WO2024085591A1 - Polyimide film and method for producing same - Google Patents

Polyimide film and method for producing same Download PDF

Info

Publication number
WO2024085591A1
WO2024085591A1 PCT/KR2023/016019 KR2023016019W WO2024085591A1 WO 2024085591 A1 WO2024085591 A1 WO 2024085591A1 KR 2023016019 W KR2023016019 W KR 2023016019W WO 2024085591 A1 WO2024085591 A1 WO 2024085591A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
polyimide film
dianhydride
content
less
Prior art date
Application number
PCT/KR2023/016019
Other languages
French (fr)
Korean (ko)
Inventor
채윤석
원동영
여문진
전진석
Original Assignee
피아이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피아이첨단소재 주식회사 filed Critical 피아이첨단소재 주식회사
Publication of WO2024085591A1 publication Critical patent/WO2024085591A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to a polyimide film having excellent heat resistance and mechanical properties (yield strength and yield point) and a method of manufacturing the same.
  • Polyimide (PI) is a polymer material that has the highest level of heat resistance, chemical resistance, electrical insulation, chemical resistance, and weather resistance among organic materials, based on an imide ring with a rigid aromatic main chain and excellent chemical stability. am.
  • Polyimide film is attracting attention as a material for various electronic devices that require the above-mentioned properties.
  • micro-electronic components to which polyimide film is applied include thin, flexible circuit boards with high circuit integration to cope with the weight reduction and miniaturization of electronic products.
  • Polyimide film is especially widely used as an insulating film for thin circuit boards. there is.
  • the thin circuit board generally has a structure in which a circuit including metal foil is formed on an insulating film.
  • a thin circuit board is referred to as a flexible metal foil clad laminate and is made of a thin copper plate with metal foil.
  • FCCL Flexible Copper Clad Laminate
  • Methods for manufacturing flexible metal foil laminates include, for example, (i) casting or applying polyamic acid, a precursor of polyimide, onto metal foil and then imidizing it, (ii) sputtering. (iii) a metalizing method in which a metal layer is directly installed on a polyimide film; and (iii) a laminating method in which a polyimide film and a metal foil are bonded through heat and pressure through thermoplastic polyimide.
  • the metallization method produces a flexible metal foil laminate by, for example, sputtering a metal such as copper on a polyimide film with a thickness of 20 to 38 ⁇ m and sequentially depositing a tie layer and a seed layer.
  • This method has the advantage of forming ultrafine circuits with a circuit pattern pitch of 35 ⁇ m or less, and is widely used to manufacture flexible metal foil laminates for COF (chip on film).
  • Patent Document 1 Republic of Korea Patent No. 10-1375276
  • Patent Document 2 Republic of Korea Patent Publication No. 2016-0002402
  • the purpose of the present invention is to provide a polyimide film that has both excellent heat resistance and mechanical properties (yield strength and yield point) and a method for manufacturing the same.
  • One aspect of the present invention for achieving the above object is that the yield strength is 138 MPa or more
  • a polyimide film is provided.
  • Another aspect of the present invention provides a flexible metal foil laminate including the polyimide film and an electrically conductive metal foil.
  • Another aspect of the present invention provides an electronic component including the flexible metal foil laminate.
  • the present invention provides a polyimide film in which the composition ratio and reaction ratio of dianhydride and diamine components are adjusted, thereby improving the processability of the polyimide film by providing a polyimide film with excellent heat resistance, yield point, and yield strength characteristics. .
  • This polyimide film can be applied to various fields that require a polyimide film with excellent properties, for example, to a flexible metal foil laminate manufactured by a metallizing method or to electronic components including such a flexible metal foil laminate.
  • dianhydride acid is intended to include precursors or derivatives thereof, which may not technically be dianhydride acids, but which will nonetheless react with diamines to form polyamic acids, which in turn will form polyamic acids. It can be converted to mead.
  • diamine is intended to include precursors or derivatives thereof, which may not technically be diamines, but which will nonetheless react with dianhydride to form polyamic acids, which in turn will form polyamic acids. Can be converted to mead
  • the polyimide film according to one embodiment of the present invention may have a yield strength of 138 MPa or more and a glass transition temperature of 370°C or more.
  • the yield strength of the polyimide film may be 150 MPa or less, and the glass transition temperature may be 380°C or less.
  • the yield strength of the polyimide film may be 138 MPa or more, 140 MPa or more, or 145 MPa or more.
  • the yield point of the polyimide film may be 2.4% or more.
  • the yield point of the polyimide film may be 2.6% or less.
  • the polyimide film is a dianhydride containing biphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride (PMDA), and benzophenone tetracarboxylic dianhydride (BTDA). It can be obtained by imidizing a polyamic acid solution containing a component and a diamine component including paraphenylene diamine (PPD), m-tolidine (m-tolidine), and oxydianiline (ODA).
  • BPDA biphenyltetracarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • BTDA benzophenone tetracarboxylic dianhydride
  • the polyimide film is a polymer composed of biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, paraphenylene diamine, m-tolidine, and oxydianiline. It can be obtained by subjecting the derived polyamic acid to an imidization reaction.
  • the content of the biphenyltetracarboxylic dianhydride is 15 mol% or more and 30 mol% or less, and the pyromellitic dianhydride The content of may be 30 mol% or more and 50 mol% or less, and the content of the benzophenone tetracarboxylic dianhydride may be 25 mol% or more and 45 mol% or less.
  • the content of the biphenyltetracarboxylic dianhydride is 20 mol% or more and 25 mol% or less
  • the content of the pyromellitic dianhydride is It may be 35 mol% or more and 45 mol% or less
  • the content of the benzophenone tetracarboxylic dianhydride may be 30 mol% or more and 45 mol% or less.
  • the paraphenylene diamine content is 45 mol% or more and 60 mol% or less
  • the m-tolidine content is 10 mol% or more
  • It is 25 mol% or less
  • the content of oxydianiline may be 20 mol% or more and 40 mol% or less.
  • the paraphenylene diamine content is 50 mol% or more and 60 mol% or less
  • the m-tolidine content is 10 mol% or more and 15 mol%. % or less
  • the content of oxydianiline may be 25 mol% or more and 35 mol% or less.
  • Paraphenylene diamine of the present invention is a rigid monomer, and as the content of paraphenylene diamine increases, the synthesized polyimide has a more linear structure, which can contribute to improving the mechanical properties and heat resistance of the polyimide.
  • m-tolidine contains a benzene ring structure containing a methyl group, so it can contribute to improving the mechanical properties and heat resistance of the polyimide film.
  • the polyimide chain derived from biphenyltetracarboxylic dianhydride of the present invention has a structure named charge transfer complex (CTC), that is, an electron donor and an electron acceptor. It has a regular straight structure located close to each other and intermolecular interaction is strengthened, affecting the heat resistance and mechanical properties of the polyimide film.
  • CTC charge transfer complex
  • pyromellitic dianhydride is a dianhydride component with a relatively rigid structure and can provide appropriate elasticity to the polyimide film.
  • the content ratio of dianhydride is important. For example, as the content ratio of biphenyltetracarboxylic dianhydride decreases, mechanical properties and heat resistance due to the CTC structure may decrease.
  • biphenyltetracarboxylicdianhydride and benzophenonetetracarboxylicdianhydride contain two benzene rings corresponding to the aromatic portion, while pyromellitic dianhydride contains a benzene ring corresponding to the aromatic portion.
  • the increase in the content of pyromellitic dianhydride in the dianhydride component can be understood as an increase in the imide group within the molecule based on the same molecular weight, which means that the imide group derived from the pyromellitic dianhydride is added to the polyimide polymer chain. It can be understood that the ratio of groups increases relative to the imide group derived from biphenyltetracarboxylicdianhydride and/or benzophenonetetracarboxylicdianhydride.
  • the content range of each of biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, and benzophenone tetracarboxylic dianhydride which are dianhydride components of the polyimide film of the present application, and paraphenylene, which is a diamine component. If the respective content ranges of diamine, m-tolidine, and oxydianiline are above or below the content ranges herein, heat resistance (glass transition temperature) and/or mechanical properties (yield point, yield strength) may be reduced.
  • the polyimide of the polyimide film is a first polymer obtained by imidizing a dianhydride component containing the biphenyltetracarboxylic dianhydride and a diamine component containing the m-tolidine. It may be a block copolymer containing blocks.
  • the polyimide may be a block copolymer containing two or more blocks.
  • the first block can be obtained by imidizing a polyamic acid derived from a polymer of a dianhydride component made of biphenyltetracarboxylic dianhydride and a diamine component made of m-tolidine.
  • the content of the first block may be 10 mol% or more and 16 mol% or less.
  • the glass transition temperature of the polyimide film may be lowered and heat resistance may be reduced. Additionally, if the content of the first block exceeds the range described herein, the yield point and/or yield strength of the polyimide film may decrease.
  • the production of polyamic acid is, for example,
  • the polymerization method of the polyamic acid as described above can be defined as a random polymerization method, and the polyimide film manufactured from the polyamic acid of the present invention manufactured through the above process maximizes the effect of the present invention. It can be preferably applied in terms of ordering.
  • the polymerization method of polyamic acid that can be particularly preferably used in the present invention may be a block polymerization method.
  • the method for producing a polyimide film according to the present invention includes,
  • It may include preparing a polyamic acid containing the first block of the block copolymer by polymerizing biphenyltetracarboxylic dianhydride and m-tolidine in an organic solvent.
  • the method for producing the polyimide film is to combine the remaining dianhydride component and diamine component in addition to the biphenyltetracarboxylic dianhydride and m-tolidine forming the first block to form the polyimide film in addition to the first block. It may include preparing a polyamic acid containing additional blocks necessary to realize the properties.
  • the polyamic acid containing the first block of the block copolymer may be manufactured earlier than the polyamic acid containing other blocks, and the polyamic acid containing the other blocks may be manufactured first, and then the polyamic acid containing the first block may be produced first. Acids can also be manufactured.
  • polyimide a block copolymer
  • Polyimide a block copolymer
  • a polyamic acid containing the first block can also be prepared by adding phenyltetracarboxylic dianhydride and m-tolidine together.
  • the solvent for synthesizing polyamic acid is not particularly limited, and any solvent can be used as long as it dissolves polyamic acid, but it is preferable that it is an amide-based solvent.
  • the organic solvent may be an organic polar solvent, and in particular, may be an aprotic polar solvent, for example, N,N-dimethylformamide (DMF), N,N - It may be one or more selected from the group consisting of dimethylacetamide, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), and Diglyme, but is not limited thereto, and may be used alone as needed. Or, two or more types can be used in combination.
  • DMF N,N-dimethylformamide
  • NMP N-methyl-pyrrolidone
  • GBL gamma butyrolactone
  • Diglyme gamma butyrolactone
  • N,N-dimethylformamide and N,N-dimethylacetamide may be particularly preferably used as the organic solvent.
  • fillers may be added to improve various properties of the film such as sliding properties, thermal conductivity, corona resistance, and loop hardness.
  • the added filler is not particularly limited, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
  • the particle size of the filler is not particularly limited and may be determined depending on the film properties to be modified and the type of filler to be added. Generally, the average particle diameter is 0.05 to 100 ⁇ m, preferably 0.1 to 75 ⁇ m, more preferably 0.1 to 50 ⁇ m, and particularly preferably 0.1 to 25 ⁇ m.
  • the particle size is below this range, it becomes difficult to achieve a reforming effect, and if the particle size is above this range, the surface properties may be greatly damaged or the mechanical properties may be greatly reduced.
  • the amount of filler added is not particularly limited and may be determined based on the film properties to be modified, the particle size of the filler, etc. Generally, the amount of filler added is 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, and more preferably 0.02 to 80 parts by weight, based on 100 parts by weight of polyimide.
