WO2020209555A1 - Multilayer polyimide film having excellent dimensional stability and adhesiveness, and method for producing same - Google Patents

Multilayer polyimide film having excellent dimensional stability and adhesiveness, and method for producing same Download PDF

Info

Publication number
WO2020209555A1
WO2020209555A1 PCT/KR2020/004621 KR2020004621W WO2020209555A1 WO 2020209555 A1 WO2020209555 A1 WO 2020209555A1 KR 2020004621 W KR2020004621 W KR 2020004621W WO 2020209555 A1 WO2020209555 A1 WO 2020209555A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
dianhydride
polyimide film
polyamic acid
less
Prior art date
Application number
PCT/KR2020/004621
Other languages
French (fr)
Korean (ko)
Inventor
이길남
백승열
김기훈
최정열
Original Assignee
피아이첨단소재 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200038752A external-priority patent/KR102272716B1/en
Application filed by 피아이첨단소재 주식회사 filed Critical 피아이첨단소재 주식회사
Priority to CN202080028126.3A priority Critical patent/CN113710483A/en
Publication of WO2020209555A1 publication Critical patent/WO2020209555A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a multilayer polyimide film having excellent dimensional stability and adhesion, and a method of manufacturing the same. More specifically, it includes a core portion including a structure derived from at least 4,4′-diamino-2,2′-dimethylbiphenyl compound and a skin portion including a structure derived from at least 3,5-diaminobenzoic acid compound, and Provided are a multilayer polyimide film having a negative glass transition temperature (T g ) of 360°C or higher, a skin portion having a glass transition temperature of 300°C or higher, and an adhesive strength of 1,000 gf/cm or higher, and a method for manufacturing the same.
  • T g negative glass transition temperature
  • the multilayer polyimide film of the present invention may have a coefficient of thermal expansion (CTE) of 7.5 ppm or more and 11 ppm or less, and a difference of a molecular orientation ratio (MOR) of 0.005 or less.
  • CTE coefficient of thermal expansion
  • MOR molecular orientation ratio
  • the multilayer polyimide film of the present invention may have an elastic modulus of 6.8 GPa or more and 7.5 GPa or less, and a strength of 360 MPa or more and 440 MPa or less.
  • the present invention is composed of a core layer having excellent dimensional stability and a skin layer containing a 3,5-diaminobenzoic acid compound to secure adhesion to improve the balance of the entire width of the multilayer polyimide film, so that adhesion and dimensional stability Both of these provide excellent multilayer polyimide films.
  • Polyimide (PI) is a polymer material with thermal stability based on a rigid aromatic backbone and has excellent mechanical strength, chemical resistance, weather resistance, and heat resistance based on the chemical stability of the imide ring.
  • Such a thin circuit board generally has a structure in which a circuit including a metal foil is formed on a polyimide film, and such a thin circuit board is also referred to as a flexible metal foil laminate in a broad sense.
  • a thin copper plate with metal foil When using, in a narrow sense, it is also referred to as flexible copper clad laminate (FCCL).
  • a method of manufacturing a flexible metal foil laminate for example, (i) casting a polyamic acid, which is a precursor of polyimide, on a metal foil, or coating it, followed by imidization, and (ii) sputtering or plating.
  • a metallization method in which a metal layer is directly provided on the polyimide film, and (iii) a lamination method in which a polyimide film and a metal foil are bonded with heat and pressure through a thermoplastic polyimide are mentioned.
  • the lamination method has an advantage in that the thickness range of the applicable metal foil is wider than that of the casting method, and the equipment cost is lower than that of the metalizing method.
  • a roll lamination apparatus or a double belt press apparatus for continuously laminating while introducing a roll-shaped material is used as an apparatus for laminating.
  • a thermal roll lamination method using a thermal roll lamination device can be more preferably used.
  • the glass transition of the polyimide film is 300°C or higher, in some cases. It is necessary to apply heat of 400°C or higher, which is close to or higher than the temperature (Tg), to the polyimide film.
  • the value of the storage modulus of a viscoelastic material such as a polyimide film decreases significantly compared to the value of the storage modulus at room temperature in a temperature range above the glass transition temperature.
  • the storage modulus of the polyimide film at high temperature may be significantly lowered, and under a low storage modulus, the polyimide film may become loose and the polyimide film may not exist in a flat form after the end of the lamination. Is high. In other words, in the case of a laminate, it can be said that the dimensional change of the polyimide film is relatively unstable.
  • the glass transition temperature of the polyimide film is remarkably low compared to the temperature at the time of lamination.
  • the viscosity of the polyimide film is relatively high at the temperature at which the lamination is performed, a relatively large dimensional change may be accompanied, and accordingly, there is a concern that the appearance quality of the polyimide film may be deteriorated after lamination. .
  • a method of producing a three-layer polyimide film by casting a polyamic acid solution in a plurality of layers simultaneously on a support, peeling from the support after drying, and heat treatment is mentioned.
  • the polyimide layer directly in contact with the top is partially affixed on the support, or a difference in peel strength occurs between the polyimide layer in contact with the support and the polyimide layer on the opposite side (for example, patent See Documents 2 and 3).
  • An object according to an aspect of the present invention is to provide a multilayer polyimide film having excellent dimensional stability and adhesion, and an effective manufacturing method thereof, and specifically, to determine the type of dianhydride monomer, the type of diamine monomer, and the blending ratio thereof.
  • the composition of polyimide resins of different compositions in multiple layers it has a desired glass transition temperature, has a high storage modulus at high temperature, and also has excellent adhesion while minimizing dimensional changes by mitigating thermal stress. It is to provide a multi-layered polyimide.
  • An object according to another aspect of the present invention is to provide a flexible copper clad laminate having a relatively small dimensional change and excellent appearance quality, including a multilayer polyimide film satisfying desired physical properties.
  • the present invention has a practical purpose to provide specific examples thereof.
  • 4,4′-diamino-2,2′-dimethylbiphenyl (4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), paraphenylene Diamine-derived structure and pyromellitic dianhydride containing at least one selected from the group consisting of diamine (p-phenylenediamine; p-PDA) and 4,4′-oxydianiline (ODA) (pyromellitic dianhydride; PMDA) and at least one selected from the group consisting of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA) It is present in contact with at least one outer surface of the core portion and the core portion including a dianhydride-derived structure containing, 3,5-diaminobenzoic acid (3.5-DABA), para
  • the thickness of the core portion and the skin portion may be present in a ratio of 6:4 to 9:1, and more preferably, the glass transition temperature of the skin portion is preferably 300° C. to 380° C., and the adhesive strength may be 1,000 gf/cm or more.
  • the skin portion may contact at least one outer surface of the core portion and a surface opposite to the outer surface of the core portion, thereby providing a multilayer polyimide film present on both surfaces of the core portion.
  • Another embodiment of the present invention is a diamine containing at least one selected from the group consisting of 4,4′-diamino-2,2′-dimethylbiphenyl, paraphenylenediamine, and 4,4′-oxydianiline.
  • Preparation prepared by polymerizing a dianhydride monomer containing at least one selected from the group consisting of monomers, pyromellitic dianhydride, and 3,3′,4,4′-biphenyltetracarboxylicdianhydride in a solvent Obtaining 1 polyamic acid; Preparing a first polyimide prepared by imidizing a first polyamic acid; Diamine monomers including 3,5-diaminobenzoic acid, paraphenylenediamine and 4,4′-oxydianiline and pyromelliticdianhydride, 3,3′,4,4′-biphenyltetracarboxylicdian
  • a second polyamic acid prepared by polymerizing a dianhydride monomer containing at least one selected from the group consisting of hydride and 3,3′,4,4′-benzophenonetetracarboxylicdianhydride in a solvent step Preparing a second polyimide prepared by imidizing a second polyamic acid; Co
  • another embodiment of the present invention includes at least one selected from the group consisting of 4,4′-diamino-2,2′-dimethylbiphenyl, paraphenylenediamine, and 4,4′-oxydianiline.
  • a dianhydride monomer containing at least one selected from the group consisting of a diamine monomer and a pyromellitic dianhydride and 3,3′,4,4′-biphenyltetracarboxylicdianhydride in a solvent
  • Diamine monomers including 3,5-diaminobenzoic acid, paraphenylenediamine and 4,4′-oxydianiline and pyromelliticdianhydride, 3,3′,4,4′-biphenyltetracarboxylicdian
  • a second polyamic acid prepared by polymerizing a dianhydride monomer containing at least one selected from the group consisting of hydride and 3,3′,4,4′-
  • the multilayer polyimide film has an adhesive strength of 1,000 gf/cm or more, a glass transition temperature (T g ) of the core part made from the first polyamic acid is 360° C. or more, and the glass transition temperature of the skin part made from the second polyamic acid (T g ) is characterized in that 300 °C or more.
  • the first discharge part is located on the opposite side of the surface in contact with the second discharge part, and the third discharge part further discharges the second polyimide or the second polyamic acid so as to contact the other surface of the first polyimide or the first polyamic acid.
  • Each of the first polyamic acid and the second polyamic acid may further include any one selected from the group consisting of an imidation catalyst, a dehydrating agent, a curing agent, a filler, and an additive in which one or more of them are mixed.
  • Another embodiment of the present invention provides a flexible metal foil laminate comprising a multilayer polyimide film and an electrically conductive metal foil.
  • Another embodiment of the present invention provides an electronic component including a flexible metal foil laminate.
  • the present invention is due to a combination of specific dianhydride monomers and diamine monomers and a specific mixing ratio thereof, and by laminating polyimide films of different compositions, excellent adhesion and desired glass It has a transition temperature, inherently high storage modulus at high temperature, and, in addition, it is possible to provide a multilayer polyimide film having excellent dimensional stability and an effective manufacturing method thereof by improving the variation in shrinkage rate by width direction by easing thermal stress.
  • the present invention may also provide a flexible copper clad laminate having excellent appearance quality, including the multilayer polyimide film as described above.
  • 4,4′-diamino-2,2′-dimethylbiphenyl (4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), paraphenylenediamine (p-PDA), and Diamine-derived structures containing at least one selected from the group consisting of 4,4′-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) and 3,3′ ,4,4′-biphenyltetracarboxylic dianhydride (3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA) Core containing a dianhydride-derived structure containing at least one selected from the group consisting of part; And
  • 3,5-diaminobenzoic acid 3.5-DABA
  • paraphenylenediamine p-PDA
  • 4,4' -Diamine-derived structure including oxydianiline (4,4′-oxydianiline; ODA) and pyromellitic dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylicdian Hydride (3,3',4,4'-Biphenyltetracarboxylic dianhydride; BPDA) and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (3,3',4,4'-Benzophenonetetracarboxylic dianhydride) It includes a skin portion comprising a dianhydride-derived structure containing at least one selected from the group consisting of BTDA).
  • the skin part is present on at least one outer surface of the core part and may exist in the form of a 2-layer film, and more preferably, a form in contact with one outer surface of the core part and the rear surface of the outer surface, that is, at least It may exist in the form of a three-layer film in which the skin portion is in contact with both outer surfaces.
  • the thickness of the core portion and the skin portion may exist in a ratio of 6:4 to 9:1.
  • the thickness of the core portion is less than 6 parts or exceeds 9 parts, the dimensional stability may be deteriorated, and when the thickness of the skin part is less than 1 part or exceeds 4 parts, the adhesion characteristics may be deteriorated.
  • each dianhydride monomer, diamine monomer, and a blending ratio thereof constituting the core portion and the skin portion will be described in detail through the following non-limiting examples.
  • Diamine monomers that can be used in the present invention are 4,4′-diamino-2,2′-dimethylbiphenyl (4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), 3,5-dia Minobenzoic acid (3,5-diaminobenzoic acid; 3.5-DABA), 4,4'-oxydianiline (4,4'-oxydianiline; ODA), 3,4'-oxydianiline (3,4'-oxydianiline) , 4,4-diaminobiphenyl-3,3-tetracarboxylic acid (4,4-diaminobiphenyl-3,3-tetracarboxylic acid; DATA), paraphenylenediamine (p-phenylenediamine; p-PDA), m -Phenylenediamine (m-PDA), p-methylenediamine (p-methylenediamine; p-MDA), metamethylenediamine (
  • the diamine monomer constituting the core portion is 1 selected from the group consisting of 4,4′-diamino-2,2′-dimethylbiphenyl, paraphenylenediamine, and 4,4′-oxydianiline. It may contain more than one species.
  • the glass transition temperature (T g ) characteristic of the polyimide film is expressed at 360° C. or higher, and it is preferable to manufacture a core portion having high dimensional stability.
  • the diamine monomer constituting the core portion of the present invention may be paraphenylenediamine and 4,4'-oxydianiline.
  • the content of the paraphenylenediamine is 60 mol% or more based on 100 mol% of the total content of the diamine monomer of the core part 80 Mole% or less, and the content of the 4,4'-oxydianiline may be 20 mol% or more and 40 mol% or less.
  • the diamine monomer constituting the skin portion may include 3,5-diaminobenzoic acid, paraphenylenediamine, and 4,4′-oxydianiline.
  • a monomer containing a hydrophilic functional group such as 3,5-diaminobenzoic acid.
  • the adhesive strength is excellent at 1,000 gf/cm or more, and the glass transition temperature of the skin part can be formed at 300°C or more, preferably 300°C to 380°C. It is possible to improve the deviation of the shrinkage rate by location due to the glass transition temperature in the process.
  • the content of 3,5-diaminobenzoic acid is 3 mol% or more and 15 mol% or less
  • the content of paraphenylenediamine is 60 mol% or more based on 100 mol% of the total content of the diamine monomer of the skin part of the present invention. It is 80 mol% or less, and the content of the 4,4'-oxydianiline may be 15 mol% or more and 35 mol% or less.
  • the dianhydride monomer that can be used in the present invention is 3,3',4,4'-biphenyltetracarboxylic dianhydride (3,3',4,4'-Biphenyltetracarboxylic dianhydride; BPDA), pyromellitic Pyromellitic dianhydride (PMDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (3,3′,4,4′-Benzophenonetetracarboxylic dianhydride; BTDA), oxydiphthalic anhydride It may be selected from the group of oxydiphthalic anhydride (ODPA) and mixtures of one or more mixtures thereof.
  • ODPA oxydiphthalic anhydride
  • the dianhydride monomer constituting the core portion is one or more selected from the group consisting of pyromellitic dianhydride and 3,3′,4,4′-biphenyltetracarboxylicdianhydride.
  • the dianhydride monomer of the core part is made of pyromellitic dianhydride and 3,3',4,4'-biphenyltetracarboxylicdianhydride
  • the total content of the dianhydride monomer of the core part is 100 mol%
  • the content of the pyromellitic dianhydride is 40 mol% or more and 60 mol% or less
  • the content of the 3,3′,4,4′-biphenyltetracarboxylicdianhydride is 40 mol% or more 60 It may be less than or equal to mole %.
  • the dianhydride monomer constituting the skin part is pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylicdianhydride and 3,3′,4, It may include at least one selected from the group consisting of 4'-benzophenone tetracarboxylicdianhydride.
  • the dianhydride monomer constituting the skin part of the present invention is 3,3',4,4'-biphenyltetracarboxylic dianhydride and 3,3',4,4'-benzophenonetetracarboxylic. It may be a dianhydride.
  • the dianhydride monomer of the skin part is composed of only 3,3',4,4'-biphenyltetracarboxylicdianhydride and 3,3',4,4'-benzophenonetetracarboxylicdianhydride
  • the content of the 3,3′,4,4′-biphenyltetracarboxylicdianhydride is 90 mol% or more and 99 mol% or less, based on 100 mol% of the total content of the dianhydride monomer of the skin portion, and 3
  • the content of 3′,4,4′-benzophenonetetracarboxylicdianhydride may be 1 mol% or more and 10 mol% or less.
  • the glass transition temperature (T g ) of the core portion is 360°C or higher, the glass transition temperature of the skin portion is 300°C or higher, preferably 300°C to 380°C,
  • the adhesion is 1,000 gf/cm or more, preferably 1,400 gf/cm or more,
  • the elastic modulus is 6.8 GPa or more and 7.5 GPa or less, and the strength is 360 MPa or more and 440 MPa or less.
  • a multilayer polyimide film that satisfies all of the above conditions, it can be used as a substrate film for a flexible metal foil laminate, an insulating film, a protective film, etc.
  • the shrinkage rate varies by width direction It is possible to implement a stable circuit by minimizing the problem of dimensional change caused by the problem or the problem of lifting due to a decrease in adhesion.
  • a multilayer polyimide film having all of these conditions is a novel polyimide film that has not been known so far, and the above conditions will be described in detail below.
  • the glass transition temperature can be obtained from the storage modulus and the loss modulus measured by a dynamic viscoelasticity measuring device (DMA), and in detail, the top peak of tan ⁇ , which is a value obtained by dividing the calculated loss modulus by the storage modulus, The glass transition degree can be calculated. Since the glass transition temperature is related to the heat resistance of the polyimide film, in order to improve dimensional stability at high temperatures when applied to a copper clad laminate or the like, a higher value is preferable.
  • DMA dynamic viscoelasticity measuring device
  • the present invention provides a polyimide film in which both glass transition ionicity and adhesive strength are compatible with desirable levels.
  • the polyimide film according to the present invention controls the glass transition temperature of the polyimide resin constituting the core part and the skin part, respectively, and coextrusion them, thereby forming TPI on the core polyimide film having a low glass transition temperature.
  • adhesion and dimensional stability may be improved.
  • the glass transition temperature (T g ) of the core portion may be 360°C or higher
  • the glass transition temperature of the skin portion may be 300°C or higher
  • the glass transition temperature of the skin portion is It may be 300 °C or more to 380 °C or less.
  • the glass transition temperature of the resin constituting the multilayer polyimide film of the core part or the skin part, respectively is lower than the above range, when the multilayer polyimide film is manufactured through coextrusion, the viscosity of the polyimide film becomes relatively high. Molding control can be difficult.
  • FCCL is manufactured by a thermal lamination method, the polyimide film becomes excessively loose, and appearance defects such as swells or wrinkles are formed on the surface of the polyimide film after the film forming process is completed, and large dimensional changes may be accompanied. This is a cause of impairing the appearance quality, and it is not preferable because the effect of improving the dimensional stability due to the improvement of the shrinkage variation may be halved.
  • the core layer or the skin layer of the polyimide film begins to soften due to the residual heat contained in the polyimide film, causing the dimensional change to gradually increase. May be.
  • the glass transition temperature of the polyimide resin constituting the skin part is higher than the above range, the temperature at which the adhesive layer is softened is too high, so when the glass transition temperature is increased, the adhesive strength may decrease due to the increase in the glass transition temperature. It is not preferable because the stress is not sufficiently relieved and the difference in heat shrinkage may also cause a large dimensional deviation. That is, if it is out of the above range, it may cause the physical properties of the multilayer polyimide film to deteriorate outside the range in which the adhesive force and dimensional stability are properly maintained.
  • the adhesion may include both the adhesion between the core part and the skin part of the multilayer polyimide film, the adhesion between the same or different material layers in contact with the polyimide film, and preferably the adhesion with the electrically conductive metal foil.
  • a method of measuring adhesion was used as a peel test method through Innoflex adhesion.
  • the temperature was raised to, it was thermocompressed at a pressure of 10Kgf/cm 2 for 30 minutes.
  • the film was cut into 13mm width and cut, followed by a 180° Peel test.
  • the multilayer polyimide film prepared according to an embodiment of the present invention preferably has an adhesive strength of 700 gf/cm or more, preferably 1,000 gf/cm or more, and even more preferably 1,400 gf/cm or more.
  • a coextrusion manufacturing method is preferred in which the polyimide of each core part and the skin part is filled and discharged into a resin reservoir.
  • a co-extrusion manufacturing method in which the polyamic acid solution is filled into the polyamic acid solution reservoir in the core part and the skin part and discharged, or simultaneously imidized may be used, and (3) the core It is also possible to use a co-extrusion-flexible coating manufacturing method in which the negative polyamic acid is imidized and cast while simultaneously discharging with the polyamic acid solution of the skin part.
  • the multilayer polyimide film of the present invention is obtained from first and second polyamic acid solutions, which are precursors of first and second polyimides constituting the core part and the skin part, respectively.
  • the polyamic acid solution is a dianhydride monomer obtained by dissolving a monomer compound in which the aromatic or aliphatic diamine monomer and the aromatic or aliphatic dianhydride monomer are substantially equimolar amount in an organic solvent, and the obtained polyamic acid organic solvent solution under controlled temperature conditions. And the diamine monomer is prepared by stirring until the polymerization is complete.
  • the first polyamic acid solution constituting the core portion is one selected from the group consisting of 4,4′-diamino-2,2′-dimethylbiphenyl, paraphenylenediamine, and 4,4′-oxydianiline.
  • Diamine-derived monomers including the above and a dianhydride-derived monomer comprising at least one selected from the group consisting of pyromellitic dianhydride and 3,3′,4,4′-biphenyltetracarboxylicdianhydride It can be prepared by polymerization in a solvent.
  • the second polyamic acid solution constituting the skin part is a diamine-derived monomer including 3,5-diaminobenzoic acid, paraphenylenediamine and 4,4′-oxydianiline, and a pyromellitic dianhydride, 3,3.
  • a dianhydride-derived monomer containing at least one selected from the group consisting of',4,4'-biphenyltetracarboxylicdianhydride and 3,3',4,4'-benzophenonetetracarboxylicdianhydride It may be desirable to prepare by polymerizing in a solvent.
  • the polyamic acid solution is usually obtained with a solid content of 5 to 35% by weight, preferably 10 to 30% by weight, and in the case of a concentration in this range, the polyamic acid solution obtains an appropriate molecular weight and solution viscosity.
  • the solvent for synthesizing the polyamic acid solution is not particularly limited, and any solvent may be used as long as it dissolves the polyamic acid.
  • the solvent may be an organic polar solvent, and specifically, aprotic polarity It may be a solvent (aprotic polar solvent), preferably an amide-based solvent.
  • aprotic polar solvent preferably an amide-based solvent.
  • N,N-dimethylformamide and N,N-dimethylacetamide may be preferably used as the solvent.
  • all monomers may be added at once or each of the monomers may be added sequentially, depending on the type of the monomer and the properties of the desired polyimide film, and in this case, partial polymerization between the monomers may occur.
  • a filler may be added for the purpose of improving various properties of the film, such as sliding properties, thermal conductivity, conductivity, corona resistance, and loop hardness.
  • the filler to be added is not particularly limited, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and the like.
  • the particle diameter of the filler is not particularly limited, and can be determined according to the properties of the film to be modified and the type of filler to be added.
  • the average particle diameter may be 0.05 to 100 ⁇ m, preferably 0.1 to 75 ⁇ m, more preferably 0.1 to 50 ⁇ m, and particularly preferably 0.1 to 25 ⁇ m.
  • the particle diameter is less than this range, the modification effect is difficult to appear, and if it exceeds this range, the surface properties may be greatly impaired or the mechanical properties may be greatly reduced.
  • the amount of the filler to be added is not particularly limited, and can be determined by the film properties to be modified or the filler particle size.
  • the amount of the filler added may be 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, more preferably 0.02 to 80 parts by weight, based on 100 parts by weight of the polyimide.
  • the amount of the filler added is less than this range, the effect of modifying by the filler is difficult to appear, and if it exceeds this range, the mechanical properties of the film may be greatly impaired.
  • the method of adding the filler is not particularly limited, and any known method may be used.
  • the first and second polyamic acid solutions prepared as described above are coextruded in a solution state or imidized at the same time as the coextrusion process to prepare a multilayer polyimide, or imidized with the first and second polyimide, respectively.
  • Multilayer polyimide can be manufactured by filling each resin in a resin storage tank and coextrusion to form a core portion and a skin portion.
  • a conventionally known method can be used, specifically, a thermal imidation method, a chemical imidation method, or a combination of a thermal imidation method and a chemical imidation method.
  • the complex imidization method is mentioned.
  • the thermal imidation method is a method of imidizing a polyamic acid solution only by heating without using a catalyst such as a dehydrating agent.
  • the polyamic acid is gradually heated in a temperature range of 40°C to 400°C, preferably 40°C to 300°C. This is a method of obtaining a polyimide resin in which polyamic acid is imidized by heat treatment for 1 to 8 hours.
  • the chemical imidization method is a method of promoting imidization of a polyamic acid solution using a catalyst such as a dehydrating agent and/or an imidizing agent.
  • An example of a chemical imidization method is a composition obtained by mixing additives such as a dehydrating agent, an imidation catalyst, a chemical conversion agent, and a hardener in a polyamic acid solution at low temperature, and a support such as a glass plate, aluminum foil, endless stainless belt, or stainless drum. And/or heat treatment at a temperature range of 40°C to 300°C, preferably 80°C to 200°C, more preferably 100°C to 180°C to activate the dehydrating agent and the imidizing agent to partially cure and/ Alternatively, it is dried to form a gel that is an intermediate having self-supporting properties. Thereafter, it is preferable to include a step of peeling the gel from the support and a step of further heating the gel to imidize and dry the remaining amic acid (hereinafter, also referred to as a "baking process").
  • a polyimide resin After adding a dehydrating agent and an imidation catalyst to the polyamic acid solution, heating at 80 to 200°C, preferably 100 to 180°C, partially curing and drying, heating at 200 to 400°C for 5 to 400 seconds By doing so, a polyimide resin can be obtained.
  • the first polyamic acid and the second polyamic acid of the present invention are a group consisting of an imidation catalyst, a dehydrating agent, a curing agent, and an additive in which one or more thereof is mixed to facilitate thermal imidization, chemical imidization, or complex imidization. It may further include any one selected from.
  • Dehydrating agents include, for example, aliphatic acid anhydride, aromatic acid anhydride, N,N'-dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower fatty acid anhydride, arylphosphonic acid dihalide, and thionylhalide, or two of these. And mixtures of more than one species.
  • aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, and lactic acid anhydride, or a mixture of two or more thereof can be preferably used from the viewpoint of availability and cost.
  • the amount of the dehydrating agent added is preferably in the range of 0.5 to 5 moles, more preferably in the range of 1.0 to 4 moles per 1 mole of the amic acid group in the polyamic acid.
  • an imidizing agent an aliphatic tertiary amine, an aromatic tertiary amine, a heterocyclic tertiary amine, etc. are used, for example.
  • those selected from heterocyclic tertiary amines are particularly preferably used from the viewpoint of reactivity as a catalyst.
  • quinoline, isoquinoline, ⁇ -picoline, pyridine, and the like are preferably used.
  • the amount of the imidizing agent added is preferably within the range of 0.05 to 3 moles, and particularly preferably within the range of 0.2 to 2 moles, per 1 mole of the amic acid group in the polyamic acid.
  • the dehydrating agent and the imidizing agent are less than the above ranges, chemical imidization is insufficient, fracture during firing, or mechanical strength may decrease.
  • a first polyimide resin solution or a precursor thereof, a first polyamic acid solution and a second polyimide resin solution, or a precursor thereof, a second polyamic acid solution are discharged onto a casting belt using a multilayer coextrusion device.
  • This is a method of manufacturing a multilayer polyimide film by forming a multilayer extruded film, followed by heat drying and curing it.
  • the coextrusion method includes a first polyimide resin solution or a precursor thereof, a first polyamic acid solution and a second polyimide resin solution, or a precursor thereof, a second polyamic acid solution, using a multilayer coextrusion device.
  • a multilayered polyimide film by forming a multilayered extruded film by discharging it on top and performing heat drying, curing, and imidation.
  • the coextrusion method has high productivity, and a high interfacial adhesion reliability can be secured by mixing different polyimides between interfaces.
  • the multilayer coextrusion device for manufacturing the multilayer polyimide film of the present invention includes a first resin reservoir storing a first polyimide or a first polyamic acid solution, and a second resin storing a second polyimide or a second polyamic acid solution. It may include a storage tank, a center layer flow path connected to the first resin storage tank, an outer layer flow path connected to the second resin storage tank, a first discharge part connected to the center layer flow path, and a second discharge part connected to the outer layer flow path.
  • the second polyimide or second polyamic acid solution discharged from the outer layer passage and the second discharge portion is arranged to contact the first polyimide or first polyamic acid solution discharged from at least one side of the first discharge portion connected to the center layer passage Therefore, the outer layer flow path and the second discharge portion are located close to at least one surface of the center layer flow path and the first discharge portion, and finally, a two-layer coextrusion film may be formed.
  • the present invention is more preferably located on both sides of the center layer flow path connected to the first discharge unit and the center layer flow path, and a three-layer coextrusion layer including an outer layer flow path connected to the second discharge unit and the third discharge unit ( It may be a die forming a 3-layer coextrusion film).
  • the third discharge part is located on the rear surface of the surface of the first discharge part in contact with the second discharge part, and the second polyimide or the second polyamic acid discharged from the second discharge part is the first polyimide discharged from the first discharge part, or
  • the second polyimide or the second polyamic acid may be discharged so as to contact another surface of the surface in contact with the first polyamic acid. That is, preferably, the second polyimide or the second polyamic acid forming the skin portion may be positioned on both outer surfaces of the first polyimide or the first polyamic acid forming the core portion.
  • the discharge since the first to third discharge units are provided with a heating or curing device, the discharge may be sprayed and imidization may be performed to form a multilayer coextrusion.
  • the multilayer coextrusion device of the present invention can control the discharge and coextrusion casting speeds of the polyimide resin or polyamic acid solution discharged from the first discharge unit, the second discharge unit and/or the third discharge unit, respectively, and the above-described
  • the thickness ratio between the polyimide layer of the core portion and the polyimide layer of the skin portion can be adjusted by adjusting the solvent content, the polymer solid content, and the like contained in the resin and the solution.
  • the thickness of the core portion and the skin portion is preferably formed in a ratio of 6:4 to 9:1 in order to improve dimensional stability and adhesion of the multilayer polyimide film.
  • the multilayer polyimide film manufactured through the multilayer coextrusion device is, if necessary, a temperature control device including a cooling device and a heating device for each of the first polyimide resin and the second polyimide resin solution.
  • the viscosity can be adjusted.
  • the multilayer extrudate film discharged through the multilayer coextrusion device may be heated and dried to form a multilayer polyimide film, and further imidized as necessary to produce a multilayer polyimide film.
  • the present invention may further include the step of expanding and flexing the multi-layered extrudate discharged from the coextrusion device.
  • the present invention provides a flexible metal foil laminate comprising the above-described multilayer polyimide film and an electrically conductive metal foil.
  • the metal foil to be used is not particularly limited, but when the flexible metal foil laminate of the present invention is used for electronic devices or electrical devices, for example, copper or copper alloy, stainless steel or alloy thereof, nickel or nickel alloy (alloy 42 Also included), it may be a metal foil containing aluminum or an aluminum alloy.
  • copper foils such as rolled copper foil and electrolytic copper foil are often used, and can be preferably used in the present invention.
  • FCCL flexible copper clad laminate
  • FCCL flexible copper clad laminate
  • Adhesive type adhesive type
  • TPI thermoplastic polyimide
  • the surface of these metal foils or polyimide films may be further coated with a rust prevention layer, a heat-resistant layer, a coating layer, or an adhesive layer.
  • the thickness of the metal foil is not particularly limited, and any thickness capable of exhibiting a sufficient function according to the application may be used.
  • a metal foil is laminated on one side of the multilayer polyimide film, or an adhesive layer containing thermoplastic polyimide is added to one side of the multilayer polyimide film, and the metal foil is attached to the adhesive layer. It may be a laminated structure.
  • the present invention also provides an electronic component comprising a flexible metal foil laminate as an electrical signal transmission circuit.
  • the electrical signal transmission circuit may be an electronic component that transmits a signal at a high frequency of at least 2 GHz, in detail, a high frequency of at least 5 GHz, and more particularly, a high frequency of at least 10 GHz.
  • the electronic component may be, for example, a communication circuit for a portable terminal, a communication circuit for a computer, or a communication circuit for aerospace, but is not limited thereto.
  • 155.49 kg of DMF was added to a 300 L reactor under a nitrogen atmosphere at 25° C., and 4.20 kg of ODA, 0.89 kg of DABA, and 6.17 kg of p-PDA were dissolved in sequence. After reacting 23.19 kg of BPDA, 9.25 kg of BTDA 10% solution was divided. After adjusting the viscosity while adding to obtain a viscosity of about 200,000 cP, 36 g of 0.5 ⁇ m spherical silica, 13 kg of isoquinoline and 67 kg of DMF were added to obtain a second polyamic acid solution of 12,000 cp.
  • composition and thickness (core part and skin part) of Examples and Comparative Examples corresponding to the multilayer polyimide film of the present invention are shown in Table 1 below.
  • the first composition prepared in Preparation Example 1 was added to the first storage tank of the coextrusion die, and the second composition prepared in Preparation Example 2 was added to the second storage tank.
  • the second composition, the first composition and the second composition were coextruded on the endless belt in that order.
  • a mixture of isoquinoline, dimethylformamide and acetic anhydride was mixed from the catalyst storage tank.
  • the catalyst, dehydrating agent, and solvent mixture were mixed with the first polyamic acid.
  • a multilayer polyimide film was prepared in the same manner as in Example 1, except that the first polyamic acid composition (particularly, the diamine monomer composition) and the core/skin thickness ratio were controlled.
  • a precursor composition obtained by mixing isoquinoline and acetic anhydride as a catalyst with the first polyamic acid prepared in Preparation Example 1 was coated on a SUS plate. Thereafter, heat treatment was performed in a temperature range of 100° C. to 200° C., heated from 200° C. to 600° C. in a high-temperature tenter, and then cooled at 25° C. to obtain a polyimide film.
  • Preparation Example 2 a precursor composition in which isoquinoline and acetic anhydride were mixed as a catalyst in the second polyamic acid was coated on a SUS plate. Thereafter, heat treatment was performed in a temperature range of 100° C. to 200° C., heated from 200° C. to 600° C. in a high-temperature tenter, and then cooled at 25° C. to obtain a polyimide film.
  • the diagonal B which is orthogonal to the diagonal direction A of the side, is heated to 360 degrees at a heating rate of 10 degrees/minute under 0.05N tension, and then cooled at a rate of 10 degrees/minute, and then cooled at room temperature to 10 degrees.
  • the temperature was raised in degrees/minute, and the difference was calculated by measuring the coefficient of thermal expansion in the range of 100 degrees to 200 degrees.
  • Examples 1 to 4 of the present invention all have adhesive strength 1,000 gf/cm or more (especially 1,400 gf/cm or more), CTE 7.5 ppm or more and 11 ppm or less, MOR difference 0.005 or less, modulus of elasticity 6.8 GPa or more and 7.5 GPa or less, strength 360 The range of MPa or more and 440 MPa or less was satisfied.
  • Comparative Example 1 exhibited excellent CTE, elastic modulus, and strength characteristics compared to the Examples, but exhibited a decreased measured value in MOR difference and adhesion characteristics, and Comparative Example 2 was excellent in adhesion characteristics compared to Examples, but CTE , MOR difference, CTE, and elastic modulus properties showed decreased measured values.
  • the present invention is due to a combination of specific dianhydride monomers and diamine monomers and a specific mixing ratio thereof, and by laminating polyimide films of different compositions, excellent adhesion, while having a desired glass transition temperature, and high temperature
  • the present invention may also provide a flexible copper clad laminate having excellent appearance quality, including the multilayer polyimide film as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention provides a multilayer polyimide film and a method for producing same, the multilayer polyimide film comprising: a core portion containing at least a 4,4'-diamino-2,2'-dimethylbiphenyl compound-derived structure; and a skin portion containing at least a 3,5-diaminobenzoic acid compound-derived structure, wherein the glass transition temperature (Tg) of the core portion is 360°C or higher, the glass transition temperature of the skin portion is 300°C or higher, and the adhesiveness is at least 1,000 gf/cm.

