WO2024086909A1 - Sistema e método de identificação de informações de veículo de transporte de carga, e implemento rodoviário - Google Patents

Sistema e método de identificação de informações de veículo de transporte de carga, e implemento rodoviário Download PDF

Info

Publication number
WO2024086909A1
WO2024086909A1 PCT/BR2023/050366 BR2023050366W WO2024086909A1 WO 2024086909 A1 WO2024086909 A1 WO 2024086909A1 BR 2023050366 W BR2023050366 W BR 2023050366W WO 2024086909 A1 WO2024086909 A1 WO 2024086909A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
vehicle
vehicles
trailer
reader
Prior art date
Application number
PCT/BR2023/050366
Other languages
English (en)
French (fr)
Inventor
Joel Boaretto
Maicon MOLON
Luciano Rodrigues MAIA
Original Assignee
Instituto Hercílio Randon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto Hercílio Randon filed Critical Instituto Hercílio Randon
Publication of WO2024086909A1 publication Critical patent/WO2024086909A1/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60DVEHICLE CONNECTIONS
    • B60D1/00Traction couplings; Hitches; Draw-gear; Towing devices
    • B60D1/24Traction couplings; Hitches; Draw-gear; Towing devices characterised by arrangements for particular functions
    • B60D1/26Traction couplings; Hitches; Draw-gear; Towing devices characterised by arrangements for particular functions for remote control, e.g. for releasing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention describes a system and a method for identifying cargo transport vehicle information, identifying the angle and relative position between vehicles of the transport vehicle, in addition to other identification data of the transport vehicle.
  • the present invention is located in the fields of automobiles, embedded electronics, road implements and computer vision.
  • a difficulty in the logistics sector is identifying the towed vehicle to be coupled and towed, since it is necessary to know information about the towed vehicle to determine the appropriate towing vehicle as well as the dynamics to be applied. in maneuvers.
  • document DE102021002956 presents a method of moving a vehicle to approach a loading ramp or for coupling to a trailer.
  • the method consists of positioning the towing vehicle at a distance to read a 2D plate, positioned on the trailer or next to the ramp. From reading the 2D plate, which is a QRcode, the method calculates distance, coupling route, angle formed between the towing vehicle and trailer. Furthermore, reading the 2D plate provides information about the trailer, for example, height, weight, length and distance from the king pin.
  • document CN111578893A presents a system and method for calculating the angle between the towing vehicle and the semi-trailer, using a camera positioned on the roof of the rear portion of the towing vehicle to read a marker with a linear format being arranged on the front portion of the semi-trailer.
  • the solution of CN111578893A is also limited to the use of a camera, involving image processing and calculations to obtain the angle between the towing vehicle and the semi-trailer, which is not to be confused with the present invention.
  • document DE102021204625A1 presents a system for determining the articulation angle between the towing vehicle and a trailer and/or to determine the dimensions of the trailer using measuring sensors such as radar, lidar or a camera.
  • the sensors of DE102021204625A1 are positioned in the center of the roof or on the sides of the towing vehicle for the purpose of scanning the surrounding environment and viewing targets positioned in the center of the roof or on the sides of the rear of the trailer, whereby signals are reflected from said detected targets. by the sensors.
  • the use of sensors/targets on the sides of the towing vehicle implies an increase in the vehicle's maximum width, and sensors/targets placed on the vehicle's roof imply an increase in the vehicle's maximum height.
  • a navigation assistance system could check not only the angle between the CVC vehicles, but also also assess the possibility of overtaking a vehicle in front or transmit data so that a vehicle behind can overtake the CVC.
  • the total length is written at the end of the combination, there may be changes in the combination and other road conditions, which are not in the field of vision of the vehicle behind, for example: incorrect length of the combination due to exchanging the driven vehicle or more coupled driven vehicles; wider than normal load; presence of scouts; toxic, flammable or pressurized cargo.
  • document CN1 11923917A presents a method of acquiring data in autonomous vehicles for the purpose of calculating overtaking of a vehicle in front of the autonomous vehicle, using a camera that scans the highway and the vehicle in front.
  • the CN11 1923917A method is based on images obtained by scanning, with images devoid of targets, such as QRcodes, ArUco and others. encoded targets.
  • the present invention solves the problems of the prior art by reading a target that provides identification of cargo transport vehicle information, with the target being positioned in one of the vehicles of the transport vehicle, so that a reader receives at least one target-related signal to correlate it with an angle and relative inter-vehicle position of the transport vehicle.
  • the present invention simplifies the acquisition of said angle and relative position, in addition to other vehicle identification information, contributing to the efficient execution of automation and steering assistance systems in transport vehicles.
  • a processor calculates a route for coupling between vehicles being a towing vehicle and a driven vehicle when they are uncoupled, or for safer navigation on the road when they are coupled. Furthermore, with a view to traffic safety, the invention assists in overtaking between vehicles on the road, with the target being positioned in a vehicle traveling in front of another vehicle with the camera, promoting drivability and avoiding accidents.
  • the present invention presents a cargo transport vehicle information identification system comprising at least one driven vehicle (1) attachable to a tractor vehicle (2), the identification system comprising: at least one target (30) positioned on one of the vehicles of the transport vehicle; and a reader (40) of at least one signal related to the target (30), wherein the signal is correlated with an angle between the driven vehicle (1) and tractor (2); with a relative position between the driven vehicle (1) and tractor (2); and/or with identification data for the towed (1) and tractor (2) vehicles.
  • the present invention presents a method of identifying information from a cargo transport vehicle comprising at least one driven vehicle (1) attachable to a tractor vehicle (2), wherein the identification method comprises the steps of: receiving a signal by a reader (40), the signal being related to a target
  • a third object of the present invention is a road implement (1) comprising a front coupling region to a towing vehicle (2) and at least one target (30) of a transport vehicle information identification system. of load, with the target (30) being positioned in said front region of the implement (1).
  • An object of the present invention is also a coded track
  • a final object of the present invention is also a corner (32) for identifying cargo transport vehicle information, being associated with one of the towed vehicles (1) and/or tractor (2) of the transport vehicle and comprising at least one reflective surface that reflects at least one signal on the direction of a transmitter of said signal.
  • Figure 1 shows a coupling scheme between the driven vehicle (1) and the tractor vehicle (2), the coupling being carried out between the vehicles using the system of the present invention.
  • the set of figures 2 shows three readings of targets (30) by means of a reader (40), from the targets (30), the system processor correlates angles and relative positions between the driven vehicle (1) and the towing vehicle (2).
  • Figures 2a and 2b show angles facing the same side, while figure 2c shows an angle facing the opposite side.
  • Figure 3 shows an embodiment of a coded target (31) for reading by means of a camera.
  • Figure 4 shows a set of three coded targets (31), so that the processor receives the coded targets (31) read by the camera and calculates an angle between the tractor (1) and tractor (2) vehicles.
  • Figure 5 illustrates an exemplary diagram for identifying the angle between the driven vehicle (1) and the towing vehicle (2).
  • Figure 6 shows a distribution of targets (30) in a front region of the driven vehicle (1), having coded targets (31) and reflective targets (32).
  • Figure 7 shows an angle between the driven vehicle (1) and the towing vehicle (2), being calculated by the processor from target readings coded (31) positioned in a front region of the driven vehicle (1).
  • Figure 8 shows a schematic of an auxiliary system for checking overtaking conditions between vehicles.
  • the present invention presents a cargo transport vehicle information identification system comprising at least one driven vehicle (1) attachable to a tractor vehicle (2), with the identification system comprises: at least one target (30) positioned in one of the vehicles of the transport vehicle; and a reader (40) of at least one signal related to the target (30), wherein the signal is correlated with an angle between the driven vehicle (1) and tractor (2); with a relative position between the driven vehicle (1) and tractor (2); and/or with identification data for the towed (1) and tractor (2) vehicles.
  • the towed vehicle (1) is a semi-trailer, twin train, road train or twin train. In another embodiment, the towed vehicle (1) is a trailer.
  • the tractor vehicle (2) is a mechanical horse that provides the necessary power for the movement of one or more traction vehicles (1) already coupled or to be coupled to the mechanical horse, forming a load vehicle combination (CVC).
  • the present invention provides the identification of driven vehicles (1) and/or tractor (2) by reading targets (30).
  • the identification refers to the angle between a driven vehicle (1) and the towing vehicle (2) and/or the angle between consecutive driven vehicles (1) in the CVC.
  • the identification refers to a relative position between a driven vehicle (1) and the towing vehicle (2) and/or to the angle between consecutive driven vehicles (1) in the CVC.
  • the identification refers to data on the driven vehicles (1) and/or the towing vehicle (2), for the purposes of example: maximum length and width; Weight; number of axles in contact with the ground and presence of a traction axle; model being tipper, sider, bulk carrier, tank, etc.; among other vehicle identification data.
  • the target (30) is positioned in a front region of the driven vehicle (1).
  • the targets (30) are arranged on the headland for viewing by the reader (40).
  • the present invention presents simplified targets (30), allowing for more accurate reading. efficient to achieve accurate and reliable data.
  • the targets (30) have at least one reference point visible to the reader (40), whether this reference point is of the nature of the target itself, such as a marking, or a signal reflected/generated by the target itself, like a light signal.
  • this reference point is of the nature of the target itself, such as a marking, or a signal reflected/generated by the target itself, like a light signal.
  • being visible is understood as being perceptible, detectable, readable or interpretable by means of some specific component for this application, not necessarily visible to the naked eye.
  • the signal starts from the reference point on the target (30) and is directed towards the reader (40).
  • the signal is the sunlight or ambient light itself that reflects on the target (30), enabling the reader to see the target (30) or at least its reference points.
  • a known signal falls on the target reference point (30), being reflected in the direction of the reader (40).
  • the signal originates in a sending unit associated with the reader (40).
  • the signal is an electrical, optical, magnetic, electromagnetic, sound, ultrasound, mechanical vibration, etc., and can be a known signal and operated in such physical quantities.
  • the signals are related to the target (30) when starting from the reference points of the respective target (30). Otherwise, the signals are related to the target (30) by being reflective of reference points and other points of the target (30).
  • the target (30) is encoded (31) and/or a reflecting target (32).
  • the front region of the driven vehicle (1) has a distribution of targets (30) being only encoded targets (31), only reflective targets (32), or a combination of encoded targets (31) and reflectors (32). .
  • the encoded target (31) is a QRcode, ArUco or other two-dimensional code.
  • each coded target (31) provides identification data for the driven vehicle (1) and has reference points for calculating the angle between driven vehicle (1) and tractor (2).
  • the encoded target (31) is a track provided of reference points at the ends of the lane to calculate the angle between driven vehicles (1) and tractor (2).
  • the coded target (31) being a strip, it has divisions to indicate a code on a binary basis.
  • the coded target (31) being a strip it has a distribution of colored or gray-scale dots.
  • the stripe is visible to the naked eye.
  • the track is detectable by the reader (40), being invisible to third parties in order to protect the transport vehicle's information.
  • the reader (40) is sensitive to signals related to targets
  • the reader (40) is a camera associated with the towing vehicle (2).
  • the target (30) read by the camera is a coded target (31).
  • the reader (40) is a camera that captures images of the encoded targets (31).
  • the reader (40) is a camera provided with an infrared (IR) emitter, enabling visibility of the encoded targets
  • the reader (40) receives signals reflected from the target (30).
  • the reflecting target (32) presents encodings relating to the identification data of the driven vehicles (1) and tractor (2).
  • the reflecting target (32) has reference points that allow correlation of the signal related to the target (30) with the inter-vehicle angle of the transport vehicle.
  • the signals are related to the reflecting target (32) by being reflected from the reflecting target (32).
  • the reflecting target (32) is a set of reflective surfaces that reflects the incident signal directly toward the reader (40).
  • the reflective target (32) is a surface of the towed vehicle (1) provided with a reflective paint.
  • the reader (40) is a sensor that perceives signals reflected from the target (30), being a reflective target (32).
  • the reader (40) is a photosensor.
  • the reader (40) is associated with a sending unit that transmits a signal, so that the signal falls on the reference point of the reflecting target (32) and returns to the reader (40).
  • the present invention presents a method of identifying information from a cargo transport vehicle comprising at least one driven vehicle (1) attachable to a tractor vehicle (2), wherein the identification method comprises the steps of: receiving a signal by a reader (40), the signal being related to a target (30) positioned on one of the vehicles of the transport vehicle; and correlation, by means of a processor communicating with the reader (40), of the signal with an angle between the driven vehicle (1) and tractor (2); with a relative position between the driven vehicle (1) and tractor (2); and/or with identification data for the towed (1) and tractor (2) vehicles.
  • the identification method of the present invention is implemented by the identification system as previously described.
  • the target (30) is a passive element with the function of being detected by the reader (40).
  • the target (30) is invariable.
  • the target (30) changes if the identification data of the driven vehicles (1) coupled to the towing vehicle (2) changes.
  • the method starts receiving signals by the reader (40), reading the target (30). Additionally, the receiving step recognizes at least one reference point on the target (30), the reference point being visible to the reader (40) through the signal departing from the reference point. Thus, after reading the target (30), the method recognizes reference points on the target (30) using the reader itself (40) or a processor communicating with the reader (40). For this, a target-related signal (30) departs from the reference point in the direction of the reader (40), allowing the reference point to be visible to the reader (40).
  • the signal is a known signal emitted by a sending unit, being reflected at the target (30). In a embodiment, the signal is reflected from the target (30) and directed to the reader (40).
  • the reading of the target (30) is carried out by means of a camera, the target (30) being a coded target (31).
  • the encoded target (31) has reference points for recognition of said point by the reader (40).
  • the encoded target reference points (31) have standardized positions for recognition by the reader (40).
  • the recognition of reference points allows the calculation of the angle between the driven vehicle (1) and the towing vehicle (2).
  • the reading of the target (30) is carried out by means of a sensor that perceives signals reflected from the target (30), this being a reflective target (32).
  • the signal is reflected at a reference point for recognition of said point by the reader (40).
  • the reference point of the reflecting target (32), which is a strip is centered in said strip, so that the signal reflects in the center of the strip until it reaches the reader (40).
  • receiving the reflected signal allows the correlation of the reflected signal with the angle between the towing vehicle (1) and the towing vehicle (2).
  • the signal is known, emitted by the sending unit and reflected at the target (30).
  • the signal is a set of light beams (sunlight, ambient light, infrared, etc.) that reflect on the target (30) to form the image relative to the target (30) to be read by the reader (40).
  • the signal is a set of light beams (sunlight, ambient light, infrared, etc.) that reflect on the target (30) for reading, through the reader (40), at least one specification of the read point on the target (30), e.g. wavelength.
