WO2024087904A1 - 音频模组及车辆 - Google Patents

音频模组及车辆 Download PDF

Info

Publication number
WO2024087904A1
WO2024087904A1 PCT/CN2023/117724 CN2023117724W WO2024087904A1 WO 2024087904 A1 WO2024087904 A1 WO 2024087904A1 CN 2023117724 W CN2023117724 W CN 2023117724W WO 2024087904 A1 WO2024087904 A1 WO 2024087904A1
Authority
WO
WIPO (PCT)
Prior art keywords
scattering
slot
audio module
sound
slots
Prior art date
Application number
PCT/CN2023/117724
Other languages
English (en)
French (fr)
Inventor
王冠
陈文光
陈俊宇
吉成霞
沈小祥
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024087904A1 publication Critical patent/WO2024087904A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/06Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2400/00Loudspeakers
    • H04R2400/11Aspects regarding the frame of loudspeaker transducers

Definitions

  • the present application relates to the field of terminal technology, and in particular to an audio module and a vehicle.
  • the audio module is set at the control panel of the car cabin or at the corner where the A-pillar and the windshield meet.
  • the audio module is used to listen to different positions in the car cabin, the sound has little difference in the height direction, but has a large difference in the horizontal direction.
  • the sound level uniformity of the audio device is not high, the hearing sense at different positions in the vehicle cabin is inconsistent, affecting the user experience.
  • the present application provides an audio module and a vehicle that can optimize the horizontal uniformity of sound and enhance the user's listening experience.
  • the present application provides an audio module and a vehicle, which can be applied to occasions such as vehicles that require high uniformity of sound level.
  • the audio module includes a base, a speaker and a scatterer, the speaker and the scatterer are installed on the base, and the base can provide support for the speaker and the scatterer.
  • the speaker can emit sound, and the scatterer is arranged on the sound output side of the speaker to scatter the sound emitted by the speaker.
  • the scatterer has a first inclined surface inclined toward the speaker, and the angle between the first inclined surface and the sound output surface of the speaker should be an acute angle, so that the sound emitted by the speaker can be projected onto the first inclined surface.
  • the scatterer is provided with a plurality of scattering grooves with openings located on the first inclined surface, and the extension direction of each scattering groove is perpendicular to the first direction, and the first direction is parallel to the base.
  • the first inclined surface and each scattering groove can reflect the incident sound, so that the first inclined surface and the inner wall of each scattering groove can form a scattering surface to reflect the sound.
  • the sound reflected by the scattering surface will change in phase, and the sound reflected by different scattering grooves will be superimposed or attenuated in phase when they meet, thereby changing the distribution of the sound in the horizontal direction to achieve the scattering effect and improve the uniformity of the sound in the horizontal direction.
  • the multiple scattering slots include a central scattering slot group and two groups of side scattering slot groups, the two groups of side scattering slot groups are identical and symmetrically arranged on both sides of the central scattering slot group, and the central scattering slot group corresponds to the center position of the speaker.
  • the scattering slots are arranged as a left-right symmetrical structure along the first direction, so that the sound has a symmetrical distribution in the first direction, which can further improve the horizontal uniformity of the sound.
  • the maximum slot depth of the scattering slots in the central scattering slot group is greater than the maximum slot depth of the scattering slots in the side scattering slot group.
  • the number of scattering slots may be an even number or an odd number.
  • the central scattering slot group includes two identical scattering slots, and the distances between the two scattering slots and the center position of the speaker are equal.
  • the central scattering slot group includes a scattering slot, and the center of the scattering slot is located corresponding to the center position of the speaker. The more scattering slots there are, the greater the horizontal diffusion efficiency of the scatterer for sound.
  • the depth of the scattering slots determines the lower limit of the sound frequency emitted by the speaker, that is, the depth of the scattering slots is related to the minimum frequency of the sound. Specifically, the maximum depth of the scattering slots in the central scattering slot group is less than 4.9 cm.
  • the inner wall of the scattering slot includes a bottom wall and two side walls, and the two side walls are respectively located on both sides of the bottom wall in the first direction.
  • the side wall has a first side edge connected to the bottom wall and a second side edge located on the first inclined surface. It should be understood that the first side edge may be a curve or a straight line, and the second side edge may also be a curve or a straight line.
  • the first side and the second side are both straight lines, and the first side and the second side are inclined at an angle.
  • the angle between the first side and the second side is 0°
  • the first side and the second side are parallel to each other, and the groove depths of different positions of the scattering groove remain consistent.
  • the angle between the first side and the second side is greater than 0°
  • the groove depth of the scattering groove changes linearly. Possibly, the angle between the first side and the second side is less than 60°.
  • the included angles between the first side edges and the second side edges of the scattering slots are equal in size, so that different scattering slots have a more neat appearance.
  • the depth of the scattering groove may not change linearly, that is, the second side and the first side may not simply form an angle relationship.
  • the horizontal scattering of sound it can bring richer phase changes to the sound and enhance the listening experience.
  • connection between the bottom wall and the side wall of the scattering slot may be a folded angle.
  • a chamfer may be provided at the connection between the bottom wall and the side wall to make a smooth transition between the bottom wall and the side wall.
  • the width of the scattering groove determines the upper limit of the sound frequency, and the groove depth of the scattering groove is related to the minimum frequency of the sound.
  • the groove width of each scattering groove can be equal or unequal.
  • the groove length of each scattering groove is greater than 2cm, and the groove length of the scattering groove refers to the length of the bottom wall of the scattering groove along the extension direction of the scattering groove.
  • w1 is the slot width of the scattering slot
  • cair is the speed of sound
  • fmax is the maximum frequency of the speaker's operating frequency band.
  • the angle between the first inclined surface and the normal line of the speaker sound output surface is 30-70 degrees. With such an angle setting, the sound emitted by the speaker is reflected by the first inclined surface and has a smaller range distribution in the direction perpendicular to the base, so that the sound can be concentrated within the height range of the user's listening.
  • the first inclined surface may be a plane or a curved surface, which is not limited here, as long as it can meet the sound scattering requirements.
  • the angle between the sound-emitting surface of the speaker and the base is 0-60°, which provides more possibilities for the propagation direction of the sound. It should be understood that no matter what angle relationship there is between the sound-emitting surface of the speaker and the base, the first inclined surface and the sound-emitting surface of the speaker need to meet the requirements of the above technical solution.
  • the present application provides a vehicle, comprising a vehicle body and any one of the audio modules in the above technical solutions.
  • the audio module is arranged on the vehicle body and can provide a better sound experience for passengers riding in the vehicle.
  • the audio module is arranged at the center of the vehicle dashboard of the vehicle body; or, the audio module is arranged at the corner where the A-pillar and the windshield of the vehicle body are connected.
  • FIG1 is a curve showing the relationship between the frequency and the sound pressure level of diffused sound in the prior art
  • FIG2a is a schematic diagram of the structure of an audio module provided in an embodiment of the present application.
  • FIG2b is a schematic diagram of a specific structure of an audio module provided in an embodiment of the present application.
  • FIG2c is a schematic diagram of a partial structure of an audio module provided in an embodiment of the present application.
  • FIG3a is a schematic diagram of sound generation of a speaker unit of an audio module provided in an embodiment of the present application.
  • FIG3b is a schematic diagram of horizontal diffusion of a scatterer of an audio module provided in an embodiment of the present application.
  • FIG4a is a schematic diagram of a scatterer having an even number of scattering slots provided in an embodiment of the present application.
  • FIG4b is a schematic diagram of a scatterer having an odd number of scattering slots provided in an embodiment of the present application.
  • FIG5a is a schematic diagram of the groove depth distribution of a scattering groove in an audio module provided in an embodiment of the present application.
  • FIG5b is a schematic diagram of the groove depth distribution of a scattering groove in an audio module provided in an embodiment of the present application.
  • FIG6 is a curve showing the relationship between the frequency and the sound pressure level of a sound of an audio module provided in an embodiment of the present application.
  • FIG7a is a schematic diagram of the structure of an audio module provided in an embodiment of the present application.
  • FIG7b is a schematic cross-sectional structure diagram of an audio module provided in an embodiment of the present application.
  • FIG8a is a schematic diagram of the structure of a scatterer in an audio module provided in an embodiment of the present application.
  • Fig. 8b is a schematic diagram of the cross-sectional structure at P-P in Fig. 8a;
  • FIG9a is a schematic diagram of the structure of a scatterer in an audio module provided in an embodiment of the present application.
  • FIG9b is a schematic diagram of the cross-sectional structure at Q-Q in FIG9a;
  • FIG10a is a schematic diagram of the structure of a scatterer in an audio module provided in an embodiment of the present application.
  • Fig. 10b is a schematic diagram of the cross-sectional structure at R-R in Fig. 10a;
  • FIG11a is a schematic diagram of the structure of a scattering slot in an audio module provided in an embodiment of the present application.
  • FIG11b is a schematic diagram of the structure of a scattering slot in an audio module provided in an embodiment of the present application.
  • FIG11c is a schematic diagram of the structure of a scattering slot in an audio module provided in an embodiment of the present application.
  • FIG11d is a schematic diagram of the structure of a scattering slot in an audio module provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of an audio module provided in an embodiment of the present application.
  • Fig. 13a is an enlarged view of part C in Fig. 12;
  • FIG13b is a schematic structural diagram of a first side and a second side of a scattering slot in an audio module provided in an embodiment of the present application;
  • FIG14 is a schematic structural diagram of a first side and a second side of a scattering slot in an audio module provided in an embodiment of the present application;
  • FIG15 is a schematic cross-sectional structure diagram of an audio module provided in an embodiment of the present application.
  • FIG16a is a schematic structural diagram of a vehicle provided in an embodiment of the present application.
  • FIG16b is a schematic diagram of the structure of a vehicle provided in an embodiment of the present application.
  • Figure 1 shows a relationship curve between the frequency and sound pressure level (SPL) of diffused sound in the prior art, which can be called a diffuse sound field frequency response curve.
  • SPL sound pressure level
  • the horizontal axis represents the frequency of the sound, in Hertz (Hz)
  • the vertical axis is the sound pressure level, in (dB).
  • Hz Hertz
  • dB sound pressure level
  • the embodiments of the present application provide an audio module, an electronic device and a vehicle, wherein the audio module can improve the horizontal uniformity of treble sounds and enhance the listening experience.
  • references to "one embodiment” or “some embodiments” etc. described in this specification mean that a particular feature, structure or characteristic described in conjunction with the embodiment is included in one or more embodiments of the present application.
  • the phrases “in one embodiment”, “in some embodiments”, “in some other embodiments”, “in some other embodiments”, etc. appearing in different places in this specification do not necessarily all refer to the same embodiment, but mean “one or more but not all embodiments", unless otherwise specifically emphasized in other ways.
  • the terms “including”, “comprising”, “having” and their variations all mean “including but not limited to”, unless otherwise specifically emphasized in other ways.
  • an embodiment of the present application provides an audio module 1 that can be applied to a vehicle
  • FIG2a shows a left view of the structural diagram of the audio module 1.
