WO2024088018A1 - 具有检查区域的自主检查系统 - Google Patents

具有检查区域的自主检查系统 Download PDF

Info

Publication number
WO2024088018A1
WO2024088018A1 PCT/CN2023/122440 CN2023122440W WO2024088018A1 WO 2024088018 A1 WO2024088018 A1 WO 2024088018A1 CN 2023122440 W CN2023122440 W CN 2023122440W WO 2024088018 A1 WO2024088018 A1 WO 2024088018A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
laser radar
vehicle body
inspected
radar device
Prior art date
Application number
PCT/CN2023/122440
Other languages
English (en)
French (fr)
Inventor
朱新波
倪秀琳
冉占森
李建
Original Assignee
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司 filed Critical 同方威视技术股份有限公司
Publication of WO2024088018A1 publication Critical patent/WO2024088018A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude
    • G01S19/41Differential correction, e.g. DGPS [differential GPS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/20Detecting, e.g. by using light barriers using multiple transmitters or receivers

Definitions

  • the present disclosure relates to the technical field of security inspection, and in particular to an autonomous inspection system with an inspection area.
  • the location of the inspected objects is usually determined manually, or the inspected objects are parked at a designated location for centralized scanning and inspection.
  • the inspection equipment cannot automatically obtain the location of the inspected objects in the inspection site and automatically inspect the inspected objects.
  • the degree of intelligence is low. When the inspection area is large and the inspected objects are relatively scattered, the scanning efficiency is low and a large amount of labor costs are required.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • the inspection device disclosed in the present invention can automatically check whether there is an object to be inspected in the inspection area, and when it is determined that there is an object to be inspected, it can realize autonomous inspection of the object to be inspected.
  • the whole process does not require human participation, thus saving labor costs.
  • the present disclosure provides an autonomous inspection system with an inspection area, which includes multiple scanning channels, including: an inspection device, which is movably arranged in the inspection area; a first laser radar device and a second laser radar device, which are both arranged on the inspection device, the first laser radar device is used to check whether there is an object to be inspected in the inspection area, and the second laser radar device is used to check whether there is an object to be inspected in the scanning channel, wherein the scanning channel includes a first end and a second end, and the first end and the second end are both provided with nodes, and the nodes are used to guide the moving path of the inspection device when the inspection device finds the object to be inspected.
  • a topology map server which is used to establish a topology map in the inspection area.
  • the plurality of scanning channels are arranged at intervals in the first direction, and among the plurality of scanning channels, The nodes at the first end are arranged in a first direction, and the nodes at the second end are arranged in the first direction; in any of the scanning channels, the nodes at the first end and the nodes at the second end are arranged in a second direction.
  • a positioning device which is arranged on the inspection device and is configured to determine the location information of the inspection device on the topological map
  • a processing device which is communicatively connected to the positioning device and is used to obtain the nodes of the inspection device in the first direction or in the second direction when the inspected object is detected
  • a controller which is electrically connected to the inspection device and is used to control the movement and rotation of the inspection device after receiving the instructions of the processor.
  • the inspection equipment includes: an arm, on which the positioning device is arranged; a first vehicle body and a second vehicle body, wherein the first vehicle body and the second vehicle body are respectively arranged at two ends of the arm, and the first vehicle body, the arm and the second vehicle body are sequentially connected to define a channel, and the controller controls the movement and rotation of the first vehicle body and the second vehicle body, wherein when the inspection equipment performs detection, the controller drives the first vehicle body and the second vehicle body so that the object to be inspected is located in the channel.
  • the first laser radar device is arranged on the outer side of the first vehicle body and/or the outer side of the second vehicle body
  • the second laser radar device is arranged on the inner side of the first vehicle body or the second vehicle body, and the coverage range of the first laser radar device and the second laser radar device is 360°.
  • the first laser radar device includes two first sub-laser radar devices, one of which is arranged on the outside of the first vehicle body, and the other is arranged on the outside of the second vehicle body, and the two first sub-laser radar devices are symmetrically arranged about the center point of the inspection equipment.
  • it also includes: two third laser radar devices, which are respectively arranged on the inner sides of the first vehicle body and the second vehicle body, and are suitable for measuring the width of the object to be inspected; and a fourth laser radar device, which is arranged on an arm support and is suitable for measuring the height of the object to be inspected.
  • first laser radar device and the second laser radar device are both configured as multi-line laser transmitters
  • the third laser radar device and the fourth laser radar device are configured as single-line laser transmitters.
  • the inspection equipment also includes: a radiation source, which is disposed on one of the first vehicle body or the second vehicle body, and is used to provide X-rays for scanning the object under inspection; a detector, which is disposed on the other of the first vehicle body or the second vehicle body, and is used to receive X-rays emitted from the radiation source, wherein the radiation source and the detector are disposed opposite each other, and when the inspection equipment performs detection, the object under inspection is located between the radiation source and the detector.
  • a radiation source which is disposed on one of the first vehicle body or the second vehicle body, and is used to provide X-rays for scanning the object under inspection
  • a detector which is disposed on the other of the first vehicle body or the second vehicle body, and is used to receive X-rays emitted from the radiation source, wherein the radiation source and the detector are disposed opposite each other, and when the inspection equipment performs detection, the object under inspection is located between the radiation source and the detector.
  • parking spots are provided in the topological map, and the parking spots are used for parking the inspection equipment.
  • FIG1 schematically shows an application scenario diagram of an autonomous inspection method according to an embodiment of the present disclosure
  • FIG2 schematically shows a flow chart of an autonomous inspection method according to an embodiment of the present disclosure
  • FIG3 schematically shows a schematic diagram of pre-positioning and coarse positioning according to an embodiment of the present disclosure
  • FIG4 schematically shows a flow chart of establishing a topology map according to an embodiment of the present disclosure
  • FIG5 schematically shows a schematic diagram of the arrangement of the inspection area according to an embodiment of the present disclosure
  • FIG6 schematically shows an operation control flow chart of an inspection device according to an embodiment of the present disclosure
  • FIG7 schematically shows a front view of an inspection device according to an embodiment of the present disclosure
  • FIG8 schematically shows a top view of an inspection device according to an embodiment of the present disclosure
  • FIG9 schematically shows a structural block diagram of an autonomous inspection device according to an embodiment of the present disclosure.
  • FIG10 schematically shows a block diagram of an electronic device suitable for implementing an autonomous inspection method according to an embodiment of the present disclosure.
  • the inspection equipment may be an inspection equipment carried by a vehicle body, or a self-propelled inspection equipment without a cab, which can move freely within the inspection area.
  • the current way to inspect the objects to be inspected is usually to manually determine the location of the objects to be inspected, then send a movement instruction to the inspection equipment to control the inspection equipment to move around the objects to be inspected and inspect the objects to be inspected.
  • the inspection equipment When the objects to be inspected are scattered in various locations in the inspection area, personnel are required to determine the distance and direction between the objects to be inspected and the inspection equipment one by one, and send instructions to the inspection equipment. This method consumes a lot of labor costs and has low inspection efficiency for the objects to be inspected.
  • the autonomous inspection method provided by the present invention enables the inspection equipment to automatically detect and screen the objects to be inspected in the inspection area, and after obtaining the position of the objects to be inspected, implement autonomous movement and scanning inspection, complete multiple rows of continuous scanning of the objects to be inspected, and improve the inspection speed of the objects to be inspected. No human participation is required in the entire process, thus saving labor costs.
  • FIG1 schematically shows an application scenario diagram of an autonomous inspection method according to an embodiment of the present disclosure.
  • the application scenario 100 may include a yard 101, an inspection device 102, an object to be inspected 103, and a scanning channel 104.
  • Three scanning channels 104 are arranged in the yard 101, and two objects to be inspected 103 are placed in each scanning channel 104.
  • the scanning channel 104 is usually a scanning working area of the yard 101 that has been pre-demarcated.
  • each scanning channel 104 is arranged at a predetermined distance from each other.
  • the inspection device 102 can move freely in the yard 101.
  • the inspection device 102 In the process of inspecting the object to be inspected 103, the inspection device 102 needs to straddle one of the scanning channels 104, move along the extension direction of the scanning channel 104, and perform a scanning inspection on the object to be inspected 103 in the scanning channel 104.
  • the autonomous inspection method disclosed in the present invention can be applied to the inspection of the objects to be inspected in the scanning channels within a certain inspection area.
  • the inspection area is the storage yard 101 which is only schematic, and the number of scanning channels 104 in the inspection area and the number of objects to be inspected 103 in each scanning channel 104 are also only schematic, and there is no special restriction on them.
  • the inspection area may include multiple scanning channels in one area, and may also include multiple scanning channels in multiple areas.
  • three scanning channels 104 are arranged in parallel, and two objects to be inspected 103 are placed in line in each scanning channel 104, but it should be understood that this is also schematic.
  • the extension direction between each scanning channel 104 i.e., the second direction described below
  • the objects to be inspected are There is no special restriction on the placement.
  • FIG2 schematically shows a flow chart of an autonomous inspection method according to an embodiment of the present disclosure, wherein the inspection device is movably disposed within an inspection area, and the inspection area includes a plurality of scanning channels.
  • this embodiment includes operations S210 to S250 .
  • the autonomous inspection method of the disclosed embodiment can autonomously obtain the position of the inspected object, and then drive the inspection device to move to the specified position for scanning inspection. Therefore, the first step is to obtain the position information of the inspection device itself, and then determine the orientation of the inspected object relative to the inspection device.
  • a positioning device such as a differential GPS device, may be installed on the inspection device to obtain the current location information of the inspection device in real time.
  • operation S220 it is detected whether there is an object to be inspected in the inspection area.
  • Autonomously determine whether there is an object to be inspected in the inspection area Specifically, the entire or a part of the inspection area can be scanned by a first laser radar device provided on the inspection equipment.
  • the first laser radar device is constructed as a multi-line laser transmitter.
  • the first laser radar device is provided on the outer edge of the inspection device to emit a laser beam to the outside of the inspection device. When there is an obstruction within the scanning range, it is determined that there is an object to be inspected in the inspection area.
  • the present disclosure adopts a combination of pre-positioning and coarse positioning, firstly determining the approximate position of the inspected object relative to the inspection equipment through pre-positioning, and then further locating the position of the inspected object while the inspection equipment moves to the approximate position.
