WO2024086977A1 - 钙钛矿太阳能电池及其制备方法和用电装置 - Google Patents

钙钛矿太阳能电池及其制备方法和用电装置 Download PDF

Info

Publication number
WO2024086977A1
WO2024086977A1 PCT/CN2022/127057 CN2022127057W WO2024086977A1 WO 2024086977 A1 WO2024086977 A1 WO 2024086977A1 CN 2022127057 W CN2022127057 W CN 2022127057W WO 2024086977 A1 WO2024086977 A1 WO 2024086977A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport layer
charge transport
perovskite
solar cell
reflection
Prior art date
Application number
PCT/CN2022/127057
Other languages
English (en)
French (fr)
Inventor
陈长松
涂保
黄志涵
林祖超
郭永胜
陈国栋
欧阳楚英
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/127057 priority Critical patent/WO2024086977A1/zh
Publication of WO2024086977A1 publication Critical patent/WO2024086977A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material

Definitions

  • the present application relates to a perovskite solar cell.
  • the present application also relates to a method for preparing the perovskite solar cell and an electrical device comprising the perovskite solar cell.
  • Solar cells also known as photovoltaic cells, are devices that directly convert light energy into electrical energy through the photoelectric effect or photochemical effect.
  • Perovskite cells are a new type of solar cell that has been widely studied. Within a few years after its birth, it quickly achieved a high photoelectric conversion efficiency, and its highest photoelectric conversion efficiency has exceeded 25%, which has good application prospects.
  • the present application is made in view of the above-mentioned problems, and its object is to provide a perovskite solar cell with a high photoelectric energy conversion efficiency.
  • the first aspect of the present application provides a perovskite solar cell, which structurally includes a transparent upper electrode, a first charge transport layer, an anti-reflective charge transport layer, a perovskite layer, a second charge transport layer and a lower electrode in sequence, wherein one of the first charge transport layer and the second charge transport layer is an electron transport layer, and the other is a hole transport layer.
  • the present application provides a perovskite photovoltaic cell with a light-enhancing charge transport layer.
  • the anti-reflective charge transport layer described in the present application reduces the light reflection loss, thereby increasing the light entering the perovskite layer and increasing the number of photogenerated carriers, thereby improving the energy conversion efficiency of the solar cell and the battery current.
  • the refractive index n1 of the anti-reflection charge transport layer satisfies the above relationship with the refractive index n2 of the perovskite layer and the refractive index n0 of the first charge transport layer, so that light can smoothly enter the perovskite layer from the anti-reflection charge transport layer with almost no loss, thereby further increasing the amount of light entering the perovskite layer and further improving the photoelectric conversion efficiency of the perovskite solar cell.
  • the antireflection charge transport layer comprises at least one radioactive isotope.
  • the number of carriers can be increased, thereby increasing the device current and further improving the energy conversion efficiency of the solar cell.
  • the source of the radioactive isotope is selected from a simple substance or a compound comprising at least one of the following isotopes: 3 H, 210 Po, 228 Th, 235 U, 238 Pu, 63 Ni, 90 Sr, 90 Sr, 90 Y, 99 Tc, 106 Ru, 137 Cs, 144 Ce, 147 Pm, 151 Sm, 226 Ra, 241 Am, 242 Cm, 244 Cm, 14 C, 35 S.
  • the mass proportion of the source of the radioactive isotope in the antireflection charge transport layer is 0-35% by weight, optionally 1-30% by weight, and more optionally 3-15% by weight.
  • the source of the radioactive isotope does not exceed 35%, and optionally does not exceed 30%, so as to avoid high-energy particles radiated by the radioactive source from irreversibly destroying the structure of the perovskite layer.
  • the HOMO energy levels of the hole transport layer, the anti-reflection charge transport layer, and the perovskite layer decrease in sequence;
  • the LUMO energy levels of the perovskite layer, the anti-reflection charge transport layer, and the electron transport layer decrease in sequence.
  • the difference in LUMO energy level or HOMO energy level between any two adjacent layers is 0-1.0 eV, optionally 0-0.2 eV.
  • the carriers can flow more smoothly and fluently under the natural promotion of the energy level difference, which can improve the carrier extraction efficiency and thus increase the battery voltage.
  • the antireflection charge transport layer comprises a charge transport material having the same or similar properties as the material used in the first charge transport layer.
  • the antireflection film material is selected to be a charge transport material with the same or similar properties as the material used in the first charge transport layer, so as not to significantly hinder charge transport.
  • the electron transport layer includes or consists of at least one of the following materials and their derivatives: imide compounds, quinone compounds, fullerenes and their derivatives, and metal oxides, wherein the metal element in the metal oxide is selected from Mg, Cd, Zn, In, Pb, W, Sb, Bi, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga or Cr.
  • the hole transport layer includes at least one of the following materials and their derivatives: 2,2',7,7'-tetrakis(N,N-p-methoxyanilino)-9,9'-spirobifluorene, methoxytriphenylamine-fluoroformamidine, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine], poly(3,4-ethylenedioxythiophene), polystyrene sulfonic acid, poly3-hexylthiophene, triphenylamine with triptycene as the core, 3,4-ethylenedioxythiophene-methoxytriphenylamine, N-(4-aniline)carbazole-spirobifluorene, polythiophene, copper iodide, cuprous iodide, cuprous thiocyanate, carbazole phosphate, and metal oxides in which the metal element is selected from Ni, Mo, and Cu.
  • the second aspect of the present application provides a method for preparing a perovskite solar cell, wherein the perovskite solar cell structurally comprises a transparent upper electrode, a first charge transport layer, an anti-reflection charge transport layer, a perovskite layer, a second charge transport layer and a lower electrode in sequence, wherein one of the first charge transport layer and the second charge transport layer is an electron transport layer, and the other is a hole transport layer, and the method comprises the steps of preparing or preparing the transparent upper electrode, preparing the first charge transport layer, preparing the anti-reflection charge transport layer, preparing the perovskite layer, preparing the second charge transport layer, and preparing the lower electrode.
  • a material having the same or similar properties as the first charge transport layer is used.
  • the source of the radioactive isotope is used, optionally, the source of the radioactive isotope is selected from a single substance or compound comprising at least one of the following isotopes: 3 H, 210 Po, 228 Th, 235 U, 238 Pu, 63 Ni, 90 Sr, 90 Y, 99 Tc, 106 Ru, 137 Cs, 144 Ce, 147 Pm, 151 Sm, 226 Ra, 241 Am, 242 Cm, 244 Cm, 14 C, 35 S.
  • the mass proportion of the source of the radioactive isotope in the anti-reflection charge transport layer is 0-35% by weight, optionally 1-30% by weight, and more optionally 3-15% by weight.
  • the HOMO energy levels of the hole transport layer, the anti-reflection charge transport layer, and the perovskite layer decrease in sequence;
  • the LUMO energy levels of the perovskite layer, the anti-reflection charge transport layer, and the electron transport layer decrease in sequence.
  • the difference in LUMO energy level or HOMO energy level between any two adjacent layers is 0-1.0 eV, optionally 0-0.2 eV.
  • the carriers can flow more smoothly and fluently under the natural promotion of the energy level difference, which can improve the carrier extraction efficiency and thus increase the battery voltage.
  • the third aspect of the present application provides an electrical device, which includes the perovskite solar cell described in the first aspect of the present application or the perovskite solar cell prepared by the method described in the second aspect of the present application.
  • Figure 1 is a schematic diagram of the structure of the perovskite solar cell described in the present application, which includes, from top to bottom, a transparent upper electrode, a first charge transport layer, an anti-reflective charge transport layer, a perovskite layer, a second charge transport layer, and a lower electrode, wherein the anti-reflective charge transport layer optionally contains a radioactive element.
  • range disclosed in the present application is defined in the form of a lower limit and an upper limit, and a given range is defined by selecting a lower limit and an upper limit, and the selected lower limit and upper limit define the boundaries of a particular range.
  • the range defined in this way can be inclusive or exclusive of end values, and can be arbitrarily combined, that is, any lower limit can be combined with any upper limit to form a range. For example, if a range of 60-120 and 80-110 is listed for a specific parameter, it is understood that the range of 60-110 and 80-120 is also expected.
  • the numerical range "a-b" represents the abbreviation of any real number combination between a and b, wherein a and b are real numbers.
  • the numerical range "0-5" represents that all real numbers between "0-5" have been fully listed herein, and "0-5" is just the abbreviation of these numerical combinations.
  • a parameter is expressed as an integer ⁇ 2, it is equivalent to disclosing that the parameter is, for example, an integer of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
  • the method includes steps (a) and (b), which means that the method may include steps (a) and (b) performed sequentially, or may include steps (b) and (a) performed sequentially.
  • the method may also include step (c), which means that step (c) can be added to the method in any order.
  • the method may include steps (a), (b) and (c), or may include steps (a), (c) and (b), or may include steps (c), (a) and (b), etc.
  • the “include” and “comprising” mentioned in this application represent open-ended or closed-ended expressions.
  • the “include” and “comprising” may represent that other components not listed may also be included or only the listed components may be included or only the listed components may be included.
  • the term "or” is inclusive.
