WO2019194386A1 - Polyimide film for preparing flexible metal foil-clad laminate and flexible metal foil-clad laminate comprising same - Google Patents

Polyimide film for preparing flexible metal foil-clad laminate and flexible metal foil-clad laminate comprising same Download PDF

Info

Publication number
WO2019194386A1
WO2019194386A1 PCT/KR2018/014616 KR2018014616W WO2019194386A1 WO 2019194386 A1 WO2019194386 A1 WO 2019194386A1 KR 2018014616 W KR2018014616 W KR 2018014616W WO 2019194386 A1 WO2019194386 A1 WO 2019194386A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyimide film
diamine
polyimide
metal foil
polyamic acid
Prior art date
Application number
PCT/KR2018/014616
Other languages
French (fr)
Korean (ko)
Inventor
백승열
이길남
최정열
Original Assignee
에스케이씨코오롱피아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이씨코오롱피아이 주식회사 filed Critical 에스케이씨코오롱피아이 주식회사
Priority to CN201880091990.0A priority Critical patent/CN111918907B/en
Publication of WO2019194386A1 publication Critical patent/WO2019194386A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Definitions

  • the present invention relates to a polyimide film for producing a flexible metal laminate and a flexible metal laminate comprising the same.
  • Polyimide (PI) is a polymer having the highest level of heat resistance, chemical resistance, electrical insulation, chemical resistance and weather resistance among organic materials, based on an imide ring having a high chemical stability with a rigid aromatic backbone. Material.
  • polyimide is in the spotlight as an insulating material for microelectronic components in which the above characteristics are strongly required.
  • microelectronic component examples include a thin circuit board having a high degree of circuit integration and a flexible circuit board to cope with light weight and miniaturization of electronic products.
  • the polyimide is widely used as an insulating film of a thin circuit board.
  • a thin circuit board generally has a structure in which a circuit including a metal foil is formed on a polyimide film, and such a thin circuit board is also referred to as a flexible metal foil clad laminate in a broad sense.
  • an insulator having a high impedance capable of maintaining electrical insulation even at high frequencies is required.
  • the dielectric constant should be as low as possible to maintain insulation at high frequencies.
  • the dielectric constant is not high enough to maintain sufficient insulation in the high frequency communication of about 3.4 to 3.6, and for example, the insulation is partially provided in the thin circuit board having the high frequency communication of 2 GHz or more. Or there is a possibility of total loss.
  • the dielectric constant of the insulator is lowered, it is possible to reduce undesirable stray capacitance and noise in the thin circuit board, and it is known that the cause of communication delay can be largely eliminated. As low as possible, the dielectric constant is considered to be the most important factor in the performance of thin circuit boards.
  • Dielectric dissipation factor (Df) refers to the degree of waste of electrical energy in thin circuit boards and is closely related to the signal propagation delays that determine the communication speed, so that the dielectric loss rate of polyimide is as low as possible. It is recognized as an important factor for the performance of the substrate.
  • a polyimide film prepared by combining a specific diamine monomer containing a nonpolar aliphatic moiety and a pyromellitic dianhydride, and imidizing the polyimide film is prepared in a polyimide polymer chain. Based on the special structure containing the nonpolar aliphatic moiety, it is possible to suppress moisture absorption which adversely affects the dielectric constant and the dielectric loss rate.
  • the flexible metal laminate comprising the polyimide film is a circuit capable of high-speed communication at a high frequency based on the relatively low dielectric constant and dielectric loss rate of the polyimide film while having a desired glass transition temperature It can be implemented as.
  • the present invention has a substantial object to provide a specific embodiment thereof.
  • a diamine monomer comprising a first diamine represented by the following formula (1) and a second diamine represented by the following formula (2);
  • polyimide film prepared by imidizing a polyamic acid derived from polymerization of pyromellitic dianhydride (PMDA), having a dielectric constant (Dk) of 3.4 or less and a dielectric loss factor (Df) of 0.005 or less. .
