as a so-called vertical articulated robot or horizontal articulated robot.
  • the external force monitoring function is disabled while the switch is on, so that it is possible to prevent the monitoring function from malfunctioning during direct teaching, even when the operator is manually operating the hand portion appropriately.
  • direct teaching can be performed only while the switch is on, so safety during direct teaching can be guaranteed.
  • the robot may include a gripping portion formed on the hand and gripped by the operator when performing direct teaching, and the switch may be provided on the gripping portion.
  • the switch can be easily operated by the operator during direct teaching, even while the operator is manually operating the hand.
  • the hand may have a base, a holding portion provided on one surface of the base and holding an ultrasonic probe, and the gripping portion formed on the other surface of the base opposite to the one surface. In this way, the operator can easily operate the ultrasonic probe.
  • the gripping portion may be formed in a convex shape that protrudes outward, and the switch may be provided on the apex of the convex portion.
  • the switch may be a push button that is incorporated into the convex portion and can be pressed in a direction opposite to the protruding direction of the gripping portion. In this way, the operator can easily operate the switch.
  • the switch is an enable switch, the switch may have a structure in which the switch body is embedded in a structure.
  • the robot of the present disclosure may also include a housing connected to the tip of the arm, the hand connected to the housing, the switch provided on the hand, a cable having one end connected to the switch and the other end connected to the housing, and a cable guide that is fixed to a position on the hand closer to the housing than the switch and that guides one end of the cable to the switch. This makes it possible to make the housing compact and to position the switch in an easy-to-operate position.
  • the robot may have a direct teaching mode in which direct teaching is performed, and a playback mode in which points recorded in direct teaching are played back, and when the switch is turned on during the playback mode, the mode may be switched to the direct teaching mode. In this way, the mode can be switched smoothly.
  • the switch may be a three-position enable switch. In this way, the operator can turn off the switch as a reflex response in the event of an unexpected situation.
  • the switch may be equipped with two independent detection circuits whose contacts are opened and closed by the operation of the operator. In this way, even if the contacts of one of the two detection circuits are welded, it is possible to prevent the switch from malfunctioning.
  • This disclosure can be used in the robot manufacturing industry, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

Provided is a robot comprising an arm part, a hand leading-end part which is provided to a distal end portion of the arm part, a monitoring unit which is capable of executing an external force monitoring function of monitoring an external force applied to the hand leading-end part, a switch which is operated by an operator, and a control unit which permits execution of direct teaching and disables the external force monitoring function while the switch is ON.