  • the audio module 1 When the audio module 1 is installed in the cabin of the vehicle, the audio module 1 has a high uniformity in the horizontal direction, so that any position in the cabin can have approximately the same sound, and passengers at any position in the cabin will have approximately the same hearing sense, thereby obtaining a better auditory experience.
  • the audio module 1 includes a speaker 11, a scatterer 12 and a base 13, and the speaker 11 and the scatterer 12 are both arranged on the base 13. Among them, the speaker 11 is used to convert electrical energy into sound energy and emit sound.
  • sound has a phase
  • sound can also be called a sound wave.
  • sound waves of different phases may be superimposed or subtracted when they meet.
  • the superposition of sound waves can enhance the sound, and the subtraction of sound waves will weaken the sound.
  • the scatterer 12 in the embodiment of the present application is used to reflect the incident sound waves.
  • the sound waves are incident on different positions of the scatterer 12 to produce reflections at different angles.
  • the reflected sound waves meet and overlap or subtract, thereby changing the phase of the sound waves.
  • the sound reflected by the scatterer 12 is more uniform in different directions.
  • the audio module 1 is a tweeter module
  • the sound emitted by the speaker 11 includes high-frequency sound. High-frequency sound has the characteristics of short wavelength and strong directivity.
  • the scatterer 12 is arranged on the sound output side of the speaker 11, and is used to scatter the sound emitted by the speaker 11 to improve the uniformity of the sound in the horizontal direction.
  • the sound-emitting surface B of the speaker 11 may be parallel to the base 13.
  • the exemplary sound-emitting surface B of the speaker 11 is flush with the upper surface of the base 13.
  • the sound emitted by the speaker 11 is a beam-shaped strong directional sound wave, which is perpendicular to a surface, which may be exemplified as the sound-emitting surface B in FIG. 2a . Therefore, it can be considered that the sound emitted by the speaker 11 is emitted from the sound-emitting surface B.
  • the scatterer 12 is fixed on the base 13 and is located on the sound-emitting side of the speaker 11, and the scatterer 12 has a first inclined surface A1 inclined toward the speaker 11.
  • the scatterer 12 also has a bottom end surface A3 for contacting the base 13 and a top end surface A2 away from the base 13.
  • the first inclined surface A1 forms an acute angle ⁇ with the sound-emitting surface B of the speaker 11.
  • FIG2b shows a schematic diagram of a three-dimensional structure of an audio module 1.
  • a three-dimensional coordinate system consisting of a first direction X, a second direction Y, and a third direction Z is defined with the base 13 as a reference.
  • the plane formed by the first direction X and the second direction Y is parallel to the base 13 and also parallel to the sound output surface B of the speaker 11.
  • the third direction Z is perpendicular to the first direction X and the second direction Y and is also perpendicular to the sound output surface B of the speaker 11.
  • the base 13 and the sound emitting surface B of the speaker 11 are perpendicular to each other.
  • a plurality of scattering slots 121 with openings on the first inclined surface A1 are provided on the scattering body 12.
  • the opening of each scattering slot 121 is located on the first inclined surface A1, and the two ends of each scattering slot 121 along the length direction are respectively on the top end surface A2 and the bottom end surface A3 of the scattering body 121, where the bottom end surface A3 contacts the base 13, so that the end of the scattering slot 121 away from the top end surface A2 is located on the base 13.
  • the first inclined surface A1 is inclined toward the base 13, and the plurality of scattering slots 121 are arranged along the first direction X.
  • top surface A2 and the bottom surface A3 of the scatterer 12 are only a structural description of the scatterer 12 in the shape shown in Figure 2b, and the top surface A2 and the bottom surface A3 only illustrate the relative positions of the two surfaces, and do not limit the shape and other features of the surfaces.
  • the sound emitted by the speaker 11 can be projected onto the scatterer 12, and the first inclined surface A1 of the scatterer 12 and the inner walls of the plurality of scattering slots 121 can form a scattering surface for sound to reflect the sound.
  • the inner wall of the scattering slot 121 includes two side walls 1211 and a bottom wall 1212 located between the two side walls 1211.
  • the scattering surface of the scatterer 12 for scattering sound is composed of the first inclined surface A1 and the bottom wall 1212 and two side walls 1211 of each scattering slot 121.
  • the two ends of the scattering slot 121 are respectively located on the top end surface A2 and the bottom end surface A3 of the scatterer 12.
  • the length of the bottom wall 1212 along the extension direction of the scattering slot 121 is the slot length H of the scattering slot 121.
  • the distance between the two side walls 1211 is the groove width w1 of the scattering groove 121, and the partition between two adjacent scattering grooves 121 has a thickness w2.
  • the distance between the bottom wall 1212 and the first inclined surface A1 is the groove depth d of the scattering groove 121.
  • the schematic direction of the groove depth d is perpendicular to the bottom wall 1212.
  • its groove depth d may vary along the extension direction of the scattering groove 121. In the scattering groove 121 shown in FIG. 2c, the groove depth d is constant along the extension direction of the scattering groove 121.
  • a plurality of scattering slots 121 are arranged along a first direction X, the first direction X is parallel to the base 13, and the extension direction of each scattering slot 121 is perpendicular to the first direction X.
  • the number of scattering slots 121 is exemplified as six.
  • the sound emitted by the speaker 11 is projected onto the first inclined surface A1, and the first inclined surface A1 can reflect the sound.
  • the sound emitted by the speaker 11 enters the scattering slot 121, and the inner wall of the scattering slot 121 can reflect the sound and change the phase.
  • the scattering slots 121 at different positions can produce different phase changes to the sound.
  • the scattering slots 121 are arranged along the first direction X, based on the base 13 being used to support the speaker 11 and the scatterer 12, it can be considered that the first direction X is approximately the horizontal direction, and the scattering slots 121 can cause the sound to have different phase changes in the horizontal direction, realize the scattering of the sound in the horizontal direction, and improve the uniformity of the sound in the horizontal direction.
  • a schematic diagram of the three-dimensional structure of the audio module 1 from another angle the sound emitted by the speaker 11 is projected into each scattering slot 121, and the scattering slot 121 changes the phase of the sound.
  • the sound processed by the scattering slot 121 can interact with each other to generate uniformly scattered reflected sound in the horizontal direction, balance the sound distribution in the horizontal direction, and improve the horizontal uniformity of the sound.
  • a top view of the audio module 1 is a view of the audio module 1 observed from directly above the base 13.
  • the multiple scattering slots 121 include a central scattering slot group C1 and two groups of side scattering slot groups C2.
  • the two groups of side scattering slot groups C2 are identical, and the two groups of side scattering slot groups C2 are symmetrically arranged on both sides of the central scattering slot group C1 along the first direction X.
  • the division of the central scattering slot group C1 and the side scattering slot group C2 is based on the position relative to the speaker 11, so that the multiple scattering slots 121 have a left-right symmetrical structure.
  • the central scattering slot group C1 corresponds to the center position of the speaker 11, and the distance for the sound emitted by the speaker 11 to reach the central scattering slot group C1 is the shortest. It can be understood that the left-right symmetry here is based on the first direction X as a reference.
  • the left-right symmetric center plane of the multiple scattering slots 121 can refer to the center of the speaker 11, and the center of the speaker 11 is located on the center plane.
  • the sound emitted by the loudspeaker 11 is projected into each scattering slot 121, and is scattered and emitted after the phase is changed by each scattering slot 121.
  • the scattered sound can also be in a left-right symmetrical state on the horizontal plane, further improving the balance in the horizontal direction.
  • the sound emitted by the loudspeaker 11 forms a relatively uniform distribution in the horizontal direction, which can improve the horizontal uniformity of the sound.
  • the audio module 1 provided in the embodiment of the present application has a wider directivity in the horizontal direction, a stronger listening consistency at different angles, and a brighter and more transparent treble part. After experimental comparison, the uniformity of the sound level after being scattered by the scatterer 12 is improved by 35.9% compared with the existing direct-out audio module and by 7.5% compared with the acoustic prism.
  • the number of scattering slots 121 on the scatterer 12 is not limited, but based on the setting of the central scattering slot group C1 and the side scattering slot groups C2 symmetrically arranged on both sides of the central scattering slot group C1, the number of scattering slots 121 is at least three.
  • the central scattering slot group C1 includes two identical scattering slots 121, and the distances between the two scattering slots 121 and the center position of the speaker 11 are equal.
  • the central scattering slot group C1 includes one scattering slot 121.
  • the front view of the audio module 1 shown in FIG4a is a view of the audio module 1 from a perspective parallel to the base 13 and from which the scattering slots 121 can be observed.
  • the number of scattering slots 121 in the audio module 1 is six, and the central scattering slot group C1 includes two identical scattering slots 121, and the distances between the two scattering slots 121 and the center position of the speaker 11 are equal.
  • Any group of side scattering slot groups C2 includes two The scattering slots 121 in the two side scattering slot groups C2 are symmetrical about the central scattering slot group C1.
  • the center distances from the two scattering slots 121 in the central scattering slot group C1 to the speaker 11 are the same and shorter than the center distances from the other scattering slots 121 to the speaker 11.
  • the center distance from the scattering slot 121 to the speaker 11 refers to the distance from the opening center of the scattering slot 121 on the first inclined surface A1 to the center of the speaker 11.
  • the main view of the audio module 1 as shown in FIG4b is a view of the audio module 1 observed from a perspective parallel to the base 13 and capable of observing the scattering slots 121.
  • the number of scattering slots 121 is five
  • the central scattering slot group C1 includes one scattering slot 121, which corresponds to the center position of the speaker 11.
  • Any group of side scattering slot groups C2 includes two scattering slots 121, and the scattering slots 121 in the two side scattering slot groups C2 are symmetrical about the central scattering slot group C1.
  • the center distances from the scattering slots 121 in the central scattering slot group C1 to the speaker 11 are the same and shorter than the center distances from other scattering slots 121 to the speaker 11.
  • the center distance from the scattering slot 121 to the speaker 11 refers to the center distance from the opening center of the scattering slot 121 on the first inclined surface A1 to the speaker 11.
  • the audio module 1 provided in the present application is configured such that the maximum groove depth of the central scattering groove group C1 is greater than the maximum groove depth of the side scattering groove group C2, so as to optimize the frequency response curve of the sound field and prevent the occurrence of obvious peaks and valleys.
  • the maximum groove depth of the scattering groove 121 of the central scattering groove group C1 can be less than 4.9 cm, such as 4.5 cm, 3 cm, 2 cm, etc.
  • the maximum groove depth of the scattering groove 121 in the side scattering groove C2 is less than the maximum groove depth of the scattering groove 121 in the central scattering groove group C1.
  • the maximum groove depth of the scattering groove 121 refers to the groove depth d at the farthest distance from the bottom wall 1212 of the scattering groove 121 to the first inclined surface A1.
  • Figures 5a and 5b show a top view of the scatterer 12, that is, the structure of the scatterer 12 is observed from above perpendicular to the base 13. Taking the example that the groove depth d of each scattering groove 121 remains unchanged along the extension direction of the scattering groove 121, the scatterer 12 is exemplarily described.
  • FIG5a is exemplified by an even number of scattering slots 121.
  • the scattering slots 121 in the central scattering slot group C1 have a slot depth d1
  • the scattering slots 121 in the side scattering slot group C2 that are farthest from the central scattering slot group C1 have a slot depth d2
  • the scattering slots 121 in the side scattering slot group C2 that are adjacent to the central scattering slot group C1 have a slot depth d3.
  • the scattering slots 121 in the central scattering slot group C1 have the largest slot depth, that is, the slot depth d1 is greater than the slot depth d2, and d1 is greater than d3.
