WO2024088113A1 - 压力检测装置及电子设备 - Google Patents

压力检测装置及电子设备 Download PDF

Info

Publication number
WO2024088113A1
WO2024088113A1 PCT/CN2023/125009 CN2023125009W WO2024088113A1 WO 2024088113 A1 WO2024088113 A1 WO 2024088113A1 CN 2023125009 W CN2023125009 W CN 2023125009W WO 2024088113 A1 WO2024088113 A1 WO 2024088113A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic sheet
shell
electronic device
pressure detection
detection device
Prior art date
Application number
PCT/CN2023/125009
Other languages
English (en)
French (fr)
Inventor
曹宇
赵帅
任慧超
袁基力
侯中杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024088113A1 publication Critical patent/WO2024088113A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate

Definitions

  • the present application relates to the field of sports health technology, and in particular to a pressure detection device and electronic equipment.
  • HRV heart rate variability
  • HRV refers to the time variation of heartbeat intervals. It is regulated by nerves, body fluids and other factors. It mainly reflects the regulation of the autonomic nervous system on the cardiovascular system and is an effective indicator of cardiac events and arrhythmias. Electronic devices with the function of monitoring HRV will be of great help to users' health monitoring.
  • Some application scenarios require electronic devices to have a single monitoring function
  • some application scenarios (such as HRV detection) require electronic devices to have continuous monitoring capabilities.
  • HRV detection requires electronic devices to have continuous monitoring capabilities.
  • PPG sensor of the electronic device is prone to misalignment with the user's blood vessels, resulting in inaccurate measurements. Therefore, electronic devices with more accurate HRV detection functions are needed.
  • the embodiments of the present application provide a pressure detection device and an electronic device, which are used to provide an electronic device that can detect HRV more accurately.
  • a pressure detection device is provided.
  • the pressure detection device is used to detect external pressure and convert the pressure into an electrical signal.
  • the pressure detection device includes an elastic sheet and one or more force-to-electric conversion modules.
  • the elastic sheet has a first surface for receiving external force, and the elastic sheet is used to deform under the action of external force. It is equivalent to saying that the elastic sheet serves as an external force receiving structure and transmits external force in the form of deformation.
  • the force-to-electric conversion module is arranged on the side of the elastic sheet away from the first surface, and the force-to-electric conversion module is used to convert the external force exerted on the elastic sheet into an electrical signal according to the deformation of the elastic sheet. That is, the force-to-electric conversion module obtains the electrical signal corresponding to the external force by detecting the changes brought about by the deformation of the elastic sheet.
  • the pressure detection device includes an elastic sheet and a force-electric conversion module, and the first surface of the elastic sheet serves as a receiving surface for external force.
  • the elastic sheet itself is elastic and will deform after receiving external force.
  • the force-electric conversion module generates an electrical signal according to the deformation of the elastic sheet to convert the pressure on the elastic sheet into an electrical signal to complete the measurement of the external force. Since the elastic sheet is a component that directly receives external force, the area of the external force receiving surface can be increased by increasing the area of the elastic sheet, thereby improving the fault tolerance of the location where the external force is applied. Increasing the area of the elastic sheet does not require the area of the force-electric conversion module to be increased simultaneously, which can reduce hardware costs and simplify system and data processing procedures.
  • the pressure detection device provided by the present application by making the elastic sheet as a receiver of external force, can improve the fault tolerance of the location where the external force is applied without excessively increasing the cost and structural complexity of the pressure detection device, has strong anti-disturbance, and improves the accuracy of the measurement data. At the same time, it can reduce costs and system complexity, and is easy to achieve miniaturized integration.
  • PPG photoplethysmograph
  • the pressure detection device Compared with PPG signals, the pressure detection device provided by the present application is used to measure the superficial arteries of the skin, which has a stronger ability to resist motion interference and the obtained pressure pulse wave signal is more accurate.
  • the pressure detection device can be integrated into a watch strap to measure the pressure pulse wave signal of arteries such as the radial artery and ulnar artery in the wrist.
  • the area of the elastic sheet is larger than the area of the electromechanical conversion module.
  • Increasing the area of the external force receiving surface of the pressure detection device can be achieved by increasing the area of the elastic sheet without increasing the area of the force-to-electricity conversion module, which can reduce hardware costs and simplify the system and data processing flow.
  • the elastic sheet is a flexible diaphragm or a rigid diaphragm.
  • the elastic sheet can be an elastic sheet of various materials to meet different usage requirements.
  • the force-to-electric conversion module includes a strain gauge and a resistance detection circuit.
  • the strain gauge is arranged on the surface of the elastic sheet.
  • the strain gauge is coupled to the resistance detection circuit.
  • the resistance detection circuit is used to detect the resistance of the strain gauge.
  • the force-to-electric conversion module includes a strain gauge and a resistance detection circuit.
  • the elastic sheet serves as a receiver of the pulsation force of the superficial temporal artery.
  • the strain gauge is in direct contact with the elastic sheet.
  • the strain gauge and the elastic sheet deform synchronously. Therefore, the strain gauge can accurately reflect the deformation of the elastic sheet, so that the accuracy of the detection result of the force-to-electric conversion module is higher.
  • the resistance detection circuit includes an unbalanced bridge or a balanced bridge. This is a mature implementation.
  • the force-to-electricity conversion module includes a micro-electromechanical system (MEMS).
  • MEMS micro-electromechanical system
  • the force-to-electricity conversion module includes a first electrode layer and a second electrode layer that are arranged opposite to each other; the first electrode layer is arranged on the surface of the elastic sheet, and the second electrode layer is arranged on the side of the first electrode layer away from the elastic sheet.
  • the elastic sheet is made of a conductive material; the force-to-electricity conversion module includes a second electrode layer, and the second electrode layer is arranged opposite to the elastic sheet.
  • the pressure detection device includes an open cavity; the elastic sheet is fixed at the cavity opening of the open cavity, and the force-to-electricity conversion module is arranged in the open cavity. In this way, when the pressure detection device is applied to an electronic device, the pressure detection device can be directly embedded in a suitable position of the electronic device without the need for structural assembly with the electronic device.
  • the elastic sheet is in the shape of a strip. The strip-shaped elastic sheet can increase the fault tolerance of the force application point without excessively increasing the area of the pressure detection device.
  • an electronic device may be glasses, headphones, VR glasses, AR glasses, a tablet, a mobile phone, a stylus, etc.
  • the electronic device includes: a pressure detection device, and the pressure detection device is any one of the pressure detection devices of the first aspect.
  • the electronic device also includes a frame, and the pressure detection device is fixed on the frame.
  • the frame has a first shell and a second shell that are relatively arranged, and the first shell and the second shell can be combined to form a frame, a nose pad, an ear hook, etc.
  • the first shell faces the force-applying side, for example, the first shell faces the side of the wearer's head.
  • the first shell has an opening, and the elastic sheet of the pressure detection device is fixed at the opening, and there is a distance between the elastic sheet and the second shell.
  • the elastic sheet contacts the wearer's head skin.
  • the electronic device provided in the embodiment of the present application includes the pressure detection device of any one of the first aspects.
  • the pressure detection device includes an elastic sheet and a force-to-electric conversion module. Since the elastic sheet is a component that directly receives external force, the area of the external force receiving surface can be increased by increasing the area of the elastic sheet (for example, increasing the size in the length direction), thereby improving the fault tolerance of the location of the external force application point. Increasing the area of the elastic sheet does not require increasing the area of the force-to-electric conversion module at the same time, which can reduce hardware costs and simplify the system and data processing procedures. Therefore, the electronic device provided by the present application has good fault tolerance for the positioning of the force application point. When different force application positions change to a certain extent, it can always be ensured that the elastic sheet covers the force application point, so that the external force applied by the force application point can be continuously and effectively measured.
  • the first surface of the elastic sheet is farther from the surface of the second shell relative to the first shell, and farther from the second shell.
  • the elastic sheet is fixedly connected to the frame.
  • At least one end of the elastic sheet is connected to the frame through an elastic connection portion.
  • the elastic connection portion can also be deformed accordingly to ensure the transmission of the deformation, so that the deformation degree of the elastic sheet is almost maximum. If each end of the elastic sheet is directly connected to a hard structure, the hard frame will hinder the deformation of the elastic sheet, affect the deformation amount of the elastic sheet, and thus affect the detection effect. Therefore, by making the elastic sheet At least one end of the sheet is connected to the frame through an elastic connection part, which is beneficial to the transmission of deformation of the elastic sheet and improves the accuracy and sensitivity of external force detection.
  • the elastic sheet is in a pre-stretched state.
  • the sensitivity of the elastic sheet to external forces can be increased, elastic hysteresis can be reduced, the resonance frequency can be increased, and the elastic sheet can be in closer contact with the wearer's head skin.
  • the frame further includes a support layer, which is disposed between the elastic sheet and the second shell, and is connected to the first shell and/or the second shell; there is a gap between the elastic sheet and the support layer.
  • the frame further includes a sealing portion, which is disposed between the first shell and the second shell; the sealing portion, the first shell, the second shell, and the elastic sheet form a sealed cavity, and the force-to-electricity conversion module of the pressure detection device is disposed in the sealed cavity, providing a sealed environment required for MEMS detection.
  • the first shell and/or the second shell has a through hole, which is connected to the sealed cavity; the frame also includes a sealing portion, which seals the through hole.
  • the sealing portion By providing the sealing portion on the right temple, when the geographical location (such as altitude change) or the ambient temperature (such as seasonal change) changes and causes the air pressure in the sealed cavity to differ greatly from the external atmospheric pressure, the glasses can send a signal to the terminal device (mobile phone, watch) to remind the user to open the sealing portion for adjustment to calibrate the air pressure in the sealed cavity so that the air pressure in the sealed cavity is consistent with the external atmospheric pressure, thereby improving the accuracy of the detection results in different scenarios.
  • the terminal device mobile phone, watch
  • the sealing portion includes a solenoid valve.
  • the solenoid valve can be opened and closed automatically. When the air pressure in the sealed cavity differs greatly from the external air pressure, the solenoid valve automatically opens to calibrate the air pressure in the sealed cavity. When the air pressure in the sealed cavity is close to the external air pressure, the solenoid valve automatically closes. Thus, automatic calibration of the air pressure in the sealed cavity is achieved.
  • the second electrode in the power-to-electricity conversion module is used as a part of the second shell.
  • a part of the second shell is used as the second electrode layer of the capacitor, and one structure plays two roles, which can simplify the preparation process.
  • the electronic device is a pair of glasses; the first shell and the second shell are combined to form the temples of the glasses, and the first shell has an opening at a position where it fits the skin above the superficial temporal artery of the wearer.
  • the electronic device is a pair of glasses; the first shell and the second shell are combined to form a nose pad of the glasses, and the first shell has an opening at a position where the first shell fits the skin above the dorsal nasal artery of the wearer.
  • the electronic device is an earhook earphone; the first shell and the second shell are combined to form the earhook of the earphone, and the first shell has an opening at a position where the first shell fits the skin above the posterior auricular artery of the wearer.
  • the electronic device further includes a communication module, which is used to establish communication with an external terminal.
  • a communication module which is used to establish communication with an external terminal.
  • the electronic device further includes a processor, which is coupled to the pressure detection device and is configured to process an electrical signal generated by the pressure detection device.
  • the electronic device further includes a battery, and the battery is used to supply power to the electronic device.
  • FIG1A is a schematic diagram of a framework of an electronic device according to an embodiment of the present application.
  • FIG1B is a schematic diagram of the effect of a user wearing an electronic device according to an embodiment of the present application.
  • FIG1C is a schematic diagram of a framework of another electronic device according to an embodiment of the present application.
  • FIG1D is a schematic diagram of a framework of another electronic device according to an embodiment of the present application.
  • FIG2A is a schematic diagram of a framework of a pressure detection device provided in an embodiment of the present application.
  • FIG2B is a schematic diagram of a working state of a pressure detection device provided in an embodiment of the present application.
  • FIG3A is a schematic diagram of a framework of an electronic device provided in an embodiment of the present application.
  • FIG3B is a schematic structural diagram of a right temple of an electronic device provided in an embodiment of the present application.
  • FIG3C is a schematic diagram of a user wearing an electronic device according to an embodiment of the present application.
  • FIG4A is a schematic structural diagram of a first housing provided in an embodiment of the present application.
  • FIG4B is a cross-sectional view taken along the line A1-A2 in FIG3B provided in an embodiment of the present application;
  • FIG4C is a schematic diagram of a partial structure of a right temple provided in an embodiment of the present application.
  • FIG5A is a schematic diagram of a connection method between an elastic sheet and a first shell provided in an embodiment of the present application
  • FIG5B is a cross-sectional view taken along line B1-B2 in FIG5A provided in an embodiment of the present application;
  • FIG5C is a cross-sectional view of a right temple provided in an embodiment of the present application.
  • 6A-6D are schematic diagrams of the relative positions of an elastic sheet and a wearer's superficial temporal artery provided in an embodiment of the present application;
  • FIG7A is a cross-sectional view of another right temple provided in an embodiment of the present application.
  • FIG7B is a cross-sectional view of another right temple provided in an embodiment of the present application.
  • FIG8A is a schematic structural diagram of a force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG8B is a schematic diagram of a working process of the pressure detection device shown in FIG8A provided in an embodiment of the present application;
  • FIG8C is a schematic diagram of the structure of another force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG9A is a schematic structural diagram of another force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG9B is a schematic structural diagram of another force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG9C is a schematic diagram of a working process of the pressure detection device shown in FIG9B provided in an embodiment of the present application;
  • FIG9D is a schematic structural diagram of another force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG10A is a schematic diagram of the structure of another force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG10B is a schematic structural diagram of another force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG10C is a schematic diagram of a working process of the pressure detection device shown in FIG10B provided in an embodiment of the present application;
  • FIG10D is a schematic structural diagram of another force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG10E is a schematic structural diagram of another force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG11A is a schematic structural diagram of another force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG11B is a schematic structural diagram of another force-to-electricity conversion module provided in an embodiment of the present application.
  • FIG12A is a schematic diagram of another embodiment of the present application showing the wearing effect of an electronic device by a user
  • FIG12B is a schematic diagram of an action state of a user wearing an electronic device according to an embodiment of the present application.
  • FIG12C is a schematic diagram of another operation state of a user wearing an electronic device according to an embodiment of the present application.
  • FIG13 is a schematic diagram of a framework of another electronic device provided in an embodiment of the present application.
  • 14A-14C are schematic diagrams of the interaction process between the electronic device and the external terminal provided in an embodiment of the present application.
  • 10-elastic sheet 20-mechanical-electric conversion module; 21-strain gauge; 22-resistance detection circuit; 23-first electrode layer; 24-second electrode layer; 30-frame; 31-first shell; 311-opening; 32-second shell; 321-through hole; 33-sealing part; 40-pressure detection device.
  • directional terms such as “up”, “down”, “left” and “right” may be defined including but not limited to the orientation relative to the schematic placement of the components in the drawings. It should be understood that these directional terms may be relative concepts, which are used for relative description and clarification, and may change accordingly according to changes in the orientation of the components in the drawings.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.
  • coupled can be a direct electrical connection or an indirect electrical connection through an intermediate medium.
  • contact can be a direct contact or an indirect contact through an intermediate medium.
  • a and/or B may represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B may be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • Heart rate variability refers to the changes in the differences between successive heartbeats, and contains information about the regulation of the cardiovascular system by neurohumoral factors.
  • Photoplethysmograph an optically acquired plethysmogram, can be used to detect changes in blood volume in tissue microvessels.
  • the superficial temporal artery is the terminal branch of the external carotid artery. It passes through the side of the face between the temporomandibular joint and the ear and runs upward to the scalp.
  • the dorsal nasal artery (arteria dorsalis nasi, ADN) is the terminal branch of the ophthalmic artery of the internal carotid artery. It exits the orbit through the medial canthal ligament, anastomoses with the medial canthal artery, and is distributed on the dorsum of the nose.
  • the posterior auricular artery is a small artery that originates from the terminal end of the external carotid artery, beyond the occipital artery and runs posteriorly.
  • Micro-electro-mechanical system refers to a device that is a few millimeters or even smaller in size. Its internal structure is generally at the micron or even nanometer level, and it is an independent system.
  • Augmented reality is a technology that integrates virtual information with the real world.
  • VR virtual reality