Description

ロボットrobot
 本明細書は、ロボットについて開示する。 This specification discloses a robot.
 従来、多関節アームを備えるロボットにおいて、操作者が手動によりアームを直接動かしてその動作を記録するダイレクトティーチングを実行可能なものが提案されている(例えば、特許文献1参照)。  Conventionally, there have been proposals for robots equipped with articulated arms that are capable of performing direct teaching, in which an operator manually moves the arm directly and records the movement (see, for example, Patent Document 1).
国際公開第2022/180795号公報International Publication No. 2022/180795
 ロボットは、安全性を確保するため、障害物との干渉を監視する等、様々な監視機能を持たせることが通常である。しかし、例えばロボットの手先を操作者が把持してダイレクトティーチングを行なう場合において、操作者自身がアームの手先に力を加えているのか、ロボットの手先が障害物と干渉したのか、を区別して監視を行なうことは非常に困難であり、操作者が手先を適正に操作しているにも拘わらず、監視機能が誤作動するおそれがある。 To ensure safety, robots are usually equipped with various monitoring functions, such as monitoring for interference with obstacles. However, for example, when an operator holds the robot's hand and performs direct teaching, it is extremely difficult to distinguish and monitor whether the operator is applying force to the arm's hand or whether the robot's hand has interfered with an obstacle, and there is a risk that the monitoring function will malfunction even if the operator is operating the hand properly.
 本開示は、ダイレクトティーチング時の安全性を担保しつつ、ロボットの監視機能が誤作動するのを防止することを主目的とする。 The primary objective of this disclosure is to prevent the robot's monitoring function from malfunctioning while ensuring safety during direct teaching.
 本開示は、上述の主目的を達成するために以下の手段を採った。 This disclosure takes the following steps to achieve the above-mentioned primary objective:
 本開示のロボットは、
 アーム部と、
 前記アーム部の先端部分に設けられた手先部と、
 前記手先部にかかる外力を監視する外力監視機能を実行可能な監視部と、
 操作者により操作されるスイッチと、
 前記スイッチがオンされている間、ダイレクトティーチングの実行を許可すると共に前記外力監視機能を無効化する制御部と、
 を備えることを要旨とする。
The robot of the present disclosure is
An arm portion;
A hand portion provided at a tip portion of the arm portion;
a monitoring unit capable of executing an external force monitoring function for monitoring an external force acting on the hand;
A switch operated by an operator;
a control unit that permits execution of direct teaching and disables the external force monitoring function while the switch is on;
The gist of the invention is to provide the following:
 この本開示のロボットでは、スイッチがオンされている間は、外力監視機能が無効化されるため、ダイレクトティーチングにおいて、操作者が手先部を適正に手動操作しているにも拘わらず、監視機能が誤作動するのを防止することができる。もとより、ダイレクトティーチングの実行は、スイッチがオンされている間に許可されるため、ダイレクトティーチング時の安全性を担保することができる。 In the robot disclosed herein, the external force monitoring function is disabled while the switch is on, so that it is possible to prevent the monitoring function from malfunctioning during direct teaching, even when the operator is manually operating the hand properly. Of course, direct teaching can be performed only while the switch is on, so safety during direct teaching can be guaranteed.
本実施形態のロボットシステムの外観斜視図である。1 is an external perspective view of a robot system according to an embodiment of the present invention. ロボットの概略構成図である。FIG. 1 is a schematic configuration diagram of a robot. 手先部を含むロボットの部分拡大図である。FIG. 2 is a partial enlarged view of the robot including the hand portion. 手先部を含むロボットの部分拡大図である。FIG. 2 is a partial enlarged view of the robot including the hand portion. 筐体の断面図である。FIG. ロボットシステムの電気的な接続関係を示すブロック図である。FIG. 2 is a block diagram showing electrical connections of the robot system. ダイレクトティーチングスイッチの配置を示す説明図である。FIG. 4 is an explanatory diagram showing the arrangement of direct teaching switches. ダイレクトティーチングスイッチの各ポジションに対するオンオフ状態の遷移の様子を示す説明図である。5 is an explanatory diagram showing the transition of the on/off state for each position of the direct teaching switch; FIG. ロボット制御処理の一例を示すフローチャートである。13 is a flowchart illustrating an example of a robot control process.
 次に、本開示を実施するための形態について図面を参照しながら説明する。 Next, the form for implementing this disclosure will be explained with reference to the drawings.
 図1は、本実施形態のロボットシステム10の外観斜視図である。図2は、ロボット20の概略構成図である。図3および図4は、手先部60を含むロボット20の部分拡大図である。図5は、筐体54の断面図である。図6は、ロボットシステム10の電気的な接続関係を示すブロック図である。なお、図1中、前後方向がX軸であり、左右方向がY軸方向であり、上下方向がZ軸方向である。 FIG. 1 is an external perspective view of the robot system 10 of this embodiment. FIG. 2 is a schematic diagram of the robot 20. FIGS. 3 and 4 are partial enlarged views of the robot 20 including the hand unit 60. FIG. 5 is a cross-sectional view of the housing 54. FIG. 6 is a block diagram showing the electrical connections of the robot system 10. In FIG. 1, the front-to-back direction is the X-axis, the left-to-right direction is the Y-axis, and the up-down direction is the Z-axis.
 本実施形態のロボットシステム10は、図1,図2に示すように、多関節のロボットアーム21を有するロボット20と、フットスイッチ91と、タブレット端末93と、を備える。 As shown in Figures 1 and 2, the robot system 10 of this embodiment includes a robot 20 having a multi-joint robot arm 21, a foot switch 91, and a tablet terminal 93.
 ロボットシステム10は、図1~図4に示すように、ロボットアーム21の手先に超音波診断装置100の超音波プローブ101を保持し、超音波プローブ101を人体の体表面に当てて移動するようにロボット20を制御することにより、超音波診断装置100に人体の超音波エコー画像を取得させる。ロボットシステム10は、例えばカテーテル手術などの手術時の超音波エコーガイドとして用いられる。カテーテルのガイドワイヤを操作する操作者(術者)は、ロボット20に指示して超音波プローブ101を人体(患者)の体表面に当て、得られる超音波エコー画像からガイドワイヤの先端と血管との位置関係を認識しながら、ガイドワイヤを進めることで、ガイドワイヤを正確に血管の閉塞部位や狭窄部位の中央を通すことができる。操作者は、事前準備として、ロボットアーム21を手動操作し、ロボットアーム21に保持された超音波プローブ101を患者に当てて取得される超音波エコー画像を確認しつつ、手術中に再現したいポイント(画像)を決定してロボット20(ロボット制御装置80)に登録するダイレクトティーチングを行なう。 As shown in Figs. 1 to 4, the robot system 10 holds the ultrasonic probe 101 of the ultrasonic diagnostic device 100 at the tip of the robot arm 21, and controls the robot 20 to move while placing the ultrasonic probe 101 on the surface of the human body, thereby making the ultrasonic diagnostic device 100 acquire ultrasonic echo images of the human body. The robot system 10 is used as an ultrasonic echo guide during surgery, such as catheter surgery. The operator (surgeon) who operates the catheter guide wire instructs the robot 20 to place the ultrasonic probe 101 on the surface of the human body (patient), and while recognizing the positional relationship between the tip of the guide wire and the blood vessel from the obtained ultrasonic echo image, advances the guide wire, thereby allowing the guide wire to accurately pass through the center of the occlusion or stenosis of the blood vessel. As a preliminary step, the operator manually operates the robot arm 21, places the ultrasonic probe 101 held by the robot arm 21 on the patient, and while checking the acquired ultrasonic echo image, determines the points (images) to be reproduced during surgery and performs direct teaching to register them in the robot 20 (robot control device 80).
 超音波診断装置100は、図1に示すように、超音波プローブ101と、超音波プローブ101とケーブル102を介して接続された超音波診断装置本体110と、を備える。超音波診断装置本体110は、図6に示すように、装置全体の制御を司る超音波診断制御部111と、超音波プローブ101からの受信信号を処理して超音波エコー画像を生成する画像処理部112と、超音波エコー画像を表示する画像表示部113と、各種操作スイッチ(図示せず)と、を備える。 As shown in FIG. 1, the ultrasound diagnostic device 100 comprises an ultrasound probe 101 and an ultrasound diagnostic device main body 110 connected to the ultrasound probe 101 via a cable 102. As shown in FIG. 6, the ultrasound diagnostic device main body 110 comprises an ultrasound diagnosis control unit 111 that controls the entire device, an image processing unit 112 that processes the received signal from the ultrasound probe 101 to generate an ultrasound echo image, an image display unit 113 that displays the ultrasound echo image, and various operation switches (not shown).
 ロボット20は、図1,図2に示すように、基台25と、基台25上に設置されたロボットアーム21と、ロボットアーム21の先端部に取り付けられる手先部60と、手動操作によりロボットアーム21の高さを調整する高さ調整機構45と、ロボットアーム21を制御するロボット制御装置80と、操作パネル90と、を備える。 As shown in Figures 1 and 2, the robot 20 includes a base 25, a robot arm 21 mounted on the base 25, a hand 60 attached to the tip of the robot arm 21, a height adjustment mechanism 45 that manually adjusts the height of the robot arm 21, a robot control device 80 that controls the robot arm 21, and an operation panel 90.
 基台25の裏面の四隅には、図1,図2に示すように、ストッパ付きのキャスター26が取り付けられている。ロボット20は、キャスター26により自由に移動させることが可能である。また、基台25の裏面の複数箇所(例えば3箇所)には、レバー27を押し下げることにより鉛直下方向に突出してロボット20を移動不能にロック(固定)するロック部28が設けられている。 As shown in Figures 1 and 2, casters 26 with stoppers are attached to the four corners of the back surface of the base 25. The robot 20 can be moved freely by the casters 26. In addition, locking parts 28 are provided at multiple points (e.g., three points) on the back surface of the base 25, which protrude vertically downward when a lever 27 is pressed down to lock (fix) the robot 20 so that it cannot move.
 ロボットアーム21は、本実施形態では、7軸の多関節アームであり、図1,図2に示すように、第1アーム22と第2アーム23とベース24と第1アーム駆動装置35と第2アーム駆動装置36と姿勢保持装置37と回転3軸機構50とを有する。 In this embodiment, the robot arm 21 is a seven-axis articulated arm, and as shown in Figures 1 and 2, has a first arm 22, a second arm 23, a base 24, a first arm driver 35, a second arm driver 36, a position holding device 37, and a three-axis rotating mechanism 50.
 第1アーム22の基端部は、上下方向(Z軸方向)に延在する第1関節軸31を介してベース24に連結されている。第1アーム駆動装置35は、モータ35aとエンコーダ35bとアンプ35cとを備える。モータ35aの回転軸は、図示しない減速機を介して第1関節軸31に接続されている。第1アーム駆動装置35は、モータ35aにより第1関節軸31を回転駆動することにより、第1関節軸31を支点に第1アーム22を水平面(XY平面)に沿って回動(旋回)させる。エンコーダ35bは、モータ35aの回転軸に取り付けられ、モータ35aの回転変位量を検出するロータリエンコーダとして構成される。アンプ35cは、スイッチング素子のスイッチングによりモータ35aを駆動するための駆動部である。 The base end of the first arm 22 is connected to the base 24 via a first joint shaft 31 that extends in the vertical direction (Z-axis direction). The first arm driving device 35 includes a motor 35a, an encoder 35b, and an amplifier 35c. The rotation shaft of the motor 35a is connected to the first joint shaft 31 via a reduction gear (not shown). The first arm driving device 35 rotates (pivots) the first arm 22 along a horizontal plane (XY plane) around the first joint shaft 31 as a fulcrum by driving the first joint shaft 31 to rotate with the motor 35a. The encoder 35b is attached to the rotation shaft of the motor 35a and is configured as a rotary encoder that detects the amount of rotational displacement of the motor 35a. The amplifier 35c is a driving unit for driving the motor 35a by switching the switching element.
 第2アーム23の基端部は、上下方向に延在する第2関節軸32を介して第1アーム22の先端部に連結されている。第2アーム駆動装置36は、モータ36aとエンコーダ36bとアンプ36cとを備える。モータ36aの回転軸は、図示しない減速機を介して第2関節軸32に接続されている。第2アーム駆動装置36は、モータ36aにより第2関節軸32を回転駆動することにより、第2関節軸32を支点に第2アーム23を水平面に沿って回動(旋回)させる。エンコーダ36bは、モータ36aの回転軸に取り付けられ、モータ36aの回転変位量を検出するロータリエンコーダとして構成される。アンプ35cは、スイッチング素子のスイッチングによりモータ35aを駆動するための駆動部である。 The base end of the second arm 23 is connected to the tip end of the first arm 22 via a second joint shaft 32 extending in the vertical direction. The second arm driving device 36 includes a motor 36a, an encoder 36b, and an amplifier 36c. The rotating shaft of the motor 36a is connected to the second joint shaft 32 via a reduction gear (not shown). The second arm driving device 36 rotates (pivots) the second arm 23 along a horizontal plane around the second joint shaft 32 as a fulcrum by driving the second joint shaft 32 to rotate with the motor 36a. The encoder 36b is attached to the rotating shaft of the motor 36a and is configured as a rotary encoder that detects the amount of rotational displacement of the motor 36a. The amplifier 35c is a driving unit for driving the motor 35a by switching the switching element.
 ベース24は、図2に示すように、基台25上に設置された昇降装置40により、基台25に対して昇降可能に設けられている。昇降装置40は、ベース24に固定された第1スライダ41と、上下方向に延出して第1スライダ41の移動をガイドする第1ガイド部材42と、上下方向に延出すると共に第1スライダ41に固定されたボールねじナット(図示せず)に螺合される第1ボールねじ軸43(昇降軸)と、第1ボールねじ軸43を回転駆動するモータ44aと、エンコーダ44b(図3参照)と、モータ44aを駆動するアンプ44cと、を備える。昇降装置40は、モータ44aにより第1ボールねじ軸43を回転駆動することにより、第1スライダ41に固定されたベース24を第1ガイド部材42に沿って上下に移動させる。エンコーダ44bは、第1スライダ41(ベース24)の上下方向における位置(昇降位置)を検出するリニアエンコーダとして構成される。 2, the base 24 is provided so as to be movable up and down with respect to the base 25 by a lifting device 40 installed on the base 25. The lifting device 40 includes a first slider 41 fixed to the base 24, a first guide member 42 extending in the vertical direction to guide the movement of the first slider 41, a first ball screw shaft 43 (lifting shaft) extending in the vertical direction and screwed into a ball screw nut (not shown) fixed to the first slider 41, a motor 44a that rotates the first ball screw shaft 43, an encoder 44b (see FIG. 3), and an amplifier 44c that drives the motor 44a. The lifting device 40 moves the base 24 fixed to the first slider 41 up and down along the first guide member 42 by rotating the first ball screw shaft 43 with the motor 44a. The encoder 44b is configured as a linear encoder that detects the vertical position (lifted position) of the first slider 41 (base 24).
