WO2024087458A1 - 高压电路短路保护方法及系统 - Google Patents

高压电路短路保护方法及系统 Download PDF

Info

Publication number
WO2024087458A1
WO2024087458A1 PCT/CN2023/080855 CN2023080855W WO2024087458A1 WO 2024087458 A1 WO2024087458 A1 WO 2024087458A1 CN 2023080855 W CN2023080855 W CN 2023080855W WO 2024087458 A1 WO2024087458 A1 WO 2024087458A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
voltage circuit
current
circuit
management system
Prior art date
Application number
PCT/CN2023/080855
Other languages
English (en)
French (fr)
Inventor
廖虎龙
Original Assignee
惠州亿纬锂能股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州亿纬锂能股份有限公司 filed Critical 惠州亿纬锂能股份有限公司
Publication of WO2024087458A1 publication Critical patent/WO2024087458A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of electric vehicle safety protection, for example, to a high-voltage circuit short-circuit protection method and system.
  • the high-voltage circuit of the battery energy distribution unit of electric vehicles on the market is generally composed of fuses, high-voltage relays, and current sensors.
  • the embodiments of the present application provide a high-voltage circuit short-circuit protection method and system to implement fast and effective short-circuit protection of the high-voltage circuit over the full current range.
  • an embodiment of the present application provides a high-voltage circuit short-circuit protection method, the method being performed by a high-voltage circuit short-circuit protection system, the high-voltage circuit short-circuit protection system comprising a battery management system and a battery energy distribution unit; the battery energy distribution unit comprising an active and passive integrated fuse; the battery management system being connected to the active and passive integrated fuse;
  • the high voltage circuit short circuit protection method comprises:
  • the battery management system obtains the high voltage current of the high voltage circuit corresponding to the battery energy distribution unit;
  • the battery management system determines the state of the high voltage circuit according to the high voltage current
  • the battery management system controls the active and passive integrated fuses to disconnect the high-voltage circuit according to the state of the high-voltage circuit and the high-voltage current.
  • the battery energy distribution unit further comprises a current sensor, and the current sensor is connected to the battery management system;
  • the battery management system obtains the high voltage current of the high voltage circuit corresponding to the battery energy distribution unit, it includes:
  • the current sensor detects the high voltage current of the high voltage circuit
  • the current sensor sends the high voltage current to the battery management system.
  • the battery management system determines the state of the high-voltage circuit according to the high-voltage current, including:
  • the battery management system calculates a duration of receiving the high voltage current
  • the battery management system obtains the high-voltage circuit state according to the high-voltage current and the duration.
  • the state of the high voltage circuit includes a short circuit state and a non-short circuit state
  • the battery management system obtains the state of the high-voltage circuit according to the high-voltage current and the duration, including:
  • the battery management system determines whether the high voltage current is greater than a first preset current
  • the battery management system judges whether the duration is greater than a preset time
  • the state of the high voltage circuit is determined to be the non-short circuit state.
  • the first preset current is greater than the maximum overload current of the battery energy distribution unit, and the first preset current is less than or equal to the maximum withstand current of any relay in the high-voltage circuit;
  • the preset time is less than the maximum tolerance time of any relay in the high-voltage circuit, and the preset time is greater than the maximum overload tolerance time of the battery energy distribution unit.
  • the battery management system controls the active and passive integrated fuse to disconnect the high-voltage circuit according to the state of the high-voltage circuit and the high-voltage current, including:
  • the battery management system determines whether the high-voltage current is less than or equal to a second preset current
  • the battery management system In response to a judgment result that the high-voltage current is less than or equal to a second preset current, the battery management system sends a cut-off signal to the active and passive integrated fuse, so that the active and passive integrated fuse actively disconnects the high-voltage circuit according to the cut-off signal;
  • the active and passive integrated fuse In response to the judgment result that the high voltage current is greater than the second preset current, the active and passive integrated fuse The breaker passively disconnects the high voltage circuit.
  • the second preset current is a withstand current corresponding to the intersection of a withstand current curve of the active and passive integrated fuse and a withstand current curve of a relay in the high-voltage circuit.
  • the method further includes:
  • the battery management system detects the voltage difference between the positive and negative electrodes of the battery energy distribution unit
  • the battery management system determines the conduction state of the high-voltage circuit of the battery energy distribution unit according to the positive and negative electrode voltage difference;
  • the battery management system controls the relay of the battery energy distribution unit to be disconnected according to the conduction state of the high-voltage circuit.
  • the battery management system determines the conduction state of the high-voltage circuit of the battery energy distribution unit according to the positive and negative electrode voltage difference, including:
  • the battery management system determines whether the positive and negative electrode voltage difference is less than or equal to a threshold voltage
  • the conduction state of the high voltage circuit is determined to be the conduction state.
  • the relays of the battery energy distribution unit include a main positive relay and a main negative relay;
  • the battery management system controls the relay of the battery energy distribution unit to disconnect according to the conduction state of the high-voltage circuit, including:
  • the battery management system controls the main positive relay and the main negative relay of the battery energy distribution unit to be disconnected;
  • the battery management system controls the main negative relay of the battery energy distribution unit to be disconnected, and controls the main positive relay to be disconnected after the main negative relay is disconnected.
  • the present invention provides a high-voltage circuit short-circuit protection system, including a battery management system and a battery energy distribution unit; the battery energy distribution unit includes an active and passive integrated fuse; the battery management system is connected to the active and passive integrated fuse;
  • the battery management system is configured to: obtain a high-voltage current of a high-voltage circuit corresponding to a battery energy distribution unit; determine a state of the high-voltage circuit according to the high-voltage current; and determine a state of the high-voltage circuit according to the state of the high-voltage circuit and The high-voltage current controls the active and passive integrated fuses to disconnect the high-voltage circuit.
  • the embodiment of the present application obtains the high-voltage current of the high-voltage circuit corresponding to the battery energy distribution unit through the battery management system, and can monitor the high-voltage current of the high-voltage circuit in real time, so as to analyze and judge the high-voltage current later, thereby protecting the high-voltage circuit in real time.
  • the battery management system determines whether the current high-voltage circuit is short-circuited according to the high-voltage current, thereby determining the state of the high-voltage circuit.