  • Polyimide (PI) a type of polymer containing an imide ring (-CO-N-CO-) in the main chain, is one of the organic polymer materials with the best comprehensive performance.
  • TPU Thermoplastic polyurethanes
  • MDI diphenylmethane diisocyanate
  • TDI toluene diisocyanate
  • macromolecular polyols and low molecular polyols chain extenders
  • PET Polyethylene terephthalate
  • HRV Heart rate variability
  • HRV is obtained from the continuous time domain waveform of the heart pulsation, and the detection equipment needs to have continuous monitoring capabilities.
  • wearable electronic devices are ideal carriers for continuous monitoring of vital signs signals.
  • wearable devices such as watches and bracelets
  • PPG photoplethysmograph
  • the pressure pulse wave signal obtained by using a pressure sensor to measure the superficial arteries of the skin has a stronger ability to resist motion interference.
  • the pressure sensor can be integrated into the watch strap to measure the pressure pulse wave signal of the radial artery and ulnar artery in the wrist.
  • the electronic device After the electronic device obtains the pressure pulse wave signal, it calculates the HRV parameters based on the pressure pulse wave signal to detect HRV.
  • the superficial temporal artery is a type of superficial artery in the human body. It is located on both sides of the head and is the main artery of the head. STA originates from the carotid artery, and the pulsation can be felt in front of and above the tragus and above the zygomatic arch.
  • the dorsal nasal artery is a type of superficial artery in the human body. It is the terminal branch of the ophthalmic artery and is distributed on the dorsum of the nose.
  • the posterior auricular artery is a type of superficial artery in the human body and is located behind the ear.
  • An embodiment of the present application provides an electronic device, and the electronic device may include a wearable electronic device or a terminal.
  • the wearable device provided in the embodiment of the present application is a portable device that can detect the external force applied by the user.
  • the wearable electronic device may also have a data processing function, and the wearable electronic device may also be connected to various terminal devices such as mobile phones and bracelets.
  • the wearable electronic device may be a head-mounted device for measuring the pressure pulse wave signal of the user's superficial artery.
  • the wearable electronic device may be glasses, headphones, virtual reality (VR) glasses, augmented reality (AR) glasses, etc.
  • An embodiment of the present application provides a terminal, and the electronic device terminal may be a tablet, a mobile phone, a stylus or other handheld device for detecting the user's hand holding condition.
  • the wearable electronic device is glasses.
  • a pair of glasses is shown, which includes a frame, temples, and nose pads.
  • the frame includes a left frame and a right frame, and the left frame and the right frame are connected by a connecting portion.
  • the nose pads include a left nose pad and a right nose pad, and the left nose pad is connected to the left frame, and the right nose pad is connected to the right frame.
  • the left frame, the right frame, the left nose pad, the right nose pad, and the connecting portion can be an integrally formed structure.
  • the temples include a left temple and a right temple, and the left temple is connected to the left frame, and the right temple is connected to the right frame.
  • the temples are placed on the wearer's ears, clamping the skin on both sides of the wearer's head to prevent the glasses from slipping off.
  • the temples cross the wearer's superficial temporal artery, and the inner side thereof fits tightly with the skin just above the superficial temporal artery.
  • the nose pads are placed on the wearer's nose dorsum, fitting tightly with the wearer's skin just above the dorsal nasal artery.
  • the direction of "above” in “above the artery” can be understood as the direction from the artery to the skin.
  • the glasses may not include a frame.
  • the structure of the glasses illustrated in the embodiment of the present application is only an illustration and is not intended to be limiting.
  • the glasses in the embodiments of the present application may be any form of glasses, such as myopia glasses, astigmatism glasses, flat glasses, reading glasses, night vision goggles, anti-sand goggles, sunglasses, computer goggles, anti-ultraviolet glasses, VR glasses, AR glasses, etc.
  • the wearable electronic device is a headset
  • the headset may be, for example, an earhook headset, an earbud-type earhook headset, or an in-ear earhook headset.
  • an in-ear earhook headset comprising an earhook and an earplug, wherein the earhook and the earplug are connected.
  • the earplug When the user wears the headset, the earplug is inserted into the wearer's ear.
  • the ear hook is hung on the wearer's ear and fits tightly to the wearer's skin just above the posterior auricular artery.
  • a piezoresistive pressure sensor may be provided on the temple of the glasses to achieve measurement of the pressure pulse wave signal of the superficial temporal artery.
  • the piezoresistive pressure sensor installed on the temple can measure the pressure pulse signal of the superficial temporal artery
  • the piezoresistive pressure sensor is small in shape and has low tolerance to position. As a result, when users measure the pressure pulse signal of the superficial temporal artery, they need to actively position the piezoresistive pressure sensor and press it above the superficial temporal artery, which is not conducive to the continuous monitoring of the pressure pulse signal.
  • a plurality of array-arranged piezoresistive pressure sensors are provided on the temples. As long as one piezoresistive pressure sensor is attached to the skin above the superficial temporal artery, the pressure pulse signal of the superficial temporal artery can be measured.
  • the pressure sensor array has complex internal circuits, which will lead to high system complexity.
  • an embodiment of the present application provides a pressure detection device for detecting externally applied pressure.
  • the pressure may be, for example, the pressure applied by the user's artery pulsating, the hand-gripping pressure applied by the user, or any other form of pressure applied.
  • the pressure detection device includes an elastic sheet 10 and at least one force-to-electricity conversion module 20 .
  • the pressure detection device includes one force-to-electricity conversion module 20 .
  • the elastic sheet 10 has a first surface for receiving external force, and the elastic sheet 10 is used to deform under the action of external force.
  • the embodiment of the present application does not limit the material of the elastic sheet 10, and it is sufficient that the elastic sheet 10 has the function of changing from the first state to the second state and then returning to the first state.
  • the second state is a stretched state relative to the first state.
  • the elastic sheet 10 is in a strip shape, and the length of the elastic sheet 10 in the second state is greater than the length of the elastic sheet 10 in the first state. And/or, the width of the elastic sheet 10 in the second state is greater than the width of the elastic sheet 10 in the first state.
  • the material of the elastic sheet 10 can be a flexible material.
  • the material of the elastic sheet 10 includes polyimide (PI), thermoplastic polyurethanes (TPU) or polyethylene terephthalate.
  • the elastic sheet 10 may also be made of a rigid material, for example, the elastic sheet 10 may be made of metal, hard plastic, and the like.
  • the embodiment of the present application does not limit the thickness of the elastic sheet 10 , and the embodiment of the present application does not limit the shape of the elastic sheet 10 .
  • the shape of the elastic sheet 10 can be a strip, a curved shape, a ring shape, etc.
  • the force-to-electricity conversion module 20 is disposed on the side of the elastic sheet 10 away from the first surface, that is, the force-to-electricity conversion module 20 is disposed on the side of the elastic sheet 10 that does not receive external force.
  • the force-to-electricity conversion module 20 is used to convert the external force on the elastic sheet 10 into an electrical signal according to the deformation of the elastic sheet 10.
  • the area of the elastic sheet 10 is larger than the area of the force-to-electricity conversion module 20 .
  • the area of the external force receiving surface of the pressure detection device needs to be increased, it can be achieved by increasing the area of the elastic sheet 10 without increasing the area of the force-to-electricity conversion module 20 .
  • the pressure detection device includes an elastic sheet 10 and a force-to-electric conversion module 20, and the first surface of the elastic sheet 10 is used as a receiving surface of the external force.
  • the elastic sheet 10 itself is elastic and will deform after being subjected to external force.
  • the force-to-electric conversion module 20 generates an electrical signal according to the deformation of the elastic sheet 10 to convert the pressure on the elastic sheet 10 into an electrical signal to complete the measurement of the external force. Since the elastic sheet 10 is a component that directly receives external force, the area of the external force receiving surface can be increased by increasing the area of the elastic sheet 10, thereby improving the fault tolerance of the location where the external force is applied.
  • the pressure detection device provided by the present application, by making the elastic sheet 10 as a receiver of external force, can improve the fault tolerance of the location where the external force is applied without excessively increasing the cost and structural complexity of the pressure detection device, compared with making the force-to-electric conversion module 20 as a receiver of external force. At the same time, it can reduce costs and system complexity, and it is easy to achieve miniaturized integration.
  • the relative positional relationship between the force-to-electricity conversion module 20 and the elastic sheet 10 is different according to the different structures of the force-to-electricity conversion module 20.
  • the structure of the pressure detection device provided in the embodiment of the present application is schematically described in combination with the structure of the electronic device.
  • an electronic device which is a pair of glasses with an external force detection function.
  • the glasses include a frame 30, and the frame 30 has a first shell 31 and a second shell 32 that are arranged opposite to each other, and the first shell 31 and the second shell 32 are combined to form the temples of the glasses.
  • the first shell 31 and the second shell 32 can be combined to form the left temple of the glasses, and the first shell 31 and the second shell 32 can also be combined to form the right temple of the glasses.
  • FIG3A is only a schematic diagram and does not make any limitation. Of course, the structures of the left temple and the right temple of the glasses can also be the same, and both are formed by combining the first shell 31 and the second shell 32.
  • first shell 31 and the second shell 32 can be separate structures, and the first shell 31 and the second shell 32 can be matched by subsequent processing.
  • the first shell 31 and the second shell 32 can also be an integral structure, that is, the first shell 31 and the second shell 32 are an integrally formed structure.
  • the material of the first shell 31 and the second shell 32 can be, for example, a hard material.
  • the material of the first shell 31 and the second shell 32 is hard plastic or metal.
  • the material of the first shell 31 and the second shell 32 can be the same, or the material of the first shell 31 and the second shell 32 can be different.
  • the frame 30 of the glasses also includes a spectacle frame and a nose pad.
  • Fig. 3A takes the example that the spectacle frame includes a left spectacle frame and a right spectacle frame, and the nose pad includes a left nose pad and a right nose pad for illustration.
  • the glasses further include a pressure detection device, which is fixed on the frame 30. As shown in Fig. 3B, when the right temple includes the first shell 31 and the second shell 32, the pressure detection device 40 is fixed on the right temple.
  • the pressure detection device 40 is in contact with the skin above the superficial temporal artery of the wearer.
  • the first shell 31 is closer to the wearer's head than the second shell 32.
  • the first shell 31 is the inner shell of the right temple
  • the second shell 32 is the outer shell of the right temple.
  • the first shell 31 has an opening 311.
  • the position of the opening 311 corresponds to the position of the wearer's superficial temporal artery.
  • the first shell 31 has an opening 311 at a position where the skin above the wearer's superficial temporal artery is in contact.
  • the pressure detection device 40 is fixed at a position corresponding to the opening 311, and the opening 311 exposes the pressure detection device 40 so that the pressure detection device 40 can directly contact the skin above the wearer's superficial temporal artery.
  • the embodiment of the present application does not limit the shape of the opening.
  • the shape of the opening in FIG. 4A is only a schematic diagram.
  • the pressure detection device 40 includes an elastic sheet 10 and a force-to-electricity conversion module 20 .
  • the first surface of the elastic sheet 10 faces the side where the wearer's head is located.
  • the elastic sheet 10 is fixed at the opening 311 of the first shell 31.
  • the area of the elastic sheet 10 can be greater than or equal to the area of the opening 311, and the area of the elastic sheet 10 can also be smaller than the area of the opening 311. The embodiment of the present application does not limit this.
  • the embodiment of the present application does not limit the fixing method of the elastic sheet 10, and the elastic sheet 10 can be fixedly connected to the frame 30 of the eyeglasses.
  • the elastic sheet 10 is fixed to the first shell 31.
  • the elastic sheet 10 is fixed to the second shell 32 through a fixing member.
  • the pressure detection device 40 has a support frame, the elastic sheet 10 is fixed on the support frame, and the support frame is fixedly connected to the frame 30 of the glasses.
  • the shape of the support frame should not affect the deformation of the elastic sheet 10.
  • the support frame has an open cavity, the elastic sheet 10 is fixed at the cavity of the open cavity, and the force-electric conversion module 20 is arranged in the open cavity. In this way, it is equivalent to directly embedding the pressure detection device 40 in the frame 30 of the glasses.
  • the material of the elastic sheet 10 may be a flexible material, for example, the material of the elastic sheet 10 includes PI, TPU or PET, etc.
  • the material of the elastic sheet 10 may also be a rigid material, for example, the material of the elastic sheet 10 includes metal, hard plastic, etc.
  • the first surface of the elastic sheet 10 is flush with a surface (second surface) of the first shell 31 away from the second shell 32 .
  • the first surface of the elastic sheet 10 is closer to the wearer's head than the second surface of the first shell 31 .
  • the first surface of the elastic sheet 10 is farther from the second shell 32 than the second surface of the first shell 31 .
  • the elastic sheet 10 By making the first surface of the elastic sheet 10 closer to the wearer's head than the second surface of the first shell 31, the elastic sheet 10 can fit more closely to the skin above the wearer's superficial temporal artery, thereby improving the sensitivity of the elastic sheet 10 to the pulsation of the superficial temporal artery and improving the accuracy of the measured pressure pulse signal of the superficial temporal artery.
  • the working principle of the pressure detection device 40 is as follows: when the user is not wearing glasses, the elastic sheet 10 is in the first state, and the dimension of the elastic sheet 10 along the length direction of the right temple is L1. After the user wears glasses, the pressure detection device 40 contacts the skin above the wearer's superficial temporal artery. During the pulsation of the superficial temporal artery, an external force is applied to the elastic sheet 10, and the elastic sheet 10 is deformed under the action of the external force, changing from the first state to the second state. The length of the elastic sheet 10 in the second state is L2, and L2>L1. Between two pulsations of the superficial temporal artery, the state of the elastic sheet 10 will return to the first state.
  • the elastic sheet 10 receives the external force applied when the superficial temporal artery pulsates, and converts the external force into the deformation of the elastic sheet 10.
  • the force-to-electricity conversion module 20 converts the external force into an electrical signal according to the deformation of the elastic sheet 10 to complete the detection of the external force.
  • At least one end of the elastic sheet 10 is connected to the frame 30 via an elastic connection portion.
  • FIG. 5A illustrates an example in which two long sides of the elastic sheet 10 are connected to the first shell 31 via elastic connecting parts, and two short sides of the elastic sheet 10 are directly and fixedly connected to the first shell 31 .
  • the two long side ends of the elastic sheet 10 are connected to the first housing 31 through elastic connecting parts.
  • the two long side ends of the elastic sheet 10 may also be connected to the second housing 32 through elastic connecting parts.
  • the material of the elastic connection part may include, for example, rubber or the like.
  • At least one end of the elastic sheet 10 is connected to the frame 30 through an elastic connection part.
  • the elastic connection part can also be deformed accordingly to ensure the transmission of deformation, so that the deformation degree of the elastic sheet 10 reaches almost the maximum. If each end of the elastic sheet 10 is directly connected to a hard structure, the hard frame 30 will hinder the deformation of the elastic sheet 10, affecting the deformation amount of the elastic sheet 10, thereby affecting the detection effect. Therefore, by making at least one end of the elastic sheet 10 pass through the elastic connection part and the frame 30, it is beneficial to the transmission of the deformation of the elastic sheet 10, and improve the accuracy and sensitivity of the external force detection.
  • the elastic sheet 10 in the glasses is in a pre-stretched state.
  • the pre-stretched state can also be understood as a tensioned state.
  • the pre-stretched state can be formed by, for example, applying prestress to the elastic sheet 10 when the elastic sheet 10 is fixed to the frame 30.
  • the dimension of the elastic sheet 10 along the length direction of the right temple is L3.
  • the dimension of the elastic sheet 10 along the length direction of the right temple is L1. L3 ⁇ L1 ⁇ L2.
  • the method of judging whether the elastic sheet 10 is in the pre-stretched state may include: removing the elastic sheet 10 from the frame 30, and comparing the dimension L3 of the elastic sheet 10 along the length direction of the temple after removal with the dimension L1 of the elastic sheet 10 along the length direction of the temple before removal. If L1>L3, it means that the elastic sheet 10 is in the pre-stretched state. Alternatively, directly cut a knife on the elastic sheet 10, if there is a gap at the knife edge, the elastic sheet 10 is in the pre-stretched state. If the knife edge can be closed, the elastic sheet 10 is not in the pre-stretched state.
  • the sensitivity of the elastic sheet 10 to external forces can be increased, elastic hysteresis can be reduced, the resonance frequency can be increased, and the elastic sheet 10 can be brought into closer contact with the wearer's head skin.
  • the elastic sheet 10 is in the shape of a strip, and the long side direction of the elastic sheet 10 is the same as the extending direction of the temple.
  • the shape of the elastic sheet 10 By setting the shape of the elastic sheet 10 to be strip-shaped, the area of the elastic sheet 10 that can contact the skin above the superficial temporal artery can be increased. As shown in Figures 6A to 6D, even if the relative position of the superficial temporal artery and the elastic sheet 10 of the wearer with different head shapes, different viewing angles, different wearing positions, and different motion states changes, the elastic sheet 10 can always be in close contact with the skin above the superficial temporal artery, thereby improving the fault tolerance of the pressure detection device 40 to the change of the superficial temporal artery position.
  • the length of the elastic sheet 10 is 2 cm to 4 cm.
  • the length of the elastic sheet 10 is 3 cm.
  • the frame further includes a supporting layer, which is disposed between the elastic sheet 10 and the second shell 32 , and is connected to the first shell and/or the second shell, with a gap between the elastic sheet 10 and the supporting layer.
  • the support layer may be a hard sheet, for example, disposed at the midline where the first shell 31 and the second shell 32 meet, and the support layer is connected to the first shell and/or the second shell to provide support for the right temple.
  • the support layer is disposed on the surface of the second housing 32 facing the elastic sheet 10.
  • the thickness of the support layer is not limited in the present embodiment, and a gap between the elastic sheet 10 and the support layer is sufficient.
  • the material of the support layer can be, for example, a soft material with elasticity, or a hard material.