  • the amount of filler added is less than this range, it is difficult to achieve a reforming effect due to the filler, and if it is more than this range, the mechanical properties of the film may be significantly damaged.
  • the method of adding the filler is not particularly limited, and any known method may be used.
  • the polyimide film can be produced by thermal imidization and chemical imidization.
  • it may be manufactured by a complex imidization method in which thermal imidization and chemical imidization are combined.
  • the thermal imidization method is a method of inducing an imidization reaction using a heat source such as hot air or an infrared dryer, excluding chemical catalysts.
  • the thermal imidization method can imidize the amic acid group present in the gel film by heat treating the gel film at a variable temperature in the range of 100 to 600 °C, specifically 200 to 500 °C, more specifically, The amic acid group present in the gel film can be imidized by heat treatment at 300 to 500°C.
  • the polyamic acid composition is dried at a variable temperature in the range of 50 °C to 200 °C. It can also be included in the scope of the thermal imidization method.
  • a polyimide film can be produced using a dehydrating agent and an imidizing agent according to methods known in the art.
  • a dehydrating agent and an imidizing agent are added to a polyamic acid solution, then heated at 80 to 200°C, preferably 100 to 180°C, partially cured and dried, and then heated to 5 to 400°C at 200 to 400°C.
  • a polyimide film can be produced by heating for a few seconds.
  • the present invention provides a multilayer film comprising the polyimide film described above.
  • the multilayer film may include additional polyimide films, such as thermoplastic polyimide films.
  • the present invention provides a flexible metal foil laminate including the above-described polyimide film and an electrically conductive metal foil.
  • the metal foil there is no particular limitation on the metal foil to be used, but when the flexible metal foil laminate of the present invention is used for electronic components, electronic devices, etc., copper or copper alloy, stainless steel or its alloy, nickel or nickel alloy ( 42 alloy), aluminum, or aluminum alloy.
  • copper foils such as rolled copper foil and electrolytic copper foil are widely used, and can also be preferably used in the present invention. Additionally, a rust-prevention layer, a heat-resistant layer, or an adhesive layer may be applied to the surface of these metal foils.
  • the thickness of the metal foil is not particularly limited, and may be sufficient to provide sufficient function depending on the intended use.
  • the flexible metal foil laminate according to the present invention may have a structure in which metal foil is laminated to at least one side of the polyimide film.
  • the polyimide film of the present invention can be manufactured by conventional methods known in the art as follows. First, a polyamic acid solution is obtained by reacting the dianhydride and diamine components described above in an organic solvent.
  • the solvent is generally an amide-based solvent, such as an aprotic polar solvent (Aprotic solvent), such as N,N'-dimethylformamide, N,N'-dimethylacetamide, N-methyl-pyrrolidone, or A combination of these can be used.
  • Aprotic solvent such as N,N'-dimethylformamide, N,N'-dimethylacetamide, N-methyl-pyrrolidone, or A combination of these can be used.
  • the dianhydride and diamine components can be added in the form of powder, lump, and solution. It is preferable to add them in the form of powder at the beginning of the reaction to proceed with the reaction, and then add them in the form of a solution to control the polymerization viscosity. .
  • the obtained polyamic acid solution can be mixed with an imidization catalyst and a dehydrating agent and applied to a support.
  • catalysts used include tertiary amines (eg, isoquinoline, ⁇ -picoline, pyridine, etc.), and examples of dehydrating agents include, but are not limited to, anhydrous acid.
  • the support used above may include, but is not limited to, a glass plate, aluminum foil, a circular stainless steel belt, or a stainless drum.
  • the film applied on the support is gelled on the support by drying air and heat treatment.
  • the gelated film is separated from the support and heat-treated to complete drying and imidization.
  • the film that has completed the heat treatment can be heat treated under a certain tension to remove residual stress inside the film generated during the film forming process.
  • biphenyltetracarboxylicdianhydride and m-tolidine are continuously added to imidize the dianhydride component containing biphenyltetracarboxylicdianhydride and the diamine component containing m-tolidine.
  • the first block obtained by reacting can be obtained.
  • the temperature of the reactor was raised to 30°C under a nitrogen atmosphere and stirring was continued for 120 minutes while heating to prepare polyamic acid with a first reaction viscosity of 800 to 1,200 cP.
  • the polyamic acid prepared in this way was stirred to a final viscosity of 140,000 to 160,000 cP.
  • the contents of the catalyst and dehydrating agent were adjusted and added to the prepared final polyamic acid, and then a polyimide film was manufactured using an applicator.
  • the polyimide films of Examples 1 to 4 and Comparative Examples 1 to 3 were prepared by controlling the dianhydride component containing biphenyltetracarboxylic dianhydride and m -It contains a first block obtained by imidating a diamine component containing tolidine, but the polyimide films of Comparative Examples 4 and 5 are composed of a dianhydride component containing biphenyltetracarboxylic dianhydride and m-tol. It does not include the first block obtained by subjecting a diamine component containing lydine to an imidation reaction.
  • the content of the first block obtained by imidizing the dianhydride component containing biphenyltetracarboxylic dianhydride and the diamine component containing m-tolidine of the polyimide films of Comparative Examples 1 to 3 is as follows. Based on the total content of 100 mol% of the polyimide film, it was included in an amount of 5 mol% or more and 8 mol% or less.
  • the content of the first block obtained by imidizing the dianhydride component containing biphenyltetracarboxylic dianhydride and the diamine component containing m-tolidine of the polyimide films of Examples 1 to 4 is as above. Based on the total content of 100 mol% of the polyimide film, it was all included in an amount of 10 mol% or more and 16 mol% or less.
  • the glass transition temperature (Tg), yield point, and yield strength of the produced polyimide film were measured and shown in Table 2 below.
  • T g glass transition temperature
  • the yield point and yield strength in Table 2 were determined by cutting the polyimide film into 15 mm ⁇ 50 mm to prepare a specimen and using a tensile tester (Instron 5564, Instron) at a tensile speed of 200 mm/min according to ASTM D 882 standards. ) was measured at room temperature (room temp.).
  • the polyimide films of Examples 1 to 4 had a glass transition temperature of 370°C or higher, a yield point of 2.4% or higher, and a yield strength of 138 MPa or higher.
  • the polyimide film of Comparative Example 1 in which the ODA content was increased and the PPD and m-tolidine content were reduced, had a glass transition temperature of less than 370°C and a yield strength of less than 138 MPa. It has been degraded.
  • the polyimide film of Comparative Example 3 in which the ODA content was increased and the m-tolidine content was reduced, had a glass transition temperature of less than 370°C.
  • the polyimide film of Comparative Example 2 in which the contents of PMDA and ODA were further increased and the contents of BTDA and PPD were further reduced, had both improved yield point and yield strength, but still had a glass transition temperature of 370°C. It was less than
  • the polyimide film of Comparative Example 3 had all improved glass transition temperature, yield point, and yield strength compared to the polyimide film of Comparative Example 1, but the glass transition temperature was still less than 370°C.
  • Comparative Example 4 which does not contain a block obtained by imidating a dianhydride component containing 4,4'-DABA and biphenyltetracarboxylic dianhydride and a diamine component containing m-tolidine, and
  • the polyimide film of Comparative Example 5 had a lower glass transition temperature (less than 370°C) compared to the polyimide films of Examples 1 and 4 having the same dianhydride component composition ratio.
  • the polyimide films of Examples 1 to 4 manufactured within the appropriate range of the present application were excellent in both heat resistance (glass transition temperature) and mechanical properties (yield strength and yield point), but when outside the appropriate range of the present application, the heat resistance and It was confirmed that it was difficult to achieve both mechanical properties.
  • a polyimide film that has heat resistance and mechanical properties and can be applied to a variety of applications is a polyimide film manufactured within the appropriate scope of the present application.
  • the present invention provides a polyimide film in which the composition ratio and reaction ratio of dianhydride and diamine components are adjusted, thereby improving the processability of the polyimide film by providing a polyimide film with excellent heat resistance, yield point, and yield strength characteristics. .
  • This polyimide film can be applied to various fields that require a polyimide film with excellent properties, for example, to a flexible metal foil laminate manufactured by a metallizing method or to electronic components including such a flexible metal foil laminate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention provides: a polyimide film having excellent heat resistance and mechanical properties, such as a yield strength of at least 138 MPa and a glass transition temperature of at least 370°C; and a method for producing same.

Description

폴리이미드 필름 및 그 제조방법Polyimide film and its manufacturing method
본 발명은 우수한 내열성과 기계적 특성(항복강도 및 항복점)을 가지는 폴리이미드 필름 및 그 제조방법에 관한 것이다.The present invention relates to a polyimide film having excellent heat resistance and mechanical properties (yield strength and yield point) and a method of manufacturing the same.
폴리이미드(polyimide, PI)는 강직한 방향족 주쇄와 함께 화학적 안정성이 매우 우수한 이미드 고리를 기초로 하여, 유기 재료들 중에서도 최고 수준의 내열성, 내약품성, 전기 절연성, 내화학성, 내후성을 가지는 고분자 재료이다. Polyimide (PI) is a polymer material that has the highest level of heat resistance, chemical resistance, electrical insulation, chemical resistance, and weather resistance among organic materials, based on an imide ring with a rigid aromatic main chain and excellent chemical stability. am.
폴리이미드 필름은 전술한 특성들이 요구되는 다양한 전자 디바이스의 소재로서 각광받고 있다.Polyimide film is attracting attention as a material for various electronic devices that require the above-mentioned properties.
폴리이미드 필름이 적용되는 미소 전자 부품의 예로는 전자제품의 경량화와 소형화에 대응 가능하도록 회로 집적도가 높고 유연한 박형 회로기판을 들 수 있으며, 폴리이미드 필름은 특히 박형 회로기판의 절연필름으로 널리 이용되고 있다.Examples of micro-electronic components to which polyimide film is applied include thin, flexible circuit boards with high circuit integration to cope with the weight reduction and miniaturization of electronic products. Polyimide film is especially widely used as an insulating film for thin circuit boards. there is.
상기 박형 회로기판은, 절연필름 상에 금속박을 포함하는 회로가 형성되어 있는 구조가 일반적이며, 이러한 박형 회로기판을 넓은 의미로서 연성 금속박 적층판(Flexible Metal Foil Clad Laminate)이라 지칭하고 금속박으로 얇은 구리판을 이용할 때에는 보다 좁은 의미에서 연성 동박 적층판(Flexible Copper Clad Laminate; FCCL)으로 지칭하기도 한다.The thin circuit board generally has a structure in which a circuit including metal foil is formed on an insulating film. In a broad sense, such a thin circuit board is referred to as a flexible metal foil clad laminate and is made of a thin copper plate with metal foil. When used, it is sometimes referred to as Flexible Copper Clad Laminate (FCCL) in a narrower sense.
연성 금속박 적층판의 제조 방법으로는, 예를 들면 (i) 금속박 상에 폴리이미드의 전구체인 폴리아믹산을 유연(casting), 또는 도포한 후, 이미드화하는 캐스팅법, (ii) 스퍼터링(Sputtering)에 의해 폴리이미드 필름 상에 직접 금속층을 설치하는 메탈라이징법, 및 (iii) 열가소성 폴리이미드를 통해 폴리이미드 필름과 금속박을 열과 압력으로 접합시키는 라미네이트법을 들 수 있다.Methods for manufacturing flexible metal foil laminates include, for example, (i) casting or applying polyamic acid, a precursor of polyimide, onto metal foil and then imidizing it, (ii) sputtering. (iii) a metalizing method in which a metal layer is directly installed on a polyimide film; and (iii) a laminating method in which a polyimide film and a metal foil are bonded through heat and pressure through thermoplastic polyimide.