  • the battery management system can know whether the high-voltage circuit is short-circuited through the state of the high-voltage circuit, and know whether the high-voltage current can make the active and passive integrated fuses quickly thermally accumulate and disconnect the high-voltage circuit through the high-voltage current, so as to control the active and passive integrated fuses to actively disconnect the high-voltage circuit when the high-voltage circuit is short-circuited and the high-voltage current cannot make the active and passive integrated fuses quickly thermally accumulate and disconnect the high-voltage circuit, and when the short-circuit current of the high-voltage circuit can make the active and passive integrated fuses quickly thermally accumulate and disconnect the high-voltage circuit, the active and passive integrated fuses passively disconnect the high-voltage circuit through the thermal accumulation effect.
  • FIG1 is a schematic structural diagram of a high voltage circuit short circuit protection system provided in an embodiment of the present application.
  • FIG2 is a schematic flow chart of a high voltage circuit short circuit protection method provided in an embodiment of the present application.
  • FIG3 is a time-current tolerance curve of multiple devices of a high voltage circuit provided in an embodiment of the present application.
  • FIG4 is a schematic flow chart of another high voltage circuit short circuit protection method provided in an embodiment of the present application.
  • FIG5 is a flow chart of a method for determining a high voltage circuit state in a battery management system provided in an embodiment of the present application
  • FIG6 is a flow chart of a method for determining a high voltage circuit state in a battery management system according to an embodiment of the present application
  • FIG7 is a flow chart of a method for a battery management system to control active and passive integrated fuses to disconnect a high-voltage circuit, provided in an embodiment of the present application;
  • FIG8 is a schematic flow chart of another high voltage circuit short circuit protection method provided in an embodiment of the present application.
  • FIG9 is a flow chart of a method for determining the conduction state of a high-voltage circuit of a battery energy distribution unit in a battery management system according to an embodiment of the present application.
  • the fuse is a passive fuse
  • the high-voltage circuit is cut off by the current heat accumulation effect of the passive fuse.
  • the time-current tolerance curve of the passive fuse and the time-current tolerance curve of the high-voltage relay have an intersection.
  • the high-voltage relay is responsible for protecting the high-voltage circuit
  • the passive fuse is responsible for protecting the high-voltage circuit.
  • there is a protection blind spot before the intersection and after the relay's limit breaking capacity In this protection blind spot, the current flowing through the relay exceeds the relay's limit breaking capacity, and the relay cannot cut off the circuit.
  • the passive fuse has a longer tolerance time under this current, and the passive fuse has a longer cutting time. Therefore, the passive fuse cannot quickly and effectively cut off the high-voltage circuit, which will cause some devices on the high-voltage circuit to be damaged due to the long time of large current flowing through, and thus cannot achieve effective full current range protection for the high-voltage circuit.
  • the fuse is an active fuse
  • the active fuse when an abnormal current appears in the high-voltage circuit, the active fuse receives an external cut-off signal and actively disconnects.
  • the active fuse ignites the explosives through the cut-off signal to trigger the active fuse to disconnect the high-voltage circuit, thereby actively cutting off the high-voltage circuit.
  • the active fuse needs to collect current through a current sensor, the battery management system generates a cut-off signal based on the collected current, and the active fuse triggers the action of disconnecting the high-voltage circuit based on the cut-off signal.
  • a series of processes generally require tens of milliseconds of processing time. At this time, the devices on the high-voltage circuit will be damaged when the excessive current flows through more than ten milliseconds. Obviously, the active fuse cannot achieve effective full-current range short-circuit protection for the high-voltage circuit.
  • An embodiment of the present application provides a high-voltage circuit short-circuit protection method and system. This embodiment can be applied to the short-circuit protection control of a high-voltage circuit equipped with active and passive integrated fuses. The method can be executed by a high-voltage circuit short-circuit protection system, which can be implemented in hardware and/or software.
  • the high-voltage circuit short-circuit protection system includes a battery management system and a battery energy distribution unit; the battery energy distribution unit includes an active and passive integrated fuse; the battery management system is connected to the active and passive integrated fuse.
  • the battery management system is a system that can monitor and control the battery energy distribution unit.
  • the battery management system can collect information about the high-voltage circuit of the battery energy distribution unit, and then control the high-voltage circuit of the battery energy distribution unit based on the collected information.
  • the battery energy distribution unit can reasonably distribute the battery's electrical energy to the load devices of the electric vehicle.
  • the active and passive integrated fuses are connected in series to the high-voltage circuit of the battery energy distribution unit to protect the devices on the high-voltage circuit to avoid high-voltage electricity. Devices on the road are damaged due to overcurrent.
  • FIG1 is a schematic diagram of the structure of a high-voltage circuit short-circuit protection system provided in an embodiment of the present application.
  • the high-voltage circuit short-circuit protection system includes a battery management system 220 and a battery energy distribution unit 230.
  • the battery energy distribution unit 230 includes an active and passive integrated fuse Q, a discharge terminal A, a charging terminal C, a main positive relay M1, a main negative relay M2, a pre-charge relay M3, a fast charge relay M4, and a current sensor P.
  • the battery management system 220 is connected to the battery energy distribution unit 230.
  • the battery management system 220 is respectively connected to the active and passive integrated fuse Q, the main positive relay M1, the main negative relay M2, the pre-charge relay M3, the fast charge relay M4 and the current sensor P.
  • the battery management system 220 can provide an excitation power signal to the active and passive integrated fuse Q, so that the built-in gunpowder of the active and passive integrated fuse Q is triggered, thereby actively blowing up the high-voltage circuit of the battery energy distribution unit 230, so that the high-voltage circuit of the battery energy distribution unit 230 is disconnected.
  • the active and passive integrated fuse Q can also passively disconnect the high-voltage circuit through the current thermal accumulation effect.
  • the battery management system 220 can send control signals to the main positive relay M1, the main negative relay M2, the pre-charge relay M3 and the fast charge relay M4, respectively, so as to control the on and off states of the main positive relay M1, the main negative relay M2, the pre-charge relay M3 and the fast charge relay M4.
  • the current sensor P detects the high voltage current of the high voltage circuit of the battery energy distribution unit 230 , can monitor the high voltage current of the high voltage circuit in real time, and transmit the high voltage current of the high voltage circuit to the battery management system 220 in real time.
  • FIG2 is a flow chart of a high-voltage circuit short-circuit protection method provided in an embodiment of the present application. As shown in FIG2 , the high-voltage circuit short-circuit protection method includes the following steps:
  • the battery management system obtains the high voltage current of the high voltage circuit corresponding to the battery energy distribution unit.
  • High voltage current refers to the current of the corresponding high voltage circuit bus of the battery energy distribution unit.
  • the battery energy distribution unit 230 includes a current sensor P, which is connected to the battery management system 220.
  • the current sensor P can monitor the high voltage current of the high voltage circuit in real time.
  • the battery management system 220 can obtain the high voltage current through the current sensor P in real time, so as to facilitate the subsequent analysis and judgment of the high voltage current, and protect the high voltage circuit in real time to prevent the high voltage circuit from malfunctioning and causing the high voltage current to be too large and burn the components connected to the high voltage circuit.