 高さ調整機構45は、図2に示すように、昇降装置40の第1ガイド部材42に固定された第2スライダ46と、基台25に固定されると共に上下方向に延出して第2スライダ46の移動をガイドする第2ガイド部材47と、上下方向に延出すると共に第2スライダ46に固定されたボールねじナット(図示せず)に螺合される第2ボールねじ軸48(昇降軸)と、動力伝達機構(傘歯車)を介して第2ボールねじ軸48に連結された回転ハンドル49と、を備える。高さ調整機構45は、回転ハンドル49の手動操作により第2ボールねじ軸48を回転駆動することにより、第2スライダ46に固定された昇降装置40の第1ガイド部材42を第2ガイド部材47に沿って上下に移動させる。ロボットアーム21の基端は、ベース24に固定され、当該ベース24は、第1ガイド部材42に支持されているから、高さ調整機構45により第1ガイド部材42を上下に移動させることで、ロボットアーム21の高さを調整することができる。これにより、例えば、超音波診断の患者が横たわるベッドの高さに応じてロボットアーム21の高さを調整することができる。 2, the height adjustment mechanism 45 includes a second slider 46 fixed to the first guide member 42 of the lifting device 40, a second guide member 47 fixed to the base 25 and extending in the vertical direction to guide the movement of the second slider 46, a second ball screw shaft 48 (lifting shaft) extending in the vertical direction and screwed into a ball screw nut (not shown) fixed to the second slider 46, and a rotating handle 49 connected to the second ball screw shaft 48 via a power transmission mechanism (bevel gear). The height adjustment mechanism 45 moves the first guide member 42 of the lifting device 40 fixed to the second slider 46 up and down along the second guide member 47 by manually operating the rotating handle 49 to rotate the second ball screw shaft 48. The base end of the robot arm 21 is fixed to the base 24, and the base 24 is supported by the first guide member 42, so the height of the robot arm 21 can be adjusted by moving the first guide member 42 up and down using the height adjustment mechanism 45. This allows the height of the robot arm 21 to be adjusted according to the height of a bed on which a patient for ultrasound diagnosis lies, for example.
 回転3軸機構50は、図1,図2に示すように、上下方向に延在する姿勢保持用軸33を介して第2アーム23の先端部に連結されている。回転3軸機構50は、互いに直交する第1回転軸51,第2回転軸52および第3回転軸53と、第1回転軸51を回転させる第1回転装置55と、第2回転軸52を回転させる第2回転装置56と、手先部60が連結される第3回転軸53を回転させる手先駆動装置としての第3回転装置57と、を備える。第1回転軸51は、姿勢保持用軸33に対して直交姿勢で支持されている。第2回転軸52は、第1回転軸51に対して直交姿勢で支持されている。第3回転軸53は、第2回転軸52に対して直交姿勢で支持されている。第1回転装置55は、第1回転軸51を回転駆動するモータ55aと、モータ55aの回転軸に取り付けられモータ55aの回転変位量を検出するエンコーダ55bと、モータ55aを駆動するアンプ55cと、を有する。第2回転装置56は、第2回転軸52を回転駆動するモータ56aと、モータ56aの回転軸に取り付けられモータ56aの回転変位量を検出するエンコーダ56bと、モータ56aを駆動するアンプ56cと、を有する。第3回転装置57は、第3回転軸53を回転駆動するモータ57aと、モータ57aの回転軸に取り付けられモータ57aの回転変位量を検出するエンコーダ57bと、モータ56aを駆動するアンプ57cと、を有する。 As shown in Figs. 1 and 2, the three-axis rotating mechanism 50 is connected to the tip of the second arm 23 via the attitude-maintaining shaft 33 extending in the vertical direction. The three-axis rotating mechanism 50 includes a first rotation shaft 51, a second rotation shaft 52, and a third rotation shaft 53 that are perpendicular to one another, a first rotation device 55 that rotates the first rotation shaft 51, a second rotation device 56 that rotates the second rotation shaft 52, and a third rotation device 57 as a hand drive device that rotates the third rotation shaft 53 to which the hand portion 60 is connected. The first rotation shaft 51 is supported in an orthogonal position relative to the attitude-maintaining shaft 33. The second rotation shaft 52 is supported in an orthogonal position relative to the first rotation shaft 51. The third rotation shaft 53 is supported in an orthogonal position relative to the second rotation shaft 52. The first rotating device 55 has a motor 55a that rotates the first rotating shaft 51, an encoder 55b that is attached to the rotating shaft of the motor 55a and detects the amount of rotational displacement of the motor 55a, and an amplifier 55c that drives the motor 55a. The second rotating device 56 has a motor 56a that rotates the second rotating shaft 52, an encoder 56b that is attached to the rotating shaft of the motor 56a and detects the amount of rotational displacement of the motor 56a, and an amplifier 56c that drives the motor 56a. The third rotating device 57 has a motor 57a that rotates the third rotating shaft 53, an encoder 57b that is attached to the rotating shaft of the motor 57a and detects the amount of rotational displacement of the motor 57a, and an amplifier 57c that drives the motor 56a.
 第3回転装置57(手先駆動装置)は、図3~図5に示すように、第2回転軸52が連結されると共に第2回転軸52に対して直交方向に延出するように第3回転軸53を回転可能に支持する筐体54や、第3回転軸53を回転駆動するモータ57a、力覚センサ65、操作ハンドル66,停止ボタン67等を備える。 As shown in Figures 3 to 5, the third rotation device 57 (hand drive device) includes a housing 54 to which the second rotation shaft 52 is connected and which rotatably supports the third rotation shaft 53 so that the third rotation shaft 53 extends in a direction perpendicular to the second rotation shaft 52, a motor 57a that rotates the third rotation shaft 53, a force sensor 65, an operating handle 66, a stop button 67, etc.
 筐体54は、図3に示すように、それぞれ周方向につながる第1面54b、第2面54t、第3面54rおよび第4面54fを有する箱形の部材である。第2回転軸52は、筐体54の第3面54rに連結される。第3面54rに直交すると共に互いに相対する第1面54bおよび第2面54tには、図5に示すように、それぞれ同軸に貫通する開口541,542が形成されている。第3回転軸53は、開口541を挿通して外方へ延出するように筐体54内に回転可能に支持される。ここで、ロボットアーム21が基準姿勢の状態(図2に示す姿勢状態)において、第1面54bは下面となり、第2面54tは上面となり、第3面54rは背面となり、第4面54fは前面となる。筐体54の第2面54t(上面)には、操作ハンドル66と停止ボタン67とが配置されている。操作ハンドル66は、本実施形態では、ダイレクトティーチングにおいて、ロボットアーム21に保持された超音波プローブ101を操作者が手動操作する際に、当該操作者により把持される部分である。停止ボタン67は、ロボットアーム21に予期しない動作が発生した際に操作者の操作によりロボットアーム21の動作を一時的に停止させるためのものである。 As shown in FIG. 3, the housing 54 is a box-shaped member having a first surface 54b, a second surface 54t, a third surface 54r, and a fourth surface 54f that are connected in the circumferential direction. The second rotating shaft 52 is connected to the third surface 54r of the housing 54. The first surface 54b and the second surface 54t, which are perpendicular to the third surface 54r and face each other, have openings 541 and 542 that penetrate coaxially, as shown in FIG. 5. The third rotating shaft 53 is rotatably supported in the housing 54 so as to extend outward through the opening 541. Here, when the robot arm 21 is in the reference posture (the posture shown in FIG. 2), the first surface 54b is the lower surface, the second surface 54t is the upper surface, the third surface 54r is the back surface, and the fourth surface 54f is the front surface. An operating handle 66 and a stop button 67 are arranged on the second surface 54t (upper surface) of the housing 54. In this embodiment, the operation handle 66 is a part that is held by an operator when the operator manually operates the ultrasound probe 101 held by the robot arm 21 during direct teaching. The stop button 67 is for temporarily stopping the operation of the robot arm 21 by the operator's operation when an unexpected operation occurs in the robot arm 21.
 モータ57aは、第3回転軸53を回転駆動するものであり、図5に示すように、モータ57aの回転軸572が第3回転軸53と平行となるように筐体54に対して固定されている。モータ57aの回転軸572は、回転軸572に対して平行に配置された中空の伝達軸574にベルト573を介して接続されている。伝達軸574は、力覚センサ65を介して第3回転軸53に対して同軸に接続されている。これにより、モータ57aから回転軸572に出力された動力は、ベルト573,伝達軸574,力覚センサ65を順に介して第3回転軸53に伝達されることとなる。 The motor 57a drives the third rotating shaft 53 to rotate, and as shown in FIG. 5, the rotating shaft 572 of the motor 57a is fixed to the housing 54 so that it is parallel to the third rotating shaft 53. The rotating shaft 572 of the motor 57a is connected via a belt 573 to a hollow transmission shaft 574 arranged parallel to the rotating shaft 572. The transmission shaft 574 is coaxially connected to the third rotating shaft 53 via the force sensor 65. As a result, the power output from the motor 57a to the rotating shaft 572 is transmitted to the third rotating shaft 53 via the belt 573, the transmission shaft 574, and the force sensor 65 in that order.
 力覚センサ65は、モータ57aからの動力を第3回転軸53(手先部60)に伝達すると共に、外力としてX軸,Y軸およびZ軸の各軸方向に作用する力成分と各軸周りに作用するトルク成分とを検出するものである。力覚センサ65は、図5に示すように、力が作用する作用部651と、内周側で作用部651を支持する環状の支持部652と、作用部651と支持部652との間に周方向に所定の間隔をおいて配置され作用部651に作用する力を検出する検出部(図示せず)と、を有する。環状の支持部652の一端面(図中、下面)には、第3回転軸53が同軸に挿通される中空の支持軸576が連結され、支持部652の他端面(図中、上面)には、中空の伝達軸574が連結されている。伝達軸574,支持軸576は、それぞれベアリング577,578により筐体54に対して回転自在に支持されている。 The force sensor 65 transmits the power from the motor 57a to the third rotating shaft 53 (hand part 60) and detects the force components acting in the axial directions of the X-axis, Y-axis, and Z-axis as an external force and the torque components acting around each axis. As shown in FIG. 5, the force sensor 65 has an action part 651 on which a force acts, an annular support part 652 that supports the action part 651 on the inner periphery, and a detection part (not shown) that is arranged at a predetermined interval in the circumferential direction between the action part 651 and the support part 652 and detects the force acting on the action part 651. A hollow support shaft 576 through which the third rotating shaft 53 is coaxially inserted is connected to one end face (lower face in the figure) of the annular support part 652, and a hollow transmission shaft 574 is connected to the other end face (upper face in the figure) of the support part 652. The transmission shaft 574 and the support shaft 576 are rotatably supported relative to the housing 54 by bearings 577 and 578, respectively.
 また、図4に示すように、作用部651の一端面(図中、下面)には、第3回転軸53の基端部が連結されている。作用部651の他端面(図中、上面)には、第3回転軸53と同軸に延在すると共に中空の伝達軸574に挿通される作用軸575の基端部が連結されている。作用軸575は、ベアリングにより筐体54に対して回転自在に支持されている。さらに、作用軸575は、筐体54の第2面54tに形成された開口542まで延在しており、作用軸575の先端部には、操作ハンドル66の基端部が固定されている。 Also, as shown in FIG. 4, the base end of the third rotating shaft 53 is connected to one end surface (the bottom surface in the figure) of the acting part 651. The base end of an acting shaft 575 that extends coaxially with the third rotating shaft 53 and is inserted into a hollow transmission shaft 574 is connected to the other end surface (the top surface in the figure) of the acting part 651. The acting shaft 575 is supported by a bearing so as to be freely rotatable relative to the housing 54. Furthermore, the acting shaft 575 extends to an opening 542 formed in the second surface 54t of the housing 54, and the base end of the operating handle 66 is fixed to the tip of the acting shaft 575.
 手先部60は、第3回転軸53の先端部に取り付けられる。手先部60は、基部601と、第3回転軸53と同軸になるように超音波プローブ101を保持する保持部602と、操作者により把持される部分である把持部603と、を有する。基部601は、プレート状の部材であり、パッチン錠64により第3回転軸53に着脱可能に取り付けられている。なお、手先部60(基部601)は、他の固定具(例えば、ラチェット式固定具や、ねじ等)により第3回転軸53に取り付けられてもよい。保持部602は、基部601の一方の表面に設けられた保持具を有し、当該保持具により超音波プローブ101を保持する。把持部603は、例えば、ダイレクトティーチングにおいて、ロボットアーム21に保持された超音波プローブ101を操作者が手で動かす際に、当該操作者により把持される。把持部603は、基部601の保持部602が設けられた一方の表面とは反対側の他方の表面に設けられ、当該他方の表面から外側に凸状に突出するように形成されている。本実施形態では、把持部603は、図3,図4に示すように、凸曲面により形成されるが、操作者が把持可能な形状であれば、例えば棒状や半球状、直方体状、立方体状など如何なる形状により形成されてもよい。また、把持部603における凸状部(凸曲面部)の頂部には、ダイレクトティーチングにおいて操作者によるロボットアーム21の手動操作を許可するためのダイレクトティーチングスイッチ61が設けられている。 The hand 60 is attached to the tip of the third rotating shaft 53. The hand 60 has a base 601, a holding part 602 that holds the ultrasonic probe 101 so as to be coaxial with the third rotating shaft 53, and a gripping part 603 that is a part that is held by the operator. The base 601 is a plate-shaped member and is detachably attached to the third rotating shaft 53 by a snap lock 64. The hand 60 (base 601) may be attached to the third rotating shaft 53 by other fixing devices (e.g., a ratchet-type fixing device, a screw, etc.). The holding part 602 has a holder provided on one surface of the base 601, and holds the ultrasonic probe 101 by the holder. The gripping part 603 is held by the operator when the operator moves the ultrasonic probe 101 held by the robot arm 21 by hand, for example, in direct teaching. The gripping portion 603 is provided on the surface of the base 601 opposite to the surface on which the holding portion 602 is provided, and is formed so as to protrude outward in a convex shape from the other surface. In this embodiment, the gripping portion 603 is formed with a convex curved surface as shown in Figures 3 and 4, but it may be formed in any shape, such as a rod shape, a hemisphere shape, a rectangular parallelepiped shape, or a cube shape, as long as it is a shape that can be held by an operator. In addition, a direct teaching switch 61 is provided at the top of the convex portion (convex curved surface portion) of the gripping portion 603 to allow the operator to manually operate the robot arm 21 in direct teaching.