특히, 메탈라이징법은 예를 들어, 20 내지 38 ㎛ 두께의 폴리이미드 필름상에 구리 등의 금속을 스퍼터링하여, 타이(Tie)층, 시드(Seed)층을 순차적으로 증착함으로써 연성 금속박 적층판을 생산하는 방법이며, 회로 패턴의 피치(pitch)가 35 ㎛ 이하인 초미세회로를 형성시키는데 유리한 점이 있으며, COF(chip on film)용 연성 금속박 적층판을 제조하는데 널리 사용되고 있다.In particular, the metallization method produces a flexible metal foil laminate by, for example, sputtering a metal such as copper on a polyimide film with a thickness of 20 to 38 ㎛ and sequentially depositing a tie layer and a seed layer. This method has the advantage of forming ultrafine circuits with a circuit pattern pitch of 35 ㎛ or less, and is widely used to manufacture flexible metal foil laminates for COF (chip on film).
이러한 연성 금속박 적층판에 사용되는 폴리이미드 필름은 높은 내열성 및 기계적 특성을 가져야 하므로, 우수한 내열성 및 기계적 특성이 양립할 수 있는 폴리이미드 필름이 절실히 요구되고 있다.Since the polyimide film used in such flexible metal foil laminates must have high heat resistance and mechanical properties, there is an urgent need for a polyimide film that has both excellent heat resistance and mechanical properties.
이상의 배경기술에 기재된 사항은 발명의 배경에 대한 이해를 돕기 위한 것으로서, 이 기술이 속하는 분야에서 통상의 지식을 가진 자에게 이미 알려진 종래기술이 아닌 사항을 포함할 수 있다.The matters described in the above background technology are intended to aid understanding of the background of the invention, and may include matters that are not prior art already known to those skilled in the art in the field to which this technology belongs.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
(특허문헌 1) 대한민국 등록특허 제10-1375276호(Patent Document 1) Republic of Korea Patent No. 10-1375276
(특허문헌 2) 대한민국 공개특허공보 제2016-0002402호(Patent Document 2) Republic of Korea Patent Publication No. 2016-0002402
이에 본 발명은 우수한 내열성과 기계적 특성(항복강도 및 항복점)을 동시에 가지는 폴리이미드 필름 및 그 제조방법을 제공하는 것을 목적으로 한다. Accordingly, the purpose of the present invention is to provide a polyimide film that has both excellent heat resistance and mechanical properties (yield strength and yield point) and a method for manufacturing the same.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present invention is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
상기와 같은 목적을 달성하기 위한 본 발명의 일 측면은 항복 강도가 138 MPa 이상이고,One aspect of the present invention for achieving the above object is that the yield strength is 138 MPa or more,
유리전이온도가 370℃ 이상인,With a glass transition temperature of 370℃ or higher,
폴리이미드 필름을 제공한다.A polyimide film is provided.
본 발명의 다른 측면은 상기 폴리이미드 필름과 전기 전도성의 금속박을 포함하는, 연성 금속박 적층판을 제공한다.Another aspect of the present invention provides a flexible metal foil laminate including the polyimide film and an electrically conductive metal foil.
본 발명의 또 다른 측면은 상기 연성 금속박 적층판을 포함하는, 전자 부품을 제공한다.Another aspect of the present invention provides an electronic component including the flexible metal foil laminate.
본 발명은 이무수물산 및 디아민 성분의 조성비, 반응비 등이 조절된 폴리이미드 필름을 제공함으로써, 내열성, 항복점 및 항복강도 특성이 모두 우수한 폴리이미드 필름을 제공하여 폴리이미드 필름의 공정성을 개선시킬 수 있다. The present invention provides a polyimide film in which the composition ratio and reaction ratio of dianhydride and diamine components are adjusted, thereby improving the processability of the polyimide film by providing a polyimide film with excellent heat resistance, yield point, and yield strength characteristics. .
이러한 폴리이미드 필름은 우수한 특성의 폴리이미드 필름이 요구되는 다양한 분야, 예를 들어, 메탈라이징법에 의해 제조되는 연성 금속박 적층판 또는 이러한 연성 금속박 적층판을 포함하는 전자 부품에 적용이 가능하다.This polyimide film can be applied to various fields that require a polyimide film with excellent properties, for example, to a flexible metal foil laminate manufactured by a metallizing method or to electronic components including such a flexible metal foil laminate.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Terms or words used in this specification and claims should not be construed as limited to their common or dictionary meanings, and the inventor may appropriately define the concept of terms in order to explain his or her invention in the best way. It must be interpreted with meaning and concept consistent with the technical idea of the present invention based on the principle that it is.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.Therefore, the configuration of the embodiments described in this specification is only one of the most preferred embodiments of the present invention and does not represent the entire technical idea of the present invention, so various equivalents and modifications that can replace them at the time of filing the present application It should be understood that examples may exist.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, singular expressions include plural expressions, unless the context clearly dictates otherwise. In this specification, terms such as “comprise,” “comprise,” or “have” are intended to designate the presence of implemented features, numbers, steps, components, or a combination thereof, and are intended to indicate the presence of one or more other features or It should be understood that this does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
본 명세서에서 "이무수물산"은 그 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 이무수물산이 아닐 수 있지만, 그럼에도 불구하고 디아민과 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다.As used herein, “dianhydride acid” is intended to include precursors or derivatives thereof, which may not technically be dianhydride acids, but which will nonetheless react with diamines to form polyamic acids, which in turn will form polyamic acids. It can be converted to mead.
본 명세서에서 "디아민"은 그의 전구체 또는 유도체를 포함하는 것으로 의도되는데, 이들은 기술적으로는 디아민이 아닐 수 있지만, 그럼에도 불구하고 디안하이드라이드와 반응하여 폴리아믹산을 형성할 것이며, 이 폴리아믹산은 다시 폴리이미드로 변환될 수 있다As used herein, “diamine” is intended to include precursors or derivatives thereof, which may not technically be diamines, but which will nonetheless react with dianhydride to form polyamic acids, which in turn will form polyamic acids. Can be converted to mead
본 명세서에서 양, 농도, 또는 다른 값 또는 파라미터가 범위, 바람직한 범위 또는 바람직한 상한 값 및 바람직한 하한 값의 열거로서 주어지는 경우, 범위가 별도로 개시되는지에 상관없이 임의의 한 쌍의 임의의 위쪽 범위 한계치 또는 바람직한 값 및 임의의 아래쪽 범위 한계치 또는 바람직한 값으로 형성된 모든 범위를 구체적으로 개시하는 것으로 이해되어야 한다.When amounts, concentrations, or other values or parameters are given herein as ranges, preferred ranges, or enumerations of upper preferred values and lower preferred values, any pair of upper range limits or It is to be understood that the preferred values and any lower range limits or all ranges formed from the preferred values are specifically disclosed.
수치 값의 범위가 본 명세서에서 언급될 경우, 달리 기술되지 않는다면, 그 범위는 그 종점 및 그 범위 내의 모든 정수와 분수를 포함하는 것으로 의도된다. 본 발명의 범주는 범위를 정의할 때 언급되는 특정 값으로 한정되지 않는 것으로 의도된다.When a range of numerical values is stated herein, unless otherwise stated, the range is intended to include the endpoints and all integers and fractions within the range. The scope of the invention is not intended to be limited to the specific values recited when defining the scope.
본 명세서에서 수치범위를 나타내는 "a 내지 b" 및 "a~b"에서 "내지" 및 “~”는 ≥ a이고 ≤ b으로 정의한다.In this specification, “a to b” and “a to b” that indicate numerical ranges, “to” and “~” are defined as ≥ a and ≤ b.
본 발명의 일 구현예에 의한 폴리이미드 필름은 항복 강도가 138 MPa 이상이고, 유리전이온도가 370℃ 이상일 수 있다.The polyimide film according to one embodiment of the present invention may have a yield strength of 138 MPa or more and a glass transition temperature of 370°C or more.
한편, 상기 폴리이미드 필름의 항복 강도는 150 MPa 이하이고, 유리전이온도는 380℃ 이하 일 수 있다.Meanwhile, the yield strength of the polyimide film may be 150 MPa or less, and the glass transition temperature may be 380°C or less.
예를 들어, 상기 폴리이미드 필름의 항복 강도는 138 MPa 이상, 140 MPa 이상, 145 MPa 이상일 수 있다.For example, the yield strength of the polyimide film may be 138 MPa or more, 140 MPa or more, or 145 MPa or more.
일 구현예에 있어서 상기 폴리이미드 필름의 항복점은 2.4% 이상일 수 있다.In one embodiment, the yield point of the polyimide film may be 2.4% or more.
한편, 상기 폴리이미드 필름의 항복점은 2.6% 이하일 수 있다.Meanwhile, the yield point of the polyimide film may be 2.6% or less.
일 구현예에 있어서, 상기 폴리이미드 필름은 비페닐테트라카르복실릭디안하이드라이드(BPDA), 피로멜리틱디안하이드라이드(PMDA) 및 벤조페논테트라카복실릭디안하이드라이드(BTDA)를 포함하는 이무수물산 성분과, 파라페닐렌 디아민(PPD), m-톨리딘(m-tolidine) 및 옥시디아닐린(ODA)를 포함하는 디아민 성분을 포함하는 폴리아믹산 용액을 이미드화 반응시켜 얻어질 수 있다.In one embodiment, the polyimide film is a dianhydride containing biphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride (PMDA), and benzophenone tetracarboxylic dianhydride (BTDA). It can be obtained by imidizing a polyamic acid solution containing a component and a diamine component including paraphenylene diamine (PPD), m-tolidine (m-tolidine), and oxydianiline (ODA).
즉, 상기 폴리이미드 필름은 비페닐테트라카르복실릭디안하이드라이드, 피로멜리틱디안하이드라이드, 벤조페논테트라카복실릭디안하이드라이드, 파라페닐렌 디아민, m-톨리딘 및 옥시디아닐린로 이루어진 중합체에서 유래된 폴리아믹산을 이미드화 반응시켜 얻어질 수 있다.That is, the polyimide film is a polymer composed of biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, paraphenylene diamine, m-tolidine, and oxydianiline. It can be obtained by subjecting the derived polyamic acid to an imidization reaction.
일 구현예에 있어서, 상기 이무수물산 성분의 총함량 100 몰%를 기준으로, 상기 비페닐테트라카르복실릭디안하이드라이드의 함량이 15 몰% 이상 30 몰% 이하이고, 상기 피로멜리틱디안하이드라이드의 함량이 30 몰% 이상 50 몰% 이하이며, 상기 벤조페논테트라카복실릭디안하이드라이드의 함량이 25 몰% 이상 45 몰% 이하일 수 있다.In one embodiment, based on a total content of 100 mol% of the dianhydride component, the content of the biphenyltetracarboxylic dianhydride is 15 mol% or more and 30 mol% or less, and the pyromellitic dianhydride The content of may be 30 mol% or more and 50 mol% or less, and the content of the benzophenone tetracarboxylic dianhydride may be 25 mol% or more and 45 mol% or less.
예를 들어, 상기 이무수물산 성분의 총함량 100 몰%를 기준으로, 상기 비페닐테트라카르복실릭디안하이드라이드의 함량이 20 몰% 이상 25 몰% 이하이고, 상기 피로멜리틱디안하이드라이드의 함량이 35 몰% 이상 45 몰% 이하이며, 상기 벤조페논테트라카복실릭디안하이드라이드의 함량이 30 몰% 이상 45 몰% 이하일 수 있다.For example, based on the total content of the dianhydride component of 100 mol%, the content of the biphenyltetracarboxylic dianhydride is 20 mol% or more and 25 mol% or less, and the content of the pyromellitic dianhydride is It may be 35 mol% or more and 45 mol% or less, and the content of the benzophenone tetracarboxylic dianhydride may be 30 mol% or more and 45 mol% or less.
