WO2024087554A1 - Structure de dissipation thermique de moteur à fil rond basée sur des caloducs à changement de phase courbés en forme d'arc - Google Patents

Structure de dissipation thermique de moteur à fil rond basée sur des caloducs à changement de phase courbés en forme d'arc Download PDF

Info

Publication number
WO2024087554A1
WO2024087554A1 PCT/CN2023/090423 CN2023090423W WO2024087554A1 WO 2024087554 A1 WO2024087554 A1 WO 2024087554A1 CN 2023090423 W CN2023090423 W CN 2023090423W WO 2024087554 A1 WO2024087554 A1 WO 2024087554A1
Authority
WO
WIPO (PCT)
Prior art keywords
change heat
phase change
heat dissipation
heat pipe
arc
Prior art date
Application number
PCT/CN2023/090423
Other languages
English (en)
Chinese (zh)
Inventor
尹树彬
汤勇
黄皓熠
张仕伟
赵威
黎洪铭
黄梓滨
余小媚
Original Assignee
广东畅能达科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东畅能达科技发展有限公司 filed Critical 广东畅能达科技发展有限公司
Publication of WO2024087554A1 publication Critical patent/WO2024087554A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/225Heat pipes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a motor heat dissipation structure, in particular to a round wire motor heat dissipation structure based on an arc-shaped bent phase-change heat pipe.
  • the electric drive system As the core component of new energy vehicles, the electric drive system has an important impact on the vehicle's power, economy, comfort, safety and life.
  • the motor In the electric drive system, the motor is the core, and the performance of the motor largely determines the performance of the whole vehicle. Heat dissipation is an important factor that restricts the improvement of motor performance. Whether the problem of motor heating can be effectively solved becomes the key to further improve the motor's limit power.
  • new energy vehicle motors can be divided into round wire motors and flat wire motors according to the shape of the winding. Under the same air cooling or liquid cooling conditions, the flat wire motor has a more compact interior and fewer gaps, making its heat dissipation and heat conduction better than the round wire motor, but its design is more difficult and the manufacturing cost is higher.
  • the present invention proposes a round wire motor heat dissipation structure based on an arc-shaped bent phase change heat pipe, which can significantly improve the heat dissipation efficiency of the coil winding, increase the motor's maximum power, and extend the motor's service life.
  • a round wire motor heat dissipation structure based on an arc-shaped bent phase-change heat pipe comprises a housing, a phase-change heat pipe and a suspension winding, wherein the suspension winding is arranged in the middle of the housing.
  • a heat dissipation component is provided between the group and the inner wall of the casing; the heat dissipation component includes a plurality of arc-shaped phase-change heat pipes.
  • a diameter of the phase-change heat pipe is less than or equal to a distance between an inner wall of the casing and the cantilever winding.
  • the bending direction of the phase-change heat pipe is toward the suspension winding, so that a plurality of phase-change heat pipes are arranged around the suspension winding.
  • the bending direction of the phase change heat pipe is the same as the radial direction of the cantilever winding.
  • thermal conductive interface materials are filled between the phase change heat pipes.
  • phase-change heat pipe is arranged between the overhanging winding and the inner wall of the casing in a single-layer embedded or multi-layer stacked manner.
  • the thickness of the thermal interface material is less than or equal to the diameter of the phase change heat pipe.
  • the heat dissipation component is arranged to cover the outer surface of the overhanging winding.
  • the curvature angle of the bent phase-change heat pipe is greater than the diameter of the phase-change heat pipe.
  • the present invention has the following advantages:
  • the present invention fills several bent phase-change heat pipes as heat dissipation components between the casing and the overhanging winding, so that an additional heat dissipation channel is formed between the overhanging winding and the contacting phase-change heat pipes. Heat is transferred to the casing through the heat dissipation component and dissipated into the air. Since the structure adds the heat dissipation component composed of the bent phase-change heat pipes, the interior of the round wire motor is more compact and the problem of poor thermal conductivity caused by air is avoided.
  • FIG1 is a schematic diagram of the structure of a phase change heat pipe in the present invention.
  • FIG2 is a schematic diagram of a first embodiment of the present invention.
  • FIG3 is a schematic diagram of a second embodiment of the present invention.
  • FIG4 is a schematic diagram of a third embodiment of the present invention.
  • FIG5 is a partial enlarged schematic diagram of point A in FIG3 ;
  • FIG6 is a partial enlarged schematic diagram of point B in FIG4 ;
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it can be a fixed connection or It can be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be a communication between the two components.
  • installed should be understood in a broad sense, for example, it can be a fixed connection or It can be a detachable connection or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be a communication between the two components.