  • the phrase “A or B” means “A, B, or both A and B”. More specifically, any of the following conditions satisfies the condition "A or B”: A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists); or both A and B are true (or exist).
  • the solutions to solve the above light loss include adding a texturing process to the glass surface on the light-entering side of the battery device to increase the optical path, and preparing an additional anti-reflection layer on the battery surface to increase the amount of light entering.
  • these methods will increase the complexity of the device structure and the preparation cost. Therefore, it is necessary to consider a method that can reduce light loss without affecting the superiority of the battery structure and even improve the energy conversion efficiency of the battery.
  • the present application adds an anti-reflection layer before the perovskite layer on the light-incident side of the perovskite solar cell, and makes the anti-reflection layer satisfy a certain thickness and refractive index relationship, thereby reducing light loss caused by light reflection, thereby increasing the energy conversion efficiency of the solar cell. Furthermore, the present application unexpectedly introduces radioactive isotopes into the anti-reflection layer, and makes the high-energy radiation particles emitted by the radioactive isotopes act on the perovskite to cause the perovskite to release more carriers, thereby achieving an enhanced radiovoltaic-photovoltaic synergistic effect and further improving the current efficiency of the perovskite solar cell.
  • the first aspect of the present application provides a perovskite solar cell, which structurally includes a transparent upper electrode, a first charge transport layer, an anti-reflective charge transport layer, a perovskite layer, a second charge transport layer and a lower electrode in sequence, wherein one of the first charge transport layer and the second charge transport layer is an electron transport layer, and the other is a hole transport layer.
  • the present application provides a perovskite photovoltaic cell with a light-enhancing charge transport layer.
  • the anti-reflective charge transport layer described in the present application reduces the light reflection loss, thereby increasing the light entering the perovskite layer and increasing the number of photogenerated carriers, thereby improving the energy conversion efficiency of the solar cell and the battery current.
  • the most suitable k is 0.
  • the value of n 1 -n is referred to as a deviation. When the deviation is 0, it is the most optional. In the present application, the deviation can be adjusted to an optimal value by radioisotope doping.
  • the refractive index n1 of the anti-reflection charge transport layer satisfies the above relationship with the refractive index n2 of the perovskite layer and the refractive index n0 of the first charge transport layer, so that light can smoothly enter the perovskite layer from the anti-reflection charge transport layer with almost no loss, thereby further increasing the amount of light entering the perovskite layer and further improving the photoelectric conversion efficiency of the perovskite solar cell.
  • the refractive index n 1 of the antireflection charge transport layer, the refractive index n 2 of the perovskite layer, and the refractive index n 0 of the first charge transport layer can be determined according to the raw materials used, or can be obtained by detection using a refractive light detector (such as an instrument from Thermo Fisher Scientific).
  • the antireflection charge transport layer comprises at least one radioactive isotope.
  • an anti-reflection charge transport layer is provided between the perovskite absorption layer and the first charge transport layer.
  • the increase of this layer is also accompanied by the increase of the interface.
  • the carriers holes or electrons
  • the carriers pass through the interface, they will be captured or recombined at the defects of the interface, which may affect the device current. It is now unexpectedly found that when radioactive isotopes are doped in the anti-reflection layer material, the number of carriers can be increased, thereby increasing the device current, and further improving the energy conversion efficiency of the solar cell.
  • the corresponding perovskite solar cell can use the radiation decay energy of the radioactive isotope as an energy source in addition to using external incident light as an energy source.
  • the radioactive isotope can emit high-energy radiation particles (KeV). These high-energy radiation particles act on the perovskite layer to prompt the perovskite layer to generate more carriers to increase the energy conversion performance of the battery.
  • the radioactive isotope when at least one radioactive isotope is doped in the anti-transmittance charge transport layer, since the radioactive isotope can act on the perovskite and prompt the perovskite to generate more carriers, it is also possible for the perovskite solar cell to maintain power generation in the absence of light or less light.
  • the source of the radioactive isotope is selected from a simple substance or a compound comprising at least one of the following isotopes: 3 H, 210 Po, 228 Th, 235 U, 238 Pu, 63 Ni, 90 Sr, 90 Sr, 90 Y, 99 Tc, 106 Ru, 137 Cs, 144 Ce, 147 Pm, 151 Sm, 226 Ra, 241 Am, 242 Cm, 244 Cm, 14 C, 35 S.
  • radioactive isotopes that can cause the perovskite layer to release carriers are within the scope of the present application.
  • the present application screens out the available radioactive isotopes of the above types.
  • these radioactive isotopes are only optional and the present application is not intended to be limited thereto.
  • radioactive isotopes mentioned above can be used in simple form, such as 14 C, 35 S, etc., and some need to be used in the form of compounds.
  • the isotopes 238 Pu and 3 H can be used in the form of 238 PuO 2 microspheres, (C 4 H 3 3 H 5 ) n (where n is 8 to 50), 3 H 2 , Ti 3 H 4 , etc.
  • a substance containing a radioactive isotope is referred to as a source of the radioactive isotope.
  • the source of 63 Ni may be 63 NiClx (wherein x is in the range of 2-3), the source of 14 C may be [ 14 C] sodium formate (all C is 14 C), and the source of 35 S may be 35 S elemental substance.
  • the radiation sources of radioisotopes can be classified into ⁇ -type radiation sources, ⁇ -type radiation sources, X-ray radiation sources, and ⁇ -ray radiation sources. At least one of the radiation sources of the above radioisotopes can be used in the perovskite solar cell.
  • the ⁇ -type radiation source includes, but is not limited to, at least one of 210 Po, 228 Th, 235 U, 238 Pu, 241 Am, 242 Cm, 244 Cm simple substances and compounds thereof, and 238 PuO 2 microspheres.
  • the beta radiation source includes, but is not limited to, 63 Ni, 90 Sr, 90 Sr, 90 Y, 99 Tc, 106 Ru, 137 Cs, 144 Ce, 147 Pm, 151 Sm, 226 Ra, 14 C, 35 S simple substances or compounds thereof and (C 4 H 3 3 H 5 -) n , 3 H 2 , Ti 3 H 4 , wherein n is defined as above.
  • X-rays and gamma rays may be co-produced, and sources that may produce these two types of rays include, but are not limited to, alpha-type radiation sources or beta-type radiation sources.
  • a beta-type radiation source is used in the perovskite solar cell.
  • the mass proportion of the source of the radioactive isotope in the antireflection charge transport layer is 0-35 wt %, optionally 1-30 wt %, and more optionally 3-15 wt %.
  • the source of the radioactive isotope does not exceed 35%, and optionally does not exceed 30%, so as to avoid high-energy particles radiated by the radioactive source from irreversibly destroying the structure of the perovskite layer.
  • the HOMO energy levels of the hole transport layer, the anti-reflection charge transport layer, and the perovskite layer decrease in sequence;
  • the LUMO energy levels of the perovskite layer, the anti-reflection charge transport layer, and the electron transport layer decrease in sequence.
  • the difference in LUMO energy level or HOMO energy level between any two adjacent layers is 0-1.0 eV, optionally 0-0.2 eV.
  • the carriers can flow more smoothly and fluently under the natural promotion of the energy level difference, which can improve the carrier extraction efficiency and thus increase the battery voltage.
  • the perovskite solar cell is defined as comprising a transparent upper electrode, a first charge transport layer, an anti-reflective charge transport layer, a perovskite layer, a second charge transport layer and a lower electrode
  • the perovskite solar cell may optionally include other layers, such as a passivation layer, a mesoporous layer, etc.
  • the above-mentioned energy level matching relationship of adjacent layers is also satisfied.
  • the antireflection charge transport layer includes a charge transport material having the same or similar properties as the material used in the first charge transport layer.
  • “Having properties that are the same or similar to those of the materials used for the first charge transport layer” means: if the first charge transport layer uses electron transport layer materials, the anti-reflective charge transport layer also uses electron transport layer materials, which may use the same material as the first charge transport layer materials, or may use different electron transport layer materials; correspondingly, if the first charge transport layer uses hole transport layer materials, the anti-reflective charge transport layer also uses hole transport layer materials, which may use the same material as the first charge transport layer materials, or may use different hole transport layer materials.
  • the antireflection film material is selected to be a charge transport material with the same or similar properties as the material used in the first charge transport layer, so as not to significantly hinder charge transport.
  • anti-reflection layer In this application, “anti-reflection layer”, “anti-reflection film” and anti-reflection charge transport layer can be used interchangeably.
  • Electron transport layer and hole transport layer are Electron transport layer and hole transport layer
  • the electron transport layer may be made of an electron transport material known in the art
  • the hole transport layer may be made of a hole transport material known in the art.
  • the electron transport layer includes or consists of at least one of the following materials and their derivatives: imide compounds, quinone compounds, fullerenes and their derivatives, and metal oxides, wherein the metal element in the metal oxide is selected from Mg, Cd, Zn, In, Pb, W, Sb, Bi, Hg, Ti, Ag, Mn, Fe, V, Sn, Zr, Sr, Ga or Cr.
