WO2024087293A1 - 一种多工况适应性全合成切削液及其制备方法 - Google Patents

一种多工况适应性全合成切削液及其制备方法 Download PDF

Info

Publication number
WO2024087293A1
WO2024087293A1 PCT/CN2022/134431 CN2022134431W WO2024087293A1 WO 2024087293 A1 WO2024087293 A1 WO 2024087293A1 CN 2022134431 W CN2022134431 W CN 2022134431W WO 2024087293 A1 WO2024087293 A1 WO 2024087293A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
cutting fluid
fully synthetic
acid
synthetic cutting
Prior art date
Application number
PCT/CN2022/134431
Other languages
English (en)
French (fr)
Inventor
占稳
李英朋
林慧娴
陈榕
潘龙
张于涛
Original Assignee
中国机械总院集团海西(福建)分院有限公司
中机铸材科技(福建)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国机械总院集团海西(福建)分院有限公司, 中机铸材科技(福建)有限公司 filed Critical 中国机械总院集团海西(福建)分院有限公司
Publication of WO2024087293A1 publication Critical patent/WO2024087293A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • C10M173/02Lubricating compositions containing more than 10% water not containing mineral or fatty oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/087Boron oxides, acids or salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • C10M2207/046Hydroxy ethers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/12Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2207/121Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms
    • C10M2207/123Carboxylix acids; Neutral salts thereof having carboxyl groups bound to acyclic or cycloaliphatic carbon atoms having hydrocarbon chains of seven or less carbon atoms polycarboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/284Esters of aromatic monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • C10M2215/222Triazines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/223Five-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/06Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/047Siloxanes with specific structure containing alkylene oxide groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/10Inhibition of oxidation, e.g. anti-oxidants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/244Metal working of specific metals
    • C10N2040/245Soft metals, e.g. aluminum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to the field of fully synthetic cutting fluid with multi-working condition adaptability, and more specifically, to a fully synthetic cutting fluid with multi-working condition adaptability and a preparation method thereof.
  • Cutting fluid is a necessary condition for achieving precision, high efficiency and low cost in the metal processing process. It is a consumable auxiliary material with large consumption and wide application.
  • Cutting fluid can be divided into oil-based cutting fluid and water-based cutting fluid according to its composition. Oil-based cutting fluid does not need to be diluted when used. Compared with water-based cutting fluid, it has better lubricity, but poor cooling effect. At the same time, since the addition amount of base oil reaches 50-90%, it has limitations such as easy corruption, difficult waste liquid treatment and high cost of use.
  • Water-based cutting fluid can be divided into emulsion, microemulsion and full synthetic fluid according to the shape of the diluent. Fully synthetic cutting fluid has been widely used and studied because of its excellent lubrication, cooling, cleaning, rust prevention and corrosion resistance.
  • Multi-condition adaptable cutting fluid means "universal” and “combined use", that is, in view of the diversity and complexity of modern cutting metal processing, the use of a cutting fluid can meet the various processing requirements of two or more metals.
  • the Chinese patent with the authorization publication number CN 109337751 B discloses a universal cutting fluid, the components of which are as follows: 300-400 parts of mineral oil, 65-73 parts of vegetable oleic acid, 40-60 parts of alcohol amine, 102-160 parts of preservative, 55-80 parts of surfactant, 2-6 parts of coupling agent, 5-10 parts of bactericide, 1-3 parts of defoamer, and 400-500 parts of water.
  • the cutting fluid does not contain nitrites and sulfides, has excellent resistance to hard water, and can be used in a variety of CNC, gantry CNC, drilling machines and grinding machines.
  • the 150SN mineral oil-based lubricant added therein belongs to Class I mineral base oil, and the biodegradability index (BDI) value is 42.3%, which is a difficult biodegradable substance. At the same time, it is easily affected by various external factors, and it is very easy to breed bacteria, causing the cutting fluid to rot and deteriorate, resulting in service defects such as short service life and high waste liquid treatment costs.
  • BDI biodegradability index
  • the Chinese invention patent with publication number CN 104403769 A discloses a multifunctional cutting fluid and its preparation method, the components of which are as follows: 30%-40% mineral oil, 5%-12% triethanolamine, 3%-8% lauryl alcohol polyoxyethylene ether, 10%-15% rust inhibitor, 1%-5% lubricant, 1%-3% bactericide, 0.5%-1% corrosion inhibitor, 1%-3% pH regulator, and the remaining ingredients are water.
  • the cutting fluid has good lubricity and rust resistance, and has a significant effect on improving the surface finish of the workpiece and reducing tool wear. However, the corrosion inhibition effect of this cutting fluid on active metals such as aluminum and magnesium is poor.
  • a preferred embodiment of the present invention provides a multi-condition adaptable fully synthetic cutting fluid, comprising the following raw materials in parts by weight:
  • the organic alcohol amine is composed of triethanolamine and monoethanolamine in a weight ratio of 1:0.2-0.4.
  • the weight ratio of the boric acid to monoethanolamine is 1:1 to 1.5.
  • the emulsified lubricant in the multi-condition adaptable fully synthetic cutting fluid, is a fatty acid polyethylene glycol ester type self-emulsifying ester containing ester group and carboxyl group in its molecular structure.
  • the combined corrosion inhibitor consists of copper corrosion inhibitor benzotriazole, aluminum corrosion inhibitor octylphosphonic acid, and siloxane ketone in weight percentages of 40%, 30%, and 30%, respectively.