Description

치수안정성 및 접착력이 우수한 다층 폴리이미드 필름 및 이의 제조방법Multilayer polyimide film with excellent dimensional stability and adhesion and manufacturing method thereof
본 발명은 치수안정성 및 접착력이 우수한 다층 폴리이미드 필름 및 이의 제조방법에 관한 것이다. 보다 상세하게는 적어도 4,4′-디아미노-2,2′-디메틸바이페닐 화합물 유래 구조를 포함하는 코어부와 적어도 3,5-디아미노벤조산 화합물 유래 구조를 포함하는 스킨부를 포함하고, 코어부의 유리전이온도(Tg)가 360 ℃ 이상, 스킨부의 유리전이온도가 300 ℃ 이상이며, 접착력은 1,000 gf/cm 이상인 다층 폴리이미드 필름 및 이의 제조방법을 제공한다.The present invention relates to a multilayer polyimide film having excellent dimensional stability and adhesion, and a method of manufacturing the same. More specifically, it includes a core portion including a structure derived from at least 4,4′-diamino-2,2′-dimethylbiphenyl compound and a skin portion including a structure derived from at least 3,5-diaminobenzoic acid compound, and Provided are a multilayer polyimide film having a negative glass transition temperature (T g ) of 360°C or higher, a skin portion having a glass transition temperature of 300°C or higher, and an adhesive strength of 1,000 gf/cm or higher, and a method for manufacturing the same.
또한, 본 발명의 다층 폴리이미드 필름은 CTE(Coefficient of thermal expansion, 열팽창 계수)가 7.5 ppm 이상 11 ppm 이하이고, MOR(Molecular Orientation Ratio, 분자 배향비) 차이가 0.005 이하일 수 있다.In addition, the multilayer polyimide film of the present invention may have a coefficient of thermal expansion (CTE) of 7.5 ppm or more and 11 ppm or less, and a difference of a molecular orientation ratio (MOR) of 0.005 or less.
그밖에도, 본 발명의 다층 폴리이미드 필름은 탄성율이 6.8 GPa 이상 7.5 GPa 이하이고, 강도는 360 MPa 이상 440 MPa 이하일 수 있다.In addition, the multilayer polyimide film of the present invention may have an elastic modulus of 6.8 GPa or more and 7.5 GPa or less, and a strength of 360 MPa or more and 440 MPa or less.
즉, 본 발명은 다층 폴리이미드 필름의 전폭에 대한 밸런스를 개선하기 위하여 치수안정성이 우수한 코어층과 접착력을 확보하기 위하여 3,5-디아미노벤조산 화합물이 포함된 스킨층으로 구성되어 접착력 및 치수 안정성이 모두 우수한 다층 폴리이미드 필름을 제공한다.That is, the present invention is composed of a core layer having excellent dimensional stability and a skin layer containing a 3,5-diaminobenzoic acid compound to secure adhesion to improve the balance of the entire width of the multilayer polyimide film, so that adhesion and dimensional stability Both of these provide excellent multilayer polyimide films.
폴리이미드(polyimide, PI)는 강직한 방향족 주쇄를 기본으로 하는 열적 안정성을 가진 고분자 물질로 이미드 고리의 화학적 안정성을 기초로 하여 우수한 기계적 강도, 내화학성, 내후성, 내열성을 가진다.Polyimide (PI) is a polymer material with thermal stability based on a rigid aromatic backbone and has excellent mechanical strength, chemical resistance, weather resistance, and heat resistance based on the chemical stability of the imide ring.
뿐만 아니라 절연특성, 낮은 유전율과 같은 뛰어난 전기적 특성으로 미소전자 분야, 광학 분야 등에 이르기까지, 고기능성 고분자 재료로 각광받고 있다.In addition, it has been in the spotlight as a high-functional polymer material in microelectronics and optical fields with excellent electrical properties such as insulation and low dielectric constants.
미소전자 분야를 예로 들면, 전자제품의 경량화, 소형화로 인해, 집적도가 높고 유연한 박형 회로기판이 활발히 개발되고 있으며, 이에 매우 우수한 내열성, 내저온성 및 절연특성을 가지면서도 굴곡이 용이한 폴리이미드를 박형 회로기판의 보호 필름으로 이용하는 추세이다.For example, in the field of microelectronics, thin circuit boards with high degree of integration and flexibility are being actively developed due to the light weight and miniaturization of electronic products. Accordingly, polyimide which has excellent heat resistance, low temperature resistance, and insulation characteristics, but is easy to bend, is used. It is a trend to be used as a protective film for thin circuit boards.
이러한 박형 회로기판은, 폴리이미드 필름 상에 금속박을 포함하는 회로가 형성되어 있는 구조가 일반적이며, 이러한 박형 회로기판을 넓은 의미에서 연성금속박적층판으로 지칭하기도 하며, 이것의 예로서, 금속박으로 얇은 구리판을 이용할 때 좁은 의미에서 연성동박적층판(Flexible Copper Clad Laminate; FCCL)으로 지칭하기도 한다.Such a thin circuit board generally has a structure in which a circuit including a metal foil is formed on a polyimide film, and such a thin circuit board is also referred to as a flexible metal foil laminate in a broad sense. As an example of this, a thin copper plate with metal foil When using, in a narrow sense, it is also referred to as flexible copper clad laminate (FCCL).
연성금속박적층판의 제조 방법으로는, 예를 들면 (i) 금속박 상에 폴리이미드의 전구체인 폴리아믹산을 유연(cast), 또는 도포한 후, 이미드화하는 캐스팅법, (ii) 스퍼터링 또는 도금에 의해 폴리이미드 필름 상에 직접 금속층을 설치하는 메탈라이징법, 및 (iii) 열가소성 폴리이미드를 통해 폴리이미드 필름과 금속박을 열과 압력으로 접합시키는 라미네이트법을 들 수 있다.As a method of manufacturing a flexible metal foil laminate, for example, (i) casting a polyamic acid, which is a precursor of polyimide, on a metal foil, or coating it, followed by imidization, and (ii) sputtering or plating. A metallization method in which a metal layer is directly provided on the polyimide film, and (iii) a lamination method in which a polyimide film and a metal foil are bonded with heat and pressure through a thermoplastic polyimide are mentioned.
이중 라미네이트법은, 적용할 수 있는 금속박의 두께 범위가 캐스팅법보다도 넓고, 장치 비용이 메탈라이징법보다도 저렴한 점에서 이점이 있다. 라미네이트를 행하는 장치로는, 롤형의 재료를 투입하면서 연속적으로 라미네이트하는 롤라미네이트 장치, 또는 더블 벨트 프레스 장치 등이 이용되고 있다. 상기 중에서, 생산성의 관점에서 보면 열 롤라미네이트 장치를 이용한 열 롤라미네이트법을 보다 바람직하게 사용할 수 있다.The lamination method has an advantage in that the thickness range of the applicable metal foil is wider than that of the casting method, and the equipment cost is lower than that of the metalizing method. As an apparatus for laminating, a roll lamination apparatus or a double belt press apparatus for continuously laminating while introducing a roll-shaped material is used. Among the above, from the viewpoint of productivity, a thermal roll lamination method using a thermal roll lamination device can be more preferably used.
다만, 라미네이트의 경우, 전술한바와 같이 폴리이미드 필름과 금속박의 접착에 열가소성 수지를 이용하기 때문에, 이 열가소성 수지의 열융착성을 발현시키기 위해서 300℃ 이상, 경우에 따라서는 폴리이미드 필름의 유리전이온도(Tg)에 육박하거나 그 이상인 400℃ 이상의 열을 폴리이미드 필름에 가할 필요가 있다. However, in the case of a laminate, as described above, since a thermoplastic resin is used for bonding the polyimide film and the metal foil, in order to express the thermal adhesion of the thermoplastic resin, the glass transition of the polyimide film is 300°C or higher, in some cases. It is necessary to apply heat of 400°C or higher, which is close to or higher than the temperature (Tg), to the polyimide film.
일반적으로, 폴리이미드 필름과 같은 점탄성체의 저장탄성률의 값은 유리전이온도를 넘는 온도영역에서, 상온에서의 저장탄성률의 값에 비해 현저하게 감소하는 것으로 알려져 있다.In general, it is known that the value of the storage modulus of a viscoelastic material such as a polyimide film decreases significantly compared to the value of the storage modulus at room temperature in a temperature range above the glass transition temperature.
즉, 고온을 요구하는 라미네이트를 행할 때, 고온에서의 폴리이미드 필름의 저장탄성률이 크게 낮아질 수 있으며, 낮은 저장탄성률 하에서는 폴리이미드 필름이 느슨해지면서 라미네이트 종료 후에 폴리이미드 필름이 평탄한 형태로 존재하지 않을 가능성이 높다. 달리 말하면, 라미네이트의 경우, 폴리이미드 필름의 치수 변화가 상대적으로 불안정적이라 할 수 있다.That is, when performing a lamination that requires a high temperature, the storage modulus of the polyimide film at high temperature may be significantly lowered, and under a low storage modulus, the polyimide film may become loose and the polyimide film may not exist in a flat form after the end of the lamination. Is high. In other words, in the case of a laminate, it can be said that the dimensional change of the polyimide film is relatively unstable.
또 하나 주목할 것은, 라미네이트를 행할 때의 온도 대비 폴리이미드 필름의 유리전이온도가 현저히 낮을 경우이다. 구체적으로, 상기 경우, 라미네이트를 행하는 온도에서 폴리이미드 필름의 점성이 상대적으로 높은 상태이므로 상대적으로 큰 치수 변화가 수반될 수 있고, 이에 따라 라미네이트 이후, 폴리이미드 필름의 외관 품질이 저하될 우려가 있다. Another thing to note is the case where the glass transition temperature of the polyimide film is remarkably low compared to the temperature at the time of lamination. Specifically, in the above case, since the viscosity of the polyimide film is relatively high at the temperature at which the lamination is performed, a relatively large dimensional change may be accompanied, and accordingly, there is a concern that the appearance quality of the polyimide film may be deteriorated after lamination. .
또한, 캐스팅법을 사용할 경우, 2층 FPC용 3층 폴리이미드 필름으로서, 폴리이미드 필름의 표면에 폴리아믹산 용액을 도포, 건조(이미드화)시켜, 3층 폴리이미드 필름을 제조하는 방법을 들 수 있지만, 폴리이미드 필름을 제조하는 공정, 폴리이미드 필름의 표면에 폴리아믹산 용액을 도포, 건조(이미드화)시키는 공정이 필요하며, 공정이 복수가 되어, 비용이 상승(cost-up)하는 경우가 있었다(예를 들면, 특허문헌 1 참조).In the case of using the casting method, as a three-layer polyimide film for two-layer FPC, a method of applying a polyamic acid solution to the surface of the polyimide film and drying (imidizing) it to prepare a three-layer polyimide film is mentioned. However, a process of manufacturing a polyimide film and a process of applying and drying (imidizing) a polyamic acid solution on the surface of the polyimide film are required, and there are cases where there are multiple processes and cost-up. There was (for example, see Patent Document 1).
또한, 2층 FPC용 3층 폴리이미드 필름으로서, 폴리아믹산 용액을 복수층 동시에 지지체 상에 유연하고, 건조한 후에 지지체로부터 박리하고, 열처리하여 3층 폴리이미드 필름을 제조하는 방법을 들 수 있지만, 지지체 상에 직접 접하고 있는 폴리이미드층이, 지지체 상에 부분적으로 첩부하거나, 지지체 상에 접하는 폴리이미드층과 그 반대 측의 폴리이미드층에서 필 강도의 차이가 발생하는 경우도 있었다(예를 들면, 특허문헌 2, 3 참조).Further, as a three-layer polyimide film for a two-layer FPC, a method of producing a three-layer polyimide film by casting a polyamic acid solution in a plurality of layers simultaneously on a support, peeling from the support after drying, and heat treatment is mentioned. In some cases, the polyimide layer directly in contact with the top is partially affixed on the support, or a difference in peel strength occurs between the polyimide layer in contact with the support and the polyimide layer on the opposite side (for example, patent See Documents 2 and 3).
따라서, 이상의 문제들을 해결하여 공정성을 크게 개선할 수 있는 기술의 필요성이 높은 실정이다.Therefore, there is a high need for a technology that can greatly improve fairness by solving the above problems.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
1. 일본 공개특허공보 특개평9-116254호 (1997년 5월 2일 공개)1. Japanese Unexamined Patent Application Publication No. Hei 9-116254 (published on May 2, 1997)
2. 일본 공개특허공보 특개평7-214637호 (1995년 8월 15일 공개)2. Japanese Unexamined Patent Application Publication No. Hei 7-214637 (published on August 15, 1995)
3. 일본 공개특허공보 특개평10-138318호 (1998년 5월 26일 공개)3. Japanese Unexamined Patent Application Publication No. Hei 10-138318 (published on May 26, 1998)
본 발명의 일 측면에 따른 목적은 치수안정성 및 접착력이 우수한 다층 폴리이미드 필름 및 이의 효과적인 제조방법을 제공하는 것이며, 구체적으로, 디안하이드라이드 단량체의 종류, 디아민 단량체의 종류, 이들의 배합비를 결정하고, 또한, 서로 다른 조성의 폴리이미드 수지를 다층으로 구성함에 기인하여, 소망하는 유리전이온도를 가지고, 고온에서 높은 저장탄성률을 내재하며, 이외에도 열응력을 완화하여 치수 변화를 최소화하면서도 우수한 접착력을 가지는 다층 폴리이미드를 제공하는 것이다. An object according to an aspect of the present invention is to provide a multilayer polyimide film having excellent dimensional stability and adhesion, and an effective manufacturing method thereof, and specifically, to determine the type of dianhydride monomer, the type of diamine monomer, and the blending ratio thereof. , In addition, due to the composition of polyimide resins of different compositions in multiple layers, it has a desired glass transition temperature, has a high storage modulus at high temperature, and also has excellent adhesion while minimizing dimensional changes by mitigating thermal stress. It is to provide a multi-layered polyimide.
본 발명의 다른 일 측면에 따른 목적은 소망하는 물성을 만족하는 다층 폴리이미드 필름을 포함하여 치수 변화가 상대적으로 적고 그로 인해 외관 품질이 우수한 연성동박적층판을 제공하는 것이다. An object according to another aspect of the present invention is to provide a flexible copper clad laminate having a relatively small dimensional change and excellent appearance quality, including a multilayer polyimide film satisfying desired physical properties.
이에 본 발명은 이의 구체적 실시예를 제공하는데 실질적인 목적이 있다.Accordingly, the present invention has a practical purpose to provide specific examples thereof.
위와 같은 목적을 달성하기 위하여 본 발명은, 4,4′-디아미노-2,2′-디메틸바이페닐(4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), 파라페닐렌디아민(p-phenylenediamine; p-PDA) 및 4,4′-옥시디아닐린(4,4′-oxydianiline; ODA)으로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디아민 유래 구조와 피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA) 및 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드(3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA)로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 유래 구조를 포함하는 코어부 및 상기 코어부의 적어도 일 외측면에 접촉하여 존재하며, 3,5-디아미노벤조산(3,5-diaminobenzoic acid; 3.5-DABA), 파라페닐렌디아민(p-phenylenediamine; p-PDA) 및 4,4′-옥시디아닐린(4,4′-oxydianiline; ODA)을 포함하는 디아민 유래 구조와 피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA), 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 (3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA) 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드(3,3',4,4'-Benzophenonetetracarboxylic dianhydride; BTDA)로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 유래 구조를 포함하는 스킨부를 포함하고, 코어부의 유리전이온도(Tg)가 360 ℃ 이상이고, 스킨부의 유리전이온도가 300 ℃ 이상이며, 접착력이 1,000 gf/cm 이상인 다층 폴리이미드 필름을 제공한다.In order to achieve the above object, the present invention, 4,4′-diamino-2,2′-dimethylbiphenyl (4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), paraphenylene Diamine-derived structure and pyromellitic dianhydride containing at least one selected from the group consisting of diamine (p-phenylenediamine; p-PDA) and 4,4′-oxydianiline (ODA) (pyromellitic dianhydride; PMDA) and at least one selected from the group consisting of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA) It is present in contact with at least one outer surface of the core portion and the core portion including a dianhydride-derived structure containing, 3,5-diaminobenzoic acid (3.5-DABA), paraphenylenediamine Diamine-derived structures including (p-phenylenediamine; p-PDA) and 4,4′-oxydianiline (ODA) and pyromellitic dianhydride (PMDA), 3, 3′,4,4′-biphenyltetracarboxylicdianhydride (3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA) and 3,3′,4,4′-benzophenonetetracarboxylicdianhydride Ride (3,3',4,4'-Benzophenonetetracarboxylic dianhydride; BTDA), including a skin portion containing a dianhydride-derived structure containing at least one selected from the group consisting of, and the glass transition temperature of the core portion (T g ) Is 360° C. or higher, a glass transition temperature of the skin portion is 300° C. or higher, and an adhesive strength of 1,000 gf/cm or higher is provided.
코어부와 스킨부의 두께는 6:4 내지 9:1 비로 존재할 수 있으며, 보다 바람직하게 스킨부의 유리전이온도가 바람직하게는 300 ℃ 내지 380 ℃이며, 접착력이 1,000 gf/cm 이상일 수 있다. 또한, 스킨부는 코어부의 적어도 일 외측면 및 외측면의 반대면에 각각 접촉함으로써 코어부의 양 면에 존재하는 다층 폴리이미드 필름을 제공할 수 있다.The thickness of the core portion and the skin portion may be present in a ratio of 6:4 to 9:1, and more preferably, the glass transition temperature of the skin portion is preferably 300° C. to 380° C., and the adhesive strength may be 1,000 gf/cm or more. In addition, the skin portion may contact at least one outer surface of the core portion and a surface opposite to the outer surface of the core portion, thereby providing a multilayer polyimide film present on both surfaces of the core portion.
본 발명의 다른 일 실시형태는 4,4′-디아미노-2,2′-디메틸바이페닐, 파라페닐렌디아민 및 4,4′-옥시디아닐린으로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디아민 단량체와 피로멜리틱디안하이드라이드 및 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 단량체를 용매 중에서 중합하여 제조한 제1폴리아믹산을 수득하는 단계; 제1폴리아믹산을 이미드화하여 제조되는 제1폴리이미드를 제조하는 단계; 3,5-디아미노벤조산, 파라페닐렌디아민 및 4,4′-옥시디아닐린을 포함하는 디아민 단량체와 피로멜리틱디안하이드라이드, 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 단량체를 용매 중에서 중합하여 제조한 제2폴리아믹산을 수득하는 단계; 제2폴리아믹산을 이미드화하여 제조되는 제2폴리이미드를 제조하는 단계; 제1폴리이미드를 토출하는 제1토출부의 적어도 일 측면에서 제1폴리이미드에 접촉하도록 제2폴리이미드를 토출하는 제2토출부를 구비하여 공압출하는 단계;를 포함하는 다층 폴리이미드 필름의 제조방법을 제공한다. Another embodiment of the present invention is a diamine containing at least one selected from the group consisting of 4,4′-diamino-2,2′-dimethylbiphenyl, paraphenylenediamine, and 4,4′-oxydianiline. Preparation prepared by polymerizing a dianhydride monomer containing at least one selected from the group consisting of monomers, pyromellitic dianhydride, and 3,3′,4,4′-biphenyltetracarboxylicdianhydride in a solvent Obtaining 1 polyamic acid; Preparing a first polyimide prepared by imidizing a first polyamic acid; Diamine monomers including 3,5-diaminobenzoic acid, paraphenylenediamine and 4,4′-oxydianiline and pyromelliticdianhydride, 3,3′,4,4′-biphenyltetracarboxylicdian To obtain a second polyamic acid prepared by polymerizing a dianhydride monomer containing at least one selected from the group consisting of hydride and 3,3′,4,4′-benzophenonetetracarboxylicdianhydride in a solvent step; Preparing a second polyimide prepared by imidizing a second polyamic acid; Co-extrusion with a second discharge part for discharging the second polyimide so as to contact the first polyimide from at least one side of the first discharge part for discharging the first polyimide; method for producing a multilayer polyimide film comprising Provides.