  • S120 The battery management system determines the state of the high-voltage circuit according to the high-voltage current.
  • the battery management system can analyze the high-voltage current to determine whether a short circuit occurs in the current high-voltage circuit.
  • the state of the high-voltage circuit includes a short-circuit state and a non-short-circuit state. For example, if the high-voltage current exceeds the maximum withstand current of any connecting device on the high-voltage circuit, a short circuit occurs in the high-voltage circuit, and the high-voltage circuit state is a short-circuit state. The high-voltage circuit needs to be disconnected quickly and effectively to achieve fast and effective short-circuit protection for the high-voltage circuit. Conversely, if the high-voltage current is less than the maximum withstand current of any connecting device on the high-voltage circuit, the high-voltage circuit state is a non-short-circuit state.
  • the battery management system controls the active and passive integrated fuses to disconnect the high-voltage circuit according to the state of the high-voltage circuit and the high-voltage current.
  • the battery management system can know whether the high-voltage circuit is short-circuited through the state of the high-voltage circuit.
  • the active and passive integrated fuses can actively blow up the high-voltage circuit of the battery energy distribution unit by receiving the excitation power signal of the battery management system, and can also passively disconnect the high-voltage circuit through the current thermal accumulation effect. Therefore, when the high-voltage circuit is short-circuited, the battery management system can determine whether it is necessary to control the active and passive integrated fuses to actively disconnect the high-voltage circuit through the high-voltage current.
  • FIG3 is a time-current tolerance curve of multiple devices of a high-voltage circuit provided in an embodiment of the present application.
  • curve 310 is a time-current tolerance curve of a battery that provides electrical energy to a high-voltage circuit
  • curve 320 is a time-current tolerance curve of a relay of a high-voltage circuit.
  • Curve 330 is a time-current tolerance curve of a safe temperature rise of multiple devices of a high-voltage circuit.
  • Curve 340 is a time-current tolerance curve of a fuse in an active and passive integrated fuse.
  • the time-current tolerance curve of the fuse and the time-current tolerance curve of the relay have an intersection a, and there is a protection blind area (for example, intersection b-intersection a, where intersection b can be the intersection of curve 330 and curve 320) before the intersection a of the time-current melting curve of the fuse and the time-current tolerance curve of the relay, that is, the tolerance time of the fuse under the same current in the protection blind area is greater than the tolerance time of the relay, and the relay has been burned when the fuse passively disconnects the high-voltage circuit through the current heat accumulation effect, so the fuse cannot effectively protect the relay.
  • a protection blind area for example, intersection b-intersection a, where intersection b can be the intersection of curve 330 and curve 320
  • the battery management system can provide an excitation power signal to the active and passive integrated fuses, so that the built-in gunpowder of the active and passive integrated fuses is triggered, thereby actively blowing up the high-voltage circuit of the battery energy distribution unit, disconnecting the high-voltage circuit of the battery energy distribution unit, and thus effectively protecting the relay.
  • the tolerance time of the fuse is less than the tolerance time of the relay under the same current. The fuse can quickly passively disconnect the high-voltage circuit through the current heat accumulation effect, and the heat accumulation time of the fuse is less than the tolerance time of the relay, which can effectively protect the relay.
  • the embodiment of the present application obtains the high-voltage current of the high-voltage circuit corresponding to the battery energy distribution unit through the battery management system, and can monitor the high-voltage current of the high-voltage circuit in real time, so as to analyze and judge the high-voltage current later, thereby protecting the high-voltage circuit in real time.
  • the battery management system determines whether the current high-voltage circuit is short-circuited according to the high-voltage current, thereby determining the state of the high-voltage circuit.
  • the battery management system can know whether the high-voltage circuit is short-circuited through the state of the high-voltage circuit, and know whether the high-voltage current can make the active and passive integrated fuses quickly thermally accumulate and disconnect the high-voltage circuit through the high-voltage current, so as to control the active and passive integrated fuses to actively disconnect the high-voltage circuit when the high-voltage circuit is short-circuited and the high-voltage current cannot make the active and passive integrated fuses quickly thermally accumulate and disconnect the high-voltage circuit, and when the short-circuit current of the high-voltage circuit can make the active and passive integrated fuses quickly thermally accumulate and disconnect the high-voltage circuit, the active and passive integrated fuses passively disconnect the high-voltage circuit through the thermal accumulation effect.
  • the battery energy distribution unit 230 includes a current sensor P, and the current sensor P is connected to the battery management system 220 .
  • the current sensor P is a detection device that can detect current information and can transform the detected current information into an electrical signal or other required information output in accordance with a certain rule that meets certain standard requirements.
  • the current sensor P detects the high-voltage circuit of the battery energy distribution unit 230, can monitor the high-voltage current of the high-voltage circuit in real time, and transmit the high-voltage current of the high-voltage circuit to the battery management system 220 in real time.
  • FIG4 is a flow chart of another high-voltage circuit short-circuit protection method provided in an embodiment of the present application. As shown in FIG4 , the method includes the following steps:
  • the current sensor detects the high voltage current of the high voltage circuit.
  • S320 The current sensor sends the high voltage current to the battery management system.
  • the battery management system obtains the high voltage current of the high voltage circuit corresponding to the battery energy distribution unit.
  • S340 The battery management system determines the state of the high-voltage circuit according to the high-voltage current.
  • S350 The battery management system controls the active and passive integrated fuses to disconnect the high-voltage circuit according to the state of the high-voltage circuit and the high-voltage current.
  • the battery management system can monitor the high-voltage current of the high-voltage circuit in real time through the current sensor, thereby performing real-time safety monitoring of the high-voltage circuit through the high-voltage current, and then protecting the high-voltage circuit in real time through analysis and judgment of the high-voltage current.
  • FIG5 is a flow chart of a method for determining the state of a high-voltage circuit by a battery management system provided in an embodiment of the present application. Based on the above embodiment, the method for determining the state of a high-voltage circuit by a battery management system includes:
  • S410 The battery management system calculates a duration of receiving the high voltage current.
  • the battery management system needs to calculate the duration of the high-voltage current it receives to prevent the received high-voltage current from being inaccurate due to fluctuations in the high-voltage current.
  • S420 The battery management system obtains the state of the high-voltage circuit according to the high-voltage current and duration.
  • the battery management system can obtain the state of the high-voltage circuit based on the high-voltage current and duration.
  • the accuracy of the battery management system in judging the state of the high-voltage circuit can be improved to prevent current fluctuations from affecting the battery management system's judgment of the state of the high-voltage circuit.
  • the state of the high voltage circuit includes a short circuit state and a non-short circuit state.