  • the bactericide is one or more of sandan oil, parabens and ethylene glycol hemiacetal.
  • a preferred embodiment of the present invention provides a method for preparing the multi-condition adaptable fully synthetic cutting fluid, comprising the following steps:
  • Step A 12-20 parts of organic alcohol amine, 1-3 parts of boric acid, 0.3-0.8 parts of ethylenediaminetetraacetic acid, 1-3 parts of dodecanedioic acid, 1-4 parts of tricarboxylic acid rust inhibitor, and 15-30 parts of water are mixed and poured into a reactor, heated to 50-80° C., and stirred at a stirring speed of 70-200 rpm/min, and reacted for 30-60 minutes to obtain a mixture A;
  • Step B Mix the mixture A prepared in step A, 6-12 parts of amidated modified unsaturated fatty acid glyceride, 2-8 parts of emulsified lubricant, and 0.2-0.8 parts of combined corrosion inhibitor and stir for 30-60 minutes at a stirring speed of 70-200 rpm/min to obtain a mixture B;
  • Step C Mix the mixture B prepared in step B, 0.5-3 parts of fungicide, 0.1-0.5 parts of polyether modified silicon defoamer, and 35-45 parts of water and stir for 30-60 minutes at a stirring speed of 70-200 rpm/min to obtain the target product, a fully synthetic cutting fluid with multi-condition adaptability.
  • the cutting fluid of the present invention can have excellent antioxidant properties by amidation modification of unsaturated fatty acid glyceride, play a lubricating and rust-proof role in the cutting fluid, and can increase the service life of the cutting fluid.
  • the emulsified lubricant in the traditional fully synthetic cutting fluid is mainly polyether, which generally has the problems of poor lubricity, polyether precipitation and adhesion to metal chips, and difficulty in waste liquid treatment.
  • the emulsified lubricant in the formula of the present invention is a self-emulsifying ester of fatty acid polyethylene glycol ester containing ester group and carboxyl group. In the molecular structure of the self-emulsifying ester, due to the presence of a polar group at one end of the chain, the symmetry and charge distribution of its structure are changed, making it a polar molecule with heterogeneous charges at both ends.
  • the polar molecules migrate to the metal-cutting fluid interface through the cutting fluid, and its polar base end forms a relatively strong adsorption film with the metal.
  • the other end ( CH3 ) is similar to the amidated modified unsaturated fatty acid glyceride in the formula and can fully “similarly dissolve” with it, so that there will be a monomolecular adsorption film layer composed of polar molecules on the metal-cutting fluid interface. Based on the weak binding energy of the CH3 end, when the adsorption film layer is subjected to shear, the CH3 binding point is broken first and slides parallel to the interface, thereby playing a friction-reducing role and exerting excellent lubrication properties.
  • the self-emulsifying ester structure does not contain polyoxyethylene ether segments and elements such as sulfur, phosphorus, and chlorine. Adding it to the cutting fluid can make it have certain anti-foaming and anti-hard water capabilities, can adapt to various water quality conditions in different regions, and is green and environmentally friendly.
  • the combined corrosion inhibitor includes the following components in weight percentage: 40% of copper corrosion inhibitor benzotriazole, 30% of aluminum corrosion inhibitor octylphosphonic acid, and 30% of siloxane ketone.
  • the combined corrosion inhibitor has a wide range of applications and has a good corrosion inhibition effect on active metals such as aluminum.
  • organic alcohol amines are commonly used rust-proof additives for preparing water-based cutting fluids, and have a rust-proof effect on steel and cast iron materials; but they are corrosive to copper, aluminum and their alloys.
  • the benzotriazole in the combined corrosion inhibitor of the present invention has a good corrosion inhibition effect on copper and copper alloys, but has basically no corrosion inhibition effect on aluminum and its alloys. Therefore, octylphosphonic acid and siloxane ketone, corrosion inhibitors for aluminum, are introduced so that the corrosion inhibitors in the formula have a corrosion inhibition effect on copper, aluminum and their alloys at the same time.
  • the prepared fully synthetic cutting fluid is a uniform liquid without stratification or precipitation.
  • the lubricity, rust prevention, and defoaming properties of the diluted fluid all meet the technical requirements of synthetic cutting fluids (GB/T 6144-2010). At the same time, it does not contain any toxic substances, will not pollute the environment, and reduces the subsequent disposal cost of cutting waste fluids.
  • the present invention can meet the lubrication and corrosion protection requirements of CNC machine tools, gantry machining centers, grinders and other mechanical processing forms of ferrous metals, copper alloys, and aluminum alloys by adding amidation-modified unsaturated fatty acid glycerides and special emulsifying lubricants (fatty acids containing ester groups and carboxyl groups, polyethylene glycol ester-type self-emulsifying esters), and matching combined corrosion inhibitors (40% benzotriazole, 30% octylphosphonic acid, 30% siloxane ketone), and achieve the use effect of adaptability to multiple working conditions. At the same time, it does not contain any toxic substances, will not cause harm to the environment, and has the application prospect of industrial large-scale production.
  • amidation-modified unsaturated fatty acid glycerides and special emulsifying lubricants fatty acids containing ester groups and carboxyl groups, polyethylene glycol ester-type self-emulsifying esters
  • matching combined corrosion inhibitors 4
  • FIG1 is a schematic flow chart of a method for preparing a fully synthetic cutting fluid with multi-condition adaptability according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the molecular structure of a self-emulsifying ester in another embodiment of the present invention.