  • the embodiment of the present invention discloses a heat dissipation structure of a round wire motor based on an arc-shaped bent phase-change heat pipe 2, comprising a housing 1, a phase-change heat pipe 2 and a cantilever winding 3, characterized in that: the cantilever winding 3 is arranged in the middle of the housing 1, and a heat dissipation component is arranged between the cantilever winding 3 and the inner wall of the housing 1; the heat dissipation component comprises a plurality of arc-shaped phase-change heat pipes 2.
  • the phase-change heat pipe 2 is bent by a mold, wherein R1 is the outer diameter of the cantilever winding 3, and R2 is the inner diameter of the housing 1, and its shape can be customized for motors of different sizes. Since the air gap inside the round wire motor is reduced, the heat is prevented from being difficult to dissipate due to the poor thermal conductivity of the air, and at the same time, the bent phase-change heat pipe 2 that fits the cantilever winding 3 is added, and the heat is further transferred to the outside of the housing 1, thereby increasing the heat dissipation efficiency of the coil winding in the round wire motor, thereby improving the motor limit power, and there is no need to worry about the motor burning due to excessive temperature, thereby extending the working life of the motor.
  • the diameter of the phase-change heat pipe 2 is less than or equal to the distance between the inner wall of the casing 1 and the suspension winding 3.
  • the diameter of the phase-change heat pipe 2 is less than the distance between the inner wall of the casing 1 and the suspension winding 3
  • a method of stacking multiple phase-change heat pipes 2 is adopted, and it is ensured that the stacked phase-change heat pipes 2 can fill the space between the casing 1 and the suspension winding 3; when the diameter of the phase-change heat pipe 2 is equal to the distance between the inner wall of the casing 1 and the suspension winding 3, only one phase-change heat pipe 2 needs to be arranged between the casing 1 and the suspension winding 3 to completely fill the space.
  • the insulated phase change heat pipe 23 is embedded between the housing 11 and the overhanging winding 32, and the gap is filled with a thermal interface material.
  • the bending angle and length of the phase change heat pipe 2 can be adjusted according to the overhanging winding 32.
  • the size of the winding 3 is customized and arranged, and its installation standard should cover the entire overhang winding 3.
  • three phase-change heat pipes 2 with a bending angle of 120° are used, so two phase-change heat pipes 2 with a bending angle of 180°, or four phase-change heat pipes 2 with a bending angle of 90° can also achieve the same protection effect.
  • the motor housing can be customized and manufactured for motors of different sizes.
  • the thermal interface material is selected from thermal conductive glue, and thermal conductive mud and other materials that also have thermal conductive effects can also be used for filling. Since the heat dissipation structure needs to cover the outer surface of the overhang winding 3, the phase-change heat pipes 2 in this embodiment are arranged in parallel on the outside of the overhang winding 3 to ensure that the heat dissipation structure can fully fit the overhang winding 3 to achieve better heat dissipation.
  • the difference between this embodiment and the first embodiment is that when the distance between the inner wall of the casing 1 and the overhanging winding 3 is too large and exceeds the maximum manufacturing diameter of the phase-change heat pipe 2, a multi-layer stacking method is required to ensure the integrity of the additional heat dissipation channel between the overhanging winding 3 and the inner wall of the casing 1.
  • the assembly sequence should be phase-change heat pipe 2-thermal interface material-phase-change heat pipe 2, that is, each time a phase-change heat pipe 2 is placed, a layer of thermal interface material must be poured, and after the thermal interface material is solidified, the next heat pipe is embedded, and the thermal interface material is poured again.
  • the thickness of each layer of thermal interface material is less than or equal to the diameter of the phase-change heat pipe 2, and the above steps are repeated until the gap between the winding and the inner wall of the casing 1 is completely filled.
  • the difference between this embodiment and the second embodiment is that the bending direction of the phase change heat pipe 2 is the same as the radial direction of the suspension winding 3. Under this structure, the arc angle of the bent phase change heat pipe 2 is greater than the diameter of the phase change heat pipe 2.
  • phase change heat pipes 2 whose diameter is smaller than the distance between the casing 1 and the suspension winding 3 are stacked and filled in the gap. When the diameter of the phase change heat pipe 2 is equal to the distance between the casing 1 and the suspension winding 3, a single phase change heat pipe 2 can also be embedded to fill the gap.
  • the phase change heat pipes 2 in this embodiment are staggered and arranged in a fish scale shape. Distributed outside the overhanging winding 3, and the gaps are filled with thermally conductive interface materials.
  • the heat dissipation structure under this arrangement is more stable, and is more closely fitted to the overhanging winding 3, resulting in a better heat dissipation effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