일 구현예에 있어서, 상기 디아민 성분의 총함량 100몰%를 기준으로, 상기 파라페닐렌 디아민의 함량이 45 몰% 이상, 60 몰% 이하, 상기 m-톨리딘의 함량이 10 몰% 이상, 25 몰% 이하이며, 상기 옥시디아닐린의 함량이 20 몰% 이상, 40 몰% 이하일 수 있다.In one embodiment, based on a total content of 100 mol% of the diamine component, the paraphenylene diamine content is 45 mol% or more and 60 mol% or less, and the m-tolidine content is 10 mol% or more, It is 25 mol% or less, and the content of oxydianiline may be 20 mol% or more and 40 mol% or less.
예를 들어, 상기 디아민 성분의 총함량 100몰%를 기준으로, 상기 파라페닐렌 디아민의 함량이 50 몰% 이상, 60 몰% 이하, 상기 m-톨리딘의 함량이 10 몰% 이상, 15 몰% 이하이며, 상기 옥시디아닐린의 함량이 25 몰% 이상, 35 몰% 이하일 수 있다.For example, based on a total content of 100 mol% of the diamine component, the paraphenylene diamine content is 50 mol% or more and 60 mol% or less, and the m-tolidine content is 10 mol% or more and 15 mol%. % or less, and the content of oxydianiline may be 25 mol% or more and 35 mol% or less.
본 발명의 파라페닐렌 디아민은 강직한 모노머로 파라페닐렌 디아민의 함량이 증가함에 따라서 합성되는 폴리이미드는 더욱 선형의 구조를 가지게 되고, 폴리이미드의 기계적 특성 및 내열성의 향상에 기여할 수 있다.Paraphenylene diamine of the present invention is a rigid monomer, and as the content of paraphenylene diamine increases, the synthesized polyimide has a more linear structure, which can contribute to improving the mechanical properties and heat resistance of the polyimide.
또한. m-톨리딘은 특히 메틸기를 포함하는 벤젠 고리 구조를 포함하고 있어서 폴리이미드 필름의 기계적 특성 및 내열성의 향상에 기여할 수 있다.also. In particular, m-tolidine contains a benzene ring structure containing a methyl group, so it can contribute to improving the mechanical properties and heat resistance of the polyimide film.
본 발명의 비페닐테트라카르복실릭디안하이드라이드로부터 유래된 폴리이미드 사슬은 전하이동착체(CTC: Charge transfer complex)라고 명명된 구조, 즉, 전자주게(electron donnor)와 전자받게(electron acceptor)가 서로 근접하게 위치하는 규칙적인 직선 구조를 가지게 되고 분자간 상호 작용(intermolecular interaction)이 강화되어, 폴리이미드 필름의 내열성 및 기계적 특성에 영향을 끼치게 된다.The polyimide chain derived from biphenyltetracarboxylic dianhydride of the present invention has a structure named charge transfer complex (CTC), that is, an electron donor and an electron acceptor. It has a regular straight structure located close to each other and intermolecular interaction is strengthened, affecting the heat resistance and mechanical properties of the polyimide film.
또한, 피로멜리틱디안하이드라이드는 상대적으로 강직한 구조를 가지는 이무수물산 성분으로 폴리이미드 필름에 적절한 탄성을 부여할 수 있다.In addition, pyromellitic dianhydride is a dianhydride component with a relatively rigid structure and can provide appropriate elasticity to the polyimide film.
폴리이미드 필름이 우수한 기계적 특성 및 내열성을 가지기 위해서는 이무수물산의 함량비가 중요하다. 예를 들어, 비페닐테트라카르복실릭디안하이드라이드의 함량비가 감소할수록 상기 CTC 구조로 인한 기계적 특성 및 내열성도 저하될 수 있다.In order for a polyimide film to have excellent mechanical properties and heat resistance, the content ratio of dianhydride is important. For example, as the content ratio of biphenyltetracarboxylic dianhydride decreases, mechanical properties and heat resistance due to the CTC structure may decrease.
또한, 비페닐테트라카르복실릭디안하이드라이드 및 벤조페논테트라카복실릭디안하이드라이드는 방향족 부분에 해당하는 벤젠 고리를 2개 포함하는 반면에, 피로멜리틱디안하이드라이드는 방향족 부분에 해당하는 벤젠 고리를 1개 포함한다. In addition, biphenyltetracarboxylicdianhydride and benzophenonetetracarboxylicdianhydride contain two benzene rings corresponding to the aromatic portion, while pyromellitic dianhydride contains a benzene ring corresponding to the aromatic portion. Includes 1.
이무수물산 성분에서 피로멜리틱디안하이드라이드 함량의 증가는 동일한 분자량을 기준으로 했을 때 분자 내의 이미드기가 증가하는 것으로 이해할 수 있으며, 이는 폴리이미드 고분자 사슬에 상기 피로멜리틱디안하이드라이드로부터 유래되는 이미드기의 비율이 비페닐테트라카르복실릭디안하이드라이드 및/또는 벤조페논테트라카복실릭디안하이드라이드로부터 유래되는 이미드기 대비 상대적으로 증가하는 것으로 이해할 수 있다. The increase in the content of pyromellitic dianhydride in the dianhydride component can be understood as an increase in the imide group within the molecule based on the same molecular weight, which means that the imide group derived from the pyromellitic dianhydride is added to the polyimide polymer chain. It can be understood that the ratio of groups increases relative to the imide group derived from biphenyltetracarboxylicdianhydride and/or benzophenonetetracarboxylicdianhydride.
즉, 피로멜리틱디안하이드라이드 함량의 과도한 증가는 폴리이미드 필름 전체에 대해서도, 이미드기의 상대적 증가로 볼 수 있고, 이로 인해 기계적 특성 및 내열성의 향상은 기대하기 어려워진다.In other words, an excessive increase in the pyromellitic dianhydride content can be seen as a relative increase in imide groups in the entire polyimide film, which makes it difficult to expect improvements in mechanical properties and heat resistance.
반대로, 피로멜리틱디안하이드라이드의 함량비가 과도하게 감소하면 상대적으로 강직한 구조의 성분이 감소하게 되어, 폴리이미드 필름의 탄성이 소망하는 수준 이하로 저하될 수 있다.Conversely, if the content ratio of pyromellitic dianhydride is excessively reduced, the relatively rigid structural components are reduced, and the elasticity of the polyimide film may be lowered below a desired level.
이러한 이유로 상기 비페닐테트라카르복실릭디안하이드라이드의 함량이 상기 범위를 상회하거나, 피로멜리틱디안하이드라이드의 함량이 상기 범위를 하회하는 경우, 폴리이미드 필름의 기계적 특성 및 내열성이 저하될 수 있다.For this reason, when the content of biphenyltetracarboxylic dianhydride is above the above range or the content of pyromellitic dianhydride is below the above range, the mechanical properties and heat resistance of the polyimide film may be reduced. .
반대로, 상기 비페닐테트라카르복실릭디안하이드라이드의 함량이 상기 범위를 하회하거나, 피로멜리틱디안하이드라이드의 함량이 상기 범위를 상회하는 경우에도, 폴리이미드 필름의 기계적 특성 및 내열성에 악영향을 끼칠 수 있다.Conversely, even if the content of the biphenyltetracarboxylic dianhydride is below the above range or the content of pyromellitic dianhydride is above the above range, the mechanical properties and heat resistance of the polyimide film may be adversely affected. You can.
따라서, 본원의 폴리이미드 필름의 이무수물산 성분인 비페닐테트라카르복실릭디안하이드라이드, 피로멜리틱디안하이드라이드 및 벤조페논테트라카복실릭디안하이드라이드의 각각의 함량의 범위와 디아민 성분인 파라페닐렌 디아민, m-톨리딘 및 옥시디아닐린의 각각의 함량의 범위가 본원의 함량 범위를 상회하거나 하회하면, 내열성(유리전이온도) 및/또는 기계적 특성(항복점, 항복강도)이 저하될 수 있다. Therefore, the content range of each of biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, and benzophenone tetracarboxylic dianhydride, which are dianhydride components of the polyimide film of the present application, and paraphenylene, which is a diamine component. If the respective content ranges of diamine, m-tolidine, and oxydianiline are above or below the content ranges herein, heat resistance (glass transition temperature) and/or mechanical properties (yield point, yield strength) may be reduced.
일 구현예에 있어서, 상기 폴리이미드 필름의 상기 폴리이미드는 상기 비페닐테트라카르복실릭디안하이드라이드를 포함하는 이무수물산 성분과 상기 m-톨리딘을 포함하는 디아민 성분을 이미드화 반응시켜 얻어진 제1 블록을 포함하는 블록 공중합체일 수 있다.In one embodiment, the polyimide of the polyimide film is a first polymer obtained by imidizing a dianhydride component containing the biphenyltetracarboxylic dianhydride and a diamine component containing the m-tolidine. It may be a block copolymer containing blocks.
즉, 상기 폴리이미드는 2 이상의 블록을 포함하는 블록 공중합체일 수 있다.That is, the polyimide may be a block copolymer containing two or more blocks.
한편, 상기 제1 블록은 비페닐테트라카르복실릭디안하이드라이드로 이루어진 이무수물산 성분 및 m-톨리딘으로 이루어진 디아민 성분의 중합체에서 유래된 폴리아믹산을 이미드화하여 얻어질 수 있다.Meanwhile, the first block can be obtained by imidizing a polyamic acid derived from a polymer of a dianhydride component made of biphenyltetracarboxylic dianhydride and a diamine component made of m-tolidine.
일 구현예에 있어서, 상기 폴리이미드의 총함량 100 몰%를 기준으로, 상기 제1 블록의 함량이 10 몰% 이상, 16 몰% 이하일 수 있다.In one embodiment, based on a total content of 100 mol% of the polyimide, the content of the first block may be 10 mol% or more and 16 mol% or less.
상기 제1 블록의 함량이 본원의 범위를 하회하면, 폴리이미드 필름의 유리전이온도가 낮아져서 내열성이 저하될 수 있다. 또한, 상기 제1 블록의 함량이 본원의 범위를 상회하면, 폴리이미드 필름의 항복점 및/또는 항복강도가 저하될 수 있다.If the content of the first block is below the range of the present application, the glass transition temperature of the polyimide film may be lowered and heat resistance may be reduced. Additionally, if the content of the first block exceeds the range described herein, the yield point and/or yield strength of the polyimide film may decrease.