  • PMDA pyromellitic dianhydride
  • the dielectric loss ratio is also improved at the same time while having the desired glass transition temperature and dielectric constant, so that the insulation reliability is high even at a high frequency and signal transmission delay can be minimized.
  • a diamine monomer comprising a first diamine represented by the following formula (1) and a second diamine represented by the following formula (2);
  • It is prepared by imidating a polyamic acid derived from the polymerization of pyromellitic dianhydride (PMDA), and has a dielectric constant (Dk) of 3.4 or less and a dielectric loss ratio (Df) of 0.005 or less.
  • PMDA pyromellitic dianhydride
  • R 1 and R 2 are each independently a C 1 -C 6 alkyl group or a C 1 -C 6 alkoxy group;
  • R 3 is —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, — (CH 2 ) n 1 —, or —O (CH 2 ) n 2 O—, wherein n 1 and n 2 Are each independently an integer of 1 to 10.
  • the dielectric loss factor (Df) is 0.005 or less
  • Glass transition temperature (Tg) is 320 degreeC or more.
  • the polyimide film that satisfies all the above four conditions, it can be used as an insulating film for the flexible metal laminate, and the manufactured flexible metal laminate is used as an electrical signal transmission circuit for transmitting signals at a high frequency of 2 GHz or more. Even if it is, its insulation stability can be ensured, and signal propagation delay can also be minimized.
  • the polyimide film having all four of these conditions is a novel polyimide film which has not been known so far, and the four conditions will be described in detail below.
  • Permittivity is an important characteristic value that represents the electrical properties of a dielectric (or insulator), that is, a non-conductor.
  • the permittivity is not directly representative of the electrical properties of a DC current, but is directly related to the characteristics of AC currents, especially AC electromagnetic waves. Known.
  • the + and-moment components which are normally scattered in a random direction in general, are aligned with an alternating current change of an electromagnetic field applied outside the insulator.
  • the moment components are changed in accordance with the change direction of the electromagnetic field, it is possible to enable the progress of electromagnetic waves inside even the non-conductor.
  • the degree of sensitivity and how sensitively the moment inside the material reacts can be expressed as permittivity.
  • the dielectric constant of liquid crystal polymers is known to be about 2.9 to 3.3, which is much better than an insulator compared to a conventional polyimide having most dielectric constants. can see.
  • the polyimide film according to the present invention may have a dielectric constant close to or lower than the dielectric constant of the liquid crystal polymer, specifically, a dielectric constant of 3.4 or less, specifically, 3.0 or less, and the lower limit thereof may be at least 2.8. have.
  • the capacitor has a property of lowering the impedance as the frequency of the current or voltage at both ends thereof, the value can be expressed as follows.
  • -C e * S / d; Where e is the dielectric constant, S is the area of the conductor, and d is the distance.
  • the polyimide film according to the present invention has a relatively low dielectric constant as described above, and thus is easy to maintain insulation even at a frequency in a giga (GIGA) unit, for example, communication equipment operating at a very high frequency of 10 GHz. There is an advantage.
  • GIGA giga
  • dielectric loss factor is meant the force dissipated by the dielectric (or insulator) when the friction of the molecules interferes with the molecular motion caused by the alternating electric field.
  • dielectric loss rate is commonly used as an index indicating the ease of dissipation (dielectric loss), and the higher the dielectric loss rate, the easier the charge is to be lost. Conversely, the lower the dielectric loss rate, the more difficult it is to be lost. have.
  • the dielectric loss rate is a measure of power loss. As the dielectric loss rate is lower, the signal transmission delay due to power loss is alleviated, and thus the communication speed can be maintained quickly.
  • polyimide films which are insulating films, in which the polyimide film according to the invention has a dielectric loss factor of 0.005 or less, in particular 0.004 or less, more specifically, 0.003 under a fairly high frequency of about 2 GHz. It may be:
  • a moisture absorption rate is a ratio which shows the moisture content which a material absorbs, and generally, it is known that dielectric constant and dielectric loss rate increase when moisture absorption rate is high.
  • the dielectric constant is at least 100, in the liquid state, it is about 80, and in the gaseous water vapor, it is known as 1.0059.