 ダイレクトティーチングスイッチ61は、図7に示すように、操作者により押下される押下部材611を有する。このダイレクトティーチングスイッチ61は、把持部603の突出する方向に対して向かい合う方向に押下部材611を押下可能に当該把持部603の内部に組み込まれた押しボタンスイッチである。ダイレクトティーチングスイッチ61は、端子接点と押下部材611と連動する可動接点とを含む2つの検出回路D1,D2が独立して設けられており、双方の検出回路D1,D2で可動接点が端子接点から切り離されているときには、オフ状態となり、双方の検出回路D1,D2で可動接点が端子接点につながると、オン状態となる。これにより、2つの検出回路D1,D2のうち一方の検出回路において、可動接点と端子接点とが溶着する故障が発生した場合であっても、操作者が押下部材611を押下していなければ、ダイレクトティーチングスイッチ61がオン状態となることはない。また、2つの検出回路D1,D2は、可動接点と端子接点とがつながると、それぞれ異なるパルス信号がロボット制御装置80に出力されるように構成される。ロボット制御装置80は、2つの検出回路D1,D2からそれぞれ異なるパルス信号の入力を検出することで、ダイレクトティーチングスイッチ61がオン状態となったと判定する。したがって、2つの検出回路D1,D2同士で接点が溶着した故障等により、ロボット制御装置80に2つの検出回路D1,D2からそれぞれ同じパルス信号が入力されても、ロボット制御装置80は、ダイレクトティーチングスイッチ61がオン状態となったとは判定しない。すなわち、ダイレクトティーチングは許可されない。 The direct teaching switch 61 has a pressing member 611 that is pressed by the operator, as shown in FIG. 7. The direct teaching switch 61 is a push button switch built into the gripping portion 603 so that the pressing member 611 can be pressed in the direction opposite to the direction in which the gripping portion 603 protrudes. The direct teaching switch 61 has two independent detection circuits D1, D2 including a terminal contact and a movable contact that is linked to the pressing member 611. When the movable contact is disconnected from the terminal contact in both detection circuits D1, D2, the switch is in the OFF state, and when the movable contact is connected to the terminal contact in both detection circuits D1, D2, the switch is in the ON state. As a result, even if a failure occurs in one of the two detection circuits D1, D2, in which the movable contact and the terminal contact are welded together, the direct teaching switch 61 will not be in the ON state unless the operator presses the pressing member 611. In addition, the two detection circuits D1, D2 are configured to output different pulse signals to the robot control device 80 when the movable contacts and terminal contacts are connected. The robot control device 80 determines that the direct teaching switch 61 has been turned on by detecting the input of different pulse signals from the two detection circuits D1, D2. Therefore, even if the same pulse signal is input to the robot control device 80 from the two detection circuits D1, D2 due to a failure such as welding of the contacts between the two detection circuits D1, D2, the robot control device 80 does not determine that the direct teaching switch 61 has been turned on. In other words, direct teaching is not permitted.
 また、ダイレクトティーチングスイッチ61は、図8に示すように、3ポジションのイネーブルスイッチとして構成され、予期しないモード変更が行なわれないように、スイッチ本体が把持部603の内部に埋め込まれた構造を有する。すなわち、ダイレクトティーチングスイッチ61は、操作者が押下部材611を押していない場合、押下部材611の押下面が把持部603の表面よりも僅かに突出した第1ポジションとなり、可動接点が端子接点から切り離されてオフ状態となる。操作者が押下部材611を押すと、ダイレクトティーチングスイッチ61は、押下部材611の押下面が把持部603の表面よりも内部に押し込まれた第2ポジションとなり、可動接点が端子接点とつながってオン状態に切り替わる。そして、操作者が押下部材611を更に押すと、ダイレクトティーチングスイッチ61は、押下部材611の押下面が第2ポジションよりも把持部603の内部に更に押し込まれた第3ポジションとなり、可動接点が端子接点から再び切り離されて、オン状態からオフ状態に切り替わる。なお、ダイレクトティーチングスイッチ61は、第2ポジションや第3ポジションにおいて、押下部材611から手を離すと、第1ポジションに戻る。これにより、操作者は、不測の事態に対して、反射反応によりダイレクトティーチングの許可を取り消すことができる。 8, the direct teaching switch 61 is configured as a three-position enable switch, and has a structure in which the switch body is embedded inside the gripping portion 603 to prevent unexpected mode changes. That is, when the operator is not pressing the pressing member 611, the direct teaching switch 61 is in a first position where the pressing surface of the pressing member 611 protrudes slightly beyond the surface of the gripping portion 603, and the movable contact is disconnected from the terminal contact and is in an OFF state. When the operator presses the pressing member 611, the direct teaching switch 61 is in a second position where the pressing surface of the pressing member 611 is pressed inward beyond the surface of the gripping portion 603, and the movable contact is connected to the terminal contact and switched to an ON state. When the operator presses the pressing member 611 further, the direct teaching switch 61 changes to a third position where the pressing surface of the pressing member 611 is pressed further into the gripping portion 603 than in the second position, and the movable contact is again separated from the terminal contact, switching from the on state to the off state. Note that when the operator releases the pressing member 611 in the second or third position, the direct teaching switch 61 returns to the first position. This allows the operator to reflexively cancel permission for direct teaching in the event of an unexpected situation.
 ダイレクトティーチングスイッチ61の端子には、図4に示すように、ケーブル62の一端が接続される。手先部60の基部601における上記他方の表面であって把持部603よりも筐体54側には、ケーブル62の一端をダイレクトティーチングスイッチ61に導くケーブルガイド63が固定されている。ケーブル62の他端は、筐体54からロボットアーム21に沿ってロボット制御装置80につながる配線と接続される。本実施形態では、ケーブル62の他端には、コネクタ621が設けられており、筐体54に設けられたコネクタに対して抜き差し可能に接続される。このため、パッチン錠64を解錠すると共にコネクタ621を引き抜くことで、筐体54から手先部60を容易に切り離すことができ、メンテナンス性を向上させることができる。 As shown in FIG. 4, one end of a cable 62 is connected to the terminal of the direct teaching switch 61. A cable guide 63 that guides one end of the cable 62 to the direct teaching switch 61 is fixed to the other surface of the base 601 of the hand 60, closer to the housing 54 than the grip 603. The other end of the cable 62 is connected to wiring that runs from the housing 54 along the robot arm 21 to the robot control device 80. In this embodiment, a connector 621 is provided at the other end of the cable 62, and is removably connected to a connector provided on the housing 54. Therefore, by unlocking the snap lock 64 and pulling out the connector 621, the hand 60 can be easily detached from the housing 54, improving maintainability.
 本実施形態のロボット20は、第1アーム駆動装置35と第2アーム駆動装置36と昇降装置40とによるX軸方向,Y軸方向およびZ軸方向の3方向の並進運動と、回転3軸機構50によるX軸回り(ピッチング),Y軸回り(ローリング)およびZ軸回り(ヨーイング)の3方向の回転運動との組み合わせにより、ロボットアーム21を動作させる。これにより、ロボット20は、超音波プローブ101をX軸,Y軸およびZ軸の各軸方向(正逆両方向)に移動させると共に各軸周り(正逆両回転方向)に回転させることができる。 The robot 20 of this embodiment operates the robot arm 21 by a combination of translational motion in three directions, the X-axis direction, the Y-axis direction, and the Z-axis direction, by the first arm driving device 35, the second arm driving device 36, and the lifting device 40, and rotational motion in three directions, around the X-axis (pitching), around the Y-axis (rolling), and around the Z-axis (yawing), by the three-axis rotation mechanism 50. This allows the robot 20 to move the ultrasound probe 101 in each of the X-axis, Y-axis, and Z-axis directions (both forward and reverse directions) and rotate it around each axis (both forward and reverse rotation directions).
 姿勢保持装置37は、第1アーム22および第2アーム23の姿勢によらず回転3軸機構50の姿勢(第1回転軸51の向き)を一定の向きに保持するものである。姿勢保持装置37は、モータ37aとエンコーダ37bとアンプ37cとを備える。モータ37aの回転軸は、図示しない減速機を介して姿勢保持用軸33に接続されている。姿勢保持装置37は、第1回転軸51の軸方向が常時、左右方向(X軸方向)となるように第1関節軸31の回転角度と第2関節軸32の回転角度とに基づいて姿勢保持用軸33の目標回転角度を設定し、姿勢保持用軸33が目標回転角度となるようにモータ37aを駆動制御する。これにより、3方向の並進運動の制御と3方向の回転運動の制御とをそれぞれ独立して行なうことが可能となり、制御が容易となる。 The attitude holding device 37 holds the attitude of the three-axis rotating mechanism 50 (the orientation of the first rotating shaft 51) in a constant orientation regardless of the orientation of the first arm 22 and the second arm 23. The attitude holding device 37 includes a motor 37a, an encoder 37b, and an amplifier 37c. The rotating shaft of the motor 37a is connected to the attitude holding shaft 33 via a reduction gear (not shown). The attitude holding device 37 sets a target rotation angle of the attitude holding shaft 33 based on the rotation angle of the first joint shaft 31 and the rotation angle of the second joint shaft 32 so that the axial direction of the first rotating shaft 51 is always in the left-right direction (X-axis direction), and drives and controls the motor 37a so that the attitude holding shaft 33 is at the target rotation angle. This makes it possible to control the translational motion in three directions and the rotational motion in three directions independently, making control easier.
 操作パネル90は、ロボットシステム10に関する各種情報を表示すると共にロボットシステム10に対する各種指示を入力可能なタッチパネル式のディスプレイである。操作パネル90は、本実施形態では、ロボット20の昇降装置40やロボット制御装置80が収容された筐体29の上面に設置されている。 The operation panel 90 is a touch panel display that displays various information related to the robot system 10 and allows various instructions to be input to the robot system 10. In this embodiment, the operation panel 90 is installed on the top surface of the housing 29 that houses the lifting device 40 of the robot 20 and the robot control device 80.
 フットスイッチ91は、図1に示すように、操作者による踏み込みによってオンするペダルスイッチであり、ケーブルを介してロボット20のロボット制御装置80に接続される。本実施形態では、フットスイッチ91は、横方向に並ぶ4つのスイッチ(第1スイッチ911,第2スイッチ912,第3スイッチ913および第4スイッチ914)を有する。 As shown in FIG. 1, the foot switch 91 is a pedal switch that is turned on when the operator steps on it, and is connected to the robot control device 80 of the robot 20 via a cable. In this embodiment, the foot switch 91 has four switches (a first switch 911, a second switch 912, a third switch 913, and a fourth switch 914) arranged horizontally.
 タブレット端末93は、CPUやROM,RAM,ストレージ(SSD)を含む制御装置と、各種情報を表示すると共に操作者による入力操作が可能なタッチパネル式のディスプレイと、通信部と、を備える。タブレット端末93は、無線通信によりロボット20のロボット制御装置80と通信可能に接続される。本実施形態では、タブレット端末93は、操作パネル90を無線通信によって当該タブレット端末93から遠隔操作することができるリモートディスクトップ機能を有する。 The tablet terminal 93 is equipped with a control device including a CPU, ROM, RAM, and storage (SSD), a touch panel display that displays various information and allows the operator to input operations, and a communication unit. The tablet terminal 93 is communicatively connected to the robot control device 80 of the robot 20 via wireless communication. In this embodiment, the tablet terminal 93 has a remote desktop function that allows the operation panel 90 to be remotely operated from the tablet terminal 93 via wireless communication.
 ロボット制御装置80は、図6に示すように、ロボット制御部81と監視部82とIO部83と通信部84と記憶部85とを備える。ロボット制御部81は、CPUやROM,RAM、周辺回路などを含むプロセッサとして構成されるものである。監視部82は、CPUやROM,RAM、周辺回路などを含むワンチップマイクロコンピュータとして構成されるものである。また、監視部82は、二重化されることもある。ロボット制御部81は、ロボットアーム21(モータ35a~37a,44a,55a~57a)の制御に係る各種処理を行なう。監視部82は、IO部83や、通信部84、アンプ35c~37c,44c,55c~57c、エンコーダ35b~37b,44b,55b~57b、ダイレクトティーチングスイッチ61等を含むセンサ部といった各部の状態を監視する。IO部83は、I/Oポートであり、ダイレクトティーチングスイッチ61からの検出信号や停止スイッチ67からの検出信号、力覚センサ65からの検出信号、操作パネル90からの操作信号等を入力し、操作パネル90への表示信号等を出力する。通信部84は、有線または無線によりロボット制御装置80と外部機器(フットスイッチ91やタブレット端末93等)との通信を行ない、各種信号やデータのやり取りを行なう。 As shown in FIG. 6, the robot control device 80 comprises a robot control unit 81, a monitoring unit 82, an IO unit 83, a communication unit 84, and a memory unit 85. The robot control unit 81 is configured as a processor including a CPU, ROM, RAM, peripheral circuits, etc. The monitoring unit 82 is configured as a one-chip microcomputer including a CPU, ROM, RAM, peripheral circuits, etc. The monitoring unit 82 may also be duplicated. The robot control unit 81 performs various processes related to the control of the robot arm 21 (motors 35a-37a, 44a, 55a-57a). The monitoring unit 82 monitors the status of each unit, such as the IO unit 83, communication unit 84, amplifiers 35c-37c, 44c, 55c-57c, encoders 35b-37b, 44b, 55b-57b, and a sensor unit including a direct teaching switch 61, etc. The IO unit 83 is an I/O port that inputs detection signals from the direct teaching switch 61, the stop switch 67, the force sensor 65, operation signals from the operation panel 90, etc., and outputs display signals to the operation panel 90. The communication unit 84 communicates with the robot control device 80 and external devices (such as the foot switch 91 and tablet terminal 93) via wired or wireless means, and exchanges various signals and data.
 アンプ35c~37c,44c,55c~57cには、それぞれ、モータ制御部71と駆動電力供給部72とIO部73とが含まれる。モータ制御部71は、スイッチング素子を有し、エンコーダ35b~37b,44b,55b~57b等からのフィードバック信号に基づいて当該スイッチング素子をスイッチング制御することで各モータ35a~37a,44a,55a~57aを制御する。駆動電力供給部72は、モータ35a~37a,44a,55a~57aの駆動に必要な電力を供給する。IO部83は、I/Oポートであり、エンコーダ35b~37b,44b,55b~57bからの位置信号や各モータ35a~37a,44a,55a~57aを流れる電流を検知する電流センサからの電流信号、ロボット制御部81から各モータ35a~37a,44a,55a~57aへの指令信号(制御信号)等の各種信号を入力する。 Each of the amplifiers 35c-37c, 44c, 55c-57c includes a motor control unit 71, a drive power supply unit 72, and an IO unit 73. The motor control unit 71 has switching elements, and controls the motors 35a-37a, 44a, 55a-57a by controlling the switching of the switching elements based on feedback signals from the encoders 35b-37b, 44b, 55b-57b, etc. The drive power supply unit 72 supplies the power required to drive the motors 35a-37a, 44a, 55a-57a. The IO unit 83 is an I/O port that inputs various signals such as position signals from the encoders 35b-37b, 44b, 55b-57b, current signals from current sensors that detect the current flowing through each of the motors 35a-37a, 44a, 55a-57a, and command signals (control signals) from the robot control unit 81 to each of the motors 35a-37a, 44a, 55a-57a.