  • FIG. 3 is a graph showing the LY12 aluminum corrosion test of Examples 1 to 6 of the present invention.
  • FIG. 4 is a graph showing the LY12 aluminum corrosion test of Comparative Examples 1 and 2 of the present invention.
  • FIG. 5 is a graph showing the LY12 aluminum corrosion test of Comparative Example 3 of the present invention.
  • one should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of an element may be one, while in another embodiment, the number of the element may be multiple, and the term “one” should not be understood as a limitation on the quantity.
  • This embodiment provides a fully synthetic cutting fluid with multi-condition adaptability, the composition of which is shown in the following table
  • the organic alcohol amine, boric acid, ethylenediaminetetraacetic acid, dodecanedioic acid, tricarboxylic acid rust inhibitor, and water (20 g) in Table 1 were mixed, heated to 70 ° C for reaction, and the stirring speed was 70 rpm/min. The reaction was continued for 30 min, and the heating was turned off. Subsequently, amidated modified unsaturated fatty acid glyceride, self-emulsifying ester, and combined corrosion inhibitor were added thereto, mixed and stirred for 30 min, and the stirring speed was 70 rpm/min. After the end, Sandan oil, polyether-modified silicon defoamer, and water (44.7 g) were added thereto, and Example 1 was obtained after continuing to stir for 30 min.
  • This embodiment provides a fully synthetic cutting fluid with multi-condition adaptability, the composition of which is shown in the following table
  • the organic alcohol amine, boric acid, ethylenediaminetetraacetic acid, dodecanedioic acid, tricarboxylic acid rust inhibitor, and water (24.1 g) in Table 2 were mixed, heated to 60 ° C for reaction, and the stirring speed was 100 rpm/min. React for 45 minutes and turn off the heating. Subsequently, amidated modified unsaturated fatty acid glyceride, self-emulsifying ester, and combined corrosion inhibitor were added thereto, mixed and stirred for 45 minutes, and the stirring speed was 100 rpm/min. After the end, parabens, polyether-modified silicon defoamer, and water (43.6 g) were added thereto, and stirring was continued for 30 minutes to obtain Example 2.
  • This embodiment provides a fully synthetic cutting fluid with multi-condition adaptability, the composition of which is shown in the following table
  • This embodiment provides a fully synthetic cutting fluid with multi-condition adaptability, the composition of which is shown in the following table
  • the organic alcohol amine, boric acid, ethylenediaminetetraacetic acid, dodecanedioic acid, tricarboxylic acid rust inhibitor, and water (16.9 g) in Table 4 were mixed and heated to 80 ° C for reaction at a stirring speed of 180 rpm / min. React for 35 minutes and turn off the heating. Subsequently, amidated modified unsaturated fatty acid glyceride, self-emulsifying ester, and combined corrosion inhibitor were added thereto, mixed and stirred for 45 minutes, and the stirring speed was 180 rpm / min. After the end, Sandan oil, parabens, polyether-modified silicon defoamer, and water (38.2 g) were added thereto, and Example 4 was obtained after continuing to stir for 30 minutes.
  • This embodiment provides a fully synthetic cutting fluid with multi-condition adaptability, the composition of which is shown in the following table
  • the organic alcohol amine, boric acid, ethylenediaminetetraacetic acid, dodecanedioic acid, tricarboxylic acid rust inhibitor, and water (18.3 g) in Table 5 were mixed and heated to 70 ° C for reaction at a stirring speed of 80 rpm / min. React for 45 minutes and turn off the heating. Subsequently, amidated modified unsaturated fatty acid glyceride, self-emulsifying ester, and combined corrosion inhibitor were added thereto, mixed and stirred for 50 minutes, and the stirring speed was 80 rpm / min. After the end, Sandan oil, ethylene glycol hemiacetal, polyether modified silicon defoamer, and water (36.1 g) were added thereto, and Example 5 was obtained after continuing to stir for 40 minutes.
  • This embodiment provides a fully synthetic cutting fluid with multi-condition adaptability, the composition of which is shown in the following table
  • the organic alcohol amine, boric acid, ethylenediaminetetraacetic acid, dodecanedioic acid, tricarboxylic acid rust inhibitor, and water (15.2g) in Table 6 were mixed and heated to 50°C for reaction at a stirring speed of 90rpm/min. React for 35min and turn off the heating. Subsequently, amidated modified unsaturated fatty acid glyceride, self-emulsifying ester, and combined corrosion inhibitor were added thereto, mixed and stirred for 30min, and the stirring speed was 80rpm/min. After the end, three Dan oil, parabens, ethylene glycol hemiacetal, polyether-modified silicon defoamer, and water (35.2g) were added thereto, and Example 6 was obtained after continuing to stir for 40min.
  • the maximum non-seizure load P b value of the multi-condition adaptable cutting fluids of Examples 1-6 prepared according to the ratio of the present invention is greater than 540N, and after a 10-minute defoaming test, the residual foam on the interface is less than 1 ml.
  • the cutting fluid in which the self-emulsifying ester and the combined corrosion inhibitor in Example 6 are replaced by polyether and benzotriazole (Comparative Example 3) is significantly inferior to Example 6 in terms of the maximum non-seizure P B value and the corrosion inhibition effect on aluminum.
  • the maximum non-seizure load, surface tension and defoaming property of the environmentally friendly cutting fluid in Comparative Example 1-2 are significantly lower than those in the Examples and Comparative Example 3, and the corrosion to LY12 aluminum alloy is relatively strong.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明涉及一种多工况适应性全合成切削液及其制备方法,包括:以重量份计,有机醇胺12~20份、硼酸1~3份、十二碳二元酸1~3份、乙二胺四乙酸0.3~0.8份,三元羧酸防锈剂1~4份、酰胺化改性不饱和脂肪酸甘油酯6~12份、乳化润滑剂2~8份、组合缓蚀剂0.2~0.8份,杀菌剂0.5~3份、聚醚改性硅消泡剂0.1~0.5份、水50~75份。本发明还公开了上述全合成切削液的制备方法。与现有切削液相比,本发明通过添加酰胺化改性不饱和脂肪酸甘油酯和特殊的乳化润滑剂,并配伍组合缓蚀剂可以满足黑色金属、铜合金、铝合金材料的数控机床、龙门加工中心、磨床等机械加工形式的润滑防蚀要求,同时,不含任何有毒物质,不会对环境造成危害。