  • the support strength of the right temple can be increased, thereby improving the service life of the glasses.
  • a lighter material should be selected to reduce the overall weight of the right temple and improve wearing comfort.
  • the material of the support layer is an insulating material, so that the influence of the support layer on the detection result can be reduced.
  • the force-to-electricity conversion module 20 includes a strain gauge 21 and a resistance detection circuit 22.
  • the strain gauge 21 is arranged on the surface of the elastic gauge 10.
  • the strain gauge 21 is coupled to the resistance detection circuit 22.
  • the resistance detection circuit 22 is used to detect the resistance of the strain gauge.
  • the strain gauge 21 is a component composed of a sensitive grid and the like for measuring strain.
  • the working principle of the strain gauge 21 is based on the strain effect, that is, when a conductor or semiconductor material is mechanically deformed under the action of an external force, its resistance value changes accordingly. This phenomenon is called the "strain effect".
  • the material of the strain gauge 21 may include, for example, a conductor or a semiconductor.
  • the strain gauge 21 may be fixed on the surface of the elastic sheet 10 away from the first surface by bonding or the like.
  • the strain gauge 21 may also be directly prepared on the surface of the elastic sheet 10 .
  • the elastic sheet 10 when the user wears the glasses, the elastic sheet 10 will fit the skin above the wearer's superficial temporal artery. During the pulsation of the superficial temporal artery, force will be applied to the elastic sheet 10, and the elastic sheet 10 will deform under the action of the force, and the length of the elastic sheet 10 will increase.
  • the strain gauge 21 attached to the surface of the elastic sheet 10 will deform as the elastic sheet 10 deforms, and the length of the strain gauge 21 changes from S1 in FIG8A to S2 in FIG8B . When the length of the strain gauge 21 changes, the resistance value of the strain gauge 21 will also change accordingly.
  • the resistance detection circuit 22 can generate a corresponding voltage signal by detecting the change in the resistance value of the strain gauge 21.
  • a voltage signal corresponds to a force.
  • the resistance detection circuit 22 may include, for example, an unbalanced bridge or a balanced bridge.
  • the balanced bridge may be, for example, a Wheatstone bridge, and the unbalanced bridge may be, for example, a DC voltage bridge.
  • the embodiment of the present application does not limit the location of the resistance detection circuit 22.
  • the resistance detection circuit 22 can be set on the second housing 32, or on the first housing 31.
  • the resistance detection circuit 22 can be set below the area where the elastic sheet 10 is located, or below the area where the first housing 31 is located.
  • the resistance detection circuit 22 is disposed at an end of the right temple close to the frame.
  • the resistance detection circuit 22 needs to be connected to an electrical signal. By placing the resistance detection circuit 22 close to the frame, the resistance detection circuit 22 can be easily coupled to other modules in the glasses, which can reduce the length of the wires and simplify the layout.
  • the strain gauge 21 may be disposed at any position on the surface of the elastic sheet 10 . In some embodiments, as shown in FIG. 8C , the strain gauge 21 and the resistance detection circuit 22 are located at the same end of the elastic sheet 10 .
  • the strain gauge 21 is arranged close to the resistance detection circuit 22, which can reduce the length of the interconnection wire between the strain gauge 21 and the resistance detection circuit 22, thereby simplifying the layout and reducing the influence of the wire on the detection result.
  • the force-to-electricity conversion module 20 includes a strain gauge 21 and a resistance detection circuit 22.
  • the elastic sheet 10 is used to receive and transmit the pulsation signal of the superficial temporal artery.
  • the strain gauge 21 is used to measure the strain generated by the elastic sheet 10 and transmit the strain to the resistance detection circuit 22.
  • the resistance detection circuit 22 realizes the measurement of the strain and generates a voltage signal.
  • the force-to-electricity conversion module 20 includes a strain gauge 21 and a resistance detection circuit 22.
  • the elastic sheet 10 is a receiver of the pulsation force of the superficial temporal artery.
  • the strain gauge 21 is in direct contact with the elastic sheet 10, and the strain gauge 21 and the elastic sheet 10 are deformed synchronously. Therefore, the strain gauge 21 can accurately reflect the deformation of the elastic sheet 10, so that the accuracy of the detection result of the force-to-electricity conversion module 20 is high.
  • the force-to-electricity conversion module 20 includes a micro-electro-mechanical system (MEMS).
  • MEMS micro-electro-mechanical system
  • the right temple in the frame also includes a sealing portion, which is arranged between the first shell 31 and the second shell 32.
  • the sealing portion and the first shell 31, the second shell 32, and the elastic sheet 10 form a sealed cavity, and the force-to-electricity conversion module 20 is arranged in the sealed cavity Q.
  • the sealing part is in the shape of a hollow column
  • the second shell 32 covers the bottom surface of the hollow column
  • the first shell 31 and the elastic sheet 10 cover the top surface of the hollow column, thereby forming a sealed cavity Q for placing the MEMS.
  • the sealing portion includes two parts, and the right temple in this application is a strip-shaped sealed cavity, as shown in Figure 9A, the two parts of the sealing portion interrupt the strip-shaped sealed cavity of the right temple, and the cavity between the two parts of the sealing portion serves as an enclosed sealed cavity Q for placing MEMS.
  • the material of the sealing part may be, for example, potting glue.
  • the sealing cavity Q may be filled with gas or liquid.
  • the force-to-electricity conversion module 20 is disposed away from the end of the right temple, so that the length of the conductor electrically connected to the force-to-electricity conversion module 20 can be reduced.
  • the force-to-electricity conversion module 20 can be fixed at any position in the sealed cavity Q, for example, the force-to-electricity conversion module 20 is fixed on the second shell 32 .
  • the air pressure in the sealed cavity Q is constant, for example, the air pressure in the sealed cavity Q is P.
  • the pulsation of the wearer's superficial temporal artery causes the elastic sheet 10 to deform.
  • the elastic sheet 10 is used to convert the pulsation of the superficial temporal artery into a volume change of the sealed cavity Q, compressing the gas or liquid in the sealed cavity Q, causing the pressure in the sealed cavity Q to increase, and the air pressure in the sealed cavity Q becomes P+ ⁇ P.
  • MEMS is used to measure the air pressure change caused by the volume change. By measuring the air pressure value in the sealed cavity Q, MEMS can obtain the pressure pulse wave signal of the superficial temporal artery.
  • the MEMS should be arranged between the supporting layer and the elastic sheet 10 .
  • the structure is simple, easy to prepare, and small in size, which is conducive to miniaturized integration.
  • the first shell 31 and/or the second shell 32 has a through hole, and the through hole is connected to the sealed cavity Q.
  • the second housing 32 has a through hole 321 , which is in communication with the sealed cavity Q.
  • the frame further includes a sealing portion 33 , which seals the through hole 321 .
  • the embodiment of the present application does not limit the structure and material of the sealing portion 33, as long as it can seal the through hole 321.
  • the sealing portion 33 is a sealing screw.
  • the glasses can send a signal to the terminal device (mobile phone, watch) to remind the user to open the sealing portion 33 for adjustment to calibrate the air pressure in the sealed cavity Q so that the air pressure in the sealed cavity Q is consistent with the external atmospheric pressure, thereby improving the accuracy of the detection results in different scenarios.
  • the terminal device mobile phone, watch
  • the through hole 321 may be provided on the second shell 32 , or on the first shell 31 .
  • both the first shell 31 and the second shell 32 may be provided with through holes.
  • the function of comparing the air pressure in the sealed cavity Q with the external atmospheric pressure can be performed by a processor in the glasses.
  • the measured air pressure in the sealed cavity Q is compared with the set value. If the measured air pressure value is significantly different from the set value, it is determined that the air pressure in the sealed cavity Q is significantly different from the external air pressure, and the air pressure calibration of the sealed cavity Q is required.
  • the sealing portion 33 is a solenoid valve.
  • the solenoid valve can be opened and closed automatically.
  • the solenoid valve automatically opens to calibrate the air pressure in the sealed chamber Q.
  • the solenoid valve automatically closes, thereby achieving automatic calibration of the air pressure in the sealed chamber Q.
  • the force-to-electricity conversion module 20 includes a first electrode layer 23 and a second electrode layer 24 that are arranged opposite to each other.
  • the first electrode layer 23 is arranged on the surface of the elastic sheet 10 facing the second shell 32, and the second electrode layer 24 is arranged on the side of the first electrode layer 23 away from the elastic sheet 10.
  • the second electrode layer 24 is disposed on the surface of the second housing 32 facing the first housing 31.
  • the material of the second housing 32 is not limited.
  • the second electrode layer 24 is used as a part of the second shell 32. That is, the part of the second shell 32 facing the first electrode layer 23 is used as the second electrode layer 24. Then, the part of the second shell 32 facing the first electrode layer 23 is a conductive material, and the rest can be plastic or a conductive material.
  • the part of the second shell 32 facing the first electrode layer 23 is a conductive material, and the rest can be plastic or a conductive material.
  • the first electrode layer 23 and the second electrode layer 24 form a flat capacitor, as shown in FIG10B .
  • the capacitance between the first electrode layer 23 and the second electrode layer 24 is C.
  • the pulsation of the wearer's superficial temporal artery causes the elastic sheet 10 to deform, and the elastic sheet 10 is used to convert the pulsation of the superficial temporal artery into a change in the distance between the first electrode layer 23 and the second electrode layer 24.
  • the distance between the first electrode layer 23 and the second electrode layer 24 becomes smaller, and the capacitance between the first electrode layer 23 and the second electrode layer 24 becomes C+ ⁇ C.
  • the pressure pulse wave signal of the superficial temporal artery can be obtained by detecting the capacitance of the capacitor.
  • the structure is simple, the principle is simple, and it is easy to implement.
  • the first electrode layer 23 includes a plurality of electrode blocks disposed at intervals.
  • each electrode block and the second electrode layer 24 form a capacitor, and the structure of the force-to-electricity conversion module 20 is a capacitor array.
  • the pole distance in each capacitor changes independently, and each capacitor is detected independently, which can improve the sensitivity of the superficial temporal artery pulsation.
  • the material of the elastic sheet 10 is a conductive material, and the elastic sheet 10 serves as the first electrode layer 23 .
  • the elastic sheet 10 and the second electrode layer 24 constitute a capacitor.
  • the second electrode layer 24 may be an electrode layer disposed on the surface of the second housing 32.
  • the portion of the second housing 32 facing the elastic sheet 10 may be directly used as the second electrode layer 24.
  • the structure of the power-to-electricity conversion module 20 can be simplified, saving costs and manufacturing processes.
  • the frame further includes support piles disposed between the first shell 31 and the second shell 32 .
  • the support pile is fixedly connected to the first shell 31 and/or the second shell 32 to provide support force for the right temple and reinforce the right temple.
  • the support piles may also be fixedly connected to the elastic sheet 10 to fix the elastic sheet 10 .
  • the support piles can be used as the sealing part.
  • the support piles are located outside the sealing part, that is, the support piles are not located in the sealing cavity Q.
  • the support piles are located in the sealed cavity Q.
  • the existence of the support piles should not affect the change of the air pressure in the cavity where the MEMS is located driven by the elastic sheet 10 .
  • the MEMS is located on the side of the support pile away from the sealing portion. In this way, the presence of the support pile will not affect the detection of pressure changes by the MEMS.
  • the MEMS is located on the side of the support pile facing the sealing portion. Then, there needs to be a gap at the support pile to connect the sealed cavities on the left and right sides of the support pile. In this way, the pressure change of the sealed cavity Q1 between the support piles can be transmitted to the pressure change of the sealed cavity Q2 where the MEMS is located.
  • the above-mentioned gap for example, can be an opening located on the support pile, or a gap between the support pile and the first shell 31, or a gap between the support pile and the second shell 32, etc.
  • the above is only an example of a pressure detection device 40 including one force-to-electricity conversion module 20.
  • the pressure detection device 40 may also include multiple force-to-electricity conversion modules 20.
  • the signals of multiple force-to-electricity conversion modules 20 are fused by an algorithm to improve the accuracy of the detection result.
  • the left temple of the glasses may also include a pressure detection device 40 , and the structure of the pressure detection device 40 may be any of the pressure detection devices 40 illustrated above.
  • the pressure detection device 40 is arranged on a single temple (the left temple or the right temple), which can save costs.
  • the pressure detection device 40 is arranged on both temples (the left temple and the right temple), and the measurement results of both temples are calculated with a fusion algorithm, which can improve the detection accuracy and the stability of continuous monitoring.
  • the fusion algorithm part can be completed in the glasses, or in an interconnected external terminal.
  • the temples naturally tighten the sides of the head to prevent the glasses from slipping off.
  • the temples cross the superficial temporal artery of the wearer, so that the first surface of the elastic sheet 10 contacts the skin above the superficial temporal artery of the wearer, generating a fixed pressure on the superficial temporal artery, causing the elastic sheet 10 to initially deform (or not deform), providing a prerequisite for the measurement of the pressure pulse wave without the need for additional pressurization.
  • the pulsation of the superficial temporal artery causes the elastic sheet 10 to deform secondary, and the pressure pulse wave is detected by the force-to-electricity conversion module 20 disposed inside the temples.
  • the pressure detection device 40 includes an elastic sheet 10 and a force-to-electric conversion module 20. Since the elastic sheet 10 is a component that directly receives external force, the area of the external force receiving surface can be increased by increasing the area of the elastic sheet 10 (for example, increasing the length dimension), thereby improving the fault tolerance of the location where the external force is applied. Increasing the area of the elastic sheet 10 does not require increasing the area of the force-to-electric conversion module 20 at the same time. This can reduce hardware costs and simplify the system and data processing process.
  • the glasses provided by the present application have good fault tolerance for the positioning of the superficial temporal artery.
  • the elastic sheet 10 is always guaranteed to cover the skin above the superficial temporal artery, so that the pulsation signal of the superficial temporal artery can be continuously and effectively measured. It is suitable for monitoring scenes such as daily work (Figure 12B) and walking ( Figure 12C), and can achieve 24-hour continuous monitoring.
  • the glasses further include a processor coupled to the pressure detection device 40 for processing the electrical signal generated by the pressure detection device 40 .
  • the processor may be integrated into the frame of the glasses (eg, the right temple), for example.
  • the processor may perform digital-to-analog conversion on the electrical signal generated by the pressure detection device 40 and then output it.
  • the processor may also process the signal through an internal algorithm to provide a continuously monitored HRV key indicator and output the key indicator.
  • the internal algorithm processing process may also be completed by an external terminal.
  • the glasses further include a communication module, and the communication module is used to establish communication with an external terminal.
  • the communication module can be integrated into the frame of the glasses (e.g., the right temple).
  • the glasses establish a communication connection with the external terminal through the communication module, wirelessly transmit the structure output by the processor to the external terminal, and realize real-time viewing of the pulse wave on the external terminal.
  • the communication module can be a Bluetooth module.
  • the glasses can be paired with a mobile phone for Bluetooth connection.
  • the mobile phone user interface UI
  • the mobile phone user interface pops up a connection reminder that "the device requests Bluetooth pairing".
  • the pulse monitoring application application, APP
  • the waveform of the pressure pulse signal can be viewed in real time on the mobile phone.
  • the glasses process the data measured by walking and daily work activities, and provide data items such as the number of steps, heart rate, number of heart abnormalities, HRV indicators, etc., and you can click "Professional Interpretation" to learn more about each key indicator.
  • the work of processing the data measured by walking and daily work activities and providing data items such as the number of steps, heart rate, number of heart abnormalities, HRV indicators, etc. can also be completed by the mobile phone.
  • the glasses can be controlled in collaboration with external terminals, as well as the visual display and professional interpretation of measurement data.
  • the glasses further include a battery for powering the electronic device.
  • the battery can be integrated into the frame of the glasses (eg, the right temple), for example.
  • the glasses further include a display module, and the display module is used to display the result output by the processor.
  • the glasses include a display module, and the detection results of the pressure pulse signal can be directly displayed through the display module, providing convenience for users sex.
  • Example 2 The main difference between Example 2 and Example 1 is that the pressure detection device 40 is located at the nose pad of the glasses.
  • the first shell 31 and the second shell 32 are combined to form the nose pad of the glasses.
  • the first shell 31 faces the wearer's nose, and the first shell 31 has an opening at a position where it fits the skin above the wearer's dorsal nasal artery.
  • the elastic sheet 10 is used to receive the pulsation of the dorsal nasal artery.
  • the glasses may also be provided with pressure detection devices 40 at the skin above the wearer's dorsal nasal artery and at the skin above the wearer's superficial temporal artery.
  • Example 3 The main difference between Example 3 and Example 1 is that the electronic device is an earhook earphone, and the pressure detection device 40 is located at the earhook of the earphone.
  • the first shell 31 and the second shell 32 are combined to form the ear hook of the earphone, and the first shell 31 has an opening at a position where it fits the skin above the posterior auricular artery of the wearer. Then, the elastic sheet 10 is used to receive the pulsation of the posterior auricular artery.
  • Example 4 The main difference between Example 4 and Example 1 is that the electronic device is a handheld device such as a mobile phone or a computer, and the pressure detection device 40 is located on the housing of the handheld device.
  • the electronic device is a handheld device such as a mobile phone or a computer
  • the pressure detection device 40 is located on the housing of the handheld device.
  • the first shell 31 and the second shell 32 are combined to form the housing of the holding device, and the first shell 31 has an opening at the user's holding position. Then, the elastic sheet 10 is used to receive the user's holding force.
  • the embodiments of the present application do not limit the structure of the electronic device. All devices that need to detect external force fall within the protection scope of the embodiments of the present application.
  • the above examples are only for illustration and do not impose any limitation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种压力检测装置及电子设备,涉及运动健康技术领域,用于提供一款能够准确检测外加压力的电子设备。压力检测装置包括弹性片和一个或者多个力电转换模块。弹性片具有接收外力的第一表面,弹性片用于在外力作用下变形。弹性片作为外力接收结构,并以形变形式传递外力。力电转换模块设置在弹性片的背离第一表面的一侧,力电转换模块用于根据弹性片的形变将弹性片受到的外力转化为电信号。压力检测装置可应用于可穿戴设备,如腕表、手环中。相比依靠光学传感器实现PPG信号的监测获得HRV信息,使用本压力检测装置对皮肤动脉进行测量,抗运动干扰能力更强,得到的压力脉搏波信号更加准确。