본 발명에서 폴리아믹산의 제조는 예를 들어,In the present invention, the production of polyamic acid is, for example,
(1) 디아민 성분 전량을 용매 중에 넣고, 그 후 이무수물산 성분을 디아민 성분과 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;(1) A method of polymerizing the entire amount of the diamine component in a solvent, and then adding the dianhydride component in substantially equimolar amounts to the diamine component;
(2) 이무수물산 성분 전량을 용매 중에 넣고, 그 후 디아민 성분을 이무수물산 성분과 실질적으로 등몰이 되도록 첨가하여 중합하는 방법;(2) A method of polymerizing the entire amount of the dianhydride component in a solvent, and then adding the diamine component in substantially equimolar amounts to the dianhydride component;
(3) 디아민 성분 중 일부 성분을 용매 중에 넣은 후, 반응 성분에 대해서 이무수물산 성분 중 일부 성분을 약 95~105 몰%의 비율로 혼합한 후, 나머지 디아민 성분을 첨가하고 이에 연속해서 나머지 이무수물산 성분을 첨가하여, 디아민 성분 및 이무수물산 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법;(3) After adding some of the diamine components into the solvent, mixing some of the dianhydride components in a ratio of about 95 to 105 mol% with respect to the reaction components, adding the remaining diamine components, and then adding the remaining dianhydride components continuously. A method of polymerizing by adding components such that the diamine component and the dianhydride component are substantially equimolar;
(4) 이무수물산 성분을 용매 중에 넣은 후, 반응 성분에 대해서 디아민 화합물 중 일부 성분을 95~105 몰%의 비율로 혼합한 후, 다른 이무수물산 성분을 첨가하고 계속되어 나머지 디아민 성분을 첨가하여, 디아민 성분 및 이무수물산 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법;(4) After adding the dianhydride component into the solvent, mixing some components of the diamine compound in a ratio of 95 to 105 mol% with respect to the reaction components, adding another dianhydride component, and then adding the remaining diamine component, A method of polymerizing the diamine component and the dianhydride component in substantially equimolar amounts;
(5) 용매 중에서 일부 디아민 성분과 일부 이무수물산 성분을 어느 하나가 과량이 되도록 반응시켜, 제1 조성물을 형성하고, 또 다른 용매 중에서 일부 디아민 성분과 일부 이무수물산 성분을 어느 하나가 과량이 되도록 반응시켜 제2 조성물을 형성한 후, 제1, 제2 조성물들을 혼합하고, 중합을 완결하는 방법으로서, 이 때 제1 조성물을 형성할 때 디아민 성분이 과잉일 경우, 제 2조성물에서는 이무수물산 성분을 과량으로 하고, 제1 조성물에서 이무수물산 성분이 과잉일 경우, 제2 조성물에서는 디아민 성분을 과량으로 하여, 제1, 제2 조성물들을 혼합하여 이들 반응에 사용되는 전체 디아민 성분과 이무수물산 성분이 실질적으로 등몰이 되도록 하여 중합하는 방법 등을 들 수 있다.(5) Reacting some diamine components and some dianhydride components in a solvent so that either one is in excess to form a first composition, and reacting some diamine components with some dianhydride components in another solvent so that either one is in excess. A method of forming a second composition, mixing the first and second compositions, and completing polymerization. In this case, if the diamine component is excessive when forming the first composition, the dianhydride component is added to the second composition. If the dianhydride component is excessive in the first composition, the diamine component is in excess in the second composition, and the first and second compositions are mixed so that the total diamine component and dianhydride component used in these reactions are substantially A method of polymerizing them by making them equimolar.
본 발명에서는, 상기와 같은 폴리아믹산의 중합 방법을 임의(random) 중합 방식으로 정의할 수 있으며, 상기와 같은 과정으로 제조된 본 발명의 폴리아믹산으로부터 제조된 폴리이미드 필름은 본 발명의 효과를 극대화시키는 측면에서 바람직하게 적용될 수 있다.In the present invention, the polymerization method of the polyamic acid as described above can be defined as a random polymerization method, and the polyimide film manufactured from the polyamic acid of the present invention manufactured through the above process maximizes the effect of the present invention. It can be preferably applied in terms of ordering.
다만, 상기 중합 방법은 앞서 설명한 고분자 사슬 내의 반복단위의 길이가 상대적으로 짧게 제조되므로, 이무수물산 성분으로부터 유래되는 폴리이미드 사슬이 가지는 각각의 우수한 특성을 발휘하기에는 한계가 있을 수 있다. 따라서, 본 발명에서 특히 바람직하게 이용될 수 있는 폴리아믹산의 중합 방법은 블록 중합 방식일 수 있다.However, since the above polymerization method produces a relatively short length of the repeating unit in the polymer chain described above, there may be limitations in demonstrating each of the excellent properties of the polyimide chain derived from the dianhydride component. Therefore, the polymerization method of polyamic acid that can be particularly preferably used in the present invention may be a block polymerization method.
하나의 구체적인 예에서, 본 발명에 따른 폴리이미드 필름의 제조방법은,In one specific example, the method for producing a polyimide film according to the present invention includes,
비페닐테트라카르복실릭디안하이드라이드 및 m-톨리딘을 유기용매 중에서 중합하여 블록 공중합체의 제1 블록을 포함하는 폴리아믹산을 제조하는 단계를 포함할 수 있다.It may include preparing a polyamic acid containing the first block of the block copolymer by polymerizing biphenyltetracarboxylic dianhydride and m-tolidine in an organic solvent.
또한, 상기 폴리이미드 필름의 제조방법은 상기 제1 블록을 형성하는 비페닐테트라카르복실릭디안하이드라이드 및 m-톨리딘 외에 남은 이무수물산 성분과 디아민 성분을 조합하여 제1 블록 이외에 폴리이미드 필름의 특성 구현을 위해 필요한 추가의 블록을 포함하는 폴리아믹산을 제조하는 단계를 포함할 수 있다.In addition, the method for producing the polyimide film is to combine the remaining dianhydride component and diamine component in addition to the biphenyltetracarboxylic dianhydride and m-tolidine forming the first block to form the polyimide film in addition to the first block. It may include preparing a polyamic acid containing additional blocks necessary to realize the properties.
한편, 블록 공중합체의 제1 블록을 포함하는 폴리아믹산이 다른 블록을 포함하는 폴리아믹산에 비하여 먼저 제조될 수도 있고, 다른 블록을 포함하는 폴리아믹산을 먼저 제조한 후에 제1 블록을 포함하는 폴리아믹산이 제조될 수도 있다.Meanwhile, the polyamic acid containing the first block of the block copolymer may be manufactured earlier than the polyamic acid containing other blocks, and the polyamic acid containing the other blocks may be manufactured first, and then the polyamic acid containing the first block may be produced first. Acids can also be manufactured.
예를 들어, 비페닐테트라카르복실릭디안하이드라이드 및 m-톨리딘을 함께 투입하여 제1 블록을 포함하는 폴리아믹산을 제조한 후, 제조된 제1 블록을 포함하는 폴리아믹산에 나머지 블록을 형성하는 이무수물산 성분과 디아민 성분을 정해진 순서로 추가로 투입하고 이미드화하여 블록 공중합체인 폴리이미드를 제조할 수도 있다.For example, after preparing a polyamic acid containing a first block by adding biphenyltetracarboxylic dianhydride and m-tolidine together, the remaining blocks are formed in the polyamic acid containing the prepared first block. Polyimide, a block copolymer, can also be produced by additionally adding the dianhydride component and diamine component in a given order and imidizing them.
또한, 제1 블록이 아닌 블록이 포함된 폴리아믹산을 먼저 제조한 후 또는 제1 블록이 아닌 블록이 포함된 폴리아믹산을 제조하는 도중에, 제조된 제1 블록이 아닌 블록이 포함된 폴리아믹산에 비페닐테트라카르복실릭디안하이드라이드 및 m-톨리딘을 함께 투입하여 제1 블록을 포함하는 폴리아믹산을 제조할 수도 있다.In addition, after first manufacturing the polyamic acid containing a block other than the first block or during manufacturing the polyamic acid containing a block other than the first block, the polyamic acid containing a block other than the manufactured first block is compared to the polyamic acid containing a block other than the first block. A polyamic acid containing the first block can also be prepared by adding phenyltetracarboxylic dianhydride and m-tolidine together.
한편, 폴리아믹산을 합성하기 위한 용매는 특별히 한정되는 것은 아니고, 폴리아믹산을 용해시키는 용매이면 어떠한 용매도 사용할 수 있지만, 아미드계 용매인 것이 바람직하다.On the other hand, the solvent for synthesizing polyamic acid is not particularly limited, and any solvent can be used as long as it dissolves polyamic acid, but it is preferable that it is an amide-based solvent.
구체적으로는, 상기 유기 용매는 유기 극성 용매일 수 있고, 상세하게는 비양성자성 극성 용매(aprotic polar solvent)일 수 있으며, 예를 들어, N,N-디메틸포름아미드(DMF), N,N-디메틸아세트아미드, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL), 디그림(Diglyme)으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니며, 필요에 따라 단독으로 또는 2종 이상 조합해서 사용할 수 있다. Specifically, the organic solvent may be an organic polar solvent, and in particular, may be an aprotic polar solvent, for example, N,N-dimethylformamide (DMF), N,N - It may be one or more selected from the group consisting of dimethylacetamide, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), and Diglyme, but is not limited thereto, and may be used alone as needed. Or, two or more types can be used in combination.
하나의 예에서, 상기 유기 용매는 N,N-디메틸포름아미드 및 N,N-디메틸아세트아미드가 특히 바람직하게 사용될 수 있다.In one example, N,N-dimethylformamide and N,N-dimethylacetamide may be particularly preferably used as the organic solvent.
또한, 폴리아믹산 제조 공정에서는 접동성, 열전도성, 코로나 내성, 루프 경도 등의 필름의 여러 가지 특성을 개선할 목적으로 충전재를 첨가할 수도 있다. 첨가되는 충전재는 특별히 한정되는 것은 아니지만, 바람직한 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다.Additionally, in the polyamic acid manufacturing process, fillers may be added to improve various properties of the film such as sliding properties, thermal conductivity, corona resistance, and loop hardness. The added filler is not particularly limited, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.
충전재의 입경은 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성과 첨가하는 충전재의 종류에 따라서 결정하면 된다. 일반적으로는, 평균 입경이 0.05 내지 100 ㎛, 바람직하게는 0.1 내지 75 ㎛, 더욱 바람직하게는 0.1 내지 50 ㎛, 특히 바람직하게는 0.1 내지 25 ㎛이다.The particle size of the filler is not particularly limited and may be determined depending on the film properties to be modified and the type of filler to be added. Generally, the average particle diameter is 0.05 to 100 μm, preferably 0.1 to 75 μm, more preferably 0.1 to 50 μm, and particularly preferably 0.1 to 25 μm.
입경이 이 범위를 하회하면 개질 효과가 나타나기 어려워지고, 이 범위를 상회하면 표면성을 크게 손상시키거나, 기계적 특성이 크게 저하되는 경우가 있다.If the particle size is below this range, it becomes difficult to achieve a reforming effect, and if the particle size is above this range, the surface properties may be greatly damaged or the mechanical properties may be greatly reduced.
또한, 충전재의 첨가량에 대해서도 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성이나 충전재 입경 등에 의해 결정하면 된다. 일반적으로, 충전재의 첨가량은 폴리이미드 100 중량부에 대하여 0.01 내지 100 중량부, 바람직하게는 0.01 내지 90 중량부, 더욱 바람직하게는 0.02 내지 80 중량부이다.Additionally, the amount of filler added is not particularly limited and may be determined based on the film properties to be modified, the particle size of the filler, etc. Generally, the amount of filler added is 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, and more preferably 0.02 to 80 parts by weight, based on 100 parts by weight of polyimide.
충전재 첨가량이 이 범위를 하회하면, 충전재에 의한 개질 효과가 나타나기 어렵고, 이 범위를 상회하면 필름의 기계적 특성이 크게 손상될 가능성이 있다. 충전재의 첨가 방법은 특별히 한정되는 것은 아니고, 공지된 어떠한 방법을 이용할 수도 있다.If the amount of filler added is less than this range, it is difficult to achieve a reforming effect due to the filler, and if it is more than this range, the mechanical properties of the film may be significantly damaged. The method of adding the filler is not particularly limited, and any known method may be used.
본 발명의 제조방법에서 폴리이미드 필름은 열 이미드화법 및 화학적 이미드화법에 의해서 제조될 수 있다.In the production method of the present invention, the polyimide film can be produced by thermal imidization and chemical imidization.
또한, 열 이미드화법 및 화학적 이미드화법이 병행되는 복합 이미드화법에 의해서 제조될 수도 있다.In addition, it may be manufactured by a complex imidization method in which thermal imidization and chemical imidization are combined.