Description

一种多工况适应性全合成切削液及其制备方法 技术领域
本发明涉及多工况适应性全合成切削液领域。更具体地说,本发明涉及一种多工况适应性全合成切削液及其制备方法。
背景技术
切削液是金属加工过程实现精密、高效以及低成本的必要条件,是一种用量大,使用面广的消耗型辅助材料。切削液按组成可分为油基切削液和水基切削液。油基切削液使用时不需要稀释,相较于水基切削液具有更优异的润滑性,但冷却效果不佳。同时,由于基础油添加量达到50~90%,存在易腐败变质、废液处理难和使用成本高等局限性。水基切削液按稀释液形状可分为乳化液、微乳化液和全合成液,全合成切削液因具备优异的润滑、冷却、清洗、防锈和防腐蚀性能受到广泛的应用研究。
近年来,随着机械加工制造业的快速发展,单一产品、单一材质的加工已经比较少见。同一台机床需要加工多种金属及零件,如果使用不同种切削液则会增加购买、更换和设备维护成本,同时会在一定程度上降低生产效率。多工况适应性切削液意味“通用”和“兼用”,即针对现代切削金属加工的多样性和复杂性,使用一种切削液可满足两种或多种金属的各项加工工艺要求。
授权公布号为CN 109337751 B的中国专利公开了一种通用型切削液,其组分如下:矿物油300‐400份、植物油酸65‐73份、醇胺40‐60份、防腐剂102‐160份、表面活性剂55‐80份、耦合剂2‐6份、杀菌剂5‐10份、消泡剂1‐3份、水400‐500份。该切削液不含亚硝酸盐及硫化物,具有优异的抗硬水能力,可应用于多种CNC、龙门数控、钻床和磨床加工中。但其添加的150SN矿物油基润滑油属于Ⅰ类矿物基础油,生物降解性指数(BDI)值为42.3%,属于难生物降解物质。同时,易被各类外界因素影响,极易滋生细菌导致切削液腐败变质,造成使用周期短、废液处理成本高的使役缺陷。
公布号为CN 104403769 A的中国发明专利公开了一种多功能切削液及其制备方法,其组分如下:矿物油30%‐40%,三乙醇胺5%‐12%,月桂醇聚氧乙烯醚3%‐8%,防锈剂10%‐15%,润滑剂1%‐5%,杀菌剂1%‐3%,缓蚀剂0.5%‐1%,pH调节剂1%‐3%,其余成分为水。该切削液具有很好的润滑性、防锈性,对提高工件表面光洁度和减少刀具磨损效果显著。但该种切削液对铝、镁等活泼金属的缓蚀效果较差。
发明内容
为了实现根据本发明的这些目的和其它优点,一方面,本发明的一优选实施方案提供了一种多工况适应性全合成切削液,包括如下重量份的原料:
Figure PCTCN2022134431-appb-000001
Figure PCTCN2022134431-appb-000002
根据本发明的一优选实施方案,所述的多工况适应性全合成切削液中,所述有机醇胺由重量比为1:0.2~0.4的三乙醇胺和一乙醇胺组成。
根据本发明的一优选实施方案,所述的多工况适应性全合成切削液中,所述硼酸与一乙醇胺的重量比为1:1~1.5。
根据本发明的一优选实施方案,所述的多工况适应性全合成切削液中,所述乳化润滑剂为一种分子结构中含酯基、羧基的脂肪酸聚乙二醇酯型自乳化酯。
根据本发明的一优选实施方案,所述的多工况适应性全合成切削液中,所述组合缓蚀剂由重量百分比分别为40%、30%、30%的铜缓蚀剂苯并三氮唑,铝缓蚀剂辛基膦酸、硅氧烷酮组成。
根据本发明的一优选实施方案,所述的多工况适应性全合成切削液中,所述杀菌剂为三丹油、对羟基苯甲酸酯和乙二醇半缩醛的一种或多种。
一方面,本发明的一优选实施方案提供了所述的多工况适应性全合成切削液的制备方法,包括以下步骤:
步骤A、按重量份取12‐20份有机醇胺、1‐3份硼酸、0.3‐0.8份乙二胺四乙酸、1‐3份十二碳二元酸、1‐4份三元羧酸防锈剂、15~30份水混合倒入反应器中,升温至50~80℃,并开启搅拌,搅拌转速为70‐200rpm/min,反应30~60min,得到混合物A;
步骤B:将步骤A制的混合物A、6‐12份酰胺化改性不饱和脂肪酸甘油酯、2‐8份乳化润滑剂、0.2‐0.8份组合缓蚀剂混合搅拌30~60min,搅拌转速为70‐200rpm/min,得到混合物B;
步骤C:将步骤B制的混合物B、0.5‐3份杀菌剂、0.1‐0.5份聚醚改性硅消泡剂、35~45份水混合搅拌30~60min,搅拌转速为70‐200rpm/min,制得目标产物多工况适应性全合成切削液。
本发明至少包括以下有益效果:
(1)本发明的切削液通过对不饱和脂肪酸甘油酯酰胺化改性可使其具备优异的抗氧化性,在切削液中起到润滑和防锈作用,并可以提高切削液的使用周期。