Description

压力检测装置及电子设备
本申请要求于2022年10月29日提交国家知识产权局、申请号为202211340753.8、申请名称为“压力检测装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及运动健康技术领域,尤其涉及一种压力检测装置及电子设备。
背景技术
随着电子设备市场的发展,带有HRV测量功能的电子设备逐渐步入人们的视野。
例如,心率变异性(heart rate variability,HRV)是心脏脉动信号的重要指标,HRV指心跳间隔的时间变化情况,受神经、体液等因素的调节,主要反映自主神经对于心血管的调节情况,是反映心脏事件、心律失常的有效指标。具有监测HRV功能的电子设备会对用户的健康监测有很大的帮助。
有些应用场景(例如是否施加外力检测)需要电子设备具有单次监测功能即可,而有些应用场景(例如HRV检测)需要电子设备具有连续监测能力。但用户在长期佩戴电子设备时候,电子设备的PPG传感器容易与用户的血管发生错位导致测量不准确。因此,需要具有能够更加准确检测HRV功能的电子设备。
发明内容
本申请实施例提供一种压力检测装置及电子设备,用于提供一款能够更加准确检测HRV的电子设备。
为达到上述目的,本申请采用如下技术方案:
本申请实施例的第一方面,提供一种压力检测装置。压力检测装置用于检测外部压力,将压力转化为电信号。压力检测装置包括弹性片和一个或者多个力电转换模块。弹性片具有接收外力的第一表面,弹性片用于在外力作用下变形。相当于说弹性片作为外力接收结构,并以形变形式传递外力。力电转换模块设置在弹性片的背离第一表面的一侧,力电转换模块用于根据弹性片的形变将弹性片受到的外力转化为电信号。即,力电转换模块通过检测弹性片变形带来的变化,得到外力对应的电信号。
本申请提供的压力检测装置包括弹性片和力电转换模块,弹性片的第一表面作为外力的接收面。弹性片自身具有弹性,受到外力后会发生变形。力电转换模块根据弹性片的形变生成电信号,以将弹性片受到的压力转化为电信号,完成外力的测量。由于弹性片作为直接接收外力的部件,可以通过增大弹性片的面积,来增大外力接收面的面积,从而提高对外力施加点所在位置的容错性。而增大弹性片的面积,无需同步增大力电转换模块的面积,可降低硬件成本,简化系统与数据处理流程。因此,本申请提供的压力检测装置,通过使弹性片作为外力的接收者,与使力电转换模块作为外力的接收者相比,可以在不过分增加压力检测装置成本和结构复杂性的基础上,提高对外力施加点所在位置的容错性,具有较强的抗扰动性,提高测量数据的准确性。同时,可降低成本与系统复杂性,易于实现微型化集成。
可穿戴设备(如腕表、手环)中主要依靠光学传感器实现光电容积描记(photoplethysmograph,PPG)信号的连续监测,以获得HRV信息。但是,光学传感器对于光路的变化非常敏感,因此PPG信号检测极易受到运动干扰的影响,导致PPG信号无法使用。白天在佩戴者处于工作、活动的状态下时,PPG信号几乎无法完成有效的连续监测。
与PPG信号相比,使用本申请提供的压力检测装置对皮肤浅表动脉进行测量,抗运动干扰能力更强,得到的压力脉搏波信号更加准确。压力检测装置可集成在表带中,实现对手腕中的例如桡动脉、尺动脉等动脉的压力脉搏波信号的测量。
在一种可能的实现方式中,弹性片的面积大于力电转换模块的面积。本申请实施例中,如需 增大压力检测装置外力接收面的面积,通过增大弹性片的面积即可实现,无需增大力电转换模块的面积,可降低硬件成本,简化系统与数据处理流程。
在一种可能的实现方式中,弹性片为柔性膜片或者刚性膜片。本申请实施例中弹性片可为多种材质的弹性片,可满足不同使用需求。
在一种可能的实现方式中,力电转换模块包括应变片和电阻检测电路,应变片设置在弹性片的表面上,应变片与电阻检测电路耦接,电阻检测电路用于检测应变片的电阻。力电转换模块包括应变片和电阻检测电路,弹性片作为颞浅动脉搏动力的接收者,应变片与弹性片直接接触,应变片与弹性片同步变形。因此,应变片能够准确的反映出弹性片的形变,使得力电转换模块检测结果的准确性较高。
在一种可能的实现方式中,电阻检测电路包括不平衡电桥或者平衡电桥。这是一种技术成熟的实现方式。
在一种可能的实现方式中,力电转换模块包括微机电系统MEMS。通过采用MEMS作为压力传感器,结构简单,体积小,有利于实现微型化集成。
在一种可能的实现方式中,力电转换模块包括相对设置的第一电极层和第二电极层;第一电极层设置在弹性片的表面上,第二电极层设置在第一电极层远离弹性片一侧。通过采用电容器作为压力传感器,结构简单、原理简单、易于实现。
在一种可能的实现方式中,弹性片的材料为导电材料;力电转换模块包括第二电极层,第二电极层与弹性片相对设置。通过将弹性片直接作为电容器的一个电极层使用,可简化力电转换模块的结构,节省成本和制备工序。
在一种可能的实现方式中,压力检测装置包括开口腔;弹性片固定在开口腔的腔口处,力电转换模块设置在开口腔内。这样一来,当将压力检测装置应用于电子设备中时,直接将压力检测装置嵌入到电子设备的合适位置处即可,无需与电子设备进行结构配合组装。在一种可能的实现方式中,弹性片的形状为条状。条状的弹性片既可以增大对施力点的容错性,又不会过分增大压力检测装置的面积。
本申请实施例的第二方面,提供一种电子设备,电子设备可以是眼镜、耳机、VR眼镜、AR眼镜、平板、手机、手写笔等。电子设备包括:压力检测装置,压力检测装置为第一方面任一项的压力检测装置。电子设备还包括框架,压力检测装置固定在框架上。框架具有相对设置的第一壳体和第二壳体,第一壳体和第二壳体可以对合成镜架、鼻托、耳挂等。第一壳体朝向施力侧,例如第一壳体朝向佩戴者的头部侧。第一壳体具有开口,压力检测装置的弹性片固定在开口处,弹性片与第二壳体之间具有间距。以电子设备为头戴设备为例,用户配戴电子设备后,弹性片与佩戴者的头部皮肤接触。
本申请实施例提供的电子设备,包括第一方面任一项的压力检测装置。压力检测装置包括弹性片和力电转换模块,由于弹性片作为直接接收外力的部件,可以通过增大弹性片的面积(例如增大长度方向的尺寸),来增大外力接收面的面积,从而提高对外力施加点所在位置的容错性。而增大弹性片的面积,无需同步增大力电转换模块的面积,可降低硬件成本,简化系统与数据处理流程。因此,本申请提供的电子设备,对施力点的定位具有较好的容错性。在不同施力位置一定程度的发生变化时,始终可以保证弹性片覆盖施力点,从而使得施力点所施加的外力能够被连续有效测量。
在一种可能的实现方式中,弹性片的第一表面相对第一壳体远离第二壳体的表面,远离第二壳体。通过使弹性片的第一表面比第一壳体的第二表面远离第二壳体的表面,可以是弹性片比第一壳体更靠近施力点,可提高弹性片对外力检测的灵敏性,提高检测结果的准确性。
在一种可能的实现方式中,弹性片与框架固定连接。这是一种可能的实现方式
在一种可能的实现方式中,弹性片的至少一端通过弹性连接部与框架连接。弹性片的至少一端通过弹性连接部与框架连接,在弹性片受到外力变形时,弹性连接部也可以随之变形,保证变形的传递,以使弹性片的变形程度几乎达到最大。而如果弹性片的各端均直接与硬质结构连接,硬质的框架会阻碍弹性片的变形,影响弹性片的形变量,从而影响检测效果。因此,通过使弹性 片的至少一端通过弹性连接部与框架,有利于弹性片变形的传递,提高对外力检测的准确性和敏感性。
在一种可能的实现方式中,弹性片处于预拉伸状态。通过使弹性片处于预拉伸状态,可以提高弹性片对外力的敏感度,降低弹性迟滞、提高共振频率、使弹性片与佩戴者的头部皮肤接触更紧密。
在一种可能的实现方式中,框架还包括支撑层,支撑层设置在弹性片与第二壳体之间,支撑层与第一壳体和/或第二壳体连接;弹性片与支撑层之间具有间隙。通过在弹性片与第二壳体之间设置支撑层,可以增加右镜腿的支撑强度,提高眼镜的使用寿命。
在一种可能的实现方式中,框架还包括密封部,密封部设置在第一壳体与第二壳体之间;密封部与第一壳体、第二壳体、以及弹性片构成密封腔,压力检测装置的力电转换模块设置在密封腔内。提供MEMS检测所需的密封环境。
在一种可能的实现方式中,第一壳体和/或第二壳体具有通孔,通孔与密封腔连通;框架还包括封孔部,封孔部密封通孔。通过在右镜腿上设置封孔部,当地理位置(例如海拔变化)或环境温度(例如季节变化)发生变化导致密封腔内气压与外部大气压相差较大时,眼镜可发送信号到终端设备(手机、腕表),提醒用户打开封孔部进行调节,以校准密封腔内的气压,使密封腔内的气压与外部大气压一致,从而提高在不同场景下检测结果的准确性。
在一种可能的实现方式中,封孔部包括电磁阀。电磁阀可自动开启和关闭,在密封腔内的气压与外部气压相差较大时,电磁阀自动开启,进行密封腔的气压校准。在密封腔内的气压与外部气压相近时,电磁阀自动关闭。从而实现密封腔内气压的自动校准。
在一种可能的实现方式中,力电转换模块中的第二电极作为第二壳体的一部分。利用第二壳体的一部分作为电容器的第二电极层,一个结构发挥两个功效,可简化制备工艺。
在一种可能的实现方式中,电子设备为眼镜;第一壳体和第二壳体对合形成眼镜的镜腿,第一壳体在与佩戴者颞浅动脉上方皮肤贴合的位置处具有开口。这是一种可能的应用场景。
在一种可能的实现方式中,电子设备为眼镜;第一壳体和第二壳体对合形成眼镜的鼻托,第一壳体在与佩戴者鼻背动脉上方皮肤贴合的位置处具有开口。这是一种可能的应用场景。
在一种可能的实现方式中,电子设备为耳挂式耳机;第一壳体和第二壳体对合形成耳机的耳挂,第一壳体在与佩戴者耳后动脉上方皮肤贴合的位置处具有开口。这是一种可能的应用场景。
在一种可能的实现方式中,电子设备还包括通信模块,通信模块用于与外部终端建立通信。通过在眼镜中设备通信模块,可与外部终端协同实现眼镜的控制,以及实现测量数据的可视化展示与专业解读。
在一种可能的实现方式中,电子设备还包括处理器,处理器与压力检测装置耦接,用于处理压力检测装置生成的电信号。
在一种可能的实现方式中,电子设备还包括电池,电池用于为电子设备供电。
附图说明
图1A为本申请实施例示意的一种电子设备的框架示意图;
图1B为本申请实施例示意的用户对电子设备的配戴效果示意图;
图1C为本申请实施例示意的另一种电子设备的框架示意图;
图1D为本申请实施例示意的又一种电子设备的框架示意图;
图2A为本申请实施例提供的一种压力检测装置的框架示意图;
图2B为本申请实施例提供的一种压力检测装置的工作状态示意图;
图3A为本申请实施例提供的一种电子设备的框架示意图;
图3B为本申请实施例提供的一种电子设备的右镜腿的结构示意图;
图3C为本申请实施例提供的一种用户对电子设备的配戴效果示意图;
图4A为本申请实施例提供的一种第一壳体的结构示意图;
图4B为本申请实施例提供的一种图3B中A1-A2向的剖视图;
图4C为本申请实施例提供的一种右镜腿的局部结构示意图;
图5A为本申请实施例提供的一种弹性片与第一壳体的连接方式示意图;
图5B为本申请实施例提供的一种图5A中B1-B2向的剖视图;
图5C为本申请实施例提供的一种右镜腿的截面图;
图6A-图6D为本申请实施例提供的一种弹性片与佩戴者颞浅动脉的相对位置示意图;
图7A为本申请实施例提供的另一种右镜腿的截面图;
图7B为本申请实施例提供的又一种右镜腿的截面图;
图8A为本申请实施例提供的一种力电转换模块的结构示意图;
图8B为本申请实施例提供的一种图8A所示的压力检测装置的工作过程示意图;
图8C为本申请实施例提供的另一种力电转换模块的结构示意图;
图9A为本申请实施例提供的又一种力电转换模块的结构示意图;
图9B为本申请实施例提供的又一种力电转换模块的结构示意图;
图9C为本申请实施例提供的一种图9B所示的压力检测装置的工作过程示意图;
图9D为本申请实施例提供的又一种力电转换模块的结构示意图;
图10A为本申请实施例提供的又一种力电转换模块的结构示意图;
图10B为本申请实施例提供的又一种力电转换模块的结构示意图;
图10C为本申请实施例提供的一种图10B所示的压力检测装置的工作过程示意图;
图10D为本申请实施例提供的又一种力电转换模块的结构示意图;
图10E为本申请实施例提供的又一种力电转换模块的结构示意图;
图11A为本申请实施例提供的又一种力电转换模块的结构示意图;
图11B为本申请实施例提供的又一种力电转换模块的结构示意图;
图12A为本申请实施例提供的另一种用户对电子设备的配戴效果示意图;
图12B为本申请实施例提供的一种用户配戴电子设备后的动作状态示意图;
图12C为本申请实施例提供的另一种用户配戴电子设备后的动作状态示意图;
图13为本申请实施例提供的另一种电子设备的框架示意图;
图14A-图14C为本申请实施例提供的电子设备与外部终端的交互过程示意图。
附图标记:
10-弹性片;20-力电转换模块;21-应变片;22-电阻检测电路;23-第一电极层;24-第二电极层;30-框架;31-第一壳体;311-开口;32-第二壳体;321-通孔;33-封孔部;40-压力检测装置。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