  • the method of the invention performs the correlation of the received signal with the angle between the driven vehicle (1) and tractor (2); with the relative position between the driven vehicle (1) and tractor (2); and/or with identification data for the towed (1) and tractor (2) vehicles.
  • the reader (40) sends the received signal to the processor.
  • the processor is a remote server and/or installed locally on the transport vehicle.
  • the correlation is given by calculating the angle and/or relative position between the vehicles of the transport vehicle.
  • the angle calculation has as inputs the reference points recognized on the encoded target (31) by the camera.
  • the correlation between the signal and said angle/position is assigned directly, being previously stored in a processor memory.
  • the reflective target (32) has, along its length, variations in shape, color, and/or details detectable by the sensor, so that the change in position and/or angle between driven vehicles (1) and tractor (2) is perceived through said variations moving in relation to the reader (40).
  • the present invention promotes safety when driving CVCs, preventing instabilities such as the jostling phenomena known as jackknifing and the lateral swing of driven vehicles (1).
  • instabilities such as the jostling phenomena known as jackknifing and the lateral swing of driven vehicles (1).
  • steering assistance systems act more reliably and preventively.
  • a third object of the present invention is a road implement (1) comprising a front coupling region to a towing vehicle (2) and at least one target (30) of a transport vehicle information identification system. of load, with the target (30) being positioned in said front region of the implement (1).
  • the target (30) has reference points being visible by a reader (40) through at least one signal departing from the reference point, wherein the signal is related to the target (30) and is correlated with an angle between the driven vehicle (1) and tractor (2); with a relative position between the driven vehicle (1) and tractor (2); and/or with a data identification of towed vehicles (1) and tractor (2).
  • the reference points on the target (30) allow the correlation of the signal reflected at said points with the relative angle/position between the driven vehicle (1) and tractor (2). In one embodiment, the reference points on the target (30) allow the correlation of the signal reflected at said points with other vehicle identification data in the CVC.
  • the implement (1) has targets (30) arranged in its front region.
  • the implement (1) has more than one type of target (30) between coded (31) and reflector (32), enabling data redundancy for greater safety in conducting the identified CVC.
  • the present invention provides the identification of each of the implements (1) that make up the CVC, allowing a steering assistance system to act to prevent accidents when limit angles are exceeded or when angular acceleration indicates loss of stability, in addition to assist in coupling the implement (1) to the towing vehicle (2) or between implements (1).
  • the identification system and method of the invention simplify obtaining the angle between the implement and the towing vehicle to be coupled or for driving implements (1) already coupled to the towing vehicle, providing a reduction in image processing and computational calculations, increased precision and accuracy of the angle obtained, in addition to facilitating the manufacture, installation and maintenance of targets and the reader arranged in the transport vehicle.
  • Example 1 System Implemented in CVC for Coupling between CVC vehicles
  • figure 1 illustrates the schematic of the system that calculates a coupling route exemplified by the dotted line, with the coupling made between a semi-trailer (1) and a tractor vehicle (2) that make up the CVC, the tractor vehicle (2) being a mechanical horse or an autonomous dolly.
  • the system identifies the relative position, through the angle, between the semi-trailer (1) and the tractor (2) and, together with some identification data of the semi-trailer (1), projects the route to be taken coupling between vehicles.
  • This route can be made available on a monitor in the driver's cabin (eg, an on-board computer, smartphone, etc.), so that the driver has a reference when carrying out the maneuver.
  • said route is used by an autonomous or semi-autonomous vehicle so that the coupling is carried out automatically.
  • Figures 2a to 2c illustrate the semi-trailer (1) already coupled to the horse (2), as well as the angles and relative positions calculated for the respective target (30) read.
  • Figures 2a and 2b show angles facing the same side in relation to the towing vehicle (2) as indicated by the positive angle, while figure 2c shows an angle facing the opposite side as indicated by the negative angle.
  • the identification system of the invention has: a target (30) positioned in the front region of the semi-trailer (1); a reader (40) embedded in the towing vehicle (2) to identify the semi-trailer (1) and obtain data from it through the target (30); and a processor embedded in the CVC to run the coupling system.
  • the processor receives information from the read targets (30) and calculates a coupling route to the semi-trailer (1) based on the angle and relative position calculated between the towing vehicle (2) and the semi-trailer (1).
  • FIG. 6 shows some of the types of targets (30) proposed by the invention for providing identification data for the semi-trailer (1) and for acquiring the angle between the semi-trailer (1) and the towing vehicle (2). Therefore, the targets (30) arranged on the semi-trailer (1) are of the same type or of different types.
  • the choice of targets (30) in relation to type, quantity, size, reference point, position at the head, among other details, is not is limiting to the scope of the present invention, since such choice depends on the application, for example, model and dimensions of the semi-trailer (1), routes with sections with low ambient or solar lighting and with precarious and irregular sections, option for redundancy of information , etc.
  • the construction of the targets (30) of the present invention foresees the peculiarities that cargo transport vehicles deal with, so that the identification system remains operative, with the targets (30) positioned in the front region of the semi-trailer (30) and the reader (40) positioned on the towing vehicle (2) or on the semi-trailer in front to identify the semi-trailer (30) behind.
  • the reader (40) of the invention is any component capable of detecting the target (30) for communication between the semi-trailer (1) and the towing vehicle (2) and/or between semi-trailers (1), in which, the target (30) of the semi-trailer (1) reports static data and data for calculating said angles and relative positions between the towing vehicle (2) and the semi-trailer (1).
  • static data presents necessary requirements for driving the semi-trailers (1) by the towing vehicle (2) and specifications related to the transport of the load, for example, minimum power, semi-trailer model, number of axles on the ground and whether any of these have auxiliary traction , in addition to details of the shipment, such as cargo weight, toxic or flammable or perishable cargo, origin and destination.
  • the tractor vehicle (2) checks such data and, if it meets the requirements for transport, carries out the coupling route to the semi-trailers (1) and then drives the CVC. Otherwise, where the semi-trailer (1) is provided with a level of automation, the semi-trailer (1) carries out the coupling route to the towing vehicle (2) after checking the specifications of the towing vehicle (2) and whether it meets requirements for cargo transportation.
  • Example 2 Vehicle Identification and Angle Calculation Using Arllco
  • the identification system in the example uses a camera (40) fixed to the rear region of the horse (2); and a coded target (31) of the ArUco type, as shown in figure 3, fixed to the front region of the semi-trailer (1).
  • a coded target (31) of the ArUco type as shown in figure 3
  • three coded targets (31) are fixed to the front region of the driven vehicle (1) as shown in figure 4.
  • the coded target (31) has a pattern identifiable by a processor of the identification system of the present invention, and the coded target (31) corresponds to a set of data stored in a database.
  • the processor recognizes at least one reference point in the encoded target (31).
  • the coded target (31) has three axes corresponding to reference points.
  • the processor calculates a distance between landmarks. With this, the processor recognizes the axes and calculates different distances between the axes. Finally, based on the distances between reference points, the processor calculates the angle as well as the relative position between the vehicles.
  • the identification system of the invention contributes to the drivability of the driven vehicles (1) and tractor (2) when they are coupled.
  • the coded target (31) is positioned on the towed vehicle (1) in a forward region, being visible to the towing vehicle (2) for planning the coupling route, and/or for calculating the angle and/or the relative position between the vehicles.
  • the camera (40) captures images of the semi-trailer, so that the processor calculates the angle between the semi-trailer (1) and the towing vehicle (2), with the camera being positioned on the towing vehicle (2), more precisely, next to of the fifth wheel or positioned in a lower region of the semi-trailer (1).
  • the system processor of the invention communicates with the tractor vehicle (2) via cabling or remotely.
  • the invention has application in fleet management, optimizing cargo transport.
  • the target (30) is represented by at least one reflective surface (32) that has points detectable by a sensor (40) positioned on the towing vehicle (2).
  • the flowchart illustrated in figure 5 demonstrates the sequence of three steps implemented by the example system to acquire the angle between the semi-trailer (1) and the tractor vehicle (2).
  • the sensor (40) used is a radar, LIDAR or other sensor provided with technology for remote detection of optical signals, being capable of emitting and detecting different wavelengths of electromagnetic signals.
  • Step I is the emission of electromagnetic waves by a source associated with the photosensor (40), so that the waves affect the reflective surface (32) positioned in the front region of the semi-trailer (1). As a result, the waves reflect and are directed to the photosensor (40).
  • step II is the capture, by the photosensor (40), of the waves reflected by the reflective surface (32), so that the wave reflected by the reflective surface (32) has a certain wavelength ( ⁇ ) and a certain angle of incidence.
  • step III is the correlation of the angle of incidence of the reflected wave with an angle (0) between the semi-trailer (1) and the tractor vehicle (2).
  • the aforementioned correlation is carried out based on the angle of incidence on the photosensor (40), so that the wave impacts the reflector (32) moving due to the rotation of the semi-trailer (1) in relation to the towing vehicle (2), reflects and returns to the photosensor (40) with said angle of incidence.
  • the example uses reflective surfaces forming a reflector.
  • the first row of targets (30), shown in figure 6, has two reflectors (32) arranged on the sides of the semi-trailer head (1). Furthermore, only one reflector (32) or a greater number than two reflectors (32) can be used in said headboard. Alternatively, the reflectors (32) are positioned in a lower region of the semi-trailer (1). Otherwise, the reflectors (32) are positioned on the sides of the semi-trailer (1). Thus, the position of the reflectors (32) is as far apart as possible, considering the field visible to the reader (40), for example, a radar. Each reflector (32) has flat surfaces that intersect, forming a corner reflector, known as a corner reflector.
  • the surfaces have a triangular or rectangular shape, which meet perpendicularly.
  • the reflector (32) is a combination of such surfaces, forming a set of eight corner reflectors. With this, an emitter generates signals of known wavelength (X), affecting the reflector (32) which returns the generated signals in the direction of the emitter.
  • the surfaces of the reflectors (32), which form the corner reflector are manufactured in material that allows the sensor (40) to identify their position, that is, said material is not transparent at a certain frequency or wavelength emitted by the sensor (40), preventing the wave from passing through or through the material.
  • a sensor (40) positioned on the towing vehicle (2) is calibrated to provide correlations of the reflected signals with said angle.
  • the calibration of the sensor (40) obtains parameters for the most accurate correlation of the signal emitted by the emitter with the signal reflected in the reflector (32) and then received at the sensor (40).
  • the processor After calibrating the sensor (40) and capturing the reflected signals, the processor calculates the angle between the semi-trailer (1) and the tractor vehicle (2) based on the angle of the reflected signal that hits the sensor (40), this signal is reflected in the reflector (32). Alternatively, the processor calculates said angle based on the difference in signal return time. Additionally, the processor receives the wavelength of the signals generated and received by the sensor (40) to implement a filter on the received signals, reducing unwanted interference such as noise and ambient or solar light falling on the reflector (32) and the sensor ( 40).
  • the positioning of the reflectors (32) at the head of the semi-trailer (1) promotes the operability of the identification system, since the reflectors (32) remain in the field of view of the sensor (40) during relative angular movements between the semi-trailer (1) and the towing vehicle (2).
  • the reflectors (32) are positioned in the upper corners of the semi-trailer head (1), and/or at the ends of a central region of the semi-trailer head (1), and/or in the corners of the lower region of the semi-trailer head (1 ), and/or distributed along the head area of the semi-trailer (1 ), and/or arranged on the sides and/or lower region of the semi-trailer (1 ).
  • the relative angular movement between the semi-trailer (1) and the towing vehicle (2) is detected through the consequent movement of the reflectors (32).
  • the angle and relative position between the semi-trailer (1) and the towing vehicle (2) are calculated, correlating the angle of incidence of the reflected signals with the angle (0) and the relative position between the semi-trailer (1) and the towing vehicle (2).
  • a polarimeter is used as a sensor (40), so that a combination of reflectors (32) and polarizers are arranged on the semi-trailer (1) and on the towing vehicle (2) respectively to generate a gradient of light reflection along the semi-trailer (1 ).
  • the gradient reading changes as the angle between the CVC vehicles changes.
  • a camera (40) is used together with a lamp provided with color control.
  • the head of the semi-trailer (1) is illuminated with different colors, while the camera (40) captures images for the processor to identify the position of each of the reflectors (42) in the images.
  • the processor By identifying the positions of the reflectors (42), the processor performs geometric calculations to ultimately obtain the angle between the semi-trailer (1) and the towing vehicle (2).
  • said reflectors (32) are corner reflectors and/or have a reflective paint, for example, paint mixed with glass spheres or paint commonly used on traffic signs.
  • a reflective paint is used directly on the semi-trailer frame (1).
  • a strip is painted with said paint and glued to the semi-trailer (1).
  • the present invention speeds up the application for identifying semi-trailer information (1).
  • Said paint is produced from a mixture with small glass spheres in order to produce light reflection.
  • the paint is doped with particles to achieve degrees of reflectivity, the particles being composed of metals, transition metals, rare earths, oxides thereof or combinations thereof.
  • said particles are nanoparticles composed of niobium, alumina, tantalum, titanium, hafnium, iron among other substances, ores or compounds.
  • the reflective paint allows easy identification of the semi-trailer (1) by taking advantage of the extensive area of the front frame of the semi-trailer (1), so that the paint is applied at different points in said area or in a larger part of the area.
  • the photosensor (40) receives the waves reflected in the paint, preventing reading errors or loss of reflectivity due to bad weather, dust and particles arranged on the front frame of the semi-trailer (1).
  • the second row presents a target (30) of the reflector type (32) in the shape of a strip.
  • the strip (32) is painted or adhesive on the head of the semi-trailer, being visible or invisible to the naked eye. Otherwise, the strip (32) is discontinuous, with parts distributed over the front frame of the semi-trailer (1). Furthermore, the strip (32) occupies the area of the headboard/front frame of the semi-trailer (1) completely or mostly. Alternatively, more than one lane is used (32). In Otherwise, the strip (32) has reduced dimensions, restricting undue reading by third parties.
  • a reflective paint is applied to the strip.
  • Said paint is mixed with small glass spheres, forming a distribution of reflectors (32) with said spheres being arranged along the strip.
  • a color gradient is perceived by the reader (40) through the reflections of the waves that affect the glass spheres, so that the glass spheres are concentrated in certain parts of the strip (32).
  • the strip (32) is doped with particles to achieve degrees of reflectivity in certain areas of the strip.
  • said particles are composed of metals, transition metals, rare earths, oxides thereof or combinations thereof.
  • said particles are nanoparticles composed of niobium, alumina, tantalum, titanium, hafnium, iron among other substances, ores or compounds, assisting in the reflective properties of the band.