또한, 본 발명의 다른 일 실시형태는 4,4′-디아미노-2,2′-디메틸바이페닐, 파라페닐렌디아민 및 4,4′-옥시디아닐린으로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디아민 단량체와 피로멜리틱디안하이드라이드 및 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 단량체를 용매 중에서 중합하여 제조한 제1폴리아믹산을 수득하는 단계; 3,5-디아미노벤조산, 파라페닐렌디아민 및 4,4′-옥시디아닐린을 포함하는 디아민 단량체와 피로멜리틱디안하이드라이드, 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 단량체를 용매 중에서 중합하여 제조한 제2폴리아믹산을 수득하는 단계; 제1폴리아믹산을 토출하는 제1토출부의 적어도 일 측면에서 제1폴리아믹산에 접촉하도록 제2폴리아믹산을 토출하는 제2토출부를 구비하여 공압출하는 단계; 공압출된 폴리아믹산을 이미드화하는 단계;를 포함하는 다층 폴리이미드 필름의 제조방법을 제공한다. 바람직하게 공압출하는 단계 및 공압출된 폴리아믹산을 이미드화하는 단계는 동시에 진행될 수 있다.In addition, another embodiment of the present invention includes at least one selected from the group consisting of 4,4′-diamino-2,2′-dimethylbiphenyl, paraphenylenediamine, and 4,4′-oxydianiline. Prepared by polymerizing a dianhydride monomer containing at least one selected from the group consisting of a diamine monomer and a pyromellitic dianhydride and 3,3′,4,4′-biphenyltetracarboxylicdianhydride in a solvent Obtaining one first polyamic acid; Diamine monomers including 3,5-diaminobenzoic acid, paraphenylenediamine and 4,4′-oxydianiline and pyromelliticdianhydride, 3,3′,4,4′-biphenyltetracarboxylicdian To obtain a second polyamic acid prepared by polymerizing a dianhydride monomer containing at least one selected from the group consisting of hydride and 3,3′,4,4′-benzophenonetetracarboxylicdianhydride in a solvent step; Coextrusion with a second discharge part for discharging the second polyamic acid so as to contact the first polyamic acid from at least one side of the first discharge part for discharging the first polyamic acid; It provides a method for producing a multilayer polyimide film comprising; imidizing the coextruded polyamic acid. Preferably, the step of coextrusion and the step of imidizing the coextruded polyamic acid may be performed simultaneously.
다층 폴리이미드 필름은 접착력이 1,000 gf/cm 이상이고, 제1폴리아믹산으로부터 제조된 코어부의 유리전이온도(Tg)가 360 ℃ 이상이고, 제2폴리아믹산으로부터 제조된 스킨부의 유리전이온도(Tg)가 300 ℃ 이상인 것을 특징으로 한다.The multilayer polyimide film has an adhesive strength of 1,000 gf/cm or more, a glass transition temperature (T g ) of the core part made from the first polyamic acid is 360° C. or more, and the glass transition temperature of the skin part made from the second polyamic acid (T g ) is characterized in that 300 ℃ or more.
제1토출부가 제2토출부와 접하는 면의 반대면에 위치하며, 제1폴리이미드 또는 제1폴리아믹산의 다른 일면에 접촉하도록 제2폴리이미드 또는 제2폴리아믹산을 토출하는 제3토출부를 더 포함할 수 있다.The first discharge part is located on the opposite side of the surface in contact with the second discharge part, and the third discharge part further discharges the second polyimide or the second polyamic acid so as to contact the other surface of the first polyimide or the first polyamic acid. Can include.
제1폴리아믹산 및 제2폴리아믹산은 각각 이미드화 촉매, 탈수제, 경화제, 충전제 및 이들이 하나 이상 혼합된 첨가제로 구성된 군에서 선택되는 어느 하나를 더 포함할 수 있다.Each of the first polyamic acid and the second polyamic acid may further include any one selected from the group consisting of an imidation catalyst, a dehydrating agent, a curing agent, a filler, and an additive in which one or more of them are mixed.
본 발명의 또 다른 일 실시형태는 다층 폴리이미드 필름 및 전기전도성의 금속박을 포함하는 연성금속박적층판을 제공한다.Another embodiment of the present invention provides a flexible metal foil laminate comprising a multilayer polyimide film and an electrically conductive metal foil.
본 발명의 또 다른 일 실시형태는 연성금속박적층판을 포함하는 전자 부품을 제공한다.Another embodiment of the present invention provides an electronic component including a flexible metal foil laminate.
이상에서 설명한 바와 같이, 본 발명은 특정 디안하이드라이드 단량체들과, 디아민 단량체들의 조합 및 이들의 특정한 배합비에 기인하고, 또한 서로 다른 조성의 폴리이미드 필름을 적층함으로써, 접착력이 우수하면서도, 소망하는 유리전이온도를 가지고, 고온에서 높은 저장탄성률을 내재하며, 이외에도 열응력을 완화하여 폭방향별 수축율 편차를 개선하여 치수 안정성이 우수한 다층 폴리이미드 필름 및 이의 효과적인 제조방법을 제공할 수 있다. As described above, the present invention is due to a combination of specific dianhydride monomers and diamine monomers and a specific mixing ratio thereof, and by laminating polyimide films of different compositions, excellent adhesion and desired glass It has a transition temperature, inherently high storage modulus at high temperature, and, in addition, it is possible to provide a multilayer polyimide film having excellent dimensional stability and an effective manufacturing method thereof by improving the variation in shrinkage rate by width direction by easing thermal stress.
본 발명은 또한, 상기와 같은 다층 폴리이미드 필름을 포함하여 외관 품질이 우수한 연성동박적층판을 제공할 수 있다. The present invention may also provide a flexible copper clad laminate having excellent appearance quality, including the multilayer polyimide film as described above.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.Hereinafter, the functions and effects of the invention will be described in more detail through specific embodiments of the invention. However, these embodiments are only presented as examples of the invention, and the scope of the invention is not determined thereby.
이하에서는 본 발명에 따른 "다층 폴리이미드 필름", "다층 폴리이미드 필름의 제조 방법" 및 "연성금속박적층판"의 순서로 발명의 실시 형태를 보다 상세하게 설명한다.Hereinafter, embodiments of the present invention will be described in more detail in the order of "multilayer polyimide film", "manufacturing method of multilayer polyimide film" and "flexible metal foil laminate" according to the present invention.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the specification and claims should not be construed as being limited to their usual or dictionary meanings, and the inventors appropriately explain the concept of terms in order to explain their own invention in the best way. Based on the principle that it can be defined, it should be interpreted as a meaning and concept consistent with the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.Therefore, the configuration of the embodiments described in the present specification is only one of the most preferred embodiments of the present invention, and does not represent all of the technical spirit of the present invention, and various equivalents and modifications that can replace them at the time of application It should be understood that examples may exist.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present specification, expressions in the singular include plural expressions unless the context clearly indicates otherwise. In the present specification, terms such as "comprise", "include" or "have" are intended to designate the presence of implemented features, numbers, steps, components, or a combination thereof, and one or more other features or It is to be understood that the possibility of the presence or addition of numbers, steps, elements, or combinations thereof is not preliminarily excluded.
다층 폴리이미드 필름Multilayer polyimide film
본 발명에 따른 다층 폴리이미드 필름은,The multilayer polyimide film according to the present invention,
4,4′-디아미노-2,2′-디메틸바이페닐(4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), 파라페닐렌디아민(p-phenylenediamine; p-PDA) 및 4,4′-옥시디아닐린(4,4′-oxydianiline; ODA)으로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디아민 유래 구조와 피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA) 및 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드(3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA)로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 유래 구조를 포함하는 코어부; 및 4,4′-diamino-2,2′-dimethylbiphenyl (4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), paraphenylenediamine (p-PDA), and Diamine-derived structures containing at least one selected from the group consisting of 4,4′-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) and 3,3′ ,4,4′-biphenyltetracarboxylic dianhydride (3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA) Core containing a dianhydride-derived structure containing at least one selected from the group consisting of part; And
코어부의 적어도 일 외측면에 접촉하여 존재하며, 3,5-디아미노벤조산(3,5-diaminobenzoic acid; 3.5-DABA), 파라페닐렌디아민(p-phenylenediamine; p-PDA) 및 4,4′-옥시디아닐린(4,4′-oxydianiline; ODA)을 포함하는 디아민 유래 구조와 피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA), 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 (3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA) 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드(3,3',4,4'-Benzophenonetetracarboxylic dianhydride; BTDA)로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 유래 구조를 포함하는 스킨부를 포함한다.Present in contact with at least one outer surface of the core part, 3,5-diaminobenzoic acid (3.5-DABA), paraphenylenediamine (p-PDA), and 4,4' -Diamine-derived structure including oxydianiline (4,4′-oxydianiline; ODA) and pyromellitic dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylicdian Hydride (3,3',4,4'-Biphenyltetracarboxylic dianhydride; BPDA) and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (3,3',4,4'-Benzophenonetetracarboxylic dianhydride) It includes a skin portion comprising a dianhydride-derived structure containing at least one selected from the group consisting of BTDA).
스킨부는 코어부의 적어도 한 외측면에 존재하여 2층막(2-Layer film) 형태로 존재할 수 있으며, 더욱 바람직하게는 코어부의 한 외측면과 상기 외측면의 배면에 각각 접촉하는 형태, 즉 코어부의 적어도 양 외측면에 스킨부가 접촉하여 존재하는 3층막(3-layer film) 형태로 존재할 수 있다. The skin part is present on at least one outer surface of the core part and may exist in the form of a 2-layer film, and more preferably, a form in contact with one outer surface of the core part and the rear surface of the outer surface, that is, at least It may exist in the form of a three-layer film in which the skin portion is in contact with both outer surfaces.
코어부와 스킨부의 두께는 6:4 내지 9:1 비로 존재할 수 있다. 코어부의 두께가 6부 미만이거나, 9부를 초과할 경우, 치수안정성이 저하될 수 있으며, 스킨부의 두께가 1부 미만이거나, 4부를 초과할 경우에는 접착력 특징이 저하될 수 있다.The thickness of the core portion and the skin portion may exist in a ratio of 6:4 to 9:1. When the thickness of the core portion is less than 6 parts or exceeds 9 parts, the dimensional stability may be deteriorated, and when the thickness of the skin part is less than 1 part or exceeds 4 parts, the adhesion characteristics may be deteriorated.
다층 폴리이미드 필름에 대한 본 발명의 구현예로서, 코어부 및 스킨부를 구성하는 각각의 디안하이드라이드 단량체, 디아민 단량체 및 이들의 배합비는 이하의 비제한적인 예들을 통해 상세하게 설명한다.As an embodiment of the present invention for a multilayer polyimide film, each dianhydride monomer, diamine monomer, and a blending ratio thereof constituting the core portion and the skin portion will be described in detail through the following non-limiting examples.
<디아민 단량체><Diamine monomer>
본 발명에서 사용할 수 있는 디아민 단량체는 4,4′-디아미노-2,2′-디메틸바이페닐(4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), 3,5-디아미노벤조산(3,5-diaminobenzoic acid; 3.5-DABA), 4,4′-옥시디아닐린(4,4′-oxydianiline; ODA), 3,4′-옥시디아닐린(3,4′-oxydianiline), 4,4-디아미노바이페닐-3,3-테트라카르복실산(4,4-diaminobiphenyl-3,3-tetracarboxylic acid; DATA), 파라페닐렌디아민(p-phenylenediamine; p-PDA), m-페닐렌디아민(phenylenediamine; m-PDA), p-메틸렌 디아민(p-methylenediamine; p-MDA), 메타메틸렌디아민(m-methylenediamine; m-MDA) 및 이들이 하나 이상 혼합된 혼합물 군에서 선택될 수 있다.Diamine monomers that can be used in the present invention are 4,4′-diamino-2,2′-dimethylbiphenyl (4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), 3,5-dia Minobenzoic acid (3,5-diaminobenzoic acid; 3.5-DABA), 4,4'-oxydianiline (4,4'-oxydianiline; ODA), 3,4'-oxydianiline (3,4'-oxydianiline) , 4,4-diaminobiphenyl-3,3-tetracarboxylic acid (4,4-diaminobiphenyl-3,3-tetracarboxylic acid; DATA), paraphenylenediamine (p-phenylenediamine; p-PDA), m -Phenylenediamine (m-PDA), p-methylenediamine (p-methylenediamine; p-MDA), metamethylenediamine (m-methylenediamine; m-MDA), and can be selected from the group of mixtures of one or more of them. have.
본 발명의 바람직한 일 예로, 코어부를 구성하는 디아민 단량체는 4,4′-디아미노-2,2′-디메틸바이페닐, 파라페닐렌디아민 및 4,4′-옥시디아닐린으로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다. 이와 같은 3가지 디아민 화합물 유래 구조를 모두 포함할 경우, 폴리이미드 필름의 유리전이온도(Tg) 특성이 360 ℃ 이상으로 발현되며, 이를 통해 치수안정성이 높은 코어부를 제조하는데 바람직하다.In a preferred embodiment of the present invention, the diamine monomer constituting the core portion is 1 selected from the group consisting of 4,4′-diamino-2,2′-dimethylbiphenyl, paraphenylenediamine, and 4,4′-oxydianiline. It may contain more than one species. In the case of including all the structures derived from the three diamine compounds, the glass transition temperature (T g ) characteristic of the polyimide film is expressed at 360° C. or higher, and it is preferable to manufacture a core portion having high dimensional stability.
더욱 바람직하게는 본 발명의 코어부를 구성하는 디아민 단량체는 파라페닐렌디아민 및 4,4′-옥시디아닐린일 수 있다.More preferably, the diamine monomer constituting the core portion of the present invention may be paraphenylenediamine and 4,4'-oxydianiline.
상기 코어부의 디아민 단량체가 파라페닐렌디아민 및 4,4′-옥시디아닐린만으로 이루어질 경우, 상기 코어부의 디아민 단량체의 총함량 100 몰%를 기준으로 상기 파라페닐렌디아민의 함량이 60 몰% 이상 80 몰% 이하이고, 상기 4,4′-옥시디아닐린의 함량이 20 몰% 이상 40 몰% 이하일 수 있다.When the diamine monomer of the core part is made of only paraphenylenediamine and 4,4'-oxydianiline, the content of the paraphenylenediamine is 60 mol% or more based on 100 mol% of the total content of the diamine monomer of the core part 80 Mole% or less, and the content of the 4,4'-oxydianiline may be 20 mol% or more and 40 mol% or less.
본 발명의 바람직한 다른 일 예로, 스킨부를 구성하는 디아민 단량체는 3,5-디아미노벤조산, 파라페닐렌디아민 및 4,4′-옥시디아닐린을 포함할 수 있다. 폴리이미드의 접착력을 향상시키기 위해서는 3,5-디아미노벤조산 등과 같은 친수성 관능기가 포함된 단량체를 포함하는 것이 유리하다. 또한, 이와 같이 3가지 디아민 화합물 유래 구조를 모두 포함할 경우, 접착력이 1,000 gf/cm 이상으로 우수하면서도 스킨부의 유리전이온도를 300 ℃ 이상, 바람직하게는 300 ℃ 내지 380 ℃로 조성할 수 있어서 제막 공정에서 유리전이온도에 기인한 위치별 수축률 편차를 개선할 수 있다.In another preferred example of the present invention, the diamine monomer constituting the skin portion may include 3,5-diaminobenzoic acid, paraphenylenediamine, and 4,4′-oxydianiline. In order to improve the adhesion of the polyimide, it is advantageous to include a monomer containing a hydrophilic functional group such as 3,5-diaminobenzoic acid. In addition, in the case of including all three diamine compound-derived structures as described above, the adhesive strength is excellent at 1,000 gf/cm or more, and the glass transition temperature of the skin part can be formed at 300°C or more, preferably 300°C to 380°C. It is possible to improve the deviation of the shrinkage rate by location due to the glass transition temperature in the process.
또한, 본 발명의 스킨부의 디아민 단량체의 총함량 100 몰%를 기준으로 상기 3,5-디아미노벤조산의 함량이 3 몰% 이상 15 몰% 이하이고 상기 파라페닐렌디아민의 함량이 60 몰% 이상 80 몰% 이하이고, 상기 4,4′-옥시디아닐린의 함량이 15 몰% 이상 35 몰% 이하일 수 있다.In addition, the content of 3,5-diaminobenzoic acid is 3 mol% or more and 15 mol% or less, and the content of paraphenylenediamine is 60 mol% or more based on 100 mol% of the total content of the diamine monomer of the skin part of the present invention. It is 80 mol% or less, and the content of the 4,4'-oxydianiline may be 15 mol% or more and 35 mol% or less.
<디안하이드라이드 단량체><Dianhydride monomer>
본 발명에서 사용할 수 있는 디안하이드라이드 단량체는, 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드(3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA), 피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA), 3,3′,4,4′- 벤조페논테트라카복실릭디안하이드라이드 (3,3′,4,4′-Benzophenonetetracarboxylic dianhydride; BTDA), 옥시디프탈릭안하이드라이드(oxydiphthalic anhydride; ODPA) 및 이들이 하나 이상 혼합된 혼합물 군에서 선택될 수 있다. The dianhydride monomer that can be used in the present invention is 3,3',4,4'-biphenyltetracarboxylic dianhydride (3,3',4,4'-Biphenyltetracarboxylic dianhydride; BPDA), pyromellitic Pyromellitic dianhydride (PMDA), 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (3,3′,4,4′-Benzophenonetetracarboxylic dianhydride; BTDA), oxydiphthalic anhydride It may be selected from the group of oxydiphthalic anhydride (ODPA) and mixtures of one or more mixtures thereof.
본 발명의 바람직한 일 예로, 코어부를 구성하는 디안하이드라이드 단량체는 피로멜리틱디안하이드라이드 및 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.In a preferred embodiment of the present invention, the dianhydride monomer constituting the core portion is one or more selected from the group consisting of pyromellitic dianhydride and 3,3′,4,4′-biphenyltetracarboxylicdianhydride. Can include.