以下,术语“第二”、“第一”等仅用于描述方便,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第二”、“第一”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请实施例中,“上”、“下”、“左”、“右”等方位术语可以包括但不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件附图所放置的方位的变化而相应地发生变化。
在本申请实施例中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“相耦接”可以是直接的电性连接,也可以通过中间媒介间接的电性连接。术语“接触”可以是直接接触,也可以是通过中间媒介间接的接触。
本申请实施例中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
下面对本申请用到的一些名词和缩略语进行解释:
心率变异性(heart rate variability,HRV),是指逐次心跳周期差异的变化情况,含有神经体液因素对心血管系统调节的信息。
利用光电容积描记(photoplethysmograph,PPG),一种通过光学获得的体积描记图,可用于检测组织微血管的血容量变化。
颞浅动脉(superficial temporal artery,STA),颞浅动脉是颈外动脉的终末支,自侧面部颞下颌关节与耳朵之间穿出,向上走行至头皮。
鼻背动脉(arteria dorsalis nasi,ADN),鼻背动脉为颈内动脉的眼动脉的终支,经内眦韧带出眼眶,与内眦动脉吻合,分布于鼻背。
耳后动脉(posterior auricular artery,PAA),耳后动脉是发自颈外动脉末端,枕动脉以远,走向后方的一支细小的动脉。
微机电系统(micro-electro-mechanical system,MEMS),指尺寸在几毫米乃至更小的装置,其内部结构一般在微米甚至纳米量级,是一个独立的系统。
增强现实(augmented reality,AR),一种将虚拟信息与真实世界融合的技术。
虚拟现实(virtual reality,VR),一种通过计算机模拟虚拟环境从而给人以环境沉浸感的技术。
聚酰亚胺(polyimide,PI),主链上含有酰亚胺环(-CO-N-CO-)的一类聚合物,是综合性能最佳的有机高分子材料之一。
热塑性聚氨酯弹性体橡胶(thermoplastic polyurethanes,TPU),由二苯甲烷二异氰酸酯(MDI)或甲苯二异氰酸酯(TDI)等二异氰酸酯类分子和大分子多元醇、低分子多元醇(扩链剂)共同反应聚合而成的高分子材料。
聚对苯二甲酸乙二醇酯(polyethylene terephthalate,PET),由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得,生活中常见的一种树脂。
心率变异性(heart rate variability,HRV)是心脏脉动信号的重要指标,HRV指心跳间隔的时间变化情况,受神经、体液等因素的调节,主要反映自主神经对于心血管的调节情况,是反映心脏事件、心律失常的有效指标。通过对HRV进行时频域分析,可以进一步获得一系列重要指标,可应用于如高血压、心律失常、心肌梗死、心脏性猝死、冠心病、充血性心衰等心血管疾病的检测。也可应用于糖尿病、甲状腺功能异常、妇产科、支气管哮喘、更年期综合征、肾功能不全、麻醉等其他系统疾病的检测。HRV从心脏脉动的连续时域波形获得,需要检测设备具有连续监测能力。近年来,可穿戴设备市场日益增长,可穿戴电子设备是生命体征信号连续监测的理想载体。
目前在一些技术中,可穿戴设备(如腕表、手环)中主要依靠光学传感器实现光电容积描记(photoplethysmograph,PPG)信号的连续监测,以获得HRV信息。但是,光学传感器对于光路的变化非常敏感,因此PPG信号检测极易受到运动干扰的影响,导致PPG信号无法使用。白天在佩戴者处于工作、活动的状态下时,PPG信号几乎无法完成有效的连续监测。
与PPG信号相比,使用压力传感器对皮肤浅表动脉进行测量,得到的压力脉搏波信号的抗运动干扰能力更强。压力传感器可集成在表带中,实现对手腕中的桡动脉、尺动脉的压力脉搏波信号的测量。电子设备获得压力脉搏波信号之后,再根据压力脉搏波信号计算HRV参数,实现HRV的检测。
颞浅动脉(superficial temporal artery,STA)是人体浅表动脉的一种,位于头部两侧,是头部的主要动脉,STA起源于颈动脉,在耳屏前方和上方、颧弓上方可以感受到搏动。鼻背动脉(arteria dorsalis nasi,ADN)是人体浅表动脉的一种,是眼动脉的终支,分布于鼻背。耳后动脉(posterior auricular artery,PAA)是人体浅表动脉的一种,分部于耳后。颞浅动脉、鼻背动脉、耳后动脉这些位于头部的动脉附近不存在肌腱,且其周围较为平坦,有利于进行压力脉搏波信号的测量。而且,在日常活动中,头部的活动幅度远小于手腕。因此,基于头戴设备对 浅动脉的压力脉搏波信号进行测量,更适于24小时的HRV连续检测。
本申请实施例提供一种电子设备,电子设备可以包括可穿戴电子设备或者终端。本申请实施例提供的可穿戴设备是一种可以检测用户施加的外力的便携式设备,可穿戴电子设备还可以具备数据处理功能,可穿戴电子设备也可连接手机、手环等各类终端设备。可穿戴电子设备可以是头戴设备,用于测量用户浅动脉的压力脉搏波信号。例如,可穿戴电子设备可以是眼镜、耳机、虚拟现实(virtual reality,VR)眼镜、增强现实(augmented reality,AR)眼镜等。本申请实施例提供一种终端,电子设备所述终端可以是平板、手机、手写笔等手握设备,用于检测用户的手握情况。
示例的,可穿戴电子设备为眼镜。如图1A所示,示意一种眼镜,眼镜包括镜框、镜腿以及鼻托。镜框包括左镜框和右镜框,左镜框与右镜框通过连接部连接。鼻托包括左鼻托和右鼻托,左鼻托与左镜框连接,右鼻托与右镜框连接。其中,左镜框、右镜框、左鼻托、右鼻托、连接部可以为一体成型结构。镜腿包括左镜腿和右镜腿,左镜腿与左镜框连接,右镜腿与右镜框连接。
如图1B所示,当用户配戴眼镜时,镜腿架在佩戴者的耳朵上,夹紧佩戴者头部两侧皮肤,以防止眼镜滑落。眼镜佩戴后,镜腿横跨佩戴者的颞浅动脉,且其内侧与颞浅动脉正上方皮肤紧密贴合。鼻托垫在佩戴者的鼻背上,与佩戴者的鼻背动脉正上方皮肤紧密贴合。本申请实施例中,动脉上方中“上方”的方向可以理解为是动脉到皮肤的方向。
当然,如图1C所示,在一些实施例中,眼镜也可以不包括镜框。本申请实施例示意的眼镜的结构仅为一种示意,不做任何限定。
本申请实施例中的眼镜可以是近视眼镜、散光镜、平镜眼镜、老花镜、夜视镜、防风沙镜、太阳镜、电脑护目镜、防紫外镜、VR眼镜、AR眼镜等任意一种形式的眼镜。
或者,示例的,可穿戴电子设备为耳机,耳机例如可以是耳挂式耳机。耳挂式耳机例如可以是耳机式耳挂耳机、耳塞式耳挂耳机或者入耳式耳挂耳机。
如图1D所示,示意一种入耳式耳挂耳机,包括耳挂和耳塞,耳挂和耳塞连接。
当用户佩戴耳机时,耳塞伸入佩戴者的耳朵。耳挂挂在佩戴者的耳朵上,与佩戴者的耳后动脉正上方皮肤紧密贴合。
在一些实施例中,可以通过在眼镜的镜腿上设置压阻式压力传感器,以实现颞浅动脉的压力脉搏波信号的测量。
在镜腿上设置压阻式压力传感器虽然可以测量颞浅动脉的压力脉搏信号,但是由于压阻式压力传感器的形状较小,对位置的容错性低。导致用户测量颞浅动脉的压力脉搏信号时,需要主动定位,将压阻式压力传感器压在颞浅动脉上方,不利于压力脉搏信号的连续监测。
在一些技术中,在镜腿上设置有多个阵列排布的压阻式压力传感器。只要有一个压阻式压力传感器与颞浅动脉上方皮肤贴合,即可实现对颞浅动脉压力脉搏信号的测量。
这样虽然可以提高压力传感器对位置的容错性,但是,压力传感器阵列,内部电路复杂,会导致系统复杂性高。
基于此,本申请实施例提供一种压力检测装置,用于检测外部施加的压力,该压力例如可以是用户动脉搏动时施加的压力,该压力也可以是用户施加的手握压力,或者是其他任意形式施加的压力。
如图2A所示,压力检测装置包括弹性片10和至少一个力电转换模块20,本申请实施例中以压力检测装置包括一个力电转换模块20为例进行示意。
如图2B所示,弹性片10具有接收外力的第一表面,弹性片10用于在外力作用下变形。
本申请实施例对弹性片10的材料不做限定,能够使弹性片10具有从第一状态转变为第二状态再恢复到第一状态的功能即可。此处,第二状态相对第一状态为拉伸状态。示例的,弹性片10为条状,弹性片10在第二状态时的长度大于弹性片10在第一状态时的长度。和/或,弹性片10在第二状态时的宽度大于弹性片10在第一状态时的宽度。
示例的,弹性片10的材料可以为柔性材料,示例的,弹性片10的材料包括聚酰亚胺(polyimide,PI)、热塑性聚氨酯弹性体橡胶(thermoplastic polyurethanes,TPU)或者聚对苯二甲酸乙二 醇酯(polyethylene terephthalate,PET)。弹性片10的材料也可以为刚性材料,示例的,弹性片10的材料包括金属、硬塑料等。
本申请实施例对弹性片10的厚度不做限定,本申请实施例对弹性片10的形状不做限定,弹性片10的形状可以为条状,弹性片也可以为曲面弯折状,弹性片10还可以为环状等等。
力电转换模块20设置在弹性片10的背离第一表面的一侧,也就是说,力电转换模块20设置在弹性片10的非接收外力的一侧。力电转换模块20用于根据弹性片10的形变,将弹性片10受到的外力转化为电信号。
在一些实施例中,弹性片10的面积大于力电转换模块20的面积。
本申请实施例中,如需增大压力检测装置外力接收面的面积,通过增大弹性片10的面积即可实现,无需增大力电转换模块20的面积。
本申请提供的压力检测装置,包括弹性片10和力电转换模块20,弹性片10的第一表面作为外力的接收面。弹性片10自身具有弹性,受到外力后会发生变形。力电转换模块20根据弹性片10的形变生成电信号,以将弹性片10受到的压力转化为电信号,完成外力的测量。由于弹性片10作为直接接收外力的部件,可以通过增大弹性片10的面积,来增大外力接收面的面积,从而提高对外力施加点所在位置的容错性。而增大弹性片10的面积,无需同步增大力电转换模块20的面积。可降低硬件成本,简化系统与数据处理流程。因此,本申请提供的压力检测装置,通过使弹性片10作为外力的接收者,与使力电转换模块20作为外力的接收者相比,可以在不过分增加压力检测装置成本和结构复杂性的基础上,提高对外力施加点所在位置的容错性。同时,可降低成本与系统复杂性,易于实现微型化集成。
根据力电转换模块20结构的不同,力电转换模块20与弹性片10的相对位置关系也不同。下面,结合电子设备的结构,对本申请实施例提供的压力检测装置的结构进行示意说明。
示例一
提供一种电子设备,电子设备为具有外力检测功能的眼镜。
如图3A所示,眼镜包括框架30,框架30具有相对设置的第一壳体31和第二壳体32,第一壳体31和第二壳体32对合形成眼镜的镜腿。第一壳体31和第二壳体32可以对合形成眼镜的左镜腿,第一壳体31和第二壳体32也可以对合形成眼镜的右镜腿,图3A中仅为一种示意,不做任何限定。当然,眼镜的左镜腿和右镜腿的结构也可以相同,均有由第一壳体31和第二壳体32对合而成的。
此处需要释明的是,第一壳体31和第二壳体32可以是分立结构,通过后续加工将第一壳体31和第二壳体32对合。第一壳体31和第二壳体32也可以是一体结构,即第一壳体31和第二壳体32为一体成型结构。
第一壳体31和第二壳体32的材料例如可以为硬质材料。示例的,第一壳体31和第二壳体32的材料为硬质塑料或者金属。当然,第一壳体31和第二壳体32的材料可以相同,第一壳体31和第二壳体32的材料也可以不同。
在此基础上,如图3A所示,眼镜的框架30还包括镜框以及鼻托。图3A中以镜框包括左镜框和右镜框,鼻托包括左鼻托和右鼻托为例进行示意。
眼镜还包括压力检测装置,压力检测装置固定在框架30上。如图3B所示,在右镜腿包括第一壳体31和第二壳体32的情况下,压力检测装置40固定在右镜腿上。
在一些实施例中,如图3C所示,在佩戴者配戴眼镜后,压力检测装置40与佩戴者颞浅动脉上方皮肤贴合。
关于右镜腿与压力检测装置40的结构,在一些实施例中,第一壳体31相对第二壳体32靠近佩戴者头部。或者理解为,第一壳体31为右镜腿的内壳,第二壳体32为右镜腿的外壳。
如图4A所示,第一壳体31具有开口311,在佩戴者配戴眼镜后,开口311的位置与佩戴者的颞浅动脉的位置对应。或者理解为,第一壳体31在于佩戴者颞浅动脉上方皮肤贴合的位置处具有开口311。压力检测装置40固定在开口311对应位置处,开口311露出压力检测装置40,以使压力检测装置40可以直接与佩戴者颞浅动脉上方皮肤接触。本申请实施例对开口的形状不做限定, 图4A中开口的形状仅为一种示意。