  • water present in the water vapor state other than the polyimide film does not substantially affect the dielectric constant and dielectric loss rate of the polyimide film.
  • the dielectric constant and dielectric loss rate of the polyimide film may change rapidly even with a small amount of moisture absorption.
  • the polyimide film according to the present invention may have a moisture absorption of 2.3% by weight or less, in detail, 2.0% by weight or less, and more specifically 1.7% by weight or less, based on the total weight of the polyimide film. It is due to the structural features of the polyimide film according to the invention.
  • non-polar part is included in the molecular structure of the polyimide film according to the present invention, and that the imide group close to hydrophilicity is occupied relatively low.
  • the glass transition temperature can be obtained from the storage modulus and loss modulus measured by the dynamic viscoelasticity measuring device (DMA), and in detail, the top peak of tan ⁇ which is the value of the calculated loss modulus divided by the storage modulus. ) Can be calculated as the glass transition temperature.
  • DMA dynamic viscoelasticity measuring device
  • the glass transition temperature is related to the heat resistance of the polyimide film, and may be higher when considering the use of the insulating film.
  • the highest level of glass transition temperature, dielectric constant, and wireline loss rate are difficult to achieve.
  • the reason is that the strong heat resistance of the polyimide film is due to the chemical stability of the imide group. It is expected to be due to a relatively weak point to moisture absorption.
  • the present invention provides a polyimide film in which both the glass transition temperature, the dielectric constant, and the streamline loss ratio are both at a desirable level.
  • the glass transition temperature of the polyimide film according to the present invention may be 320 ° C. or more.
  • the temperature may be 320 ° C or higher and 380 ° C or lower, and particularly preferably 350 ° C or higher and 370 ° C or lower.
  • the glass transition temperature is lower than the above range, when laminating, a large dimensional change may be accompanied because the viscosity of the polyimide film is relatively high. This is not preferable because it causes the appearance quality to be impaired.
  • the glass transition temperature is higher than the above range, the temperature required to soften the core layer to a level sufficient to alleviate the thermal distortion is too high, so that the existing laminate apparatus cannot sufficiently relieve thermal stress, and the dimensional change is worsened. There is a possibility.
  • the polyimide film according to the present invention can be utilized as an insulating film for a flexible metal laminate, as well as satisfying all four conditions described above, and also ensures insulation stability even at high frequencies, and delays signal transmission. Can also be minimized.
  • the dianhydride monomer, the diamine monomer and the blending ratio thereof are described in detail through the following non-limiting examples.
  • the diamine monomer may be 50 mol% or more and 80 mol% or less, and 20 mol% or more and 50 mol% or less of the first diamine, based on the total number of moles thereof. .
  • the molecular weight may be 400 g / mol to 600 g / mol, and for the first diamine, the molecular weight may be 200 g / mol to 250 g / mol.
  • the molecular weight of the polyimide polymer chain formed by imidating the polyamic acid may also increase.
  • the total molecular weight of one polyimide polymer chain increased with the content of the second diamine is such that the aromatic portion of the second diamine occupies most of the portion derived from the diamine monomer, while per second diamine molecule. Since only two amine groups are supplied, in the case of imide groups derived from the diamine, the proportion of the total molecular weight may be relatively reduced.
  • hydrophobicity improves also about the whole polyimide film, and lower moisture absorption can be expected.
  • the present invention emphasizes that it is not desirable for the second diamine to exceed 50 mol%, based on the total moles of the diamine monomer.
  • the moisture absorption rate is not preferable because it does not reach a desired level.
  • the molecular weight of the diamine monomer can be adjusted to an appropriate level, which is understood to control the proportion of the aromatic moiety in one polyimide polymer chain. Can be.
  • the first diamine may also serve as another source of amine groups for forming imide groups, for a desired level of heat resistance.
  • the polyimide polymer chain formed by imidating the polyamic acid may include an aliphatic moiety derived from R 1 and R 2 of the first diamine and R 3 of the second diamine.