  • the short-circuit state refers to a short-circuit fault in the high-voltage circuit
  • the non-short-circuit state refers to the normal operation of the high-voltage circuit
  • FIG6 is a flow chart of a method for determining the state of a high-voltage circuit by a battery management system according to an embodiment of the present application. Based on the above embodiment, the method for determining the state of a high-voltage circuit by a battery management system includes:
  • the battery management system determines whether the high-voltage current is greater than a first preset current; in response to the judgment result that the high-voltage current is greater than the first preset current, execute S520; in response to the judgment result that the high-voltage current is less than or equal to the first preset current, execute S540.
  • the first preset current is greater than the maximum overload current of the battery energy distribution unit, and the first preset current is less than or equal to the maximum withstand current of any relay in the high-voltage circuit.
  • the battery management system determines whether the duration of receiving the high voltage current is greater than a preset time; in response to the judgment result that the duration is greater than the preset time, execute S530; in response to the judgment result that the duration is less than or equal to the preset time, execute S540.
  • the preset time is less than the maximum tolerance time of any relay in the high-voltage circuit, and the preset time is greater than the maximum overload tolerance time of the battery energy distribution unit.
  • S530 The high voltage circuit is in a short circuit state.
  • FIG7 is a flow chart of a method for a battery management system to control an active and passive integrated fuse to disconnect a high-voltage circuit provided in an embodiment of the present application. Based on the above embodiment, the method for a battery management system to control an active and passive integrated fuse to disconnect a high-voltage circuit includes:
  • the battery management system determines whether the high-voltage current is less than or equal to a second preset current; in response to the determination result that the high-voltage current is less than or equal to the second preset current, execute S620; in response to the determination result that the high-voltage current is greater than the second preset current, execute S630.
  • the second preset current is a tolerance current corresponding to the intersection of a tolerance current curve of the active and passive integrated fuse and a tolerance current curve of a relay in the high-voltage circuit.
  • S620 The battery management system sends a cut-off signal to the active and passive integrated fuses, so that the active and passive integrated fuses actively disconnect the high-voltage circuit according to the cut-off signal.
  • FIG8 is a flow chart of another high-voltage circuit short-circuit protection method provided in an embodiment of the present application. As shown in FIG8 , the method includes the following steps:
  • the current sensor detects the high voltage current of the high voltage circuit.
  • S720 The current sensor sends the high voltage current to the battery management system.
  • the battery management system obtains the high voltage current of the high voltage circuit corresponding to the battery energy distribution unit.
  • the battery management system detects a voltage difference between the positive and negative electrodes of the battery energy distribution unit.
  • point M of the positive bus and point N of the negative bus of the high-voltage discharge circuit of the battery energy distribution unit 230 are both connected to the battery management system 220.
  • the battery management system determines the conduction state of the high-voltage circuit of the battery energy distribution unit according to the voltage difference between the positive and negative electrodes.
  • the passive integrated fuse power-off is effective and the high-voltage circuit of the battery energy distribution unit is open; if the voltage difference between the positive and negative poles of the battery energy distribution unit is large, it can be determined that the passive integrated fuse power-off is ineffective and the high-voltage circuit of the battery energy distribution unit is open.
  • S760 The battery management system controls the relay of the battery energy distribution unit to disconnect according to the conduction state of the high-voltage circuit.
  • the battery management system needs to control the relay disconnection of the battery energy distribution unit in different sequences or in different ways according to the conduction state of the high-voltage circuit.
  • the high-voltage circuit of the battery energy distribution unit is powered off and it is ineffective, the high-voltage circuit is a pathway, and the relay on the negative line of the high-voltage circuit needs to be disconnected first to ensure the safety of the power-off of the relay of the high-voltage circuit. If the relay on the positive line of the high-voltage circuit is disconnected first, since the voltage transmitted by the positive line of the high-voltage circuit is too high, the relay on the positive line of the high-voltage circuit will generate an arc at the moment of power failure, causing a huge safety hazard. In addition, if the high-voltage circuit of the battery energy distribution unit is powered off and it is effective, and the high-voltage circuit is open, there is no order requirement for disconnecting the relay of the battery energy distribution unit.
  • FIG9 is a flow chart of a method for a battery management system to determine a conduction state of a high-voltage circuit of a battery energy distribution unit provided in an embodiment of the present application. Based on the above embodiment, the method for the battery management system to determine the conduction state of the high-voltage circuit of the battery energy distribution unit includes:
  • the battery management system determines whether the positive and negative voltage difference is less than or equal to the threshold voltage; in response to the judgment result that the positive and negative voltage difference is less than or equal to the threshold voltage, execute S820; in response to the judgment result that the positive and negative voltage difference is greater than the threshold voltage, execute S840.
  • S820 Determine whether the conduction state of the high voltage circuit is an off state.
  • the battery management system controls the main positive relay and the main negative relay of the battery energy distribution unit to be disconnected; and executes S860.
  • S840 Determine that the conduction state of the high voltage circuit is the conduction state.
  • the battery management system controls the main negative relay of the battery energy distribution unit to be disconnected, and controls the main positive relay of the battery energy distribution unit to be disconnected after the main negative relay is disconnected; execute S860.
  • the vehicle controller and the battery management system record the fault information, and adjust the status of the vehicle controller and the battery management system to a fault state.
  • the battery management system detection action is set after the battery management system provides an excitation power signal to the active and passive integrated fuse Q for a certain period of time (for example, 10ms).
  • the battery management system determines whether the voltage difference between the positive and negative electrodes output by the battery energy distribution unit (for example, point M-point N in Figure 1) is less than or equal to a threshold voltage (for example, 10V).
  • the present application provides a high-voltage circuit short-circuit protection system, which includes a battery management system 220 and a battery energy distribution unit 230, and the battery energy distribution unit 230 includes an active and passive integrated fuse Q; the battery management system 220 is connected to the active and passive integrated fuse Q, and the battery management system 220 is configured to: obtain the high-voltage current of the high-voltage circuit corresponding to the battery energy distribution unit; determine the state of the high-voltage circuit according to the high-voltage current; and control the active and passive integrated fuses to disconnect the high-voltage circuit according to the state of the high-voltage circuit and the high-voltage current.
  • the high-voltage circuit short-circuit protection system provided in the embodiments of the present application can execute the high-voltage circuit short-circuit protection method provided in any of the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