상기 열 이미드화법이란, 화학적 촉매를 배제하고, 열풍이나 적외선 건조기 등의 열원으로 이미드화 반응을 유도하는 방법이다.The thermal imidization method is a method of inducing an imidization reaction using a heat source such as hot air or an infrared dryer, excluding chemical catalysts.
상기 열 이미드화법은 상기 겔 필름을 100 내지 600 ℃의 범위의 가변적인 온도에서 열처리하여 겔 필름에 존재하는 아믹산기를 이미드화할 수 있으며, 상세하게는 200 내지 500 ℃, 더욱 상세하게는, 300 내지 500 ℃에서 열처리하여 겔 필름에 존재하는 아믹산기를 이미드화할 수 있다.The thermal imidization method can imidize the amic acid group present in the gel film by heat treating the gel film at a variable temperature in the range of 100 to 600 ℃, specifically 200 to 500 ℃, more specifically, The amic acid group present in the gel film can be imidized by heat treatment at 300 to 500°C.
다만, 겔 필름을 형성하는 과정에서도 아믹산 중 일부(약 0.1 몰% 내지 10 몰%)가 이미드화될 수 있으며, 이를 위해 50 ℃ 내지 200 ℃의 범위의 가변적인 온도에서 폴리아믹산 조성물을 건조할 수 있고, 이 또한 상기 열 이미드화법의 범주에 포함될 수 있다.However, even in the process of forming a gel film, some of the amic acid (about 0.1 mol% to 10 mol%) may be imidized, and for this purpose, the polyamic acid composition is dried at a variable temperature in the range of 50 ℃ to 200 ℃. It can also be included in the scope of the thermal imidization method.
화학적 이미드화법의 경우, 당업계에 공지된 방법에 따라 탈수제 및 이미드화제를 이용하여, 폴리이미드 필름을 제조할 수 있다.In the case of chemical imidization, a polyimide film can be produced using a dehydrating agent and an imidizing agent according to methods known in the art.
복합이미드화법의 한 예로 폴리아믹산 용액에 탈수제 및 이미드화제를 투입한 후 80 내지 200℃, 바람직하게는 100 내지 180℃에서 가열하여, 부분적으로 경화 및 건조한 후에 200 내지 400℃에서 5 내지 400 초간 가열함으로써 폴리이미드 필름을 제조할 수 있다.As an example of a complex imidization method, a dehydrating agent and an imidizing agent are added to a polyamic acid solution, then heated at 80 to 200°C, preferably 100 to 180°C, partially cured and dried, and then heated to 5 to 400°C at 200 to 400°C. A polyimide film can be produced by heating for a few seconds.
본 발명은, 상술한 폴리이미드 필름을 포함하는, 다층 필름을 제공한다. The present invention provides a multilayer film comprising the polyimide film described above.
상기 다층 필름은 열가소성 폴리이미드 필름 등의 추가의 폴리이미드 필름을 포함할 수 있다.The multilayer film may include additional polyimide films, such as thermoplastic polyimide films.
본 발명은, 상술한 폴리이미드 필름과 전기전도성의 금속박을 포함하는 연성 금속박 적층판을 제공한다.The present invention provides a flexible metal foil laminate including the above-described polyimide film and an electrically conductive metal foil.
사용하는 금속박으로는 특별히 한정되는 것은 아니지만, 전자 부품, 전자 기기 등의 용도에 본 발명의 연성 금속박 적층판을 이용하는 경우에는, 예를 들면 구리 또는 구리 합금, 스테인레스강 또는 그의 합금, 니켈 또는 니켈 합금(42 합금도 포함함), 알루미늄 또는 알루미늄 합금을 포함하는 금속박일 수 있다.There is no particular limitation on the metal foil to be used, but when the flexible metal foil laminate of the present invention is used for electronic components, electronic devices, etc., copper or copper alloy, stainless steel or its alloy, nickel or nickel alloy ( 42 alloy), aluminum, or aluminum alloy.
일반적인 연성 금속박 적층판에서는 압연 동박, 전해 동박이라는 구리박이 많이 사용되며, 본 발명에서도 바람직하게 사용할 수 있다. 또한, 이들 금속박의 표면에는 방청층, 내열층 또는 접착층이 도포되어 있을 수도 있다.In general flexible metal foil laminates, copper foils such as rolled copper foil and electrolytic copper foil are widely used, and can also be preferably used in the present invention. Additionally, a rust-prevention layer, a heat-resistant layer, or an adhesive layer may be applied to the surface of these metal foils.
본 발명에서 상기 금속박의 두께에 대해서는 특별히 한정되는 것은 아니고, 그 용도에 따라서 충분한 기능을 발휘할 수 있는 두께이면 된다.In the present invention, the thickness of the metal foil is not particularly limited, and may be sufficient to provide sufficient function depending on the intended use.
본 발명에 따른 연성 금속박 적층판은, 상기 폴리이미드 필름의 적어도 한면에 금속박이 라미네이트된 구조일 수 있다. The flexible metal foil laminate according to the present invention may have a structure in which metal foil is laminated to at least one side of the polyimide film.
이하, 발명의 구체적인 제조예 및 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 제조예 및 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 한정되는 것은 아니다.Hereinafter, the operation and effects of the invention will be described in more detail through specific manufacturing examples and examples of the invention. However, these manufacturing examples and examples are merely presented as examples of the invention, and the scope of the invention is not limited thereby.
제조예: 폴리이미드 필름의 제조Manufacturing example: Preparation of polyimide film
본 발명의 폴리이미드 필름은 다음과 같은 당업계에 공지된 통상적인 방법으로 제조될 수 있다. 먼저, 유기 용매에 전술한 이무수물산과 디아민 성분을 반응시켜 폴리아믹산 용액을 얻는다. The polyimide film of the present invention can be manufactured by conventional methods known in the art as follows. First, a polyamic acid solution is obtained by reacting the dianhydride and diamine components described above in an organic solvent.
이때, 용매는 일반적으로 아미드계 용매로 비양성자성 극성 용매(Aprotic solvent), 예를 들어 N,N'-디메틸포름아마이드, N,N'-디메틸아세트아미드, N-메틸-피롤리돈, 또는 이들의 조합을 사용할 수 있다.At this time, the solvent is generally an amide-based solvent, such as an aprotic polar solvent (Aprotic solvent), such as N,N'-dimethylformamide, N,N'-dimethylacetamide, N-methyl-pyrrolidone, or A combination of these can be used.
상기 이무수물산과 디아민 성분의 투입형태는 분말, 덩어리 및 용액 형태로 투입할 수 있으며 반응 초기에는 분말 형태로 투입하여 반응을 진행한 다음, 이후에는 중합 점도 조절을 위해 용액 형태로 투입하는 것이 바람직하다. The dianhydride and diamine components can be added in the form of powder, lump, and solution. It is preferable to add them in the form of powder at the beginning of the reaction to proceed with the reaction, and then add them in the form of a solution to control the polymerization viscosity. .
얻어진 폴리아믹산 용액은 이미드화 촉매 및 탈수제와 혼합되어 지지체에 도포될 수 있다. The obtained polyamic acid solution can be mixed with an imidization catalyst and a dehydrating agent and applied to a support.
사용되는 촉매의 예로는 3급 아민류(예컨대, 이소퀴놀린, β-피콜린, 피리딘 등)가 있고, 탈수제의 예로는 무수산이 있으나, 이에 제한되지 않는다. 또한, 상기에서 사용되는 지지체로는 유리판, 알루미늄박, 순환 스테인레스 벨트 또는 스테인레스 드럼 등을 들 수 있으나, 이에 제한되지 않는다.Examples of catalysts used include tertiary amines (eg, isoquinoline, β-picoline, pyridine, etc.), and examples of dehydrating agents include, but are not limited to, anhydrous acid. In addition, the support used above may include, but is not limited to, a glass plate, aluminum foil, a circular stainless steel belt, or a stainless drum.
상기 지지체 상에 도포된 필름은 건조 공기 및 열처리에 의해 지지체 위에서 겔화된다. The film applied on the support is gelled on the support by drying air and heat treatment.
상기 겔화된 필름은 지지체에서 분리되어 열처리하여 건조 및 이미드화가 완료된다. The gelated film is separated from the support and heat-treated to complete drying and imidization.
상기 열처리를 마친 필름은 일정한 장력 하에서 열처리되어 제막 과정에서 발생한 필름 내부의 잔류응력이 제거될 수 있다. The film that has completed the heat treatment can be heat treated under a certain tension to remove residual stress inside the film generated during the film forming process.
구체적으로, 교반기 및 질소 주입·배출관을 구비한 반응기에 질소를 주입시키면서 DMF를 500 ml 투입하고, 반응기의 온도를 25 ℃로 설정한 후, 비페닐테트라카르복실릭디안하이드라이드(BPDA), 피로멜리틱디안하이드라이드(PMDA), 벤조페논테트라카복실릭디안하이드라이드(BTDA), 파라페닐렌 디아민(PPD), m-톨리딘(m-tolidine), 옥시디아닐린(ODA) 및 4,4'-디아미노벤즈아닐리드(4,4'-Diaminobenzanilide, 4,4'-DABA)을 조절된 조성비 및 정해진 순서대로 투입하여 완전히 용해시킨다. Specifically, 500 ml of DMF was added while nitrogen was injected into a reactor equipped with a stirrer and nitrogen injection/discharge pipes, the temperature of the reactor was set to 25°C, and biphenyltetracarboxylic dianhydride (BPDA) and pyrogen were added. Melitic dianhydride (PMDA), benzophenone tetracarboxylic dianhydride (BTDA), paraphenylene diamine (PPD), m-tolidine, oxydianiline (ODA) and 4,4' -Add diaminobenzanilide (4,4'-Diaminobenzanilide, 4,4'-DABA) in the adjusted composition ratio and order and completely dissolve it.
투입 시, 비페닐테트라카르복실릭디안하이드라이드와 m-톨리딘을 연속으로 투입하여 비페닐테트라카르복실릭디안하이드라이드를 포함하는 이무수물산 성분과 m-톨리딘을 포함하는 디아민 성분을 이미드화 반응시켜 얻어진 제1 블록을 얻을 수 있다.When added, biphenyltetracarboxylicdianhydride and m-tolidine are continuously added to imidize the dianhydride component containing biphenyltetracarboxylicdianhydride and the diamine component containing m-tolidine. The first block obtained by reacting can be obtained.
이후, 질소 분위기 하에서 30 ℃로 반응기의 온도를 올려 가열하면서 120분간 교반을 계속해주어 1차 반응 점도가 800~1,200cP인 폴리아믹산을 제조하였다. Afterwards, the temperature of the reactor was raised to 30°C under a nitrogen atmosphere and stirring was continued for 120 minutes while heating to prepare polyamic acid with a first reaction viscosity of 800 to 1,200 cP.
이렇게 제조한 폴리아믹산을 최종 점도 140,000~160,000cP가 되도록 교반시켰다. The polyamic acid prepared in this way was stirred to a final viscosity of 140,000 to 160,000 cP.
준비된 최종 폴리아믹산에 촉매 및 탈수제의 함량을 조절하여 첨가시킨 후, 어플리케이터를 이용하여 폴리이미드 필름을 제조하였다.The contents of the catalyst and dehydrating agent were adjusted and added to the prepared final polyamic acid, and then a polyimide film was manufactured using an applicator.
실시예 및 비교예Examples and Comparative Examples
하기 표 1에 나타낸 바와 같이, 실시예 1 내지 4 및 비교예 1 내지 5에서의 이무수물산 성분 및 상기 디아민 성분의 함량을 조절하여, 제조예에 따라서 폴리이미드 필름을 제조하였다.As shown in Table 1 below, the contents of the dianhydride component and the diamine component in Examples 1 to 4 and Comparative Examples 1 to 5 were adjusted to prepare a polyimide film according to the preparation example.