  • the slot depth d3 of the scattering slots 121 in the side scattering slot group C2 that are adjacent to the central scattering slot group C1 is less than the slot depth d2 of the scattering slots 121 that are farthest from the central scattering slot group C1, that is, d2 is greater than d3.
  • FIG5b is exemplified by an odd number of scattering slots 121.
  • the scattering slots 121 in the central scattering slot group C1 have a slot depth d1
  • the scattering slots 121 in the side scattering slot group C2 that are farthest from the central scattering slot group C1 have a slot depth d2
  • the scattering slots 121 in the side scattering slot group C2 that are adjacent to the central scattering slot group C1 have a slot depth d3.
  • the scattering slots 121 in the central scattering slot group C1 have the largest slot depth, that is, the slot depth d1 is greater than the slot depth d2, and the slot depth d1 is greater than the slot depth d3.
  • the slot depth d3 of the scattering slots 121 in the side scattering slot group C2 that are adjacent to the central scattering slot group C1 is less than the slot depth d2 of the scattering slots 121 that are farthest from the central scattering slot group C1, that is, d2 is greater than d3.
  • the groove depth d of the scattering groove 121 in the central scattering groove group C1 is greater than the groove depth d of the scattering groove 121 in the side scattering groove group C2.
  • the frequency response of the diffuse sound field can be optimized.
  • FIG6 shows the relationship curve between the frequency and the sound pressure level of the sound after being scattered by the scatterer 12. The frequency response of the sound changes relatively smoothly without obvious peaks and valleys, which is equivalent to weakening the change in the strength of the sound, and can improve the user experience.
  • the groove depth d of the scattering groove 121 determines the lower limit of the sound frequency emitted by the speaker 11, that is, the groove depth d of the scattering groove 121 is related to the minimum frequency of the sound.
  • the total slot width W of the multiple scattering slots 121 is in the range of about 3.5-12 cm.
  • the total slot width W is equivalent to the sum of the slot width w1 of the multiple scattering slots 121 and the partition thickness w2 between any two adjacent scattering slots 121. It can also be considered that the total slot width W refers to the distance between one end of one group of side scattering slot groups C2 away from the central scattering slot group C1 and the other end of the other group of side scattering slot groups C2 away from the central scattering slot group C1.
  • the slot widths w1 of the scattering slots 121 may be equal or unequal, and the specific implementation may be set according to the specific manufacturing process and application scenario, which is not limited here.
  • the slot width w1 of the scattering slot 121 is related to the upper limit of the frequency band of the sound.
  • w1 is the slot width of the scattering slot 121
  • cair is the speed of sound
  • fmax is the maximum frequency of the operating frequency band of the speaker 11. The larger the maximum frequency of the operating frequency band of the speaker 11, the smaller the slot width of the scattering slot 121.
  • FIG7b By cutting the audio module 1 along a plane perpendicular to the second direction Y and the third direction Z, a cross-sectional structural diagram shown in FIG7b can be obtained.
  • the slot length H of the scattering slot 121 in the central scattering slot group C1 is greater than 2 cm, and based on the structure of the scatterer 12, the slot length H of each scattering slot 121 is different.
  • the sound-emitting surface B of the speaker 11 is parallel to the upper surface of the base 13, and the angle between the normal direction of the sound-emitting surface B and the first inclined surface A1 is ⁇ , and the range of ⁇ is 30-70°.
  • the number of the scattering slots 121 may be four, seven, nine, twelve or even more, and can be set according to actual needs. The more scattering slots 121 there are, the better the diffusion effect of the scatterer 12 on the sound in the horizontal direction.
  • the groove depth d of the scattering slots 121 in the side scattering slot group C2 is not limited, and the distribution of the groove depth d is not limited by the arrangement rule, as long as the groove depth d of the scattering slots 121 in the side scattering slot group C2 is less than the groove depth d of the scattering slots 121 in the center scattering slot group C1.
  • the shape of the scatterer 12 in the audio module 1 provided in the embodiment of the present application may also have other implementation methods.
  • the structure of the scatterer 12 is similar to the structure of the scatterer 12 shown in Figure 3b, the first inclined surface A1 is a plane, and the side away from the first inclined surface A1 is a curved surface.
  • Figure 8b shows a cross-sectional view of the scatterer 12 in Figure 8a after being cut along the plane where P-P is located.
  • the scatterer 12 shown in Figure 8a has a larger size in the direction of the groove depth d of the scattering groove 121.
  • the structure of the scatterer 12 is a polygonal three-dimensional structure.
  • the scatterer 12 only shows the first inclined surface A1.
  • FIG9b shows a cross-sectional view of the scatterer 12 after cutting along the plane where Q-Q is located in FIG9a , and the first inclined surface A1 of the scatterer 12 is almost flat.
  • the scatterer 12 is a quadrilateral with smooth chamfered corners.
  • FIG10b shows a cross-sectional view of the scatterer 12 cut along the plane where R-R is located in FIG10a, and the first inclined surface A1 of the scatterer 12 is a curved surface.
  • the scatterer 12 is circular.
  • the bottom wall 1212 of the scattering slot 121 is a plane, and the cross section of the scattering slot 121 perpendicular to the extension direction is a rectangle.
  • the bottom wall 1212 of the scattering slot 121 shown in Figure 11a is a plane, and the bottom wall 1212 and the side wall 1211 are perpendicular to each other.
  • the bottom wall 1212 of the scattering slot 121 shown in Figure 11b is a plane, and the bottom wall 1212 and the side wall 1211 are perpendicular to each other, and the bottom wall 1212 and the side wall 1211 are chamfered, and the connection transition between the bottom wall 1212 and the side wall 1211 is smoother.
  • the bottom wall 1212 of the scattering slot 121 shown in Figure 11c is a curved surface, and the bottom wall 1212 and the side wall 1211 have a smooth transition.
  • the bottom wall 1212 of the scattering slot 121 shown in Figure 11d forms an angle ⁇ with the side wall 1211, and the angle ⁇ is greater than 90°, so that the width of the bottom wall 1212 is smaller than the width of the opening of the scattering slot 121 on the first inclined surface A1.
  • the processing of the sound by the scattering slot 121 is to change the phase of the sound, and the shape of the scattering slot 121 changes, which can correspondingly change the effect of changing the phase of the sound.
  • the change in the shape of the scattering slot 121 will adjust the slot length H, slot width w1 and slot depth d of the scattering slot 121 accordingly to meet the use requirements.
  • the groove depth d of the scattering groove 121 in the scatterer 12 gradually increases in a direction away from the speaker 11.
  • the scatterer 12 in the audio module 1 is the scatterer 12 illustrated in FIG9a .
  • the scattering slot 121 has a bottom wall 1212 and two side walls 1211. Due to the limited viewing angle, only one of the side walls 1211 is shown. Among them, the bottom wall 1212 is indicated by a slash shadow, and the side wall 1211 is indicated by a dotted shadow.
  • the side edge where the side wall 1211 contacts the bottom wall 1212 is the first side edge m, and the side edge of the side wall 1212 located on the first inclined surface A1 is the second side edge n.
  • the distance from the second side edge n to the first side edge m can be considered as the groove depth d of the scattering slot 121, that is, the distance from the first inclined surface A1 to the bottom wall 1212.
  • the first side m may be a curve or a straight line
  • the second side n may also be a curve or a straight line, and there is no limitation.
  • the first side m and the second side n are both straight lines.
  • the angle between the first side m and the second side n is less than 60°.
  • the angle between the first side m and the second side n is 0°, the first side m and the second side n are parallel to each other, and the groove depth d at different positions of the scattering groove 121 remains consistent.
  • the groove depth d of the scattering groove 121 changes linearly.
  • the first side m is not parallel to the second side n, and there is an angle ⁇ between the two.
  • the distance between the second side n and the first side m is the depth d of the scattering groove 121.
  • the distance between the second side n and the first side m is gradually increased, that is, the depth d of the scattering groove 12 gradually increases.
  • the sound emitted by the speaker 11 undergoes a phase change in the scattering groove 121 and then reflects sounds of multiple phases.
  • the change in the depth d of the scattering groove 121 can provide more possibilities for the phase change of the sound, that is, the reflected sound may have a richer phase change, and thus has more possible changes.
  • the angle ⁇ between the first side m and the second side n of the side wall 1211 in each scattering slot 121 can be set to be the same or different, which is not limited here. Among them, when the angle between the first side m and the second side n of each scattering slot 121 is equal, different scattering slots 121 have a more neat appearance.
  • the groove depth d of the scattering groove 121 may not change linearly, that is, the first side m and the second side n may not simply form an angle relationship. On the basis of ensuring the horizontal scattering of the sound, it can bring richer phase changes to the sound and enhance the auditory experience. Test.
  • the first side m of the side wall 1211 may be a straight line, and the second side n may be a curve.
  • the scattering body 12 having the scattering slot 121 of this structure has a first inclined surface A1, which is also the surface where the second side n is located, and therefore, the first inclined surface A1 may also be a curved surface.
  • the sound emitting surface B of the speaker 11 is parallel to the base 13.
  • the base 13 can be set on different bearing surfaces as needed.
  • the bearing surface is parallel to the horizontal direction
  • the sound emitting surface B of the speaker 11 is parallel to the horizontal plane.
  • there is a certain angle between the bearing surface and the horizontal plane there is a certain angle between the sound emitting surface B of the speaker 11 and the horizontal plane.
  • the range of the angle is 0-60°.
  • the sound emitting surface B of the speaker 11 is tilted relative to the base 13. Specifically, with the upper surface G of the base 13 as a reference, the base 11 and the sound emitting surface B of the speaker B form an angle ⁇ , and the angle ⁇ ranges from 0 to 60°. When the base 13 is set on a horizontal plane, the sound emitting surface B of the speaker 11 is equivalent to the angle ⁇ with the horizontal plane. It should be understood that no matter how big the angle ⁇ is between the upper surface G of the base 13 and the sound emitting surface B of the speaker B, the angle ⁇ between the normal direction of the sound emitting surface B of the speaker 11 and the sound emitting surface B of the scatterer 12 is in the range of 30 to 70°.
  • the audio module 1 provided in the embodiment of the present application has a high horizontal uniformity, and can obtain a nearly consistent sense of hearing at different positions in the horizontal direction.
  • the audio module 1 can also weaken the peak and valley phenomenon of the sound in the high frequency band, thereby improving the user's auditory experience.
  • the audio module 1 can have good uniformity in the horizontal direction, the audio module 1 can be applied to mid-range, mid-high and tweeter acoustic units to weaken the negative impact of the short wavelength and strong directivity of the mid-high frequencies to provide a good listening experience.
  • the audio module 1 can be used in occasions where the uniformity of the sound level is relatively high, such as indoors, in the cockpit of a vehicle, and the like.
  • the embodiment of the present application also provides a vehicle 10, which may include a body 2 and an audio module 1 arranged in the car cockpit of the body 2.
  • the audio module 1 may be arranged in the middle of a car control panel 21 in the car cockpit.
  • the audio module 1 may be arranged in the corner where the A-pillar 23 is connected to the windshield 22.
  • the audio module 1 has good horizontal uniformity and can evenly scatter the sound to different positions in the horizontal direction, so that passengers sitting in different positions can get a nearly consistent sense of hearing.
  • the audio module 1 can also weaken the peak and valley phenomenon of the sound in the treble area, so that the sound frequency response is optimized, further improving the user's auditory experience.
  • the scatterer 12 scatters the sound emitted by the speaker 11, weakening the negative effects of the short wavelength and strong directivity of the treble sound, and making the treble sound field in the horizontal direction of the vehicle cabin more uniform.
  • the vehicle 10 equipped with the tweeter module has a brighter and more transparent sound field in the cabin, which can improve the user experience.
  • the structure and shape of the audio module 1 can be further personalized to match the brand style of different cars.
  • a bracket structure of the audio module 1 that can be raised and lowered and rotated is matched, and a display stand that can display the audio module 1 is set to give the audio module 1 a more flexible and more ornamental cool appearance. No examples are given here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