상기 코어부의 디안하이드라이드 단량체가 피로멜리틱디안하이드라이드 및 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드로 이루어질 경우, 상기 코어부의 디안하이드라이드 단량체의 총함량 100 몰%를 기준으로 상기 피로멜리틱디안하이드라이드의 함량이 40 몰% 이상 60 몰% 이하이고, 상기 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드의 함량이 40 몰% 이상 60 몰% 이하일 수 있다.When the dianhydride monomer of the core part is made of pyromellitic dianhydride and 3,3',4,4'-biphenyltetracarboxylicdianhydride, the total content of the dianhydride monomer of the core part is 100 mol% Based on the content of the pyromellitic dianhydride is 40 mol% or more and 60 mol% or less, and the content of the 3,3′,4,4′-biphenyltetracarboxylicdianhydride is 40 mol% or more 60 It may be less than or equal to mole %.
본 발명의 다른 바람직한 일 예로, 스킨부를 구성하는 디안하이드라이드 단량체는 피로멜리틱디안하이드라이드, 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함할 수 있다.In another preferred embodiment of the present invention, the dianhydride monomer constituting the skin part is pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylicdianhydride and 3,3′,4, It may include at least one selected from the group consisting of 4'-benzophenone tetracarboxylicdianhydride.
더욱 바람직하게는 본 발명의 스킨부를 구성하는 디안하이드라이드 단량체는 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드일 수 있다.More preferably, the dianhydride monomer constituting the skin part of the present invention is 3,3',4,4'-biphenyltetracarboxylic dianhydride and 3,3',4,4'-benzophenonetetracarboxylic. It may be a dianhydride.
상기 스킨부의 디안하이드라이드 단량체가 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드만으로 이루어질 경우, 상기 스킨부의 디안하이드라이드 단량체의 총함량 100 몰%를 기준으로 상기 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드의 함량이 90 몰% 이상 99 몰% 이하이고, 상기 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드의 함량이 1 몰% 이상 10 몰% 이하일 수 있다.When the dianhydride monomer of the skin part is composed of only 3,3',4,4'-biphenyltetracarboxylicdianhydride and 3,3',4,4'-benzophenonetetracarboxylicdianhydride, the The content of the 3,3′,4,4′-biphenyltetracarboxylicdianhydride is 90 mol% or more and 99 mol% or less, based on 100 mol% of the total content of the dianhydride monomer of the skin portion, and 3, The content of 3′,4,4′-benzophenonetetracarboxylicdianhydride may be 1 mol% or more and 10 mol% or less.
또한, 이러한 다층 폴리이미드 필름은, In addition, such a multilayer polyimide film,
(a) 코어부의 유리전이온도(Tg)가 360 ℃ 이상이고, 스킨부의 유리전이온도가 300 ℃ 이상, 바람직하게는 300 ℃ 내지 380 ℃이며, (a) the glass transition temperature (T g ) of the core portion is 360°C or higher, the glass transition temperature of the skin portion is 300°C or higher, preferably 300°C to 380°C,
(b) 접착력이 1,000 gf/cm 이상, 바람직하게는 1,400 gf/cm 이상이고,(b) the adhesion is 1,000 gf/cm or more, preferably 1,400 gf/cm or more,
(c) CTE가 7.5 ppm 이상 11 ppm 이하이고, MOR 차이가 0.005 이하이며, (c) CTE is 7.5 ppm or more and 11 ppm or less, and MOR difference is 0.005 or less,
(d) 탄성율이 6.8 GPa 이상 7.5 GPa 이하이고, 강도는 360 MPa 이상 440 MPa 이하인 것을 특징으로 한다.(d) The elastic modulus is 6.8 GPa or more and 7.5 GPa or less, and the strength is 360 MPa or more and 440 MPa or less.
이와 관련하여, 위 조건들을 모두 만족하는 다층 폴리이미드 필름의 경우, 연성금속박적층판용 기판 필름, 절연 필름, 보호 필름 등으로 활용 가능할뿐더러, 연성금속박적층판으로 제막하기 위한 공정에서도 폭방향별 수축률 편차로 인해 발생하는 치수변화 문제나, 접착력 저하로 인한 들뜸 문제를 최소화하여 안정적인 회로 구현이 가능할 수 있다. In this regard, in the case of a multilayer polyimide film that satisfies all of the above conditions, it can be used as a substrate film for a flexible metal foil laminate, an insulating film, a protective film, etc. In addition, in the process of forming a film with a flexible metal foil laminate, the shrinkage rate varies by width direction It is possible to implement a stable circuit by minimizing the problem of dimensional change caused by the problem or the problem of lifting due to a decrease in adhesion.
이들 조건들을 모두 갖춘 다층 폴리이미드 필름은 지금까지 알려지지 않은 신규한 폴리이미드 필름으로서, 이하에서 상기 조건들에 대해서 상세하게 설명한다.A multilayer polyimide film having all of these conditions is a novel polyimide film that has not been known so far, and the above conditions will be described in detail below.
<유리전이온도><Glass transition temperature>
본 발명에서 유리전이온도는 동적 점탄성 측정 장치(DMA)에 의해 측정한 저장탄성률과 손실탄성률로부터 구할 수 있으며, 상세하게는 산출된 손실탄성률을 저장탄성률로 나눈 값인 tan δ의 변곡점(top peak)을 유리전이온도로 산정할 수 있다. 유리전이온도는 폴리이미드 필름의 내열성과 관련되어 있으므로, 동박적층판 등에 적용할 시 고온에서의 치수안정성을 향상시키기 위해서는 높을 수록 바람직하다.In the present invention, the glass transition temperature can be obtained from the storage modulus and the loss modulus measured by a dynamic viscoelasticity measuring device (DMA), and in detail, the top peak of tan δ, which is a value obtained by dividing the calculated loss modulus by the storage modulus, The glass transition degree can be calculated. Since the glass transition temperature is related to the heat resistance of the polyimide film, in order to improve dimensional stability at high temperatures when applied to a copper clad laminate or the like, a higher value is preferable.
다만, 열가소성 폴리이미드(Thermoplastic polyimide: TPI)를 코어 폴리이미드 필름에 코팅하거나, TPI필름과 코어필름을 각각 제조한 뒤 라미네이션하여 제조한 기존의 다층 폴리이미드 필름을 사용하여 연성동박적층판(Flexible Copper Clad Laminate: FCCL)을 제조하는 경우, 코어 폴리이미드의 유리전이온도(360℃ 이상)에 기인하여 제막공정 상 위치별, 폭방향별 수축률의 편차로 인한 일그러짐 및 치수 밸런스의 문제가 발생할 수 있고, 이로 인해 다층 폴리이미드 필름의 기계적 특성 및 층간 열팽창계수(Coefficent of Thermal Expansion: CTE) 등에 편차가 발생할 수 있다.However, using a conventional multilayer polyimide film manufactured by coating thermoplastic polyimide (TPI) on a core polyimide film or laminating after each of a TPI film and a core film is used, a flexible copper clad plate (Flexible Copper Clad) In the case of manufacturing Laminate: FCCL), due to the glass transition temperature of the core polyimide (360°C or higher), distortion and dimensional balance problems may occur due to variations in shrinkage rate by position and width direction in the film forming process. Due to this, variations in the mechanical properties of the multilayer polyimide film and the coefficient of interlayer thermal expansion (CTE) may occur.
그리고 다층 폴리이미드 필름에서 최고 수준의 유리전이온도와 유전상수나 유전손실률, 또는 접착력 등의 물성을 양립시키기는 어려운데, 이는 폴리이미드 필름의 유리전이온도를 향상시키는 것은 이미드기의 화학적 안정성에서 기인하지만, 이미드기가 극성을 나타내므로 흡습율이 높아질 수 있으며, 흡습율의 향상은 유전특성이나 접착특성 등의 약화와 연관이 있을 것으로 예측된다.In addition, in a multilayer polyimide film, it is difficult to balance physical properties such as the highest level of glass transition ionicity, dielectric constant, dielectric loss rate, or adhesion. This is due to the chemical stability of the imide group that improves the glass transition temperature of the polyimide film. , Since the imide group exhibits polarity, the moisture absorption rate can be increased, and the improvement of the moisture absorption rate is predicted to be related to the weakening of dielectric properties and adhesion properties.
그러나, 이러한 문제점을 해결하기 위해 단순히 폴리이미드 필름의 유리전이온도를 향상시킬 시에는 접착력이 약화되는 문제가 발생할 수도 있다. 또한, 다층 폴리이미드 필름의 코어층과 금속박 사이에서 접착성을 가지는 스킨층 또는 접착층이 형성될 때, 스킨층과 코어층의 열팽창계수 차이로 인하여 수축률이 서로 달라지는 문제도 고려해야 한다.However, when simply increasing the glass transition temperature of the polyimide film in order to solve this problem, there may be a problem that the adhesive strength is weakened. In addition, when a skin layer or an adhesive layer having adhesiveness is formed between the core layer of the multilayer polyimide film and the metal foil, it is necessary to consider the problem that the shrinkage rates are different from each other due to the difference in thermal expansion coefficient between the skin layer and the core layer.
따라서, 이러한 문제를 극복하기 위해, 본 발명은 유리전이온도와 접착력 모두를 바람직한 수준으로 양립시킨 폴리이미드 필름을 제공하고 있다. 구체적으로, 본 발명에 따른 폴리이미드 필름은 코어부와 스킨부를 구성하는 폴리이미드 수지의 유리전이온도를 각각 조절하고, 이들을 공압출함으로써, 기존의 낮은 유리전이온도의 코어 폴리이미드 필름 상에 TPI를 코팅 또는 라미네이트하여 제조한 다층 폴리이미드 필름의 경우에 비해 접착력 및 치수안정성이 개선될 수 있다.Therefore, in order to overcome this problem, the present invention provides a polyimide film in which both glass transition ionicity and adhesive strength are compatible with desirable levels. Specifically, the polyimide film according to the present invention controls the glass transition temperature of the polyimide resin constituting the core part and the skin part, respectively, and coextrusion them, thereby forming TPI on the core polyimide film having a low glass transition temperature. Compared to the case of a multilayer polyimide film manufactured by coating or laminating, adhesion and dimensional stability may be improved.
그러므로, 본 발명의 바람직한 일 실시예에 따른 다층 폴리이미드 필름은 코어부의 유리전이온도(Tg)가 360℃ 이상, 스킨부의 유리전이온도는 300℃ 이상일 수 있으며, 바람직하게 스킨부의 유리전이온도는 300℃ 이상 내지 380℃ 이하일 수 있다.Therefore, in the multilayer polyimide film according to a preferred embodiment of the present invention, the glass transition temperature (T g ) of the core portion may be 360°C or higher, the glass transition temperature of the skin portion may be 300°C or higher, and preferably the glass transition temperature of the skin portion is It may be 300 ℃ or more to 380 ℃ or less.
각각 코어부 또는 스킨부의 다층 폴리이미드 필름을 구성하는 수지의 유리전이온도가 상기 범위보다도 낮은 경우, 공압출을 통한 다층 폴리이미드 필름을 제조할 때, 폴리이미드 필름의 점성이 상대적으로 높은 상태가 되어 성형제어가 어려울 수 있다. 또한, 열라미네이트법 등으로 FCCL을 제조할 경우 폴리이미드 필름이 과도하게 느슨해지면서 제막공정 종료 후 폴리이미드 필름 표면에 너울이나 주름 등 외관 결함이 형성되는 등 큰 치수 변화가 수반될 수 있다. 이는 외관 품질을 저해하는 원인이며, 수축률 편차의 개선에 따른 치수안정성 향상 효과가 반감될 수 있으므로 바람직하지 않다. 그리고, 이러한 열라미네이트법 등에 의한 열인가 이후, 즉 접착이 완료된 시점에서도 폴리이미드 필름에 내재된 잔류 열량에 의해 폴리이미드 필름의 코어층 또는 스킨층의 연화가 개시되면서 치수 변화가 점차 커지는 원인이 될 수도 있다.When the glass transition temperature of the resin constituting the multilayer polyimide film of the core part or the skin part, respectively, is lower than the above range, when the multilayer polyimide film is manufactured through coextrusion, the viscosity of the polyimide film becomes relatively high. Molding control can be difficult. In addition, when FCCL is manufactured by a thermal lamination method, the polyimide film becomes excessively loose, and appearance defects such as swells or wrinkles are formed on the surface of the polyimide film after the film forming process is completed, and large dimensional changes may be accompanied. This is a cause of impairing the appearance quality, and it is not preferable because the effect of improving the dimensional stability due to the improvement of the shrinkage variation may be halved. In addition, after heat application by such a thermal lamination method, that is, even when adhesion is completed, the core layer or the skin layer of the polyimide film begins to soften due to the residual heat contained in the polyimide film, causing the dimensional change to gradually increase. May be.
반면 스킨부를 구성하는 폴리이미드 수지의 유리전이온도가 상기 범위보다도 높은 경우, 접착층이 연화되는 온도가 너무 높기 때문에 FCCL 등을 제조할 때에 유리전이온도의 상승에 따른 접착력 저하가 야기될 수 있으며, 열응력이 충분이 완화되지 않고 열수축율 차이로 인해 역시 치수 편차가 크게 발생하는 원인이 될 수 있어 바람직하지 않다. 즉, 상기 범위를 벗어나는 경우, 접착력과 치수안정성이 적절하게 유지되는 범위를 벗어나 다층 폴리이미드 필름의 물성이 악화되는 원인이 될 수 있다.On the other hand, when the glass transition temperature of the polyimide resin constituting the skin part is higher than the above range, the temperature at which the adhesive layer is softened is too high, so when the glass transition temperature is increased, the adhesive strength may decrease due to the increase in the glass transition temperature. It is not preferable because the stress is not sufficiently relieved and the difference in heat shrinkage may also cause a large dimensional deviation. That is, if it is out of the above range, it may cause the physical properties of the multilayer polyimide film to deteriorate outside the range in which the adhesive force and dimensional stability are properly maintained.
<접착력><Adhesion>
접착력은, 다층 폴리이미드 필름의 코어부 및 스킨부의 층간 접착력이나 폴리이미드 필름과 접촉하는 동종 또는 이종 물질층 간의 접착력, 바람직하게는 전기전도성의 금속박과의 접착력을 모두 포함할 수 있다.The adhesion may include both the adhesion between the core part and the skin part of the multilayer polyimide film, the adhesion between the same or different material layers in contact with the polyimide film, and preferably the adhesion with the electrically conductive metal foil.
본 발명의 일 실시예로서 접착력의 측정방법은 이노플렉스(Innoflex) 접착을 통한 박리 시험방식을 사용하였다. 본 발명의 다층 폴리이미드(PI) 필름 또는 다층 폴리이미드 필름의 양면에 동박을 라미네이션한 연성금속박적층판 위에 Innoflex(1mil, Epoxy type, Innox제품)를 놓고 양면에 PVC필름과 보호용 PI필름을 놓고 160℃로 승온한 뒤에 30분간 10Kgf/cm2의 압력으로 열압착하였다. 필름을 13mm폭으로 잘라 재단한 후에 180˚ 박리시험(Peel test)를 실시하였다. As an embodiment of the present invention, a method of measuring adhesion was used as a peel test method through Innoflex adhesion. Put Innoflex (1mil, Epoxy type, Innox product) on the flexible metal clad laminated laminated copper foil on both sides of the multilayer polyimide (PI) film or multilayer polyimide film of the present invention, and place the PVC film and the PI film for protection on both sides at 160℃ After the temperature was raised to, it was thermocompressed at a pressure of 10Kgf/cm 2 for 30 minutes. The film was cut into 13mm width and cut, followed by a 180° Peel test.
본 발명의 일 실시예에 따라 제조된 다층 폴리이미드 필름은 접착력이 700 gf/cm 이상, 바람직하게는 1,000 gf/cm 이상, 보다 더 바람직하게는 1,400 gf/cm 이상인 것이 바람직하다.The multilayer polyimide film prepared according to an embodiment of the present invention preferably has an adhesive strength of 700 gf/cm or more, preferably 1,000 gf/cm or more, and even more preferably 1,400 gf/cm or more.
다층 폴리이미드 필름의 제조 방법Manufacturing method of multilayer polyimide film
본 발명의 다층 폴리이미드 필름을 얻기 위해서는, In order to obtain the multilayer polyimide film of the present invention,
(1) 디아민 단량체 및 디안하이드라이드 단량체를 유기 극성 용매에 첨가하는 단계, 및 디아민 단량체 및 디안하이드라이드 단량체를 유기 극성 용매에 첨가하는 단계들을 거침으로써 얻어진 폴리아믹산 용액을 제조하고, 이를 이미드화하여 각각의 코어부 및 스킨부의 폴리이미드를 수지 저장조에 충진하여 토출하는 공압출 제조방법이 바람직하다. (1) A polyamic acid solution obtained by going through the steps of adding a diamine monomer and a dianhydride monomer to an organic polar solvent, and adding a diamine monomer and a dianhydride monomer to an organic polar solvent, and imidizing it A coextrusion manufacturing method is preferred in which the polyimide of each core part and the skin part is filled and discharged into a resin reservoir.
하지만, 경우에 따라서는 (2) 폴리아믹산 용액을 각각 코어부 및 스킨부의 폴리아믹산 용액 저장조에 충진하여 토출한 후 또는 토출함과 동시에 이미드화하는 공압출 제조방법을 사용할 수도 있으며, (3) 코어부의 폴리아믹산을 이미드화하고, 스킨부의 폴리아믹산 용액과 동시에 토출하면서 캐스팅하는 공압출-유연도포 제조방법을 사용할 수도 있다.However, in some cases, (2) a co-extrusion manufacturing method in which the polyamic acid solution is filled into the polyamic acid solution reservoir in the core part and the skin part and discharged, or simultaneously imidized may be used, and (3) the core It is also possible to use a co-extrusion-flexible coating manufacturing method in which the negative polyamic acid is imidized and cast while simultaneously discharging with the polyamic acid solution of the skin part.
먼저, 본 발명의 다층 폴리이미드 필름은 각각 코어부 및 스킨부를 구성하는 제1 및 제2 폴리이미드의 전구체인 제1 및 제2 폴리아믹산 용액으로부터 얻어진다.First, the multilayer polyimide film of the present invention is obtained from first and second polyamic acid solutions, which are precursors of first and second polyimides constituting the core part and the skin part, respectively.
폴리아믹산 용액은 상기한 방향족 또는 지방족 디아민 단량체과 방향족 또는 지방족 디안하이드라이드 단량체가 실질적으로 등몰량이 되도록 배합된 단량체 화합물을 유기 용매 중에 용해시키고 얻어진 폴리아믹산 유기 용매 용액을 제어된 온도 조건하에서 디안하이드라이드 단량체와 디아민 단량체의 중합이 완료될 때까지 교반함으로써 제조된다.The polyamic acid solution is a dianhydride monomer obtained by dissolving a monomer compound in which the aromatic or aliphatic diamine monomer and the aromatic or aliphatic dianhydride monomer are substantially equimolar amount in an organic solvent, and the obtained polyamic acid organic solvent solution under controlled temperature conditions. And the diamine monomer is prepared by stirring until the polymerization is complete.
바람직하게, 코어부를 구성하는 제1폴리아믹산 용액은 4,4′-디아미노-2,2′-디메틸바이페닐, 파라페닐렌디아민 및 4,4′-옥시디아닐린으로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디아민 유래 단량체와 피로멜리틱디안하이드라이드 및 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 유래 단량체를 용매 중에서 중합하여 제조할 수 있다.Preferably, the first polyamic acid solution constituting the core portion is one selected from the group consisting of 4,4′-diamino-2,2′-dimethylbiphenyl, paraphenylenediamine, and 4,4′-oxydianiline. Diamine-derived monomers including the above and a dianhydride-derived monomer comprising at least one selected from the group consisting of pyromellitic dianhydride and 3,3′,4,4′-biphenyltetracarboxylicdianhydride It can be prepared by polymerization in a solvent.
또한, 스킨부를 구성하는 제2폴리아믹산 용액은 3,5-디아미노벤조산, 파라페닐렌디아민 및 4,4′-옥시디아닐린을 포함하는 디아민 유래 단량체와 피로멜리틱디안하이드라이드, 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 유래 단량체를 용매 중에서 중합하여 제조하는 것이 바람직할 수 있다.In addition, the second polyamic acid solution constituting the skin part is a diamine-derived monomer including 3,5-diaminobenzoic acid, paraphenylenediamine and 4,4′-oxydianiline, and a pyromellitic dianhydride, 3,3. A dianhydride-derived monomer containing at least one selected from the group consisting of',4,4'-biphenyltetracarboxylicdianhydride and 3,3',4,4'-benzophenonetetracarboxylicdianhydride It may be desirable to prepare by polymerizing in a solvent.