  • the hole transport layer includes or consists of at least one of the following materials and their derivatives: 2,2',7,7'-tetrakis(N,N-p-methoxyanilino)-9,9'-spirobifluorene (Spiro-OMeTAD), methoxytriphenylamine-fluoroformamidine (OMeTPA-FA), poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), poly(3,4-ethylenedioxythiophene), polystyrene sulfonic acid, poly3-hexylthiophene (P3HT), triphenylamine with triptycene as the core (H101), 3,4-ethylenedioxythiophene-methoxytriphenylamine (EDOT-OMeTPA), N-(4-aniline)carbazole-spirobifluorene (CzPAF-SBF), polythiophene, copper XPSI-
  • the thickness of the hole transport layer may be 5 to 300 nm.
  • the thickness of the electron transport layer may be 5 to 200 nm.
  • the first charge transport layer may be an electron transport layer or a hole transport layer.
  • the second charge transport layer is a hole transport layer
  • the anti-reflective charge transport material may use an electron transport material, which may be the same as or different from the material used in the electron transport layer, as long as the thickness and refractive index of the anti-reflective charge transport layer satisfy the above two relationship equations.
  • the refractive index of the anti-reflective charge transport layer can also be regulated by regulating the refractive index of the electron transport layer.
  • the anti-reflective charge transport material uses the same material as that used in the electron transport layer, and uses isotopes to adjust the refractive index of the anti-reflective charge transport layer material.
  • the anti-reflective charge transport material may use a hole transport material, which may be the same as or different from the material used in the hole transport layer, as long as the thickness and refractive index of the anti-reflective charge transport layer satisfy the above two relationships.
  • the refractive index of the anti-reflective charge transport layer can also be regulated by regulating the refractive index of the hole transport layer.
  • the anti-reflective charge transport material uses the same material as that used in the hole transport layer, and an isotope is used to adjust the refractive index of the anti-reflective charge transport layer material.
  • the perovskite layer can be prepared using any perovskite material conventionally used in the art.
  • the present application uses an ABX 3 -type perovskite, wherein A is an inorganic or organic or organic-inorganic mixed cation, B is an inorganic or organic or organic-inorganic mixed cation, and X is an inorganic or organic or organic-inorganic mixed anion.
  • the A-site ion may be, for example, a methylamine cation MA + , a formamidine cation FA + , Cs + and a mixture thereof;
  • the B-site ion may be, for example, Pb 2+ , Sn 2+ and a mixture thereof;
  • the X-site ion may be a halogen ion, COO - and a mixture thereof.
  • perovskite materials described in the present application are not limited to the above-mentioned perovskite materials.
  • the thickness of the perovskite layer is 100 to 2000 nm.
  • the perovskite layer is the most important component of solar cells, therefore, it is necessary to ensure the quality and thickness of the perovskite.
  • the radioactive isotope can release high-energy radiation particles, which act on the perovskite to promote the perovskite to release more carriers. Therefore, different types and amounts of radioactive isotopes will have different effects on the perovskite. Based on this, the effect of radioactive isotopes on perovskite can be investigated by conventional technical means in the field, so as to select the optimal match of radioactive isotope type, amount and perovskite structure.
  • the electron transport layer, hole transport layer, perovskite layer and anti-reflective charge transport layer described in the present application can be prepared by at least one of the following methods: chemical bath deposition method, electrochemical deposition method, chemical vapor deposition method, physical epitaxial growth method, thermal evaporation co-evaporation method, atomic layer deposition method, magnetron sputtering method, precursor liquid spin coating method, precursor liquid slit coating method, precursor liquid scraping method, mechanical pressing method, among which the thermal evaporation method and the precursor liquid coating (spin coating) method can be selected.
  • the transparent upper electrode and lower electrode described in the present application may be any electrode used in the art.
  • the electrode material of the transparent upper electrode and lower electrode is an organic or inorganic or organic-inorganic hybrid conductive material.
  • the organic conductive material may be a conductive polymer, such as poly (3,4-ethylenedioxythiophene) (PEDOT), polythiophene, polyacetylene, etc.
  • the inorganic conductive material may be: transparent conductive oxide, such as fluorine-doped tin oxide (FTO), indium tin oxide (ITO), aluminum-doped zinc oxide (AZO), etc.; metal; carbon derivatives, etc.
  • the transparent upper electrode is used for light incident.
  • Transparent conductive oxide is usually used.
  • the transparent conductive oxide is composed of a glass substrate and an oxide thin film (TCO) conductive layer.
  • TCO oxide thin film
  • Commonly used TCOs include ITO, FTO, and AZO, but the present application is not limited thereto.
  • the conductive glass needs to be cleaned before use, for example, by ultrasonic cleaning with a cleaning agent (for example, including but not limited to a surfactant), ethanol, acetone, isopropanol, deionized water, or the like.
  • a cleaning agent for example, including but not limited to a surfactant
  • ethanol for example, including but not limited to a surfactant
  • acetone for example, ethanol
  • isopropanol deionized water, or the like.
  • the lower electrode is used to collect carriers and is selected from metals or carbon derivatives.
  • the preparation method is a technical method known in the art, such as thermal evaporation, and the thickness is 20 to 1000 nm.
  • the second aspect of the present application provides a method for preparing a perovskite solar cell, wherein the perovskite solar cell structurally comprises a transparent upper electrode, a first charge transport layer, an anti-reflection charge transport layer, a perovskite layer, a second charge transport layer and a lower electrode in sequence, wherein one of the first charge transport layer and the second charge transport layer is an electron transport layer, and the other is a hole transport layer, and the method comprises the steps of preparing or preparing the transparent upper electrode, preparing the first charge transport layer, preparing the anti-reflection charge transport layer, preparing the perovskite layer, preparing the second charge transport layer, and preparing the lower electrode.
  • the description of the perovskite solar cell is applicable to the method for preparing the perovskite solar cell, and vice versa, the description of preparing the perovskite solar cell is also applicable to the perovskite solar cell.
  • a material having the same or similar properties as the first charge transport layer is used.
  • the source of the radioactive isotope is used, optionally, the source of the radioactive isotope is selected from a single substance or compound comprising at least one of the following isotopes: 3 H, 210 Po, 228 Th, 235 U, 238 Pu, 63 Ni, 90 Sr, 90 Y, 99 Tc, 106 Ru, 137 Cs, 144 Ce, 147 Pm, 151 Sm, 226 Ra, 241 Am, 242 Cm, 244 Cm, 14 C, 35 S.
  • the mass proportion of the source of the radioactive isotope in the anti-reflection charge transport layer is 0-35 weight %, optionally 1-30 weight %, and more optionally 3-15 weight %.
  • the HOMO energy levels of the hole transport layer, the anti-reflection charge transport layer, and the perovskite layer decrease in sequence;
  • the LUMO energy levels of the perovskite layer, the anti-reflection charge transport layer, and the electron transport layer decrease in sequence.
  • the difference in LUMO energy level or HOMO energy level between any two adjacent layers is 0-1.0 eV, optionally 0-0.2 eV.
  • the third aspect of the present application provides an electrical device, which includes the perovskite solar cell described in the first aspect of the present application or the perovskite solar cell prepared by the method described in the second aspect of the present application.
  • Preparation of perovskite layer Spin-coat a 1.5 mol/L FAPbI 3 solution in DMF on the obtained electron transport layer using a coating machine at a speed of 4000 rpm, then move to a constant temperature hot stage, heat at 100 ° C for 30 min, and after cooling to room temperature, form a perovskite layer with a thickness of 500 nm and a refractive index of 2.59.
  • Preparation of the second charge (hole) transport layer Spin-coat a chlorobenzene solution of Spiro-OMeTAD with a concentration of 73 mg/mL on the perovskite layer at a speed of 3000 rpm for 20 seconds to obtain a hole transport layer with a thickness of 150 nm.
  • Example 2 The same operation as in Example 1 is performed, except that another charge transport material is used in the step of preparing the anti-reflection charge transport layer 3).
  • the details are as follows:
  • Example 3 The same operation as in Example 3 was performed, except that the anti-reflection charge transport layer was not prepared, and the perovskite layer was directly prepared after the electron transport layer was prepared.
  • the energy conversion efficiency of the perovskite solar cells in each embodiment and comparative example was tested.
  • the specific process is as follows:
  • AM1.5G standard light source was used as the sunlight simulation light source, and a four-channel digital source meter (Keithley 2440) was used to measure the volt-ampere characteristic curve of the battery under the irradiation of the light source.
  • the open circuit voltage Voc, short circuit current density Jsc, and fill factor FF (Fill Factor) of the battery were obtained, and the energy conversion efficiency Eff (Efficiency) of the battery was calculated.
  • Pout, Popt, Vmpp, and Jmpp are the battery operating output power, incident light power, battery maximum power point voltage, and maximum power point current, respectively.
  • n1 is the refractive index of the antireflection charge transport layer
  • n0 is the refractive index of the first charge transport layer
  • n2 is the refractive index of the perovskite layer.
  • the refractive index deviation is the value of n1 -n, which represents the difference between the refractive index of the actually prepared antireflection charge transport layer and the ideal refractive index n.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本申请提供一种钙钛矿太阳能电池,其在结构上依次包括透明上电极、第一电荷传输层、增透电荷传输层、钙钛矿层、第二电荷传输层和下电极。使用所述增透电荷传输层,能够提高太阳的电池的能量转换效率。本申请还提供所述钙钛矿太阳能电池的制备方法以及包括所述钙钛矿太阳能电池的用电装置。