一种音频模组(1)及车辆(10), 涉及终端技术领域。该音频模组(1)包括底座(13)、扬声器(11)和散射体(12);扬声器(11)和散射体(12)均固定于底座(13),散射体(12)设置于扬声器(11)的出声侧,且散射体(12)具有向扬声器(11)倾斜的第一倾斜面(A1);沿第一方向,散射体(12)设置有多个开口位于第一倾斜面(A1)上的散射槽(121),每个散射槽(121)的延伸方向垂直于第一方向,第一方向平行于底座(13);多个散射槽(121)包括中心散射槽组(C1)以及两组侧边散射槽组(C2),两组侧边散射槽组(C2)相同且沿第一方向对称设置于中心散射槽组(C1)两侧。中心散射槽组(C1)与扬声器(11)中心位置对应,使得声音在水平方向上具有更好的均匀性;中心散射槽组(C1)中的散射槽(121)的最大槽深(d1)大于侧边散射槽组(C2)中的散射槽(121)的最大槽深(d2,d3),可以削弱声音的声场频响中的峰谷现象,提升听感体验。

Description

音频模组及车辆
相关申请的交叉引用
本申请要求在2022年10月27日提交中国专利局、申请号为202211329617.9、申请名称为“音频模组及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端技术领域,尤其涉及一种音频模组及车辆。
背景技术
随着汽车智能化的飞速发展,汽车厂商会通过在车辆座舱内安装音频模组来提升听觉体验。
目前,音频模组设置在汽车座舱的控制面板处或A柱与挡风玻璃连接处的角落。用于在汽车座舱内的不同位置收听音频模组时,声音在高度方向上差距不大,但是在水平方向上具有较大的差距。当音频设备发出的声音水平均匀度不高时,车辆座舱不同位置的听感不一致,影响用户体验。
发明内容
本申请提供了一种音频模组及车辆,可以优化声音的水平均匀度,提升用户的听感体验。
第一方面,本申请提供一种音频模组及车辆,该音频模组可以应用到车辆等对声音水平均匀度要求较高的场合。该音频模组包括底座、扬声器和散射体,扬声器和散射体安装于底座,底座可以为扬声器和散射体提供支撑。扬声器可以发出声音,散射体设置于扬声器的出声侧,以对扬声器发出的声音进行散射。具体地,散射体具有向扬声器倾斜的第一倾斜面,此处第一倾斜面与扬声器的出声面之间的夹角应为锐角,使得扬声器发出的声音能够投射到第一倾斜面上。沿第一方向,散射体设置有多个开口位于第一倾斜面上的散射槽,每个散射槽的延伸方向垂直于第一方向,第一方向平行于底座。其中,第一倾斜面和每个散射槽都可以对入射的声音进行反射,使得第一倾斜面与每个散射槽的内壁能够组成散射面,以对声音进行反射。经散射面反射后的声音将会发生相位变化,不同散射槽反射后的声音相遇时会发生相位的叠加或衰减,从而改变声音在水平方向上的分布实现散射效果,提高声音在水平方向上的均匀性。其中,多个散射槽包括中心散射槽组以及两组侧边散射槽组,两组侧边散射槽组相同且对称设置于中心散射槽组两侧,中心散射槽组与扬声器中心位置对应。将散射槽设置为沿第一方向左右对称的结构,使得声音在第一方向具有对称的分布,可以进一步提升声音的水平均匀性。中心散射槽组中的散射槽的最大槽深大于侧边散射槽组中散射槽的最大槽深。这样的结构设置,可以削弱声音的声场频响中的峰谷现象,提升听感体验。
散射槽的数量可能是偶数,也可能是奇数。当散射槽为偶数个,中心散射槽组包括两个相同的散射槽,两个散射槽到扬声器的中心位置距离相等。当散射槽为奇数个,中心散射槽组包括一个散射槽,该散射槽的中心位于与扬声器的中心位置对应。当散射槽的数量越多,散射体对声音的水平扩散效能越大。
散射槽的槽深决定了扬声器发出的声音频率的下限,即散射槽的槽深与声音的最小频率相关。具体地,中心散射槽组中的散射槽的最大槽深小于4.9cm。
其中,散射槽的内壁包括底壁以及两个侧壁,两个侧壁分别位于底壁第一方向的两侧。侧壁具有与底壁对接的第一侧边以及位于第一倾斜面上的第二侧边。应当理解,第一侧边可能是曲线或直线,第二侧边也可能是曲线或直线。
一些可能实现的方式中,第一侧边和第二侧边均为直线,第一侧边与第二侧边之间呈夹角倾斜。当第一侧边与第二侧边之间的夹角为0°,第一侧边和第二侧边相互平行,散射槽不同位置的槽深保持一致。当第一侧边与第二侧边之间的夹角大于0°,散射槽的槽深发生线性变化。可能地,第一侧边与第二侧边之间的夹角角度小于60°。
可能地,各散射槽的第一侧边与第二侧边之间的夹角角度大小相等,不同的散射槽之间具有更为整齐的外观。
当然,散射槽的槽深可能不是线性变化,即第二侧边与第一侧边之间可能不是简单的形成夹角的关系,在保证对声音水平散射的基础上,能够对声音带来更为丰富的相位变化,提升听觉体验。
一些可能实现的方式中,散射槽的底壁与侧壁的连接处可能是折角。可能地,可以在底壁与侧壁的连接处设置有倒角,使得底壁与侧壁之间圆滑过渡。
散射槽的宽度决定了声音频率的上限,散射槽的槽深与声音的最小频率相关。沿第一方向,其中一组侧边散射槽组远离中心散射槽组的一端与另一组侧边散射槽组远离中心散射槽组的一端之间的距离为3.5-10cm。其中,每个散射槽的槽宽可以相等,也可以不相等。而每个散射槽的槽长大于2cm,散射槽的槽长指的是散射槽的底壁沿散射槽延伸方向的长度。
沿第一方向,当每个散射槽的槽宽相等时,每个散射槽的槽宽可以满足以下条件:
w1=cair/(2×fmax);
其中,w1为散射槽的槽宽,cair为声速,fmax为扬声器作用频段的最大频率。
一些可能实现的方式中,第一倾斜面与扬声器出声面的法线之间的夹角角度为30-70°。这样的角度设置,扬声器发出的声音被第一倾斜面反射后在垂直于底座的方向具有较小的范围分布,使得声音可以集中在用户收听的高度范围内。
其中,第一倾斜面可以是平面,也可能是曲面,此处不做限定,只要能够满足对声音的散射要求即可。
一些可能实现的方式中,扬声器的出声面与底座之间的夹角角度为0-60°,为声音的传播方向提供了更多的可能。应当理解,不论扬声器的出声面与底座之间具有何种角度关系,第一倾斜面与扬声器的出声面之间都需要满足上述技术方案的要求。
第二方面,本申请提供一种车辆,包括车体以及上述技术方案中的任意一种音频模组。音频模组设置于车体上,能够为乘坐于该车辆的乘客提供更好的声感体验。
具体地,音频模组设置于车体的汽车仪表盘中心位置;或,音频模组设置于车体的A柱与挡风玻璃的连接处的角落。
附图说明
图1为现有技术中经过扩散的声音的频率与声压级之间的关系曲线;
图2a为本申请实施例提供的一种音频模组的简要结构示意图;
图2b为本申请实施例提供的一种音频模组的具体结构示意图;
图2c为本申请实施例提供的一种音频模组的部分结构示意图;
图3a为本申请实施例提供的一种音频模组的扬声器单元发声示意图;
图3b为本申请实施例提供的一种音频模组的散射体水平扩散示意图;
图4a为本申请实施例提供的一种具有偶数个散射槽的散射体示意图;
图4b为本申请实施例提供的一种具有奇数个散射槽的散射体示意图;
图5a为本申请实施例提供的一种音频模组中散射槽的槽深分布示意图;
图5b为本申请实施例提供的一种音频模组中散射槽的槽深分布示意图;
图6为本申请实施例提供的一种音频模组的声音的频率与声压级之间的关系曲线;
图7a为本申请实施例提供的一种音频模组的结构示意图;
图7b为本申请实施例提供的一种音频模组的剖面结构示意图;
图8a为本申请实施例提供的一种音频模组中散射体的结构示意图;
图8b为图8a中P-P处的剖面结构示意图;
图9a为本申请实施例提供的一种音频模组中散射体的结构示意图;
图9b为图9a中Q-Q处的剖面结构示意图;
图10a为本申请实施例提供的一种音频模组中散射体的结构示意图;
图10b为图10a中R-R处的剖面结构示意图;
图11a为本申请实施例提供的一种音频模组中散射槽的结构示意图;
图11b为本申请实施例提供的一种音频模组中散射槽的结构示意图;
图11c为本申请实施例提供的一种音频模组中散射槽的结构示意图;
图11d为本申请实施例提供的一种音频模组中散射槽的结构示意图;
图12为本申请实施例提供的一种音频模组的结构示意图;
图13a为图12中C部放大图;
图13b为本申请实施例提供的一种音频模组中散射槽的第一侧边和第二侧边的结构示意图;
图14为本申请实施例提供的一种音频模组中散射槽的第一侧边和第二侧边的结构示意图;