  • Operation S230 is pre-positioning
  • operation S240 is coarse positioning.
  • the first laser radar device on the inspection device emits laser light toward the outside of the inspection device, and the processing device in the autonomous inspection system can determine the approximate position of the inspected object relative to the inspection device based on multiple laser beams.
  • the position of the object to be inspected relative to the inspection device can be any position outside the inspection device.
  • the inspection device is moved in a first direction according to the predicted orientation, and a second direction different from the first direction is checked to see whether there is an object to be inspected.
  • the second direction is set to be the same direction as the extension direction of the scanning channel.
  • the relative position of the inspection device to the object under inspection in the inspection area can be arbitrarily decomposed and represented by two directions (e.g., a first direction and a second direction).
  • two directions e.g., a first direction and a second direction.
  • the second direction is made the same as the extension direction of the scanning channel, and the first direction is perpendicular to the second direction.
  • this step can be understood as that while the inspection device moves in the first direction, the second laser radar device checks whether there is an object to be inspected in the scanning channel.
  • the left and right direction is the first direction
  • the up and down direction is the direction in which the scanning channel extends, that is, the second direction.
  • the controller instructs the inspection device to move to the right.
  • the laser emitted by the second laser radar device is used to check whether there is an object to be inspected in the up and down direction (that is, the second direction).
  • the second laser radar device can be arranged on the inner side of the channel of the inspection device. Usually, when the second laser radar device emits laser, the first laser radar device may not emit laser.
  • this step can be understood as the inspection device moving to the designated position in the first direction and stopping, and then using the second laser radar device to check whether there is an object to be inspected in the scanning channel.
  • the "designated position” here can be a position preset by the operator, or a position automatically generated by the autonomous inspection system according to the settings.
  • the controller After the second laser radar device screens or detects the object to be inspected in the second direction, the controller causes the inspection device to start moving along the second direction (scanning channel).
  • the inspection device When the object to be inspected is placed in the middle of the inspection device, the object to be inspected is scanned and inspected.
  • the scanning inspection mode can be automatically turned on during the movement of the inspection device, or can be manually controlled by an operator when the inspection device moves near the inspected object.
  • the inspection equipment by first predicting the position of the inspected object in the inspection area (pre-positioning), and then automatically guiding and further positioning the inspected object according to the predicted position (coarse positioning), the inspection equipment can be intelligently positioned and scanned in the inspection area, thereby improving the inspection efficiency of the inspected object, reducing manual operation procedures and labor costs, and providing a solution for realizing unmanned intelligent inspection in the future.
  • constructing a topological map is beneficial to the location positioning and mobile calculation of the inspection device. Therefore, before detecting whether there is an object to be inspected in the inspection area, the inspection area and the objects in the inspection area can be firstly Scan channels to create a topological map, for example, to create a topological map containing longitude and latitude lines.
  • FIG. 4 schematically shows a flow chart of establishing a topology map according to an embodiment of the present disclosure.
  • this embodiment includes operations S310 to S320 .
  • a topology map is created according to the coverage area of the inspection region.
  • a topology map server is provided in the autonomous inspection system, and a topology map can be constructed for the inspection area.
  • the topology map can cover the entire inspection area.
  • the extension direction of the longitude or latitude in the topology map can be set to be consistent with the extension direction of the scanning channel. It should be noted that, in a topology map including, for example, longitude and latitude, the extension direction of the scanning channel can be arbitrary.
  • the construction of the topological map can be based on the extraction and construction of the topological road network information of Google Earth, which can directly extract the required road network information from the satellite map and then quickly build the topological map of the inspection area.
  • the topological map can be constructed based on the site planning information of the inspection area (such as the yard).
  • a topological map can also be obtained by using vSLAM (Visual Simultaneous Localization and Mapping) or SOM (Self-Organizing Maps) algorithms, and an image acquisition device such as a camera is used to acquire the network information required for the image acquisition in the predetermined area, and then a topological map is constructed.
  • the predetermined area can be the entire inspection area, or the area where the inspected object is placed in the inspection area.
  • a robot with an image acquisition device moves arbitrarily in the predetermined area, and the position coordinates of the robot are obtained at regular sampling times or in real time, and finally a set of position coordinate points is formed, and then the set of position coordinate points is used to train the SOM algorithm to obtain a preliminary topological map, and finally the neurons in the obstacles and the line segments crossing the obstacles are removed to obtain the final topological map.
  • the neurons in the obstacles are inaccessible points for the robot, and the obstacles here can be understood as the inspected objects in the present disclosure.
  • an image acquisition device with a lifting function is set on the inspection equipment, and the image acquisition device at a predetermined height is used to obtain a panoramic image of the inspection area, and a topological map is obtained based on the vSLAM or SOM algorithm.
  • nodes are set for both ends of each scanning channel, and the nodes are used to guide the moving path of the inspection device.
  • the object to be inspected is stored in the scanning channel, and the purpose of the inspection device moving in the first direction is to detect whether the object to be inspected is stored in the scanning channel.
  • Nodes are set at both ends of each scanning channel (in other words, coordinates of the topological map, such as longitude and latitude coordinates, are set at both ends of each scanning channel).
  • the nodes can be used to guide the inspection device, so that the inspection device can move directly and quickly from the current position coordinates to the coordinates of the node, and check the scanning channel where the node is located.
  • the nodes on both sides of each scanning channel are usually set at a predetermined distance from the object to be inspected in the extension direction of the scanning channel.
  • the coordinates of each node include a unique longitude and latitude line.
  • the establishment of latitude coordinates and topological maps is conducive to the rapid movement of inspection equipment, reducing the time wasted in checking whether there are objects to be inspected in non-scanning channels, and improving the efficiency of locating and checking objects to be inspected.
  • the processing device can directly send one or more nodes to the inspection device to form a planned path to guide the movement of the inspection device, so that the inspection device can check the objects to be inspected in the scanning channel in order.
  • the processing device can combine the relevant knowledge of computer graph theory to generate an adjacency matrix from the static undirected topology map network, and learn from the Dijkstra path planning algorithm to achieve path planning.
  • the steps for pre-positioning the object to be inspected using a topological map are as follows.
  • the orientation of the inspected object relative to the inspection equipment is confirmed through the orientation blocked by the obstruction.
  • the positioning device obtains the position information of the inspection equipment at this time, and the processing device obtains all scanning channels in the orientation and the nodes corresponding to the scanning channels based on the position information and the confirmed orientation.
  • the left-right direction is the first direction
  • the up-down direction is the second direction.
  • the topological map includes three scanning channels and a total of 6 nodes at both ends of the scanning channels. Among them, there are objects to be inspected in the second scanning channel and the third scanning channel, and the inspection device is in the upper left corner.
  • the first laser radar device on the inspection device pre-positions the object to be inspected outside the inspection device. The result is that the object to be inspected exists in the lower right corner of the current position of the inspection device.
  • the location information of the inspection device is obtained in real time according to the positioning device on the inspection device, and all available nodes on the right side of the inspection device can be calculated.
  • the longitude of the topological map is the direction of the scanning channel
  • the latitude of the topological map is the direction perpendicular to the scanning channel
  • all nodes on the first end of the scanning channel and all nodes on the second end of the scanning channel are on the same latitude
  • the nodes at both ends of the same scanning channel are on the same longitude. All nodes on the same latitude on the right side of the inspection device, that is, all nodes on the right side with the same latitude as the position coordinates of the inspection device, are obtained as nodes that can be obtained.
  • the processing device After all the scanning channels and the nodes corresponding to the scanning channels in the pre-positioning are obtained, the processing device reads the nodes one by one according to the principle of the closest distance reading. Among the nodes obtained in the pre-positioning, the node that is currently closest to the inspection device in the first direction is used as the first target node. The processing device sends the information of the first target node to the controller, and the controller controls the inspection device to move in the first direction. After the inspection device reaches the first target node, the second laser radar device on the inspection device is used to check whether there is an object to be inspected in the scanning channel.
  • the processing device When the object to be inspected is detected in the scanning channel, the processing device obtains the node at the second end of the scanning channel where the inspection device is located (the node in the second direction of the inspection device), and uses this node as the second target node. The processing device sends the information of the second target node to the controller, and the controller controls The inspection device moves in a second direction.
  • the processing device obtains the node on the right closest to the inspection device as the first target node and sends it to the controller.
  • the controller controls the inspection device to move from the current position to the first target node.
  • the inspection device at the first target node uses the second laser radar device to check whether there is an object to be inspected in the scanning channel.
  • the processing device obtains the node at the second end of the same scanning channel as the first target node, and sends this node as the second target node to the controller, and the controller controls the inspection device to move to the second target node.
  • a node having the same longitude as the current position coordinates of the inspection device is obtained.
  • the inspection device disclosed in the present invention can move in any direction by guiding the path of the inspection device through the nodes.
  • the movement of the inspection device is achieved by adjusting the wheels in the inspection device.
  • the wheels may deviate during the movement. For example, if the inspection device cannot move according to the set position during the movement of the inspection device along the scanning channel, the distance between the imaging system on the inspection device and the object under inspection may change, and the final imaging result will be affected.
  • the autonomous inspection method also includes correcting or rectifying the travel path of the inspection device in the second direction.
  • the inspection device adjusts the deflection angle of the wheel before moving in the second direction.
  • This solution is a one-time adjustment and can roughly adjust the walking route of the inspection device to the expected route when inspecting the object to be inspected.
  • the calculation amount is small, but the accuracy is not high.
  • the deflection angle of the wheel is adjusted in real time. This process requires continuous acquisition of the offset distance of the inspection device, which requires a large amount of calculation, but the walking route is more consistent with the expected route and is more accurate.