  • a reader (40) being a photosensor and positioned in the rear region of the towing vehicle (2), is sensitive to a certain color gradient. Otherwise, the reader (40) is a camera that reads the track (32) provided with a gradient.
  • the gradient used has a gray scale, so that the gradient has a reference point for the reader (40), said point being located in the center of the range (32).
  • an optical signal falls on the central point of the strip (32) and is reflected until it reaches the reader (40) to read the reflected signal, with the wavelength (X) of the read signal being correlated with an angle (0 ) between the semi-trailer (1) and the towing vehicle (2).
  • such correlations are tabulated in order to reduce computational costs and deliver measurements more quickly for decision-making by the driver or driving assistance systems.
  • the angular variations of the semi-trailer (1) in relation to the tractor vehicle (2) are detected based on the color variation perceived by the reader (40), which is relative to the variation in the wavelength ( ⁇ ) of the read signal, so that the perceived color tends towards black when the semi-trailer ( 1 ) is closer to one side of the towing vehicle, while the perceived color tends towards white when the semi-trailer (1 ) is closer to the opposite side.
  • the strip (32) has a color distribution. Observing that the colors of said strip (32) are different from each other, the angular movement of the semi-trailer (1) in relation to the towing vehicle (2) causes the reflection of waves with different ⁇ 's, which are read by the reader (40).
  • the strip (32) provided with different colors or a gradient in color makes it possible to acquire the angle and relative position between the semi-trailer (1) and the tractor vehicle (2) through the reader (40) perceiving the different ⁇ 's of the reflected signals as the relative angular movement between the semi-trailer (1) and the towing vehicle (2) changes.
  • the track (32) is invisible to the naked eye, as indicated in the last row of targets (30) represented in figure 6.
  • the track (32) is detected by readers (40) configured to perceive the signals reflected in the invisible band, as they operate in a range of wavelengths invisible to the naked eye.
  • the range of wavelengths ⁇ ’s invisible to the naked eye presents wavelength values outside the visible light spectrum.
  • the invisible strip (32) promotes information security, protecting the semi-trailer's identification data (1). Furthermore, the reference points are also invisible in the lane, preventing undue changes that could cause errors in the readings of said angles and in the operations of steering assistance systems.
  • the use of this type of invisible strip allows the target to be large, occupying the largest area of the semi-trailer's front frame, as it does not impact the design and aesthetics of the vehicle.
  • the penultimate row of targets (30) shown in figure 6 presents a coded strip (31) having rectangles.
  • the colors of the rectangles are black and white, not limited to these colors.
  • the rectangles at the ends correspond to the reference points used to acquire the angle between the semi-trailer (1) and the tractor vehicle (2) through geometric calculations.
  • the coded strip (31) presents eight spaces that correspond to bits, being filled or kept empty, representing a binary base, that is, the rectangle filled with black indicates bit equal to 1 and the rectangle kept in white indicates bit equal to zero. With this, said data represented by 0’s and Ts are read by the indicators in the form of rectangles in the coded range (31).
  • the filling and number of rectangles can be changed by changing the adhesive strip or repainting the strip.
  • identification data is updated: cargo weighing, number of axles in contact with the ground and battery charge.
  • the strip is updated with new filling of the rectangles to enable identification of the updated data.
  • the range is monitored by the reader (40) in order to protect the identification information contained in the target (30), restricting unauthorized changes.
  • the strip is manufactured by a paint, being painted on the surface of the headboard. Otherwise, the strip is glued onto the surface of the headboard. Said strip occupies the entire available area on the front frame of the semi-trailer (1 ). Alternatively, the strip occupies a reduced portion of the semi-trailer's front frame (1). In an alternative embodiment, said frame has more than one lane to provide data redundancy or increased identification data numbers.
  • Said strip can be manufactured with the addition of particles, which dope the strip in order to achieve different degrees of reflectivity and in accordance with the estimated need.
  • said particles are nanoparticles composed of niobium, alumina, tantalum, titanium, hafnium, iron among other substances, ores or compounds, assisting in the reflective properties of the band.
  • the strip is made with reflective paint mixed with small glass spheres.
  • said coded track of this example can be visible or invisible to the naked eye, thus being perceptible and/or readable by the reader (40).
  • the reader (40) is a camera that sends images to the processor.
  • the reader (40) is a sensor capable of perceiving signals reflected in the strip (31), so that the sensor emits signals at each rectangle of the strip and receives the signals reflected in the strip (31).
  • the processor receives the images read by the camera (40) to recognize reference points in the coded range (31) by executing processing. Finally, the calculations of said angle and relative position are based on the distances between the reference points recognized in the coded range (31). Furthermore, the processor recognizes the bits indicated in the other rectangles of the coded track (31) to identify the semi-trailer (1).
  • said reader (40) is a photosensor, so that the processor receives the signals captured by the photosensor (40) to recognize reference points in the range.
  • the processor recognizes said reference points as they have predefined wavelengths ( ⁇ ), which are related to the reflection of the electromagnetic signal that falls on the coded band (31), where each field of the band (31) is equipped with colors/lengths of different waves.
  • wavelengths
  • the processor calculates the angles and relative positions between semi-trailer (1) and towing vehicle (2) that change with the relative movement between the semi-trailer (1) and the towing vehicle (2).
  • the system processor calculates a coupling route from one of the vehicles to the other vehicle.
  • the towed vehicle (1) is a semi-trailer
  • the vehicles approach each other, aligning the fifth wheel of the towing vehicle (2) with the king pin of the towed vehicle (1).
  • the towing vehicle (2) moves towards the towed vehicle (1).
  • the driven vehicle (1) moves towards the towing vehicle (2).
  • the processor reports the angle and relative position between the vehicles to a driver and/or to a control system of the towing vehicle (2), the control system being contained in a system autonomous function of the vehicle or in a driver assistance system.
  • the present invention presents an autonomous system for coupling a towed vehicle (1), with the autonomous system comprising a vehicle identification system and for coupling between driven vehicle (1) and towing vehicle (2); and a towing vehicle (2) equipped with at least one camera (40) of the identification system, with the camera (40) reading at least one coded target (31) positioned on the towed vehicle (1); wherein, a processor of the identification system receives the coded target (31) read by the camera (40); and, based on the coded target (31), calculates an angle and/or relative positions between the vehicles.
  • the autonomous system has the identification system of the invention and the towing vehicle (2) corresponding to an autonomous dolly, in which the dolly is coupled to a towed vehicle (1) corresponding to a semi-trailer.
  • the processor calculates the angle between the vehicles in predetermined attention situations: maneuvering, parking and reversing.
  • the processor calculates, based on the angle and relative position between the vehicles, a coupling route from the towing vehicle (2) to the towed vehicle (1).
  • Figure 7 shows the 40 s angle calculated by the processor from the coded target (31) positioned in the front region of the semi-trailer (1).
  • at least one camera (40) embedded in an autonomous dolly identifies the semi-trailer (1), obtaining data from the semi-trailer (1), the angle and relative position calculated between the autonomous dolly and the semi-trailer (1). From this, a processor on the autonomous dolly calculates a coupling route to the semi-trailer (1).
  • the correlations carried out to acquire the angles in the CVC vehicles are carried out simultaneously with a simulation of the coupled set - tractor vehicle (2) and semi-trailers (1) of the CVC - in order to reduce noise in the sensor reading (40) through the use of simulated data.
  • Example 8 - Auxiliary system for overtaking conditions of a cargo transport vehicle [0114] Furthermore, the present invention increases the drivability and navigation of vehicles by providing conditions for overtaking on roads, mainly on single-lane roads with a high maximum speed limit, where overtaking is even more risky. Even on lanes with more than one lane in the same direction, some road conditions can make overtaking difficult. The present invention aims to mitigate such risks and difficulties, in addition to promoting safer overtaking.
  • the target (30) is positioned on the driven vehicle (1) in a rear region, being visible to another vehicle for planning an overtaking route or for providing traffic information. Furthermore, target (30) provides additional vehicle data for exemplary purposes: vehicle length and weight, among others. In one embodiment, traffic information corresponds to road conditions.
  • one or more readers (40) of the other vehicle read the target (30 ) positioned at the rear of the driven vehicle (1), and, based on the target (30) read, the other vehicle calculates the overtaking route.
  • the present invention presents an auxiliary system for overtaking conditions of a target vehicle on a road, the auxiliary system being embarked on a first vehicle, with the target vehicle comprising at least one target (30) positioned in a region, in which the target vehicle travels in front of the first vehicle as shown in figure 8.
  • the first vehicle comprises at least one camera (40), which reads the target (30) and at least one road or vehicle condition target; and a processor being communicating with the camera (40) and embedded in the first vehicle; wherein, the processor receives the target (30) and the road conditions read by the camera (40); and, based on the target (30) and the road conditions, calculates an overtaking condition between the vehicles; whereby the target (30) corresponds to at least one piece of data from the target vehicle; the condition of the road corresponds to at least one data of the road, defined between: speed of the target vehicle, presence and speed of a third vehicle in the opposite direction, among others; and the overtaking condition corresponds to an overtaking time and/or an overtaking permission.
  • the target (30) corresponds to at least one piece of data from the target vehicle
  • the condition of the road corresponds to at least one data of the road, defined between: speed of the target vehicle, presence and speed of a third vehicle in the opposite direction, among others
  • the overtaking condition corresponds to an overtaking time and/or an overtaking
  • the target (30) provides length data for the target vehicle.
  • the target (30) is positioned in a rear region of the target vehicle, such that the target (30) is in the field of view of the camera (40) positioned in a front region of the first vehicle.
  • the target vehicle traveling in front of the first vehicle on the road, provides data from the target vehicle through the target (30) read by the camera (40).
  • the target (30) provides weight, data on the cargo transported, carrier contact, among other vehicle data.
  • the camera (40) reads road conditions.
  • the road conditions are: speed of the target vehicle, obstacles and holes in the road, third vehicle approaching, pedestrians and/or animals on the road.
  • the third vehicle approaches the first vehicle from the opposite direction. In another embodiment, the third vehicle approaches the first vehicle, both traveling along the road in the same direction.
  • the processor of the first vehicle correlates the length data of the target vehicle with a road condition data to calculate the overtaking condition.
  • the overtaking condition corresponds to the overtaking time of the first vehicle passing in front of the target vehicle.
  • the overtaking condition corresponds to an overtaking permission, checking whether or not the first vehicle is capable of overtaking the target vehicle.
  • the auxiliary system of the present invention considers the configuration of the first vehicle when coupled to at least one implement comprising an auxiliary traction.
  • the processor evaluates the influence of the auxiliary traction activation in the overtaking condition.
  • the processor of the first vehicle calculates two overtaking times, one time considering the implement's auxiliary traction activated, and the other time, auxiliary traction not activated. With this, the processor evaluates the influence of auxiliary traction on overtaking permission.
  • the processor checks the state of charge of batteries (SoC) that power the implement's auxiliary traction.
  • SoC state of charge of batteries
  • the present invention also presents an auxiliary method for overtaking conditions of a target vehicle on a road implemented by an auxiliary system for overtaking conditions embarked on a first vehicle
  • the auxiliary method for overtaking conditions comprises the steps of reading of at least one target (30) positioned in a region of the target vehicle and at least one road condition, with the readings being carried out by means of at least one camera (40) positioned in the first vehicle, in which the target vehicle travels in front of the first vehicle; receiving the target (30) and road conditions read by a processor communicating with the camera (40) and embarked on the first vehicle; and calculating, by means of the processor, an overtaking condition between vehicles from the target (30) and the read road conditions; whereby the target (30) corresponds to at least one piece of data from the target vehicle; the road condition corresponds to at least one road data, defined as: speed of the target vehicle, presence and speed of a third vehicle in the opposite direction, among others; and the overtaking condition corresponds to an overtaking time and/or an overtaking permission.
  • the auxiliary method of the present invention is implemented by the auxiliary system for overtaking conditions as defined above.
  • the target (30) is positioned in a region of the target vehicle.
  • the target vehicle is a semi-trailer
  • the target (30) is positioned in a rear region of the semi-trailer.
  • the target reception step (30) corresponds to the provision of target vehicle length data, in addition to other target vehicle data, for example, vehicle weight and model, transported cargo, carrier contact, etc. Additionally, reading road conditions captures obstacles, pedestrians and/or animals on the road, as well as third-party vehicles approaching from both directions of the road.
  • the processor calculates the overtaking condition, correlating the length data of the target vehicle with road condition data.
  • the first vehicle is coupled to an implement comprising an auxiliary traction. Therefore, to calculate the overtaking condition using the auxiliary method of the present invention, the processor considers configurations of the implement's auxiliary traction.
  • the present invention makes it possible to increase the safety and drivability of vehicles, in addition to avoiding accidents by calculating the angle and relative position between vehicles in a simplified way, through coupling between vehicles, as well as, the present invention assists in overtaking vehicles.
  • an additional target (30) is positioned in the rear region of the semi-trailer (1) traveling in front of a first vehicle, the first vehicle being coupled to an implement equipped with auxiliary traction on one of the axles.
  • the semi-trailer (1) provides data from the horse (2) with semi-trailer (1) combination to the first vehicle via the target (30).
  • At least one camera (40) contained in an auxiliary system embedded in the first vehicle, reads the data provided by the target (30) of the semi-trailer (1), obtaining vehicle data such as vehicle length and model, among others; and road conditions such as approaching third-party vehicles, obstacles, pedestrians, among others.
  • an auxiliary system processor calculates a condition for overtaking the combination by the first vehicle.
  • the condition of overtaking considers an overtaking permission, evaluating whether or not the first vehicle is capable of overtaking the semi-trailer combination (1). To do this, the processor calculates the overtaking time with the auxiliary axle traction both activated and deactivated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A presente invenção descreve um sistema e um método para identificação de informações de veículo de transporte de carga ou combinação de veículos de carga (CVC) compreendendo ao menos um veículo tracionado acoplável a um veículo trator, visando aquisição das informações, de forma simplificada e confiável para realização de manobras na CVC, e eficiente para execução de sistemas de assistência de direção. Com isso, a presente invenção visa segurança promovendo dirigibilidade, previne acidentes ao prover ângulos e posições relativas entre veículos da CVC, além de calcular rotas de acoplamento e de ultrapassagem. Mais especificamente, o sistema de identificação compreende ao menos um alvo posicionado em um dos veículos da CVC e um leitor de sinais relacionados ao alvo, sendo os sinais correlacionados com um ângulo e com uma posição relativa entre os veículos da CVC. A presente invenção se situa nos campos da automobilística, eletrônica embarcada, implementos rodoviários e visão computacional.