폴리아믹산 용액은 통상 고형분 함량이 5 내지 35 중량%, 바람직하게는 10 내지 30 중량%의 농도로 얻어지며, 이 범위의 농도인 경우, 폴리아믹산 용액은 적당한 분자량과 용액 점도를 얻는다.The polyamic acid solution is usually obtained with a solid content of 5 to 35% by weight, preferably 10 to 30% by weight, and in the case of a concentration in this range, the polyamic acid solution obtains an appropriate molecular weight and solution viscosity.
폴리아믹산 용액을 합성하기 위한 용매는 특별히 한정되는 것은 아니고, 폴리아믹산을 용해시키는 용매이면 어떠한 용매도 사용할 수 있으며, 구체적으로는, 용매는 유기 극성 용매일 수 있고, 상세하게는, 비양성자성 극성 용매(aprotic polar solvent)일 수 있으며, 바람직하게는 아미드계 용매일 수 있다. 예를 들어, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL), 디그림(Diglyme)으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니며, 필요에 따라 단독으로 또는 2 종 이상 조합해서 사용할 수 있다. 하나의 예에서, 용매는 N,N-디메틸포름아미드 및 N,N-디메틸아세트아미드가 바람직하게 사용될 수 있다.The solvent for synthesizing the polyamic acid solution is not particularly limited, and any solvent may be used as long as it dissolves the polyamic acid. Specifically, the solvent may be an organic polar solvent, and specifically, aprotic polarity It may be a solvent (aprotic polar solvent), preferably an amide-based solvent. For example, N,N'-dimethylformamide (DMF), N,N'-dimethylacetamide, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), Diglyme. It may be one or more selected from the group consisting of, but is not limited thereto, and may be used alone or in combination of two or more as necessary. In one example, N,N-dimethylformamide and N,N-dimethylacetamide may be preferably used as the solvent.
폴리아믹산의 제조 단계에서, 단량체의 종류 및 소망하는 폴리이미드 필름의 물성에 따라서 모든 단량체들을 한번에 첨가하거나, 또는 각 단량체들을 순차적으로 첨가할 수 있으며, 이 경우, 단량체 간 부분적 중합이 일어날 수 있다.In the manufacturing step of the polyamic acid, all monomers may be added at once or each of the monomers may be added sequentially, depending on the type of the monomer and the properties of the desired polyimide film, and in this case, partial polymerization between the monomers may occur.
또한, 폴리아믹산 용액 제조 공정에서는 접동성, 열전도성, 도전성, 코로나 내성, 루프 경도 등 필름의 여러 가지 특성을 개선할 목적으로 충전재를 첨가할 수도 있다.In addition, in the polyamic acid solution manufacturing process, a filler may be added for the purpose of improving various properties of the film, such as sliding properties, thermal conductivity, conductivity, corona resistance, and loop hardness.
첨가되는 충전재는 특별히 한정되는 것은 아니지만, 바람직한 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다.The filler to be added is not particularly limited, but preferred examples include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica, and the like.
충전재의 입경은 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성과 첨가하는 충전재의 종류에 따라서 결정할 수 있다.The particle diameter of the filler is not particularly limited, and can be determined according to the properties of the film to be modified and the type of filler to be added.
일반적으로는, 평균 입경이 0.05 내지 100 ㎛, 바람직하게는 0.1 내지 75 ㎛, 더욱 바람직하게는 0.1 내지 50 ㎛, 특히 바람직하게는 0.1 내지 25 ㎛일 수 있다.In general, the average particle diameter may be 0.05 to 100 µm, preferably 0.1 to 75 µm, more preferably 0.1 to 50 µm, and particularly preferably 0.1 to 25 µm.
입경이 이 범위를 하회하면 개질 효과가 나타나기 어려워지고, 이 범위를 상회하면 표면성을 크게 손상시키거나, 기계적 특성이 크게 저하되는 경우가 있다.If the particle diameter is less than this range, the modification effect is difficult to appear, and if it exceeds this range, the surface properties may be greatly impaired or the mechanical properties may be greatly reduced.
또한, 충전재의 첨가량에 대해서도 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성이나 충전재 입경 등에 의해 결정할 수 있다.Further, the amount of the filler to be added is not particularly limited, and can be determined by the film properties to be modified or the filler particle size.
일반적으로, 충전재의 첨가량은 폴리이미드 100 중량부에 대하여 0.01 내지 100 중량부, 바람직하게는 0.01 내지 90 중량부, 더욱 바람직하게는 0.02 내지 80 중량부일 수 있다.In general, the amount of the filler added may be 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, more preferably 0.02 to 80 parts by weight, based on 100 parts by weight of the polyimide.
충전재 첨가량이 이 범위를 하회하면, 충전재에 의한 개질 효과가 나타나기 어렵고, 이 범위를 상회하면 필름의 기계적 특성이 크게 손상될 가능성이 있다.If the amount of the filler added is less than this range, the effect of modifying by the filler is difficult to appear, and if it exceeds this range, the mechanical properties of the film may be greatly impaired.
충전재의 첨가 방법은 특별히 한정되는 것은 아니고, 공지된 어떠한 방법을 이용할 수도 있다.The method of adding the filler is not particularly limited, and any known method may be used.
상기한 바와 같이 제조한 제1 및 제2 폴리아믹산 용액은 용액 상태로 공압출한 후 또는 공압출 과정과 동시에 이미드화하여 다층 폴리이미드로 제조하거나, 각각 제1 및 제2 폴리이미드로 이미드화하여 각각의 수지를 수지저장조에 충진, 공압출함으로써 코어부 및 스킨부를 형성하는 방법으로 다층 폴리이미드를 제조할 수 있다.The first and second polyamic acid solutions prepared as described above are coextruded in a solution state or imidized at the same time as the coextrusion process to prepare a multilayer polyimide, or imidized with the first and second polyimide, respectively. Multilayer polyimide can be manufactured by filling each resin in a resin storage tank and coextrusion to form a core portion and a skin portion.
폴리아믹산 용액을 이미드화하여 폴리이미드를 제조하는 방법에 대해서는, 종래 공지된 방법을 사용할 수 있으며, 구체적으로는 열 이미드화법, 화학 이미드화법 또는 열 이미드화법과 화학 이미드화법을 병용한 복합이미드화법을 들 수 있다.As for the method of imidizing a polyamic acid solution to prepare a polyimide, a conventionally known method can be used, specifically, a thermal imidation method, a chemical imidation method, or a combination of a thermal imidation method and a chemical imidation method. The complex imidization method is mentioned.
열 이미드화법은 탈수제 등의 촉매를 사용하지 않고, 가열만으로 폴리아믹산 용액을 이미드화 하는 방법으로서, 폴리아믹산을 40℃ 내지 400℃, 바람직하게는 40℃ 내지 300℃의 온도범위에서 서서히 승온시키며 1 내지 8 시간 열처리하여 폴리아믹산이 이미드화된 폴리이미드 수지를 수득하는 방법이다.The thermal imidation method is a method of imidizing a polyamic acid solution only by heating without using a catalyst such as a dehydrating agent. The polyamic acid is gradually heated in a temperature range of 40°C to 400°C, preferably 40°C to 300°C. This is a method of obtaining a polyimide resin in which polyamic acid is imidized by heat treatment for 1 to 8 hours.
화학 이미드화법은 탈수제 및/또는 이미드화제 등의 촉매를 사용하여 폴리아믹산 용액의 이미드화를 촉진하는 방법이다. The chemical imidization method is a method of promoting imidization of a polyamic acid solution using a catalyst such as a dehydrating agent and/or an imidizing agent.
화학 이미드화법의 일 예로는 탈수제, 이미드화 촉매, 화학전환제, 경화제 등의 첨가제를 저온으로 폴리아믹산 용액 중에 혼합한 조성물을 유리판, 알루미늄 박, 무단(endless) 스테인레스 벨트, 또는 스테인레스 드럼 등 지지체에 도포(casting)하고, 40℃ 내지 300℃의 온도범위, 바람직하게는 80 ℃ 내지 200 ℃, 더욱 바람직하게는 100 ℃ 내지 180 ℃로 열처리하여 탈수제 및 이미드화제를 활성화 시킴으로써 부분적으로 경화 및/또는 건조시켜 자기 지지성을 갖는 중간체인 겔을 형성한다. 이후, 지지체로부터 겔을 박리하는 공정 및 상기 겔을 더욱 가열하여, 남은 아믹산(amic acid)을 이미드화하고 건조시키는 공정(이하, "소성 과정"이라고도 함)을 포함하는 것이 바람직하다.An example of a chemical imidization method is a composition obtained by mixing additives such as a dehydrating agent, an imidation catalyst, a chemical conversion agent, and a hardener in a polyamic acid solution at low temperature, and a support such as a glass plate, aluminum foil, endless stainless belt, or stainless drum. And/or heat treatment at a temperature range of 40°C to 300°C, preferably 80°C to 200°C, more preferably 100°C to 180°C to activate the dehydrating agent and the imidizing agent to partially cure and/ Alternatively, it is dried to form a gel that is an intermediate having self-supporting properties. Thereafter, it is preferable to include a step of peeling the gel from the support and a step of further heating the gel to imidize and dry the remaining amic acid (hereinafter, also referred to as a "baking process").
복합이미드화법은 폴리아믹산 용액에 탈수제 및 이미드화 촉매를 투입한 후 80 내지 200℃, 바람직하게는 100 내지 180℃에서 가열하여, 부분적으로 경화 및 건조한 후에 200 내지 400℃에서 5 내지 400 초간 가열함으로써 폴리이미드 수지를 얻을 수 있다.In the composite imidization method, after adding a dehydrating agent and an imidation catalyst to the polyamic acid solution, heating at 80 to 200°C, preferably 100 to 180°C, partially curing and drying, heating at 200 to 400°C for 5 to 400 seconds By doing so, a polyimide resin can be obtained.
따라서, 본 발명의 제1폴리아믹산 및 제2폴리아믹산은 열 이미드화법, 화학 이미드화법 또는 복합 이미드화법에 용이하도록 각각 이미드화 촉매, 탈수제, 경화제 및 이들이 하나 이상 혼합된 첨가제로 구성된 군에서 선택되는 어느 하나를 더 포함할 수 있다.Accordingly, the first polyamic acid and the second polyamic acid of the present invention are a group consisting of an imidation catalyst, a dehydrating agent, a curing agent, and an additive in which one or more thereof is mixed to facilitate thermal imidization, chemical imidization, or complex imidization. It may further include any one selected from.
탈수제는, 예를 들면 지방족 산 무수물, 방향족 산 무수물, N,N'-디알킬카르보디이미드, 할로겐화 저급 지방족, 할로겐화 저급 지방산 무수물, 아릴포스폰산디할로겐화물, 및 티오닐할로겐화물, 또는 이들 2종 이상의 혼합물을 들 수 있다. 그 중에서도 입수의 용이성 및 비용의 관점에서 아세트산 무수물, 프로피온산 무수물, 및 락트산 무수물 등의 지방족 산 무수물, 또는 이들 2종 이상의 혼합물을 바람직하게 사용할 수 있다.Dehydrating agents include, for example, aliphatic acid anhydride, aromatic acid anhydride, N,N'-dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower fatty acid anhydride, arylphosphonic acid dihalide, and thionylhalide, or two of these. And mixtures of more than one species. Among them, aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, and lactic acid anhydride, or a mixture of two or more thereof can be preferably used from the viewpoint of availability and cost.
탈수제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 0.5 내지 5 몰의 범위 내인 것이 바람직하고, 1.0 내지 4 몰의 범위 내인 것이 보다 바람직하다.The amount of the dehydrating agent added is preferably in the range of 0.5 to 5 moles, more preferably in the range of 1.0 to 4 moles per 1 mole of the amic acid group in the polyamic acid.
또한, 이미드화제는, 예를 들면 지방족 3 급 아민, 방향족 3 급 아민, 및 복소환식 3 급 아민 등이 이용된다. 그 중에서도 촉매로서의 반응성의 관점에서 복소환식 3급 아민으로부터 선택되는 것이 특히 바람직하게 이용된다. 구체적으로는 퀴놀린, 이소퀴놀린, β-피콜린, 피리딘 등이 바람직하게 이용된다.In addition, as an imidizing agent, an aliphatic tertiary amine, an aromatic tertiary amine, a heterocyclic tertiary amine, etc. are used, for example. Among them, those selected from heterocyclic tertiary amines are particularly preferably used from the viewpoint of reactivity as a catalyst. Specifically, quinoline, isoquinoline, β-picoline, pyridine, and the like are preferably used.
또한, 이미드화제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 0.05 내지 3 몰의 범위 내인 것이 바람직하고, 0.2 내지 2 몰의 범위 내인 것이 특히 바람직하다.In addition, the amount of the imidizing agent added is preferably within the range of 0.05 to 3 moles, and particularly preferably within the range of 0.2 to 2 moles, per 1 mole of the amic acid group in the polyamic acid.
탈수제 및 이미드화제가 상기 범위를 하회하면 화학적 이미드화가 불충분하고, 소성 도중에 파단되거나, 기계적 강도가 저하되는 경우가 있다.If the dehydrating agent and the imidizing agent are less than the above ranges, chemical imidization is insufficient, fracture during firing, or mechanical strength may decrease.
또한, 이들 양이 상기 범위를 상회하면 이미드화가 빠르게 진행되어, 필름형으로 캐스팅하는 것이 곤란해지는 경우가 있기 때문에 바람직하지 않다.In addition, when these amounts exceed the above range, imidization proceeds rapidly, and casting into a film form may become difficult, which is not preferable.
공압출법은 제1폴리이미드계 수지 용액 또는 그 전구체인 제1폴리아믹산 용액과 제2폴리이미드계 수지 용액 또는 그 전구체인 제2폴리아믹산 용액을, 다층 공압출 장치를 사용하여 캐스팅 벨트 위에 토출하여 다층 압출막을 형성한 후, 이를 가열건조, 경화하는 방법으로 다층 폴리이미드 필름을 제조하는 방법이다. 또한, 공압출법은 제1폴리이미드계 수지 용액 또는 그 전구체인 제1폴리아믹산 용액과 제2폴리이미드계 수지 용액 또는 그 전구체인 제2폴리아믹산 용액을, 다층 공압출 장치를 사용하여 캐스팅 벨트 위에 토출함과 동시에 가열건조, 경화하여 이미드화 함으로써 다층 압출막을 형성하여 다층 폴리이미드 필름을 제조할 수도 있다. 공압출법은 생산성이 높고, 계면간 상이한 폴리이미드가 혼화되어 높은 계면 접착 신뢰성을 확보할 수 있다.In the coextrusion method, a first polyimide resin solution or a precursor thereof, a first polyamic acid solution and a second polyimide resin solution, or a precursor thereof, a second polyamic acid solution, are discharged onto a casting belt using a multilayer coextrusion device. This is a method of manufacturing a multilayer polyimide film by forming a multilayer extruded film, followed by heat drying and curing it. In addition, the coextrusion method includes a first polyimide resin solution or a precursor thereof, a first polyamic acid solution and a second polyimide resin solution, or a precursor thereof, a second polyamic acid solution, using a multilayer coextrusion device. It is also possible to form a multilayered polyimide film by forming a multilayered extruded film by discharging it on top and performing heat drying, curing, and imidation. The coextrusion method has high productivity, and a high interfacial adhesion reliability can be secured by mixing different polyimides between interfaces.
본 발명의 다층 폴리이미드 필름을 제조하기 위한 다층 공압출 장치는 제1폴리이미드 또는 제1폴리아믹산 용액을 저장하는 제1 수지 저장조, 제2폴리이미드 또는 제2폴리아믹산 용액을 저장하는 제2 수지 저장조, 제1 수지 저장조와 연결된 중앙층 유로, 제2 수지 저장조와 연결된 외층 유로, 중앙층 유로와 연결된 제1토출부 및 외층 유로와 연결된 제2토출부를 포함할 수 있다. The multilayer coextrusion device for manufacturing the multilayer polyimide film of the present invention includes a first resin reservoir storing a first polyimide or a first polyamic acid solution, and a second resin storing a second polyimide or a second polyamic acid solution. It may include a storage tank, a center layer flow path connected to the first resin storage tank, an outer layer flow path connected to the second resin storage tank, a first discharge part connected to the center layer flow path, and a second discharge part connected to the outer layer flow path.
외층 유로 및 제2토출부에서 토출되는 제2폴리이미드 또는 제2폴리아믹산 용액은 중앙층 유로와 연결된 제1토출부의 적어도 일 측면에서 토출되는 제1폴리이미드 또는 제1폴리아믹산 용액에 접촉하도록 배치될 수 있으며, 따라서 외층 유로 및 제2토출부는 중앙층 유로와 제1토출부의 적어도 일 면에 근접하여 위치하며, 최종적으로 2층의 공압출층(2-layer coextrusion film)을 형성할 수 있다.The second polyimide or second polyamic acid solution discharged from the outer layer passage and the second discharge portion is arranged to contact the first polyimide or first polyamic acid solution discharged from at least one side of the first discharge portion connected to the center layer passage Therefore, the outer layer flow path and the second discharge portion are located close to at least one surface of the center layer flow path and the first discharge portion, and finally, a two-layer coextrusion film may be formed.
또한, 본 발명은 보다 바람직하게 제1토출부와 연결된 중앙층 유로 및 중앙층 유로의 양측에 위치하며 제2토출부와 제3토출부에 각각 연결된 외층 유로를 포함하는 3층의 공압출층(3-layer coextrusion film)을 형성하는 다이일 수 있다. 제3토출부는 제1토출부가 제2토출부와 접하는 면의 배면에 위치하며, 제2토출부로부터 토출된 제2폴리이미드 또는 제2폴리아믹산이 제1토출부로부터 토출된 제1폴리이미드 또는 제1폴리아믹산과 접하는 면의 또 다른 일면에 접촉하도록 제2폴리이미드 또는 제2폴리아믹산을 토출할 수 있다. 즉, 바람직하게는 코어부를 형성하는 제1폴리이미드 또는 제1폴리아믹산의 양 외측면에 스킨부를 형성하는 제2폴리이미드 또는 제2폴리아믹산이 위치할 수 있다.In addition, the present invention is more preferably located on both sides of the center layer flow path connected to the first discharge unit and the center layer flow path, and a three-layer coextrusion layer including an outer layer flow path connected to the second discharge unit and the third discharge unit ( It may be a die forming a 3-layer coextrusion film). The third discharge part is located on the rear surface of the surface of the first discharge part in contact with the second discharge part, and the second polyimide or the second polyamic acid discharged from the second discharge part is the first polyimide discharged from the first discharge part, or The second polyimide or the second polyamic acid may be discharged so as to contact another surface of the surface in contact with the first polyamic acid. That is, preferably, the second polyimide or the second polyamic acid forming the skin portion may be positioned on both outer surfaces of the first polyimide or the first polyamic acid forming the core portion.
또한, 본 발명의 일 실시예에 따르면, 제1 내지 제3토출부에 가열 또는 경화장치가 함께 구비되어 있어, 토출물이 분사됨과 동시에 이미드화를 진행하여 다층 공압출물을 형성할 수도 있다.In addition, according to an embodiment of the present invention, since the first to third discharge units are provided with a heating or curing device, the discharge may be sprayed and imidization may be performed to form a multilayer coextrusion.
본 발명의 다층 공압출 장치는 제1토출부, 제2토출부 및/또는 제3토출부로부터 토출되는 폴리이미드 수지 또는 폴리아믹산 용액의 토출 및 공압출 유연속도를 각각 조절할 수 있으며, 또한 상기한 수지 및 용액에 포함되는 용매함량, 고분자 고형물 함량 등을 조절함으로써 코어부의 폴리이미드 층과 스킨부의 폴리이미드 층 간의 두께 비율을 조절할 수 있다.The multilayer coextrusion device of the present invention can control the discharge and coextrusion casting speeds of the polyimide resin or polyamic acid solution discharged from the first discharge unit, the second discharge unit and/or the third discharge unit, respectively, and the above-described The thickness ratio between the polyimide layer of the core portion and the polyimide layer of the skin portion can be adjusted by adjusting the solvent content, the polymer solid content, and the like contained in the resin and the solution.