  • the wheel angle of the inspection device needs to be adjusted according to the offset distance of the inspection device, wherein the offset distance is calculated by a baseline connecting nodes at both ends of the scanning channel and the current position information of the inspection device.
  • the above two solutions for correcting the wheel angle can both enable the inspection device to move in the second direction along the expected route and inspect the object to be inspected.
  • the least square method is used to fit and obtain the The slope and intercept of the timing offset predict the vertical offset distance between the inspection equipment and the baseline, and then output the wheel adjustment angle.
  • the inspection device since the inspection device moves in the second direction while straddling the object to be inspected for scanning and inspection, it is preferred to first detect the width and height of the object to be inspected to determine whether the inspection device meets the mobile passage standard, thereby preventing the inspection device from being damaged by collision or jamming.
  • the autonomous inspection method also includes:
  • the width of the object to be inspected is measured by a third laser radar device arranged on the inspection device, and the height of the object to be inspected is measured by a fourth laser radar device arranged on the inspection device.
  • the inspection device retreats to the node of the scanning channel where the object to be inspected is located.
  • the third laser radar device and the fourth laser radar device measure the width and height of the object to be inspected respectively.
  • the inspection equipment can pass normally. If any one of them exceeds the preset size, the inspection equipment cannot pass.
  • the topological map also includes parking points, which are used to park the inspection equipment.
  • the parking points can also be regarded as nodes in the topological map.
  • the parking point can be used as a parking point for the inspection equipment when it is not working. As shown in FIG5 , the parking point can be set at the four corners of the inspection area. Setting the parking point at the four corners makes it easier for the inspection equipment to move in both directions along the longitude and latitude during initial operation.
  • the parking point and the nearest node are on the same longitude or latitude.
  • the present disclosure also provides an autonomous inspection system suitable for autonomous inspection of an inspection area, wherein the inspection area includes multiple scanning channels.
  • the autonomous inspection system includes: an inspection device, a first laser radar device 10 and a second laser radar device 20.
  • the inspection equipment can be movably arranged in the inspection area; the first laser radar device 10 and the second laser radar device 20 are both arranged on the inspection equipment, the first laser radar device 10 is used to detect whether there is an object to be inspected in the inspection area, and the second laser radar device 20 is used to check whether there is an object to be inspected in the scanning channel, wherein the scanning channel includes a first end and a second end, and the first end of the scanning channel and the second end of the scanning channel are both provided with nodes, and the nodes are used to guide the moving path of the inspection equipment when the inspection equipment finds the object to be inspected.
  • the inspection area includes three scanning channels and a total of 6 nodes at both ends of the scanning channels, where the first end of the scanning channel is point A, the second end of the scanning channel is point B, there are objects to be inspected in the second scanning channel and the third scanning channel, and the inspection device is in the upper left corner.
  • the first laser radar device 10 on the inspection device pre-positions the object to be inspected outside the inspection device, and then the second laser radar device 20 on the inspection device performs rough positioning.
  • the inspection device is based on the position information of the node. To move.
  • the position of the inspected object can be determined by the first laser radar device 10 and the second laser radar device 20, and the moving path of the inspection equipment can be guided in combination with the nodes, thereby realizing the automatic inspection process of the inspection equipment in the inspection area, improving the inspection efficiency, reducing the manual operation process and labor costs, and providing a solution for realizing unmanned intelligent inspection.
  • the autonomous inspection system further includes: a topology map server, which is used to establish a topology map in the inspection area and provide the topology map and node information on the topology map to the processing device.
  • a topology map server which is used to establish a topology map in the inspection area and provide the topology map and node information on the topology map to the processing device.
  • the topological map includes longitude and latitude, and the extension direction of the longitude or latitude is consistent with the extension direction of the scanning channel. Constructing the topological map is conducive to the location positioning and mobile calculation of the inspection equipment, and the topological map can cover the entire inspection area.
  • the extension direction of the longitude or latitude in the topological map is set to be consistent with the extension direction of the scanning channel.
  • a plurality of scanning channels are arranged at intervals in a first direction, the nodes on the first ends of the plurality of scanning channels are arranged at intervals in the first direction, and the nodes at the second ends are also arranged at intervals in the first direction; in any scanning channel, the nodes at the first end and the nodes at the second end are arranged in the second direction.
  • the inspection area includes three scanning channels, the first end of the scanning channel is point A, the second end of the scanning channel is point B, the three A points are arranged at intervals in the first direction, and the three B points are arranged at intervals in the first direction; in the same scanning channel, point A on the first end and point B on the second end are in the second direction.
  • This is conducive to reducing the amount of calculation in the calculation process, and there is no need to calculate the angle that the inspection device needs to turn every time.
  • the inspection device only needs to move in the first direction or the second direction to achieve the purpose of autonomous inspection disclosed in the present invention, which simplifies the process.
  • the autonomous inspection system of this embodiment is of course also suitable for autonomous inspection of inspection areas with scanning channels arranged in any direction.
  • the autonomous inspection system further includes: a positioning device 30, a processing device and a controller.
  • the positioning device 30 is arranged on the inspection device, and the positioning device 30 is arranged to determine the position information of the inspection device on the topological map.
  • the positioning device 30 is set as shown in Figures 7 and 8, and can be a GPS positioning device of model XW-SC3663, which can provide the position, speed, time, heading and pitch angle information of the vehicle (inspection equipment).
  • the inspection equipment disclosed in the present invention adopts dual-antenna positioning, so in the top view of the inspection equipment in Figure 8, the installation positions of the two antennas are marked.
  • the processing device is connected to the positioning device 30 for communication.
  • the processing device is used to obtain the detected object when detecting and checking it. Check nodes of the device in the first direction or in the second direction.
  • the processing device can be understood as being used to process the offset distance, movement and node acquisition of the inspection device, etc. After acquiring the node information, the processing device sends an instruction to the controller.
  • the controller is electrically connected to the inspection device and is used to control the walking and rotation/steering of the inspection device after receiving instructions from the processing device.
  • the inspection equipment includes: an arm 41 , a first vehicle body 42 and a second vehicle body 43 .
  • a positioning device 30 is provided on the arm 41, and the first vehicle body 42 and the second vehicle body 43 are respectively arranged at both ends of the arm 41, and the first vehicle body 42, the arm 41 and the second vehicle body 43 are connected in sequence to define a channel 401 that can be used to scan the object to be inspected.
  • the controller controls the movement and rotation of the first vehicle body 42 and the second vehicle body 43.
  • the controller drives the first vehicle body 42 and the second vehicle body 43 to make the object to be inspected be located in the channel 401.
  • one end of the arm 41 is connected to the first vehicle body 42
  • the other end of the arm 41 is connected to the second vehicle body 43 .
  • the first vehicle body 42 and the second vehicle body 43 are equipped with wheels for driving the inspection equipment to rotate and move, and the controller can control the wheels.
  • the first vehicle body 42, the arm 41 and the second vehicle body 43 are connected in sequence to define a passage 401.
  • the inspection device moves in the second direction to inspect the object to be inspected, the first vehicle body 42 is on one side of the object to be inspected, the second vehicle body 43 is on the other side of the object to be inspected, and the arm 41 is above the object to be inspected. It can be understood that the inspection device straddles the object to be inspected and passes through the object to be inspected in a "riding" posture.
  • first vehicle body 42 and the second vehicle body 43 may not be distinguished in position during the movement.
  • a first laser radar device 10 is disposed on the outer side of the first vehicle body 42 and/or the outer side of the second vehicle body 43
  • a second laser radar device 20 is disposed on the inner side of the first vehicle body 42 or the second vehicle body 43, and the coverage range of the first laser radar device 10 and the second laser radar device 20 are both 360°.
  • the coverage of the first laser radar device 10 can be understood as a numerical range of 360° horizontal field of view with the laser generating point of the first laser radar device 10 as the center.
  • the coverage of the second laser radar device 20 is similar.
  • the first laser radar device 10 and the second laser radar device 20 of the present disclosure may be 16-line mechanical laser radars of model RS-Helios-16P.
  • the first laser radar device 10 is used to detect whether there is an object to be inspected in the inspection area.
  • the inspection equipment needs to inspect the entire inspection area in a stopped state.
  • the first laser radar device 10 is set on the outside of the first vehicle body 42 and/or the outside of the second vehicle body 43 to detect the entire inspection area.
  • the second laser radar device 20 may be when the inspection device stops at a node of the scanning channel or in the first direction When moving upward, check whether there is an object to be inspected in the scanning channel.
  • the installation position of the second laser radar device 20 is shown in Figures 7 and 8, and is installed on the inner side of the second vehicle body 43.
  • the second laser radar device 20 can be installed on one of the walls of the channel 401 defined by the first vehicle body 42, the arm 41 and the second vehicle body 43.
  • the first laser radar device 10 includes two first sub-laser radar devices, one of which is arranged on the outside of the first vehicle body 42, and the other is arranged on the outside of the second vehicle body 43, and the two first sub-laser radar devices are symmetrically arranged about the center point of the inspection equipment.
  • the first laser radar device 10 is only installed on the first vehicle body 42 or the second vehicle body 43, and some areas on the inspection equipment may block the laser beam emitted by the first laser radar device 10. Therefore, when using an inspection device with only one first laser radar device 10, it is necessary to adjust the posture of the inspection device so that there is no obstruction between the first laser radar device 10 and the inspection area. Such inspection equipment has poor accuracy and is not conducive to full automation.
  • the first laser radar device 10 is disposed on the outer side of the first vehicle body 42 and the outer side of the second vehicle body 43.
  • the first sub-laser radar device on the first vehicle body 42 and the first sub-laser radar device on the second vehicle body 43 are symmetrical 180° with respect to the center of the inspection equipment.
  • the first sub-laser radar device on the first vehicle body 42 is installed at the corner of the first vehicle body 42, and can cover a viewing angle range of 270°.
  • the first sub-laser radar device on the second vehicle body 43 is installed at the corner of the second vehicle body 43, and can cover a viewing angle range of 270°. It can be seen from FIG8 that the coverage ranges of the two first sub-laser radar devices can be complementary, which is more conducive to the detection and investigation of the inspection area.
  • first laser radar device 10 and the first sub-laser radar device are exactly the same equipment. In order to distinguish the two implementation schemes, two naming methods are adopted.