图15为本申请实施例提供的一种音频模组的剖面结构示意图;
图16a为本申请实施例提供的一种车辆的结构示意图;
图16b为本申请实施例提供的一种车辆的结构示意图。
具体实施方式
随着智能技术的发展,汽车厂商在汽车的座舱内安装音频模组以提升听感体验。目前音频模组的发出的声音的水平均匀度较低,乘客在车辆座舱不同位置听感有差异。为了提高声音的水平均匀度,可以对音频模组发出的声音进行扩散。图1示出了现有技术中经过扩散的声音的频率与声压级(sound pressure level,SPL)之间的关系曲线,该曲线可以称作扩散声场频率响应曲线。其中,横坐标代表声音的频率,单位为赫兹(Hz),纵坐标为声压级,单位为(dB)。虚线框示出的高音频段存在明显的峰谷,说明声音在此处有较大的声强弱变化,影响用户的使用体验。
基于此,本申请实施例提供一种音频模组、电子设备及车辆,该音频模组能够改善高音声音的水平均匀度,提升听感体验。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
如图2a所示,本申请实施例所提供的一种可以应用于车辆的音频模组1,图2a示出的是该音频模组1结构简图的左视图。将该音频模组1安装到车辆的座舱内时,音频模组1在水平方向具有较高的均匀性,使得座舱内的任意位置都能具有近似相同的声音,座舱内任意位置的乘客将会具有近似相同的听感,从而获得较好的听觉体验。具体地,音频模组1包括扬声器11、散射体12和底座13,扬声器11和散射体12均设置于底座13上。其中,扬声器11用于将电能转换为声能并发出声音。
其中,作为一种机械波,声音具有相位,声音也可以称为声波。基于声波的相位特点,不同相位的声波在相遇时可能出现叠加或消减,声波的叠加可以增强声音,声波的消减则会减弱声音。本申请实施例中的散射体12即用于对射入的声波进行反射,声波入射到散射体12的不同位置产生不同角度的反射,反射后的声波相遇发生叠加或消减,进而改变声波的相位,被散射体12反射出的声音在不同的方向上均匀性更好。当音频模组1为高音模组时,扬声器11发出的声音包括高频音。高频音具有波长短、指向性强的特点。散射体12设置于扬声器11的出声侧,用于对扬声器11发出的声音进行散射,以提高声音在水平方向的均匀性。
继续参照图2a,若扬声器11存在理论上的出声面B,扬声器11的出声面B可以平行于底座13,此处示例性的扬声器11的出声面B与底座13的上表面保持平齐。扬声器11发出的声音是束状强指向声波,这些束状强指向声波垂直于一个面,该面可以示例为图2a中的出声面B。因此,可以认为扬声器11的发出的声音自该出声面B发出。
散射体12固定于底座13上并位于扬声器11出声侧,且散射体12具有向扬声器11倾斜的第一倾斜面A1。散射体12还具有用于接触底座13的底端面A3以及远离底座13的顶端面A2。该第一倾斜面A1与扬声器11的出声面B之间呈锐角α。
如图2b所示的一种音频模组1的三维结构示意图,为方便示意,以底座13为参考,定义了第一方向X、第二方向Y以及第三方向Z组成的三维坐标系。其中,第一方向X和第二方向Y组成的平面平行于底座13,也平行于上述扬声器11的出声面B。第三方向Z垂直于第一方向X和第二方向Y,也垂 直于底座13以及上述扬声器11的出声面B。为了对扬声器11发出的声音进行散射,在散射体12上设置有多个开口位于第一倾斜面A1上的散射槽121。每个散射槽121的开口位于第一倾斜面A1上,每个散射槽121沿长度方向的两端分别对于散射体121的顶端面A2和底端面A3上,此处底端面A3与底座13接触,使得散射槽121远离顶端面A2的一端位于底座13上。此处,第一倾斜面A1向底座13倾斜设置,多个散射槽121沿第一方向X排布。
应当理解,散射体12的顶端面A2和底端面A3只是对图2b所示的形状的散射体12的结构描述,且顶端面A2和底端面A3仅说明该两个面的相对位置,并不限定面的形状等特征。
结合图2a至图2b所示,扬声器11发出的声音能够投射到散射体12上,散射体12的第一倾斜面A1与多个散射槽121的内壁能够组成声音的散射面,对声音进行反射。结合图2c所示例的其中一个散射槽121的结构,散射槽121的内壁包括两个侧壁1211以及位于两个侧壁1211之间的底壁1212。具体地,散射体12用于对声音进行散射的散射面由第一倾斜面A1以及每个散射槽121的底壁1212、两个侧壁1211组成。沿散射槽121的延伸方向,散射槽121的两端分别位于散射体12的顶端面A2与底端面A3上。底壁1212沿散射槽121延伸方向的长度为散射槽121的槽长H。沿第一方向X,两个侧壁1211之间的距离为散射槽121的槽宽w1,两个相邻的散射槽121之间的隔断具有厚度w2。底壁1212与第一倾斜面A1之间的距离为散射槽121的槽深d。其中,槽深d的示意方向垂直于底壁1212,对于一个散射槽121,其槽深d沿散射槽121的延伸方向有可能是变化的。在图2c所示的散射槽121中,槽深d沿散射槽121的延伸方向不变。
结合图2a至图2c所示,多个散射槽121沿第一方向X排列,该第一方向X平行于底座13,每个散射槽121的延伸方向垂直于该第一方向X。此处,散射槽121的数量示例为六个。扬声器11发出的声音投射到第一倾斜面A1上,第一倾斜面A1能够将声音反射。扬声器11发出的声音进入散射槽121内,散射槽121的内壁能够将声音反射而改变相位,不同位置的散射槽121能够对声音产生不同的相位改变。在第一倾斜面A1与多个散射槽121的内壁所形成的散射面的共同作用下,扬声器11发出的声音可以发生散射。由于散射槽121沿第一方向X排列,基于底座13用于支撑扬声器11和散射体12,可以认为第一方向X近似于水平方向,则散射槽121能够使声音在水平方向发生不同的相位变化,实现声音水平方向的散射,提高声音在水平方向的均匀性。
如图3a所示的音频模组1的另一角度的三维结构示意图,扬声器11发出的声音投射到各个散射槽121内,散射槽121对声音的相位进行改变。进一步参照图3b,经过散射槽121处理后的声音能够相互作用,在水平方向上产生均匀散射的反射声音,均衡声音在水平方向上分布,提高声音的水平均匀性。
具体地,如图3b所示音频模组1的俯视图,即从底座13的正上方观察该音频模组1的视图。该多个散射槽121包括中心散射槽组C1以及两组侧边散射槽组C2。该两组侧边散射槽组C2相同,且两组侧边散射槽组C2沿第一方向X对称设置于中心散射槽组C1两侧的。其中,中心散射槽组C1和侧边散射槽组C2的划分是基于相对扬声器11的位置考虑,使得多个散射槽121呈左右对称的结构。中心散射槽组C1与扬声器11的中心位置对应,扬声器11发出的声音到达中心散射槽组C1的距离最短。可以理解的是,此处的左右对称以第一方向X为参考。多个散射槽121左右对称的中心面可以参照扬声器11的中心,扬声器11的中心位于该中心面上。扬声器11发出的声音投射到各个散射槽121内,被各个散射槽121改变相位后散射射出,由于多个散射槽121呈左右对称布置,则在水平面上,散射后的声音也可以呈左右对称的状态,进一步提高水平方向上的均衡性。也就是说,扬声器11发出的声音在经过散射体12的散射后,在水平方向上形成较为均匀的分布,可以提高声音的水平均匀度。
本申请实施例所提供的音频模组1,在水平方向上具有更宽的指向性,不同角度位置的听感一致性更强,高音部分更加明亮通透。经过试验对比,经过散射体12散射后的声音水平均匀度,与现有的直出音频模组相比提升了35.9%,与声学棱镜相比提升了7.5%。
本申请实施例中提供的音频模组1中,散射体12上散射槽121的数量不做限定,但是基于中心散射槽组C1和对称设置于中心散射槽组C1两侧的侧边散射槽组C2的设定,散射槽121至少为三个。当散射槽121的数量为偶数个,中心散射槽组C1包括两个相同的散射槽121,该两个散射槽121到扬声器11的中心位置的距离相等。当散射槽121的数量为偶数个时,中心散射槽组C1包括一个散射槽121。
示例性地,图4a所示的音频模组1的主视图,即从平行于底座13并能观察到散射槽121的视角观察该音频模组1的视图。音频模组1中散射槽121的数量是六个,中心散射槽组C1包括两个相同的散射槽121,该两个散射槽121到扬声器11的中心位置的距离相等。任意一组侧边散射槽组C2,包括两 个散射槽121,两个侧边散射槽组C2中的散射槽121关于中心散射槽组C1左右对称。中心散射槽组C1中的两个散射槽121到扬声器11的中心距离相同且比其他散射槽121到扬声器11的中心距离短。此处,散射槽121到扬声器11的中心距离指的是散射槽121在第一倾斜面A1上的开口中心到扬声器11的中心距离。