(2)传统全合成切削液中乳化润滑剂主要以聚醚为主,普遍存在润滑性不佳、聚醚析出粘附金属屑和废液处理难度大的问题。本发明配方中的乳化润滑剂是一种含酯基、羧基的脂肪酸聚乙二醇酯型自乳化酯。在该自乳化酯分子结构中,由于链的一端存在极性基团,改变了其结构的对称性和电荷分布,使成为一种两端带异种电荷的极性分子。在金属切削过程中,极性分子透过切削液迁移到金属‐切削液界面,其极性基端与金属形成较牢固的吸附膜,另一端(CH 3)由于与配方中的酰胺化改性不饱和脂肪酸甘油酯结构相似,能够与其充分的“相似相溶”,由此在金属‐切削液界面上会有一层由极性分子构成的单分子吸附膜层。基于CH 3端的结合能较弱,当该吸附膜层承受剪切时,CH 3结合点位率先断裂,与界面发生平行滑移,从而起到减摩作用,发挥了优异的润滑特性。另外,该自乳化酯结构中不含聚氧乙烯醚链段和硫、磷、氯等元素,添加到切削液中可使其具有一定的抗泡性和抗硬水能力,能适应不同地区的多种水质条件并绿色环保。
(3)本发明中,组合缓蚀剂包括以下重量百分比的组分:铜缓蚀剂苯并三氮唑40%,铝缓蚀剂辛基膦酸30%、硅氧烷酮30%。该组合缓蚀剂适用范围广,对铝等活泼金属有很好的缓蚀作用。其中,有机醇胺是配制水基切削液常用的防锈添加剂,对钢和铸铁材料有防锈效果;但对铜、铝及其合金有腐蚀性,而本发明组合缓蚀剂中的苯并三氮唑对铜及铜合金具有良好的缓蚀效果,但对铝及其合金基本无缓蚀作用,故引入铝的缓蚀剂辛基膦酸和硅氧烷酮,使得配方中的缓蚀剂同时对铜、铝及其合金起到缓蚀效果。
(4)制备出的全合成切削液无分层、无沉淀、呈均匀液体,稀释液润滑性、防锈性、消泡性等各项性能指标均满足合成切削液的技术要求(GB/T 6144‐2010)。同时,不含有任何毒性物质,不会对环境造成污染,降低了后续切削废液处置成本。
(5)本发明通过添加酰胺化改性不饱和脂肪酸甘油酯和特殊的乳化润滑剂(含酯基、羧基的脂肪酸 聚乙二醇酯型自乳化酯),并配伍组合缓蚀剂(40%苯并三氮唑,30%辛基膦酸、30%硅氧烷酮)可以满足黑色金属、铜合金、铝合金材料的数控机床、龙门加工中心、磨床等机械加工形式的润滑防蚀要求,达到多工况适应性的使用效果。同时,不含任何有毒物质,不会对环境造成危害,具有可工业大规模生产的应用前景。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1是本发明一实施方案中多工况适应性全合成切削液的制备方法流程示意框图。
图2是本发明另一实施方案中自乳化酯的分子结构示意图。
图3是本发明实施例1~6的LY12铝腐蚀试验图。
图4是本发明对比例1和对比例2的LY12铝腐蚀试验图。
图5为本发明对比例3的LY12铝腐蚀试验图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变形。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
实施例1
本实施例提供一种多工况适应性全合成切削液,组成成分如下表所示
表1 实施例1组成成分
原料 重量/g
有机醇胺 18
硼酸 2
乙二胺四乙酸 0.5
十二碳二元酸 2
三元羧酸防锈剂 2
20
酰胺化改性不饱和脂肪酸甘油酯 8
自乳化酯 2
组合缓蚀剂 0.2
三丹油 0.5
聚醚改性硅消泡剂 0.1
44.7
将表1中的有机醇胺、硼酸、乙二胺四乙酸、十二碳二元酸、三元羧酸防锈剂、水(20g)混合,升温至70℃进行反应,搅拌转速为70rpm/min。反应30min,关闭加热。随后将酰胺化改性不饱和脂肪酸甘油酯、自乳化酯、组合缓蚀剂加入其中,混合搅拌30min,搅拌转速为70rpm/min。结束后将三丹油、聚 醚改性硅消泡剂、水(44.7g)加入其中,继续搅拌30min后得到实施例1。
实施例2
本实施例提供一种多工况适应性全合成切削液,组成成分如下表所示
表2 实施例2组成成分
原料 重量/g
有机醇胺 14
硼酸 2.5
乙二胺四乙酸 0.4
十二碳二元酸 1.5
三元羧酸防锈剂 2
24.1
酰胺化改性不饱和脂肪酸甘油酯 8
自乳化酯 3
组合缓蚀剂 0.3
对羟基苯甲酸酯 0.5
聚醚改性硅消泡剂 0.1
43.6
将表2中的有机醇胺、硼酸、乙二胺四乙酸、十二碳二元酸、三元羧酸防锈剂、水(24.1g)混合,升温至60℃进行反应,搅拌转速为100rpm/min。反应45min,关闭加热。随后将酰胺化改性不饱和脂肪酸甘油酯、自乳化酯、组合缓蚀剂加入其中,混合搅拌45min,搅拌转速为100rpm/min。结束后将对羟基苯甲酸酯、聚醚改性硅消泡剂、水(43.6g)加入其中,继续搅拌30min后得到实施例2。
实施例3
本实施例提供一种多工况适应性全合成切削液,组成成分如下表所示
表3 实施例3组成成分
原料 重量/g
有机醇胺 16.5
硼酸 2
乙二胺四乙酸 0.3
十二碳二元酸 1.8
三元羧酸防锈剂 2.5
21.4
酰胺化改性不饱和脂肪酸甘油酯 10
自乳化酯 4
组合缓蚀剂 0.4
乙二醇半缩醛 0.5
聚醚改性硅消泡剂 0.2
40.5