Description

Relatório Descritivo de Patente de Invenção
SISTEMA E MÉTODO DE IDENTIFICAÇÃO DE INFORMAÇÕES DE VEÍCULO DE TRANSPORTE DE CARGA, E IMPLEMENTO RODOVIÁRIO
Campo da Invenção
[0001] A presente invenção descreve um sistema e um método para identificação de informações de veículo de transporte de carga, identificando o ângulo e posição relativa entre veículos do veículo de transporte, além de outros dados de identificação do veículo de transporte. A presente invenção se situa nos campos da automobilística, eletrônica embarcada, implementos rodoviários e visão computacional.
Antecedentes da Invenção
[0002] Meios de transporte, particularmente, transporte de carga utilizam implementos, como reboque e semirreboque, correspondendo a um veículo tracionado acoplado a um veículo trator. Com o crescente desenvolvimento tecnológico em torno de veículos autônomos, uma dificuldade do setor logístico é identificar o veículo tracionado a ser acoplado e rebocado, uma vez que é necessário conhecer informações do veículo tracionado para determinar o veículo trator adequado bem como a dinâmica a ser aplicada em manobras.
[0003] Somado ao problema técnico de identificação do veículo, está o acoplamento entre a quinta roda do veículo trator e o pino rei do veículo tracionado. Há sensores conhecidos no estado da técnica dispostos na quinta roda do veículo trator e no pino rei do veículo tracionado para o acoplamento automático e para leitura do ângulo entre o veículo tracionado e o veículo trator. No entanto, os sensores são fixados por meio de estruturas que implicam intervenções mecânicas nos veículos. Com isso, a instalação e manutenção de tais sensores são onerosas, além de demandar mão-de-obra especializada. Assim, a identificação dos veículos, leitura de ângulos e acoplamento entre veículos são prejudicados em razão das dificuldades mencionadas, implicando acidentes e gargalos na gestão de frotas.
[0004] A partir disso, a técnica tem apresentado soluções, assim como a solução revelada pelo documento CN112308899A, que utilizam uma câmera posicionada na porção traseira superior de um veículo trator e direcionada para visualizar dois marcadores bidimensionais do tipo ArUco ou QRcode dispostos nas extremidades inferiores dianteiras de um semirreboque acoplado ao veículo trator. Para obter o ângulo entre os veículos, a solução de CN112308899A executa cálculos com base nas posições dos marcadores do tipo ArUco ou QRcode, sendo os marcadores expostos a intempéries e a terceiros. Assim, o cálculo com precisão pode ser comprometido, o que não se confunde com a presente invenção.
[0005] Adicionalmente, o documento DE102021002956 apresenta um método de movimentação de um veículo para aproximação de uma rampa de carregamento ou para acoplamento a um reboque. O método consiste em posicionar o veículo trator a uma distância para a leitura de uma placa 2D, posicionada no reboque ou ao lado da rampa. A partir da leitura da placa 2D sendo um QRcode, o método calcula distância, rota de acoplamento, ângulo formado entre veículo trator e reboque. Ainda, a leitura da placa 2D fornece informações sobre o reboque, por exemplo, altura, peso, comprimento e distância do pino rei.
[0006] Como alternativa ao QRcode, o documento CN111578893A apresenta um sistema e método para cálculo do ângulo entre o veículo trator e o semirreboque, utilizando uma câmera posicionada no teto da porção traseira do veículo trator para leitura de um marcador com formato linear sendo disposto na porção dianteira do semirreboque. Assim como CN112308899A, a solução de CN111578893A também se limita ao uso de uma câmera, implicando processamentos de imagens e cálculos para obtenção do ângulo entre o veículo trator e o semirreboque, o que não se confunde com a presente invenção.
[0007] De outra forma, o documento DE102021204625A1 apresenta um sistema para determinar o ângulo de articulação entre o veículo trator e um reboque e/ou para determinar as dimensões do reboque, utilizando sensores de medição do tipo radar, lidar ou uma câmera. Os sensores de DE102021204625A1 são posicionados no centro do teto ou nas laterais do veículo trator com a finalidade de escanear o ambiente ao redor e visualizar alvos posicionados no centro do teto ou nas laterais da traseira do reboque, em que sinais são refletidos nos referidos alvos detectados pelos sensores. No entanto, o uso de sensores/alvos nas laterais do veículo trator implica aumento da largura máxima do veículo, além de que sensores/alvos dispostos no teto do veículo implica aumento da altura máxima do veículo.
[0008] Não obstante, além do crescimento dos veículos autônomos, observa-se o aumento de veículos que possuem algum tipo de assistência ao condutor ou ao próprio veículo autônomo, por exemplo, assistência de direção, tração e navegação. No caso de uma combinação de um veículo trator com um ou mais veículos tracionados formando uma combinação de veículos de carga (CVC) e trafegando em uma rodovia, um sistema de assistência de navegação poderia verificar não apenas o ângulo entre os veículos da CVC, mas também avaliar possibilidade de ultrapassagem de um veículo a frente ou transmitir dados para que um veículo de trás ultrapasse a CVC. Ainda que, em muitas das vezes, o comprimento total esteja escrito no final da combinação, pode haver alterações na combinação e outras condições da via, que não estão no campo de visão do veículo de trás, por exemplo: comprimento incorreto da combinação em razão da troca do veículo tracionado ou mais veículos tracionados acoplados; carga mais larga que o normal; presença de batedores; carga tóxica, inflamável ou pressurizada.
[0009] Desse modo, o documento CN1 11923917A apresenta um método de aquisição de dados em veículos autônomos para fins de cálculo de ultrapassagem de um veículo a frente do veículo autônomo, utilizando uma câmera que realiza a varredura da rodovia e do veículo a frente. No entanto, o método de CN11 1923917A se baseia nas imagens obtidas pela varredura, sendo as imagens desprovidas de alvos a exemplo de QRcodes, ArUco e outros alvos codificados.
[0010] Nesse sentido, busca-se desenvolver soluções que simplifiquem a identificação de veículos de transporte de carga, de modo que o desenvolvimento de tais soluções promova o avanço de sistemas autônomos, agregue informações para assistência de navegação, por exemplo, ultrapassagem em vias e acoplamento entre os veículos do veículo de transporte, proporcionando aumento de segurança e de dirigibilidade.
[0011] Assim, do que se depreende da literatura pesquisada, não foram encontrados documentos antecipando ou sugerindo os ensinamentos da presente invenção, de forma que a solução aqui proposta possui novidade e atividade inventiva frente ao estado da técnica.
Sumário da Invenção
[0012] Dessa forma, a presente invenção resolve os problemas do estado da técnica a partir da leitura de um alvo que fornece identificação de informações de veículo de transporte de carga, sendo o alvo posicionado em um dos veículos do veículo de transporte, de modo que um leitor recebe ao menos um sinal relacionado ao alvo para correlacioná-lo com um ângulo e uma posição relativa entre os veículos do veículo de transporte. Assim, a presente invenção simplifica a aquisição dos ditos ângulo e posição relativa, além de outras informações de identificação dos veículos, contribuindo para execução eficiente de sistemas de automação e de assistência de direção em veículos de transporte.
[0013] Ainda, a partir do ângulo e da posição relativa conhecidos, um processador calcula uma rota para acoplamento entre os veículos sendo um veículo trator e um veículo tracionado quando estão desacoplados, ou para navegação mais segura na via quando estão acoplados. Além disso, visando segurança de tráfego, a invenção auxilia na ultrapassagem entre veículos na via, sendo o alvo posicionado em um veículo que trafega a frente de outro veículo possuindo a câmera, promovendo dirigibilidade e evitando acidentes.
[0014] Assim, em um primeiro objeto, a presente invenção apresenta um sistema de identificação de informações de veículo de transporte de carga compreendendo ao menos um veículo tracionado (1 ) acoplável a um veículo trator (2), sendo que o sistema de identificação compreende: ao menos um alvo (30) posicionado em um dos veículos do veículo de transporte; e um leitor (40) de ao menos um sinal relacionado ao alvo (30), em que, o sinal é correlacionado com um ângulo entre os veículos tracionado (1 ) e trator (2); com uma posição relativa entre os veículos tracionado (1 ) e trator (2); e/ou com um dado de identificação dos veículos tracionado (1 ) e trator (2).
[0015] Em um segundo objeto, a presente invenção apresenta um método de identificação de informações de veículo de transporte de carga compreendendo ao menos um veículo tracionado (1 ) acoplável a um veículo trator (2), em que, o método de identificação compreende as etapas de: recebimento de um sinal por um leitor (40), sendo o sinal relacionado a um alvo
(30) posicionado em um dos veículos do veículo de transporte; e correlação, por meio de um processador comunicante com o leitor (40), do sinal com um ângulo entre os veículos tracionado (1 ) e trator (2); com uma posição relativa entre os veículos tracionado (1 ) e trator (2); e/ou com um dado de identificação dos veículos tracionado (1 ) e trator (2).
[0016] Ainda, é um terceiro objeto da presente invenção um implemento rodoviário (1 ) compreendendo uma região dianteira de acoplamento a um veículo trator (2) e ao menos um alvo (30) de um sistema de identificação de informações de veículo de transporte de carga, sendo o alvo (30) posicionado na referida região dianteira do implemento (1 ).
[0017] É também um objeto da presente invenção uma faixa codificada
(31 ) para identificação de informações de veículo de transporte de carga, sendo associada a um dos veículos tracionado (1 ) e/ou trator (2) do veículo de transporte e compreendendo ao menos: um ponto de referência para cálculo do ângulo e/ou posição relativa entre o veículo tracionado (1 ) e o veículo trator (2); e um indicador de dado de identificação dos veículos tracionado (1 ) e trator (2). [0018] É, ainda, um último objeto da presente invenção um refletor de canto (32) para identificação de informações de veículo de transporte de carga, sendo associado a um dos veículos tracionado (1 ) e/ou trator (2) do veículo de transporte e compreendendo ao menos uma superfície reflexiva que reflete ao menos um sinal na direção de um emissor do dito sinal.
[0019] Estes e outros objetos da invenção serão imediatamente valorizados pelos versados na arte e serão descritos detalhadamente a seguir.
Breve Descrição das Figuras
[0020] Com o intuito de melhor definir e esclarecer o conteúdo do presente pedido de patente, são apresentadas as seguintes figuras:
[0021] A figura 1 mostra um esquema de acoplamento entre o veículo tracionado (1) e o veículo trator (2), sendo o acoplamento realizado entre os veículos por meio do sistema da presente invenção.
[0022] O conjunto de figuras 2 mostra três leituras de alvos (30) por meio de um leitor (40), a partir dos alvos (30), o processador do sistema correlaciona ângulos e posições relativas entre o veículo tracionado (1) e o veículo trator (2). As figuras 2a e 2b mostram ângulos voltados para um mesmo lado, enquanto a figura 2c mostra um ângulo voltado para o lado oposto.
[0023] A figura 3 mostra uma concretização de alvo codificado (31 ) para leitura por meio de uma câmera.
[0024] A figura 4 mostra um conjunto de três alvos codificados (31 ), de modo que o processador recebe os alvos codificados (31 ) lidos pela câmera e calcula um ângulo entre os veículos tracionado (1 ) e trator (2).
[0025] A figura 5 ilustra um diagrama exemplificativo para identificação do ângulo entre veículo tracionado (1 ) e veículo trator (2).
[0026] A figura 6 mostra uma distribuição de alvos (30) em uma região dianteira do veículo tracionado (1 ), possuindo alvos codificados (31 ) e alvos refletores (32).
[0027] A figura 7 mostra um ângulo entre o veículo tracionado (1 ) e o veículo trator (2), sendo calculado pelo processador a partir de leituras de alvos codificados (31 ) posicionados em uma região dianteira do veículo tracionado (1 ). [0028] A figura 8 mostra um esquema de um sistema auxiliar para verificar condições de ultrapassagem entre veículos.
Descrição Detalhada da Invenção
[0029] As descrições que se seguem são apresentadas a título de exemplo e não limitativas ao escopo da invenção e farão compreender de forma mais clara os objetos do presente pedido de patente.
[0030] Em geral, veículos de transporte de carga estão submetidos a graus maiores de sujidade em comparação a veículos urbanos, considerando também que veículos de transporte realizam rodagens de elevadas distâncias. Assim, sistemas eletrônicos embarcados em veículos de transporte necessitam apresentar robustez para suportar solicitações mecânicas próprias da movimentação do veículo e estabilidade para execução de suas funções, operando com precisão e confiabilidade. Nesse contexto, sistemas de identificação de veículos de transporte deveriam se manter operantes nas condições previstas às quais o veículo de transporte é submetido.
[0031 ] É válido ressaltar que esta breve introdução de contextualização de sistemas eletrônicos embarcados em veículos de transporte não deve restringir o conceito inventivo ora proposto no presente pedido de patente. Ainda, soluções, conhecidas da técnica para identificação de ângulos entre o veículo tracionado e o veículo trator em veículos de transporte de carga, utilizam uma câmera que lê códigos bidimensionais ou um sensor que recebe sinais incidentes em refletores dispostos na traseira do veículo tracionado. De outra maneira, a presente invenção apresenta alvos visíveis a um leitor, de forma mais simplificada e prática para aplicação em veículos de transporte de carga.
[0032] Assim, em um primeiro objeto, a presente invenção apresenta um sistema de identificação de informações de veículo de transporte de carga compreendendo ao menos um veículo tracionado (1 ) acoplável a um veículo trator (2), sendo que o sistema de identificação compreende: ao menos um alvo (30) posicionado em um dos veículos do veículo de transporte; e um leitor (40) de ao menos um sinal relacionado ao alvo (30), em que, o sinal é correlacionado com um ângulo entre os veículos tracionado (1 ) e trator (2); com uma posição relativa entre os veículos tracionado (1 ) e trator (2); e/ou com um dado de identificação dos veículos tracionado (1 ) e trator (2).
[0033] Em uma concretização, o veículo tracionado (1 ) é um semirreboque, bitrem, rodotrem ou bitrenzão. Em uma outra concretização, o veículo tracionado (1 ) é um reboque. Nessas concretizações, o veículo trator (2) é um cavalo mecânico que fornece potência necessária para movimento de um ou mais veículos tracionados (1 ) já acoplados ou a serem acoplados ao cavalo mecânico, formando uma combinação de veículos de carga (CVC).
[0034] A presente invenção fornece a identificação dos veículos tracionados (1 ) e/ou trator (2) por meio da leitura de alvos (30). Em uma concretização, a identificação se refere ao ângulo entre um veículo tracionado (1 ) e o veículo trator (2) e/ou ao ângulo entre veículos tracionados (1 ) consecutivos na CVC. Em uma concretização, a identificação se refere a uma posição relativa entre um veículo tracionado (1 ) e o veículo trator (2) e/ou ao ângulo entre veículos tracionados (1 ) consecutivos na CVC. Em uma concretização, a identificação se refere a dados dos veículos tracionados (1 ) e/ou do veículo trator (2), para fins de exemplificação: comprimento e largura máximos; peso; números de eixos em contato com o solo e presença de eixo trativo; modelo sendo basculante, sider, graneleiro, tanque, etc; entre outros dados de identificação dos veículos.
[0035] Em uma concretização, para identificação do veículo tracionado (1 ), o alvo (30) é posicionado em uma região dianteira do veículo tracionado (1 ). Em uma concretização do veículo tracionado (1 ) possuir uma cabeceira, os alvos (30) são dispostos na cabeceira para visualização pelo leitor (40). Considerando que a precisão e a acurácia do ângulo identificado pelo sistema da invenção sejam influenciadas pelo número de alvos (30) e/ou dimensões dos alvos (30), a presente invenção apresenta alvos (30) simplificados, permitindo leitura mais eficiente para alcançar dados precisos e confiáveis.