코어부와 스킨부의 두께는 6:4 내지 9:1 비율로 형성되는 것이 다층 폴리이미드 필름의 치수안정성 및 접착력의 향상을 위해 바람직하다.The thickness of the core portion and the skin portion is preferably formed in a ratio of 6:4 to 9:1 in order to improve dimensional stability and adhesion of the multilayer polyimide film.
다층 공압출 장치를 통하여 제조된 다층 폴리이미드 필름은 필요에 따라 제1폴리이미드 수지 및 제2폴리이미드 수지 용액 각각에 대하여 냉각 장치와 가열 장치를 포함하는 온도 조절 장치를 도입, 공압출 장치 투입 전후로 점도를 조절할 수 있다. The multilayer polyimide film manufactured through the multilayer coextrusion device is, if necessary, a temperature control device including a cooling device and a heating device for each of the first polyimide resin and the second polyimide resin solution. The viscosity can be adjusted.
다층 공압출 장치를 통해 토출된 다층 압출물막은 가열 및 건조되어 다층 폴리이미드 필름으로 형성될 수 있으며, 필요에 따라 추가 이미드화되어 다층 폴리이미드 필름이 제조될 수 있다.The multilayer extrudate film discharged through the multilayer coextrusion device may be heated and dried to form a multilayer polyimide film, and further imidized as necessary to produce a multilayer polyimide film.
또한, 본 발명은 공압출 장치로부터 유출되는 다층 압출물을 확축 및 유연하는 단계를 더 포함할 수 있다.In addition, the present invention may further include the step of expanding and flexing the multi-layered extrudate discharged from the coextrusion device.
연성금속박적층판Ductile metal foil laminate
본 발명은, 상술한 다층 폴리이미드 필름 및 전기전도성의 금속박을 포함하는 연성금속박적층판을 제공한다. The present invention provides a flexible metal foil laminate comprising the above-described multilayer polyimide film and an electrically conductive metal foil.
사용하는 금속박으로는 특별히 한정되는 것은 아니지만, 전자 기기 또는 전기 기기용도에 본 발명의 연성금속박적층판을 이용하는 경우에는, 예를 들면 구리 또는 구리 합금, 스테인레스강 또는 그의 합금, 니켈 또는 니켈 합금(42 합금도 포함함), 알루미늄 또는 알루미늄 합금을 포함하는 금속박일 수 있다.The metal foil to be used is not particularly limited, but when the flexible metal foil laminate of the present invention is used for electronic devices or electrical devices, for example, copper or copper alloy, stainless steel or alloy thereof, nickel or nickel alloy (alloy 42 Also included), it may be a metal foil containing aluminum or an aluminum alloy.
일반적인 연성금속박적층판에서는 압연 동박, 전해 동박이라는 구리박이 많이 사용되며, 본 발명에서도 바람직하게 사용할 수 있다.In general flexible metal foil laminates, copper foils such as rolled copper foil and electrolytic copper foil are often used, and can be preferably used in the present invention.
폴리이미드 필름을 절연 지지체로 사용하는 연성동박적층판(FCCL)은, 폴리이미드 필름에 접착제를 사용하여 동박을 적층하는 3층 구조(Adhesive type)의 FCCL과 접착제를 사용하지 않고 대신 열가소성 폴리이미드(Thermoplastic polyimide: TPI) 코팅층을 사용하여 접착성을 부여하여 동박을 적층한 2층 구조(TPI adhesive type)를 가지는 FCCL 등으로 나눌 수 있다.The flexible copper clad laminate (FCCL) using a polyimide film as an insulating support does not use an adhesive type FCCL and a three-layer structure (Adhesive type) in which copper foil is laminated using an adhesive on the polyimide film. Instead, thermoplastic polyimide (Thermoplastic It can be divided into FCCL having a two-layer structure (TPI adhesive type) in which copper foil is laminated by imparting adhesiveness using a polyimide: TPI) coating layer.
따라서, 이들 금속박 또는 폴리이미드 필름의 표면에는 방청층, 내열층, 코팅층 또는 접착층이 더 도포되어 있을 수도 있다.Therefore, the surface of these metal foils or polyimide films may be further coated with a rust prevention layer, a heat-resistant layer, a coating layer, or an adhesive layer.
본 발명에서 상기 금속박의 두께에 대해서는 특별히 한정되는 것은 아니고, 그 용도에 따라서 충분한 기능을 발휘할 수 있는 두께이면 된다.In the present invention, the thickness of the metal foil is not particularly limited, and any thickness capable of exhibiting a sufficient function according to the application may be used.
본 발명에 따른 연성금속박적층판은, 상기 다층 폴리이미드 필름의 일면에 금속박이 라미네이트되어 있거나, 상기 다층 폴리이미드 필름의 일면에 열가소성 폴리이미드를 함유하는 접착층이 부가되어 있고, 상기 금속박이 접착층에 부착된 상태에서 라미네이트되어있는 구조일 수 있다.In the flexible metal foil laminate according to the present invention, a metal foil is laminated on one side of the multilayer polyimide film, or an adhesive layer containing thermoplastic polyimide is added to one side of the multilayer polyimide film, and the metal foil is attached to the adhesive layer. It may be a laminated structure.
본 발명은 또한, 연성금속박적층판을 전기적 신호 전송 회로로서 포함하는 전자 부품을 제공한다. 전기적 신호 전송 회로는, 적어도 2 GHz의 고주파, 상세하게는 적어도 5 GHz의 고주파, 더욱 상세하게는 적어도 10 GHz의 고주파로 신호를 전송하는 전자 부품일 수 있다. 전자 부품은 예를 들어, 휴대 단말기용 통신 회로, 컴퓨터용 통신 회로, 또는 우주 항공용 통신회로일 수 있으나 이것으로 한정되는 것은 아니다.The present invention also provides an electronic component comprising a flexible metal foil laminate as an electrical signal transmission circuit. The electrical signal transmission circuit may be an electronic component that transmits a signal at a high frequency of at least 2 GHz, in detail, a high frequency of at least 5 GHz, and more particularly, a high frequency of at least 10 GHz. The electronic component may be, for example, a communication circuit for a portable terminal, a communication circuit for a computer, or a communication circuit for aerospace, but is not limited thereto.
제조예Manufacturing example
제조예 1: 코어부 (제1 조성물)의 제조Preparation Example 1: Preparation of the core part (first composition)
25 ℃ 및 질소 분위기하의 300 L 반응기에 DMF 198.23 kg을 넣고 원하는 조성비로 p-PPA와 ODA를 순차적으로 용해한 뒤, BPDA 16.87 kg, PMDA 11.79 kg을 반응시킨 후, PMDA 10%용액 7.53 kg를 분할 투입하면서 점도를 조절하여 약 20 만 cP의 점도를 갖는 코어용 폴리아믹산 용액을 수득하였다.After adding 198.23 kg of DMF to a 300 L reactor under a nitrogen atmosphere at 25° C. and dissolving p-PPA and ODA in a desired composition ratio, 16.87 kg of BPDA and 11.79 kg of PMDA were reacted, and 7.53 kg of a PMDA 10% solution was added in portions. While adjusting the viscosity, a polyamic acid solution for a core having a viscosity of about 200,000 cP was obtained.
제조예 2: 스킨부 (제2 조성물)의 제조Preparation Example 2: Preparation of skin part (second composition)
25 ℃ 및 질소 분위기하의 300 L 반응기에 DMF 155.49 kg을 넣고 ODA 4.20 kg, DABA 0.89 kg, p-PDA 6.17 kg을 순차적으로 용해한 뒤, BPDA 23.19kg을 반응시킨 후, BTDA 10%용액 9.25 kg를 분할투입하면서 점도를 조절하여 약 20만 cP의 점도를 확보한 후 0.5um 구상실리카 36g, 이소퀴놀린 13kg와 DMF 67kg을 투입하여 12,000 cp의 제2 폴리아믹산 용액을 수득하였다.155.49 kg of DMF was added to a 300 L reactor under a nitrogen atmosphere at 25° C., and 4.20 kg of ODA, 0.89 kg of DABA, and 6.17 kg of p-PDA were dissolved in sequence. After reacting 23.19 kg of BPDA, 9.25 kg of BTDA 10% solution was divided. After adjusting the viscosity while adding to obtain a viscosity of about 200,000 cP, 36 g of 0.5 μm spherical silica, 13 kg of isoquinoline and 67 kg of DMF were added to obtain a second polyamic acid solution of 12,000 cp.
실시예 및 비교예Examples and Comparative Examples
본 발명의 다층 폴리이미드 필름에 해당하는 실시예와 비교예의 조성 및 두께(코어부 및 스킨부)를 하기 표 1에 나타내었다. The composition and thickness (core part and skin part) of Examples and Comparative Examples corresponding to the multilayer polyimide film of the present invention are shown in Table 1 below.
<실시예 1><Example 1>
공압출 다이의 제1 저장조에 상기 제조예 1에서 제조한 제1 조성물을 투입하고, 제2 저장조에 상기 제조예 2에서 제조한 제2 조성물을 투입하였다. The first composition prepared in Preparation Example 1 was added to the first storage tank of the coextrusion die, and the second composition prepared in Preparation Example 2 was added to the second storage tank.
그 후, 무단벨트 상에 제2 조성물, 제1 조성물 및 제2 조성물의 순서로 공압출하였다. 이때, 제1 저장조로부터 제1 조성물이 압출될 때에 촉매 저장조로부터 이소퀴놀린, 디메틸포름아마이드 및 아세틱안하이드라이드 혼합물이 혼합되도록 하였다. Thereafter, the second composition, the first composition and the second composition were coextruded on the endless belt in that order. At this time, when the first composition was extruded from the first storage tank, a mixture of isoquinoline, dimethylformamide and acetic anhydride was mixed from the catalyst storage tank.
촉매, 탈수제 및 용매 혼합액은 제1폴리아믹산과 혼합하였다.The catalyst, dehydrating agent, and solvent mixture were mixed with the first polyamic acid.
이어서, 약 150℃의 온도에서 열처리하고, 이를 다시 고온 텐터에서 150℃부터 600℃까지 가열한 후 25℃에서 냉각시켜 스킨부/코어부/스킨부 구조를 갖는 20μm의 다층 폴리이미드 필름을 수득하였다. Subsequently, heat treatment was performed at a temperature of about 150° C., and this was heated again from 150° C. to 600° C. in a high-temperature tenter, and then cooled at 25° C. to obtain a 20 μm multilayer polyimide film having a skin part/core part/skin part structure. .
<실시예 2 내지 4><Examples 2 to 4>
제조예 1에서 제1 폴리아믹산 조성(특히, 디아민 단량체 조성)이나 코어/스킨 두께비율을 제어한 것을 제외하고는, 실시예 1과 동일한 방법으로 다층 폴리이미드 필름을 제조하였다. In Preparation Example 1, a multilayer polyimide film was prepared in the same manner as in Example 1, except that the first polyamic acid composition (particularly, the diamine monomer composition) and the core/skin thickness ratio were controlled.
<비교예 1><Comparative Example 1>
제조예 1에서 제조된 제1 폴리아믹산에 촉매로서 이소퀴놀린과 아세틱안하이드라이드를 혼합한 전구체 조성물을 SUS plate상에 도포하였다. 이후, 100 ℃ 내지 200 ℃의 온도범위에서 열처리하고, 고온 텐터에서 200 ℃부터 600 ℃까지 가열한 후 25 ℃에서 냉각시켜 폴리이미드 필름을 수득하였다.A precursor composition obtained by mixing isoquinoline and acetic anhydride as a catalyst with the first polyamic acid prepared in Preparation Example 1 was coated on a SUS plate. Thereafter, heat treatment was performed in a temperature range of 100° C. to 200° C., heated from 200° C. to 600° C. in a high-temperature tenter, and then cooled at 25° C. to obtain a polyimide film.
<비교예 2 ><Comparative Example 2>
제조예 2에서 제2 폴리아믹산에 촉매로서 이소퀴놀린과 아세틱안하이드라이드를 혼합한 전구체 조성물을 SUS plate상에 도포하였다. 이후, 100 ℃ 내지 200 ℃의 온도범위에서 열처리하고, 고온 텐터에서 200 ℃부터 600 ℃까지 가열한 후 25 ℃에서 냉각시켜 폴리이미드 필름을 수득하였다.In Preparation Example 2, a precursor composition in which isoquinoline and acetic anhydride were mixed as a catalyst in the second polyamic acid was coated on a SUS plate. Thereafter, heat treatment was performed in a temperature range of 100° C. to 200° C., heated from 200° C. to 600° C. in a high-temperature tenter, and then cooled at 25° C. to obtain a polyimide film.
코어부 조성 (mol%)Core composition (mol%) 스킨부 조성 (mole%)Skin part composition (mole%) 두께 (μm)Thickness (μm)
디안하이드라이드Dianhydride 디아민Diamine 디안하이드라이드Dianhydride 디아민Diamine 코어core 스킨* Skin *
실시예 1Example 1 BPDA(50)/PMDA(50)BPDA(50)/PMDA(50) ODA(30)/P-PDA(70)ODA(30)/P-PDA(70) BPDA(97)/BTDA(3)BPDA(97)/BTDA(3) ODA(25)/DABA(7)/P-PDA(68)ODA(25)/DABA(7)/P-PDA(68) 1616 44
실시예 2Example 2 BPDA(50)/PMDA(50)BPDA(50)/PMDA(50) ODA(30)/P-PDA(70)ODA(30)/P-PDA(70) BPDA(97)/BTDA(3)BPDA(97)/BTDA(3) ODA(25)/DABA(7)/P-PDA(68)ODA(25)/DABA(7)/P-PDA(68) 1515 55
실시예 3Example 3 BPDA(50)/PMDA(50)BPDA(50)/PMDA(50) ODA(35)/P-PDA(65)ODA(35)/P-PDA(65) BPDA(97)/BTDA(3)BPDA(97)/BTDA(3) ODA(25)/DABA(7)/P-PDA(68)ODA(25)/DABA(7)/P-PDA(68) 1616 44
실시예 4Example 4 BPDA(50)/PMDA(50)BPDA(50)/PMDA(50) ODA(35)/P-PDA(65)ODA(35)/P-PDA(65) BPDA(97)/BTDA(3)BPDA(97)/BTDA(3) ODA(25)/DABA(7)/P-PDA(68)ODA(25)/DABA(7)/P-PDA(68) 1515 55
비교예 1Comparative Example 1 BPDA(50)/PMDA(50)BPDA(50)/PMDA(50) ODA(30)/P-PDA(70)ODA(30)/P-PDA(70) -- -- 2020 --
비교예 2Comparative Example 2 BPDA(97)/BTDA(3)BPDA(97)/BTDA(3) ODA(25)/DABA(7)/P-PDA(68)ODA(25)/DABA(7)/P-PDA(68) -- -- 2020 --
*스킨 두께: 전체 스킨의 두께*Skin thickness: The thickness of the entire skin
<실험예: 폴리이미드 필름의 특성 평가><Experimental Example: Evaluation of the properties of a polyimide film>
실시예 1 내지 4 및 비교예 1 및 2에서 각각 제조된 다층 폴리이미드 필름의 특성 평가를 위해, 하기 방법을 이용하여 탄성율, 강도, 접착력, CTE, 배향분석 및 접착력 측정하고, 그 결과를 하기 표 2에 나타내었다.In order to evaluate the properties of the multilayer polyimide films prepared in Examples 1 to 4 and Comparative Examples 1 and 2, respectively, elastic modulus, strength, adhesion, CTE, orientation analysis and adhesion were measured using the following method, and the results are shown in the following table. It is shown in 2.
- CTE: TA사 Q400 TMA장비로 측면의 대각선 방향 A와 직교하는 대각선 B를 0.05N 장력하에 승온속도 10도/분 속도로 360도까지 승온한 후 10도/분 속도로 냉각한 후 상온에서 10도/분으로 승온하여 100도 ~ 200도 구간의 열팽창계수를 측정하여 차이를 구했다. -CTE : With TA's Q400 TMA equipment, the diagonal B, which is orthogonal to the diagonal direction A of the side, is heated to 360 degrees at a heating rate of 10 degrees/minute under 0.05N tension, and then cooled at a rate of 10 degrees/minute, and then cooled at room temperature to 10 degrees. The temperature was raised in degrees/minute, and the difference was calculated by measuring the coefficient of thermal expansion in the range of 100 degrees to 200 degrees.
- 배향분석: OSI(왕자계측기)사 MOA-7015장비로 양 측면과 중앙부를 측정하여 MOR 차이를 계산하였다. -Orientation analysis : The MOR difference was calculated by measuring both sides and the center with the MOA-7015 equipment of OSI (Prince Measuring Instrument).
- 탄성율/강도: ASTM D 882 측정방법에 따라 인스트론(Instron 3365SER) 장비를 이용하여 측정하였다. -Elastic modulus/strength : It was measured using an Instron (Instron 3365SER) equipment according to the ASTM D 882 measurement method.
- 접착력: 이녹스사 Bonding Sheet(BSH-MX-25MP)와 일진동박(ICS)를 이용하여 180도 30MPa(압력) 60분 라미하여 FCCL을 제작한 후 Instron사 3365SER 장비로 200mm/min 조건으로 측정하였다.- adhesive strength was measured by Innox four Bonding Sheet (BSH-MX-25MP ) and Iljin copper foil 180 using the (ICS) 30MPa (pressure) and then making the FCCL to lamina 60 minutes Instron Corporation 200mm / min condition 3365SER equipment .
CTE(ppm)CTE (ppm) 배향분석(MOR차이)Orientation analysis (MOR difference) 탄성율(GPa)Modulus of elasticity (GPa) 강도(MPa)Strength (MPa) 접착력(gf/cm)Adhesion (gf/cm)
실시예 1Example 1 88 0.0030.003 7.57.5 400400 14001400
실시예 2Example 2 8.58.5 0.00350.0035 7.17.1 380380 14301430
실시예 3Example 3 8.88.8 0.0040.004 7.17.1 390390 14101410
실시예 4Example 4 9.29.2 0.00430.0043 6.86.8 360360 14501450
비교예 1Comparative Example 1 77 0.020.02 88 450450 10001000
비교예 2Comparative Example 2 1212 0.20.2 6.56.5 360360 14501450
표 2의 결과로부터, 실시예는 특히 배향 및 접착력 등에 있어서 모두 우수한 성능을 가짐을 알 수 있었다. 반면에, 비교예 1 내지 2는 이들 특성 중 적어도 하나가 불량함을 알 수 있다.From the results of Table 2, it can be seen that the Examples have excellent performance, particularly in orientation and adhesion. On the other hand, it can be seen that in Comparative Examples 1 to 2, at least one of these characteristics is poor.
즉, 본 발명의 실시예 1 내지 4는 모두 접착력 1,000 gf/cm 이상(특히 1,400 gf/cm 이상), CTE 7.5 ppm 이상 11 ppm 이하, MOR 차이 0.005 이하, 탄성율 6.8 GPa 이상 7.5 GPa 이하, 강도 360 MPa 이상 440 MPa 이하의 범위를 만족시켰다.That is, Examples 1 to 4 of the present invention all have adhesive strength 1,000 gf/cm or more (especially 1,400 gf/cm or more), CTE 7.5 ppm or more and 11 ppm or less, MOR difference 0.005 or less, modulus of elasticity 6.8 GPa or more and 7.5 GPa or less, strength 360 The range of MPa or more and 440 MPa or less was satisfied.
이에 비하여, 비교예 1은 실시예들 대비 CTE, 탄성율 및 강도 특성은 우수하였으나, MOR 차이 및 접착력 특성에서 저하된 측정 값을 나타냈고, 비교예 2는 실시예들 대비 접착력 특성을 우수하였으나, CTE, MOR 차이, CTE, 탄성율 특성에서 저하된 측정 값을 나타내었다. On the contrary, Comparative Example 1 exhibited excellent CTE, elastic modulus, and strength characteristics compared to the Examples, but exhibited a decreased measured value in MOR difference and adhesion characteristics, and Comparative Example 2 was excellent in adhesion characteristics compared to Examples, but CTE , MOR difference, CTE, and elastic modulus properties showed decreased measured values.
이상 본 발명의 상세한 설명을 통하여 본 발명의 일 실시예를 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Although one embodiment of the present invention has been described above through the detailed description of the present invention, it is possible for those of ordinary skill in the field to which the present invention belongs to perform various applications and modifications within the scope of the present invention based on the above contents. It will be possible.
본 발명은 특정 디안하이드라이드 단량체들과, 디아민 단량체들의 조합 및 이들의 특정한 배합비에 기인하고, 또한 서로 다른 조성의 폴리이미드 필름을 적층함으로써, 접착력이 우수하면서도, 소망하는 유리전이온도를 가지고, 고온에서 높은 저장탄성률을 내재하며, 이외에도 열응력을 완화하여 폭방향별 수축율 편차를 개선하여 치수 안정성이 우수한 다층 폴리이미드 필름 및 이의 효과적인 제조방법을 제공할 수 있다. The present invention is due to a combination of specific dianhydride monomers and diamine monomers and a specific mixing ratio thereof, and by laminating polyimide films of different compositions, excellent adhesion, while having a desired glass transition temperature, and high temperature In addition, it is possible to provide a multilayer polyimide film having excellent dimensional stability and an effective manufacturing method thereof by improving the deviation of the shrinkage rate in each width direction by easing thermal stress and in addition to it.
본 발명은 또한, 상기와 같은 다층 폴리이미드 필름을 포함하여 외관 품질이 우수한 연성동박적층판을 제공할 수 있다. The present invention may also provide a flexible copper clad laminate having excellent appearance quality, including the multilayer polyimide film as described above.