  • Such aliphatic moieties may be appropriately selected to have non-polarity, and non-limiting examples of aliphatic moieties for understanding include -CH 3 , -CF 3 , and the like. As described above, since the aliphatic moieties derived from R1, R2, and R3 have nonpolarity, the hygroscopicity of the polyimide polymer chain can be reduced.
  • the proportion of amic acid groups that significantly affect the increase in hygroscopicity throughout the polyamic acid may be relatively low. Therefore, it can act positively to lower the hygroscopicity of the polyimide film containing such polyamic acid.
  • the aliphatic moieties derived from R1, R2, and R3 can be understood as the main factors for the polyimide film according to the present invention to have a low dielectric constant and a low dielectric loss rate.
  • R1, R2, and R3 can be understood as the main factors for the polyimide film according to the present invention to have a low dielectric constant and a low dielectric loss rate.
  • the aliphatic moieties derived from R1, R2, and R3 improve nonpolarity and at the same time provide the desired level of flexibility in the polyimide film to reduce defect rates in the filming process and to produce levels suitable for producing flexible metal laminates.
  • the glass transition temperature and thermal expansion coefficient of can be obtained.
  • the molecular weight of the aliphatic moiety is 5% to 20 based on the total molecular weight of one polyimide polymer chain. %, In detail, may be 6% to 17%.
  • the R1 and R2 may be an alkyl group having a non-polarity, while excluding excessive molecular weight occupancy of the aliphatic portion, in detail, each of the R1 and R2 may be a methyl group.
  • R3 may also be a substituent having a nonpolarity while excluding an excessively aliphatic molecular weight occupancy, and in detail, may be -C (CF 3 ) 2 -or -C (CH 3 ) 2- .
  • fluorine may contribute to lowering the dielectric constant and may express strong nonpolarity, which may be particularly preferable as R 3.
  • the first diamine may be 4,4'-diamino-2,2'-dimethylbiphenyl (4,4'-Diamino-2,2'-dimethylbiphenyl: m-Tolidine).
  • the second diamine is 2,2-bis [4- (4-aminophenoxyphenyl)] hexafluoropropane (2,2-Bis [4- (4-aminophenoxy phenyl)] hexafluoropropane: HFBAPP).
  • the diamine monomer may have a relatively large molecular weight.
  • the dianhydride monomer may be a monomer having a relatively small molecular weight.
  • pyromellitic dianhydride having a relatively low molecular weight of 218 may be preferred as dianhydride monomer.
  • the pyromellitic dianhydride (PMDA) may also be viewed as a dianhydride monomer having a relatively rigid structure.
  • the pyromellitic dianhydride (PMDA) is preferable in that it can impart proper elasticity to the polyimide film prepared by imidating the polyamic acid.
  • the polyimide film of this invention is obtained from the polyamic-acid solution which is a precursor of polyimide.
  • the polyamic acid solution is obtained by dissolving a monomer compound blended in such a manner that the aromatic diamine monomer and the aromatic dianhydride monomer are substantially equimolar in an organic solvent, and the obtained polyamic acid organic solvent solution is prepared under controlled temperature conditions. It is prepared by stirring until the polymerization of the monomer is completed.
  • the polyamic acid solution is usually obtained at a solid content of 5 to 35% by weight, preferably at a concentration of 10 to 30% by weight.
  • the polyamic acid solution obtains the appropriate molecular weight and solution viscosity.
  • the solvent for synthesizing the polyamic acid solution is not particularly limited, and any solvent may be used as long as it is a solvent in which the polyamic acid is dissolved, but is preferably an amide solvent.
  • the solvent may be an organic polar solvent, and in detail, may be an aprotic polar solvent, for example, N, N'-dimethylformamide (DMF), N, It may be one or more selected from the group consisting of N'-dimethylacetamide, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), Diglyme (Diglyme), but is not limited thereto. It can be used individually or in combination of 2 or more types.
  • NMP N-methyl-pyrrolidone
  • GBL gamma butyrolactone
  • Diglyme Diglyme
  • the solvent may particularly preferably be N, N-dimethylformamide and N, N-dimethylacetamide.