本申请实施例公开了一种高压电路短路保护方法。该高压电路短路保护方法包括:电池管理系统获取电池能量分配单元对应的高压电路的高压电流;电池管理系统根据高压电流,确定高压电路的状态;电池管理系统根据高压电路的状态和高压电流,控制电池能量分配单元断电。本方案电池管理系统可以通过高压电路状态获知高压电路是否短路,并在高压电路短路电流无法使主被动一体式熔断器快速热积累断开高压电路时控制主被动一体式熔断器主动断开高压电路,在高压电路短路电流可以使主被动一体式熔断器快速热积累断开高压电路时由主被动一体式熔断器通过热积累效应被动断开高压电路。由此,对高压电路实现快速有效地全电流范围的短路保护。

Description

高压电路短路保护方法及系统
本申请要求在2022年10月24日提交中国专利局、申请号为202211305381.5的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车安全保护技术领域,例如涉及一种高压电路短路保护方法及系统。
背景技术
市场上电动汽车的电池能量分配单元的高压电路一般由熔断器、高压继电器、电流传感器组成。
相关技术中,采用被动型熔断器或主动型熔断器不能对高压电路实现有效的短路保护。
发明内容
本申请实施例提供了一种高压电路短路保护方法及系统,以对高压电路实现快速有效地全电流范围的短路保护。
第一方面,本申请实施例提供了一种高压电路短路保护方法,所述方法由高压电路短路保护系统执行,所述高压电路短路保护系统包括电池管理系统和电池能量分配单元;所述电池能量分配单元包括主被动一体式熔断器;所述电池管理系统与所述主被动一体式熔断器连接;
所述高压电路短路保护方法,包括:
电池管理系统获取电池能量分配单元对应的高压电路的高压电流;
所述电池管理系统根据所述高压电流,确定高压电路的状态;
所述电池管理系统根据所述高压电路的状态和所述高压电流,控制所述主被动一体式熔断器断开所述高压电路。
在一实施例中,所述电池能量分配单元还包括电流传感器,所述电流传感器与所述电池管理系统连接;
在电池管理系统获取电池能量分配单元对应的高压电路的高压电流之前,包括:
所述电流传感器检测所述高压电路的所述高压电流;
所述电流传感器将所述高压电流发送至所述电池管理系统。
在一实施例中,所述电池管理系统根据所述高压电流,确定高压电路的状态,包括:
所述电池管理系统计算接收到所述高压电流的持续时间;
所述电池管理系统根据所述高压电流和所述持续时间,得到所述高压电路状态。
在一实施例中,所述高压电路的状态包括短路状态和非短路状态;
所述电池管理系统根据所述高压电流和所述持续时间,得到所述高压电路的状态,包括:
所述电池管理系统判断所述高压电流是否大于第一预设电流;
响应于所述高压电流小于或等于第一预设电流的判断结果,确定所述高压电路的状态为所述非短路状态;
响应于所述高压电流大于第一预设电流的判断结果,所述电池管理系统判断所述持续时间是否大于预设时间;
响应于所述持续时间大于预设时间的判断结果,确定所述高压电路的状态为所述短路状态;
响应于所述持续时间小于或等于预设时间的判断结果,确定所述高压电路的状态为所述非短路状态。
在一实施例中,所述第一预设电流大于所述电池能量分配单元的最大过载电流,且所述第一预设电流小于或等于所述高压电路中任一继电器的最大耐受电流;
所述预设时间小于所述高压电路中任一继电器的最大耐受时间,且所述预设时间大于所述电池能量分配单元的最大过载耐受时间。
在一实施例中,所述电池管理系统根据所述高压电路的状态和所述高压电流,控制所述主被动一体式熔断器断开所述高压电路,包括:
响应于所述高压电路状态为所述短路状态的确定结果,所述电池管理系统判断所述高压电流是否小于或等于第二预设电流;
响应于所述高压电流小于或等于第二预设电流的判断结果,所述电池管理系统发送切断信号给所述主被动一体式熔断器,以使所述主被动一体式熔断器根据所述切断信号,主动断开所述高压电路;
响应于所述高压电流大于第二预设电流的判断结果,所述主被动一体式熔 断器被动断开所述高压电路。
在一实施例中,所述第二预设电流为所述主被动一体式熔断器的耐受电流曲线和所述高压电路中的继电器的耐受电流曲线的交点处对应的耐受电流。
在一实施例中,在所述电池管理系统控制所述主被动一体式熔断器断开所述高压电路之后,还包括:
所述电池管理系统检测所述电池能量分配单元的正负极电压差;
所述电池管理系统根据所述正负极电压差,确定所述电池能量分配单元的高压电路的导通状态;
所述电池管理系统根据所述高压电路的导通状态,控制所述电池能量分配单元的继电器断开。
在一实施例中,所述电池管理系统根据所述正负极电压差,确定所述电池能量分配单元的高压电路的导通状态,包括:
所述电池管理系统判断所述正负极电压差是否小于或等于阈值电压;
响应于所述正负极电压差小于或等于阈值电压的判断结果,确定所述高压电路的导通状态为断开状态;
响应于所述正负极电压差大于阈值电压的判断结果,确定所述高压电路的导通状态为导通状态。
在一实施例中,所述电池能量分配单元的继电器包括主正继电器和主负继电器;
所述电池管理系统根据所述高压电路的导通状态,控制所述电池能量分配单元的继电器断开,包括:
响应于所述高压电路的导通状态为所述断开状态的确定结果,所述电池管理系统控制所述电池能量分配单元的所述主正继电器和所述主负继电器断开;
响应于所述高压电路的导通状态为所述导通状态的确定结果,所述电池管理系统控制所述电池能量分配单元的所述主负继电器断开,并在所述主负继电器断开后控制所述主正继电器断开。
第二方面,本发明本申请实施例提供了一种高压电路短路保护系统,包括电池管理系统和电池能量分配单元;所述电池能量分配单元包括主被动一体式熔断器;所述电池管理系统与所述主被动一体式熔断器连接;
所述电池管理系统设置为:获取电池能量分配单元对应的高压电路的高压电流;根据所述高压电流,确定高压电路的状态;根据所述高压电路的状态和 所述高压电流,控制所述主被动一体式熔断器断开所述高压电路。
本申请的有益效果:
本申请实施例通过电池管理系统获取电池能量分配单元对应的高压电路的高压电流,可以实时监控高压电路的高压电流,以便后续对高压电流进行分析判断,从而实时对高压电路进行保护。电池管理系统根据高压电流,判断当前高压电路是否发生短路,从而确定高压电路状态。电池管理系统可以通过高压电路状态获知高压电路是否短路,通过高压电流获知高压电流是否能够使主被动一体式熔断器快速热积累断开高压电路,从而在高压电路短路且高压电流无法使主被动一体式熔断器快速热积累断开高压电路时控制主被动一体式熔断器主动断开高压电路,在高压电路短路电流可以使主被动一体式熔断器快速热积累断开高压电路时由主被动一体式熔断器通过热积累效应被动断开高压电路。
附图说明
图1为本申请实施例提供的一种高压电路短路保护系统的结构示意图;
图2为本申请实施例提供的一种高压电路短路保护方法的流程示意图;
图3为本申请实施例提供的一种高压电路的多个器件的时间-电流耐受曲线;
图4为本申请实施例提供的另一种高压电路短路保护方法的流程示意图;
图5为本申请实施例提供的一种电池管理系统确定高压电路状态的方法的流程示意图;
图6为本申请实施例提供的一种电池管理系统判断高压电路状态的方法的流程示意图;
图7为本申请实施例提供的一种电池管理系统控制主被动一体式熔断器断开高压电路的方法的流程示意图;
图8为本申请实施例提供的另一种高压电路短路保护方法的流程示意图;
图9为本申请实施例提供的一种电池管理系统确定电池能量分配单元的高压电路的导通状态的方法的流程示意图。
具体实施方式
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他 们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备,不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