在一些实施例中,如图4B所示(图4B为图4A中A1-A2向的剖视图),压力检测装置40包括弹性片10和力电转换模块20。
弹性片10的第一表面朝向佩戴者头部所在侧,弹性片10固定在第一壳体31的开口311处,弹性片10的面积可以大于或者等于开口311的面积,弹性片10的面积也可以小于开口311的面积,本申请实施例对此不做限定。
另外,本申请实施例对弹性片10的固定方式不做限定,弹性片10与眼睛的框架30固定连接即可。示例的,弹性片10固定在第一壳体31上。或者,示例的,弹性片10通过固定件固定在第二壳体32上。
或者,示例的,压力检测装置40具有支撑架,弹性片10固定在支撑架上,支撑架与眼镜的框架30固定连接。当然,支撑架的形状应不影响弹性片10的变形。例如,支撑架的为开口腔,弹性片10固定在开口腔的腔口处,力电转换模块20设置在开口腔内。这样一来,就相当于直接将压力检测装置40嵌入在眼镜的框架30内。
弹性片10的材料可以为柔性材料,示例的,弹性片10的材料包括PI、TPU或者PET等。弹性片10的材料也可以为刚性材料,示例的,弹性片10的材料包括金属、硬塑料等。
在一些实施例中,如图4B所示,弹性片10的第一表面与第一壳体31远离第二壳体32的表面(第二表面)平齐。
在另一些实施例中,如图4C所示,弹性片10的第一表面比第一壳体31的第二表面靠近佩戴者的头部。或者理解为,弹性片10的第一表面比第一壳体31的第二表面远离第二壳体32。
通过使弹性片10的第一表面比第一壳体31的第二表面靠近佩戴者的头部,可使弹性片10与佩戴者颞浅动脉上方的皮肤的贴合度更高,可提高弹性片10对颞浅动脉搏动的灵敏性,提高测得的颞浅动脉的压力脉搏信号的准确性。
在此基础上,弹性片10与第二壳体32之间具有间距,该间距为弹性片10提供变形空间。
压力检测装置40的工作原理为:在用户未配戴眼镜时,弹性片10处于第一状态,弹性片10沿右镜腿长度方向上的尺寸为L1。在用户配戴眼镜后,压力检测装置40与佩戴者颞浅动脉上方的皮肤接触。在颞浅动脉的搏动过程中,会向弹性片10施加外力,弹性片10在外力作用下发生变形,从第一状态变为第二状态。弹性片10在第二状态下的长度为L2,L2>L1。在颞浅动脉两次搏动之间,弹性片10的状态会恢复到第一状态。弹性片10接收颞浅动脉搏动时施加的外力,将外力转化为弹性片10的变形。力电转换模块20根据弹性片10的形变,将外力转化为电信号,以完成外力的检测。
在一些实施例中,如图5A所示,弹性片10的至少一端通过弹性连接部与框架30连接。
图5A中以弹性片10的两个长边端通过弹性连接部与第一壳体31连接,弹性片10的两个短边端直接与第一壳体31固定连接为例进行示意。
如图5B(沿图5A中B1-B2向的剖视图)所示,弹性片10的两个长边端通过弹性连接部与第一壳体31连接。当然,在镜腿比较窄的情况下,为了保证弹性片10的宽度,如图5C所示,弹性片10的两个长边端也可以是通过弹性连接部与第二壳体32连接。
弹性连接部的材料,例如可以包括橡胶等材料。
弹性片10的至少一端通过弹性连接部与框架30连接,在弹性片10受到外力变形时,弹性连接部也可以随之变形,保证变形的传递,以使弹性片10的变形程度几乎达到最大。而如果弹性片10的各端均直接与硬质结构连接,硬质的框架30会阻碍弹性片10的变形,影响弹性片10的形变量,从而影响检测效果。因此,通过使弹性片10的至少一端通过弹性连接部与框架30,有利于弹性片10变形的传递,提高对外力检测的准确性和敏感性。
在一些实施例中,眼镜中的弹性片10处于预拉伸状态。
预拉伸状态也可以理解为是张紧状态,预拉伸状态的形成方式,例如可以是在弹性片10与框架30固定时,向弹性片10施加预应力。弹性片10未与框架30固定之前,弹性片10沿右镜腿长度方向的尺寸为L3。弹性片10与框架30固定后,弹性片10沿右镜腿长度方向的尺寸为L1, L3<L1<L2。
判断弹性片10是否处于预拉伸状态的方式可以包括:将弹性片10从框架30上拆下,对比拆下后弹性片10沿镜腿长度方向的尺寸L3和拆之前弹性片10沿镜腿长度方向的尺寸L1。若L1>L3,则说明弹性片10处于预拉伸状态。或者,直接在弹性片10上划一刀,若刀口处有缝隙存在,则弹性片10处于预拉伸状态。若刀口处能够闭合,则弹性片10未处于预拉伸状态。
通过使弹性片10处于预拉伸状态,可以提高弹性片10对外力的敏感度,降低弹性迟滞、提高共振频率、使弹性片10与佩戴者的头部皮肤接触更紧密。
在一些实施例中,如图5A所示,弹性片10的形状为条状,弹性片10的长边方向与镜腿的延伸方向相同。
通过将弹性片10的形状设置为条状,可增大弹性片10与颞浅动脉上方皮肤可接触区域的面积。如图6A-图6D所示,即使不同头型、不同视角、不同配戴位置、不同运动状态下的佩戴者的颞浅动脉与弹性片10的相对位置有变化,弹性片10也始终可以与颞浅动脉上方皮肤紧密接触,提高压力检测装置40对颞浅动脉位置变化的容错性。
示例的,弹性片10的长度为2cm~4cm。例如,弹性片10的长度为3cm。
在一些实施例中,框架还包括支撑层,支撑层设置在弹性片10与第二壳体32之间,支撑层与第一壳体和/或第二壳体连接,弹性片10与支撑层之间具有间隙。
示例的,如图7A所示,支撑层例如可以是硬质薄片,设置在第一壳体31与第二壳体32对合的中线处,支撑层与第一壳体和/或第二壳体连接,为右镜腿提供支撑力。
或者,示例的,如图7B所示,支撑层设置在第二壳体32朝向弹性片10的表面上,本申请实施例对支撑层的厚度不做限定,弹性片10与支撑层之间具有间隙即可。支撑层的材料,例如可以是具有弹性的软质材料,或者是硬质材料。
通过在弹性片10与第二壳体32之间设置支撑层,可以增加右镜腿的支撑强度,提高眼镜的使用寿命。
当然,无论支撑层为哪种结构,支撑层在提供支撑力的同时,应选择材质较轻的材料,以降低右镜腿整体的重量,提高配戴舒适度。
示例的,支撑层的材料为绝缘材料。这样一来,可以降低支撑层对检测结果的影响。
关于力电转换模块20的结构,在一种可能的实现方式中,如图8A所示,力电转换模块20包括应变片21和电阻检测电路22,应变片21设置在弹性片10的表面上,应变片21与电阻检测电路22耦接,电阻检测电路22用于检测应变片的电阻。
其中,应变片21是由敏感栅等构成用于测量应变的元件。应变片21的工作原理是基于应变效应制作的,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应的发生变化,这种现象称为“应变效应”。
应变片21的材料例如可以包括导体或者半导体,应变片21可以通过粘接等方式固定在弹性片10背离第一表面的表面上,应变片21也可以直接制备在弹性片10的表面上。
如图8B所示,当用户配戴眼镜后,弹性片10会与佩戴者颞浅动脉上方的皮肤贴合。颞浅动脉搏动过程中,会向弹性片10施加力,弹性片10在力的作用下发生变形,弹性片10的长度会增加。贴附与弹性片10表面的应变片21随着弹性片10的变形而变形,应变片21的长度从图8A中的S1变为图8B中的S2。应变片21的长度改变时,应变片21的电阻值也会相应的发生变化。
电阻检测电路22通过检测应变片21阻值的变化,可生成对应的电压信号,一个电压信号对应一个力的大小,通过实时测量应变片21的变化,可得到颞浅动脉的实时压力脉搏波信号。
电阻检测电路22例如可以包括不平衡电桥或者平衡电桥。平衡电桥例如可以为惠斯通电电桥,不平衡电桥例如可以为直流电压桥。
本申请实施例对电阻检测电路22的设置位置不做限定,电阻检测电路22例如可以设置在第二壳体32上,电阻检测电路22也可以设置在第一壳体31上。电阻检测电路22例如可以设置在弹性片10所在区域的下方,电阻检测电路22也可以设置在第一壳体31所在区域的下方。
在一些实施例中,电阻检测电路22设置在右镜腿的靠近镜框一端。
电阻检测电路22需要接入电信号,通过将电阻检测电路22靠近镜框设置,便于电阻检测电路22与眼镜中的其他模块耦接,可减少导线长度,简化布局。
应变片21可以设置在弹性片10表面的任意位置处,在一些实施例中,如图8C所示,应变片21与电阻检测电路22位于弹性片10的同一端。
应变片21靠近电阻检测电路22设置,可减少应变片21与电阻检测电路22之间互联导线的长度,从而简化布局、减少导线对检测结果的影响。
力电转换模块20包括应变片21和电阻检测电路22,弹性片10用于接收并传递颞浅动脉的搏动信号,应变片21用于测量弹性片10产生的应变,并将应变传输至电阻检测电路22,电阻检测电路22实现对应变的测量,生成电压信号。
力电转换模块20包括应变片21和电阻检测电路22,弹性片10作为颞浅动脉搏动力的接收者,应变片21与弹性片10直接接触,应变片21与弹性片10同步变形。因此,应变片21能够准确的反映出弹性片10的形变,使得力电转换模块20检测结果的准确性较高。
关于力电转换模块20的结构,在另一种可能的实现方式中,如图9A所示,力电转换模块20包括微机电系统(micro-electro-mechanical system,MEMS)。
在这种情况下,当将压力检测装置40应用于眼镜中时,如图9A所示,框架中的右镜腿处还包括密封部,密封部设置在第一壳体31与第二壳体32之间,密封部与第一壳体31、第二壳体32、以及弹性片10构成密封腔,力电转换模块20设置在密封腔Q内。
关于密封部的结构,示例的,密封部为空心柱状,第二壳体32覆盖空心柱的底面,第一壳体31和弹性片10覆盖空心柱的顶面,从而形成密封腔Q,以放置MEMS。
或者,示例的,密封部包括两部分,右镜腿本申请为一条状密封腔,如图9A所示,密封部的两部分对右镜腿的条状密封腔进行打断,密封部两部分之间的腔室作为围隔出的密封腔Q,用于放置MEMS。
密封部的材料,例如可以是灌封胶。密封腔Q内可以填充气体或者液体。
在一些实施例中,如图9B所示,力电转换模块20背离右镜腿的末端设置。这样一来,可以减少与力电转换模块20电连接的导电的长度。
当然,力电转换模块20可以固定在密封腔Q内的任意位置处,例如,力电转换模块20固定在第二壳体32上。
如图9B所示,当用户未配戴眼镜时,密封腔Q内的气压恒定,例如密封腔Q内的气压为P。当用户配戴眼镜后,如图9C所示,佩戴者颞浅动脉的搏动使弹性片10发生变形,弹性片10用于将颞浅动脉搏动转化为密封腔Q的体积变化,压缩密封腔Q内气体或液体,导致密封腔Q内压力升高,密封腔Q内的气压变为P+△P。MEMS用于测量体积变化导致的气压变化,MEMS通过测量密封腔Q内气压值,即可获得颞浅动脉的压力脉搏波信号。
当然,在右镜腿还包括支撑层的情况下,MEMS应设置在支撑层与弹性片10之间。
通过采用MEMS作为压力传感器,结构简单,易于制备,体积小,有利于实现微型化集成。
在一些实施例中,第一壳体31和/或第二壳体32具有通孔,通孔与密封腔Q连通。
示例的,如图9D所示,第二壳体32上具有通孔321,通孔321与密封腔Q连通。在此基础上,框架还包括封孔部33,封孔部33密封通孔321。
本申请实施例对封孔部33的结构和材料不做限定,能够对通孔321进行密封即可。示例的,封孔33为密封螺丝。
通过在右镜腿上设置封孔部33,当地理位置(例如海拔变化)或环境温度(例如季节变化)发生变化导致密封腔Q内气压与外部大气压相差较大时,眼镜可发送信号到终端设备(手机、腕表),提醒用户打开封孔部33进行调节,以校准密封腔Q内的气压,使密封腔Q内的气压与外部大气压一致,从而提高在不同场景下检测结果的准确性。
其中,通孔321可以设置在第二壳体32上,通孔321也可以设置在第一壳体31上,当然,也可以是第一壳体31和第二壳体32上均设置有通孔。
另外,对比密封腔Q内的气压与外部大气压的功能,可以由眼镜中的处理器来完成。例如, 将测得的密封腔Q内的气压与设定数值相比,若测得的气压值与设定数值相差较大,则判定密封腔Q内的气压与外部气压相差较大,需要进行密封腔Q的气压校准。
在一些实施例中,封孔部33为电磁阀(solenoid valve)。
电磁阀可自动开启和关闭,在密封腔Q内的气压与外部气压相差较大时,电磁阀自动开启,进行密封腔Q的气压校准。在密封腔Q内的气压与外部气压相近时,电磁阀自动关闭。从而实现密封腔Q内气压的自动校准。
关于力电转换模块20的结构,在又一种可能的实现方式中,如图10A所示,力电转换模块20包括相对设置的第一电极层23和第二电极层24。第一电极层23设置在弹性片10朝向第二壳体32的表面上,第二电极层24设置在第一电极层23远离弹性片10一侧。
示例的,如图10A所示,第二电极层24设置在第二壳体32朝向第一壳体31的表面上。这样一来,对第二壳体32的材料可以不做限定。