또한, 이무수물산 성분 및 상기 디아민 성분의 투입 순서 및 투입량을 조절하여 실시예 1 내지 4 및 비교예 1 내지 3의 폴리이미드 필름은 비페닐테트라카르복실릭디안하이드라이드를 포함하는 이무수물산 성분과 m-톨리딘을 포함하는 디아민 성분을 이미드화 반응시켜 얻어진 제1 블록을 포함하지만, 비교예 4 및 5의 폴리이미드 필름은 비페닐테트라카르복실릭디안하이드라이드를 포함하는 이무수물산 성분과 m-톨리딘을 포함하는 디아민 성분을 이미드화 반응시켜 얻어진 제1 블록을 포함하지 않는다.In addition, by controlling the order and amount of addition of the dianhydride component and the diamine component, the polyimide films of Examples 1 to 4 and Comparative Examples 1 to 3 were prepared by controlling the dianhydride component containing biphenyltetracarboxylic dianhydride and m -It contains a first block obtained by imidating a diamine component containing tolidine, but the polyimide films of Comparative Examples 4 and 5 are composed of a dianhydride component containing biphenyltetracarboxylic dianhydride and m-tol. It does not include the first block obtained by subjecting a diamine component containing lydine to an imidation reaction.
또한, 비교예 1 내지 3의 폴리이미드 필름의 비페닐테트라카르복실릭디안하이드라이드를 포함하는 이무수물산 성분과 m-톨리딘을 포함하는 디아민 성분을 이미드화 반응시켜 얻어진 제1 블록의 함량은 상기 폴리이미드 필름의 총함량 100 몰%를 기준으로, 5 몰% 이상, 8몰% 이하로 포함되었다.In addition, the content of the first block obtained by imidizing the dianhydride component containing biphenyltetracarboxylic dianhydride and the diamine component containing m-tolidine of the polyimide films of Comparative Examples 1 to 3 is as follows. Based on the total content of 100 mol% of the polyimide film, it was included in an amount of 5 mol% or more and 8 mol% or less.
한편, 실시예 1 내지 4의 폴리이미드 필름의 비페닐테트라카르복실릭디안하이드라이드를 포함하는 이무수물산 성분과 m-톨리딘을 포함하는 디아민 성분을 이미드화 반응시켜 얻어진 제1 블록의 함량은 상기 폴리이미드 필름의 총함량 100 몰%를 기준으로, 모두 10 몰% 이상, 16 몰% 이하로 포함되었다.Meanwhile, the content of the first block obtained by imidizing the dianhydride component containing biphenyltetracarboxylic dianhydride and the diamine component containing m-tolidine of the polyimide films of Examples 1 to 4 is as above. Based on the total content of 100 mol% of the polyimide film, it was all included in an amount of 10 mol% or more and 16 mol% or less.
이무수물산Dianhydride product 디아민diamine
PMDAPMDA BPDABPDA BTDABTDA ODA O.D.A. PPDPPD m-Tolidinem-Tolidine 4,4'-DABA4,4'-DABA
실시예 1Example 1 4040 2020 4040 3030 5858 1212 --
실시예 2Example 2 4040 2525 3535 3030 5858 1212 --
실시예 3Example 3 4040 2323 3737 3434 5454 1212 --
실시예 4Example 4 4040 2020 4040 3434 5656 1010 --
비교예1Comparative Example 1 4040 2020 4040 4242 5353 55 --
비교예2Comparative example 2 4242 2020 3838 4545 5050 55 --
비교예3Comparative example 3 4040 2020 4040 3434 5858 88 --
비교예4Comparative example 4 4040 2020 4040 3434 5050 88 88
제조된 폴리이미드 필름의 유리전이온도(Tg), 항복점 및 항복강도를 측정하여 하기 표 2에 나타내었다.The glass transition temperature (Tg), yield point, and yield strength of the produced polyimide film were measured and shown in Table 2 below.
물성Properties
Tg
(℃)
Tg
(℃)
항복점
(%)
yield point
(%)
항복강도
(MPa)
yield strength
(MPa)
실시예 1Example 1 370370 2.532.53 140.4140.4
실시예 2Example 2 373373 2.482.48 145.1145.1
실시예 3Example 3 370370 2.462.46 138.2138.2
실시예 4Example 4 371371 2.432.43 141.2141.2
비교예1Comparative Example 1 365365 2.472.47 114.8114.8
비교예2Comparative example 2 364364 2.702.70 142.7142.7
비교예3Comparative Example 3 369369 2.542.54 138.7138.7
비교예4Comparative example 4 358358 2.722.72 152.8152.8
비교예5Comparative Example 5 353353 2.862.86 149.1149.1
(1) 유리전이온도 측정(1) Glass transition temperature measurement
상기 표 2의 유리전이온도(Tg)는 DMA를 이용하여 각 필름의 손실 탄성률과 저장 탄성률을 구하고, 이들의 탄젠트 그래프에서 변곡점을 유리전이온도로 측정하였다.For the glass transition temperature (T g ) in Table 2, the loss modulus and storage modulus of each film were obtained using DMA, and the inflection point was measured as the glass transition temperature in their tangent graph.
(2) 항복점 및 항복 강도 측정(2) Yield point and yield strength measurement
상기 표 2의 항복점 및 항복 강도는 폴리이미드 필름을 15 mm Х 50 mm로 절단하여 시편을 제조하고, ASTM D 882 기준에 의거하되 인장속도를 200 mm/min으로 하여 인장시험기(Instron 5564, Instron社)를 사용해 실온(room temp.)에서 측정하였다.The yield point and yield strength in Table 2 were determined by cutting the polyimide film into 15 mm Х 50 mm to prepare a specimen and using a tensile tester (Instron 5564, Instron) at a tensile speed of 200 mm/min according to ASTM D 882 standards. ) was measured at room temperature (room temp.).
측정 결과, 실시예 1 내지 4의 폴리이미드 필름은 유리 전이온도가 370℃ 이상이고, 항복점이 2.4% 이상이었으며, 항복강도가 138 MPa 이상이었다.As a result of the measurement, the polyimide films of Examples 1 to 4 had a glass transition temperature of 370°C or higher, a yield point of 2.4% or higher, and a yield strength of 138 MPa or higher.
디아민 성분의 함량이 동일하고, 이무수물산 성분의 함량이 상이한 실시예 1 및 2의 폴리이미드 필름을 비교해 보면, BPDA의 함량이 늘어나고 BTDA의 함량이 감소함에 따라서, 폴리이미드 필름의 유리전이온도가 소폭 상승하고, 항복점은 소폭 낮아지며, 항복강도가 소폭 증가하는 것을 확인할 수 있었다.When comparing the polyimide films of Examples 1 and 2, which had the same content of diamine component and different content of dianhydride component, as the content of BPDA increased and the content of BTDA decreased, the glass transition temperature of the polyimide film slightly decreased. It was confirmed that the yield rises, the yield point slightly decreases, and the yield strength slightly increases.
실시예 1과 실시예 3의 폴리이미드 필름을 비교해 보면, BPDA 및 ODA의 함량을 늘리고, PPD 및 BTDA의 함량이 감소함에 따라서 폴리이미드 필름의 항복점 및 항복강도가 소폭 낮아지는 것을 확인할 수 있었다.Comparing the polyimide films of Example 1 and Example 3, it was confirmed that the yield point and yield strength of the polyimide film were slightly lowered as the contents of BPDA and ODA increased and the contents of PPD and BTDA decreased.
또한, 이무수물산 성분의 함량이 동일하고, 디아민 성분의 함량이 상이한 실시예 1 및 4를 비교해 보면, ODA의 함량이 늘어나고 PPD 및 m-tolidine의 함량이 감소함에 따라서, 유리전이온도가 소폭 상승하고, 항복점은 소폭 낮아지며, 항복강도가 소폭 증가하는 것을 확인할 수 있었다.In addition, when comparing Examples 1 and 4 in which the content of the dianhydride component is the same and the content of the diamine component is different, as the content of ODA increases and the content of PPD and m-tolidine decreases, the glass transition temperature slightly increases. , it was confirmed that the yield point was slightly lowered and the yield strength was slightly increased.
한편, 실시예 1의 폴리이미드 필름과 비교하여 ODA의 함량을 늘리고, PPD 및 m-tolidine 함량이 줄어든 비교예 1의 폴리이미드 필름은 유리 전이온도가 370℃ 미만이었고, 항복 강도도 138 MPa 미만으로 저하되었다.On the other hand, compared to the polyimide film of Example 1, the polyimide film of Comparative Example 1, in which the ODA content was increased and the PPD and m-tolidine content were reduced, had a glass transition temperature of less than 370°C and a yield strength of less than 138 MPa. It has been degraded.
또한, 실시예 1의 폴리이미드 필름과 비교하여 ODA의 함량을 늘리고, m-tolidine 함량이 줄어든 비교예 3의 폴리이미드 필름은 유리 전이온도가 370℃ 미만이었다.In addition, compared to the polyimide film of Example 1, the polyimide film of Comparative Example 3, in which the ODA content was increased and the m-tolidine content was reduced, had a glass transition temperature of less than 370°C.
비교예 1의 폴리이미드 필름에 비하여 PMDA 및 ODA의 함량을 더욱 늘리고, BTDA 및 PPD의 함량을 더욱 줄인 비교예 2의 폴리이미드 필름은 항복점 및 항복강도가 모두 향상되었지만, 여전히 유리 전이온도가 370℃ 미만이었다.Compared to the polyimide film of Comparative Example 1, the polyimide film of Comparative Example 2, in which the contents of PMDA and ODA were further increased and the contents of BTDA and PPD were further reduced, had both improved yield point and yield strength, but still had a glass transition temperature of 370°C. It was less than
비교예 3의 폴리이미드 필름은 비교예 1의 폴리이미드 필름에 비하여 유리전이온도, 항복점 및 항복강도가 모두 향상되었지만, 여전히 유리 전이온도가 370℃ 미만이었다.The polyimide film of Comparative Example 3 had all improved glass transition temperature, yield point, and yield strength compared to the polyimide film of Comparative Example 1, but the glass transition temperature was still less than 370°C.
4,4'-DABA를 포함하고, 비페닐테트라카르복실릭디안하이드라이드를 포함하는 이무수물산 성분과 m-톨리딘을 포함하는 디아민 성분을 이미드화 반응시켜 얻어진 블록을 포함하지 않는 비교예 4 및 비교예 5의 폴리이미드 필름은 동일한 이무수물산 성분의 조성비를 가지는 실시예 1 및 실시예 4의 폴리이미드 필름에 비하여, 유리전이온도(370℃ 미만)가 낮아졌다. Comparative Example 4, which does not contain a block obtained by imidating a dianhydride component containing 4,4'-DABA and biphenyltetracarboxylic dianhydride and a diamine component containing m-tolidine, and The polyimide film of Comparative Example 5 had a lower glass transition temperature (less than 370°C) compared to the polyimide films of Examples 1 and 4 having the same dianhydride component composition ratio.
따라서, 본원의 적절한 범위 내에서 제조된 실시예 1 내지 4의 폴리이미드 필름은 내열성(유리전이온도) 및 기계적 특성(항복강도 및 항복점)이 모두 우수하였으나, 본원의 적절한 범위를 벗어나는 경우, 내열성 및 기계적 특성을 양립시키기가 어렵다는 것을 확인할 수 있었다.Accordingly, the polyimide films of Examples 1 to 4 manufactured within the appropriate range of the present application were excellent in both heat resistance (glass transition temperature) and mechanical properties (yield strength and yield point), but when outside the appropriate range of the present application, the heat resistance and It was confirmed that it was difficult to achieve both mechanical properties.