相关技术中,若熔断器采用的是被动型熔断器,当高压回路出现异常电流时,是通过被动型熔断器的电流热积累效应切断高压电路。其中,被动型熔断器的时间-电流耐受曲线与高压继电器的时间-电流耐受曲线有一个交点,在该交点之前由高压继电器负责保护高压回路,交点之后由被动型熔断器负责保护高压回路。但是,在交点之前和继电器极限分断能力之后,存在一个保护盲区。在该保护盲区继电器流过的电流超过继电器的极限分断能力,继电器无法切断回路,而此时被动型熔断器在该电流下的承受时间较长,被动型熔断器的切断时间较长,因此被动型熔断器不能快速有效地切断高压电路,从而会导致高压电路上的部分器件因流过大电流的时间过长被损坏,进而不能对高压电路实现有效的全电流范围保护。
若熔断器采用的是主动型熔断器,当高压回路出现异常电流时,是通过主动型熔断器接收外部切断信号主动断开,主动型熔断器通过切断信号点燃炸药触发主动型熔断器断开高压电路,从而使高压电路主动切断。但是,当高压回路出现的电流(例如6000A以上甚至10000A)过大时,因主动型熔断器切断高压电路需要经过电流传感器采集电流、电池管理系统根据采集电流产生切断信号以及主动型熔断器根据切断信号触发断开高压电路的动作等一系列流程,一般需要几十毫秒的处理时间,此时高压电路上的器件在流过过大电流十几毫秒的时候就会被损坏,显然主动型熔断器也不能对高压电路实现有效的全电流范围短路保护。
本申请实施例提供了一种高压电路短路保护方法及系统,本实施例可适用于安装有主被动一体式熔断器的高压电路的短路保护控制,该方法可以由高压电路短路保护系统来执行,该高压电路短路保护系统可采用硬件和/或软件的方式来实现。
高压电路短路保护系统包括电池管理系统和电池能量分配单元;电池能量分配单元包括主被动一体式熔断器;电池管理系统与主被动一体式熔断器连接。
电池管理系统是可以对电池能量分配单元进行监控与控制的系统。电池管理系统可以对电池能量分配单元的高压电路进行信息采集,然后根据采集的信息对电池能量分配单元的高压电路进行控制。电池能量分配单元可以将电池的电能合理分配给电动汽车的负载器件。主被动一体式熔断器串联于电池能量分配单元的高压电路上,可以对高压电路上的器件起到保护作用,以避免高压电 路上的器件因过流被损坏。
示例性地,图1为本申请实施例提供的一种高压电路短路保护系统的结构示意图,如图1所示,该高压电路短路保护系统包括电池管理系统220和电池能量分配单元230。其中,电池能量分配单元230包括主被动一体式熔断器Q、放电端A、充电端C、主正继电器M1、主负继电器M2、预充继电器M3、快充继电器M4以及电流传感器P。
电池管理系统220与电池能量分配单元230连接。电池管理系统220分别与主被动一体式熔断器Q、主正继电器M1、主负继电器M2、预充继电器M3、快充继电器M4以及电流传感器P连接。电池管理系统220可以给主被动一体式熔断器Q提供激发电源信号,使主被动一体式熔断器Q的内置火药被触发,从而主动炸开电池能量分配单元230的高压电路,使电池能量分配单元230的高压电路断开。另外,主被动一体式熔断器Q还可以通过电流热积累效应被动断开高压电路。电池管理系统220可以分别给主正继电器M1、主负继电器M2、预充继电器M3以及快充继电器M4发送控制信号,从而控制主正继电器M1、主负继电器M2、预充继电器M3以及快充继电器M4的通断状态。电流传感器P检测电池能量分配单元230的高压回路的高压电流,可以实时监测高压回路的高压电流,并实时将高压回路的高压电流传输给电池管理系统220。
图2为本申请实施例提供的一种高压电路短路保护方法的流程示意图,如图2所示,该高压电路短路保护方法包括如下步骤:
S110、电池管理系统获取电池能量分配单元对应的高压电路的高压电流。
高压电流是指电池能量分配单元的对应的高电压电路总线的电流。继续参考图1,电池能量分配单元230包括电流传感器P,电流传感器P与电池管理系统220连接。电流传感器P可以实时监测高压电路的高压电流,电池管理系统220可以实时通过电流传感器P获取高压电流,以便于后续对高压电流的分析判断,实时对高压电路进行保护,防止高压回路故障致使高压电流过大烧损高压回路连接的器件。
S120、电池管理系统根据高压电流,确定高压电路的状态。
电池管理系统可以对高压电流进行分析,以判断当前高压电路是否发生短路。其中,高压电路的状态包括短路状态和非短路状态。示例性地,若高压电流超过高压电路上任一连接器件的最大承受电流,则高压电路发生了短路,高压电路状态为短路状态,需要快速有效地断开高压电路,以对高压电路实现快速有效地短路保护。反之,若高压电流小于高压电路上任一连接器件的最大承受电流,则高压电路状态为非短路状态。
S130、电池管理系统根据高压电路的状态和高压电流,控制主被动一体式熔断器断开高压电路。
电池管理系统可以通过高压电路的状态获知高压电路是否短路。主被动一体式熔断器可以通过接收电池管理系统的激发电源信号主动炸开电池能量分配单元的高压电路,还可以通过电流热积累效应被动断开高压电路,由此在高压电路发生短路时,电池管理系统通过高压电流可以判断出是否需要控制主被动一体式熔断器主动断开高压电路。
示例性地,图3为本申请实施例提供的一种高压电路的多个器件的时间-电流耐受曲线。如图3所示,曲线310为给高压电路提供电能的蓄电池的时间-电流耐受曲线,曲线320为高压电路的继电器的时间-电流耐受曲线。曲线330为高压电路的多个器件的安全温升的时间-电流耐受曲线。曲线340为主被动一体式熔断器中的保险丝的时间-电流耐受曲线。其中,保险丝的时间-电流耐受曲线与继电器的时间-电流耐受曲线有一个交点a,在保险丝的时间-电流熔断曲线与继电器的时间-电流耐受曲线的交点a之前存在一个保护盲区(例如交点b-交点a,其中交点b可以为曲线330与曲线320的交点),即该保护盲区中同一电流下保险丝的耐受时间大于继电器的耐受时间,在保险丝通过电流热积累效应被动断开高压电路时继电器已被烧损,因此保险丝无法对继电器起到有效的保护作用。由此可见,在保险丝的时间-电流耐受曲线与继电器的时间-电流耐受曲线的交点之前的保护盲区,电池管理系统可以给主被动一体式熔断器提供激发电源信号,使主被动一体式熔断器的内置火药被触发,从而主动炸开电池能量分配单元的高压电路,使电池能量分配单元的高压电路断开,从而对继电器起到有效的保护作用。在保险丝的时间-电流熔断曲线与继电器的时间-电流耐受曲线的交点之后,同一电流下保险丝的耐受时间小于继电器的耐受时间,保险丝可以迅速通过电流热积累效应被动断开高压电路,并且保险丝热积累的时间小于继电器的耐受时间可以对继电器起到有效的保护作用。
本申请实施例通过电池管理系统获取电池能量分配单元对应的高压电路的高压电流,可以实时监控高压电路的高压电流,以便后续对高压电流进行分析判断,从而实时对高压电路进行保护。电池管理系统根据高压电流,判断当前高压电路是否发生短路,从而确定高压电路的状态。电池管理系统可以通过高压电路状态获知高压电路是否短路,通过高压电流获知高压电流是否能够使主被动一体式熔断器快速热积累断开高压电路,从而在高压电路短路且高压电流无法使主被动一体式熔断器快速热积累断开高压电路时控制主被动一体式熔断器主动断开高压电路,在高压电路短路电流可以使主被动一体式熔断器快速热积累断开高压电路时由主被动一体式熔断器通过热积累效应被动断开高压电路。
可选的,继续参考图1,电池能量分配单元230包括电流传感器P,电流传感器P与电池管理系统220连接。
电流传感器P是一种检测装置,可以检测电流的信息,并能将检测到的电流信息,按一定规律变换成为符合一定标准需要的电信号或其他所需形式的信息输出。电流传感器P检测电池能量分配单元230的高压回路,可以实时监测高压回路的高压电流,并实时将高压回路的高压电流传输给电池管理系统220。