Claims (16)

  1. 4,4′-디아미노-2,2′-디메틸바이페닐(4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), 파라페닐렌디아민(p-phenylenediamine; p-PDA) 및 4,4′-옥시디아닐린(4,4′-oxydianiline; ODA)으로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디아민 유래 구조와 피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA) 및 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드(3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA)로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 유래 구조를 포함하는 코어부; 및4,4′-diamino-2,2′-dimethylbiphenyl (4,4′-Diamino-2,2′-dimethylbiphenyl; m-Tolidine), paraphenylenediamine (p-PDA), and Diamine-derived structures containing at least one selected from the group consisting of 4,4′-oxydianiline (ODA) and pyromellitic dianhydride (PMDA) and 3,3′ ,4,4′-biphenyltetracarboxylic dianhydride (3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA) Core containing a dianhydride-derived structure containing at least one selected from the group consisting of part; And
    상기 코어부의 적어도 일 외측면에 접촉하여 존재하며, 3,5-디아미노벤조산(3,5-diaminobenzoic acid; 3.5-DABA), 파라페닐렌디아민(p-phenylenediamine; p-PDA) 및 4,4′-옥시디아닐린(4,4′-oxydianiline; ODA)을 포함하는 디아민 유래 구조와 피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA), 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 (3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA) 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드(3,3',4,4'-Benzophenonetetracarboxylic dianhydride; BTDA)로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 유래 구조를 포함하는 스킨부;를 포함하는 다층 폴리이미드 필름.It is present in contact with at least one outer surface of the core part, 3,5-diaminobenzoic acid (3.5-DABA), paraphenylenediamine (p-PDA), and 4,4 Diamine-derived structures including'-oxydianiline (4,4'-oxydianiline; ODA) and pyromellitic dianhydride (PMDA), 3,3',4,4'-biphenyltetracarboxylic Dianhydride (3,3′,4,4′-Biphenyltetracarboxylic dianhydride; BPDA) and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (3,3′,4,4′-Benzophenonetetracarboxylic dianhydride; BTDA) a multilayer polyimide film comprising; a skin portion including a dianhydride-derived structure including at least one selected from the group consisting of.
  2. 제1항에 있어서, The method of claim 1,
    상기 코어부는 상기 파라페닐렌디아민 및 상기 4,4′-옥시디아닐린을 포함하는 디아민 유래 구조와 상기 피로멜리틱디안하이드라이드 및 상기 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드를 포함하는 디안하이드라이드 유래 구조를 포함하고,The core part is a diamine-derived structure including the paraphenylenediamine and the 4,4′-oxydianiline, and the pyromellitic dianhydride and the 3,3′,4,4′-biphenyltetracarboxylicdian It includes a dianhydride-derived structure including hydride,
    상기 스킨부는 상기 피로멜리틱디안하이드라이드, 상기 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 및 상기 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드를 포함하는 디안하이드라이드 유래 구조를 포함하는 다층 폴리이미드 필름.The skin portion is the pyromellitic dianhydride, the 3,3′,4,4′-biphenyltetracarboxylicdianhydride and the 3,3′,4,4′-benzophenonetetracarboxylicdianhydride Multilayer polyimide film comprising a dianhydride-derived structure comprising a.
  3. 제2항에 있어서, The method of claim 2,
    상기 코어부의 디안하이드라이드 단량체의 총함량 100 몰%를 기준으로 상기 피로멜리틱디안하이드라이드의 함량이 40 몰% 이상 60 몰% 이하이고, 상기 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드의 함량이 40 몰% 이상 60 몰% 이하이며,The content of the pyromellitic dianhydride is 40 mol% or more and 60 mol% or less, based on 100 mol% of the total content of the dianhydride monomer in the core portion, and the 3,3′,4,4′-biphenyltetra The content of carboxylic dianhydride is 40 mol% or more and 60 mol% or less,
    상기 코어부의 디아민 단량체의 총함량 100 몰%를 기준으로 상기 파라페닐렌디아민의 함량이 60 몰% 이상 80 몰% 이하이고, 상기 4,4′-옥시디아닐린의 함량이 20 몰% 이상 40 몰% 이하이며,The content of the paraphenylenediamine is 60 mol% or more and 80 mol% or less based on 100 mol% of the total content of the diamine monomer in the core portion, and the content of 4,4′-oxydianiline is 20 mol% or more and 40 mol % Or less,
    상기 스킨부의 디안하이드라이드 단량체의 총함량 100 몰%를 기준으로 상기 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드의 함량이 90 몰% 이상 99 몰% 이하이고, 상기 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드의 함량이 1 몰% 이상 10 몰% 이하이며, The content of the 3,3′,4,4′-biphenyltetracarboxylicdianhydride is 90 mol% or more and 99 mol% or less, based on 100 mol% of the total content of the dianhydride monomer of the skin portion, and the 3 The content of ,3′,4,4′-benzophenonetetracarboxylicdianhydride is 1 mol% or more and 10 mol% or less,
    상기 스킨부의 디아민 단량체의 총함량 100 몰%를 기준으로 상기 3,5-디아미노벤조산의 함량이 3 몰% 이상 15 몰% 이하이며, 상기 파라페닐렌디아민의 함량이 60 몰% 이상 80 몰% 이하이고, 상기 4,4′-옥시디아닐린의 함량이 15 몰% 이상 35 몰% 이하인 다층 폴리이미드 필름.The content of the 3,5-diaminobenzoic acid is 3 mol% or more and 15 mol% or less, based on 100 mol% of the total content of the diamine monomer of the skin part, and the content of paraphenylenediamine is 60 mol% or more and 80 mol% Or less, wherein the content of the 4,4′-oxydianiline is 15 mol% or more and 35 mol% or less.
  4. 제1항에 있어서,The method of claim 1,
    상기 코어부와 상기 스킨부의 두께는 6:4 내지 9:1 비로 존재하는 다층 폴리이미드 필름.A multilayer polyimide film having a thickness of the core portion and the skin portion in a ratio of 6:4 to 9:1.
  5. 제1항에 있어서,The method of claim 1,
    상기 코어부의 유리전이온도(Tg)가 360 ℃ 이상이고, 스킨부의 유리전이온도가 300 ℃ 이상이며, 접착력이 1,000 gf/cm 이상인 다층 폴리이미드 필름.A multilayer polyimide film having a glass transition temperature (T g ) of the core portion of 360° C. or more, a glass transition temperature of the skin portion of 300° C. or more, and an adhesive strength of 1,000 gf/cm or more.
  6. 제1항에 있어서,The method of claim 1,
    CTE가 7.5 ppm 이상 11 ppm 이하, MOR 차이가 0.005 이하, 탄성율 6.8 GPa 이상 7.5 GPa 이하, 강도 360 MPa 이상 440 MPa 이하인 다층 폴리이미드 필름.A multilayer polyimide film having a CTE of 7.5 ppm or more and 11 ppm or less, a MOR difference of 0.005 or less, an elastic modulus of 6.8 GPa or more and 7.5 GPa or less, and a strength of 360 MPa or more and 440 MPa or less.
  7. 제1항에 있어서,The method of claim 1,
    상기 스킨부는 상기 코어부의 적어도 일 외측면 및 상기 외측면의 반대면에 각각 접촉함으로써 상기 코어부의 양면에 존재하는 다층 폴리이미드 필름.The skin portion is a multilayer polyimide film present on both surfaces of the core portion by contacting at least one outer surface of the core portion and a surface opposite to the outer surface of the core portion.
  8. 4,4′-디아미노-2,2′-디메틸바이페닐, 파라페닐렌디아민 및 4,4′-옥시디아닐린으로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디아민 단량체와 피로멜리틱디안하이드라이드 및 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 단량체를 용매 중에서 중합하여 제조한 제1폴리아믹산을 수득하는 단계;Diamine monomer and pyromellitic dianhydride containing at least one selected from the group consisting of 4,4′-diamino-2,2′-dimethylbiphenyl, paraphenylenediamine and 4,4′-oxydianiline And 3,3′,4,4′-biphenyltetracarboxylicdianhydride; obtaining a first polyamic acid prepared by polymerizing a dianhydride monomer including at least one selected from the group consisting of a solvent;
    상기 제1폴리아믹산을 이미드화하여 제조되는 제1폴리이미드를 제조하는 단계;Preparing a first polyimide prepared by imidizing the first polyamic acid;
    3,5-디아미노벤조산, 파라페닐렌디아민 및 4,4′-옥시디아닐린을 포함하는 디아민 단량체와 피로멜리틱디안하이드라이드, 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 단량체를 용매 중에서 중합하여 제조한 제2폴리아믹산을 수득하는 단계;Diamine monomers including 3,5-diaminobenzoic acid, paraphenylenediamine and 4,4′-oxydianiline and pyromelliticdianhydride, 3,3′,4,4′-biphenyltetracarboxylicdian To obtain a second polyamic acid prepared by polymerizing a dianhydride monomer containing at least one selected from the group consisting of hydride and 3,3′,4,4′-benzophenonetetracarboxylicdianhydride in a solvent step;
    상기 제2폴리아믹산을 이미드화하여 제조되는 제2폴리이미드를 제조하는 단계;Preparing a second polyimide prepared by imidizing the second polyamic acid;
    상기 제1폴리이미드를 토출하는 제1토출부의 적어도 일 측면에서 상기 제1폴리이미드에 접촉하도록 상기 제2폴리이미드를 토출하는 제2토출부를 구비하여 공압출하는 단계;를 포함하는 다층 폴리이미드 필름의 제조방법. Coextrusion comprising a second discharge part discharging the second polyimide so as to contact the first polyimide from at least one side of the first discharging part discharging the first polyimide; Method of manufacturing.
  9. 4,4′-디아미노-2,2′-디메틸바이페닐, 파라페닐렌디아민 및 4,4′-옥시디아닐린 으로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디아민 단량체와 피로멜리틱디안하이드라이드 및 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 단량체를 용매 중에서 중합하여 제조한 제1폴리아믹산을 수득하는 단계;Diamine monomer and pyromellitic dianhydride containing at least one selected from the group consisting of 4,4′-diamino-2,2′-dimethylbiphenyl, paraphenylenediamine and 4,4′-oxydianiline And 3,3′,4,4′-biphenyltetracarboxylicdianhydride; obtaining a first polyamic acid prepared by polymerizing a dianhydride monomer including at least one selected from the group consisting of a solvent;
    3,5-디아미노벤조산, 파라페닐렌디아민 및 4,4′-옥시디아닐린을 포함하는 디아민 단량체와 피로멜리틱디안하이드라이드, 3,3′,4,4′-바이페닐테트라카복실릭디안하이드라이드 및 3,3′,4,4′-벤조페논테트라카복실릭디안하이드라이드로 이루어진 그룹에서 선택된 1종 이상을 포함하는 디안하이드라이드 단량체를 용매 중에서 중합하여 제조한 제2폴리아믹산을 수득하는 단계;Diamine monomers including 3,5-diaminobenzoic acid, paraphenylenediamine and 4,4′-oxydianiline and pyromelliticdianhydride, 3,3′,4,4′-biphenyltetracarboxylicdian To obtain a second polyamic acid prepared by polymerizing a dianhydride monomer containing at least one selected from the group consisting of hydride and 3,3′,4,4′-benzophenonetetracarboxylicdianhydride in a solvent step;
    상기 제1폴리아믹산을 토출하는 제1토출부의 적어도 일 측면에서 상기 제1폴리아믹산에 접촉하도록 상기 제2폴리아믹산을 토출하는 제2토출부를 구비하여 공압출하는 단계;Coextrusion with a second discharge part for discharging the second polyamic acid so as to contact the first polyamic acid at at least one side of the first discharge part for discharging the first polyamic acid;
    상기 공압출된 폴리아믹산을 이미드화하는 단계;를 포함하는 다층 폴리이미드 필름의 제조방법.Imidizing the coextruded polyamic acid; a method for producing a multilayer polyimide film comprising.
  10. 제8항 또는 제9항에 있어서,The method according to claim 8 or 9,
    상기 다층 폴리이미드 필름은 접착력이 1,000 gf/cm 이상이고,The multilayer polyimide film has an adhesive force of 1,000 gf/cm or more,
    상기 제1폴리아믹산으로부터 제조된 코어부의 유리전이온도(Tg)가 360 ℃ 이상이고, 상기 제2폴리아믹산으로부터 제조된 스킨부의 유리전이온도(Tg)가 300 ℃ 이상인 다층 폴리이미드 필름의 제조방법.Preparation of a multilayer polyimide film in which the glass transition temperature (T g ) of the core part prepared from the first polyamic acid is 360°C or higher, and the glass transition temperature (T g ) of the skin part prepared from the second polyamic acid is 300°C or higher Way.
  11. 제8항 또는 제9항에 있어서,The method according to claim 8 or 9,
    상기 다층 폴리이미드 필름은 CTE가 7.5 ppm 이상 11 ppm 이하, MOR 차이가 0.005 이하, 탄성율 6.8 GPa 이상 7.5 GPa 이하, 강도 360 MPa 이상 440 MPa 이하인 다층 폴리이미드 필름의 제조방법.The multilayer polyimide film has a CTE of 7.5 ppm or more and 11 ppm or less, a MOR difference of 0.005 or less, an elastic modulus of 6.8 GPa or more and 7.5 GPa or less, and a strength of 360 MPa or more and 440 MPa or less.
  12. 제8항 또는 제9항에 있어서,The method according to claim 8 or 9,
    상기 제1토출부가 상기 제2토출부와 접하는 면의 반대면에 위치하며, 상기 제1폴리이미드 또는 상기 제1폴리아믹산의 다른 일면에 접촉하도록 상기 제2폴리이미드 또는 제2폴리아믹산을 토출하는 제3토출부를 더 포함하는 다층 폴리이미드 필름의 제조방법.The first discharge part is located on a surface opposite to the surface in contact with the second discharge part, and discharges the second polyimide or the second polyamic acid so as to contact the other surface of the first polyimide or the first polyamic acid. A method of manufacturing a multilayer polyimide film further comprising a third discharge unit.
  13. 제8항 또는 제9항에 있어서,The method according to claim 8 or 9,
    상기 제1폴리아믹산 및 제2폴리아믹산은 각각 이미드화 촉매, 탈수제, 경화제, 충전제 및 이들이 하나 이상 혼합된 첨가제로 구성된 군에서 선택되는 어느 하나를 더 포함하는 다층 폴리이미드 필름의 제조방법.The first polyamic acid and the second polyamic acid each further comprises any one selected from the group consisting of an imidization catalyst, a dehydrating agent, a curing agent, a filler, and an additive in which one or more of them are mixed.
  14. 제9항에 있어서,The method of claim 9,
    상기 공압출하는 단계 및 공압출된 폴리아믹산을 이미드화하는 단계는 동시에 진행되는 것인 다층 폴리이미드 필름의 제조방법.The method of manufacturing a multilayer polyimide film wherein the coextrusion and imidization of the coextruded polyamic acid are performed simultaneously.
  15. 제1항 내지 제7항 중 어느 한 항의 다층 폴리이미드 필름 및 전기전도성의 금속박을 포함하는, 연성금속박적층판. A flexible metal foil laminated plate comprising the multilayer polyimide film according to any one of claims 1 to 7 and an electrically conductive metal foil.
  16. 제15항의 연성금속박적층판을 포함하는 전자 부품.An electronic component comprising the flexible metal foil laminate of claim 15.
PCT/KR2020/004621 2019-04-12 2020-04-06 Multilayer polyimide film having excellent dimensional stability and adhesiveness, and method for producing same WO2020209555A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080028126.3A CN113710483A (en) 2019-04-12 2020-04-06 Multi-layered polyimide film having excellent dimensional stability and adhesive force and method for preparing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20190042998 2019-04-12
KR10-2019-0042998 2019-04-12
KR10-2020-0038752 2020-03-31
KR1020200038752A KR102272716B1 (en) 2019-04-12 2020-03-31 Multilayer polyimide film having improved dimensional stability and adhesion, method for preparing the same