将表3中的有机醇胺、硼酸、乙二胺四乙酸、十二碳二元酸、三元羧酸防锈剂、水(21.4g)混合,升温至80℃进行反应,搅拌转速为150rpm/min。反应50min,关闭加热。随后将酰胺化改性不饱和脂肪酸甘油酯、自乳化酯、组合缓蚀剂加入其中,混合搅拌55min,搅拌转速为150rpm/min。结束后将乙二醇半缩醛、聚醚改性硅消泡剂、水(40.5g)加入其中,继续搅拌40min后得到实施例3。
实施例4
本实施例提供一种多工况适应性全合成切削液,组成成分如下表所示
表4 实施例4组成成分
原料 重量/g
有机醇胺 19
硼酸 3
乙二胺四乙酸 0.6
十二碳二元酸 2
三元羧酸防锈剂 3
16.9
酰胺化改性不饱和脂肪酸甘油酯 10
自乳化酯 5
组合缓蚀剂 0.5
三丹油 0.5
对羟基苯甲酸酯 1.0
聚醚改性硅消泡剂 0.3
38.2
将表4中的有机醇胺、硼酸、乙二胺四乙酸、十二碳二元酸、三元羧酸防锈剂、水(16.9g)混合,升温至80℃进行反应,搅拌转速为180rpm/min。反应35min,关闭加热。随后将酰胺化改性不饱和脂肪酸甘油酯、自乳化酯、组合缓蚀剂加入其中,混合搅拌45min,搅拌转速为180rpm/min。结束后将三丹油、对羟基苯甲酸酯、聚醚改性硅消泡剂、水(38.2g)加入其中,继续搅拌30min后得到实施例4。
实施例5
本实施例提供一种多工况适应性全合成切削液,组成成分如下表所示
表5 实施例5组成成分
原料 重量/g
有机醇胺 17
硼酸 3
乙二胺四乙酸 0.7
十二碳二元酸 2
三元羧酸防锈剂 3.5
18.3
酰胺化改性不饱和脂肪酸甘油酯 11
自乳化酯 6
组合缓蚀剂 0.6
三丹油 0.9
乙二醇半缩醛 0.6
聚醚改性硅消泡剂 0.3
36.1
将表5中的有机醇胺、硼酸、乙二胺四乙酸、十二碳二元酸、三元羧酸防锈剂、水(18.3g)混合,升温至70℃进行反应,搅拌转速为80rpm/min。反应45min,关闭加热。随后将酰胺化改性不饱和脂肪酸甘油酯、自乳化酯、组合缓蚀剂加入其中,混合搅拌50min,搅拌转速为80rpm/min。结束后将三丹油、乙二醇半缩醛、聚醚改性硅消泡剂、水(36.1g)加入其中,继续搅拌40min后得到实施例5。
实施例6
本实施例提供一种多工况适应性全合成切削液,组成成分如下表所示
表6 实施例6组成成分
原料 重量/g
有机醇胺 19
硼酸 2.5
乙二胺四乙酸 0.8
十二碳二元酸 3
三元羧酸防锈剂 4
15.2
酰胺化改性不饱和脂肪酸甘油酯 12
自乳化酯 6
组合缓蚀剂 0.8
三丹油 0.2
对羟基苯甲酸酯 0.3
乙二醇半缩醛 0.5
聚醚改性硅消泡剂 0.5
35.2
将表6中的有机醇胺、硼酸、乙二胺四乙酸、十二碳二元酸、三元羧酸防锈剂、水(15.2g)混合,升温至50℃进行反应,搅拌转速为90rpm/min。反应35min,关闭加热。随后将酰胺化改性不饱和脂肪酸甘油酯、自乳化酯、组合缓蚀剂加入其中,混合搅拌30min,搅拌转速为80rpm/min。结束后将三丹油、对羟基苯甲酸酯、乙二醇半缩醛、聚醚改性硅消泡剂、水(35.2g)加入其中,继续搅拌40min后得到实施例6。
对比例1‐2中金属切削液的制备:
按照表7配方将各组分混合得到(即为背景技术中提到的公开号为CN 104403769 A专利中的实施例1和实施例2)
表7 对比例1‐2中金属切削液的配方
原料 对比例1重量/g 对比例2重量/g
矿物油 30 33
三乙醇胺 5 7
月桂醇聚氧乙烯醚 3 5
防锈剂 10 12
润滑剂 1 3
杀菌剂 1 2
缓蚀剂 0.5 0.7
pH调节剂 1 2
48.5 35.3
对比例3
以等量的聚醚和苯并三氮唑替代实施例6中的自乳化酯和组合缓蚀剂,其具体配方乳下表所示:
表8 对比例3中金属切削液的配方
原料 重量/g
有机醇胺 19
硼酸 2.5
乙二胺四乙酸 0.8
十二碳二元酸 3
三元羧酸防锈剂 4
15.2
酰胺化改性不饱和脂肪酸甘油酯 12
聚醚 6
苯并三氮唑 0.8
三丹油 0.2
对羟基苯甲酸酯 0.3
乙二醇半缩醛 0.5
聚醚改性硅消泡剂 0.5
35.2
表9 实施例1~6,对比例1、2、3的性能测试结果:
Figure PCTCN2022134431-appb-000003
由表9可知,按照本发明中的配比制备的实施例1‐6多工况适应性切削液,最大无卡咬负荷P b值均大于540N,并经10min消泡实验后,界面残留泡沫均小于1ml,另外,将实施例6中自乳化酯和组合缓蚀剂替换为聚醚和苯并三氮唑(对比例3)的切削液在最大无卡咬合P B值、对铝的缓蚀效果方面明显劣于实施例6。同时,对比例1‐2中的环保切削液最大无卡咬负荷、表面张力和消泡性明显低于实施例和对比例3,并且对LY12铝合金的腐蚀性较强。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (7)