  • the present disclosure has certain restrictions on the width and height of the inspected object.
  • the autonomous inspection system further includes: two third laser radar devices (not shown), which are respectively arranged on the inner side of the first vehicle body 42 and the second vehicle body 43 and are suitable for measuring the width of the inspected object.
  • a third laser radar device is provided on both side walls of the channel 401 formed by the first vehicle body 42 , the arm 41 and the second vehicle body 43 .
  • the width of the object to be inspected is smaller than the width of the channel 401 , the width of the object to be inspected meets the preset size.
  • the autonomous inspection system further includes: a fourth laser radar device (not shown), which is disposed on the boom 41 and is suitable for measuring the height of the object under inspection.
  • a fourth laser radar device is provided on the upper wall of the passage 401 formed by the first vehicle body 42 , the arm 41 and the second vehicle body 43 .
  • the width of the object to be inspected meets the preset size.
  • the first laser radar device 10 and the second laser radar device 20 are both configured as multi-line laser transmitters, and the third laser radar device and the fourth laser radar device are configured as single-line laser transmitters.
  • the inspection device further includes: a radiation source (not shown) and a detector (not shown).
  • a radiation source is disposed on one of the first vehicle body 42 or the second vehicle body 43, and the radiation source is used to provide X-rays for scanning the object under inspection;
  • a detector is disposed on the other of the first vehicle body 42 or the second vehicle body 43, and the detector is used to receive X-rays emitted from the radiation source and penetrating the object under inspection, wherein the radiation source and the detector are disposed opposite to each other, and when the inspection equipment performs inspection, the object under inspection is located between the radiation source and the detector.
  • FIG6 schematically shows a flow chart of operation and control of an inspection device according to an embodiment of the present disclosure.
  • a first laser radar device is used to check whether there is an object to be inspected in the storage yard.
  • the inspection device stops at the first target node.
  • a second laser radar device is used to check whether there is an object to be detected in the second direction.
  • operation S406 if otherwise, the next node with the closest distance at the same latitude is selected as the first target node, and the movement continues in the first direction, and then operation S404 is performed.
  • the wheel angle is calculated and adjusted to move in the second direction.
  • operation S409 after the inspection device reaches the second target node, operation S401 is performed.
  • the present disclosure also provides an autonomous inspection device for inspecting equipment.
  • the device will be described in detail below in conjunction with FIG.
  • FIG9 schematically shows a structural block diagram of an autonomous inspection device according to an embodiment of the present disclosure.
  • the autonomous inspection device 500 of this embodiment includes an acquisition module 510 , a detection module 520 , a prediction module 530 , a troubleshooting module 540 and a movement module 550 .
  • the acquisition module 510 is used to acquire the location information of the inspection device. In one embodiment, the acquisition module 510 can be used to perform the operation S210 described above, which will not be described in detail here.
  • the detection module 520 is used to detect whether there is an object to be detected in the inspection area. In one embodiment, the detection module 520 can be used to perform the operation S220 described above, which will not be repeated here.
  • the prediction module 530 is used to: when there is an object to be inspected in the inspection area, combine the location information of the inspection equipment to predict The orientation of the object to be inspected relative to the inspection device.
  • the pre-determination module 530 can be used to perform the operation S230 described above, which will not be described in detail here.
  • the checking module 540 is used to: move the inspection device in the first direction according to the predicted orientation, and check whether there is an object to be inspected in the second direction.
  • the checking module 540 can be used to perform the operation S240 described above, which will not be repeated here.
  • the moving module 550 is used to: when the object to be inspected is found in the second direction, move the inspection device in the second direction and inspect the object to be inspected.
  • the moving module 550 can be used to perform the operation S250 described above, which will not be described in detail here.
  • the above-mentioned autonomous inspection method can be executed, by first predicting the position of the inspected object in the inspection area, and then automatically guiding and further positioning the inspected object according to the predicted position, the intelligent positioning and scanning of the inspection equipment in the inspection area can be realized, thereby improving the inspection efficiency of the inspected object, reducing manual operation procedures and labor costs, and providing a solution for realizing unmanned intelligent inspection in the future.
  • any multiple modules of the acquisition module 510, the detection module 520, the pre-judgment module 530, the troubleshooting module 540 and the mobile module 550 can be combined in one module for implementation, or any one of the modules can be split into multiple modules. Alternatively, at least part of the functions of one or more of these modules can be combined with at least part of the functions of other modules and implemented in one module.
  • At least one of the acquisition module 510, the detection module 520, the pre-judgment module 530, the troubleshooting module 540 and the mobile module 550 can be at least partially implemented as a hardware circuit, such as a field programmable gate array (FPGA), a programmable logic array (PLA), a system on a chip, a system on a substrate, a system on a package, an application specific integrated circuit (ASIC), or can be implemented by hardware or firmware such as any other reasonable way of integrating or packaging the circuit, or by any one of the three implementation methods of software, hardware and firmware or by a suitable combination of any of them.
  • FPGA field programmable gate array
  • PLA programmable logic array
  • ASIC application specific integrated circuit
  • At least one of the acquisition module 510, the detection module 520, the prediction module 530, the troubleshooting module 540 and the movement module 550 may be at least partially implemented as a computer program module, and when the computer program module is executed, a corresponding function may be executed.
  • FIG10 schematically shows a block diagram of an electronic device suitable for implementing an autonomous inspection method according to an embodiment of the present disclosure.
  • the electronic device 600 includes a processor 601, which can perform various appropriate actions and processes according to a program stored in a read-only memory (ROM) 602 or a program loaded from a storage part 608 to a random access memory (RAM) 603.
  • the processor 601 may include, for example, a general-purpose microprocessor (e.g., a CPU), an instruction set processor and/or a related chipset and/or a dedicated microprocessor (e.g., an application-specific integrated circuit (ASIC)), etc.
  • the processor 601 may also include an onboard memory for caching purposes.
  • the processor 601 may It includes a single processing unit or multiple processing units for executing different actions of the method flow according to the embodiment of the present disclosure.
  • RAM 603 various programs and data required for the operation of the electronic device 600 are stored.
  • the processor 601, ROM 602 and RAM 603 are connected to each other through a bus 604.
  • the processor 601 performs various operations of the method flow according to the embodiment of the present disclosure by executing the program in ROM 602 and/or RAM 603. It should be noted that the program can also be stored in one or more memories other than ROM 602 and RAM 603.
  • the processor 601 can also perform various operations of the method flow according to the embodiment of the present disclosure by executing the program stored in the one or more memories.
  • the electronic device 600 may further include an input/output (I/O) interface 605, which is also connected to the bus 604.
  • the electronic device 600 may further include one or more of the following components connected to the I/O interface 605: an input portion 606 including a keyboard, a mouse, etc.; an output portion 607 including a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage portion 608 including a hard disk, etc.; and a communication portion 609 including a network interface card such as a LAN card, a modem, etc.
  • the communication portion 609 performs communication processing via a network such as the Internet.
  • a drive 610 is also connected to the I/O interface 605 as needed.
  • a removable medium 611 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc., is installed on the drive 610 as needed, so that a computer program read therefrom is installed into the storage portion 608 as needed.
  • the present disclosure also provides a computer-readable storage medium, which may be included in the device/apparatus/system described in the above embodiments; or may exist independently without being assembled into the device/apparatus/system.
  • the above computer-readable storage medium carries one or more programs, and when the above one or more programs are executed, the method according to the embodiment of the present disclosure is implemented.
  • a computer-readable storage medium may be a non-volatile computer-readable storage medium, such as but not limited to: a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium containing or storing a program that may be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable storage medium may include the ROM 602 and/or RAM 603 described above and/or one or more memories other than ROM 602 and RAM 603.
  • the embodiments of the present disclosure also include a computer program product, which includes a computer program, and the computer program contains program code for executing the method shown in the flowchart.
  • the computer program product is run in a computer system, The program code is used to enable a computer system to implement the method provided in the embodiment of the present disclosure.
  • the computer program may rely on tangible storage media such as optical storage devices, magnetic storage devices, etc.
  • the computer program may also be transmitted and distributed in the form of signals on a network medium, and downloaded and installed through the communication part 609, and/or installed from a removable medium 611.
  • the program code contained in the computer program may be transmitted using any appropriate network medium, including but not limited to: wireless, wired, etc., or any suitable combination of the above.
  • the computer program can be downloaded and installed from the network through the communication part 609, and/or installed from the removable medium 611.
  • the computer program is executed by the processor 601, the above functions defined in the system of the embodiment of the present disclosure are performed.
  • the system, device, apparatus, module, unit, etc. described above can be implemented by a computer program module.
  • the program code for executing the computer program provided in the embodiment of the present disclosure can be written in any combination of one or more programming languages.
  • these computing programs can be implemented using high-level procedural and/or object-oriented programming languages, and/or assembly/machine languages.
  • Programming languages include, but are not limited to, Java, C++, python, "C" language or similar programming languages.
  • the program code can be executed entirely on the user computing device, partially on the user device, partially on the remote computing device, or entirely on the remote computing device or server.
  • the remote computing device can be connected to the user computing device through any type of network, including a local area network (LAN) or a wide area network (WAN), or can be connected to an external computing device (e.g., using an Internet service provider to connect through the Internet).
  • LAN local area network
  • WAN wide area network
  • an Internet service provider to connect through the Internet
  • each box in the flow chart or block diagram can represent a module, a program segment, or a part of a code, and the above-mentioned module, program segment, or a part of a code contains one or more executable instructions for realizing the specified logical function.
  • the functions marked in the box can also occur in a different order from the order marked in the accompanying drawings. For example, two boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved.
  • each box in the block diagram or flow chart, and the combination of the boxes in the block diagram or flow chart can be implemented with a dedicated hardware-based system that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Automation & Control Theory (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本公开提供具有检查区域的自主检查系统,包括:可移动地设置在检查区域内的检查设备;第一激光雷达装置和第二激光雷达装置均设置在检查设备上,第一激光雷达装置用于排查检查区域内是否存在被检物,第二激光雷达装置用于排查扫描通道内是否存在被检物,其中,扫描通道包括一端和另一端,一端和另一端均设置有节点,节点用于在检查设备发现被检物时指引检查设备的移动路径。