La présente invention concerne une structure de dissipation thermique de moteur à fil rond basée sur des caloducs à changement de phase courbés en forme d'arc, comprenant un boîtier (1), des caloducs à changement de phase (2) et des enroulements en porte-à-faux (3), les enroulements en porte-à-faux (3) étant disposés dans la partie centrale du boîtier (1), un composant de dissipation thermique étant disposé entre les enroulements en porte-à-faux (3) et la paroi interne du boîtier (1), et le composant de dissipation thermique comprenant une pluralité de caloducs à changement de phase en forme d'arc (2). La pluralité de caloducs à changement de phase courbés (2) sont utilisés en tant que composants de dissipation thermique pour remplir un espace entre le boîtier (1) et les enroulements en porte-à-faux (3), de manière à former des passages de dissipation thermique supplémentaires entre les enroulements en porte-à-faux (3) et les caloducs à changement de phase (2) qui sont en contact avec les enroulements en porte-à-faux, transférant ainsi la chaleur au boîtier (1) au moyen du composant de dissipation thermique et dissipant cette chaleur dans l'air. Étant donné que le composant de dissipation thermique constitué des caloducs à changement de phase courbés (2) est également fourni dans la structure, l'intérieur d'un moteur à fil rond est plus compact, ce qui permet d'éviter le problème de la mauvaise performance de conduction de chaleur causée par l'air.
PCT/CN2023/090423 2022-10-26 2023-04-24 Structure de dissipation thermique de moteur à fil rond basée sur des caloducs à changement de phase courbés en forme d'arc WO2024087554A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211317356.9 2022-10-26
CN202211317356.9A CN115514160A (zh) 2022-10-26 2022-10-26 一种基于弧形折弯相变热管的圆线电机散热结构

Publications (1)

Publication Number Publication Date
WO2024087554A1 true WO2024087554A1 (fr) 2024-05-02

Family

ID=84513324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090423 WO2024087554A1 (fr) 2022-10-26 2023-04-24 Structure de dissipation thermique de moteur à fil rond basée sur des caloducs à changement de phase courbés en forme d'arc

Country Status (2)