Description

钙钛矿太阳能电池及其制备方法和用电装置 技术领域
本申请涉及一种钙钛矿太阳能电池。此外,本申请还涉及所述钙钛矿太阳能电池的制备方法以及包含所述钙钛矿太阳能电池的用电装置。
背景技术
近年来,全球能源短缺和环境污染问题日益突出,太阳能电池作为理想的可再生能源受到越来越多的重视。太阳能电池,又称为光伏电池,是一种通过光电效应或光化学效应将光能直接转化为电能的装置。钙钛矿电池是目前广泛研究的一类新型太阳能电池,其在诞生后的几年内迅速获得了较高的光电转换效率,其最高光电转换效率已超过25%,具有良好的应用前景。
由于钙钛矿太阳能电池取得了极大的发展,因此对能量转换效率和电流效率等也提出了更高的要求。然而,当太阳光照射进现有的钙钛矿太阳能电池中时,或多或少会出现光反射损失,影响了钙钛矿光伏电池的能量转换效率和电流效率。因此,现有的钙钛矿太阳能电池仍有待改进。
发明内容
本申请是鉴于上述课题而进行的,其目的在于,提供一种光电能量转换率高的钙钛矿太阳能电池。
因此,本申请的第一方面提供一种钙钛矿太阳能电池,其在结构上依次包括透明上电极、第一电荷传输层、增透电荷传输层、钙钛矿层、第二电荷传输层和下电极,其中第一电荷传输层和第二电荷传输层之一为电子传输层,另一个为空穴传输层。
在任意实施方式中,所述增透电荷传输层的厚度为T,满足T=d±1nm,其中d根据下式计算得到:d=(2k+1)λ/4n 1,其中,λ范围为380-780nm,可选为650nm-750nm;k为0-6的整数,可选为0;n 1为增透电荷传输层的折射率。
本申请提供了一种具有光增透电荷传输层的钙钛矿光伏电池,如图1所示,在钙钛矿吸收层和第一电荷传输层之间设置增透电荷传输层,如此,太阳光在通过透明上电极进入第一电荷传输层之后射入增透电荷传输层。由于增透电荷传输层的厚度满足公式d=(2k+1)λ/4n 1,因此,入射光能够全部透过增透电荷传输层到达该层与钙钛矿层之间的界面。另外,由于所述增透电荷传输层的折射率n 1与钙钛矿层的折射率n 2、第一电荷传输层的折射率n 0之间满足以下关系:n 1 2=n 2×n 0,因此,光线能够顺利地几乎没有损失地由所述增透电荷传输层进入钙钛矿层。由此,本申请所述的增透电荷传输层减少了光反射损失,从而增多了进入钙钛矿层的光线并且增加了光生载流子数量,进而提高了太阳能电池的能量转换效率以及电池电流。
在任意实施方式中,所述增透电荷传输层的折射率n 1在n±0.35的范围内,其中n 2=n 2×n 0,其中n 0和n 2依次为第一电荷传输层和钙钛矿层的折射率。
所述增透电荷传输层的折射率n 1与钙钛矿层的折射率n 2、第一电荷传输层的折射率n 0之间满足上述关系,能够使光线能够顺利地几乎没有损失地由所述增透电荷传输层进入钙钛矿层,从而进一步提高了进入钙钛矿层的光线的量,并进而提高了钙钛矿太阳能电池的光电转化效率。
在任意实施方式中,所述增透电荷传输层包含至少一种放射性同位素。
当在增透层材料中掺杂放射性同位素时,能够增益载流子数量,从而提高器件电流,进而进一步提高了太阳能电池的能量转换效率。
在任意实施方式中,所述放射性同位素的源选自包括以下同位素中的至少一种的单质或化合物: 3H、 210Po、 228Th、 235U、 238Pu、 63Ni、 90Sr、 90Sr、 90Y、 99Tc、 106Ru、 137Cs、 144Ce、 147Pm、 151Sm、 226Ra、 241Am、 242Cm、 244Cm、 14C、 35S。
在任意实施方式中,所述放射性同位素的源在所述增透电荷传输层中的质量占比为0-35重量%,可选为1-30重量%,更可选为3-15重量%。
所述放射性同位素的源不超过35%,可选地不超过30%,这样可以避免放射源辐射出的高能粒子不可逆转地破坏钙钛矿层的结构。
在任意实施方式中,在钙钛矿太阳能电池中,当第一电荷传输层为空穴传输层、第二电荷传输层为电子传输层时,空穴传输层、增透电荷传输层、钙钛矿层的HOMO能级依次递减;
当第一电荷传输层为电子传输层、第二电荷传输层为空穴传输层时,钙钛矿层、增透电荷传输层、电子传输层的LUMO能级依次递减,
可选地,所述任意相邻两层之间的LUMO能级或HOMO能级的差值为0-1.0eV,可选地为0-0.2eV。
钙钛矿太阳能电池中,若在各层之间采用上述能级梯度匹配的方式,使得载流子能在能级差的自然推动下更顺利、更流畅地进行流动,能够提高载流子的提取效率,进而提高电池的电压。
在任意实施方式中,所述增透电荷传输层包括与第一电荷传输层所用材料性质相同或相近的电荷传输材料。
由于增加增透层可能将影响电荷传输,因此增透膜材料选用与第一电荷传输层所用材料性质相同或相近的电荷传输材料,这样不会明显妨碍电荷传输。
在任意实施方式中,所述电子传输层包括以下材料及其衍生物中的至少一种或由其组成:酰亚胺化合物、醌类化合物、富勒烯及其衍生物以及金属氧化物,其中所述金属氧化物中的金属元素选自Mg、Cd、Zn、In、Pb、W、Sb、Bi、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga或者Cr。
在任意实施方式中,所述空穴传输层包括以下材料及其衍生物中的至少一种:2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴、甲氧基三苯胺-氟代甲脒、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、聚(3,4-乙烯二氧噻吩)、聚苯乙烯磺酸、聚3-已基噻吩、三蝶烯为核的三苯胺、3,4-乙烯二氧噻吩-甲氧基三苯胺、N-(4-苯胺)咔唑-螺双芴、聚噻吩、碘化铜、碘化亚铜、硫氰酸亚铜、磷酸咔唑以及其中金属元素选自Ni、Mo、Cu的金属氧化物。
本申请的第二方面提供一种制备钙钛矿太阳能电池的方法,所述钙钛矿太阳能电池在结构上依次包括透明上电极、第一电荷传输层、增透电荷传输层、钙钛矿层、第二电荷传输层和下电极,其中第一电荷传输层和第二电荷传输层之一为电子传输层,另一个为空穴传输层,所述方法包括制备或准备透明上电极的步骤、制备第一电荷传输层的步骤、制备增透电荷传输层的步骤、制备钙钛矿层的步骤、制备第二电荷传输层的步骤、制备下电极的步骤。
在任意实施方式中,在制备增透电荷传输层的步骤中,制备厚度T=d±1nm范围内的增透电荷传输层,其中d根据下式计算得到:d=(2k+1)λ/4n 1,其中,λ范围为380-780nm,可选为650nm-750nm;k为0-6的整数,可选为0。
在任意实施方式中,在制备增透电荷传输层的步骤中,在制备增透电荷传输层的步骤中,调控增透电荷传输层的折射率n 1使其在n±0.35的范围内,其中n 2=n 2×n 0,其中n 0和n 2依次为第一电荷传输层和钙钛矿层的折射率。
在任意实施方式中,在制备增透电荷传输层的步骤中,采用与第一电荷传输层材料性质相同或相近的材料。
在任意实施方式中,在制备增透电荷传输层的步骤中,使用所述放射性同位素的源,可选地,所述放射性同位素的源选自包括以下同位素中的至少一种的单质或化合物: 3H、 210Po、 228Th、 235U、 238Pu、 63Ni、 90Sr、 90Y、 99Tc、 106Ru、 137Cs、 144Ce、 147Pm、 151Sm、 226Ra、 241Am、 242Cm、 244Cm、 14C、 35S。
在任意实施方式中,在制备钙钛矿太阳能电池的方法中,所述放射性同位素的源在所述增透电荷传输层中的质量占比为0-35重量%,可选为1-30重量%,更可选为3-15重量%。
在任意实施方式中,在制备钙钛矿太阳能电池的方法中,当第一电荷传输层为空穴传输层、第二电荷传输层为电子传输层时,空穴传输层、增透电荷传输层、钙钛矿层的HOMO能级依次递减;
当第一电荷传输层为电子传输层、第二电荷传输层为空穴传输层时,钙钛矿层、增透电荷传输层、电子传输层的LUMO能级依次递减,
可选地,所述任意相邻两层之间的LUMO能级或HOMO能级的差值为0-1.0eV,可选地为0-0.2eV。
钙钛矿太阳能电池中,若在各层之间采用上述能级梯度匹配的方式,使得载流子能在能级差的自然推动下更顺利、更流畅地进行流动,能够提高载流子的提取效率,进而提高电池的电压。
本申请的第三方面提供一种用电装置,其包括本申请第一方面所述的钙钛矿太阳能电池或采用本申请第二方面所述的方法制备的钙钛矿太阳能电池。
附图说明
图1为本申请所述的钙钛矿太阳能电池的结构示意图,图中从上到下依次包括透明上电极、第一电荷传输层、增透电荷传输层、钙钛矿层、第二电荷传输层、下电极,其中增透电荷传输层任选地包含放射性元素。
具体实施方式
以下,适当地参照附图详细说明具体公开了钙钛矿太阳能电池及其制备方法的实施方式。但是会有省略不必要的详细说明的情况。例如,有省略对已众所周知的事项的详细说明、实际相同结构的重复说明的情况。这是为了避免以下的说明不必要地变得冗长,便于本领域 技术人员的理解。此外,附图及以下说明是为了本领域技术人员充分理解本申请而提供的,并不旨在限定权利要求书所记载的主题。
本申请所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-6。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。
如果没有特别的说明,本申请的所有实施方式以及可选实施方式可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有技术特征以及可选技术特征可以相互组合形成新的技术方案。
如果没有特别的说明,本申请的所有步骤可以顺序进行,也可以随机进行,可选是顺序进行的。例如,所述方法包括步骤(a)和(b),表示所述方法可包括顺序进行的步骤(a)和(b),也可以包括顺序进行的步骤(b)和(a)。例如,所述提到所述方法还可包括步骤(c),表示步骤(c)可以任意顺序加入到所述方法,例如,所述方法可以包括步骤(a)、(b)和(c),也可包括步骤(a)、(c)和(b),也可以包括步骤(c)、(a)和(b)等。
如果没有特别的说明,本申请所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。
如果没有特别的说明,在本申请中,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。
当使用钙钛矿太阳能电池时,当入射光作用于太阳能电池的各个功能层时,不可避免的在各个界面发生反射,造成光损失,这是由各层材料的折射率与厚度等属性参数决定的。工程人员需要通过光管理来尽量减少此类损失。
目前,解决上述光损失的解决方法包括在电池器件入光侧玻璃表面增加制绒工艺以增加光程、在电池表面额外制备增透层以增加入光量等。然而,这些方法将增加器件结构复杂度及制备成本。因此,需要考虑一种在减少光损失的同时不影响电池结构优越性、甚至能够提高电池的能量转换效率的方法。
出乎意料地,本申请通过在钙钛矿太阳能电池的入光侧在钙钛矿层之前增加一层增透层,并使该增透层满足一定的厚度和折射率关系,能够减少由于光反射造成的光损失,从而增加了太阳能电池的能量转换效率。进一步地,本申请出人意料地将放射性同位素引入了增透层,通过使放射性同位素放射出的高能辐射粒子作用于钙钛矿从而促使钙钛矿释放出更多的载流子,实现了辐伏-光伏协同效应增强,进一步提高了钙钛矿太阳能电池的电流效率。
因此,本申请第一方面提供一种钙钛矿太阳能电池,其在结构上依次包括透明上电极、第一电荷传输层、增透电荷传输层、钙钛矿层、第二电荷传输层和下电极,其中第一电荷传输层和第二电荷传输层之一为电子传输层,另一个为空穴传输层。
在一些实施方式中,所述增透电荷传输层的厚度为T,满足T=d±1nm,其中d根据下式计算得到:d=(2k+1)λ/4n 1,其中,λ范围为380-780nm,可选为650nm-750nm;k为0-6的整数,可选为0;n 1为增透电荷传输层的折射率。