Description

具有检查区域的自主检查系统
本公开要求于2022年10月28日提交的、申请号为202211340328.9的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及安检技术领域,具体涉及一种具有检查区域的自主检查系统。
背景技术
目前,货物、集装箱或装载有货物或集装箱的车辆作为被检物停放在检查场地(例如港口堆场)内后,通常通过人工判断被检物的位置、或是将被检物停放在指定的位置再进行集中扫描检查,检查设备无法自动获取检查场地内被检物的位置并自动对被检物进行查验,智能化程度较低,在检查区域较大、被检物较为分散的情况下,扫描效率较低且需要耗费大量人工成本。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。
例如,本公开的检查设备可对检查区域内是否存在被检物实施自动排查,并在确定存在被检物时,实现对被检物的自主检查,全过程无需人员参与,节省人工成本。
为了达到上述目的,本公开提供了一种具有检查区域的自主检查系统,检查区域内包括多个扫描通道,包括:检查设备,所述检查设备可移动地设置在所述检查区域内;第一激光雷达装置和第二激光雷达装置,所述第一激光雷达装置和所述第二激光雷达装置均设置在所述检查设备上,所述第一激光雷达装置用于排查所述检查区域内是否存在被检物,所述第二激光雷达装置用于排查所述扫描通道内是否存在被检物,其中,所述扫描通道包括第一端和第二端,所述第一端和所述第二端均设置有节点,所述节点用于在所述检查设备发现被检物时指引所述检查设备的移动路径。
进一步地,还包括:拓扑地图服务器,所述拓扑地图服务器用于在所述检查区域内建立拓扑地图。
进一步地,多个所述扫描通道在第一方向上间隔排列,在多个所述扫描通道中,所 述第一端的节点在第一方向上排列,所述第二端的节点在第一方向上排列;在任一所述扫描通道中,所述第一端的节点与所述第二端的节点在第二方向上排列。
进一步地,还包括:定位装置,所述定位装置设置在所述检查设备上,所述定位装置设置用于确定所述检查装置在所述拓扑地图上的位置信息;处理装置,所述处理装置与所述定位装置通信连接,所述处理装置用于在排查到被检物时获取所述检查设备在所述第一方向上或在所述第二方向上的节点;以及控制器,所述控制器与所述检查设备电连接,用于在接收所述处理器的指令后控制所述检查设备的行走和旋转。
进一步地,所述检查设备包括:臂架,所述臂架上设置有所述定位装置;第一车体和第二车体,所述第一车体和所述第二车体分别设置在所述臂架两端,所述第一车体、所述臂架和所述第二车体依次连接限定出通道,所述控制器控制所述第一车体和所述第二车体的行走和旋转,其中,在所述检查设备执行检测时,所述控制器驱动所述第一车体和所述第二车体,使所述被检物位于所述通道内。
进一步地,所述第一车体的外侧和/或所述第二车体的外侧设置有所述第一激光雷达装置,所述第一车体或所述第二车体的内侧设置有所述第二激光雷达装置,所述第一激光雷达装置和所述第二激光雷达装置的覆盖范围为360°。
进一步地,所述第一激光雷达装置包括两个第一子激光雷达装置,其中一个设置在所述第一车体的外侧,另一个设置在所述第二车体的外侧,两个所述第一子激光雷达装置关于所述检查设备呈中心点对称设置。
进一步地,还包括:两个第三激光雷达装置,两个所述第三激光雷达装置分别设置在所述第一车体和所述第二车体的内侧,适于测量所述被检物的宽度;第四激光雷达装置,所述第四激光雷达装置设置在臂架上,适于测量所述被检物的高度。
进一步地,所述第一激光雷达装置和所述第二激光雷达装置均构造为多线激光发射器,所述第三激光雷达装置和所述第四激光雷达装置构造为单线激光发射器。
进一步地,所述检查设备还包括:射线源,所述射线源设置在所述第一车体或所述第二车体的一个上,所述射线源用于提供对所述被检物扫描的X射线;探测器,所述探测器设置在所述第一车体或所述第二车体的另一个上,所述探测器用于接收从所述射线源发射的X射线,其中,所述射线源与所述探测器正对设置,在所述检查设备执行检测时,所述被检物位于所述射线源与所述探测器之间。
进一步地,所述拓扑地图内还设置有停车点,所述停车点用于所述检查设备的停放。
附图说明
通过以下参照附图对本公开实施例的描述,本公开的上述内容以及其他目的、特征和优点将更为清楚,在附图中:
图1示意性示出了根据本公开实施例的自主检查方法的应用场景图;
图2示意性示出了根据本公开实施例的自主检查方法的流程图;
图3示意性示出了根据本公开实施例预定位和粗定位的示意图;
图4示意性示出了根据本公开实施例建立拓扑地图的流程图;
图5示意性示出了根据本公开实施例检查区域的布置示意图;
图6示意性示出了根据本公开实施例检查设备的运控流程图;
图7示意性示出了根据本公开实施例检查设备的主视图;
图8示意性示出了根据本公开实施例检查设备的俯视图;
图9示意性示出了根据本公开实施例的自主检查装置的结构框图;以及
图10示意性示出了根据本公开实施例的适于实现自主检查方法的电子设备的方框图。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本公开实施例的全面理解。然而,明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
在此使用的术语仅仅是为了描述具体实施例,而并非意在限制本公开。在此使用的术语“包括”、“包含”等表明了所述特征、步骤、操作和/或部件的存在,但是并不排除存在或添加一个或多个其他特征、步骤、操作或部件。
在此使用的所有术语(包括技术和科学术语)具有本领域技术人员通常所理解的含义,除非另外定义。应注意,这里使用的术语应解释为具有与本说明书的上下文相一致的含义,而不应以理想化或过于刻板的方式来解释。
在使用类似于“A、B和C等中至少一个”这样的表述的情况下,一般来说应该按照本领域技术人员通常理解该表述的含义来予以解释(例如,“具有A、B和C中至少一个的系统”应包括但不限于单独具有A、单独具有B、单独具有C、具有A和B、具 有A和C、具有B和C、和/或具有A、B、C的系统等)。
检查设备可以是通过车体承载的检查设备,也可以是无驾驶室的自行走型检查设备,能够在检查区域内自由运动。
货物、集装箱或装载有货物或集装箱的车辆作为被检物停放在检查场地(例如港口堆场)内后,目前检查被检物的方式通常是通过人工判断被检物的位置,然后向检查设备发出移动指令,控制检查设备移动到被检物周围,并对被检物进行检查。在被检物分散在检查区域各个位置时,需要人员逐一判断被检物与检查设备相距的距离和所在的方位,并向检查设备发送指令,这样的方式耗费大量人工成本,对被检物的检查效率较低。
基于上述,目前还有一种方式,是先将散落在各个位置的被检物进行集中,然后放置在指定的位置,检查设备集中对其进行扫描检查,此过程涉及到人工执行搬运、被检物的移动摆放位置等,同样需要耗费大量人力,智能化程度较低。
为了提高扫描检查的自动化和智能化水平,本公开提供的自主检查方法能够使检查设备在自动检测和排查检查区域内的被检物,并获取被检物的位置后,实施自主移动和扫描检查,完成对被检物的多排连续扫描,提高被检物的检查速度,且全过程无需人员参与,节省人工成本。
图1示意性示出了根据本公开实施例的自主检查方法的应用场景图。
如图1所示,根据该实施例的应用场景100可以包括堆场101、检查设备102、被检物103和扫描通道104。堆场101内设置有3个扫描通道104,每个扫描通道104内放置有2个被检物103。予以说明,扫描通道104通常是预先划定好的堆场101的扫描工作区域,此外,各扫描通道104之间相隔预定距离而设置。检查设备102可以在堆场101内自由运动。在对被检物103进行检查的过程中,检查设备102需要跨在其中一个扫描通道104上,沿扫描通道104的延伸方向移动并对扫描通道104内的被检物103执行扫描检查。
本公开的自主检查方法可适用于一定的检查区域内的扫描通道中的被检物的检查。应该理解,图1中,检查区域为堆场101仅是示意性的,检查区域内扫描通道104的数量和每个扫描通道104内被检物103的数量也仅是示意性的,对其没有特殊限制。此外,检查区域可以包括一个区域中的多个扫描通道,也可以包含多个区域中的多个扫描通道。例如,在图1中,3个扫描通道104并行排列,在各个扫描通道104内2个被检物103直列地放置,但应当理解,这也是示意性的。通常,只要各被检物103不放置扫描通道104之外,则对各扫描通道104之间的延伸方向(即下文所述的第二方向)以及被检物 的摆放方式也没有特殊限制。
以下将基于图1描述的场景,通过图2~图6对本公开实施例的自主检查方法进行详细描述。
图2示意性示出了根据本公开实施例的自主检查方法的流程图,检查设备可移动地设置在检查区域内,检查区域内包括多个扫描通道。
如图2所示,该实施例包括操作S210~操作S250。
在操作S210,获取检查设备的位置信息。
本公开实施例的自主检查方法可以自主获取被检物的位置,然后驱动检查设备移动到指定位置进行扫描检查。因此,第一步需要先获取检查设备自身的位置信息,然后再确定被检物相对于检查设备的方位。
在此步骤中,可以在检查设备上安装定位装置,例如差分GPS装置,实时获取检查设备当前的位置信息。
在操作S220,检测检查区域内是否存在被检物。
自主判断检查区域内是否存在被检物,具体地,可通过检查设备上设置的第一激光雷达装置对检查区域的整体或一部分进行扫描,第一激光雷达装置构造为多线激光发射器,第一激光雷达装置设置在检查装置的外侧边缘,向检查装置外侧发射激光线束,在扫描范围内存在遮挡物时,判定检查区域内存在被检物。
通常情况下,由于检查区域较大,考虑到被检物放置的位置可能与检查设备相距较远,仅使用第一激光雷达装置无法精准定位被检物的相对位置信息,因此本公开采用预定位和粗定位的结合方式,先通过预定位判断出被检物相较于检查设备的大致方位,然后在检查设备向大致方位移动的过程中,进一步定位被检物的位置。操作S230为预定位,操作S240为粗定位。
在操作S230,在检查区域内存在被检物时,结合检查设备的位置信息,预判被检物相对检查设备的方位。
如图3所示,检查设备上的第一激光雷达装置向检查设备的外侧发射激光,自主检查系统中的处理装置可根据多束激光可判断出被检物相对检查设备的大致方位。
可以理解的是,被检物相对检查设备的方位可以为检查设备外侧的任意方位。
在操作S240,根据预判的方位使检查设备在第一方向上移动,并在与第一方向不同的第二方向上排查是否存在被检物。在此,将第二方向设为与扫描通道的延伸方向相同的方向。
对于检查区域的检查设备到被检物的相对方位、即任意方位,可以进行任意地分解,用两个方向(例如第一方向和第二方向)来表示。换言之,从检查设备到被检物之间,可以存在任意条路径。为了方便说明,在本公开中,令第二方向与扫描通道的延伸方向相同,第一方向与第二方向垂直。
在一个实施例中,此步骤可理解为检查设备在第一方向上移动的同时,第二激光雷达装置在扫描通道排查是否存在被检物。
具体地,如图3所示,根据图中的上下左右,左右方向为第一方向,上下方向为扫描通道延伸的方向,也就是第二方向。在通过预定位确定被检物在检查设备的右下方向后,控制器指示检查设备向右移动,与此同时,利用第二激光雷达装置发射的激光,在上下方向(即第二方向)上排查是否存在被检物。予以说明,第二激光雷达装置可设置在检查装置的通道内侧。通常,在第二激光雷达装置发射激光时,第一激光雷达装置可以不发射激光。
在另一个实施例中,此步骤可理解为检查设备在第一方向上移动到指定位置停下后,再通过第二激光雷达装置在扫描通道排查是否存在被检物。这里的“指定位置”可以是操作人员预设的位置,也可以是自主检查系统根据设定自动生成的位置。
在操作S250,在第二方向上排查或检测到被检物时,使检查设备在第二方向上移动,并对被检物进行检查。
结合操作S240,通过第二激光雷达装置在第二方向上排查或检测到被检物时,说明检查设备与被检物大致在同一上下方向上,即,检查设备已经可以确定被检物所在的扫描通道,从而实现对被检物的粗定位。
第二激光雷达装置在第二方向上排查或检测到被检物后,控制器令检查设备开始沿第二方向(扫描通道)移动。在被检物置于检测设备中间时,对被检物进行扫描检查。
对于被检物的检查过程,可以为检查设备移动过程中自动开启扫描检查模式,也可以为检查设备在移动到被检物附近时操作人员手动控制。
根据本公开的自主检查方法,通过先预判被检物在检查区域内的方位(预定位),再根据预判方位自动导向并对被检物进行进一步定位(粗定位),实现检查设备在检查区域内的智能定位和扫描工作,提高了被检物的查验效率,减少人工操作流程及人工成本,为未来实现无人化智能查验提供一种解决方案。
根据本公开的一个实施例,构建拓扑地图有利于检查设备的位置定位和移动计算,因此在检测检查区域内是否存在被检物之前,还可以先针对检查区域以及检查区域内的 扫描通道建立拓扑地图。例如,建立包含经线和纬线的拓扑地图。
图4示意性示出了根据本公开实施例建立拓扑地图的流程图。
如图4所示,该实施例包括操作S310~操作S320。