在另一种实施例中,如图4b所示的音频模组1的主视图,即从平行于底座13并能观察到散射槽121的视角观察该音频模组1的视图。在图4b中,散射槽121的数量是五个,中心散射槽组C1包括一个散射槽121,该散射槽121与扬声器11的中心位置对应。任意一组侧边散射槽组C2,包括两个散射槽121,两个侧边散射槽组C2中的散射槽121关于中心散射槽组C1左右对称。中心散射槽组C1中的散射槽121到扬声器11的中心距离相同且比其他散射槽121到扬声器11的中心距离短。此处,散射槽121到扬声器11的中心距离指的是散射槽121在第一倾斜面A1上的开口中心到扬声器11的中心距离。
本申请所提供的音频模组1,将音频模组1设置为中心散射槽组C1的最大槽深大于侧边散射槽组C2的最大槽深,以优化声场的频率响应曲线,防止出现明显的峰谷。其中,中心散射槽组C1的散射槽121的最大槽深具体可以小于4.9cm,例如4.5cm、3cm、2cm等。侧边散射槽C2中散射槽121的最大槽深小于中心散射槽组C1中散射槽121的最大槽深。结合图2c所示例,散射槽121的最大槽深指的是散射槽121的底壁1212距离第一倾斜面A1距离最远处的槽深d。图5a和图5b示出了散射体12的俯视图,即自垂直于底座13的上方观察散射体12的结构。以各个散射槽121的槽深d沿散射槽121的延伸方向不变为例,对散射体12进行示例性说明。
图5a中以偶数个散射槽121进行示例性说明,中心散射槽组C1中的散射槽121具有槽深d1,侧边散射槽组C2中距离中心散射槽组C1最远的散射槽121具有槽深d2,侧边散射槽组C2中紧邻中心散射槽组C1的散射槽121具有槽深d3。中心散射槽组C1中的散射槽121的槽深最大,即槽深d1大于槽深d2,d1大于d3。示例性地,侧边散射槽组C2中紧邻中心散射槽组C1的散射槽121的槽深d3小于距离中心散射槽组C1最远的散射槽121的槽深d2,即d2大于d3。
图5b中以奇数个散射槽121进行示例性说明。中心散射槽组C1中的散射槽121的具有槽深d1,侧边散射槽组C2中距离中心散射槽组C1最远的散射槽121具有槽深d2,侧边散射槽组C2中紧邻中心散射槽组C1的散射槽121具有槽深d3。中心散射槽组C1中的散射槽121的槽深最大,即槽深d1大于槽深d2,槽深d1大于槽深d3。示例性地,侧边散射槽组C2中紧邻中心散射槽组C1的散射槽121的槽深d3小于距离中心散射槽组C1最远的散射槽121的槽深d2,即d2大于d3。
基于上述图5a和图5b所示的音频模组1,中心散射槽组C1中的散射槽121的槽深d大于侧边散射槽组C2中的散射槽121的槽深d,扬声器11发出的声音在经过散射体12的散射后,扩散声场的频率响应可以得到优化。图6示出了的经过散射体12散射后的声音的频率与声压级的关系曲线,声音的频率响应变化较为平缓,不存在明显的峰谷,相当于弱化了声音的强弱变化,能够提升用户的使用体验。
应当理解,散射槽121的槽深d决定了扬声器11发出的声音频率的下限,即散射槽121的槽深d与声音的最小频率相关。
如图7a所示的音频模组1的主视图,多个散射槽121总槽宽W范围大约为3.5-12cm。总槽宽W相当于多个散射槽121的槽宽w1与任意两个相邻的散射槽121之间的隔断厚度w2之和。也可以认为,总槽宽W指的是其中一组侧边散射槽组C2远离中心散射槽组C1的一端,与另一组侧边散射槽组C2远离中心散射槽组C1的一端之间的距离。
其中,各个散射槽121的槽宽w1可以是相等的,也可以是不相等的,具体的实施可以根据具体的制作工艺以及应用场景进行设置,此处不做限定。
当各个散射槽121的槽宽w1相等,对于任意一个散射槽121,散射槽121的槽宽w1与声音的频段上限相关。本申请实施例所提供的音频模组1中,每个散射槽121的槽宽满足以下条件:
w1=cair/(2×fmax);
其中,w1为散射槽121的槽宽,cair为声速,fmax为扬声器11作用频段的最大频率。扬声器11作用频段的最大频率越大,散射槽121的槽宽越小。
沿垂直于第二方向Y和第三方向Z组成的平面剖切该音频模组1,可以得到图7b所示的剖面结构示意图。在图7b中,此处,中心散射槽组C1中的散射槽121的槽长H大于2cm,基于散射体12的结构,各个散射槽121的槽长H不同。图7b中,扬声器11出声面B平行于底座13的上表面,出声面B的法线方向与第一倾斜面A1之间的夹角为β,β范围为30-70°。
应当理解,散射槽121的数量还可能是四个、七个、九个、十二个甚至更多个,可以根据实际需求进行设置。散射槽121越多,散射体12对声音在水平方向上的扩散效果越好。对于任意一组侧边散射槽组C2,侧边散射槽组C2中的散射槽121的槽深d不做限定,其槽深d分布也不做排布规律限定,只要满足侧边散射槽组C2中的散射槽121的槽深d小于中心散射槽组C1中的散射槽121的槽深d即可。本申请实施例所提供的音频模组1中的散射体12的形状还可能有其他的实现方式。如图8a所示的散射体12的主视图,散射体12的结构与图3b所示的散射体12结构类似,第一倾斜面A1呈平面,远离第一倾斜面A1一侧呈曲面。图8b示出了图8a中沿P-P所在平面剖切散射体12后的剖面图,与图3b所示的散射体12相比,图8a所示的散射体12在散射槽121的槽深d方向具有更大的尺寸。
如图9a所示的散射体12的主视图,散射体12的结构呈多边形立体结构。该散射体12仅示出了第一倾斜面A1。图9b示出了图9a中沿Q-Q所在平面剖切散射体12后的剖面图,散射体12的第一倾斜面A1几乎呈平面。沿垂直于底座13的方向,散射体12呈四边形,且角部圆滑倒角。
如图10a所示的散射体12的主视图,散射体12的结构呈鼓状,沿垂直于底座13的方向,散射体12的顶部尺寸和底部尺寸均小于腰部尺寸。图10b示出了图10a中沿R-R所在平面剖切散射体12后的剖面图,散射体12的第一倾斜面A1呈曲面。沿垂直于底座13的方向,散射体12呈圆形。
结合图8b、图9b和图10b所示,散射槽121的底壁1212均为平面,散射槽121垂直于延伸方向的横截面为矩形。如图11a至图11d所示的散射槽121的形状,其中,图11a所示的散射槽121的底壁1212为平面,底壁1212与侧壁1211相互垂直。图11b所示的散射槽121的底壁1212为平面,底壁1212与侧壁1211相互垂直,且底壁1212与侧壁1211做了倒角处理,底壁1212与侧壁1211之间的连接过渡更为顺滑。图11c所示的散射槽121的底壁1212为弧面,底壁1212与侧壁1211之间圆滑过渡。图11d所示的散射槽121的底壁1212与侧壁1211之间呈夹角θ,夹角θ大于90°,使得底壁1212的宽度小于散射槽121位于第一倾斜面A1上开口的宽度,在制作散射体12时,这样的散射槽121的形状有利于拔模作业。
应当理解,散射槽121对声音的处理是改变声音的相位,散射槽121的形状改变,对应可以改变对声音相位改变的效果。另外,散射槽121形状的改变,散射槽121的槽长H、槽宽w1以及槽深d都会对应进行调整,以能够满足使用需求。
在一些实施例中,如图12所示的另一种音频模组1的三维结构示意图,散射体12中的散射槽121的槽深d沿远离扬声器11的方向逐渐增大。该音频模组1中的散射体12为图9a中所示例的散射体12。
结合图12,参照图13a示出的图12中C部的放大图,以其中一个散射槽121为例,该散射槽121具有底壁1212与两个侧壁1211,由于视角所限,侧壁1211仅示出其中一个。其中,底壁1212以斜线阴影示意,侧壁1211以点状阴影示意。侧壁1211与底壁1212接触的侧边为第一侧边m,侧壁1212位于第一倾斜面A1的侧边为第二侧边n。第二侧边n到第一侧边m的距离可以认为是散射槽121的槽深d,也即第一倾斜面A1到底壁1212的距离。