 ロボット20は、ロボットステータスとして、制御オフと制御オンとロボットオンとを有する。制御オフは、ロボット制御部81がロボットアーム21(モータ)を制御不能にアンプ35c~37c,44c,55c~57cへの電源供給を停止した状態である。制御オンは、ロボット制御部81がロボットアーム21を制御可能にアンプ35c~37c,44c,55c~57cへ電源供給している状態である。この状態では、ロボットアーム21を直接触ってその姿勢を変えることが可能である。ロボットオンは、制御オン状態からロボット制御部81がアンプ35c~37c,44c,55c~57cに制御信号を出力してロボットアーム21を制御している状態である。ロボットステータスは、作業者の指示に基づいて変更されると共に、監視部82の監視結果に基づいて変更される。 The robot 20 has three robot statuses: control off, control on, and robot on. Control off is a state in which the robot control unit 81 has stopped supplying power to the amplifiers 35c to 37c, 44c, and 55c to 57c, making the robot arm 21 (motor) uncontrollable. Control on is a state in which the robot control unit 81 is supplying power to the amplifiers 35c to 37c, 44c, and 55c to 57c, making the robot arm 21 controllable. In this state, it is possible to change the posture of the robot arm 21 by directly touching it. Robot on is a state in which the robot control unit 81, in the control on state, outputs a control signal to the amplifiers 35c to 37c, 44c, and 55c to 57c to control the robot arm 21. The robot status is changed based on the operator's instructions and based on the monitoring results of the monitoring unit 82.
 次に、ロボット制御装置80の監視部82の監視機能について説明する。監視部82の機能には、監視機能と障害検知機能と安全IO機能とが含まれる。ロボット制御装置80は、監視部82において、いずれかの機能に異常が生じたと判断されると、ロボット20の状態を安全状態(例えば、制御オフ)に移行させる。 Next, the monitoring function of the monitoring unit 82 of the robot control device 80 will be described. The functions of the monitoring unit 82 include a monitoring function, a fault detection function, and a safety IO function. When the monitoring unit 82 of the robot control device 80 determines that an abnormality has occurred in any of the functions, it transitions the state of the robot 20 to a safe state (e.g., control off).
 監視機能には、センサ監視やマイコン監視、ダイレクトティーチングスイッチ監視等が含まれる。センサ監視は、エンコーダ35b~37b,44b,55b~57bや電流センサなどのセンサ部の故障を判定するものである。マイコン監視は、マイコン(ロボット制御部81、監視部82)へ供給される電圧や、マイコンの周囲温度、マイコンの故障などを判定するものである。ダイレクトティーチングスイッチ監視は、ダイレクトティーチングスイッチ61の故障を判定するものである。上述したように、ダイレクトティーチングスイッチ61には、それぞれ端子接点と可動接点とを含む独立した2つの検出回路が設けられ、2つの検出回路は、それぞれ異なるパルス信号をロボット制御装置80に出力する。監視部82は、2つの検出回路からそれぞれ出力されるパルス信号を監視し、両者のパルス信号が同じである場合、ダイレクトティーチングスイッチ61に故障が生じたと判定する。また、監視部82は、2つの検出回路のうち一方からしかパルス信号が出力されていない場合も、ダイレクトティーチングスイッチ61に故障が生じたと判定する。 The monitoring functions include sensor monitoring, microcomputer monitoring, and direct teaching switch monitoring. Sensor monitoring is to determine failures in sensors such as the encoders 35b-37b, 44b, 55b-57b and current sensors. Microcomputer monitoring is to determine the voltage supplied to the microcomputer (robot control unit 81, monitoring unit 82), the ambient temperature of the microcomputer, and failures in the microcomputer. Direct teaching switch monitoring is to determine failures in the direct teaching switch 61. As described above, the direct teaching switch 61 is provided with two independent detection circuits, each including a terminal contact and a movable contact, and the two detection circuits output different pulse signals to the robot control device 80. The monitoring unit 82 monitors the pulse signals output from the two detection circuits, and if the two pulse signals are the same, it determines that a failure has occurred in the direct teaching switch 61. The monitoring unit 82 also determines that a failure has occurred in the direct teaching switch 61 if a pulse signal is output from only one of the two detection circuits.
 障害検知機能には、トルク障害検知機能や速度障害検知機能、位置障害検知機能、外力障害検知機能が含まれる。トルク障害検知機能は、ロボットアーム21の各軸や手先に設定トルクを超えるトルクが出力された状態を検知するものである。速度障害検知機能は、ロボットアーム21の各軸や手先が設定速度を超える速度で動作した状態を検知するものである。位置障害検知機能は、ロボットアーム21の各軸や手先が設定範囲外に位置した状態を検知するものである。外力障害検知機能は、ロボットアーム21の各軸や手先に許容範囲を超える外力を受けた状態を検知するものである。 The obstacle detection function includes a torque obstacle detection function, a speed obstacle detection function, a position obstacle detection function, and an external force obstacle detection function. The torque obstacle detection function detects a state in which a torque exceeding a set torque is output to each axis or hand of the robot arm 21. The speed obstacle detection function detects a state in which each axis or hand of the robot arm 21 operates at a speed exceeding a set speed. The position obstacle detection function detects a state in which each axis or hand of the robot arm 21 is positioned outside a set range. The external force obstacle detection function detects a state in which each axis or hand of the robot arm 21 is subjected to an external force exceeding an allowable range.
 安全IO機能には、図示しない非常停止スイッチの操作を検知したり、それ以外のおロボット制御装置80に入力される各種信号を監視したりする機能が含まれる。 The safety IO function includes the function of detecting the operation of an emergency stop switch (not shown) and monitoring various other signals input to the robot control device 80.
 次に、ロボット20の動作モードについて説明する。本実施形態では、ロボット20の動作モードとして、ダイレクトティーチングモードや、ダイレクトティーチングモードで記録したポイントを再生する再生モードなどを有する。 Next, the operation modes of the robot 20 will be described. In this embodiment, the operation modes of the robot 20 include a direct teaching mode and a playback mode in which points recorded in the direct teaching mode are played back.
 ダイレクトティーチングモードでは、操作者が手先部60の把持部603や操作ハンドル66等を把持して力を加えることでロボットアーム21を直接に操作することができ、操作者が少ない力で操作が可能となるように力が加わる方向に各軸のモータによるアシスト力を発生させるモードである。ダイレクトティーチングモードは、ダイレクトティーチングスイッチ61がオンしている間のみ実行される。ダイレクトティーチングスイッチ61がオフされると、モータによるアシストが停止されるため、操作者は、ロボットアーム21を手動で操作することが困難となる。ダイレクトティーチングモードにおいて、操作者(術者)は、ロボットアーム21を手動操作し、ロボットアーム21に保持された超音波プローブ101を患者に当てて取得される超音波エコー画像を確認しつつ、手術中に再現したいポイント(画像)を決定してロボット制御装置80の記憶部に登録することができる(ポイント登録)。ポイント登録は、操作パネル90やリモート接続したタブレット端末93を操作して行なうことができる他、フットスイッチ91(例えば第1スイッチ911)を踏み込むことによっても行なうことができる。これにより、操作者がロボットアーム21を手動操作して操作者の両手が塞がっていても、ポイント登録の操作を確実に行なうことが可能となる。 In the direct teaching mode, the operator can directly operate the robot arm 21 by applying force by grasping the gripping portion 603 or the operating handle 66 of the hand portion 60, and the motor of each axis generates an assist force in the direction of the force applied so that the operator can operate with less force. The direct teaching mode is executed only while the direct teaching switch 61 is on. When the direct teaching switch 61 is turned off, the motor assist is stopped, making it difficult for the operator to manually operate the robot arm 21. In the direct teaching mode, the operator (surgeon) manually operates the robot arm 21 and can determine points (images) to be reproduced during surgery while checking the ultrasonic echo image obtained by placing the ultrasonic probe 101 held by the robot arm 21 on the patient and registering them in the memory of the robot control device 80 (point registration). Point registration can be performed by operating the operation panel 90 or the remotely connected tablet terminal 93, or by stepping on the foot switch 91 (for example, the first switch 911). This allows the operator to reliably perform point registration operations even if both hands are occupied while manually operating the robot arm 21.
 再生モードは、登録したポイントを再生するモードである。手術中にポイント再生を実行することにより、ポイント毎の超音波エコー画像が自動で取得され、術者は、画像を見ながらカテーテルを操作することができる。術者は、操作パネル90やリモート接続したタブレット端末93を操作したり、フットスイッチ91を踏み込み操作したりすることにより現ポイントから次ポイントあるいは前ポイントにポイントを移動させることができる。例えば、術者は、フットスイッチ91の第3スイッチ913を踏み込むことで現ポイントから次ポイントへポイントを移動させることができ、フットスイッチ91の第2スイッチ912を踏み込むことで現ポイントから前ポイントへ移動させることができる。 The playback mode is a mode in which registered points are played back. By executing point playback during surgery, ultrasound echo images for each point are automatically acquired, and the surgeon can operate the catheter while viewing the images. The surgeon can move the point from the current point to the next point or the previous point by operating the operation panel 90 or the remotely connected tablet terminal 93, or by depressing the foot switch 91. For example, the surgeon can move the point from the current point to the next point by depressing the third switch 913 of the foot switch 91, and can move from the current point to the previous point by depressing the second switch 912 of the foot switch 91.
 次に、ダイレクトティーチングモードと再生モードとの切替動作について説明する。図9は、ロボット制御装置80のロボット制御部81により実行されるロボット制御処理の一例を示すフローチャートである。ロボット制御処理では、ロボット制御部81は、まず、ダイレクトティーチングスイッチ61がオン状態であるか否かを判定する(S100)。ロボット制御部81は、ダイレクトティーチングスイッチ61がオン状態であると判定すると、ロボット20の動作モードをダイレクトティーチングモードに設定し(S102)、上述した障害検知機能のうち外力障害検知機能を無効化する(S104)。ここで、監視部82で実行される他の機能(ダイレクトティーチングスイッチ監視機能や残りの障害検知機能を含む)は有効化されている。次に、ロボット制御部81は、力覚センサ65により外力が検出されたか否かを判定する(S106)。ロボット制御部81は、外力が検知されたと判定すると、検知された外力の方向にアシスト力を発生させるアシスト制御を実行する(S108)。ダイレクトティーチングモードでは、操作者が把持部603や操作ハンドル66を把持してロボットアーム21を手動操作するから、アシスト制御は、操作者による操作力を力覚センサ65により検出し、操作力の方向にアシスト力が作用するようロボットアーム21の各軸モータ35a~37a,44a,55a~57aを制御するものとなる。一方、ロボット制御部81は、外力が検知されていないと判定すると、S108をスキップする。そして、ロボット制御部81は、ポイント登録が指示されたか否かを判定する(S110)。ポイント登録の指示は、上述したように、操作パネル90やリモート接続したタブレット端末93、フットスイッチ91(第1スイッチ911)を操作することにより行なうことができる。ロボット制御部81は、ポイント登録が指示されていないと判定すると、ロボット制御処理を終了し、ポイント登録が指示されたと判定すると、エンコーダ35b~37b,44b,55b~57bの検出値に基づいて現在のポイントを記憶部85に記憶して(S112)、ロボット制御処理を終了する。なお、登録されるポイントには、超音波プローブ101の位置や姿勢(X,Y,Z座標値やX軸周り,Y軸周り,Z軸周りの各角度値)、ロボットアーム21の各軸の位置(角度値や昇降座標値)等が含まれる。 Next, the switching operation between the direct teaching mode and the playback mode will be described. FIG. 9 is a flowchart showing an example of a robot control process executed by the robot control unit 81 of the robot control device 80. In the robot control process, the robot control unit 81 first determines whether the direct teaching switch 61 is on or not (S100). When the robot control unit 81 determines that the direct teaching switch 61 is on, it sets the operation mode of the robot 20 to the direct teaching mode (S102) and disables the external force obstacle detection function among the obstacle detection functions described above (S104). Here, other functions executed by the monitoring unit 82 (including the direct teaching switch monitoring function and the remaining obstacle detection functions) are enabled. Next, the robot control unit 81 determines whether an external force is detected by the force sensor 65 (S106). When the robot control unit 81 determines that an external force is detected, it executes assist control to generate an assist force in the direction of the detected external force (S108). In the direct teaching mode, the operator manually operates the robot arm 21 by gripping the gripper 603 or the operating handle 66, so that the assist control detects the operating force of the operator using the force sensor 65 and controls the motors 35a to 37a, 44a, 55a to 57a of the robot arm 21 so that the assist force acts in the direction of the operating force. On the other hand, if the robot control unit 81 determines that no external force has been detected, it skips S108. Then, the robot control unit 81 determines whether or not a point registration has been instructed (S110). As described above, the point registration can be instructed by operating the operation panel 90, the remotely connected tablet terminal 93, or the foot switch 91 (first switch 911). If the robot control unit 81 determines that a point registration has not been instructed, it ends the robot control process, and if it determines that a point registration has been instructed, it stores the current point in the storage unit 85 based on the detection values of the encoders 35b to 37b, 44b, 55b to 57b (S112) and ends the robot control process. The registered points include the position and orientation of the ultrasound probe 101 (X, Y, Z coordinate values and angle values around the X, Y, and Z axes), the position of each axis of the robot arm 21 (angle values and elevation coordinate values), etc.
 ロボット制御部81は、S100において、ダイレクトティーチングスイッチ61がオン状態ではなくオフ状態であると判定すると、ロボット20の動作モードを再生モードに設定し(S114)、外力障害検知機能を有効化する(S116)。これにより、監視部82で実行される全ての機能が有効化される。そして、ロボット制御部81は、ポイント再生の指示がなされたか否かを判定する(S118)。ポイント再生の指示は、上述したように、操作パネル90やリモート接続したタブレット端末93、フットスイッチ91(第2スイッチ912、第3スイッチ913)を操作することにより行なうことができる。ロボット制御部81は、ポイント再生が指示されていないと判定すると、ロボット制御処理を終了し、ポイント再生が指示されたと判定すると、記録したポイントが再生されるようにロボットアーム21の各軸モータ35a~37a,44a,55a~57aを制御して(S120)、ロボット制御処理を終了する。 When the robot control unit 81 determines in S100 that the direct teaching switch 61 is in the off state, not the on state, it sets the operation mode of the robot 20 to the playback mode (S114) and activates the external force failure detection function (S116). This activates all functions executed by the monitoring unit 82. The robot control unit 81 then determines whether or not a point regeneration command has been issued (S118). As described above, a point regeneration command can be issued by operating the operation panel 90, the remotely connected tablet terminal 93, or the foot switch 91 (second switch 912, third switch 913). When the robot control unit 81 determines that a point regeneration command has not been issued, it ends the robot control process. When it determines that a point regeneration command has been issued, it controls the axis motors 35a to 37a, 44a, 55a to 57a of the robot arm 21 so that the recorded points are regenerated (S120), and ends the robot control process.