  1. 一种多工况适应性全合成切削液,其特征在于,包括如下重量份的原料:
    Figure PCTCN2022134431-appb-100001
  2. 根据权利要求1所述的多工况适应性全合成切削液,其特征在于,所述有机醇胺由重量比为1:0.2~0.4的三乙醇胺和一乙醇胺组成。
  3. 根据权利要求2所述的多工况适应性全合成切削液,其特征在于,所述硼酸与一乙醇胺的重量比为1:1~1.5。
  4. 根据权利要求1所述的多工况适应性全合成切削液,其特征在于,所述乳化润滑剂为一种分子结构中含酯基、羧基的脂肪酸聚乙二醇酯型自乳化酯。
  5. 根据权利要求1所述的多工况适应性全合成切削液,其特征在于,所述组合缓蚀剂由重量百分比分别为40%、30%、30%的铜缓蚀剂苯并三氮唑,铝缓蚀剂辛基膦酸、硅氧烷酮组成。
  6. 根据权利要求1所述的多工况适应性全合成切削液,其特征在于,所述杀菌剂为三丹油、对羟基苯甲酸酯和乙二醇半缩醛的一种或多种。
  7. 如权利要求1‐6任一权利要求所述的多工况适应性全合成切削液的制备方法,其特征在于,包括以下步骤:
    步骤A、按重量份取12‐20份有机醇胺、1‐3份硼酸、0.3‐0.8份乙二胺四乙酸、1‐3份十二碳二元酸、1‐4份三元羧酸防锈剂、15~30份水混合倒入反应器中,升温至50~80℃,并开启搅拌,搅拌转速为70‐200rpm/min,反应30~60min,得到混合物A;
    步骤B:将步骤A制的混合物A、6‐12份酰胺化改性不饱和脂肪酸甘油酯、2‐8份乳化润滑剂、0.2‐0.8份组合缓蚀剂混合搅拌30~60min,搅拌转速为70‐200rpm/min,得到混合物B;
    步骤C:将步骤B制的混合物B、0.5‐3份杀菌剂、0.1‐0.5份聚醚改性硅消泡剂、35~45份水混合搅拌30~60min,搅拌转速为70‐200rpm/min,制得目标产物多工况适应性全合成切削液。
PCT/CN2022/134431 2022-10-27 2022-11-25 一种多工况适应性全合成切削液及其制备方法 WO2024087293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211325542.7A CN116103079A (zh) 2022-10-27 2022-10-27 一种多工况适应性全合成切削液及其制备方法
CN202211325542.7 2022-10-27