第一侧边m可能是曲线或直线,第二侧边n也可能是曲线或直线,并不做限定,此处示例性地第一侧边m和第二侧边n均为直线。当第一侧边m和第二侧边n均为直线时,第一侧边m和第二侧边n之间的夹角小于60°。当第一侧边m和第二侧边n之间的夹角为0°,第一侧边m和第二侧边n相互平行,散射槽121不同位置的槽深d保持一致。当第一侧边m和第二侧边n之间的夹角大于0°,散射槽121的槽深d发生线性变化。在图13a中,第一侧边m与第二侧边n之间不平行,二者之间存在夹角γ。
继续参照图13b所示例的第一侧边m与第二侧边n的简化示意图,二者之间存在夹角γ,夹角γ的范围小于60°。第二侧边n垂直于第一侧边m的距离为散射槽121的槽深d。沿远离扬声器11的方向,第二侧边n垂直于第一侧边m的距离逐渐增大,即散射槽12的槽深d逐渐增大。扬声器11发出的声音在散射槽121内发生相位变化进而反射出多种相位的声音,散射槽121的槽深d变化,能够为声音的相位变化提供更多可能,即反射出的声音可能具有更丰富的相位变化,从而具有更多的变化可能。
对于整个散射体12,各个散射槽121中侧壁1211第一侧边m与第二侧边n之间的夹角γ可以设置为相同,也可以设置为不同,此处不做限定。其中,当各散射槽121的第一侧边m与第二侧边n之间的夹角大小相等时,不同的散射槽121之间具有更为整齐的外观。
当然,散射槽121的槽深d可能不是线性变化,即第一侧边m与第二侧边n之间可能不是简单的形成夹角的关系,在保证对声音水平散射的基础上,能够对声音带来更为丰富的相位变化,提升听觉体 验。
在另一个实施例中,如图14所示,侧壁1211的第一侧边m可以是直线,第二侧边n则可能是曲线。具有这种结构的散射槽121的散射体12,其第一倾斜面A1也就是第二侧边n所在的表面,因此,第一倾斜面A1也可能呈曲面。
在上述实施例中,扬声器11的出声面B均平行于底座13。在具体应用中,底座13可以根据需要设置在不同的承载面上。当承载面平行于水平方向,扬声器11的出声面B平行于水平面。当承载面与水平面之间呈一定夹角,扬声器11的出声面B与水平面之间呈一定夹角。该夹角的范围为0-60°。
在一些实施例中,如图15所示,扬声器11的出声面B相对底座13倾斜设置。具体地,以底座13的上表面G为参考,底座11与扬声器B的出声面B之间呈夹角φ,该夹角φ范围为0-60°。当底座13设置在水平面时,扬声器11的出声面B相当于与水平面之间呈夹角φ。应当理解,不论底座13的上表面G与扬声器B的出声面B之间夹角φ大小是多少,扬声器11的出声面B的法线方向与散射体12的出声面B之间的夹角β范围均为30~70°。
本申请实施例所提供的音频模组1具有较高的水平均匀度,在水平方向的不同位置可以获得近似一致的听感。此外,该音频模组1还可以削弱声音在高音频段的峰谷现象,提升用户的听觉体验。
由于该音频模组1可以在水平方向具有良好的均匀性,可以将该音频模组1应用到中音、中高音以及高音声学单元,削弱中高音的波长较短、指向性较强所带来的负面影响,以提供良好的听感。
关于应用场景,该音频模组1可以应用在对声音水平均匀度要求比较高的场合,例如室内、车辆的座舱等场合。基于此,本申请实施例还提供一种车辆10,该车辆10可以包括车体2以设置于车体2的汽车座舱内的音频模组1。示例性地,如图16a所示,音频模组1可以设置于汽车座舱内的汽车控制面板21中部。或者如图16b所示,音频模组1可以设置于A柱(A-pillar)23与挡风玻璃22的连接处的角落。
对于听感,乘客在汽车座舱内不同位置时,声音在高度方向上差别不大,但是水平方向上的差距会比较大。上述音频模组1具有良好的水平均匀度,能够将声音向水平方向的不同位置均匀散射,使得坐在不同位置的乘客都能得到近似一致的听感。此外,该音频模组1还可以削弱声音在高音区域的峰谷现象,使得声音频率响应得到优化,进一步提高用户的听觉体验。
特别地,当音频模组1具体为高音模组时,散射体12对扬声器11发出的声音进行散射,削弱高音声音波长短、指向性强所带来的负面影响,车辆座舱内水平方向的高音声场更加均匀。设置有高音模组的车辆10,座舱内的声场听感更加明亮、通透,可以提升用户体验。
应当理解,在将该音频模组1应用到车辆10时,可以对音频模组1的结构与形状做进一步的个性化设置,以契合不同汽车的品牌风格。例如,匹配可升降、可旋转音频模组1的支架结构,设置可以展示音频模组1的展示台,赋予音频模组1更为灵动、观赏性更强的炫酷外观,此处不再举例说明。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种音频模组,其特征在于,包括:底座、扬声器和散射体;所述扬声器和所述散射体均固定于所述底座,所述散射体设置于所述扬声器的出声侧,且所述散射体具有向所述扬声器倾斜的第一倾斜面;
    沿第一方向,所述散射体设置有开口位于所述第一倾斜面上的多个散射槽,每个所述散射槽的延伸方向垂直于所述第一方向,所述第一方向平行于所述底座;所述第一倾斜面与每个所述散射槽的内壁用于反射声音;
    多个所述散射槽包括中心散射槽组以及两组侧边散射槽组,两组所述侧边散射槽组相同且沿所述第一方向对称设置于所述中心散射槽组的两侧,所述中心散射槽组与所述扬声器中心位置对应;所述中心散射槽组中的所述散射槽的最大槽深大于所述侧边散射槽组中的所述散射槽的最大槽深。
  2. 如权利要求1所述的音频模组,其特征在于,所述散射槽为偶数个,所述中心散射槽组包括两个相同的所述散射槽,所述中心散射槽组的两个所述散射槽到所述扬声器的中心位置距离相等。
  3. 如权利要求2所述的音频模组,其特征在于,所述散射槽为奇数个,所述中心散射槽组包括一个所述散射槽,所述中心散射槽组的一个所述散射槽的中心位置与扬声器的中心位置对应。
  4. 如权利要求1-3中任一项所述的音频模组,其特征在于,所述中心散射槽组中的所述散射槽的最大槽深小于4.9cm。
  5. 如权利要求1-4中任一项所述的音频模组,其特征在于,所述散射槽的内壁包括底壁以及两个侧壁,两个所述侧壁分别位于所述底壁沿第一方向的两侧,所述底壁与所述第一倾斜面之间呈夹角倾斜。
  6. 如权利要求5所述的音频模组,其特征在于,所述底壁与所述第一倾斜面之间的夹角角度小于60°。
  7. 如权利要求6所述的音频模组,其特征在于,各所述散射槽中的所述底壁与所述第一倾斜面之间的夹角角度大小相等。
  8. 如权利要求5-7中任一项所述的音频模组,其特征在于,所述底壁与所述侧壁的连接处设置有倒角。
  9. 如权利要求1-8中任一项所述的音频模组,其特征在于,沿所述第一方向,每个所述散射槽的槽宽相等。
  10. 如权利要求9所述的音频模组,其特征在于,每个所述散射槽的槽宽满足以下条件:
    w1=cair/(2×fmax);
    其中,所述w1为所述散射槽的槽宽,所述cair为声速,所述fmax为所述扬声器作用频段的最大频率。
  11. 如权利要求1-10中任一项所述的音频模组,其特征在于,沿所述散射槽的延伸方向,每个所述散射槽的槽长大于2cm。
  12. 如权利要求1-11中任一项所述的音频模组,其特征在于,沿所述第一方向,其中一组所述侧边散射槽组远离所述中心散射槽组的一端与另一组所述侧边散射槽组远离所述中心散射槽组的一端之间的距离为3.5-10cm。
  13. 如权利要求1-12中任一项所述的音频模组,其特征在于,所述第一倾斜面与所述扬声器的出声面的法线之间的夹角角度为30-70°。
  14. 如权利要求1-13中任一项所述的音频模组,其特征在于,所述第一倾斜面为平面或曲面。
  15. 如权利要求1-14中任一项所述的音频模组,其特征在于,所述扬声器的出声面与所述底座之间的夹角角度为0-60°。
  16. 一种车辆,其特征在于,包括车体以及如权利要求1-15中任一项所述的音频模组;所述音频模组设置于所述车体上。
  17. 如权利要求16所述的车辆,其特征在于,所述音频模组设置于所述车体的汽车仪表盘中心位置;或,所述音频模组设置于所述车体的A柱与挡风玻璃的连接处的角落。
PCT/CN2023/117724 2022-10-27 2023-09-08 音频模组及车辆 WO2024087904A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211329617.9 2022-10-27
CN202211329617.9A CN117278913A (zh) 2022-10-27 2022-10-27 音频模组及车辆