 このように、ロボット20の動作モードは、ダイレクトティーチングスイッチ61がオン状態であれば、ダイレクトティーチングモードとなり、ダイレクトティーチングスイッチ61がオフ状態であれば、再生モードとなる。これにより、操作者は、特別な操作を必要とすることなく、モードの切り替えを円滑に行なうことができる。加えて、ダイレクトティーチングモードでは、外力障害検知機能が無効化されるため、操作者が把持部603や操作ハンドル66を把持してロボットアーム21を適正に手動操作しているにも拘わらず、外力障害検知機能が誤作動し、監視部82がロボットアーム21が障害物に衝突した等と判定するのを回避することができる。さらに、ダイレクトティーチングモードにおいても、他の障害検知機能(トルク障害検知機能や速度障害検知機能、位置障害検知機能)は有効化されているから、他の障害検知機能により障害物との衝突等を適切に検出することができ、安全性を担保することができる。また、監視機能として、ダイレクトティーチングスイッチ監視機能も備えるから、ダイレクトティーチングスイッチ61の故障に対して適切に対応することができる。これらの結果、安全を確保しつつ、使い勝手を向上させることができる。 In this way, the operation mode of the robot 20 is the direct teaching mode when the direct teaching switch 61 is in the on state, and the playback mode when the direct teaching switch 61 is in the off state. This allows the operator to smoothly switch between modes without the need for special operations. In addition, since the external force obstacle detection function is disabled in the direct teaching mode, it is possible to avoid the external force obstacle detection function malfunctioning and the monitoring unit 82 determining that the robot arm 21 has collided with an obstacle, even if the operator is gripping the gripping unit 603 or the operating handle 66 and manually operating the robot arm 21 appropriately. Furthermore, since other obstacle detection functions (torque obstacle detection function, speed obstacle detection function, position obstacle detection function) are enabled even in the direct teaching mode, collisions with obstacles, etc. can be properly detected by the other obstacle detection functions, and safety can be ensured. In addition, since the direct teaching switch monitoring function is also provided as a monitoring function, it is possible to properly respond to failures of the direct teaching switch 61. As a result, it is possible to improve usability while ensuring safety.
 ここで、実施形態の主要な要素と請求の範囲に記載した本開示の主要な要素との対応関係について説明する。即ち、本実施形態のロボットアーム21が本開示のアーム部に相当し、手先部60が手先部に相当し、監視部82が監視部に相当し、ダイレクトティーチングスイッチ61がスイッチに相当し、ロボット制御部81が制御部に相当する。また、把持部603が把持部に相当する。基部601が基部に相当し、保持部602が保持部に相当する。筐体54が筐体に相当し、ケーブル62がケーブルに相当し、ケーブルガイド63がケーブルガイドに相当する。 Here, the correspondence between the main elements of the embodiment and the main elements of the present disclosure described in the claims will be explained. That is, the robot arm 21 of this embodiment corresponds to the arm section of the present disclosure, the hand section 60 corresponds to the hand section, the monitoring section 82 corresponds to the monitoring section, the direct teaching switch 61 corresponds to the switch, and the robot control section 81 corresponds to the control section. Also, the gripping section 603 corresponds to the gripping section. The base section 601 corresponds to the base, and the holding section 602 corresponds to the holding section. The housing 54 corresponds to the housing, the cable 62 corresponds to the cable, and the cable guide 63 corresponds to the cable guide.
 なお、本開示は上述した実施形態に何ら限定されることはなく、本開示の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。 It goes without saying that this disclosure is in no way limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of this disclosure.
 例えば、上述した実施形態では、ロボット20は、3方向の並進運動と3方向の回転運動とが可能な7軸の多関節ロボットとして構成されるものとした。しかし、軸の数はいくつであっても構わない。また、ロボット20は、いわゆる垂直多関節ロボットや水平多関節ロボットなどにより構成されてもよい。 For example, in the above-described embodiment, the robot 20 is configured as a seven-axis articulated robot capable of translational movement in three directions and rotational movement in three directions. However, the number of axes can be any number. The robot 20 may also be configured as a so-called vertical articulated robot or horizontal articulated robot.
 以上説明したように、本開示のロボットでは、スイッチがオンされている間は、外力監視機能が無効化されるため、ダイレクトティーチングにおいて、操作者が手先部を適正に手動操作しているにも拘わらず、監視機能が誤作動するのを防止することができる。もとより、ダイレクトティーチングの実行は、スイッチがオンされている間に許可されるため、ダイレクトティーチング時の安全性を担保することができる。 As described above, in the robot disclosed herein, the external force monitoring function is disabled while the switch is on, so that it is possible to prevent the monitoring function from malfunctioning during direct teaching, even when the operator is manually operating the hand portion appropriately. Of course, direct teaching can be performed only while the switch is on, so safety during direct teaching can be guaranteed.
 こうした本開示のロボットにおいて、前記手先部に形成され、ダイレクトティーチングの実行時に操作者により把持される把持部を備え、前記スイッチは、前記把持部に設けられてもよい。こうすれば、ダイレクトティーチングにおいて、操作者が手先部を手動動作している最中でもスイッチを操作し易くすることができる。この場合、前記手先部は、基部と、前記基部の一方の面に設けられ超音波プローブを保持する保持部と、前記基部の前記一方の面とは反対側の他方の面に形成された前記把持部と、を有してもよい。こうすれば、操作者が超音波プローブを操作し易くすることができる。これらの場合、前記把持部は、外側に突出する凸状に形成され、前記スイッチは、前記凸状部の頂部に設けられてもよい。この場合、前記スイッチは、前記凸状部に組み込まれ、前記把持部の突出方向とは向かい合う方向に押下可能な押しボタンであってもよい。こうすれば、操作者がスイッチを操作し易くすることができる。なお、スイッチがイネーブルスイッチである場合には、スイッチは、スイッチ本体が構造物に埋め込まれた構造を有してもよい。 In such a robot disclosed herein, the robot may include a gripping portion formed on the hand and gripped by the operator when performing direct teaching, and the switch may be provided on the gripping portion. In this way, the switch can be easily operated by the operator during direct teaching, even while the operator is manually operating the hand. In this case, the hand may have a base, a holding portion provided on one surface of the base and holding an ultrasonic probe, and the gripping portion formed on the other surface of the base opposite to the one surface. In this way, the operator can easily operate the ultrasonic probe. In these cases, the gripping portion may be formed in a convex shape that protrudes outward, and the switch may be provided on the apex of the convex portion. In this case, the switch may be a push button that is incorporated into the convex portion and can be pressed in a direction opposite to the protruding direction of the gripping portion. In this way, the operator can easily operate the switch. In addition, if the switch is an enable switch, the switch may have a structure in which the switch body is embedded in a structure.
 また、本開示のロボットにおいて、前記アーム部の先端部分に連結された筐体と、前記筐体に接続された前記手先部と、前記手先部に設けられた前記スイッチと、一端が前記スイッチに接続されると共に他端が前記筐体に接続されたケーブルと、前記手先部の前記スイッチよりも前記筐体側の位置に固定され、前記ケーブルの一端を前記スイッチに導くケーブルガイドと、を備えてもよい。こうすれば、筐体をコンパクトにしたり、スイッチを操作し易い位置に配置したりすることができる。 The robot of the present disclosure may also include a housing connected to the tip of the arm, the hand connected to the housing, the switch provided on the hand, a cable having one end connected to the switch and the other end connected to the housing, and a cable guide that is fixed to a position on the hand closer to the housing than the switch and that guides one end of the cable to the switch. This makes it possible to make the housing compact and to position the switch in an easy-to-operate position.
 また、本開示のロボットにおいて、前記ロボットのモードとして、ダイレクトティーチングを実行するダイレクトティーチングモードと、ダイレクトティーチングにおいて記録されたポイントを再生する再生モードと、を有し、前記再生モード中に前記スイッチがオンされると、前記ダイレクトティーチングモードに切り替わってもよい。こうすれば、モードの切り替えを円滑に行なうことができる。 Furthermore, in the robot of the present disclosure, the robot may have a direct teaching mode in which direct teaching is performed, and a playback mode in which points recorded in direct teaching are played back, and when the switch is turned on during the playback mode, the mode may be switched to the direct teaching mode. In this way, the mode can be switched smoothly.
 また、本開示のロボットにおいて、前記スイッチは、3ポジションのイネーブルスイッチであってもよい。こうすれば、操作者は、不測の事態に対して、反射反応によりスイッチをオフすることができる。 Furthermore, in the robot of the present disclosure, the switch may be a three-position enable switch. In this way, the operator can turn off the switch as a reflex response in the event of an unexpected situation.
 また、本開示のロボットにおいて、前記スイッチは、操作者の操作によりそれぞれ接点が開閉する独立した2つの検出回路を備えてもよい。こうすれば、2つの検出回路のうちの一方の接点が溶着しても、スイッチが誤作動するのを防止することができる。 Furthermore, in the robot of the present disclosure, the switch may be equipped with two independent detection circuits whose contacts are opened and closed by the operation of the operator. In this way, even if the contacts of one of the two detection circuits are welded, it is possible to prevent the switch from malfunctioning.
 本明細書では、出願当初の請求項4において「請求項2に記載のロボット」を「請求項2または3に記載のロボット」に変更した技術思想や、出願当初の請求項7において「請求項1ないし5いずれか1項に記載のロボット」を「請求項1ないし6いずれか1項に記載のロボット」に変更した技術思想、出願当初の請求項8において「請求項1ないし5いずれか1項に記載のロボット」を「請求項1ないし7いずれか1項に記載のロボット」に変更した技術思想、出願当初の請求項9において「請求項1ないし5いずれか1項に記載のロボット」を「請求項1ないし8いずれか1項に記載のロボット」に変更した技術思想も開示されている。  This specification also discloses the technical idea of changing "the robot described in claim 2" to "the robot described in claim 2 or 3" in claim 4 as originally filed, the technical idea of changing "the robot described in any one of claims 1 to 5" to "the robot described in any one of claims 1 to 6" in claim 7 as originally filed, the technical idea of changing "the robot described in any one of claims 1 to 5" to "the robot described in any one of claims 1 to 7" in claim 8 as originally filed, and the technical idea of changing "the robot described in any one of claims 1 to 5" to "the robot described in any one of claims 1 to 8" in claim 9 as originally filed.
 本開示は、ロボットの製造産業などに利用可能である。 This disclosure can be used in the robot manufacturing industry, etc.
10 ロボットシステム、20 ロボット、21 ロボットアーム、22 第1アーム、23 第2アーム、24 ベース、25 基台、26 キャスター、27 レバー、28 ロック部、29 筐体、31 第1関節軸、32 第2関節軸、33 姿勢保持用軸、35 第1アーム駆動装置、35a モータ、35b エンコーダ、35c アンプ、36 第2アーム駆動装置、36a モータ、36b エンコーダ、36c アンプ、37 姿勢保持装置、37a モータ、37b エンコーダ、37c アンプ、40 昇降装置、41 第1スライダ、42 第1ガイド部材、43 第1ボールねじ軸、44a モータ、44b エンコーダ、44c アンプ、45 高さ調整機構、46 第2スライダ、47 第2ガイド部材、48 第2ボールねじ軸、49 回転ハンドル、50 回転3軸機構、51 第1回転軸、52 第2回転軸、53 第3回転軸、54 筐体、54b 第1面、54t 第2面、54r 第3面、54f 第4面、55 第1回転装置、55a モータ、55b エンコーダ、55c アンプ、56 第2回転装置、56a モータ、56b エンコーダ、56c アンプ、57 第3回転装置、57a モータ、57b エンコーダ、57c アンプ、60 手先部、61 ダイレクトティーチングスイッチ、62 ケーブル、63 ケーブルガイド、64 パッチン錠、65 力覚センサ、66 操作ハンドル、67 停止スイッチ、71 モータ制御部、72 駆動電力供給部、73 IO部、80 ロボット制御装置、81 ロボット制御部、82 監視部、83 IO部、84 通信部、85 記憶部、90 操作パネル、91 フットスイッチ、93 タブレット端末、100 超音波診断装置、101 超音波プローブ、102 ケーブル、110 超音波診断装置本体、111 超音波診断制御部、112 画像処理部、113 画像表示部、541,542 開口、572 回転軸、573 ベルト、574 伝達軸、575 作用軸、576 支持軸、577,578 ベアリング、601 基部、602 保持部、603 把持部、611 押下部材、621 コネクタ、651 作用部、652 支持部、911 第1スイッチ、912 第2スイッチ、913 第3スイッチ、914 第4スイッチ、D1 検出回路、D2 検出回路。 10 robot system, 20 robot, 21 robot arm, 22 first arm, 23 second arm, 24 base, 25 base, 26 caster, 27 lever, 28 locking section, 29 housing, 31 first joint shaft, 32 second joint shaft, 33 attitude maintaining shaft, 35 first arm driving device, 35a motor, 35b encoder, 35c amplifier, 36 second arm driving device, 36a motor, 36b encoder, 36c amplifier, 37 attitude maintaining device, 37a motor, 37b encoder, 37c amplifier, 40 lifting device, 41 first Slider, 42, first guide member, 43, first ball screw shaft, 44a, motor, 44b, encoder, 44c, amplifier, 45, height adjustment mechanism, 46, second slider, 47, second guide member, 48, second ball screw shaft, 49, rotating handle, 50, three-axis rotating mechanism, 51, first rotating shaft, 52, second rotating shaft, 53, third rotating shaft, 54, housing, 54b, first surface, 54t, second surface, 54r, third surface, 54f, fourth surface, 55, first rotating device, 55a, motor, 55b, encoder, 55c, amplifier, 56, second rotating device, 56a, motor, 56b, encoder, 56c amplifier, 57 third rotation device, 57a motor, 57b encoder, 57c amplifier, 60 hand, 61 direct teaching switch, 62 cable, 63 cable guide, 64 snap lock, 65 force sensor, 66 operation handle, 67 stop switch, 71 motor control unit, 72 drive power supply unit, 73 IO unit, 80 robot control device, 81 robot control unit, 82 monitoring unit, 83 IO unit, 84 communication unit, 85 memory unit, 90 operation panel, 91 foot switch, 93 tablet terminal, 100 ultrasound diagnostic device, 10 1 ultrasonic probe, 102 cable, 110 ultrasonic diagnostic device main body, 111 ultrasonic diagnostic control unit, 112 image processing unit, 113 image display unit, 541, 542 opening, 572 rotating shaft, 573 belt, 574 transmission shaft, 575 action shaft, 576 support shaft, 577, 578 bearing, 601 base, 602 holding part, 603 gripping part, 611 pressing member, 621 connector, 651 action part, 652 support part, 911 first switch, 912 second switch, 913 third switch, 914 fourth switch, D1 detection circuit, D2 detection circuit.