本申请提供了一种具有光增透电荷传输层的钙钛矿光伏电池,如图1所示,在钙钛矿吸收层和第一电荷传输层之间设置增透电荷传输层,如此,太阳光在通过透明上电极进入第一电荷传输层之后射入增透电荷传输层。由于增透电荷传输层的厚度满足公式d=(2k+1)λ/4n 1,因此,入射光能够全部透过增透电荷传输层到达该层与钙钛矿层之间的界面。由此,本申请所述的增透电荷传输层减少了光反射损失,从而增多了进入钙钛矿层的光线并且增加了光生载流子数量,进而提高了太阳能电池的能量转换效率以及电池电流。
由于增透层的厚度越小越好,因此最可选k为0。
在一些实施方式中,所述增透电荷传输层的折射率n 1在n±0.35的范围内,其中n 2=n 2×n 0,其中n 0和n 2依次为第一电荷传输层和钙钛矿层的折射率。
理想情况下,所述增透电荷传输层的折射率n 1=n,此时所述增透电荷传输层的增透效果最好。尽管如此,当n 1在n±0.35的范围内、可选在n±0.25时,更可选在n±0.25范围内时,也同样能够实现好的增透效果。本申请实施例中,将n 1-n的值称为偏差。该偏差为0时是最可选的。本申请中,可通过放射性同位素掺杂将该偏差调控至最优值。
所述增透电荷传输层的折射率n 1与钙钛矿层的折射率n 2、第一电荷传输层的折射率n 0之间满足上述关系,能够使光线能够顺利地几乎没有损失地由所述增透电荷传输层进入钙钛矿层,从而进一步提高了进入钙钛矿层的光线的量,并进而提高了钙钛矿太阳能电池的光电转化效率。
所述增透电荷传输层的折射率n 1、钙钛矿层的折射率n 2、第一电荷传输层的折射率n 0可根据使用的原料确定,或者通过折射光检测仪(例如赛默飞公司的仪器)检测得到。
根据本申请,第一电荷传输层和增透电荷传输层之间、增透电荷传输层和钙钛矿层之间不存在其他功能层。
在一些实施方式中,所述增透电荷传输层包含至少一种放射性同位素。
根据本申请,在钙钛矿吸收层和第一电荷传输层之间设置增透电荷传输层,然而,该层的增加也伴随着界面的增加,载流子(空穴或电子)在通过界面时会在界面的缺陷处被捕获或复合,进而可能影响器件电流。现出乎意料地发现,当在增透层材料中掺杂放射性同位素时,能够增益载流子数量,从而提高器件电流,进而进一步提高了太阳能电池的能量转换效率。
具体而言,在所述增透电荷传输层中掺杂至少一种放射性同位素时,相应的钙钛矿太阳能电池除了利用外界入射光作为能量来源,还可以利用放射性同位素的辐射衰变能作为能量来源,具体而言,放射性同位素能够放射出的高能辐射粒子(KeV),这些高能辐射粒子作用于钙钛矿层会促使钙钛矿层产生更多载流子来增益电池的能量转换性能。另外,当在所述增透电荷传输层中掺杂至少一种放射性同位素时,由于放射性同位素能够作用于钙钛矿并促使钙钛矿产生更多载流子,因此,也使得钙钛矿太阳能电池在没有光线或光线较少的情况下保持发电成为可能。
在一些实施方式中,所述放射性同位素的源选自包括以下同位素中的至少一种的单质或化合物: 3H、 210Po、 228Th、 235U、 238Pu、 63Ni、 90Sr、 90Sr、 90Y、 99Tc、 106Ru、 137Cs、 144Ce、 147Pm、 151Sm、 226Ra、 241Am、 242Cm、 244Cm、 14C、 35S。
根据本申请,所有可以促使钙钛矿层释放载流子的放射性同位素均在本申请范围内。可选地,本申请筛选出可用的上述种类的放射性同位素。然而,这些放射性同位素仅为可选的,本申请不意图限制于此。
上述放射性同位素部分可以单质形式使用,例如 14C、 35S等,部分需以化合物形式使用,例如对于同位素 238Pu、 3H,可以以 238PuO 2微球、(C 4H 3 3H 5) n(其中n为8~50)、 3H 2、Ti 3H 4等形式使用。
本申请中,含有放射性同位素的物质称为放射性同位素的源。
可选地, 63Ni的源可为 63NiClx(其中x在2-3范围内), 14C的源可为[ 14C]甲酸钠(所有的C均为 14C), 35S的源可为 35S单质。
从放射性同位素放射出的射线进行分类,放射性同位素的放射源可分为α型辐射源、β型辐射源、X射线辐射源和γ射线辐射源。可在钙钛矿太阳能电池中使用上述放射性同位素的放射源中的至少一种。
可选地,α型辐射源包括,但不限于, 210Po、 228Th、 235U、 238Pu、 241Am、 242Cm、 244Cm单质及其化合物以及 238PuO 2微球中的至少一种。
可选地,β型辐射源包括,但不限于, 63Ni、 90Sr、 90Sr、 90Y、 99Tc、 106Ru、 137Cs、 144Ce、 147Pm、 151Sm、 226Ra、 14C、 35S单质或其化合物以及(C 4H 3 3H 5-) n3H 2、Ti 3H 4,其中n定义如上所述。
可选地,X射线和γ射线可能是附带产生的,可以产生这两种射线的源包括,但不限于,α型辐射源或β型辐射源。
在一些可选实施方式中,在钙钛矿太阳能电池中使用β型辐射源。
在一些实施方式中,所述放射性同位素的源在所述增透电荷传输层中的质量占比为0-35重量%,可选为1-30重量%,更可选为3-15重量%。
所述放射性同位素的源不超过35%,可选地不超过30%,这样可以避免放射源辐射出的高能粒子不可逆转地破坏钙钛矿层的结构。
在一些实施方式中,在钙钛矿太阳能电池中,当第一电荷传输层为空穴传输层、第二电荷传输层为电子传输层时,空穴传输层、增透电荷传输层、钙钛矿层的HOMO能级依次递减;
当第一电荷传输层为电子传输层、第二电荷传输层为空穴传输层时,钙钛矿层、增透电荷传输层、电子传输层的LUMO能级依次递减,
可选地,所述任意相邻两层之间的LUMO能级或HOMO能级的差值为0-1.0eV,可选地为0-0.2eV。
钙钛矿太阳能电池中,若在各层之间采用上述能级梯度匹配的方式,使得载流子能在能级差的自然推动下更顺利、更流畅地进行流动,能够提高载流子的提取效率,进而提高电池的电压。
本申请中,虽然限定钙钛矿太阳能电池包括透明上电极、第一电荷传输层、增透电荷传输层、钙钛矿层、第二电荷传输层和下电极,然而,钙钛矿太阳能电池还可任选地包括其他层,例如钝化层、介孔层等,可选地,在包括其他层的情况下,也满足相邻层的上述能级匹配关系。
在一些实施方式中,所述增透电荷传输层包括与第一电荷传输层所用材料性质相同或相近的电荷传输材料。
“与第一电荷传输层所用材料性质相同或相近”表示:如果第一电荷传输层使用电子传输层材料,则增透电荷传输层也使用电子传输层材料,其可使用与第一电荷传输层材料相同的材料,也可使用不同的电子传输层材料;相应地,如果第一电荷传输层使用空穴传输层材料,则增透电荷传输层也使用空穴传输层材料,其可使用与第一电荷传输层材料相同的材料,也可使用不同的空穴传输层材料。
由于增加增透层可能将影响电荷传输,因此增透膜材料选用与第一电荷传输层所用材料性质相同或相近的电荷传输材料,这样不会明显妨碍电荷传输。
本申请中,“增透层”、“增透膜”和增透电荷传输层可互换使用。
根据本申请,所述增透电荷传输层的厚度和折射率分别需要满足d=(2k+1)λ/4n 1和n 1 2=n 2×n 0这两个关系式,其中厚度可在制备过程中进行调控,而对于折射率,可通过使用增透电荷传输材料种类进行调控,因此,增透电荷传输层的材料,在与第一电荷传输层所用材料性质相同或相近的同时还要同时满足n 1 2=n 2×n 0关系式。
电子传输层和空穴传输层
本申请中,电子传输层可由本领域已知的电子传输材料制成,空穴传输层可由本领域已知的空穴传输材料制成。
在一些实施方式中,可选地,所述电子传输层包括以下材料及其衍生物中的至少一种或由其组成:酰亚胺化合物、醌类化合物、富勒烯及其衍生物以及金属氧化物,其中所述金属氧化物中的金属元素选自Mg、Cd、Zn、In、Pb、W、Sb、Bi、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga或者Cr。
在一些实施方式中,所述空穴传输层包括以下材料及其衍生物中的至少一种或由其组成:2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴(Spiro-OMeTAD)、甲氧基三苯胺-氟代甲脒(OMeTPA-FA)、聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、聚(3,4-乙烯二氧噻吩)、聚苯乙烯磺酸、聚3-已基噻吩(P3HT)、三蝶烯为核的三苯胺(H101)、3,4-乙烯二氧噻吩-甲氧基三苯胺(EDOT-OMeTPA)、N-(4-苯胺)咔唑-螺双芴(CzPAF-SBF)、聚噻吩、碘化铜、碘化亚铜、硫氰酸亚铜、磷酸咔唑以及其中金属元素选自Ni、Mo、Cu的金属氧化物。
空穴传输层的厚度可为5~300nm。
电子传输层的厚度可为5~200nm。
根据本申请,第一电荷传输层可为电子传输层也可以为空穴传输层,当第一电荷传输层为电子传输层时,第二电荷传输层为空穴传输层,增透电荷传输材料可使用电子传输材料,其可与电子传输层中使用的材料相同也可不同,只要保证增透电荷传输层的厚度和折射率满足上述两个关系式即可。在此情况下,也可通过调控电子传输层的折射率来调控增透电荷传输层的折射率。可选地,增透电荷传输材料使用与电子传输层中使用的相同的材料,采用同位素来调整增透电荷传输层材料的折射率。
而当第一电荷传输层为空穴传输层时,第二电荷传输层为电子传输层,增透电荷传输材料可使用空穴传输材料,其可与空穴传输层中使用的材料相同也可不同,只要保证增透电荷传输层的厚度和折射率满足上述两个关系式即可。在此情况下,也可通过调控空穴传输层的折射率来调控增透电荷传输层的折射率。可选地,增透电荷传输材料 使用与空穴传输层中使用的相同的材料,采用同位素来调整增透电荷传输层材料的折射率。
钙钛矿
在本申请所述的钙钛矿太阳能电池中,钙钛矿层可使用本领域中常规使用的任何钙钛矿材料制备。可选地,本申请使用ABX 3型的钙钛矿,其中,A为无机或有机或有机无机混合阳离子,B为无机或有机或有机无机混合阳离子,X为无机或有机或有机无机混合阴离子。作为示例,A位离子可为,例如甲胺阳离子MA +、甲脒阳离子FA +、Cs +以及它们的混合;B位离子可为,例如,Pb 2+、Sn 2+以及它们的混合;X位离子,可为卤素离子、COO -以及它们的混合。
应理解,本申请所述的钙钛矿材料不限于上述钙钛矿材料。
钙钛矿层的厚度为100~2000nm。
钙钛矿层为太阳能电池的最重要的组成部分,因此,保证钙钛矿的质量和厚度是必要的。
根据本申请,所述放射性同位素可释放高能辐射粒子,这些高能辐射粒子作用于钙钛矿,可促使钙钛矿释放出更多的载流子。因此,放射性同位素的种类和量不同,对钙钛矿的作用也会有所不同,据此,可以通过本领域中的常规技术手段对放射性同位素对钙钛矿的作用进行考察,从而选择出放射性同位素种类、量和钙钛矿结构等的最优匹配。
本申请所述的电子传输层、空穴传输层、钙钛矿层及增透电荷传输层均可采用以下至少一种方法制备:化学浴沉积方法、电化学沉积方法、化学气相沉积方法、物理外延生长方法、种热蒸镀共蒸方法、原子层沉积方法、磁控溅射方法、前驱液旋涂方法、前驱液狭缝涂布方法、前驱液刮涂方法、机械压合方法,其中,可选热蒸镀方法及前驱液涂布(旋涂)方法。
电极
本申请所述的透明上电极、下电极可为本领域中使用的任何电极。可选地,所述的透明上电极、下电极的电极材料为有机或无机或有机 无机混合的导电材料。作为示例,有机导电材料可为导电聚合物,例如,聚(3,4-乙烯二氧噻吩)(PEDOT)、聚噻吩、聚乙炔等;无机导电材料可为:透明导电氧化物,例如掺氟的氧化锡(FTO)、氧化铟锡(ITO)、铝掺杂的氧化锌(AZO)等;金属;碳衍生物等。
透明上电极用于光入射。通常采用透明导电氧化物。一般地,所述透明导电氧化物由玻璃基底和氧化物薄膜(简称TCO)导电层组成。常规使用的TCO有ITO、FTO、AZO,但本申请不限于此。
导电玻璃在使用前需清洗,例如用清洗剂(例如包括但不限于表面活性剂)、乙醇、丙酮、异丙醇和去离子水等超声清洗。
下电极用于收集载流子,选自金属或碳衍生物,制备方法为本领域已知的技术方法,如热蒸镀法,厚度为20~1000nm。