  • this invention provides the manufacturing method of a polyimide film.
  • all monomers may be added in one step or the monomers may be sequentially added in step (a), and in this case, partial polymerization between monomers may occur.
  • all monomers may be added in one step or the monomers may be sequentially added in step (a), and in this case, partial polymerization between monomers may occur.
  • the final polyamic acid prepared through the steps (a) to (b) has a molecular structure in which partial chains having different physical properties are connected.
  • the physical properties of the polyimide film obtained by imidating the polyamic acid by adjusting the position, length of the partial chain and the type and content of the monomer constituting the same for example, dielectric constant, dielectric loss rate, glass transition temperature, moisture absorption rate You can fine tune your back.
  • the filler may be added for the purpose of improving various properties of the film, such as sliding, thermal conductivity, conductivity, corona resistance, loop hardness.
  • the filler to be added is not particularly limited, but preferred examples thereof include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
  • the particle size of the filler is not particularly limited and can be determined according to the film properties to be modified and the type of filler to be added.
  • the average particle diameter may be from 0.05 to 100 ⁇ m, preferably from 0.1 to 75 ⁇ m, more preferably from 0.1 to 50 ⁇ m, particularly preferably from 0.1 to 25 ⁇ m.
  • the modifying effect is less likely to appear. If the particle size is larger than this range, the surface properties may be largely impaired, or the mechanical properties may be greatly reduced.
  • the addition amount of the filler is not particularly limited, and can be determined by the film characteristics to be modified, the particle size of the filler, and the like.
  • the addition amount of the filler may be 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, more preferably 0.02 to 80 parts by weight based on 100 parts by weight of polyimide.
  • the amount of filler added is less than this range, the effect of modification by the filler is less likely to appear, and if it exceeds this range, mechanical properties of the film may be largely impaired.
  • the addition method of a filler is not specifically limited, Any known method can also be used.
  • thermal imidation method the chemical imidation method, or the composite imidation method which used the thermal imidation method and the chemical imidation method together is mentioned.
  • the thermal imidization method is a method of imidizing a polyamic acid solution by heating only without using a catalyst such as a dehydrating agent. After forming a polyamic acid on a support, it is 40 to 400 degreeC, Preferably it is 40 to 300 degreeC It is a method of obtaining a polyimide film in which the polyamic acid is imidated by gradually increasing the temperature in the temperature range of 1 to 8 hours.
  • the chemical imidation method is a method of promoting imidization of a polyamic acid solution using a catalyst such as a dehydrating agent and / or an imidizing agent.
  • a dehydrating agent and an imidization catalyst are added to a polyamic acid solution to form a film on a support, and then heated at 80 to 200 ° C, preferably 100 to 180 ° C, partially cured and dried, and then at 200 to 400 ° C.
  • the polyimide film can be obtained by heating for 5 to 400 seconds.
  • dehydrating agents are, for example, aliphatic acid anhydride, aromatic acid anhydride, N, N'-dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower fatty acid anhydride, arylphosphonic acid dihalide, and thionyl halide, or And mixtures of two or more thereof.
  • aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, and lactic anhydride, or a mixture of two or more thereof can be preferably used in view of ease of availability and cost.
  • an imidation agent an aliphatic tertiary amine, an aromatic tertiary amine, a heterocyclic tertiary amine, etc. are used, for example.
  • heterocyclic tertiary amines are particularly preferably used in view of reactivity as a catalyst.
  • quinoline isoquinoline, ⁇ -picolin, pyridine and the like are preferably used.
  • the imidization step is performed by applying the film forming composition containing the polyamic acid solution on a support, and heat treating the film to a temperature range of 40 ° C. to 300 ° C. on the support. And a step of peeling the gel film from the support and further heating the gel film to imidize and dry the remaining amic acid (hereinafter also referred to as "firing process").
  • a dehydrating agent and / or an imidating agent are mixed in a polyamic-acid solution at low temperature, and a composition for film forming is obtained.
  • the said dehydrating agent and the imidating agent are not specifically limited, The compound illustrated above can be selected and used.