Claims (9)

  1.  アーム部と、
     前記アーム部の先端部分に設けられた手先部と、
     前記手先部にかかる外力を監視する外力監視機能を実行可能な監視部と、
     操作者により操作されるスイッチと、
     前記スイッチがオンされている間、ダイレクトティーチングの実行を許可すると共に前記外力監視機能を無効化する制御部と、
     を備えるロボット。
    An arm portion;
    A hand portion provided at a tip portion of the arm portion;
    a monitoring unit capable of executing an external force monitoring function for monitoring an external force acting on the hand;
    A switch operated by an operator;
    a control unit that permits execution of direct teaching and disables the external force monitoring function while the switch is on;
    A robot comprising:
  2.  請求項1に記載のロボットであって、
     前記手先部に形成され、ダイレクトティーチングの実行時に操作者により把持される把持部を備え、
     前記スイッチは、前記把持部に設けられている、
     ロボット。
    The robot according to claim 1 ,
    a gripping portion formed on the hand portion and gripped by an operator when performing direct teaching,
    The switch is provided on the grip portion.
    robot.
  3.  請求項2に記載のロボットであって、
     前記手先部は、基部と、前記基部の一方の面に設けられ超音波プローブを保持する保持部と、前記基部の前記一方の面とは反対側の他方の面に形成された前記把持部と、を有する、
     ロボット。
    The robot according to claim 2,
    The hand portion has a base portion, a holding portion provided on one surface of the base portion and holding an ultrasonic probe, and the grip portion formed on the other surface of the base portion opposite to the one surface.
    robot.
  4.  請求項2に記載のロボットであって、
     前記把持部は、外側に突出する凸状に形成され、
     前記スイッチは、前記凸状部の頂部に設けられている、
     ロボット。
    The robot according to claim 2,
    The gripping portion is formed in a convex shape that protrudes outward,
    The switch is provided at the top of the convex portion.
    robot.
  5.  請求項4に記載のロボットであって、
     前記スイッチは、前記凸状部に組み込まれ、前記把持部の突出方向とは向かい合う方向に押下可能な押しボタンである、
     ロボット。
    The robot according to claim 4,
    The switch is a push button incorporated in the convex portion and can be pressed in a direction opposite to the protruding direction of the grip portion.
    robot.
  6.  請求項1ないし5いずれか1項に記載のロボットであって、
     前記アーム部の先端部分に連結された筐体と、
     前記筐体に接続された前記手先部と、
     前記手先部に設けられた前記スイッチと、
     一端が前記スイッチに接続されると共に他端が前記筐体に接続されたケーブルと、
     前記手先部の前記スイッチよりも前記筐体側の位置に固定され、前記ケーブルの一端を前記スイッチに導くケーブルガイドと、
     を備えるロボット。
    The robot according to any one of claims 1 to 5,
    A housing connected to a tip portion of the arm portion;
    The hand part connected to the housing;
    The switch provided on the hand part;
    a cable having one end connected to the switch and the other end connected to the housing;
    a cable guide that is fixed to a position on the hand tip that is closer to the housing than the switch and that guides one end of the cable to the switch;
    A robot comprising:
  7.  請求項1ないし5いずれか1項に記載のロボットであって、
     前記ロボットのモードとして、ダイレクトティーチングを実行するダイレクトティーチングモードと、ダイレクトティーチングにおいて記録されたポイントを再生する再生モードと、を有し、
     前記再生モード中に前記スイッチがオンされると、前記ダイレクトティーチングモードに切り替わる、
     ロボット。
    The robot according to any one of claims 1 to 5,
    The robot has a direct teaching mode for performing direct teaching and a replay mode for replaying points recorded in the direct teaching,
    When the switch is turned on during the playback mode, the mode is switched to the direct teaching mode.
    robot.
  8.  請求項1ないし5いずれか1項に記載のロボットであって、
     前記スイッチは、3ポジションのイネーブルスイッチである、
     ロボット。
    The robot according to any one of claims 1 to 5,
    The switch is a three-position enable switch.
    robot.
  9.  請求項1ないし5いずれか1項に記載のロボットであって、
     前記スイッチは、操作者の操作によりそれぞれ接点が開閉する独立した2つの検出回路を備える、
     ロボット。
    The robot according to any one of claims 1 to 5,
    The switch has two independent detection circuits whose contacts are opened and closed by the operation of an operator.
    robot.
PCT/JP2022/039972 2022-10-26 2022-10-26 Robot WO2024089815A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039972 WO2024089815A1 (en) 2022-10-26 2022-10-26 Robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/039972 WO2024089815A1 (en) 2022-10-26 2022-10-26 Robot