本申请的第二方面提供一种制备钙钛矿太阳能电池的方法,所述钙钛矿太阳能电池在结构上依次包括透明上电极、第一电荷传输层、增透电荷传输层、钙钛矿层、第二电荷传输层和下电极,其中第一电荷传输层和第二电荷传输层之一为电子传输层,另一个为空穴传输层,所述方法包括制备或准备透明上电极的步骤、制备第一电荷传输层的步骤、制备增透电荷传输层的步骤、制备钙钛矿层的步骤、制备第二电荷传输层的步骤、制备下电极的步骤。
在一些实施方式中,在制备增透电荷传输层的步骤中,制备厚度在d±1nm范围内的增透电荷传输层,其中d根据下式计算得到:d=(2k+1)λ/4n 1,其中,λ范围为380-780nm,可选为650nm-750nm;k为0-6的整数,可选为0。
本申请中,对于钙钛矿太阳能电池的描述适用于制备钙钛矿太阳能电池的方法,反之亦然,对于制备钙钛矿太阳能电池的描述也适用于钙钛矿太阳能电池。
在一些实施方式中,在制备增透电荷传输层的步骤中,在制备增透电荷传输层的步骤中,调控增透电荷传输层的折射率n 1使其在n±0.35的范围内,其中n 2=n 2×n 0,其中n 0和n 2依次为第一电荷传输层和钙钛矿层的折射率。
在一些实施方式中,在制备增透电荷传输层的步骤中,采用与第一电荷传输层材料性质相同或相近的材料。
在一些实施方式中,在制备增透电荷传输层的步骤中,使用所述放射性同位素的源,可选地,所述放射性同位素的源选自包括以下同位素中的至少一种的单质或化合物: 3H、 210Po、 228Th、 235U、 238Pu、 63Ni、 90Sr、 90Y、 99Tc、 106Ru、 137Cs、 144Ce、 147Pm、 151Sm、 226Ra、 241Am、 242Cm、 244Cm、 14C、 35S。
在一些实施方式中,在所述制备钙钛矿太阳能电池的方法中,所述放射性同位素的源在所述增透电荷传输层中的质量占比为0-35重量%,可选为1-30重量%,更可选为3-15重量%。
在一些实施方式中,在所述制备钙钛矿太阳能电池的方法中,当第一电荷传输层为空穴传输层、第二电荷传输层为电子传输层时,空穴传输层、增透电荷传输层、钙钛矿层的HOMO能级依次递减;
当第一电荷传输层为电子传输层、第二电荷传输层为空穴传输层时,钙钛矿层、增透电荷传输层、电子传输层的LUMO能级依次递减,
可选地,所述任意相邻两层之间的LUMO能级或HOMO能级的差值为0-1.0eV,可选地为0-0.2eV。
本申请第三方面提供一种用电装置,其包括本申请第一方面所述的钙钛矿太阳能电池或采用本申请第二方面所述的方法制备的钙钛矿太阳能电池。
实施例
以下,说明本申请的实施例。下面描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
【钙钛矿太阳能电池制备】
实施例1
1)将规格为2.0cm×2.0cm的FTO导电玻璃表面依次用丙酮和异丙醇清洗2次,浸入去离子水中超声处理10min,再在鼓风干燥箱中干燥,之后放置在手套箱中(N 2氛围),将其作为透明上电极。
2)制备第一电荷(电子)传输层:
使用匀胶机(LEBO EZ6-S,下同)以5000rpm在FTO层上旋涂60μL的3重量%SnO 2纳米胶体水溶液,之后在恒温热台上以150℃加热15min,得到厚度为30nm的电子传输层,其折射率为2.00。
3)制备增透电荷传输层:
将FTO/SnO 2样品放入真空镀膜机中,在5×10 -4Pa的真空条件下在所得到的电子传输层表面蒸镀TiO 2,厚度为79.5nm,其折射率为2.20(注:d=(2k+1)λ/4n 1,取k=0,钙钛矿吸收光主波段λ~700nm)。
4)制备钙钛矿层:使用匀胶机以4000rpm的速度在所得到的电子传输层上旋涂浓度为1.5mol/L的FAPbI 3的DMF溶液,之后移至恒温热台上,以100℃加热30min,冷却至室温后,形成钙钛矿层,厚度为500nm,其折射率为2.59。
5)制备第二电荷(空穴)传输层:以3000rpm的速度在钙钛矿层上旋涂浓度为73mg/mL的Spiro-OMeTAD的氯苯溶液,旋涂时间为20秒,得到空穴传输层,厚度为150nm。
6)制备Ag电极:将前述步骤得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下,在所得到的空穴传输层表面蒸镀Ag电极,蒸镀速率0.1埃/s,得到厚度为80nm的Ag电极,其为下电极。
由此得到实施例1的钙钛矿光伏电池。
实施例2
与实施例1同样操作,不同之处在于,制备增透电荷传输层3)的步骤中,采用另外一种电荷传输材料。具体如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传 输层表面蒸镀厚度为88.8nm的ZnO,得到增透电荷传输层,其折射率为1.97(注:d=(2k+1)λ/4n,取k=0,钙钛矿吸收光主波段λ~700nm)。
实施例3
与实施例1同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀 63NiClx(其中x在2-3范围内,商业购买)和TiO 2,其中 63NiClx比例为5重量%,得到厚度为d=76.8nm的增透电荷传输层,其折射率为2.28(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
实施例4
与实施例1同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀 63NiClx(同上)和TiO 2,其中 63NiClx比例为10重量%,得到厚度为d=74.5nm的增透电荷传输层,其折射率为2.35(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
实施例5
与实施例3同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀[ 14C]甲酸钠(商业购买)和TiO 2,其中[ 14C]甲酸钠比例为5重量%,得到厚度为d=76.1nm的增透电荷传输层,其折射率为2.30(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
实施例6
与实施例3同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀 35S(商业购买)和TiO 2,其中 35S比例为5重量%,得到厚度为d=75.4nm的增透电荷传输层,其折射率为2.32(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
实施例7
与实施例3同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀Ti 3H 4(商业购买)和TiO 2,其中Ti 3H 4比例为5重量%,得到厚度为d=75.1nm的增透电荷传输层,其折射率为2.33(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
实施例8
与实施例3同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀 63NiClx(同上)和TiO 2,其中 63NiClx比例为1重量%,得到厚度为d=79.2nm的增透电荷传输层,其折射率为2.21(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
实施例9
与实施例3同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀 63NiClx(同上)和TiO 2,其中 63NiClx比例为3重量%, 得到厚度为d=78.1nm的增透电荷传输层,其折射率为2.24(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
实施例10
与实施例3同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀 63NiClx(同上)和TiO 2,其中 63NiClx比例为15重量%,得到厚度为d=73.5nm的增透电荷传输层,其折射率为2.38(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
实施例11
与实施例3同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀 63NiClx(同上)和TiO 2,其中 63NiClx比例为18重量%,得到厚度为d=72.9nm的增透电荷传输层,其折射率为2.40(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
实施例12
与实施例3同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀 63NiClx(同上)和TiO 2,其中 63NiClx比例为30重量%,得到厚度为d=71.4nm的增透电荷传输层,其折射率为2.45(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
实施例13
与实施例3同样操作,不同之处如下:
制备增透电荷传输层:将前一步骤(步骤2))得到的样品放入真空镀膜机,在5×10 -4Pa的真空条件下在步骤2)中所得到的电子传输层表面共蒸镀 63NiClx(同上)和TiO 2,其中 63NiClx比例为35重量%,得到厚度为d=70.9nm的增透电荷传输层,其折射率为2.47(注:d=(2k+1)λ/4n,k=0,钙钛矿吸收光主波段λ~700nm)。
比较例1
与实施例3同样操作,不同之处在于没有制备增透电荷传输层,在制备完电子传输层之后直接制备钙钛矿层。
由此得到对比例1的钙钛矿辐伏-光伏电池。
【性能测试】
1.电池能量转换效率测试
对各个实施例和比较例中的钙钛矿太阳能电池进行能量转换效率测试。具体过程如下:
大气环境下,使用AM1.5G标准光源作为太阳光模拟光源,使用四通道数字源表(Keithley 2440)测量光源照射下电池的伏安特性曲线,得到电池的开路电压Voc、短路电流密度Jsc、填充因子FF(Fill Factor),由此计算电池的能量转换效率Eff(Efficiency)。
能量转换效率如下计算:Eff=Pout/Popt
=Voc×Jsc×(Vmpp×Jmpp)/(Voc×Jsc)
=Voc×Jsc×FF
其中Pout、Popt、Vmpp、Jmpp分别为电池工作输出功率、入射光功率、电池最大功率点电压及最大功率点电流。
将结果记于下面的表格中。
表格中,n 1为增透电荷传输层的折射率,n 0为第一电荷传输层的折射率,n 2为钙钛矿层的折射率,折射率偏差为n 1-n的值,表示实际制备的增透电荷传输层的折射率与理想折射率n的差距,n通过关系式n 2=n 0×n 2得到。
Figure PCTCN2022127057-appb-000001
由上表可以看出,与比较例1相比,使用本申请所述的增透电荷传输层的实施例1-13能够明显提高钙钛矿太阳能电池的能量转换效率。
由实施例1-2和实施例3-13比较可以看出,使用掺杂了同位素的增透电荷传输层相比于未掺杂同位素的增透电荷传输层能够实现更好的电池能量转换效率。
由实施例3-4、8-13可以看出,当放射性同位素的源在增透电荷传输层中的质量占比在0-35重量%、可选地1-30重量%范围内时,能够实现电池能量转换效率的提高,更可选地,当该质量占比在3-15重量%范围内时,所得到的钙钛矿太阳能电池的能量转换效率明显提高。
需要说明的是,本申请不限定于上述实施方式。上述实施方式仅为示例,在本申请的技术方案范围内具有与技术思想实质相同的构成、发挥相同作用效果的实施方式均包含在本申请的技术范围内。此外,在不脱离本申请主旨的范围内,对实施方式施加本领域技术人员能够想到的各种变形、将实施方式中的一部分构成要素加以组合而构筑的其它方式也包含在本申请的范围内。