或者,示例的,如图10B所示,第二电极层24作为第二壳体32的一部分。也就是说,第二壳体32与第一电极层23正对的部分作为第二电极层24。那么,第二壳体32与第一电极层23正对的部分为导电材料,其余部分可以为塑料,也可以为导电材料。利用第二壳体32的一部分作为电容器的第二电极层24,一个结构发挥两个功效,可简化制备工艺。
第一电极层23和第二电极层24构成平板电容器,如图10B所示,当用户未配戴眼镜时,第一电极层23与第二电极层24之间的电容为C。当用户配戴眼镜后,如图10C所示,佩戴者颞浅动脉的搏动使弹性片10发生变形,弹性片10用于将颞浅动脉搏动转化为第一电极层23与第二电极层24的极距变化。第一电极层23与第二电极层24的极距变小,第一电极层23与第二电极层24之间的电容变为C+△C。通过检测电容器的电容即可获得颞浅动脉的压力脉搏波信号。
通过采用电容器作为压力传感器,结构简单、原理简单、易于实现。
在一些实施例中,如图10D所示,第一电极层23包括多个间隔设置的电极块。
这样一来,每个电极块与第二电极层24构成一个电容器,力电转换模块20的结构为电容器阵列,每个电容器中的极距独立变化,每个电容器独立检测,可提高颞浅动脉搏动的灵敏度。
在一些实施例中,如图10E所示,弹性片10的材料为导电材料,弹性片10作为第一电极层23。
那么,弹性片10和第二电极层24构成电容器。当然,第二电极层24可以为设置在第二壳体32表面的电极层。也可以是第二壳体32与弹性片10正对的部分直接作为第二电极层24。
通过将弹性片10直接作为电容器的一个电极层使用,可简化力电转换模块20的结构,节省成本和制备工序。
在一些实施例中,如图11A所示,框架还包括支撑桩,支撑桩设置在第一壳体31与第二壳体32之间。
示例的,支撑桩与第一壳体31和/或第二壳体32固定连接,用于为右镜腿提供支撑力,加固右镜腿。
或者,示例的,支撑桩还可以与弹性片10固定连接,用于固定弹性片10。
需要说明的是,在力电转换模块20为MEMS的情况下,支撑桩例如可以作为上述密封部。或者,支撑桩位于密封部的外围,也就是说,支撑桩不位于密封腔Q内。
或者,支撑桩位于密封腔Q内。在这种情况下,支撑桩的存在应不影响弹性片10带动MEMS所在腔室气压的变化。
示例的,MEMS位于支撑桩远离密封部一侧。这样,支撑桩的存在不会影响MEMS对压强变化的检测。
或者,示例的,如图11B所示,MEMS位于支撑桩朝向密封部一侧。那么,支撑桩处需具有缝隙能够使支撑桩左右两侧的密封腔连通。这样一来,支撑桩之间的密封腔Q1压强变化才能传递至MEMS所在密封腔Q2压强的变化。
上述缝隙,例如可以是位于支撑桩上的开孔,或者是支撑桩与第一壳体31之间的缝隙,或者是支撑桩与第二壳体32之间的缝隙等等。
需要说明的是,上述仅是以压力检测装置40中包括一个力电转换模块20为例进行示意,压力检测装置40中也可以包括多个力电转换模块20。多个力电转换模块20的信号进行融合算法,以提高检测结果的准确性。
另外,如图12A所示,眼镜的左镜腿中也可以包括压力检测装置40,压力检测装置40的结构可以是上述示意的任一种压力检测装置40。
压力检测装置40设置在单侧镜腿(左侧镜腿或者右侧镜腿)上,可以节约成本。压力检测装置40设置在双侧镜腿(左侧镜腿和右侧镜腿)上,搭配配融合算法对双侧镜腿的测量结果进行计算,可以提高检测精度与连续监测的稳定性。融合算法部分可以在眼镜中完成,也可以在互联的外部终端中完成。
本申请实施例提供的眼镜,用户配戴眼镜后,镜腿自然加紧头部两侧,以防止眼镜滑落。与此同时,镜腿横跨佩戴者的颞浅动脉,使得弹性片10的第一表面与佩戴者颞浅动脉上方皮肤接触,对颞浅动脉产生固定压力,导致弹性片10发生初步变形(或者不变形),为压力脉搏波的测量提供了前提条件,而不需要进行额外加压。颞浅动脉的搏动导致弹性片10二次变形,通过设置在镜腿内部的力电转换模块20实现压力脉搏波的检测。
在此基础上,压力检测装置40包括弹性片10和力电转换模块20,由于弹性片10作为直接接收外力的部件,可以通过增大弹性片10的面积(例如增大长度方向的尺寸),来增大外力接收面的面积,从而提高对外力施加点所在位置的容错性。而增大弹性片10的面积,无需同步增大力电转换模块20的面积。可降低硬件成本,简化系统与数据处理流程。
因此,本申请提供的眼镜,对于颞浅动脉的定位具有较好的容错性。在不同用户佩戴眼镜后或眼镜佩戴位置发生变化时,始终保证弹性片10覆盖颞浅动脉上方皮肤,从而使得颞浅动脉搏动信号能够被连续有效测量。适用于日常工作(图12B)、走路(图12C)等场景的监测,可实现24小时连续监测。
在一些实施例中,眼镜还包括处理器,处理器与压力检测装置40耦接,用于处理压力检测装置40生成的电信号。
本申请实施例中,如图13所示,处理器例如可以集成在眼镜的框架(例如右镜腿)中。
处理器可以是对压力检测装置40生成的电信号进行数模转换处理后输出,处理器也可以是通过内部算法处理,给出连续监测的HRV关键指标,将关键指标输出。当然,内部算法处理的过程也可以是由外部终端来完成的。
在一些实施例中,眼镜还包括通信模块,通信模块用于与外部终端建立通信。
本申请实施例中,如图13所示,通信模块例如可以集成在眼镜的框架(例如右镜腿)中。眼镜通过通信模块与外部终端建立通信连接,将处理器输出的结构无线传输至外部终端,在外部终端上实现脉搏波的实时查看。
示例的,通信模块例如可以是蓝牙模块。眼镜可与手机进行蓝牙配对连接。如图14A所示,当眼镜处于待连接状态时,手机用户界面(user interface,UI)弹出“设备请求蓝牙配对”提示的连接提醒。如图14B所示,在手机上确认蓝牙配对连接后,点击脉搏监测应用程序(application,APP),如图14C所示,可在手机上实时查看压力脉搏信号的波形。在连续监测模式下,眼镜对于走路、日常工作活动测量的数据进行处理,给出步数、心率、心脏异常次数、HRV指标等数据项,并可点击“专业解读”对各项关键指标进行详细了解。当然,对于走路、日常工作活动测量的数据进行处理,给出步数、心率、心脏异常次数、HRV指标等数据项的工作也可以由手机来完成。
通过在眼镜中设备通信模块,可与外部终端协同实现眼镜的控制,以及实现测量数据的可视化展示与专业解读。
在一些实施例中,眼镜还包括电池,电池用于为电子设备供电。
本申请实施例中,如图13所示,电池例如可以集成在眼镜的框架(例如右镜腿)中。
在一些实施例中,眼镜还包括显示模块,显示模块用于显示处理器输出的结果。
眼镜包括显示模块,压力脉搏信号的检测结果可以直接通过显示模块显示,为用户提供便利 性。
示例二
示例二与示例一的主要不同之处在于:压力检测装置40位于眼镜的鼻托处。
也就是说,第一壳体31与第二壳体32对合形成眼镜的鼻托。第一壳体31朝向佩戴者鼻子,第一壳体31在与佩戴者鼻背动脉上方皮肤贴合的位置处具有开口。那么,弹性片10用于接收鼻背动脉的搏动。
当然,眼镜也可以在佩戴者鼻背动脉上方皮肤处和佩戴者颞浅动脉上方皮肤处均设置有压力检测装置40。
示例三
示例三与示例一的主要不同之处在于:电子设备为耳挂式耳机,压力检测装置40位于耳机的耳挂处。
也就是说,第一壳体31与第二壳体32对合形成耳机的耳挂,第一壳体31在与佩戴者耳后动脉上方皮肤贴合的位置处具有开口。那么,弹性片10用于接收耳后动脉的搏动。
示例四
示例四与实例一的主要不同之处在于:电子设备为手机、电脑等握持设备,压力检测装置40位于握持设备的外壳处。
也就是说,第一壳体31与第二壳体32对合形成握持设备的外壳,第一壳体31在用户握持位置处具有开口。那么,弹性片10用于接收用户的握持力。
本申请实施例对电子设备的结构不做限定,需要检测外力的设备均属于本申请实施例的保护范围,上述示例中仅为示意,不做任何限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种压力检测装置,其特征在于,包括:
    弹性片,所述弹性片具有接收外力的第一表面,所述弹性片用于在受到外力作用下发生形变;
    至少一个力电转换模块,设置在所述弹性片的背离所述第一表面的一侧;所述力电转换模块用于根据所述弹性片的形变将所述弹性片受到的外力转化为电信号。
  2. 根据权利要求1所述的压力检测装置,其特征在于,所述弹性片的面积大于所述力电转换模块的面积。
  3. 根据权利要求1或2所述的压力检测装置,其特征在于,所述弹性片为柔性膜片或者刚性膜片。
  4. 根据权利要求1-3任一项所述的压力检测装置,其特征在于,所述力电转换模块包括应变片和电阻检测电路,所述应变片设置在所述弹性片的表面上,所述应变片与所述电阻检测电路耦接,所述电阻检测电路用于检测所述应变片的电阻。
  5. 根据权利要求4所述的压力检测装置,其特征在于,所述电阻检测电路包括不平衡电桥或者平衡电桥。
  6. 根据权利要求1-3任一项所述的压力检测装置,其特征在于,所述力电转换模块包括微机电系统MEMS。
  7. 根据权利要求1-3任一项所述的压力检测装置,其特征在于,所述力电转换模块包括相对设置的第一电极层和第二电极层;
    所述第一电极层设置在所述弹性片的表面上,所述第二电极层设置在所述第一电极层远离所述弹性片一侧。
  8. 根据权利要求1-3任一项所述的压力检测装置,其特征在于,所述弹性片的材料为导电材料;
    所述力电转换模块包括第二电极层,所述第二电极层与所述弹性片相对设置。
  9. 根据权利要求1-8任一项所述的压力检测装置,其特征在于,所述压力检测装置包括开口腔;
    所述弹性片固定在所述开口腔的腔口处,所述力电转换模块设置在所述开口腔内。
  10. 一种电子设备,其特征在于,包括:
    压力检测装置,所述压力检测装置为权利要求1-8任一项所述的压力检测装置;
    框架,所述压力检测装置固定在所述框架上;
    所述框架具有相对设置的第一壳体和第二壳体;所述第一壳体具有开口,所述压力检测装置的弹性片固定在所述开口处,所述弹性片与所述第二壳体之间具有间距。
  11. 根据权利要求10所述的电子设备,其特征在于,所述弹性片的第一表面,相对,所述第一壳体远离所述第二壳体的表面,远离所述第二壳体。
  12. 根据权利要求10或11所述的电子设备,其特征在于,所述弹性片与所述框架固定连接。
  13. 根据权利要求12所述的电子设备,其特征在于,所述弹性片的至少一端通过弹性连接部与所述框架连接。
  14. 根据权利要求10-13任一项所述的电子设备,其特征在于,所述弹性片处于预拉伸状态。
  15. 根据权利要求10-14任一项所述的电子设备,其特征在于,所述框架还包括支撑层,所述支撑层设置在所述弹性片与所述第二壳体之间,所述支撑层与所述第一壳体和/或所述第二壳体连接;所述弹性片与所述支撑层之间具有间隙。
  16. 根据权利要求10-15任一项所述的电子设备,其特征在于,所述框架还包括密封部,所述密封部设置在所述第一壳体与所述第二壳体之间;所述密封部与所述第一壳体、所述第二壳体、以及所述弹性片构成密封腔,所述压力检测装置的力电转换模块设置在所述密封腔内。
  17. 根据权利要求16所述的电子设备,其特征在于,所述第一壳体和/或所述第二壳体具有通孔,所述通孔与所述密封腔连通;
    所述框架还包括封孔部,所述封孔部密封所述通孔。
  18. 根据权利要求17所述的电子设备,其特征在于,所述封孔部包括电磁阀。
  19. 根据权利要求10-18任一项所述的电子设备,其特征在于,力电转换模块中的第二电极作为所述第二壳体的一部分。
  20. 根据权利要求10-19任一项所述的电子设备,其特征在于,所述电子设备为眼镜;
    所述第一壳体和所述第二壳体对合形成所述眼镜的镜腿,所述第一壳体在与佩戴者颞浅动脉上方皮肤贴合的位置处具有开口;
    和/或,
    所述第一壳体和所述第二壳体对合形成所述眼镜的鼻托,所述第一壳体在与佩戴者鼻背动脉上方皮肤贴合的位置处具有开口。
  21. 根据权利要求10-19任一项所述的电子设备,其特征在于,所述电子设备为耳挂式耳机;
    所述第一壳体和所述第二壳体对合形成所述耳机的耳挂,所述第一壳体在与佩戴者耳后动脉上方皮肤贴合的位置处具有开口。
  22. 根据权利要求10-21任一项所述的电子设备,其特征在于,所述电子设备还包括通信模块,所述通信模块用于与外部终端建立通信;
    和/或,
    所述电子设备还包括处理器,所述处理器与所述压力检测装置耦接,用于处理所述压力检测装置生成的电信号;
    和/或,
    所述电子设备还包括电池,所述电池用于为所述电子设备供电。
PCT/CN2023/125009 2022-10-29 2023-10-17 压力检测装置及电子设备 WO2024088113A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211340753.8A CN117942055A (zh) 2022-10-29 2022-10-29 压力检测装置及电子设备
CN202211340753.8 2022-10-29