[0036] Para isso, os alvos (30) possuem ao menos um ponto de referência visível pelo leitor (40), seja este ponto de referência de natureza do próprio alvo, como uma marcação, ou um sinal refletido/gerado pelo próprio alvo, como um sinal luminoso. Para fins da presente invenção, ser visível entende-se como ser perceptível, detectável, legível ou interpretável por meio de algum componente específico para esta aplicação, não necessariamente visível a olho nu. Em uma concretização, o sinal parte do ponto de referência no alvo (30) e se direciona para o leitor (40). Em uma concretização, o sinal é a própria luz solar ou luz ambiente que reflete no alvo (30), possibilitando o leitor enxergar o alvo (30) ou pelo menos seus pontos de referência. Em uma concretização, um sinal conhecido incide no ponto de referência do alvo (30), sendo refletido na direção do leitor (40). Nessa última concretização, o sinal se origina em uma unidade emissora associada ao leitor (40). Assim, o sinal é um sinal elétrico, óptico, magnético, eletromagnético, sonoro, ultrassom, vibração mecânica, etc, podendo ser um sinal conhecido e operado em tais grandezas físicas.
[0037] Desse modo, os sinais são relacionados ao alvo (30) ao partirem dos pontos de referência do respectivo alvo (30). De outro modo, os sinais são relacionados ao alvo (30) ao serem refletivos nos pontos de referência e outros pontos do alvo (30).
[0038] Em uma concretização, o alvo (30) é codificado (31 ) e/ou um alvo refletor (32). Em uma concretização, a região dianteira do veículo tracionado (1 ) possui uma distribuição de alvos (30) sendo somente alvos codificados (31 ), somente alvos refletores (32), ou uma combinação entre alvos codificados (31 ) e refletores (32).
[0039] Em uma concretização, o alvo codificado (31 ) é um QRcode, ArUco ou outro código bidimensional. Nessa concretização, cada alvo codificado (31 ) fornece dados de identificação do veículo tracionado (1 ) e possui pontos de referência para cálculo do ângulo entre veículos tracionado (1 ) e trator (2).
[0040] Em uma concretização, o alvo codificado (31 ) é uma faixa provida de pontos de referência nas extremidades da faixa para cálculo do ângulo entre veículos tracionado (1 ) e trator (2). Em uma concretização do alvo codificado (31 ) sendo uma faixa, esta possui divisões para indicar um código em base binária. Em uma concretização do alvo codificado (31 ) sendo uma faixa, esta possui uma distribuição de pontos coloridos ou em escala de cinza. Nessas concretizações, a faixa é visível a olho nu. De outra maneira, em uma concretização, a faixa é detectável pelo leitor (40), sendo invisível a terceiros com intuito de proteger as informações do veículo de transporte.
[0041] Para isso, o leitor (40) é sensível aos sinais relacionados aos alvos
(30), sendo capaz de interpretar os sinais recebidos. Em uma concretização, o leitor (40) é uma câmera associada ao veículo trator (2). Em uma concretização, o alvo (30) lido pela câmera é um alvo codificado (31 ). Assim, em uma concretização, o leitor (40) é uma câmera que capta imagens dos alvos codificados (31 ). Em uma concretização, o leitor (40) é uma câmera provida de emissor infravermelho (IR), possibilitando a visibilidade dos alvos codificados
(31 ) em ambientes sem iluminação ou com baixa iluminação.
[0042] Dessa maneira, o leitor (40) recebe sinais refletidos no alvo (30). Em uma concretização, o alvo refletor (32) apresenta codificações relativas aos dados de identificação dos veículos tracionados (1 ) e trator (2). Em uma concretização, o alvo refletor (32) possui pontos de referência que permitem a correlação do sinal relacionado ao alvo (30) com o ângulo entre os veículos do veículo de transporte. Em uma concretização, os sinais são relacionados ao alvo refletor (32) ao serem refletidos no alvo refletor (32).
[0043] Em uma concretização, o alvo refletor (32) é um conjunto de superfícies reflexivas que reflete o sinal incidente diretamente na direção do leitor (40). Em uma outra concretização, o alvo refletor (32) é uma superfície do veículo tracionado (1 ) provida de uma tinta reflexiva. Para isso, o leitor (40) é um sensor que percebe sinais refletidos no alvo (30), sendo um alvo refletor (32). Em uma concretização, o leitor (40) é um fotossensor. Em uma concretização, o leitor (40) é associado a uma unidade emissora que transmite um sinal, de modo que o sinal incide no ponto de referência do alvo refletor (32) e retorna para o leitor (40).
[0044] Em um segundo objeto, a presente invenção apresenta um método de identificação de informações de veículo de transporte de carga compreendendo ao menos um veículo tracionado (1 ) acoplável a um veículo trator (2), em que, o método de identificação compreende as etapas de: recebimento de um sinal por um leitor (40), sendo o sinal relacionado a um alvo (30) posicionado em um dos veículos do veículo de transporte; e correlação, por meio de um processador comunicante com o leitor (40), do sinal com um ângulo entre os veículos tracionado (1 ) e trator (2); com uma posição relativa entre os veículos tracionado (1 ) e trator (2); e/ou com um dado de identificação dos veículos tracionado (1 ) e trator (2).
[0045] Em uma concretização, o método de identificação da presente invenção é implementado pelo sistema de identificação conforme descrito anteriormente. Em uma concretização, o alvo (30) é um elemento passivo com função de ser detectado pelo leitor (40). Em uma concretização, o alvo (30) é invariável. Em uma concretização, o alvo (30) se modifica em caso de alteração dos dados de identificação dos veículos tracionados (1 ) acoplados ao veículo trator (2).
[0046] Com os alvos (30) dispostos no veículo a ser identificado, o método inicia o recebimento de sinais pelo leitor (40), realizando a leitura do alvo (30). Adicionalmente, a etapa de recebimento realiza reconhecimento de ao menos um ponto de referência no alvo (30), sendo o ponto de referência visível pelo leitor (40) por meio do sinal partindo do ponto de referência. Assim, após a leitura do alvo (30), o método realiza o reconhecimento de pontos de referência no alvo (30) por meio do próprio leitor (40) ou de um processador comunicante com o leitor (40). Para isso, um sinal relacionado ao alvo (30) parte do ponto de referência na direção do leitor (40), permitindo que o ponto de referência esteja visível ao leitor (40). Em uma concretização, o sinal é um sinal conhecido e emitido por uma unidade emissora, sendo refletido no alvo (30). Em uma concretização, o sinal é refletido no alvo (30) e se direciona ao leitor (40).
[0047] Em uma concretização, a leitura do alvo (30) é realizada por meio de uma câmera, sendo o alvo (30) um alvo codificado (31 ). Em uma concretização, o alvo codificado (31 ) possui pontos de referência para reconhecimento do dito ponto pelo leitor (40). Em uma concretização, os pontos de referência do alvo codificado (31 ) possuem posições padronizadas para reconhecimento do leitor (40). Em uma concretização, o reconhecimento dos pontos de referência permite o cálculo do ângulo entre veículo tracionado (1 ) e veículo trator (2).
[0048] Em uma concretização, a leitura do alvo (30) é realizada por meio de um sensor que percebe sinais refletidos no alvo (30), sendo este um alvo refletor (32). Em uma concretização, o sinal é refletido em um ponto de referência para reconhecimento do dito ponto pelo leitor (40). Em uma concretização, o ponto de referência do alvo refletor (32), sendo este uma faixa, é centralizado na referida faixa, de modo que o sinal reflete no centro da faixa até alcançar o leitor (40). Em uma concretização, o recebimento do sinal refletido permite a correlação do sinal refletido com o ângulo entre veículo tracionado (1 ) e veículo trator (2).
[0049] Assim, em uma concretização, o sinal é conhecido, emitido pela unidade emissora e refletido no alvo (30). Em uma outra concretização, o sinal é um conjunto de feixe de luzes (luz solar, luz ambiente, infravermelho etc) que refletem no alvo (30) para formar a imagem relativa ao alvo (30) a ser lida pelo leitor (40). Em uma outra concretização, o sinal é um conjunto de feixe de luzes (luz solar, luz ambiente, infravermelho etc) que refletem no alvo (30) para leitura, por meio do leitor (40), de ao menos uma especificação do ponto lido no alvo (30), por exemplo, comprimento de onda.
[0050] Por fim, o método da invenção executa a correlação do sinal recebido com o ângulo entre os veículos tracionado (1 ) e trator (2); com a posição relativa entre os veículos tracionado (1 ) e trator (2); e /ou com um dado de identificação dos veículos tracionado (1 ) e trator (2). Em uma concretização, o leitor (40) envia o sinal recebido para o processador. Em uma concretização, o processador é um servidor remoto e/ou instalado localmente no veículo de transporte.
[0051] Em uma concretização, a correlação é dada pelo cálculo do ângulo e/ou da posição relativa entre os veículos do veículo de transporte. Em uma concretização, o cálculo do ângulo possui como entradas os pontos de referência reconhecidos no alvo codificado (31 ) pela câmera.
[0052] Em uma concretização, a correlação entre o sinal e o dito ângulo/posição é atribuída diretamente, sendo armazenada previamente em uma memória do processador. Em uma concretização, o alvo refletor (32) possui, ao longo de sua extensão, variações de formato, cor, e/ou detalhes detectáveis pelo sensor, de modo que a mudança de posição e/ou ângulo entre veículos tracionado (1 ) e trator (2) é percebida por meio das ditas variações se movimentando em relação ao leitor (40).
[0053] A partir disso, a presente invenção promove segurança na condução de CVCs, prevenindo instabilidades a exemplo dos fenômenos de acotovelamento conhecido como efeito canivete (Jackknifing) e o próprio balanço lateral dos veículos tracionados (1 ). Com a identificação do ângulo entre veículos na CVC com acurácia e precisão elevadas, sistemas de assistência de direção atuam de forma mais confiável e preventiva.
[0054] Ainda, é um terceiro objeto da presente invenção um implemento rodoviário (1 ) compreendendo uma região dianteira de acoplamento a um veículo trator (2) e ao menos um alvo (30) de um sistema de identificação de informações de veículo de transporte de carga, sendo o alvo (30) posicionado na referida região dianteira do implemento (1 ).
[0055] Em uma concretização, o alvo (30) possui pontos de referência sendo visíveis por um leitor (40) por meio de ao menos um sinal partindo do ponto de referência, em que o sinal é relacionado ao alvo (30) e é correlacionado com um ângulo entre os veículos tracionado (1 ) e trator (2); com uma posição relativa entre os veículos tracionado (1 ) e trator (2); e/ou com um dado de identificação dos veículos tracionado (1 ) e trator (2).
[0056] Em uma concretização, os pontos de referência no alvo (30) permitem a correlação do sinal refletido nos ditos pontos com o ângulo/posição relativa entre os veículos tracionado (1 ) e trator (2). Em uma concretização, os pontos de referência no alvo (30) permitem a correlação do sinal refletido nos ditos pontos com demais dados de identificação dos veículos na CVC.
[0057] Para isso, o implemento (1 ) possui alvos (30) dispostos em sua região dianteira. Em uma concretização, o implemento (1 ) possui mais de um tipo de alvo (30) entre codificado (31 ) e refletor (32), possibilitando redundância de dados para maior segurança na condução da CVC identificada. Assim, a presente invenção fornece a identificação de cada um dos implementos (1) que compõem a CVC, permitindo que um sistema de assistência à direção atue para prevenir acidentes quando ângulos limites são ultrapassados ou quando a aceleração angular indica perda de estabilidade, além de auxiliar no acoplamento do implemento (1 ) ao veículo trator (2) ou entre implementos (1).
[0058] Dessa forma, o sistema e método de identificação da invenção simplificam a obtenção do ângulo entre implemento e veículo trator para serem acoplados ou para condução de implementos (1) já acoplados ao veículo trator, propiciando a redução de processamentos de imagens e de cálculos computacionais, aumento de precisão e acurácia do ângulo obtido, além de facilitar a fabricação, instalação e manutenção dos alvos e do leitor dispostos no veículo de transporte.
[0059] Os exemplos aqui mostrados têm o intuito somente de exemplificar uma das inúmeras maneiras de se realizar a invenção, contudo sem limitar, o escopo da mesma.
Exemplo 1 - Sistema Implementado em CVC para Acoplamento entre veículos da CVC
[0060] Para este exemplo, a figura 1 ilustra o esquema do sistema que calcula uma rota de acoplamento exemplificada pela linha pontilhada, sendo o acoplamento realizado entre um semirreboque (1 ) e um veículo trator (2) que compõem a CVC, sendo o veículo trator (2) um cavalo mecânico ou um dolly autônomo. Para o cálculo da rota, o sistema identifica a posição relativa, por meio do ângulo, entre o semirreboque (1 ) e o trator (2) e, juntamente com alguns dados de identificação do semirreboque (1 ), projeta a rota para se realizar o acoplamento entre os veículos. Tal rota pode ser disponibilizada em um monitor na cabine do motorista (e.g., um computador de bordo, smartphone, etc.), para que o motorista tenha referência no momento de se realizar a manobra. Alternativamente, a referida rota é utilizada por um veículo autônomo ou semiautônomo para que o acoplamento seja realizado automaticamente.
[0061] As figuras 2a até 2c ilustram o semirreboque (1 ) já acoplado ao cavalo (2), bem como, os ângulos e as posições relativas calculados para o respectivo alvo (30) lido. As figuras 2a e 2b mostram ângulos voltados para um mesmo lado em relação ao veículo trator (2) conforme indicação do ângulo positivo, enquanto a figura 2c mostra um ângulo voltado para o lado oposto conforme indicação do ângulo negativo.
[0062] Para isso, o sistema de identificação da invenção possui: um alvo (30) posicionado na região dianteira do semirreboque (1 ); um leitor (40) embarcado no veículo trator (2) para identificar o semirreboque (1 ) e obter dados deste por meio do alvo (30); e um processador embarcado na CVC para executar o sistema de acoplamento. Assim, o processador recebe as informações dos alvos (30) lidos e calcula uma rota de acoplamento ao semirreboque (1 ) com base no ângulo e posição relativa calculados entre o veículo trator (2) e o semirreboque (1 ).
[0063] A figura 6 mostra alguns dos tipos de alvos (30) propostos pela invenção para fornecimento de dados de identificação do semirreboque (1 ) e para aquisição do ângulo entre o semirreboque (1 ) e o veículo trator (2). Com isso, os alvos (30) dispostos no semirreboque (1 ) são do mesmo tipo ou de diferentes tipos. A escolha de alvos (30) com relação ao tipo, quantidade, tamanho, ponto de referência, posição na cabeceira, entre outros detalhes não é limitativa ao escopo da presente invenção, uma vez que tal escolha depende da aplicação, por exemplo, modelo e dimensões do semirreboque (1 ), rotas com trechos com baixa iluminação ambiente ou solar e com trechos precários e irregulares, opção por redundância de informações, etc. Dessa forma, a construção dos alvos (30) da presente invenção prevê as peculiaridades que veículos de transporte de carga lidam, de modo que o sistema de identificação se mantém operante, sendo os alvos (30) posicionados na região dianteira do semirreboque (30) e o leitor (40) posicionado no veículo trator (2) ou no semirreboque a frente para identificação do semirreboque (30) de trás.