즉, 내열성 및 기계적 특성을 가져서 다양한 응용 분야에 적용될 수 있는 폴리이미드 필름은 본원의 적절한 범위 내에서 제조된 폴리이미드 필름임을 확인할 수 있었다.In other words, it was confirmed that a polyimide film that has heat resistance and mechanical properties and can be applied to a variety of applications is a polyimide film manufactured within the appropriate scope of the present application.
본 발명의 폴리이미드 필름 및 폴리이미드 필름의 제조방법의 실시예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 당업자가 본 발명을 용이하게 실시할 수 있도록 하는 바람직한 실시예일 뿐, 전술한 실시예에 한정되는 것은 아니므로 이로 인해 본 발명의 권리범위가 한정되는 것은 아니다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 당업자에게 있어 명백할 것이며, 당업자에 의해 용이하게 변경 가능한 부분도 본 발명의 권리범위에 포함됨은 자명하다.The examples of the polyimide film and the manufacturing method of the polyimide film of the present invention are only preferred embodiments that allow those skilled in the art to easily practice the present invention, and the above-described examples Since it is not limited to this, the scope of rights of the present invention is not limited. Therefore, the true scope of technical protection of the present invention should be determined by the technical spirit of the attached patent claims. In addition, it will be clear to those skilled in the art that various substitutions, modifications and changes can be made without departing from the technical spirit of the present invention, and it is obvious that parts that can be easily changed by those skilled in the art are also included in the scope of rights of the present invention. .
본 발명은 이무수물산 및 디아민 성분의 조성비, 반응비 등이 조절된 폴리이미드 필름을 제공함으로써, 내열성, 항복점 및 항복강도 특성이 모두 우수한 폴리이미드 필름을 제공하여 폴리이미드 필름의 공정성을 개선시킬 수 있다. The present invention provides a polyimide film in which the composition ratio and reaction ratio of dianhydride and diamine components are adjusted, thereby improving the processability of the polyimide film by providing a polyimide film with excellent heat resistance, yield point, and yield strength characteristics. .
이러한 폴리이미드 필름은 우수한 특성의 폴리이미드 필름이 요구되는 다양한 분야, 예를 들어, 메탈라이징법에 의해 제조되는 연성 금속박 적층판 또는 이러한 연성 금속박 적층판을 포함하는 전자 부품에 적용이 가능하다.This polyimide film can be applied to various fields that require a polyimide film with excellent properties, for example, to a flexible metal foil laminate manufactured by a metallizing method or to electronic components including such a flexible metal foil laminate.

Claims (9)

  1. 항복 강도가 138 MPa 이상이고,Yield strength is greater than 138 MPa,
    유리전이온도가 370 ℃ 이상인,A glass transition temperature of 370°C or higher,
    폴리이미드 필름.Polyimide film.
  2. 제1항에 있어서, According to paragraph 1,
    항복점이 2.4 % 이상인,With a yield point of 2.4% or more,
    폴리이미드 필름.Polyimide film.
  3. 제1항에 있어서,According to paragraph 1,
    비페닐테트라카르복실릭디안하이드라이드(BPDA), 피로멜리틱디안하이드라이드(PMDA) 및 벤조페논테트라카복실릭디안하이드라이드(BTDA)를 포함하는 이무수물산 성분과, 파라페닐렌 디아민(PPD), m-톨리딘(m-tolidine) 및 옥시디아닐린(ODA)를 포함하는 디아민 성분을 포함하는 폴리아믹산 용액을 이미드화 반응시켜 얻어지는,Dianhydride components including biphenyltetracarboxylic dianhydride (BPDA), pyromellitic dianhydride (PMDA), and benzophenone tetracarboxylic dianhydride (BTDA), paraphenylene diamine (PPD), Obtained by imidizing a polyamic acid solution containing a diamine component including m-tolidine and oxydianiline (ODA),
    폴리이미드 필름.Polyimide film.
  4. 제3항에 있어서,According to paragraph 3,
    상기 이무수물산 성분의 총함량 100 몰%를 기준으로, 상기 비페닐테트라카르복실릭디안하이드라이드의 함량이 15 몰% 이상 30 몰% 이하이고, 상기 피로멜리틱디안하이드라이드의 함량이 30 몰% 이상 50 몰% 이하이며, 상기 벤조페논테트라카복실릭디안하이드라이드의 함량이 25 몰% 이상 45 몰% 이하인,Based on the total content of the dianhydride component of 100 mol%, the content of the biphenyltetracarboxylic dianhydride is 15 mol% or more and 30 mol% or less, and the content of the pyromellitic dianhydride is 30 mol%. It is 50 mol% or less, and the content of the benzophenone tetracarboxylic dianhydride is 25 mol% or more and 45 mol% or less,
    폴리이미드 필름.Polyimide film.
  5. 제3항에 있어서,According to paragraph 3,
    상기 디아민 성분의 총함량 100몰%를 기준으로, 상기 파라페닐렌 디아민의 함량이 45 몰% 이상, 60 몰% 이하, 상기 m-톨리딘의 함량이 10 몰% 이상, 25 몰% 이하이며, 상기 옥시디아닐린의 함량이 20 몰% 이상, 40 몰% 이하인,Based on the total content of the diamine component of 100 mol%, the paraphenylene diamine content is 45 mol% or more and 60 mol% or less, and the m-tolidine content is 10 mol% or more and 25 mol% or less, The content of oxydianiline is 20 mol% or more and 40 mol% or less,
    폴리이미드 필름.Polyimide film.
  6. 제3항에 있어서, According to paragraph 3,
    상기 폴리이미드는 상기 비페닐테트라카르복실릭디안하이드라이드를 포함하는 이무수물산 성분과 상기 m-톨리딘을 포함하는 디아민 성분을 이미드화 반응시켜 얻어진 제1 블록을 포함하는 블록 공중합체인,The polyimide is a block copolymer comprising a first block obtained by imidizing a dianhydride component containing the biphenyltetracarboxylic dianhydride and a diamine component containing the m-tolidine,
    폴리이미드 필름.Polyimide film.
  7. 제6항에 있어서,According to clause 6,
    상기 폴리이미드의 총함량 100 몰%를 기준으로, 상기 제1 블록의 함량이 10 몰% 이상, 16 몰% 이하인,Based on the total content of 100 mol% of the polyimide, the content of the first block is 10 mol% or more and 16 mol% or less,
    폴리이미드 필름.Polyimide film.
  8. 제1항 내지 제7항 중 어느 한 항에 따른 폴리이미드 필름과 전기 전도성의 금속박을 포함하는, 연성 금속박 적층판.A flexible metal foil laminate comprising the polyimide film according to any one of claims 1 to 7 and an electrically conductive metal foil.
  9. 제8항에 따른 연성 금속박 적층판을 포함하는, 전자 부품Electronic components comprising the flexible metal foil laminate according to claim 8
PCT/KR2023/016019 2022-10-17 2023-10-17 Polyimide film and method for producing same WO2024085591A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0133090 2022-10-17
KR1020220133090A KR20240053229A (en) 2022-10-17 2022-10-17 Polyimide film and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2024085591A1 true WO2024085591A1 (en) 2024-04-25

Family

ID=90738263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/016019 WO2024085591A1 (en) 2022-10-17 2023-10-17 Polyimide film and method for producing same

Country Status (2)

Country Link
KR (1) KR20240053229A (en)
WO (1) WO2024085591A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170079921A (en) * 2015-12-31 2017-07-10 주식회사 동진쎄미켐 Polyimideprecursor, method for producing thereof and method for producing polyimide film using the same
KR101775198B1 (en) * 2013-04-09 2017-09-06 주식회사 엘지화학 A laminate structure and a device comprising a substrate manufactured by using same
JP2020142520A (en) * 2014-11-27 2020-09-10 株式会社カネカ Insulation coating material with excellent wear resistance
KR20210067696A (en) * 2019-11-29 2021-06-08 피아이첨단소재 주식회사 Polyimide film, manufacturing method thereof, and flexible metal foil clad laminate comprising same
KR20210067697A (en) * 2019-11-29 2021-06-08 피아이첨단소재 주식회사 Polyimide film and method for preparing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101375276B1 (en) 2013-03-27 2014-03-19 주식회사 이녹스 Method of manufacturing laminated plate using thermoplastic polyimide adhesive film with excellent slip property
TWI656097B (en) 2014-06-30 2019-04-11 南韓商可隆股份有限公司 Surface modified silica particles and polyimide film comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101775198B1 (en) * 2013-04-09 2017-09-06 주식회사 엘지화학 A laminate structure and a device comprising a substrate manufactured by using same
JP2020142520A (en) * 2014-11-27 2020-09-10 株式会社カネカ Insulation coating material with excellent wear resistance
KR20170079921A (en) * 2015-12-31 2017-07-10 주식회사 동진쎄미켐 Polyimideprecursor, method for producing thereof and method for producing polyimide film using the same
KR20210067696A (en) * 2019-11-29 2021-06-08 피아이첨단소재 주식회사 Polyimide film, manufacturing method thereof, and flexible metal foil clad laminate comprising same
KR20210067697A (en) * 2019-11-29 2021-06-08 피아이첨단소재 주식회사 Polyimide film and method for preparing the same

Also Published As

Publication number Publication date
KR20240053229A (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2019088454A1 (en) Ultra-thin black polyimide film and manufacturing method therefor
WO2019093669A2 (en) Ultra-thin black polyimide film and manufacturing method therefor
WO2020054912A1 (en) Polyimide film having improved surface quality and method for manufacturing same
WO2019132184A1 (en) Polyimide film for manufacturing flexible copper clad laminate and flexible copper clad laminate comprising same
WO2021091014A1 (en) Polyimide film having improved dielectric properties, and manufacturing method for same
WO2021091011A1 (en) Highly heat-resistant and low dialectric-polyimide film and method for producing same
WO2021096245A2 (en) Polyimide film having improved dimensional stability and manufacturing method thereof
WO2020096259A1 (en) Ultra-thin polyimide film having improved dimensional stability and manufacturing method therefor
WO2021095975A1 (en) Low-dialectric polyimide film and method for producing same
WO2021060613A1 (en) Polyamic acid composition, method for preparing same, and polyimide film comprising same
WO2020091147A1 (en) Conductor-coating polyimide varnish for improving heat resistance of polyimide-coated product, and polyimide-coated product manufactured therefrom
WO2020101225A1 (en) Polyimide precursor composition containing crosslinkable dianhydride-based compound and antioxidant, and polyimide film produced therefrom
WO2019139249A1 (en) Polyimide film with improved alkali resistance and method for manufacturing same
WO2021091013A1 (en) Polyimide film having high heat resistance and low dielectric properties, and manufacturing method for same
WO2022098042A1 (en) Polyimide film having high dimensional stability, and method for manufacturing same
WO2020040527A1 (en) Polyimide film comprising crystalline polyimide resin and thermal conductive filler and manufacturing method therefor
WO2022065804A1 (en) Low-dielectric-constant polyimide film and manufacturing method therefor
WO2020040347A1 (en) Polyimide film having improved alkali resistance and method for manufacturing same
WO2024085591A1 (en) Polyimide film and method for producing same
WO2020096364A1 (en) Polyimide composite film having excellent electromagnetic wave shielding performance, and manufacturing method therefor
WO2024117800A1 (en) Polyimide film and method for producing same
WO2020209555A1 (en) Multilayer polyimide film having excellent dimensional stability and adhesiveness, and method for producing same
WO2020141708A1 (en) Polyamic acid composition and preparation method thereof
WO2023075542A1 (en) Polyimide film having high dimensional stability and method for preparing same
WO2024112142A1 (en) Polyimide film and method for producing same