Publications (1)

Publication Number Publication Date
WO2024089815A1 true WO2024089815A1 (en) 2024-05-02

Family

ID=90830388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039972 WO2024089815A1 (en) 2022-10-26 2022-10-26 Robot

Country Status (1)

Country Link
WO (1) WO2024089815A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234185A (en) * 1988-03-16 1989-09-19 Nitta Ind Corp Teaching method for course of robot using force sensor and its device
WO2021075031A1 (en) * 2019-10-17 2021-04-22 株式会社Fuji Multi-joint robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234185A (en) * 1988-03-16 1989-09-19 Nitta Ind Corp Teaching method for course of robot using force sensor and its device
WO2021075031A1 (en) * 2019-10-17 2021-04-22 株式会社Fuji Multi-joint robot

Similar Documents

Publication Publication Date Title
KR102345782B1 (en) Surgical assistance device, control method therefor, and recording medium
US10154822B2 (en) Patient positioner system
CN108210070B (en) Mechanical arm, working method thereof and surgical robot
CN114126528A (en) Proximity sensor for surgical robotic arm manipulation
CN109171986B (en) Surgical robot based on ball-and-socket joint and tactile feedback and control device thereof
US20210197366A1 (en) Admittance mode control system and method for robotic arm
JP2020065904A (en) Surgery assistance apparatus
CN114126532A (en) Movable display system
JP6562174B1 (en) Surgery support device
WO2024089815A1 (en) Robot
WO2022153478A1 (en) Force sensor, collaborative robot, and robot
US20220387120A1 (en) Robotic surgical system, operator-side apparatus, and control method of robotic surgical system
WO2024089813A1 (en) Robot
WO2024089812A1 (en) Robot system
KR20200075535A (en) User interface device, master console for surgical robot apparatus and operating method of master console
WO2023062737A1 (en) Ultrasound diagnostic system and monitoring method therefor
WO2023248327A1 (en) Robot device and method for assisting direct teaching
WO2024089816A1 (en) Robot
CN114270089A (en) Movable display unit on track
US20240217115A1 (en) Robotic surgical system and method for controlling robotic surgical system
WO2023195146A1 (en) Robot device and ultrasound diagnostic system
WO2024089814A1 (en) Robot and method for mounting cover to robot
US20240122663A1 (en) Surgical robot, robotic surgical system, and control method for surgical robot
WO2023120526A1 (en) Surgery assisting system and surgery assisting robot
US20230034631A1 (en) Robotic surgical system, operator-side apparatus, and control method of robotic surgical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22963464

Country of ref document: EP

Kind code of ref document: A1