Publications (1)

Publication Number Publication Date
WO2024087293A1 true WO2024087293A1 (zh) 2024-05-02

Family

ID=86260446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134431 WO2024087293A1 (zh) 2022-10-27 2022-11-25 一种多工况适应性全合成切削液及其制备方法

Country Status (2)

Country Link
CN (1) CN116103079A (zh)
WO (1) WO2024087293A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921624A (en) * 1988-06-03 1990-05-01 Ferro Corporation Modified fatty amides and sulfurized fatty oils as lubricant additives
CN104017636A (zh) * 2014-06-06 2014-09-03 清华大学 一种水溶性全合成金属磨削液
CN105349226A (zh) * 2015-11-19 2016-02-24 苏州捷德瑞精密机械有限公司 一种铝合金用乳化切削液及其制备方法
CN106479654A (zh) * 2016-09-06 2017-03-08 深圳市宏达威表面处理技术有限公司 水基金属切削液
CN106833853A (zh) * 2017-01-11 2017-06-13 李弟和 水溶性切削液
CN109054938A (zh) * 2018-06-14 2018-12-21 东风商用车有限公司 一种微乳切削液及其制备方法
CN110684585A (zh) * 2018-07-05 2020-01-14 厦门炬诚工贸有限公司 一种微乳型切削液及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4921624A (en) * 1988-06-03 1990-05-01 Ferro Corporation Modified fatty amides and sulfurized fatty oils as lubricant additives
CN104017636A (zh) * 2014-06-06 2014-09-03 清华大学 一种水溶性全合成金属磨削液
CN105349226A (zh) * 2015-11-19 2016-02-24 苏州捷德瑞精密机械有限公司 一种铝合金用乳化切削液及其制备方法
CN106479654A (zh) * 2016-09-06 2017-03-08 深圳市宏达威表面处理技术有限公司 水基金属切削液
CN106833853A (zh) * 2017-01-11 2017-06-13 李弟和 水溶性切削液
CN109054938A (zh) * 2018-06-14 2018-12-21 东风商用车有限公司 一种微乳切削液及其制备方法
CN110684585A (zh) * 2018-07-05 2020-01-14 厦门炬诚工贸有限公司 一种微乳型切削液及其制备方法

Also Published As

Publication number Publication date
CN116103079A (zh) 2023-05-12

Similar Documents

Publication Publication Date Title
CN106281616A (zh) 一种铝合金切削加工用长寿命低泡乳化液
CN103740452B (zh) 环保型金刚线切割用冷却液及其配制方法
CN111662773B (zh) 一种长效全合成镁合金切削液及加工方法
CN111004676A (zh) 乳化型切削液及其制备方法
CN104293467A (zh) 一种铝合金用微乳化切削液及其制备方法
WO2018082287A1 (zh) 一种水基切削液及其制备方法
CN107541328B (zh) 无排放可循环使用的水性切削液及其制备方法
WO2021238310A1 (zh) 一种全合成铜大拉拉丝液及其使用方法
WO2023071898A1 (zh) 一种长效缓蚀的铝合金切削液
CN111876224A (zh) 用于Al-7050的微乳化切削液、其制备方法及用途
CN104403769A (zh) 一种多功能切削液及其制备方法
CN106590907A (zh) 一种含石墨烯的金属切削液及其制备方法
CN104004579A (zh) 加工中心防锈冷却液
CN106433863A (zh) 一种金属加工用的水基切削液及其制备方法
CN108949332B (zh) 一种汽车空调滤清器盖板的环保型攻丝液的制备方法及环保型攻丝液
WO2024087293A1 (zh) 一种多工况适应性全合成切削液及其制备方法
CN108774568B (zh) 一种半合成铝合金加工液及其制备方法
CN108441310A (zh) 一种金属加工用半合成切削液及其制备方法
CN113355150B (zh) 一种微乳切削液及其制备方法和应用
CN102618377A (zh) 空调用铜螺纹管轧制润滑液、制备方法及使用方法
CN104357203A (zh) 一种适用于铝合金材加工的全合成切削液及其制备方法
CN108485788A (zh) 一种长寿命型水-乙二醇难燃液压液
CN104560327A (zh) 一种高渗透防腐性能优异的金属切削液及其制备方法
CN110331028A (zh) 一种用于金属加工的水溶性多功能长效极压乳化切削液
CN114369495B (zh) 一种切削液及其制备方法和应用