[0064] Desse modo, o leitor (40) da invenção é qualquer componente capaz de detectar o alvo (30) para comunicação entre semirreboque (1 ) e veículo trator (2) e/ou entre semirreboques (1 ), em que, o alvo (30) do semirreboque (1 ) informa dados estáticos e dados para cálculo dos ditos ângulos e posições relativas entre o veículo trator (2) e o semirreboque (1 ). Tais dados estáticos apresentam requisitos necessários para a condução dos semirreboques (1 ) pelo veículo trator (2) e especificações relacionadas ao transporte da carga, por exemplo, potência mínima, modelo dos semirreboques, número de eixos no solo e se algum destes possui tração auxiliar, além de detalhes do carregamento a exemplo de peso da carga, carga tóxica ou inflamável ou perecível, origem e destino. Com isso, o veículo trator (2) verifica tais dados e, caso atenda aos requisitos para o transporte, realiza a rota de acoplamento aos semirreboques (1 ) e a condução da CVC na sequência. De outra forma, em que o semirreboque (1 ) é provido de um nível de automação, o semirreboque (1 ) realiza a rota de acoplamento ao veículo trator (2) depois de verificar as especificações do veículo trator (2) e se este atende aos requisitos para o transporte da carga.
Exemplo 2 - Identificação de Veículo e Cálculo de Ângulo Utilizando Arllco [0065] O sistema de identificação do exemplo utiliza uma câmera (40) fixada na região traseira do cavalo (2); e um alvo codificado (31 ) do tipo ArUco, conforme mostrado na figura 3, fixado na região dianteira do semirreboque (1 ). Alternativamente, três alvos codificados (31 ) são fixados na região dianteira do veículo tracionado (1 ) conforme mostrado na figura 4.
[0066] O alvo codificado (31 ) possui um padrão identificável por um processador do sistema de identificação da presente invenção, sendo que o alvo codificado (31 ) corresponde a um conjunto de dados armazenado em um banco de dados.
[0067] Adicionalmente, o processador reconhece ao menos um ponto de referência no alvo codificado (31 ). O alvo codificado (31 ) possui três eixos correspondendo a pontos de referência. Quando o processador reconhece os pontos de referência no alvo codificado (31 ), o processador calcula uma distância entre pontos de referência. Com isso, o processador reconhece os eixos e calcula diferentes distâncias entre os eixos. Por fim, a partir das distâncias entre pontos de referência, o processador calcula o ângulo bem como a posição relativa entre os veículos. Assim, o sistema de identificação da invenção contribui para a dirigibilidade dos veículos tracionado (1 ) e trator (2) quando estão acoplados.
[0068] Para tanto, o alvo codificado (31 ) é posicionado no veículo tracionado (1 ) em uma região dianteira, sendo visível ao veículo trator (2) para planejamento da rota de acoplamento, e/ou para cálculo do ângulo e/ou da posição relativa entre os veículos. Alternativamente, a câmera (40) captura imagens do semirreboque, de modo que o processador calcula o ângulo entre o semirreboque (1 ) e o veículo trator (2), sendo a câmera posicionada no veículo trator (2), mais precisamente, ao lado da quinta roda ou posicionada em uma região inferior do semirreboque (1 ).
[0069] Ainda, o processador do sistema da invenção é comunicante com o veículo trator (2) por cabeamento ou por via remota. Assim, a invenção possui aplicação na gestão de frotas, otimizando o transporte de cargas.
Exemplo 3 - Cálculo de Ângulo Utilizando Superfície Reflexiva
[0070] Para este exemplo, o alvo (30) é representado por ao menos uma superfície reflexiva (32) que possui pontos detectáveis por um sensor (40) posicionado no veículo trator (2). Simplificadamente, o fluxograma ilustrado na figura 5 demonstra a sequência de três etapas implementadas pelo sistema do exemplo para aquisição do ângulo entre semirreboque (1 ) e veículo trator (2). Neste exemplo, o sensor (40) utilizado é um radar, LIDAR ou outro sensor provido de tecnologia para deteção remota de sinais ópticos, sendo capaz de emitir e detectar diferentes comprimentos de ondas de sinais eletromagnéticos. [0071] A etapa I é a emissão de ondas eletromagnéticas por uma fonte associada ao fotossensor (40), de modo que as ondas incidem na superfície reflexiva (32) posicionada na região dianteira do semirreboque (1 ). Com isso, as ondas refletem e são direcionadas para o fotossensor (40).
[0072] A partir disso, a etapa II é a captação, pelo fotossensor (40), das ondas refletidas pela superfície reflexiva (32), de forma que a onda refletida pela superfície reflexiva (32) possui um determinado comprimento de onda (Â) e um determinado ângulo de incidência.
[0073] Por fim, a etapa III é a correlação do ângulo de incidência da onda refletida com um ângulo (0) entre o semirreboque (1 ) e o veículo trator (2). Assim, a referida correlação é realizada com base no ângulo de incidência no fotossensor (40), de modo que a onda incide no refletor (32) se movimentando pela rotação do semirreboque (1 ) em relação ao veículo trator (2), reflete e retorna ao fotossensor (40) com o dito ângulo de incidência.
[0074] Para implementação das referidas etapas, o exemplo utiliza superfícies reflexivas formando um refletor. A primeira fileira de alvos (30), mostrados na figura 6, apresenta dois refletores (32) dispostos nas laterais da cabeceira do semirreboque (1 ). Ainda, apenas um refletor (32) ou um número maior do que dois refletores (32) pode ser utilizado na referida cabeceira. Alternativamente, os refletores (32) são posicionados em uma região inferior do semirreboque (1 ). De outra forma, os refletores (32) são posicionados nas laterais do semirreboque (1 ). Assim, a posição dos refletores (32) é a mais afastada possível, considerando o campo visível ao leitor (40), por exemplo, um radar. Cada refletor (32) possui superfícies planas que se cruzam, formando um refletor de canto, conhecido como corner reflector. Neste corner reflector, as superfícies possuem formato triangular ou retangular, que se encontram perpendicularmente. De outro modo, o refletor (32) é uma combinação de tais superfícies, formando um conjunto de oito corner reflectors. Com isso, um emissor gera sinais de comprimento de onda (X) conhecido, incidindo no refletor (32) que retorna os sinais gerados na direção do emissor.
[0075] Desse modo, as superfícies dos refletores (32), que formam o corner reflector, são fabricadas em material que permite a identificação de sua posição pelo sensor (40), ou seja, o referido material não é transparente à determinada frequência ou comprimento de onda emitida pelo sensor (40), prevenindo que a onda atravesse ou transpasse o material.
[0076] Em seguida, para aquisição do ângulo entre semirreboque (1 ) e veículo trator (2), um sensor (40) posicionado no veículo trator (2) é calibrado para fornecer as correlações dos sinais refletidos com o dito ângulo. A calibração do sensor (40) obtém parâmetros para a correlação mais acurada do sinal emitido pelo emissor com o sinal refletido no refletor (32) e, em seguida, recebido no sensor (40).
[0077] Após a calibração do sensor (40) e captação dos sinais refletidos, o processador realiza os cálculos do ângulo entre semirreboque (1 ) e veículo trator (2) com base no ângulo do sinal refletido que incide no sensor (40), sendo este sinal refletido no refletor (32). Alternativamente, o processador realiza o cálculo do dito ângulo por diferença de tempo de retorno do sinal. Adicionalmente, o processador recebe o comprimento de onda dos sinais gerados e recebidos pelo sensor (40) para implementar um filtro sobre os sinais recebidos, reduzindo interferências indesejadas a exemplo de ruídos e luz ambiente ou solar incidindo no refletor (32) e no sensor (40).
[0078] Ainda, o posicionamento dos refletores (32) na cabeceira do semirreboque (1 ) promove a operabilidade do sistema de identificação, uma vez que os refletores (32) permanecem no campo de visão do sensor (40) durante movimentos angulares relativos entre o semirreboque (1 ) e o veículo trator (2). Para isso, os refletores (32) são posicionados nos cantos superiores da cabeceira do semirreboque (1 ), e/ou nas extremidades de uma região central da cabeceira do semirreboque (1 ), e/ou nos cantos da região inferior da cabeceira do semirreboque (1 ), e/ou distribuídos ao longo da área da cabeceira do semirreboque (1 ), e/ou dispostos nas laterais e/ou na região inferior do semirreboque (1 ).
[0079] Assim, o movimento angular relativo entre o semirreboque (1 ) e o veículo trator (2) é detectado através do consequente movimento dos refletores (32). Com os sinais ópticos refletidos nos refletores (32) e captados pelo sensor (40), o ângulo e a posição relativa entre o semirreboque (1 ) e o veículo trator (2) são calculados, correlacionando o ângulo de incidência dos sinais refletidos com o ângulo (0) e com a posição relativa entre o semirreboque (1 ) e o veículo trator (2).
[0080] De forma alternativa ou complementar, um polarímetro é utilizado como sensor (40), de modo que uma combinação de refletores (32) e polarizadores é disposta no semirreboque (1 ) e no veículo trator (2) respectivamente para gerar um gradiente de reflexão de luz ao longo do semirreboque (1 ). Com isso, a leitura do gradiente é alterada à medida que o ângulo entre os veículos da CVC se modifica.
[0081] De outra maneira ou de maneira complementar, uma câmera (40) é utilizada junto com uma lâmpada dotada de controle de cores. Dessa maneira, a cabeceira do semirreboque (1 ) é iluminada com diferentes cores, enquanto a câmera (40) capta imagens para o processador identificar a posição de cada um dos refletores (42) nas imagens. Com a identificação das posições dos refletores (42), o processador executa cálculos geométricos para, enfim, obter o ângulo entre semirreboque (1 ) e veículo trator (2). Para isso, os ditos refletores (32) são corner reflectors e/ou possuem uma tinta reflexiva, por exemplo, tinta mistura com esferas de vidro ou tinta comumente utilizada em placas de trânsito. Exemplo 4 - Cálculo de Ângulo Utilizando Tinta Reflexiva
[0082] Neste exemplo, uma tinta reflexiva é utilizada diretamente sobre o quadro do semirreboque (1 ). Alternativamente, uma faixa é pintada com a referida tinta e colada no semirreboque (1 ). Dessas formas, a presente invenção agiliza a aplicação para identificação de informações do semirreboque (1 ). A referida tinta é produzida a partir de uma mistura com pequenas esferas de vidro com a finalidade de produzir a reflexão de luz.
[0083] De outra maneira, a tinta é dopada com partículas para atingir graus de reflexibilidade, sendo as partículas compostas de metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos. Para o exemplo, as referidas partículas são nanopartículas compostas de nióbio, alumina, tântalo, titânio, háfnio, ferro entre outras substâncias, minérios ou compostos.
[0084] Com isso, ondas refletem na tinta reflexiva e incidem no fotossensor (40), de modo que os ângulos de incidência das ondas são correlacionados com o ângulo (0) entre o semirreboque (1 ) e o veículo trator (2). Assim, a tinta reflexiva permite a fácil identificação do semirreboque (1 ) ao aproveitar a extensa área do quadro frontal do semirreboque (1 ), de modo que a tinta é aplicada em diferentes pontos da dita área ou em maior parte da área. Nesse sentido, o fotossensor (40) recebe as ondas refletidas na tinta, prevenindo erros de leitura ou perda de refletividade devido a intempéries, poeira e partículas dispostas no quadro frontal do semirreboque (1 ).
Exemplo 5 - Cálculo de Ângulo Utilizando Faixa com Gradiente de Cor
[0085] Para o exemplo, ainda na figura 6, a segunda fileira apresenta um alvo (30) do tipo refletor (32) com formato de uma faixa. Além disso, a faixa (32) é pintada ou adesivada sobre a cabeceira do semirreboque, sendo visível ou invisível a olho nu. De outra forma, a faixa (32) é descontínua, possuindo partes distribuídas sobre o quadro frontal do semirreboque (1 ). Ademais, a faixa (32) ocupa a área da cabeceira/quadro frontal do semirreboque (1 ) completamente ou em maior parte. Alternativamente, são utilizadas mais de uma faixa (32). De outro modo, a faixa (32) possui dimensões reduzidas, restringindo leitura indevida de terceiros.
[0086] De forma alternativa ou complementar, uma tinta reflexiva é aplicada sobre a faixa. A referida tinta é misturada com pequenas esferas de vidro, formando uma distribuição de refletores (32) sendo as ditas esferas dispostas ao longo da faixa. Assim, um gradiente de cores é percebido pelo leitor (40) por meio das reflexões das ondas que incidem nas esferas de vidro, de modo que as esferas de vidro se concentram em determinadas partes da faixa (32).
[0087] De outra maneira, a faixa (32) é dopada com partículas para atingir graus de reflexibilidade em determinadas áreas da faixa. Assim, as ditas partículas são compostas de metais, metais de transição, terras raras, óxidos dos mesmos ou combinações dos mesmos. Para o exemplo, as referidas partículas são nanopartículas compostas de nióbio, alumina, tântalo, titânio, háfnio, ferro entre outras substâncias, minérios ou compostos, auxiliando nas propriedades de reflexão da faixa.
[0088] Adicionalmente, um leitor (40), sendo um fotossensor e posicionado na região traseira do veículo trator (2), é sensível a um determinado gradiente de cor. De outra forma, o leitor (40) é uma câmera que lê a faixa (32) provida de um gradiente.
[0089] Para o exemplo, o gradiente utilizado possui uma escala de cinza, de modo que o gradiente possui um ponto de referência para o leitor (40), sendo o dito ponto localizado no centro da faixa (32). Com isso, um sinal óptico incide no ponto central da faixa (32) e é refletido até alcançar o leitor (40) para leitura do sinal refletido, sendo que o comprimento de onda (X) do sinal lido é correlacionado com um ângulo (0) entre o semirreboque (1 ) e o veículo trator (2). Para isso, tais correlações são tabeladas a fim de reduzir custos computacionais e entregar medidas, de forma mais rápida para tomadas de decisão pelo condutor ou por sistemas de assistência de direção.
[0090] Assim, as variações angulares do semirreboque (1 ) em relação ao veículo trator (2) são detectadas com base na variação de cor percebida pelo leitor (40), que é relativa à variação do comprimento de onda (Â) do sinal lido, de modo que a cor percebida tende para o preto quando o semirreboque (1 ) está mais próximo de uma lateral do veículo trator, enquanto a cor percebida tende para o branco quando o semirreboque (1 ) está mais próximo da lateral oposta.
[0091] De outra forma, a faixa (32) possui uma distribuição de cores. Observando que as cores da dita faixa (32) são distintas entre si, o movimento angular do semirreboque (1 ) em relação ao veículo trator (2) causa a reflexão de ondas com À’s distintos, sendo lidos pelo leitor (40).
[0092] Nesse sentido, a faixa (32) provida de diferentes cores ou de um gradiente em cor possibilita aquisição do ângulo e posição relativa entre semirreboque (1 ) e veículo trator (2) por meio do leitor (40) percebendo os diferentes À’s dos sinais refletidos à medida que o movimento angular relativo entre semirreboque (1 ) e veículo trator (2) se altera.
[0093] Ainda, a faixa (32) é invisível a olho nu, conforme indicada na última fileira dos alvos (30) representados na figura 6. Neste caso, a faixa (32) é detectada por leitores (40) configurados para perceber os sinais refletidos na faixa invisível, uma vez que operam em um intervalo de comprimentos de onda invisíveis a olho nu. Ou seja, o intervalo de comprimentos de onda À’s invisíveis a olho nu apresenta valores de comprimento de onda fora do espectro de luz visível.
[0094] Assim, a faixa invisível (32) promove segurança de informação, protegendo os dados de identificação do semirreboque (1 ). Além disso, os pontos de referência também estão invisíveis na faixa, prevenindo alterações indevidas que possam causar erros nas leituras dos ditos ângulos e em operações de sistemas de assistência de direção. O uso deste tipo de faixa invisível permite que o alvo tenha grandes dimensões, ocupando a maior área do quadro frontal do semirreboque, uma vez que não impacta no design e na estética do veículo. Exemplo 6 - Identificação de Veículo e Cálculo de Ângulo Utilizando Faixa Codificada
[0095] A penúltima fileira de alvos (30) mostrados na figura 6 apresenta uma faixa codificada (31 ) possuindo retângulos. Para o exemplo, as cores dos retângulos são preto e branco, não se limitando a estas cores. Neste exemplo, os retângulos das extremidades correspondem aos pontos de referência utilizados para aquisição do ângulo entre semirreboque (1 ) e veículo trator (2) por meio de cálculos geométricos.