图4为本申请实施例提供的另一种高压电路短路保护方法的流程示意图,如图4所示,该方法包括如下步骤:
S310、电流传感器检测高压电路的高压电流。
S320、电流传感器将高压电流发送至电池管理系统。
S330、电池管理系统获取电池能量分配单元对应的高压电路的高压电流。
S340、电池管理系统根据高压电流,确定高压电路的状态。
S350、电池管理系统根据高压电路的状态和高压电流,控制主被动一体式熔断器断开高压电路。
综上可知,电池管理系统可以通过电流传感器实时监测高压电路的高压电流,从而通过高压电流实时对高压电路进行安全监控,进而通过对高压电流的分析判断,实时对高压电路进行保护。
示例性地,图5为本申请实施例提供的一种电池管理系统确定高压电路状态的方法的流程示意图,在上述实施例的基础上,电池管理系统确定高压电路的状态的方法,包括:
S410、电池管理系统计算接收到高压电流的持续时间。
由于高压电流存在不稳定的情况,因此电池管理系统需要计算其接收到高压电流的持续时间,以防止因高压电流的波动使接收到的高压电流不准确。
S420、电池管理系统根据高压电流和持续时间,得到高压电路的状态。
若电池管理系统在较长一段时间内收到的高压电流过大,说明过大的高压电流并不是因高压电流波动引起的,而是高压电路出现故障引起的。若电池管理系统接收到过大的高压电流的持续时间较短,说明该持续时间内的过大的高压电流是因高压电流波动引起的。由此,电池管理系统根据高压电流和持续时间,可以得到高压电路的状态。
综上,通过电池管理系统计算其接收到高压电流的持续时间,并且根据高压电流和持续时间判断高压电路的状态,可以提高电池管理系统判断高压电路状态的准确性,以防止电流波动对电池管理系统判断高压电路状态的影响。
可选的,高压电路的状态包括短路状态和非短路状态。
短路状态是指高压电路出现短路故障,非短路状态是指高压电路正常运行。
示例性地,图6为本申请实施例提供的一种电池管理系统判断高压电路状态的方法的流程示意图,在上述实施例的基础上,电池管理系统判断高压电路的状态的方法包括:
S510、电池管理系统判断高压电流是否大于第一预设电流;响应于所述高压电流大于第一预设电流的判断结果,执行S520;响应于所述高压电流小于或等于第一预设电流的判断结果,执行S540。
可选的,第一预设电流大于电池能量分配单元的最大过载电流,且第一预设电流小于或等于高压电路中任一继电器的最大耐受电流。
S520、电池管理系统判断接收到高压电流的持续时间是否大于预设时间;响应于所述持续时间大于预设时间的判断结果,执行S530;响应于所述持续时间小于或等于预设时间的判断结果执行S540。
可选的,预设时间小于高压电路中任一继电器的最大耐受时间,且预设时间大于电池能量分配单元的最大过载耐受时间。
S530、高压电路的状态为短路状态。
S540、高压电路的状态为非短路状态。
示例性地,图7为本申请实施例提供的一种电池管理系统控制主被动一体式熔断器断开高压电路的方法的流程示意图,在上述实施例的基础上,电池管理系统控制主被动一体式熔断器断开高压电路的方法包括:
S610、响应于高压电路状态为短路状态的确定结果,电池管理系统判断高压电流是否小于或等于第二预设电流;响应于所述高压电流小于或等于第二预设电流的判断结果,执行S620;响应于所述高压电流大于第二预设电流的判断结果,则执行S630。
可选的,第二预设电流为主被动一体式熔断器的耐受电流曲线和高压电路中的继电器的耐受电流曲线的交点处对应的耐受电流。
S620、电池管理系统发送切断信号给主被动一体式熔断器,以使主被动一体式熔断器根据切断信号,主动断开高压电路。
S630、主被动一体式熔断器被动断开高压电路。
图8为本申请实施例提供的另一种高压电路短路保护方法的流程示意图,如图8所示,该方法包括如下步骤:
S710、电流传感器检测高压电路的高压电流。
S720、电流传感器将高压电流发送至电池管理系统。
S730、电池管理系统获取电池能量分配单元对应的高压电路的高压电流。
S740、电池管理系统检测电池能量分配单元的正负极电压差。
示例性地,继续参考图1,电池能量分配单元230的高压放电电路的正极总线的M点和负极总线的N点均与电池管理系统220连接,电池管理系统220可以分别检测正极总线的M点的电压和负极总线的N点的电压,从而得到电池能量分配单元230的正负极电压差,即电池能量分配单元230的正负极电压差=高压放电电路的正极总线的M点的电压-高压放电电路的负极总线的N点的电压。
S750、电池管理系统根据正负极电压差,确定电池能量分配单元的高压电路的导通状态。
若电池能量分配单元的正负极电压差较小,可以确定被动一体式熔断器断电有效,电池能量分配单元的高压电路为断路;若电池能量分配单元的正负极电压差较大,可以确定被动一体式熔断器断电无效,电池能量分配单元的高压电路为通路。
S760、电池管理系统根据高压电路的导通状态,控制电池能量分配单元的继电器断开。
出于电路断电安全的角度考虑,电池管理系统需要根据高压电路的导通状态,以不同的顺序或不同的方式控制电池能量分配单元的继电器断开。
例如,电池能量分配单元的高压电路断电无效,高压电路为通路,需要最先断开高压电路的负极线路上的继电器,以保证高压电路的继电器断电的安全性。若是最先断开高压电路的正极线路上的继电器,由于高压电路的正极线路传输的电压过高,高压电路的正极线路上的继电器在断电的瞬间会产生电弧,产生巨大的安全隐患。另外,若电池能量分配单元的高压电路断电有效,高压电路为断路,则断开电池能量分配单元的继电器没有顺序要求。
示例性地,图9为本申请实施例提供的一种电池管理系统确定电池能量分配单元的高压电路的导通状态的方法的流程示意图,在上述实施例的基础上,电池管理系统确定电池能量分配单元的高压电路的导通状态的方法包括:
S810、电池管理系统判断正负极电压差是否小于或等于阈值电压;响应于所述正负极电压差小于或等于阈值电压的判断结果,执行S820;响应于所述正负极电压差大于阈值电压的判断结果,执行S840。
S820、确定高压电路的导通状态为断开状态。
S830、电池管理系统控制电池能量分配单元的主正继电器和主负继电器断开;执行S860。
S840、确定高压电路的导通状态为导通状态。
S850、电池管理系统控制电池能量分配单元的主负继电器断开,并在主负继电器断开后控制电池能量分配单元的主正继电器断开;执行S860。
S860、整车控制器和电池管理系统记录故障信息,并调整整车控制器的状态和电池管理系统的状态均为故障状态。
电池管理系统检测动作设置在电池管理系统给主被动一体式熔断器Q提供激发电源信号一定时间(例如10ms)后,电池管理系统判断电池能量分配单元输出的正负极之间(例如图1中的M点-N点)电压差是否小于等于阈值电压(例如10V)。
应该理解,可以使用上面所示的多种形式的流程,重新排序、增加或删除步骤。例如,本申请中记载的多个步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本申请的技术方案所期望的结果,本文在此不进行限制。
参见图1,本申请提供一种高压电路短路保护系统,高压电路短路保护系统包括电池管理系统220和电池能量分配单元230,电池能量分配单元230包括主被动一体式熔断器Q;电池管理系统220与主被动一体式熔断器Q连接,电池管理系统220设置为:获取电池能量分配单元对应的高压电路的高压电流;根据高压电流,确定高压电路的状态;根据高压电路的状态和所述高压电流,控制主被动一体式熔断器断开所述高压电路。
本申请实施例提供的高压电路短路保护系统可以执行上述任意实施例提供的高压电路短路保护方法,具体细节请参见本申请实施例提供的由高压电路短路保护系统执行的高压电路短路保护方法。