Claims (18)

  1. 一种钙钛矿太阳能电池,其在结构上依次包括透明上电极、第一电荷传输层、增透电荷传输层、钙钛矿层、第二电荷传输层和下电极,其中第一电荷传输层和第二电荷传输层之一为电子传输层,另一个为空穴传输层。
  2. 根据权利要求1所述的钙钛矿太阳能电池,其特征在于,所述增透电荷传输层的厚度为T,满足T=d±1nm,其中d根据下式计算得到:d=(2k+1)λ/4n 1,其中,λ范围为380-780nm,可选为650nm-750nm;k为0-6的整数,可选为0;n 1为增透电荷传输层的折射率。
  3. 根据权利要求1或2所述的钙钛矿太阳能电池,其特征在于,其中所述增透电荷传输层的折射率n 1在n±0.35的范围内,其中n 2=n 2×n 0,其中n 0和n 2依次为第一电荷传输层和钙钛矿层的折射率。
  4. 根据权利要求1-3中任一项所述的钙钛矿太阳能电池,其特征在于,所述增透电荷传输层包含至少一种放射性同位素。
  5. 根据权利要求4所述的钙钛矿太阳能电池,其特征在于,所述放射性同位素的源选自包括以下同位素中的至少一种的单质或化合物: 3H、 210Po、 228Th、 235U、 238Pu、 63Ni、 90Sr、 90Y、 99Tc、 106Ru、 137Cs、 144Ce、 147Pm、 151Sm、 226Ra、 241Am、 242Cm、 244Cm、 14C、 35S。
  6. 根据权利要求1-5中任一项所述的钙钛矿太阳能电池,其特征在于,所述放射性同位素的源在所述增透电荷传输层中的质量占比为0-35重量%,可选为1-30重量%,更可选为3-15重量%。
  7. 根据权利要求1-6中任一项所述的钙钛矿太阳能电池,其特征在于,当第一电荷传输层为空穴传输层、第二电荷传输层为电子传输层时,空穴传输层、增透电荷传输层、钙钛矿层的HOMO能级依次递减;
    当第一电荷传输层为电子传输层、第二电荷传输层为空穴传输层时,钙钛矿层、增透电荷传输层、电子传输层的LUMO能级依次递减,
    可选地,所述任意相邻两层之间的LUMO能级或HOMO能级的差值为0-1.0eV,可选地为0-0.2eV。
  8. 根据权利要求1-7中任一项所述的钙钛矿太阳能电池,其特征在于,所述增透电荷传输层包括与第一电荷传输层所用材料性质相同或相近的电荷传输材料。
  9. 根据权利要求1-8中任一项所述的钙钛矿太阳能电池,其特征在于,所述电子传输层包括以下材料及其衍生物中的至少一种或由其组成:酰亚胺化合物、醌类化合物、富勒烯及其衍生物以及金属氧化物,其中所述金属氧化物中的金属元素选自Mg、Cd、Zn、In、Pb、W、Sb、Bi、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga或者Cr。
  10. 根据权利要求1-9中任一项所述的钙钛矿太阳能电池,其特征在于,所述空穴传输层包括以下材料及其衍生物中的至少一种:2,2',7,7'-四(N,N-对甲氧苯胺基)-9,9'-螺二芴、甲氧基三苯胺-氟代甲脒、聚[双(4-苯基)(2,4,6-三甲基苯基)胺]、聚(3,4-乙烯二氧噻吩)、聚苯乙烯磺酸、聚3-已基噻吩、三蝶烯为核的三苯胺、3,4-乙烯二氧噻吩-甲氧基三苯胺、
    N-(4-苯胺)咔唑-螺双芴、聚噻吩、碘化铜、碘化亚铜、硫氰酸亚铜、磷酸咔唑以及其中金属元素选自Ni、Mo、Cu的金属氧化物。
  11. 制备钙钛矿太阳能电池的方法,所述钙钛矿太阳能电池在结构上依次包括透明上电极、第一电荷传输层、增透电荷传输层、钙钛矿层、第二电荷传输层和下电极,其中第一电荷传输层和第二电荷传输层之一为电子传输层,另一个为空穴传输层,所述方法包括制备或准备透明上电极的步骤、制备第一电荷传输层的步骤、制备增透电荷传输层的步骤、制备钙钛矿层的步骤、制备第二电荷传输层的步骤、制备下电极的步骤。
  12. 根据权利要求11所述的制备钙钛矿太阳能电池的方法,其特征在于,在制备增透电荷传输层的步骤中,制备厚度T=d±1nm的增透电荷传输层,其中d根据下式计算得到:d=(2k+1)λ/4n 1,其中,λ范围为380-780nm,可选为650nm-750nm;k为0-6的整数,可选为0。
  13. 根据权利要求11或12所述的制备钙钛矿太阳能电池的方法,其特征在于,在制备增透电荷传输层的步骤中,调控增透电荷传输层的折射率n 1使其在n±0.35的范围内,其中n 2=n 2×n 0,其中n 0和n 2依次为第一电荷传输层和钙钛矿层的折射率。
  14. 根据权利要求11-13中任一项所述的制备钙钛矿太阳能电池的方法,其特征在于,在制备增透电荷传输层的步骤中,采用与第一电荷传输层材料性质相同或相近的材料。
  15. 根据权利要求11-14中任一项所述的制备钙钛矿太阳能电池的方法,其特征在于,在制备增透电荷传输层的步骤中,使用所述放射性同位素的源,可选地,所述放射性同位素的源选自包括以下同位素中的至少一种的单质或化合物: 3H、 210Po、 228Th、 235U、 238Pu、 63Ni、 90Sr、 90Y、 99Tc、 106Ru、 137Cs、 144Ce、 147Pm、 151Sm、 226Ra、 241Am、 242Cm、 244Cm、 14C、 35S。
  16. 根据权利要求15所述的制备钙钛矿太阳能电池的方法,其特征在于,所述放射性同位素的源在所述增透电荷传输层中的质量占比为0-35重量%,可选为1-30重量%,更可选为3-15重量%。
  17. 根据权利要求11-16中任一项所述的制备钙钛矿太阳能电池的方法,其特征在于,当第一电荷传输层为空穴传输层、第二电荷传输层为电子传输层时,空穴传输层、增透电荷传输层、钙钛矿层的HOMO能级依次递减;
    当第一电荷传输层为电子传输层、第二电荷传输层为空穴传输层时,钙钛矿层、增透电荷传输层、电子传输层的LUMO能级依次递减,
    可选地,所述任意相邻两层之间的LUMO能级或HOMO能级的差值为0-1.0eV,可选地为0-0.2eV。
  18. 一种用电装置,其包括权利要求1-10中任一项所述的钙钛矿太阳能电池或采用权利要求11-17中任一项所述的方法制备的钙钛矿太阳能电池。
PCT/CN2022/127057 2022-10-24 2022-10-24 钙钛矿太阳能电池及其制备方法和用电装置 WO2024086977A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127057 WO2024086977A1 (zh) 2022-10-24 2022-10-24 钙钛矿太阳能电池及其制备方法和用电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/127057 WO2024086977A1 (zh) 2022-10-24 2022-10-24 钙钛矿太阳能电池及其制备方法和用电装置