[0096] Adicionalmente, demais retângulos, dispostos entre as extremidades da faixa codificada (31 ), estão disponíveis para inserção de dados de identificação do semirreboque, informações de segurança logística, códigos de entrega, etc. De forma simplificada como apresentado neste exemplo, a faixa codificada (31 ) apresenta oito espaços que correspondem a bits, sendo preenchidos ou mantidos vazios, representando uma base binária, ou seja, o retângulo preenchido com cor preta indica bit igual a 1 e o retângulo mantido na cor branca indica bit igual a zero. Com isso, os ditos dados representados por 0’s e Ts são lidos pelos indicadores na forma de retângulos da faixa codificada (31 ).
[0097] Além disso, o preenchimento e o número de retângulos podem ser alterados com a troca da faixa adesiva ou com a repintura da faixa. Em um contexto exemplificativo de finalização da entrega da carga, são atualizados os dados de identificação: pesagem da carga, número de eixos em contato com o solo e carga de baterias. Nesse contexto, a faixa é atualizada com novo preenchimento dos retângulos para possibilitar a identificação dos dados atualizados. Adicionalmente, a faixa é monitorada pelo leitor (40), a fim de proteger as informações de identificação contidas no alvo (30), restringindo alterações não autorizadas.
[0098] Assim, a faixa é fabricada por uma tinta, sendo pintada sobre a superfície da cabeceira. De outra forma, a faixa é colada sobre a superfície da cabeceira. A dita faixa ocupa toda a área disponível no quadro dianteiro do semirreboque (1 ). Alternativamente, a faixa ocupa uma porção reduzida do quadro dianteiro do semirreboque (1 ). Em uma concretização alternativa, o dito quadro possui mais de uma faixa para fornecer redundância de dados ou aumento dos números de dados de identificação.
[0099] A referida faixa pode ser fabricada com a adição de partículas, que dopam a faixa a fim de atingir graus de reflexibilidade diferentes e de acordo com a necessidade estimada. Para o exemplo, as referidas partículas são nanopartículas compostas de nióbio, alumina, tântalo, titânio, háfnio, ferro entre outras substâncias, minérios ou compostos, auxiliando nas propriedades de reflexão da faixa. De forma alternativa ou complementar, a faixa é fabricada com uma tinta refletiva misturada com pequenas esferas de vidro.
[0100] Novamente, assim como no exemplo anterior, a referida faixa codificada deste exemplo pode ser visível ou invisível a olho nu, sendo, de modo, perceptível e/ou legível pelo leitor (40).
[0101] Assim, o leitor (40) é uma câmera que envia imagens para o processador. Em uma concretização alternativa, o leitor (40) é um sensor capaz de perceber sinais refletidos na faixa (31 ), de modo que o sensor emite sinais a cada retângulo da faixa e recebe os sinais refletidos na faixa (31 ).
[0102] Inicialmente, calibrações do leitor (40) são realizadas para aquisição precisa e acurada dos ângulos e posições relativas entre o semirreboque (1 ) e veículo trator (2). Com isso, as calibrações do leitor (40) são realizadas sobre um mesmo semirreboque (1 ), podendo ser replicadas para qualquer outro semirreboque.
[0103] Em seguida, o processador recebe as imagens lidas pela câmera (40) para reconhecer pontos de referência na faixa codificada (31 ) por meio da execução de processamentos. Por fim, os cálculos do dito ângulo e da dita posição relativa se baseiam nas distâncias entre os pontos de referência reconhecidos na faixa codificada (31 ). Ainda, o processador reconhece os bits indicados nos demais retângulos da faixa codificada (31 ) para identificação do semirreboque (1 ). [0104] De outra maneira, o referido leitor (40) é um fotossensor, de modo que o processador recebe os sinais captados pelo fotossensor (40) para reconhecer pontos de referência na faixa. O processador reconhece os ditos pontos de referência por possuírem predefinidos comprimentos de onda (Â), que são relativos à reflexão do sinal eletromagnético que incide na faixa codificada (31 ), onde cada campo da faixa (31 ) é dotado de cores/comprimentos de ondas diferentes. No caso deste exemplo, são selecionados quatro comprimentos de onda diferentes, sendo dois para as extremidades (pontos de referência), um para o bit 1 e outro para o bit 0. Com tal reconhecimento, o processador calcula os ângulos e as posições relativas entre semirreboque (1 ) e veículo trator (2) que se modificam com o movimento relativo entre o semirreboque (1 ) e o veículo trator (2).
Exemplo 7 - Dolly autônomo
[0105] A partir do ângulo e/ou da posição relativa entre os veículos tracionado (1 ) e trator (2) quando estão desacoplados, o processador do sistema calcula uma rota de acoplamento de um dos veículos ao outro veículo. Em uma concretização em que o veículo tracionado (1 ) é um semirreboque, os veículos se aproximam, alinhando a quinta roda do veículo trator (2) com o pino rei do veículo tracionado (1 ).
[0106] Para uma rota de acoplamento, o veículo trator (2) se desloca em direção ao veículo tracionado (1 ). Em uma outra rota de acoplamento, o veículo tracionado (1 ) se desloca em direção ao veículo trator (2).
[0107] Assim, quando os veículos estão acoplados, o processador informa o ângulo e a posição relativa entre os veículos a um condutor e/ou a um sistema de controle do veículo trator (2), sendo o sistema de controle contido em um sistema autônomo do veículo ou em um sistema de assistência do condutor.
[0108] Ainda, a presente invenção apresenta um sistema autônomo de acoplamento em veículo tracionado (1 ), sendo que o sistema autônomo compreende um sistema de identificação de veículo e para acoplamento entre veículo tracionado (1 ) e veículo trator (2); e um veículo trator (2) dotado de ao menos uma câmera (40) do sistema de identificação, sendo que a câmera (40) que lê ao menos um alvo codificado (31 ) posicionado no veículo tracionado (1 ); em que, um processador do sistema de identificação recebe o alvo codificado (31 ) lido pela câmera (40); e, a partir do alvo codificado (31 ), calcula um ângulo e/ou posições relativas entre os veículos.
[0109] Assim, o sistema autônomo possui o sistema de identificação da invenção e o veículo trator (2) correspondendo a um dolly autônomo, em que, o dolly se acopla a um veículo tracionado (1 ) correspondendo a um semirreboque. [0110] Quando os veículos estão acoplados, o processador calcula o ângulo entre os veículos em predeterminadas situações de atenção: manobras, estacionamento e marcha ré.
[0111] Quando os veículos estão desacoplados, o processador calcula, a partir do ângulo e da posição relativa entre os veículos, uma rota de acoplamento do veículo trator (2) ao veículo tracionado (1 ).
[0112] A figura 7 mostra o ângulo de 40s calculado pelo processador a partir do alvo codificado (31 ) posicionado na região dianteira do semirreboque (1 ). Assim, ao menos uma câmera (40) embarcada em um dolly autônomo identifica o semirreboque (1 ), obtendo dados do semirreboque (1 ), o ângulo e a posição relativa calculados entre o dolly autônomo e o semirreboque (1 ). A partir disso, um processador do dolly autônomo calcula uma rota de acoplamento ao semirreboque (1 ).
[0113] Adicionalmente, com a utilização de sensores (40), as correlações realizadas para aquisição dos ângulos nos veículos da CVC são executadas simultaneamente com uma simulação do conjunto acoplado - veículo trator (2) e semirreboques (1 ) da CVC - a fim de reduzir ruídos na leitura do sensor (40) por meio da utilização dos dados simulados.
Exemplo 8 - Sistema auxiliar para condições de ultrapassagem de um veículo de transporte de carga [0114] Ademais, a presente invenção incrementa a dirigibilidade e navegação de veículos ao prover condições de ultrapassagem em vias, principalmente, em vias de pista simples com elevado limite de velocidade máxima, onde a ultrapassagem possui ainda mais risco. Mesmo em pistas com mais de uma faixa no mesmo sentido, algumas condições da via podem dificultar a ultrapassagem. A presente invenção visa mitigar tais riscos e dificuldades, além de promover uma ultrapassagem mais segura.
[0115] Para isso, o alvo (30) é posicionado no veículo tracionado (1 ) em uma região traseira, sendo visível a um outro veículo para planejamento de uma rota de ultrapassagem ou para fornecimento de informações de tráfego. Ademais, o alvo (30) fornece dados de veículo adicionais para fins de exemplificação: comprimento e peso do veículo, entre outros. Em uma concretização, as informações de tráfego correspondem a condições da via.
[0116] Em uma concretização de rota de ultrapassagem, onde o veículo trator (2) e o veículo tracionado (1 ) estão acoplados trafegando a frente de um outro veículo, um ou mais leitores (40) do outro veículo leem o alvo (30) posicionado na região traseira do veículo tracionado (1 ), e, a partir do alvo (30) lido, o outro veículo calcula a rota de ultrapassagem.
[0117] Dessa forma, a presente invenção apresenta um sistema auxiliar para condições de ultrapassagem de um veículo alvo em uma via, sendo o sistema auxiliar embarcado em um primeiro veículo, sendo que, o veículo alvo compreende ao menos um alvo (30) posicionado em uma região, em que o veículo alvo trafega a frente do primeiro veículo conforme mostrado na figura 8. O primeiro veículo compreende ao menos uma câmera (40), que lê o alvo (30) e ao menos uma condição da via ou do veículo alvo; e um processador sendo comunicante com a câmera (40) e embarcado no primeiro veículo; em que, o processador recebe o alvo (30) e as condições da via lidos pela câmera (40); e, a partir do alvo (30) e das condições da via, calcula uma condição de ultrapassagem entre os veículos; sendo que, o alvo (30) corresponde a ao menos um dado do veículo alvo; a condição da via corresponde a ao menos um dado da via, definido entre: velocidade do veículo alvo, presença e velocidade de um veículo terceiro em sentido oposto, entre outros; e a condição de ultrapassagem corresponde a um tempo de ultrapassagem e/ou uma permissão de ultrapassagem.
[0118] Adicionalmente, o alvo (30) fornece um dado de comprimento do veículo alvo. Em uma concretização, o alvo (30) é posicionado em uma região traseira do veículo alvo, de modo que o alvo (30) fica no campo de visão da câmera (40) posicionada em uma região dianteira do primeiro veículo. Assim, o veículo alvo, trafegando a frente do primeiro veículo na via, fornece dados do veículo alvo por meio do alvo (30) lido pela câmera (40). Além do comprimento do veículo, o alvo (30) fornece peso, dados da carga transportada, contato da transportadora, entre outros dados do veículo.
[0119] Além do alvo (30), a câmera (40) lê condições da via. Em uma concretização, as condições da via são: velocidade do veículo alvo, obstáculos e buracos da via, veículo terceiro se aproximando, pedestres e/ou animais na via. Em uma concretização, o veículo terceiro se aproxima do primeiro veículo em sentido oposto. Em outra concretização, o veículo terceiro se aproxima do primeiro veículo, ambos percorrendo a via no mesmo sentido.
[0120] Com o alvo (30) e as condições da via lidos, o processador do primeiro veículo correlaciona o dado de comprimento do veículo alvo com um dado de condição da via para calcular a condição de ultrapassagem. Em uma concretização, a condição de ultrapassagem corresponde ao tempo de ultrapassagem do primeiro veículo passando à frente do veículo alvo. Em uma concretização adicional, a condição de ultrapassagem corresponde a uma permissão de ultrapassagem, verificando se o primeiro veículo é capaz ou não de ultrapassar o veículo alvo.
[0121] Ainda, o sistema auxiliar da presente invenção considera configuração do primeiro veículo quando acoplado a ao menos um implemento compreendendo uma tração auxiliar. Em uma concretização em que o primeiro veículo está acoplado a um implemento dotado de tração auxiliar em ao menos um dos eixos, o processador avalia influência do acionamento da tração auxiliar na condição de ultrapassagem. Nessa concretização, o processador do primeiro veículo calcula dois tempos de ultrapassagem, um tempo considerando tração auxiliar do implemento acionada, e o outro tempo, tração auxiliar não acionada. Com isso, o processador avalia influência da tração auxiliar na permissão de ultrapassagem. Adicionalmente, em uma concretização, o processador verifica estado de carga de baterias (SoC) que alimentam a tração auxiliar do implemento.
[0122] A presente invenção também apresenta um método auxiliar para condições de ultrapassagem de um veículo alvo em uma via implementado por um sistema auxiliar para condições de ultrapassagem embarcado em um primeiro veículo, sendo que o método auxiliar para condições de ultrapassagem compreende as etapas de leitura de ao menos um alvo (30) posicionado em uma região do veículo alvo e de ao menos uma condição da via, sendo as leituras realizadas por meio de ao menos uma câmera (40) posicionada no primeiro veículo, em que, o veículo alvo trafega a frente do primeiro veículo; recebimento do alvo (30) e das condições da via lidos por um processador comunicante com a câmera (40) e embarcado no primeiro veículo; e cálculo, por meio do processador, de uma condição de ultrapassagem entre os veículos a partir do alvo (30) e das condições da via lidos; sendo que, o alvo (30) corresponde a ao menos um dado do veículo alvo; a condição da via corresponde a ao menos um dado da via, definido entre: velocidade do veículo alvo, presença e velocidade de um veículo terceiro em sentido oposto, entre outros; e a condição de ultrapassagem corresponde a um tempo de ultrapassagem e/ou uma permissão de ultrapassagem.
[0123] Em uma concretização, o método auxiliar da presente invenção é implementado pelo sistema auxiliar para condições de ultrapassagem conforme definido anteriormente.
[0124] Para tanto, o alvo (30) é posicionado em uma região do veículo alvo. Em uma concretização em que o veículo alvo é um semirreboque, o alvo (30) é posicionado em uma região traseira do semirreboque. Ainda, a etapa de recebimento do alvo (30) corresponde ao fornecimento de um dado de comprimento do veículo alvo, além de outros dados do veículo alvo, por exemplo, peso e modelo do veículo, carga transportada, contato da transportadora, etc. Adicionalmente, a leitura das condições da via captura obstáculos, pedestres e/ou animais na via, além de veículos terceiros se aproximando em ambos os sentidos da via.
[0125] Após o recebimento do alvo (30) e das condições da via, o processador realiza o cálculo da condição de ultrapassagem, correlacionando o dado de comprimento do veículo alvo com um dado de condição da via.
[0126] Adicionalmente, o primeiro veículo é acoplado a um implemento compreendendo uma tração auxiliar. Com isso, para o cálculo da condição de ultrapassagem pelo método auxiliar da presente invenção, o processador considera configurações da tração auxiliar do implemento.
[0127] Nesse sentido, a presente invenção possibilita aumento da segurança e dirigibilidade de veículos, além evitar acidentes por meio do cálculo do ângulo e da posição relativa entre veículos de forma simplificada, por meio do acoplamento entre veículos, bem como, a presente invenção auxilia na ultrapassagem de veículos.
[0128] Ademais, um alvo (30) adicional é posicionado na região traseira do semirreboque (1 ) trafegando a frente de um primeiro veículo, sendo o primeiro veículo acoplado a um implemento dotado de tração auxiliar em um dos eixos. Com isso, o semirreboque (1 ) disponibiliza dados da combinação cavalo (2) com semirreboque (1 ) ao primeiro veículo por meio do alvo (30). Ao menos uma câmera (40), contida em um sistema auxiliar embarcado no primeiro veículo, lê os dados fornecidos pelo alvo (30) do semirreboque (1 ), obtendo dados do veículo como comprimento e modelo do veículo, entre outros; e condições da via como veículo terceiro se aproximando, obstáculos, pedestres, entre outros. A partir da leitura desses dados, um processador do sistema auxiliar calcula uma condição de ultrapassagem da combinação pelo primeiro veículo. A condição de ultrapassagem considera uma permissão de ultrapassagem, avaliando se o primeiro veículo é capaz ou não de ultrapassar a combinação do semirreboque (1 ). Para isso, o processador calcula o tempo de ultrapassagem com a tração auxiliar do eixo tanto ativada quanto desativada.
[0129] Os versados na arte valorizarão os conhecimentos aqui apresentados e poderão reproduzir a invenção nas modalidades apresentadas e em outras variantes e alternativas, abrangidas pelo escopo das reivindicações a seguir.