Claims (11)

  1. 一种高压电路短路保护方法,所述方法由高压电路短路保护系统执行,所述高压电路短路保护系统包括电池管理系统和电池能量分配单元;所述电池能量分配单元包括主被动一体式熔断器;所述电池管理系统与所述主被动一体式熔断器连接;
    所述高压电路短路保护方法,包括:
    电池管理系统获取电池能量分配单元对应的高压电路的高压电流;
    所述电池管理系统根据所述高压电流,确定高压电路的状态;
    所述电池管理系统根据所述高压电路的状态和所述高压电流,控制所述主被动一体式熔断器断开所述高压电路。
  2. 根据权利要求1所述的高压电路短路保护方法,其中,所述电池能量分配单元还包括电流传感器,所述电流传感器与所述电池管理系统连接;
    在电池管理系统获取电池能量分配单元对应的高压电路的高压电流之前,包括:
    所述电流传感器检测所述高压电路的高压电流;
    所述电流传感器将所述高压电流发送至所述电池管理系统。
  3. 根据权利要求1所述的高压电路短路保护方法,其中,所述电池管理系统根据所述高压电流,确定高压的电路状态,包括:
    所述电池管理系统计算接收到所述高压电流的持续时间;
    所述电池管理系统根据所述高压电流和所述持续时间,得到所述高压电路的状态。
  4. 根据权利要求3所述的高压电路短路保护方法,其中,所述高压电路的状态包括短路状态和非短路状态;
    所述电池管理系统根据所述高压电流和所述持续时间,得到所述高压电路的状态,包括:
    所述电池管理系统判断所述高压电流是否大于第一预设电流;
    响应于所述高压电流小于或等于第一预设电流的判断结果,确定所述高压电路的状态为所述非短路状态;
    响应于所述高压电流大于第一预设电流的判断结果,所述电池管理系统判断所述持续时间是否大于预设时间;
    响应于所述持续时间大于预设时间的判断结果,确定所述高压电路的状态 为所述短路状态;
    响应于所述持续时间小于或等于预设时间的判断结果,确定所述高压电路的状态为所述非短路状态。
  5. 根据权利要求4所述的高压电路短路保护方法,其中,所述第一预设电流大于所述电池能量分配单元的最大过载电流,且所述第一预设电流小于或等于所述高压电路中任一继电器的最大耐受电流;
    所述预设时间小于所述高压电路中任一继电器的最大耐受时间,且所述预设时间大于所述电池能量分配单元的最大过载耐受时间。
  6. 根据权利要求4所述的高压电路短路保护方法,其中,所述电池管理系统根据所述高压电路的状态和所述高压电流,控制所述主被动一体式熔断器断开所述高压电路,包括:
    响应于所述高压电路状态为所述短路状态的确定结果,所述电池管理系统判断所述高压电流是否小于或等于第二预设电流;
    响应于所述高压电流小于或等于第二预设电流的判断结果,所述电池管理系统发送切断信号给所述主被动一体式熔断器,以使所述主被动一体式熔断器根据所述切断信号,主动断开所述高压电路;
    响应于所述高压电流大于第二预设电流的判断结果,所述主被动一体式熔断器被动断开所述高压电路。
  7. 根据权利要求6所述的高压电路短路保护方法,其中,所述第二预设电流为所述主被动一体式熔断器的耐受电流曲线和所述高压电路中的继电器的耐受电流曲线的交点处对应的耐受电流。
  8. 根据权利要求1至7任一项所述的高压电路短路保护方法,在所述电池管理系统控制所述主被动一体式熔断器断开所述高压电路之后,还包括:
    所述电池管理系统检测所述电池能量分配单元的正负极电压差;
    所述电池管理系统根据所述正负极电压差,确定所述电池能量分配单元的高压电路的导通状态;
    所述电池管理系统根据所述高压电路的导通状态,控制所述电池能量分配单元的继电器断开。
  9. 根据权利要求8所述的高压电路短路保护方法,其中,所述电池管理系统根据所述正负极电压差,确定所述电池能量分配单元的高压电路的导通状态,包括:
    所述电池管理系统判断所述正负极电压差是否小于或等于阈值电压;
    响应于所述正负极电压差小于或等于阈值电压的判断结果,确定所述高压电路的导通状态为断开状态;
    响应于所述正负极电压差大于阈值电压的判断结果,确定所述高压电路的导通状态为导通状态。
  10. 根据权利要求9所述的高压电路短路保护方法,其中,所述电池能量分配单元的继电器包括主正继电器和主负继电器;
    所述电池管理系统根据所述高压电路的导通状态,控制所述电池能量分配单元的继电器断开,包括:
    响应于所述高压电路的导通状态为所述断开状态的确定结果,所述电池管理系统控制所述电池能量分配单元的所述主正继电器和所述主负继电器断开;
    响应于所述高压电路的导通状态为所述导通状态的确定结果,所述电池管理系统控制所述电池能量分配单元的所述主负继电器断开,并在所述主负继电器断开后控制所述主正继电器断开。
  11. 一种高压电路短路保护系统,包括电池管理系统和电池能量分配单元;所述电池能量分配单元包括主被动一体式熔断器;所述电池管理系统与所述主被动一体式熔断器连接;
    所述电池管理系统设置为:获取电池能量分配单元对应的高压电路的高压电流;根据所述高压电流,确定高压电路的状态;根据所述高压电路的状态和所述高压电流,控制所述主被动一体式熔断器断开所述高压电路。
PCT/CN2023/080855 2022-10-24 2023-03-10 高压电路短路保护方法及系统 WO2024087458A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211305381.5 2022-10-24
CN202211305381.5A CN115534677A (zh) 2022-10-24 2022-10-24 高压电路短路保护方法

Publications (1)

Publication Number Publication Date
WO2024087458A1 true WO2024087458A1 (zh) 2024-05-02

Family

ID=84718164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080855 WO2024087458A1 (zh) 2022-10-24 2023-03-10 高压电路短路保护方法及系统

Country Status (2)

Country Link
CN (1) CN115534677A (zh)
WO (1) WO2024087458A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115534677A (zh) * 2022-10-24 2022-12-30 湖北亿纬动力有限公司 高压电路短路保护方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196254A1 (en) * 2016-05-12 2017-11-16 Robert Bosch Gmbh Battery disconnect circuits and methods for controlling a battery disconnect circuit
CN109428316A (zh) * 2018-11-05 2019-03-05 广州小鹏汽车科技有限公司 一种过电流的熔断保护方法及汽车电池管理系统
CN109494134A (zh) * 2018-12-29 2019-03-19 合肥波赛顿光伏水泵有限公司 一种主被动式爆熔开关
CN112350271A (zh) * 2019-08-09 2021-02-09 广州汽车集团股份有限公司 动力电池过流保护方法、系统及电池管理器
CN215300153U (zh) * 2021-03-19 2021-12-24 长城汽车股份有限公司 一种车辆高压回路及其车辆
CN113949032A (zh) * 2020-07-16 2022-01-18 上海汽车集团股份有限公司 高压回路的切断方法、控制器及高压系统
CN114336879A (zh) * 2022-01-06 2022-04-12 广州小鹏汽车科技有限公司 电池电路、电池管理系统、电池模组及电动汽车
CN115534677A (zh) * 2022-10-24 2022-12-30 湖北亿纬动力有限公司 高压电路短路保护方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017196254A1 (en) * 2016-05-12 2017-11-16 Robert Bosch Gmbh Battery disconnect circuits and methods for controlling a battery disconnect circuit
CN109428316A (zh) * 2018-11-05 2019-03-05 广州小鹏汽车科技有限公司 一种过电流的熔断保护方法及汽车电池管理系统
CN109494134A (zh) * 2018-12-29 2019-03-19 合肥波赛顿光伏水泵有限公司 一种主被动式爆熔开关
CN112350271A (zh) * 2019-08-09 2021-02-09 广州汽车集团股份有限公司 动力电池过流保护方法、系统及电池管理器
CN113949032A (zh) * 2020-07-16 2022-01-18 上海汽车集团股份有限公司 高压回路的切断方法、控制器及高压系统
CN215300153U (zh) * 2021-03-19 2021-12-24 长城汽车股份有限公司 一种车辆高压回路及其车辆
CN114336879A (zh) * 2022-01-06 2022-04-12 广州小鹏汽车科技有限公司 电池电路、电池管理系统、电池模组及电动汽车
CN115534677A (zh) * 2022-10-24 2022-12-30 湖北亿纬动力有限公司 高压电路短路保护方法

Also Published As

Publication number Publication date
CN115534677A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US10079483B2 (en) Assembly for electrically protecting a potential short-circuit or an overload in a direct current power network having a system-determined, variable source-internal resistance
JP6097301B2 (ja) バッテリシステム及び方法
WO2024087458A1 (zh) 高压电路短路保护方法及系统
CN112350271B (zh) 动力电池过流保护方法、系统及电池管理器
CN103199505B (zh) 高压电池组输出短路保护电路
CN109428316A (zh) 一种过电流的熔断保护方法及汽车电池管理系统
CN101752148B (zh) 带选择性的断路器
CN112305376B (zh) 一种低压配电线路故障电弧检测及识别方法
CN110137900A (zh) 一种限流式电气防火短路保护装置及其短路保护方法
WO2024087452A1 (zh) 电池能量控制方法及系统
CN203193261U (zh) 高压电池组输出短路保护电路
JP2001265452A (ja) 線路異常監視装置
CN105305367B (zh) 一种过流保护方法及系统
US9419427B2 (en) Device and method for protection from an electric arc
CN115923586A (zh) 一种电池系统过电流保护方法及车辆
CN112886533A (zh) 超快速固态断路器
JP2001352666A (ja) 二次電池の保護装置及び組電池
CN105471280A (zh) 一种保护交-直-交驱动器软启动失效的装置及其方法
CN217087164U (zh) 开关箱和ups配电系统
CN220138654U (zh) 一种动力电池的控制系统及电池包
CN204967253U (zh) 一种新型电涌保护器
CN214412261U (zh) 超快速固态断路器
CN211579649U (zh) 一种充电电路、电路板及电子设备
CN114268170B (zh) 一种智能空气开关电路的监控系统及方法
WO2022036644A1 (zh) 打火过流保护装置、启动电源设备及打火过流保护方法