在操作S310,根据检查区域的覆盖面积建立拓扑地图。
在自主检查系统中设置有拓扑地图服务器,可为检查区域构建拓扑地图。在一个实施例中,拓扑地图可覆盖整个检查区域。为了方便说明,可以将拓扑地图中的经线或纬线的延伸方向设为与扫描通道的延伸方向一致。需要说明的是,在例如包含经线和纬线的拓扑地图中,扫描通道的延伸方向可以是任意的。
例如,拓扑地图的构建可基于Google Earth的拓扑路网信息提取和构建,其能够直接从卫星地图中提取需要的路网信息,进而快速构建检查区域的拓扑地图。此外,可基于检查区域(例如堆场)的场地规划信息来构建拓扑地图。
另外,还可以通过vSLAM(Visual Simultaneous Localization and Mapping,视觉即时定位与地图构建)或SOM(Self-Organzing Maps,自组织特征图)算法来获得拓扑地图,利用摄像头等图像获取装置来获取预定区域内的图像获取需要的网路信息,进而构建拓扑地图,预定区域可为整个检查区域,也可为检查区域中放置有被检物的区域。在一个实施例中,带有图像获取装置的机器人在预定区域内随意移动,每隔一定采样时间或实时获得机器人的位置坐标,最终形成位置坐标点的集合,然后运用这些位置坐标点的集合对SOM算法进行训练,得到初步拓扑图,最后去掉障碍物中的神经元以及穿越障碍物的线段,就可以得到最终的拓扑地图,障碍物中存在神经元为机器人不可达点,这里的障碍物可理解为本公开中的被检物。在另一个实施例中,将具有升降功能的图像获取装置设置在检查设备上,利用处于预定高度的图像获取装置来获取检查区域的全景图像,并基于vSLAM或SOM算法来获得拓扑地图。
在操作S320,为每个扫描通道的两端设置节点,节点用于指引检查设备的移动路径。
扫描通道内存放有被检物,检查设备在第一方向上移动的目的是检测扫描通道内是否存放被检物,而为每个扫描通道的两端设置节点(换言之,为每个扫描通道的两端设置拓扑地图的坐标,例如经纬度坐标),可利用节点对检查设备进行指引,使检查设备从当前的位置坐标直接快速地移动到节点的坐标,对节点所在的扫描通道进行排查。在此,每个扫描通道的两侧的节点通常设置在扫描通道的延伸方向上距被检物预定距离的位置。
可以理解的是,在具有经纬线的拓扑地图中,每个节点的坐标均包括一个唯一的经 纬度坐标,拓扑地图的建立有利于检查设备的快速移动,减少在非扫描通道排查是否存在被检物而浪费时间,提升了被检物定位排查的效率。
拓扑地图服务器在向后述的处理装置提供拓扑地图后,自主检查方法中的部分操作有所细化,例如在操作S230-操作S250的步骤中,处理装置可直接向检查设备发送一个或多个节点,形成指引检查设备移动的规划路径,使得检查设备可以按照次序依次排查扫描通道中的被检物。具体地,处理装置可结合计算机图论相关知识,将静态无向拓扑地图路网生成邻接矩阵,借鉴迪杰斯特拉路径规划算法,实现路径规划。
利用拓扑地图对被检物进行预定位的操作步骤如下。
检查设备上的第一激光雷达装置发射激光线束后,通过被遮挡物遮挡的方位确认被检物相对于检查设备的方位,定位装置获取的此时检查设备的位置信息,处理装置根据位置信息和确认的方位获取方位内所有的扫描通道以及扫描通道对应的节点。
上述预定位的操作步骤结合图5,左右方向为第一方向,上下方向为第二方向,拓扑地图中包括三个扫描通道、以及扫描通道两端的共6个节点,其中在第二个扫描通道和第三个扫描通道中存在被检物,检查设备在左上角。检查设备上的第一激光雷达装置对检查设备外侧的被检物进行预定位,结果为在检查设备当前位置的右下角存在被检物,根据检查设备上的定位装置实时得到检查设备的位置信息,可计算出在检查设备的右方存在的所有可获取的节点。
在一个实施例中,拓扑地图的经线为扫描通道的方向,拓扑地图的纬线为与扫描通道垂直的方向,所有的扫描通道的第一端上的节点、以及所有的扫描通道的第二端上的节点都在同一纬线上,同一个扫描通道两端的节点在同一经线上。获取在检查装置右侧的同一纬线上的所有节点,即与检查装置的位置坐标具有相同纬度的右侧的所有节点,均作为可获取的节点。
利用拓扑地图对被检物进行粗定位的操作步骤如下。
在预定位获得方位内所有的扫描通道以及扫描通道对应的节点后,处理装置按照最近距离读取原则,对节点进行逐一读取。在预定位获取的节点中,目前第一方向上与检查设备最近的节点作为第一目标节点,处理装置向控制器下发第一目标节点的信息,控制器控制检查设备在第一方向上移动。检查设备到达第一目标节点后,通过检查设备上的第二激光雷达装置排查扫描通道内是否存在被检物,在扫描通道内检测到被检物时,处理装置获取检查设备所在扫描通道的第二端的节点(检查设备第二方向上的节点),以此节点作为第二目标节点,处理装置向控制器下发第二目标节点的信息,控制器控制 检查设备在第二方向上移动。
上述粗定位的操作步骤结合图5,处理装置获取与检查设备最近的右方的节点作为第一目标节点发送到控制器,控制器控制检查设备从当前位置移动到第一目标节点,在第一目标节点处的检查设备利用第二激光雷达装置排查扫描通道内是否存在被检物。
若没有则继续获取与当前检查设备(在第一目标节点处的检查设备)最近的右方的节点,并将此节点继续作为第一目标节点重复上述过程,此过程直至检查设备历经预定位中提供的所有节点,即已移动到最右侧的节点或发现在扫描通道内存在被检物时停止继续获取下一个最近的节点操作;若在扫描通道内检测到被检物时,处理装置获取与第一目标节点在同一扫描通道中的第二端的节点,以此节点作为第二目标节点发送到控制器,控制器控制检查设备向第二目标节点移动。
在一个实施例中,在扫描通道内检测到被检物时,获取与检查装置当前位置坐标具有相同经度的节点。
通过节点对检查设备的路径进行指引,本公开的检查设备可以在任意方向上移动,检查设备的移动是通过对检查设备中车轮的调整实现的。然而车轮在移动过程中可能会出现偏差。例如,在检查设备沿扫描通道移动过程中,若不能按照设定的位置移动,可能导致检查设备上的成像系统与被检物的距离有所变化,最终成像结果会受到影响。
因此,自主检查方法还包括对检查设备在第二方向上的行进路线进行校正或纠正。
在一个实施例中,检查设备在第二方向上移动之前对车轮的偏转角度进行调整,此方案为一次性调整,可大致将检查设备的行走路线调整为检查被检物时预期的路线,计算量小,但精确度不高。
在另一个实施例中,检查设备在第二方向上移动时,对车轮的偏转角度进行实时调整,此过程需要持续获取检查设备的偏移距离,计算量较大,但行走路线与预期的路线吻合度较高,更加精准。
在上述两个方案中,均需根据检查设备的偏移距离调整检查设备的车轮角度,其中,偏移距离是由扫描通道两端的节点相连的基准线与检查设备的当前位置信息计算得到的。
上述的两种校正车轮角度的方案均可使检查设备按照预期的路线在第二方向上移动,并对被检物进行检查。
获取检查设备所在扫描通道两端的节点的坐标,根据节点的坐标拟合出检查设备行驶的基准线,即应行走路线,结合检查设备当前的坐标点,依托最小平方法,拟合求出 时序偏移量的斜率及截距,预测出检查设备与基准线的垂直偏移距离,进而输出车轮调整的角度。
根据本公开的一个实施例,由于检查设备在第二方向上移动过程中是跨在被检物上进行扫描检查的,因此优选先对被检物的宽度和高度进行检测,以判断是否满足检查设备的移动通行标准,从而防止检查设备碰撞、卡住而损坏。自主检查方法还包括:
在第二方向上移动过程中,通过设置在检查设备上的第三激光雷达装置测量被检物的宽度,通过设置在检查设备上的第四激光雷达装置测量被检物的高度,在被检物的宽度和/或被检物的高度超过预设尺寸时,检查设备退回到被检物所在的扫描通道的节点。
也就是说,第三激光雷达装置和第四激光雷达装置分别对被检物的宽度和高度进行测量,在两者同时小于预设尺寸时,检查设备才能正常通过,若有其中任何一个超过预设尺寸,检查设备则不能通过。
根据本公开的一个实施例,拓扑地图内还包括停车点,停车点用于检查设备的停放。停车点也可视为拓扑地图内的节点。
停车点可作为检查设备在非工作状态下的停放点,如图5所示,停放点可以设置在检查区域的四个角上,设置在四个角上使检查设备在初始工作时,更利于在沿着经线和纬线的两个方向上移动。
优选地,停车点与最近的节点在同一个经线或纬线上。
针对上述本公开的自主检查方法,本公开还提供了一种适于检查区域的自主检查的自主检查系统,所述检查区域内包括多个扫描通道,该自主检查系统包括:检查设备、第一激光雷达装置10和第二激光雷达装置20。
具体地,检查设备可移动地设置在检查区域内;第一激光雷达装置10和第二激光雷达装置20均设置在检查设备上,第一激光雷达装置10用于检测检查区域内是否存在被检物,第二激光雷达装置20用于排查扫描通道内是否存在被检物,其中,扫描通道包括第一端和第二端,扫描通道的第一端和扫描通道的第二端均设置有节点,节点用于在检查设备发现被检物时指引检查设备的移动路径。
如图5所示,检查区域内包括三个扫描通道、以及扫描通道两端的共6个节点,其中扫描通道的第一端为A点,扫描通道的第二端为B点,在第二个扫描通道和第三个扫描通道中存在被检物,检查设备在左上角。
检查设备上的第一激光雷达装置10对检查设备外侧的被检物进行预定位,然后再通过检查设备上的第二激光雷达装置20进行粗定位,检查设备是根据节点的位置信息 进行移动的。
根据本公开的自主检查系统,通过第一激光雷达装置10和第二激光雷达装置20可确定被检物的位置,再结合节点对检查设备的移动路径进行指引,实现检查区域内检查设备的自动查验流程,提高了查验的效率,减少人工操作流程及人工成本,为实现无人化智能查验提供一种解决方案。
根据本公开的一个实施例,自主检查系统还包括:拓扑地图服务器,拓扑地图服务器用于在检查区域内建立拓扑地图,并向处理装置提供拓扑地图以及拓扑地图上的节点信息。
在一个实施例中,拓扑地图包括经线和纬线,经线或纬线的延伸方向与扫描通道的延伸方向一致。构建拓扑地图有利于检查设备的位置定位和移动计算,拓扑地图可覆盖整个检查区域。为了方便说明,将拓扑地图中的经线或纬线的延伸方向设置成与扫描通道的延伸方向一致。
根据本公开的一个实施例,多个扫描通道在第一方向上间隔排列,多个扫描通道的第一端上的节点在第一方向上间隔排列,第二端的节点也在第一方向上间隔排列;在任一扫描通道中,其第一端的节点与第二端的节点在第二方向上排列。
如图5所示,检查区域内包括三个扫描通道,扫描通道的第一端为A点,扫描通道的第二端为B点,三个A点在第一方向上间隔排列,三个B点在第一方向上间隔排列;同一个扫描通道中,第一端上的A点和第二端上的B点在第二方向上。这样有利于在计算过程中减少计算量,无需每次都要计算检查设备需要转向的角度,同时,检查设备只需要在第一方向上或第二方向上移动,即可实现本公开的自主检查的目的,简化了流程。可以理解的是,本实施例的自主检查系统当然也适用于具有任意方向布置的扫描通道的检查区域的自主检查。
根据本公开的一个实施例,自主检查系统还包括:定位装置30、处理装置以及控制器。
具体地,定位装置30设置在检查设备上,定位装置30设置用于确定检查装置在拓扑地图上的位置信息。
定位装置30的设置例如图7和图8所示,可以为型号XW-SC3663的GPS定位装置,可提供载车(检查设备)的位置、速度、时间、航向和俯仰角信息等。本公开的检查设备采用双天线定位,因此在图8的检查设备的俯视图中,标注有两个天线的安装位置。
处理装置与定位装置30通信连接,处理装置用于在检测、排查到被检物时获取检 查设备在第一方向上或在第二方向上的节点。
处理装置可以理解为是用于处理检查设备偏移距离、移动和节点获取等。处理装置在获取到节点信息后,向控制器发送指令。
控制器与检查设备电连接,用于在接收处理装置的指令后控制检查设备的行走和旋转/转向。
根据本公开的一个实施例,检查设备包括:臂架41、第一车体42和第二车体43。
臂架41上设置有定位装置30,第一车体42和第二车体43分别设置在臂架41两端,第一车体42、臂架41和第二车体43依次连接限定出可用于扫描被检物的通道401,控制器控制第一车体42和第二车体43的行走和旋转,其中,在检查设备执行检测时,控制器驱动第一车体42和第二车体43,使被检物位于通道401内。
如图7所示,臂架41的一端与第一车体42相连,臂架41的另一端与第二车体43相连,第一车体42和第二车体43上装有驱动检查设备旋转和行走的车轮,控制器可对车轮实施控制。
第一车体42、臂架41和第二车体43依次相连限定出通道401,当检查设备在第二方向上移动对被检物进行检查时,第一车体42在被检物的一侧,第二车体43在被检物的另一侧,臂架41在被检物的上方。可以理解为,检查设备跨在被检物上,以“骑行”的姿态通过被检物。
需要注意的是,第一车体42和第二车体43在移动过程中可以不作位置区分。
根据本公开的一个实施例,第一车体42的外侧和/或第二车体43的外侧设置有第一激光雷达装置10,第一车体42或第二车体43的内侧设置有第二激光雷达装置20,第一激光雷达装置10和第二激光雷达装置20的覆盖范围均为360°。
需要注明的是,第一激光雷达装置10的覆盖范围可以理解为是以第一激光雷达装置10的激光发生点为中心,其水平视场角为360°的数值范围。第二激光雷达装置20的覆盖范围同理。