Publications (1)

Publication Number Publication Date
WO2024088113A1 true WO2024088113A1 (zh) 2024-05-02

Family

ID=90793342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125009 WO2024088113A1 (zh) 2022-10-29 2023-10-17 压力检测装置及电子设备

Country Status (2)

Country Link
CN (1) CN117942055A (zh)
WO (1) WO2024088113A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118158606A (zh) * 2024-05-09 2024-06-07 歌尔股份有限公司 生理信号的测量方法、耳机设备、存储介质及计算机产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160287102A1 (en) * 2015-04-02 2016-10-06 Microsoft Technology Licensing, Llc Transducing pressure to a non-invasive pulse sensor
CN106805954A (zh) * 2017-02-28 2017-06-09 华中科技大学 一种穿戴式柔性压力传感器及其制备方法
WO2018005298A1 (en) * 2016-06-26 2018-01-04 Wen-Pin Shih Wearable blood-pressure monitoring device and non-invasive blood-pressure monitoring method
CN211241962U (zh) * 2019-12-30 2020-08-14 维沃移动通信有限公司 可穿戴设备
CN212972926U (zh) * 2020-12-09 2021-04-16 深圳市汇顶科技股份有限公司 生物特征信息的检测装置和电子设备
CN216495266U (zh) * 2021-11-29 2022-05-13 深圳市汇顶科技股份有限公司 生物特征信息的检测装置和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160287102A1 (en) * 2015-04-02 2016-10-06 Microsoft Technology Licensing, Llc Transducing pressure to a non-invasive pulse sensor
WO2018005298A1 (en) * 2016-06-26 2018-01-04 Wen-Pin Shih Wearable blood-pressure monitoring device and non-invasive blood-pressure monitoring method
CN106805954A (zh) * 2017-02-28 2017-06-09 华中科技大学 一种穿戴式柔性压力传感器及其制备方法
CN211241962U (zh) * 2019-12-30 2020-08-14 维沃移动通信有限公司 可穿戴设备
CN212972926U (zh) * 2020-12-09 2021-04-16 深圳市汇顶科技股份有限公司 生物特征信息的检测装置和电子设备
CN216495266U (zh) * 2021-11-29 2022-05-13 深圳市汇顶科技股份有限公司 生物特征信息的检测装置和电子设备

Also Published As

Publication number Publication date
CN117942055A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US11278242B2 (en) Wearable health monitoring device
WO2024088113A1 (zh) 压力检测装置及电子设备
US20150265214A1 (en) Adjustable sensor support structure for optimizing skin contact
US20130144176A1 (en) Non-invasive blood pressure sensor
JP6751666B2 (ja) 血圧計および血圧測定方法並びに機器
TWM576726U (zh) 穿戴式健康監測裝置
JP2020500080A (ja) 手首式血圧計
CN112190246A (zh) 可穿戴设备及其主体
WO2022120658A1 (zh) 生物特征信息的检测装置和电子设备
CN112006671A (zh) 穿戴式生命体征监护设备
JPH10155753A (ja) 心拍計測装置の構造
WO2019015595A1 (zh) 血压检测手表
KR102554695B1 (ko) 혈압 측정 디바이스 및 방법
CN217066356U (zh) 智能眼镜腿及智能眼镜架
JP7344312B2 (ja) 血圧測定のためのセンサモジュール及びそれを利用した手首着用型の携帯用血圧測定装置
CN210277144U (zh) 一种健康监测眼镜
CN111790012A (zh) 一种基于rfid的透析患者便携多媒体监测装置
CN214122598U (zh) 一种多功能骨传导眼镜
CN216417153U (zh) 智能穿戴设备
CN211459079U (zh) 一种成人心血管疾病发病预警手环设备
CN219070283U (zh) 一种基于光纤感知芯片的连续血压监测手环
CN217565131U (zh) 一种基于小型温度传感器的智能测温手表
CN220256481U (zh) 腕带设备的交互装置和腕带设备
CN221083609U (zh) 一种监测血压血氧心电的智能腕表
US20240090777A1 (en) Facial interface having integrated health sensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881692

Country of ref document: EP

Kind code of ref document: A1