Claims

Reivindicações
1 . Sistema de identificação de informações de veículo de transporte de carga compreendendo ao menos um veículo tracionado (1 ) acoplável a um veículo trator (2) caraterizado por compreender: a. ao menos um alvo (30) posicionado em um dos veículos do veículo de transporte; e b. um leitor (40) de ao menos um sinal relacionado ao alvo (30), em que, o sinal é correlacionado com um ângulo entre os veículos tracionado (1 ) e trator (2); com uma posição relativa entre os veículos tracionado (1 ) e trator (2); e/ou com um dado de identificação dos veículos tracionado (1 ) e trator (2).
2. Sistema de identificação, de acordo com a reivindicação 1 , caracterizado por o alvo (30) ser posicionado em uma região dianteira do veículo tracionado (1 )-
3. Sistema de identificação, de acordo com a reivindicação 1 , caracterizado por o alvo (30) compreender ao menos um ponto de referência sendo visível pelo leitor (40) por meio do sinal partindo do ponto de referência.
4. Sistema de identificação, de acordo com a reivindicação 3, caracterizado por o leitor (40) ser uma câmera associada ao veículo trator (2).
5. Sistema de identificação, de acordo com a reivindicação 4, caracterizado por o alvo (30) lido pela câmera ser um alvo codificado (31 ).
6. Sistema de identificação, de acordo com a reivindicação 3, caracterizado por o leitor (40) ser um sensor que percebe sinais refletidos no alvo (30).
7. Sistema de identificação, de acordo com a reivindicação 6, caracterizado pelo alvo (30) ser um alvo refletor (32).
8. Método de identificação de informações de veículo de transporte de carga compreendendo ao menos um veículo tracionado (1 ) acoplável a um veículo trator (2) caraterizado por compreender as etapas de: a. recebimento de um sinal por um leitor (40), sendo o sinal relacionado a um alvo (30) posicionado em um dos veículos do veículo de transporte; e b. correlação, por meio de um processador comunicante com o leitor (40), do sinal com um ângulo entre os veículos tracionado (1 ) e trator (2); com uma posição relativa entre os veículos tracionado (1 ) e trator (2); e/ou com um dado de identificação dos veículos tracionado (1 ) e trator (2).
9. Método de identificação, de acordo com a reivindicação 8, caracterizado por a etapa de correlação compreender cálculo do ângulo e/ou da posição relativa entre os veículos do veículo de transporte.
10. Método de identificação, de acordo com a reivindicação 8, caracterizado por a etapa de recebimento compreender reconhecimento de ao menos um ponto de referência no alvo (30), sendo o ponto de referência visível pelo leitor (40) por meio do sinal partindo do ponto de referência.
1 1 . Método de identificação, de acordo com a reivindicação 10, caracterizado por a etapa de recebimento compreender leitura de um alvo (30) por meio de uma câmera, sendo o alvo (30) um alvo codificado (31 ).
12. Método de identificação, de acordo com a reivindicação 10, caracterizado por a etapa de recebimento compreender percepção, por meio de um sensor, de sinais refletidos no alvo (30), sendo este um alvo refletor (32).
13. Implemento rodoviário (1 ) compreendendo uma região dianteira de acoplamento a um veículo trator (2) caracterizado por compreender ao menos um alvo (30) de um sistema de identificação de informações de veículo de transporte de carga, sendo o alvo (30) posicionado na referida região dianteira do implemento (1 ).
14. Implemento rodoviário (1 ), de acordo com a reivindicação 13, caracterizado por o alvo (30) compreender ao menos um ponto de referência sendo visível por um leitor (40) por meio de ao menos um sinal partindo do ponto de referência, em que o sinal é relacionado ao alvo (30) e é correlacionado com um ângulo entre o implemento (1 ) e um veículo trator (2); com uma posição relativa entre o implemento (1 ) e um veículo trator (2); e/ou com um dado de identificação do implemento (1 ) e do veículo trator (2).
15. Implemento rodoviário (1), de acordo com a reivindicação 13, caracterizado por o alvo (30) ser um alvo codificado (31 ) e/ou um alvo refletor
PCT/BR2023/050366 2022-10-28 2023-10-30 Sistema e método de identificação de informações de veículo de transporte de carga, e implemento rodoviário WO2024086909A1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102022022054 2022-10-28
BR1020220220549 2022-10-28

Publications (1)

Publication Number Publication Date
WO2024086909A1 true WO2024086909A1 (pt) 2024-05-02

Family

ID=90829522

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2023/050366 WO2024086909A1 (pt) 2022-10-28 2023-10-30 Sistema e método de identificação de informações de veículo de transporte de carga, e implemento rodoviário

Country Status (1)

Country Link
WO (1) WO2024086909A1 (pt)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160304122A1 (en) * 2015-04-14 2016-10-20 Continental Automotive Systems, Inc. Automated hitching assist system
US20170297563A1 (en) * 2016-04-13 2017-10-19 Ford Global Technologies, Llc Smart trailer classification system
US20180147900A1 (en) * 2012-07-05 2018-05-31 Uusi, Llc Vehicle trailer connect system
WO2019165150A1 (en) * 2018-02-21 2019-08-29 Azevtec, Inc. Systems and methods for automated operation and handling of autonomous trucks and trailers hauled thereby
US20200307328A1 (en) * 2017-08-31 2020-10-01 Saf-Holland Gmbh System for identifying a trailer and for assisting a hitching process to a tractor machine
US20210009205A1 (en) * 2018-11-08 2021-01-14 Ford Global Technologies, Llc Automated hitching system with subject trailer selection from multiple identified trailers
WO2021029041A1 (en) * 2019-08-14 2021-02-18 Volvo Truck Corporation Device and method for optimal lane keeping assistance, articulated vehicle, computer program, and computer readable medium storing computer program
US20210086785A1 (en) * 2019-09-25 2021-03-25 Ford Global Technologies, Llc Differentiating between near trailer and connected trailer
US20210114657A1 (en) * 2011-01-26 2021-04-22 Magna Electronics Inc. Trailering assist system with trailer angle detection
US20210291902A1 (en) * 2020-03-23 2021-09-23 Beijing Tusen Zhitu Technology Co., Ltd. Method and apparatus for trailer angle measurement and vehicle
US20220063720A1 (en) * 2020-09-02 2022-03-03 Ford Global Technologies, Llc Hitch angle detection using automotive radar
US20220144339A1 (en) * 2011-04-19 2022-05-12 Ford Global Technologies, Llc Trailer backup offset determination
US20220266831A1 (en) * 2021-02-23 2022-08-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method, system and computer program product for automatically adapting at least one driving assistance function of a vehicle to a trailer operating state
US20220281448A1 (en) * 2021-03-08 2022-09-08 GM Global Technology Operations LLC Trailer lane departure warning and lane keep assist
BR102021025678A2 (pt) * 2021-12-17 2023-06-27 Instituto Hercílio Randon Sistema e método de transporte autônomo de carga

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210114657A1 (en) * 2011-01-26 2021-04-22 Magna Electronics Inc. Trailering assist system with trailer angle detection
US20220144339A1 (en) * 2011-04-19 2022-05-12 Ford Global Technologies, Llc Trailer backup offset determination
US20180147900A1 (en) * 2012-07-05 2018-05-31 Uusi, Llc Vehicle trailer connect system
US20160304122A1 (en) * 2015-04-14 2016-10-20 Continental Automotive Systems, Inc. Automated hitching assist system
US20170297563A1 (en) * 2016-04-13 2017-10-19 Ford Global Technologies, Llc Smart trailer classification system
US20200307328A1 (en) * 2017-08-31 2020-10-01 Saf-Holland Gmbh System for identifying a trailer and for assisting a hitching process to a tractor machine
WO2019165150A1 (en) * 2018-02-21 2019-08-29 Azevtec, Inc. Systems and methods for automated operation and handling of autonomous trucks and trailers hauled thereby
US20210009205A1 (en) * 2018-11-08 2021-01-14 Ford Global Technologies, Llc Automated hitching system with subject trailer selection from multiple identified trailers
WO2021029041A1 (en) * 2019-08-14 2021-02-18 Volvo Truck Corporation Device and method for optimal lane keeping assistance, articulated vehicle, computer program, and computer readable medium storing computer program
US20210086785A1 (en) * 2019-09-25 2021-03-25 Ford Global Technologies, Llc Differentiating between near trailer and connected trailer
US20210291902A1 (en) * 2020-03-23 2021-09-23 Beijing Tusen Zhitu Technology Co., Ltd. Method and apparatus for trailer angle measurement and vehicle
US20220063720A1 (en) * 2020-09-02 2022-03-03 Ford Global Technologies, Llc Hitch angle detection using automotive radar
US20220266831A1 (en) * 2021-02-23 2022-08-25 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method, system and computer program product for automatically adapting at least one driving assistance function of a vehicle to a trailer operating state
US20220281448A1 (en) * 2021-03-08 2022-09-08 GM Global Technology Operations LLC Trailer lane departure warning and lane keep assist
BR102021025678A2 (pt) * 2021-12-17 2023-06-27 Instituto Hercílio Randon Sistema e método de transporte autônomo de carga

Similar Documents

Publication Publication Date Title
CN113329927B (zh) 基于激光雷达的挂车追踪
US10591924B1 (en) Detecting sensor degradation by actively controlling an autonomous vehicle
US11872998B1 (en) Cross-validating sensors of an autonomous vehicle
CN106945660A (zh) 一种自动泊车系统
CN111824009B (zh) 行车交互系统、车辆及其行车交互方法
CN101332836A (zh) 拖车铰接角估计
US11292483B2 (en) Managing a change in a physical property of a vehicle due to an external object
KR20140039243A (ko) 센서 필드 선택
CN106114357A (zh) 一种车辆转弯时防剐蹭装置及方法
CN108603938A (zh) 用于确定机动车传感器的检测范围的方法和设备
US20210221389A1 (en) System and method for autonomous vehicle sensor measurement and policy determination
CN111210622B (zh) 一种非固定道路的自动驾驶路点数据采集与维护方法
Ng et al. Autonomous vehicle-following systems: A virtual trailer link model
WO2024086909A1 (pt) Sistema e método de identificação de informações de veículo de transporte de carga, e implemento rodoviário
CN116301061A (zh) 无人车跟人行驶方法、装置、电子设备及可读存储介质
CN113808419A (zh) 用于确定环境的对象的方法、对象感测设备以及存储介质
JPH10160486A (ja) 車両の位置検出装置
Lasky et al. The advanced snowplow driver assistance system
US20200384993A1 (en) Motor vehicle driving assistance device and method
US12001217B1 (en) Detecting sensor degradation by actively controlling an autonomous vehicle
WO2019156915A1 (en) Validating vehicle operation using acoustic pathway articles
Li Ros-Based Sensor Fusion and Motion Planning for Autonomous Vehicles: Application to Automated Parkinig System
CN211844341U (zh) 一种自动驾驶客车
US20230184887A1 (en) Method and unit for evaluating a performance of an obstacle detection system
KR20240026365A (ko) 차량 및 그 제어 방법