在一个实施例中,本公开的第一激光雷达装置10和第二激光雷达装置20可以为型号RS-Helios-16P的16线机械式激光雷达。
第一激光雷达装置10用于检测检查区域内是否存在被检物,需要检查设备在停止状态下对整个检查区域进行检测,将第一激光雷达装置10设置在第一车体42的外侧和/或第二车体43的外侧,以对整个检查区域进行检测。
第二激光雷达装置20可以是在检查设备停在扫描通道的一个节点时或在第一方向 上移动时,对扫描通道内是否存在被检物进行排查。第二激光雷达装置20的安装位置如图7和图8所示,安装在第二车体43的内侧。当然,第二激光雷达装置20可以安装在第一车体42、臂架41和第二车体43限定出的通道401的其中一个壁面上。
根据本公开的一个实施例,第一激光雷达装置10包括两个第一子激光雷达装置,其中一个设置在第一车体42的外侧,另一个设置在第二车体43的外侧,两个第一子激光雷达装置关于检查设备呈中心点对称设置。
第一激光雷达装置10仅安装在第一车体42或第二车体43上,检查设备上的部分区域可能会对第一激光雷达装置10发射的激光线束有遮挡。因此,在使用仅有一个第一激光雷达装置10的检查设备时,需要调整检查设备的姿态,使第一激光雷达装置10与检查区域之间无遮挡,这样的检查设备精准性较差,且不利于全程自动化。
作为优选,在第一车体42的外侧和第二车体43的外侧都设置第一激光雷达装置10。如图8所示,第一车体42上的第一子激光雷达装置和第二车体43上的第一子激光雷达装置以检查设备的中心180°对称,第一车体42上的第一子激光雷达装置安装在第一车体42的拐角处,可以覆盖270°的视角范围,第二车体43上的第一子激光雷达装置安装在第二车体43的拐角处,可以覆盖270°的视角范围,通过图8可以看出,两个第一子激光雷达装置的覆盖范围可以达到互补,这样更利于对检查区域的检测、排查。
需要注意的是,第一激光雷达装置10和第一子激光雷达装置为完全相同的设备,为了区分两种实施方案,采取了两种命名方式。
为了保证检查设备可以“骑行”通过,本公开对被检物的宽度和高度具有一定的限制条件。
根据本公开的一个实施例,自主检查系统还包括:两个第三激光雷达装置(未示出),两个第三激光雷达装置分别设置在第一车体42和第二车体43的内侧,适于测量被检物的宽度。
在第一车体42、臂架41和第二车体43构成的通道401的两侧壁面上均设有一个第三激光雷达装置,在测量被检物的宽度小于通道401的宽度时,被检物的宽度符合预设尺寸。
根据本公开的一个实施例,自主检查系统还包括:第四激光雷达装置(未示出),第四激光雷达装置设置在臂架41上,适于测量被检物的高度。
在第一车体42、臂架41和第二车体43构成的通道401的上壁面上设有一个第四激光雷达装置,在测量被检物的高度小于通道401的高度时,被检物的宽度符合预设尺寸。
根据本公开的一个实施例,第一激光雷达装置10和第二激光雷达装置20均构造为多线激光发射器,第三激光雷达装置和第四激光雷达装置构造为单线激光发射器。
根据本公开的一个实施例,检查设备还包括:辐射源(未示出)和探测器(未示出)。
例如,辐射源设置在第一车体42或第二车体43的一个上,辐射源用于提供对被检物扫描的X射线;探测器设置在第一车体42或第二车体43的另一个上,探测器用于接收从辐射源发射的穿透过被检物的X射线,其中,辐射源与探测器正对设置,在检查设备执行检查时,被检物位于辐射源与探测器之间。
图6示意性示出了根据本公开实施例检查设备的运控流程图。
在操作S401,获取检查设备的位置坐标。
在操作S402,通过第一激光雷达装置排查堆场内是否存在被检物。
在操作S403,若是则选择与其距离最近的节点作为第一目标节点,并向第一目标节点移动,若否则返回操作S402。
在操作S404,检查设备停在第一目标节点处。
在操作S405,通过第二激光雷达装置排查第二方向上是否存在被检物。
在操作S406,若否则选择下一个与其相同纬度上的距离最近的节点作为第一目标节点,并继续在第一方向上移动,然后执行操作S404。
在操作S407,若是则使检查设备转向,获取与检查设备相同经度上的节点作为第二目标节点。
在操作S408,计算并调整车轮角度,在第二方向上移动。
在操作S409,检查设备到达第二目标节点后,执行操作S401。
基于上述自主检查方法,本公开还提供了一种用于检查设备的自主检查装置。以下将结合图9对该装置进行详细描述。
图9示意性示出了根据本公开实施例的自主检查装置的结构框图。
如图9所示,该实施例的自主检查装置500包括获取模块510、检测模块520、预判模块530、排查模块540和移动模块550。
获取模块510用于获取检查设备的位置信息。在一个实施例中,获取模块510可以用于执行前文描述的操作S210,在此不再赘述。
检测模块520用于检测检查区域内是否存在被检物。在一个实施例中,检测模块520可以用于执行前文描述的操作S220,在此不再赘述。
预判模块530用于:在检查区域内存在被检物时,结合检查设备的位置信息,预判 被检物相对检查设备的方位。在一个实施例中,预判模块530可以用于执行前文描述的操作S230,在此不再赘述。
排查模块540用于:根据预判的方位使检查设备在第一方向上移动,并在第二方向上排查是否存在被检物。在一个实施例中,排查模块540可以用于执行前文描述的操作S240,在此不再赘述。
移动模块550用于:在第二方向上排查到被检物时,使检查设备在第二方向上移动,并对被检物进行检查。在一个实施例中,移动模块550可以用于执行前文描述的操作S250,在此不再赘述。
根据本公开实施例中的自主检查装置,可执行上述的自主检查方法,通过先预判被检物在检查区域内的方位,再根据预判方位自动导向并对被检物进行进一步定位,实现检查设备在检查区域内的智能定位和扫描工作,提高了被检物的查验效率,减少人工操作流程及人工成本,为未来实现无人化智能查验提供一种解决方案。
根据本公开的实施例,获取模块510、检测模块520、预判模块530、排查模块540和移动模块550中的任意多个模块可以合并在一个模块中实现,或者其中的任意一个模块可以被拆分成多个模块。或者,这些模块中的一个或多个模块的至少部分功能可以与其他模块的至少部分功能相结合,并在一个模块中实现。根据本公开的实施例,获取模块510、检测模块520、预判模块530、排查模块540和移动模块550中的至少一个可以至少被部分地实现为硬件电路,例如现场可编程门阵列(FPGA)、可编程逻辑阵列(PLA)、片上系统、基板上的系统、封装上的系统、专用集成电路(ASIC),或可以通过对电路进行集成或封装的任何其他的合理方式等硬件或固件来实现,或以软件、硬件以及固件三种实现方式中任意一种或以其中任意几种的适当组合来实现。或者,获取模块510、检测模块520、预判模块530、排查模块540和移动模块550中的至少一个可以至少被部分地实现为计算机程序模块,当该计算机程序模块被运行时,可以执行相应的功能。
图10示意性示出了根据本公开实施例的适于实现自主检查方法的电子设备的方框图。
如图10所示,根据本公开实施例的电子设备600包括处理器601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储部分608加载到随机访问存储器(RAM)603中的程序而执行各种适当的动作和处理。处理器601例如可以包括通用微处理器(例如CPU)、指令集处理器和/或相关芯片组和/或专用微处理器(例如,专用集成电路(ASIC))等等。处理器601还可以包括用于缓存用途的板载存储器。处理器601可以 包括用于执行根据本公开实施例的方法流程的不同动作的单一处理单元或者是多个处理单元。
在RAM 603中,存储有电子设备600操作所需的各种程序和数据。处理器601、ROM 602以及RAM 603通过总线604彼此相连。处理器601通过执行ROM 602和/或RAM 603中的程序来执行根据本公开实施例的方法流程的各种操作。需要注意,所述程序也可以存储在除ROM 602和RAM 603以外的一个或多个存储器中。处理器601也可以通过执行存储在所述一个或多个存储器中的程序来执行根据本公开实施例的方法流程的各种操作。
根据本公开的实施例,电子设备600还可以包括输入/输出(I/O)接口605,输入/输出(I/O)接口605也连接至总线604。电子设备600还可以包括连接至I/O接口605的以下部件中的一项或多项:包括键盘、鼠标等的输入部分606;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分607;包括硬盘等的存储部分608;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分609。通信部分609经由诸如因特网的网络执行通信处理。驱动器610也根据需要连接至I/O接口605。可拆卸介质611,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器610上,以便于从其上读出的计算机程序根据需要被安装入存储部分608。
本公开还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中描述的设备/装置/系统中所包含的;也可以是单独存在,而未装配入该设备/装置/系统中。上述计算机可读存储介质承载有一个或者多个程序,当上述一个或者多个程序被执行时,实现根据本公开实施例的方法。
根据本公开的实施例,计算机可读存储介质可以是非易失性的计算机可读存储介质,例如可以包括但不限于:便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。例如,根据本公开的实施例,计算机可读存储介质可以包括上文描述的ROM 602和/或RAM 603和/或ROM 602和RAM 603以外的一个或多个存储器。
本公开的实施例中还包括一种计算机程序产品,其包括计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。当计算机程序产品在计算机系统中运行时, 该程序代码用于使计算机系统实现本公开实施例中所提供的方法。
在该计算机程序被处理器601执行时执行本公开实施例的系统/装置中限定的上述功能。根据本公开的实施例,上文描述的系统、装置、模块、单元等可以通过计算机程序模块来实现。
在一种实施例中,该计算机程序可以依托于光存储器件、磁存储器件等有形存储介质。在另一种实施例中,该计算机程序也可以在网络介质上以信号的形式进行传输、分发,并通过通信部分609被下载和安装,和/或从可拆卸介质611被安装。该计算机程序包含的程序代码可以用任何适当的网络介质传输,包括但不限于:无线、有线等等,或者上述的任意合适的组合。
在这样的实施例中,该计算机程序可以通过通信部分609从网络上被下载和安装,和/或从可拆卸介质611被安装。在该计算机程序被处理器601执行时,执行本公开实施例的系统中限定的上述功能。根据本公开的实施例,上文描述的系统、设备、装置、模块、单元等可以通过计算机程序模块来实现。
根据本公开的实施例,可以以一种或多种程序设计语言的任意组合来编写用于执行本公开实施例中提供的计算机程序的程序代码,具体地,可以利用高级过程和/或面向对象的编程语言、和/或汇编/机器语言来实施这些计算程序。程序设计语言包括但不限于诸如Java,C++,python,“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络,包括局域网(LAN)或广域网(WAN),连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,上述模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图或流程图中的每个方框、以及框图或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
本领域技术人员可以理解,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合或/或结合,即使这样的组合或结合没有明确记载于本公开中。特别地,在不脱离本公开精神和教导的情况下,本公开的各个实施例和/或权利要求中记载的特征可以进行多种组合和/或结合。所有这些组合和/或结合均落入本公开的范围。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“实例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上对本公开的实施例进行了描述。但是,这些实施例仅仅是为了说明的目的,而并非为了限制本公开的范围。尽管在以上分别描述了各实施例,但是这并不意味着各个实施例中的措施不能有利地结合使用。本公开的范围由所附权利要求及其等同物限定。不脱离本公开的范围,本领域技术人员可以做出多种替代和修改,这些替代和修改都应落在本公开的范围之内。