Country Link
CN (1) CN115514160A (fr)
WO (1) WO2024087554A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115514160A (zh) * 2022-10-26 2022-12-23 广东畅能达科技发展有限公司 一种基于弧形折弯相变热管的圆线电机散热结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532994A (zh) * 2016-12-14 2017-03-22 华南理工大学 基于3d相变热管技术的高导热车用电机定子组件
CN108155761A (zh) * 2018-01-31 2018-06-12 华南理工大学 一种强化热管理的车用电机定子组件应用的电机
CN211296409U (zh) * 2019-12-25 2020-08-18 华南理工大学 一种基于相变热管强化散热的电机外壳
US20220190686A1 (en) * 2019-02-21 2022-06-16 Safran Electrical machine winding having improved colling
CN115514160A (zh) * 2022-10-26 2022-12-23 广东畅能达科技发展有限公司 一种基于弧形折弯相变热管的圆线电机散热结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8760018B2 (en) * 2012-01-20 2014-06-24 Asia Vital Components Co., Ltd. Motor stator with heat dissipation structure
CN106602774A (zh) * 2016-12-06 2017-04-26 中山市华南理工大学现代产业技术研究院 一种基于一体化挤压成型及相变热管技术的电机风冷机壳
CN207766072U (zh) * 2017-11-13 2018-08-24 中山大洋电机股份有限公司 一种相变散热电机定子组件及其应用的风冷电机
CN211429030U (zh) * 2020-03-19 2020-09-04 天津飞旋科技有限公司 一种基于相变热管的电机端部绕组冷却结构
DE102020133638A1 (de) * 2020-12-16 2022-06-23 Bayerische Motoren Werke Aktiengesellschaft Elektrische Maschine mit einem Phasenwechselmaterial zum Verlängern eines Überlastbetriebs und Kraftfahrzeug

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106532994A (zh) * 2016-12-14 2017-03-22 华南理工大学 基于3d相变热管技术的高导热车用电机定子组件
CN108155761A (zh) * 2018-01-31 2018-06-12 华南理工大学 一种强化热管理的车用电机定子组件应用的电机
US20220190686A1 (en) * 2019-02-21 2022-06-16 Safran Electrical machine winding having improved colling
CN211296409U (zh) * 2019-12-25 2020-08-18 华南理工大学 一种基于相变热管强化散热的电机外壳
CN115514160A (zh) * 2022-10-26 2022-12-23 广东畅能达科技发展有限公司 一种基于弧形折弯相变热管的圆线电机散热结构

Also Published As

Publication number Publication date
CN115514160A (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
EP1593191B1 (fr) Module a bobine de stator, procede de fabrication dudit module et machine electrique rotative
US6445095B1 (en) Electric machine with laminated cooling rings
CN211429030U (zh) 一种基于相变热管的电机端部绕组冷却结构
CN208986739U (zh) 盘式电机
WO2024087554A1 (fr) Structure de dissipation thermique de moteur à fil rond basée sur des caloducs à changement de phase courbés en forme d'arc
EP2608366A2 (fr) Machine électrique avec têtes de bobines encapsulés
JP2004180498A (ja) 巻き線冷却及びスロット充填が最適化された、集中巻きコイル式電動モーター
CN110660563A (zh) 磁性组件及电源模块
WO2024113661A1 (fr) Structure de dissipation de chaleur de moteur basée sur un caloduc à déformation et son procédé de fabrication
JPH0638422A (ja) 電動機のステータ巻線構造
CN110011457B (zh) 热管与铁芯集成一体化的电机定子结构
CN111245147B (zh) 一种双转子定子无轭模块化轴向电机的混合冷却系统
CN111654164A (zh) 一种电机定子及电机
JP2005218274A (ja) 回転電機の回転子
CN110581625A (zh) 电机定子绕组的散热结构
TW201713008A (zh) 一種電機繞線框架結構
CN213879402U (zh) 油冷定子、电机、电驱动桥和汽车
CN115528863A (zh) 一种动子绕组散热结构及平板直线电机
CN210380544U (zh) 电机定子绕组的散热结构
JP2001237125A (ja) コイルボビン及びトランス
CN219477786U (zh) 一种基于均热板和相变热管的电机散热结构
JP5057144B2 (ja) 回転電機の固定子
CN220627552U (zh) 一种变压器
CN218301156U (zh) 一种高效散热的磁轴式直线电机
CN218300023U (zh) 电池总成

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23881149

Country of ref document: EP

Kind code of ref document: A1