Publications (1)

Publication Number Publication Date
WO2020209555A1 true WO2020209555A1 (en) 2020-10-15

Family

ID=72751723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004621 WO2020209555A1 (en) 2019-04-12 2020-04-06 Multilayer polyimide film having excellent dimensional stability and adhesiveness, and method for producing same

Country Status (1)

Country Link
WO (1) WO2020209555A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175185A (en) * 2020-10-16 2021-01-05 吉林奥来德光电材料股份有限公司 Polyamide acid solution, preparation method thereof and preparation method of polyimide film containing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056186A (en) * 2004-08-23 2006-03-02 Kaneka Corp Method for producing polyimide compound multi-layer film and multi-manifold die suitable for use in the production method
KR20140025573A (en) * 2006-03-01 2014-03-04 가부시키가이샤 가네카 Process for producing multilayered polyimide film
JP2015212090A (en) * 2010-01-18 2015-11-26 株式会社カネカ Multilayer polyimide film and flexible metal-clad laminate using teh same
KR20160002386A (en) * 2014-06-30 2016-01-07 코오롱인더스트리 주식회사 Polyamic acid solution having high heat-resistance properties and Polyimide film
KR101842447B1 (en) * 2017-04-06 2018-05-14 주식회사 피엔에스테크놀로지 Low-temperature curable polyimide precursor composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056186A (en) * 2004-08-23 2006-03-02 Kaneka Corp Method for producing polyimide compound multi-layer film and multi-manifold die suitable for use in the production method
KR20140025573A (en) * 2006-03-01 2014-03-04 가부시키가이샤 가네카 Process for producing multilayered polyimide film
JP2015212090A (en) * 2010-01-18 2015-11-26 株式会社カネカ Multilayer polyimide film and flexible metal-clad laminate using teh same
KR20160002386A (en) * 2014-06-30 2016-01-07 코오롱인더스트리 주식회사 Polyamic acid solution having high heat-resistance properties and Polyimide film
KR101842447B1 (en) * 2017-04-06 2018-05-14 주식회사 피엔에스테크놀로지 Low-temperature curable polyimide precursor composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175185A (en) * 2020-10-16 2021-01-05 吉林奥来德光电材料股份有限公司 Polyamide acid solution, preparation method thereof and preparation method of polyimide film containing same

Similar Documents

Publication Publication Date Title
WO2016108491A1 (en) Thermal fusion multilayer polyimide film using crosslinked water-soluble thermoplastic polyamic acid, and preparation method thereof
WO2019194389A1 (en) Polyimide film for preparing flexible metal foil-clad laminate and flexible metal foil-clad laminate comprising same
WO2020096363A1 (en) Polyimide composite film having excellent dielectic characteristics and method for forming same
WO2019132184A1 (en) Polyimide film for manufacturing flexible copper clad laminate and flexible copper clad laminate comprising same
WO2020091432A1 (en) Polyimide precursor composition for enhancing adhesiveness of polyimide film and polyimide film manufactured therefrom
WO2021091011A1 (en) Highly heat-resistant and low dialectric-polyimide film and method for producing same
WO2021091014A1 (en) Polyimide film having improved dielectric properties, and manufacturing method for same
WO2021095975A1 (en) Low-dialectric polyimide film and method for producing same
WO2021096245A2 (en) Polyimide film having improved dimensional stability and manufacturing method thereof
WO2019194386A1 (en) Polyimide film for preparing flexible metal foil-clad laminate and flexible metal foil-clad laminate comprising same
WO2020111399A1 (en) Polyimide film comprising two or more fillers with different particle diameters and electronic apparatus comprising same
WO2016108490A1 (en) Crosslinked water-soluble thermoplastic polyamic acid and method for preparing same
WO2020209555A1 (en) Multilayer polyimide film having excellent dimensional stability and adhesiveness, and method for producing same
WO2020096410A1 (en) Polyimide composite film having improved adhesion to metal layer and method for manufacturing same
WO2021091013A1 (en) Polyimide film having high heat resistance and low dielectric properties, and manufacturing method for same
KR20190130526A (en) Polyimide Film for Preparing Flexible Copper Clad Laminate And Flexible Copper Clad Laminate Comprising the Same
KR102272716B1 (en) Multilayer polyimide film having improved dimensional stability and adhesion, method for preparing the same
WO2022065804A1 (en) Low-dielectric-constant polyimide film and manufacturing method therefor
WO2022098042A1 (en) Polyimide film having high dimensional stability, and method for manufacturing same
WO2020017699A1 (en) Polyamic acid having silane-based compound bound thereto, polyimide film manufactured thereof, and manufacturing method therefor
WO2020096364A1 (en) Polyimide composite film having excellent electromagnetic wave shielding performance, and manufacturing method therefor
WO2021049707A1 (en) Multilayer polyimide film and method for manufacturing same
WO2020075908A1 (en) Polyamic acid composition for producing polyimide resin with superior adhesion and polyimide resin produced therefrom
WO2020209524A1 (en) Low-dielectric loss multi-layer polyimide film having excellent adhesive strength and manufacturing method therefor
WO2020022564A1 (en) Polyimide precursor composition comprising aromatic carboxylic acid and polyimide film manufactured using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20788125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20788125

Country of ref document: EP

Kind code of ref document: A1