Publications (1)

Publication Number Publication Date
WO2024087904A1 true WO2024087904A1 (zh) 2024-05-02

Family

ID=89209318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117724 WO2024087904A1 (zh) 2022-10-27 2023-09-08 音频模组及车辆

Country Status (2)

Country Link
CN (1) CN117278913A (zh)
WO (1) WO2024087904A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275195A2 (en) * 1987-01-13 1988-07-20 GEREN, David Keith Acoustic assembly
KR20000067321A (ko) * 1999-04-27 2000-11-15 정완진 스피커의 광대역 음향파 정형 및 제어시스템
CN1647579A (zh) * 2002-03-05 2005-07-27 音响制品国际公司 带有成形声场的扬声器
CN1778141A (zh) * 2004-05-19 2006-05-24 哈曼国际工业有限公司 车辆的扬声器阵列
JP2012231448A (ja) * 2011-04-14 2012-11-22 Jvc Kenwood Corp 音場生成装置、音場生成システム、及び音場生成方法
CN103180897A (zh) * 2010-10-21 2013-06-26 3D声学控股有限公司 声音漫射发生器
CN106101938A (zh) * 2015-10-13 2016-11-09 北京小鸟听听科技有限公司 一种扬声器及扬声器系统
KR102214788B1 (ko) * 2020-02-25 2021-02-10 홍익대학교 산학협력단 음파 송출 방향 제어를 위한 빔 형성 부재 및 이를 이용한 음파 제어 시스템
KR20220023357A (ko) * 2020-08-21 2022-03-02 홍익대학교 산학협력단 가변 초점을 갖는 음파 집속 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0275195A2 (en) * 1987-01-13 1988-07-20 GEREN, David Keith Acoustic assembly
KR20000067321A (ko) * 1999-04-27 2000-11-15 정완진 스피커의 광대역 음향파 정형 및 제어시스템
CN1647579A (zh) * 2002-03-05 2005-07-27 音响制品国际公司 带有成形声场的扬声器
CN1778141A (zh) * 2004-05-19 2006-05-24 哈曼国际工业有限公司 车辆的扬声器阵列
CN103180897A (zh) * 2010-10-21 2013-06-26 3D声学控股有限公司 声音漫射发生器
JP2012231448A (ja) * 2011-04-14 2012-11-22 Jvc Kenwood Corp 音場生成装置、音場生成システム、及び音場生成方法
CN106101938A (zh) * 2015-10-13 2016-11-09 北京小鸟听听科技有限公司 一种扬声器及扬声器系统
KR102214788B1 (ko) * 2020-02-25 2021-02-10 홍익대학교 산학협력단 음파 송출 방향 제어를 위한 빔 형성 부재 및 이를 이용한 음파 제어 시스템
KR20220023357A (ko) * 2020-08-21 2022-03-02 홍익대학교 산학협력단 가변 초점을 갖는 음파 집속 장치

Also Published As

Publication number Publication date
CN117278913A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
US7046816B2 (en) Coincident source stereo speaker
US20080144873A1 (en) Ceiling or wall-mounted loudspeaker system with anti-diffraction wave launch device
US4593784A (en) Loudspeaker enclosure
US20170325019A1 (en) Waveguide for a height channel in a speaker
TW201914312A (zh) 反射錐及音箱
US7590257B1 (en) Axially propagating horn array for a loudspeaker
WO2024087904A1 (zh) 音频模组及车辆
US5966453A (en) Speaker system for use in an automobile vehicle
US6068080A (en) Apparatus for the redistribution of acoustic energy
KR102097891B1 (ko) 스피커용 입체 음향 가이드 및 이를 구비한 스피커
CN105706461A (zh) 扬声器换能装置
JP2006060330A (ja) ステレオ再生装置
JP6824821B2 (ja) スピーカー
US4220220A (en) Loudspeaker equipment
CN216490910U (zh) 一种降低声音反射的音箱
US4161230A (en) Loudspeaker equipment
CN216820035U (zh) 平面波导号角
US20030000767A1 (en) Speaker enclosure configured to minimize diffraction
CN220754994U (zh) 一种全息声场音箱
KR100260419B1 (ko) 무지향스피커시스템을위한음향반사판장치
CN218570451U (zh) 扬声器及交通工具
CN103428589A (zh) 便携式电子装置
JP6120683B2 (ja) パーティション
JPH04172799A (ja) 車載用スピーカ装置
CN221043226U (zh) 扩音装置