Claims (11)

  1. 一种具有检查区域的自主检查系统,检查区域内包括多个扫描通道,其特征在于,包括:
    检查设备,所述检查设备可移动地设置在所述检查区域内;
    第一激光雷达装置和第二激光雷达装置,所述第一激光雷达装置和所述第二激光雷达装置均设置在所述检查设备上,所述第一激光雷达装置用于排查所述检查区域内是否存在被检物,所述第二激光雷达装置用于排查所述扫描通道内是否存在被检物,
    其中,所述扫描通道包括第一端和第二端,所述第一端和所述第二端均设置有节点,所述节点用于在所述检查设备发现被检物时指引所述检查设备的移动路径。
  2. 根据权利要求1所述的自主检查系统,其特征在于,还包括:
    拓扑地图服务器,所述拓扑地图服务器用于在所述检查区域内建立拓扑地图。
  3. 根据权利要求2所述的自主检查系统,其特征在于,多个所述扫描通道在第一方向上间隔排列,
    在多个所述扫描通道中,所述第一端的节点在第一方向上排列,所述第二端的节点在第一方向上排列;在任一所述扫描通道中,所述第一端的节点与所述第二端的节点在第二方向上排列。
  4. 根据权利要求3所述的自主检查系统,其特征在于,还包括:
    定位装置,所述定位装置设置在所述检查设备上,所述定位装置设置用于确定所述检查装置在所述拓扑地图上的位置信息;
    处理装置,所述处理装置与所述定位装置通信连接,所述处理装置用于在排查到被检物时获取所述检查设备在所述第一方向上或在所述第二方向上的节点;以及
    控制器,所述控制器与所述检查设备电连接,用于在接收所述处理器的指令后控制所述检查设备的行走和旋转。
  5. 根据权利要求4所述的自主检查系统,其特征在于,所述检查设备包括:
    臂架,所述臂架上设置有所述定位装置;
    第一车体和第二车体,所述第一车体和所述第二车体分别设置在所述臂架两端,所 述第一车体、所述臂架和所述第二车体依次连接限定出通道,所述控制器控制所述第一车体和所述第二车体的行走和旋转,
    其中,在所述检查设备执行检测时,所述控制器驱动所述第一车体和所述第二车体,使所述被检物位于所述通道内。
  6. 根据权利要求5所述的自主检查系统,其特征在于,所述第一车体的外侧和/或所述第二车体的外侧设置有所述第一激光雷达装置,所述第一车体或所述第二车体的内侧设置有所述第二激光雷达装置,所述第一激光雷达装置和所述第二激光雷达装置的覆盖范围为360°。
  7. 根据权利要求6所述的自主检查系统,其特征在于,所述第一激光雷达装置包括两个第一子激光雷达装置,其中一个设置在所述第一车体的外侧,另一个设置在所述第二车体的外侧,两个所述第一子激光雷达装置关于所述检查设备呈中心点对称设置。
  8. 根据权利要求5所述的自主检查系统,其特征在于,还包括:
    两个第三激光雷达装置,两个所述第三激光雷达装置分别设置在所述第一车体和所述第二车体的内侧,适于测量所述被检物的宽度;
    第四激光雷达装置,所述第四激光雷达装置设置在臂架上,适于测量所述被检物的高度。
  9. 根据权利要求8所述的自主检查系统,其特征在于,所述第一激光雷达装置和所述第二激光雷达装置均构造为多线激光发射器,所述第三激光雷达装置和所述第四激光雷达装置构造为单线激光发射器。
  10. 根据权利要求5所述的自主检查系统,其特征在于,所述检查设备还包括:
    射线源,所述射线源设置在所述第一车体或所述第二车体的一个上,所述射线源用于提供对所述被检物扫描的X射线;
    探测器,所述探测器设置在所述第一车体或所述第二车体的另一个上,所述探测器用于接收从所述射线源发射的X射线,
    其中,所述射线源与所述探测器正对设置,在所述检查设备执行检测时,所述被检 物位于所述射线源与所述探测器之间。
  11. 根据权利要求2所述的自主检查系统,其特征在于,所述拓扑地图内还设置有停车点,所述停车点用于所述检查设备的停放。
PCT/CN2023/122440 2022-10-28 2023-09-28 具有检查区域的自主检查系统 WO2024088018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211340328.9A CN118011511A (zh) 2022-10-28 2022-10-28 具有检查区域的自主检查系统
CN202211340328.9 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024088018A1 true WO2024088018A1 (zh) 2024-05-02

Family

ID=90829988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122440 WO2024088018A1 (zh) 2022-10-28 2023-09-28 具有检查区域的自主检查系统

Country Status (2)

Country Link
CN (1) CN118011511A (zh)
WO (1) WO2024088018A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191063A (ja) * 2007-02-07 2008-08-21 Navitime Japan Co Ltd ナビゲーションシステム、端末装置およびナビゲーション方法
KR20090017748A (ko) * 2007-08-16 2009-02-19 삼성중공업 주식회사 비접촉식 3차원 형상 계측장치에서 피계측물 스캐닝 방법
CN106483578A (zh) * 2016-11-25 2017-03-08 同方威视技术股份有限公司 移动式扫描检测系统
CN108732192A (zh) * 2018-05-09 2018-11-02 清华大学 安全检查系统
CN109521480A (zh) * 2019-01-04 2019-03-26 同方威视科技(北京)有限公司 辐射检查设备和辐射检查方法
CN110989031A (zh) * 2019-10-18 2020-04-10 深圳绿米联创科技有限公司 人体检测方法、装置、系统、电子设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008191063A (ja) * 2007-02-07 2008-08-21 Navitime Japan Co Ltd ナビゲーションシステム、端末装置およびナビゲーション方法
KR20090017748A (ko) * 2007-08-16 2009-02-19 삼성중공업 주식회사 비접촉식 3차원 형상 계측장치에서 피계측물 스캐닝 방법
CN106483578A (zh) * 2016-11-25 2017-03-08 同方威视技术股份有限公司 移动式扫描检测系统
CN108732192A (zh) * 2018-05-09 2018-11-02 清华大学 安全检查系统
CN109521480A (zh) * 2019-01-04 2019-03-26 同方威视科技(北京)有限公司 辐射检查设备和辐射检查方法
CN110989031A (zh) * 2019-10-18 2020-04-10 深圳绿米联创科技有限公司 人体检测方法、装置、系统、电子设备及存储介质

Also Published As

Publication number Publication date
CN118011511A (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
US11482008B2 (en) Directing board repositioning during sensor calibration for autonomous vehicles
US9898821B2 (en) Determination of object data by template-based UAV control
EP3351077B1 (en) Travel route generation device and travel route generation program
WO2024088016A1 (zh) 检查设备的自主检查方法、装置和电子设备
US20200080860A1 (en) Method and system for creating map based on 3d laser
BR112019027751A2 (pt) sistema de controle, método para dirigir um veículo e dispositivo de computação
CN106767676B (zh) 一种空间垂向分布点位置测量方法及系统
AU2016102409A4 (en) Local Positioning System for an Unmanned Aerial Vehicle
KR101880593B1 (ko) 무인차량의 자율주행을 위한 라이다센서 장치
CN102893176A (zh) 采矿车辆安全布置的方法与装置
JP6927630B2 (ja) 凹型障害物検出装置と方法
CN115123307A (zh) 基于障碍物意图的自动驾驶方法、装置及自动驾驶车辆
WO2024088018A1 (zh) 具有检查区域的自主检查系统
US11385333B2 (en) System and method for aligning a laser scanning device for measurement of a volume of a container
CN109900220A (zh) 待测车辆外廓尺寸的测量方法、装置及系统
CN112213738B (zh) 无人搬运车地图构建方法、装置、设备及存储介质
Bobbe et al. Reactive Mission Planning for UAV based crane rail inspection in an automated Container Terminal
US20230408289A1 (en) Guidance of a transport vehicle to a loading point
AU2020357789B2 (en) Spreader position control
CN115048702A (zh) 基于5g网络的道路勘察设计方法、装置、设备及存储介质
JP7274137B1 (ja) 建設現場の屋外地面を走行するためのロボットシステム
KR20210155322A (ko) 라이다 센서를 포함하는 지형 비행 장치
JP7217483B1 (ja) 杭芯位置調査システム
WO2023190301A1 (ja) 測量システム
US20230237681A1 (en) Method for ascertaining suitable positioning of measuring devices and simplified moving in measuring areas using vis data and reference trajectories background