Publications (1)

Publication Number Publication Date
WO2024086977A1 true WO2024086977A1 (zh) 2024-05-02

Family

ID=90829726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127057 WO2024086977A1 (zh) 2022-10-24 2022-10-24 钙钛矿太阳能电池及其制备方法和用电装置

Country Status (1)

Country Link
WO (1) WO2024086977A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820433A (zh) * 2012-08-31 2012-12-12 昆山工研院新型平板显示技术中心有限公司 Oled的增透结构
CN103762318A (zh) * 2013-12-31 2014-04-30 昆山工研院新型平板显示技术中心有限公司 一种顶发射oled器件
CN107093486A (zh) * 2017-05-23 2017-08-25 华中科技大学 一种一体化卤素钙钛矿核电池及其制备方法
CN206758471U (zh) * 2017-06-06 2017-12-15 辽宁工业大学 一种钙钛矿太阳能电池
CN108140735A (zh) * 2015-09-30 2018-06-08 株式会社钟化 多接合型光电转换装置和光电转换模块
CN112086562A (zh) * 2019-06-12 2020-12-15 北京宏泰创新科技有限公司 半透明钙钛矿太阳能电池、组件及制备方法
WO2021252601A1 (en) * 2020-06-09 2021-12-16 Ohio State Innovation Foundation Charge or electricity generating devices and methods of making and use thereof
CN114883496A (zh) * 2022-05-17 2022-08-09 三峡大学 一种双界面处理的高效钙钛矿太阳电池结构及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102820433A (zh) * 2012-08-31 2012-12-12 昆山工研院新型平板显示技术中心有限公司 Oled的增透结构
CN103762318A (zh) * 2013-12-31 2014-04-30 昆山工研院新型平板显示技术中心有限公司 一种顶发射oled器件
CN108140735A (zh) * 2015-09-30 2018-06-08 株式会社钟化 多接合型光电转换装置和光电转换模块
CN107093486A (zh) * 2017-05-23 2017-08-25 华中科技大学 一种一体化卤素钙钛矿核电池及其制备方法
CN206758471U (zh) * 2017-06-06 2017-12-15 辽宁工业大学 一种钙钛矿太阳能电池
CN112086562A (zh) * 2019-06-12 2020-12-15 北京宏泰创新科技有限公司 半透明钙钛矿太阳能电池、组件及制备方法
WO2021252601A1 (en) * 2020-06-09 2021-12-16 Ohio State Innovation Foundation Charge or electricity generating devices and methods of making and use thereof
CN114883496A (zh) * 2022-05-17 2022-08-09 三峡大学 一种双界面处理的高效钙钛矿太阳电池结构及其制备方法

Similar Documents

Publication Publication Date Title
Chen et al. Grain engineering for perovskite/silicon monolithic tandem solar cells with efficiency of 25.4%
Cheng et al. Perovskite/Si tandem solar cells: Fundamentals, advances, challenges, and novel applications
Li et al. Wide‐bandgap perovskite/gallium arsenide tandem solar cells
Bailie et al. Semi-transparent perovskite solar cells for tandems with silicon and CIGS
KR101117127B1 (ko) 비정질 실리콘 태양전지와 유기 태양전지를 이용한 탠덤형 태양전지
Huang et al. Minimizing the energy loss of perovskite solar cells with Cu+ doped NiOx processed at room temperature
CN112018100A (zh) 一种硅/钙钛矿叠层太阳能电池
EP4311388A1 (en) Perovskite/silicon heterojunction tandem solar cell and production method therefor
CN113224241A (zh) 钙钛矿太阳能电池及其制备方法
Shin et al. Recent advances of flexible hybrid perovskite solar cells
Aftab et al. Quantum junction solar cells: Development and prospects
Marchant et al. Perovskite/silicon tandem solar cells–compositions for improved stability and power conversion efficiency
CN116367686B (zh) 钙钛矿光伏电池、钙钛矿光伏电池组件和用电装置
CN116669440B (zh) 太阳能电池及其制备方法、光伏组件和光伏装置
US20230284467A1 (en) Perovskite solar battery and photovoltaic assembly
Hou et al. InGaP/GaAs/Ge triple‐junction solar cells with ZnO nanowires
WO2024086977A1 (zh) 钙钛矿太阳能电池及其制备方法和用电装置
Liu et al. Space-charging interfacial layer by illumination for efficient Sb2S3 bulk-heterojunction solar cells with high open-circuit voltage
WO2024086975A1 (zh) 钙钛矿太阳能电池及其制备方法和用电装置
CN114388696B (zh) 一种光吸收材料、其制备方法及光伏电池
CN116918481A (zh) 钙钛矿电池、其制备方法、以及包含其的光伏组件
WO2023123312A1 (zh) 钙钛矿辐伏-光伏电池
CN116669439B (zh) 太阳能电池及其制备方法、光伏组件和光伏装置
WO2024145781A1 (zh) 钙钛矿太阳能电池及其制备方法和用电装置
US20230402201A1 (en) Perovskite betavoltaic-photovoltaic battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962965

Country of ref document: EP

Kind code of ref document: A1