  • the said gel film manufacturing process it can also mix in a polyamic-acid solution using the hardening
  • the chemical imidation may be insufficient, and may break during firing or the mechanical strength may decrease.
  • the film forming composition is then cast in a film form on a support such as a glass plate, an aluminum foil, an endless stainless belt, or a stainless drum.
  • the film forming composition is heated on a support in a temperature range of 80 ° C to 200 ° C, preferably 100 ° C to 180 ° C.
  • the dehydrating agent and the imidizing agent are activated, and partially hardening and / or drying occurs, thereby forming a gel film.
  • the gel film is in the intermediate stage of curing from polyamic acid to polyimide and is self supporting.
  • This invention provides the flexible metal foil laminated board containing the polyimide film mentioned above and an electrically conductive metal foil.
  • metal foil When using the flexible metal foil laminated board of this invention for an electronic device or an electrical device use, it is copper or a copper alloy, stainless steel or its alloys, nickel or a nickel alloy (alloy 42, for example). And metal foil including aluminum or an aluminum alloy.
  • copper foil such as a rolled copper foil and an electrolytic copper foil
  • a rolled copper foil and an electrolytic copper foil is used abundantly, and can also be used suitably also in this invention.
  • the antirust layer, a heat resistant layer, or an adhesive layer may be apply
  • a metal foil is laminated on one surface of the polyimide film, or an adhesive layer containing thermoplastic polyimide is added to one surface of the polyimide film, and the metal foil is attached to the adhesive layer. It may be a laminated structure.
  • the present invention also provides an electronic component comprising the flexible metal laminate sheet as an electrical signal transmission circuit.
  • the electrical signal transmission circuit may be an electronic component that transmits a signal at a high frequency of at least 2 GHz, specifically at a high frequency of at least 5 GHz, and more particularly at a high frequency of at least 10 GHz.
  • the electronic component may be, for example, a communication circuit for a portable terminal, a communication circuit for a computer, or a communication circuit for aerospace, but is not limited thereto.
  • the imidation promoter including acetic anhydride / isoquinoline / DMF (46% / 13% / 41% by weight) was added to the polyamic acid solution thus obtained at 50 parts by weight based on 100 parts by weight of the polyamic acid solution, and the obtained mixture was made of stainless steel. After application to the plate was cast using a 400 ⁇ m gap using a doctor blade and dried for 4 minutes with hot air in a 120 °C oven to prepare a gel film.
  • the gel film thus prepared was peeled off from the stainless steel plate and fixed with a frame pin. After heat-treating the frame on which the gel film was fixed at 400 ° C. for 7 minutes, the film was removed to obtain a polyimide film having an average thickness of 15 ⁇ m.
  • a polyimide film having a thickness of 15 ⁇ m was obtained in the same manner as in Example 1 except that the molar ratio of m-tolidine and HFBAPP was changed as in Table 1.
  • a polyimide film having a thickness of 15 ⁇ m was obtained in the same manner as in Example 1 except that the molar ratio of m-tolidine and HFBAPP was changed as in Table 1.
  • a polyimide film having a thickness of 15 ⁇ m was obtained in the same manner as in Example 1 except that the molar ratio of m-tolidine and HFBAPP was changed as in Table 1.
  • a polyimide film having a thickness of 15 ⁇ m was obtained in the same manner as in Example 1 except that the molar ratio of m-tolidine and HFBAPP was changed as in Table 1.
  • a polyimide film having a thickness of 15 ⁇ m was obtained in the same manner as in Example 1 except that the molar ratio of m-tolidine and HFBAPP was changed as in Table 1.
  • a polyimide film having a thickness of 15 ⁇ m was obtained in the same manner as in Example 1 except that ODA was added in the molar ratio shown in Table 1 instead of m-tolidine and HFBAPP.
  • a polyimide film having a thickness of 15 ⁇ m was obtained in the same manner as in Example 1 except that ODA and PPD were added in the molar ratio shown in Table 1 instead of m-tolidine and HFBAPP.
  • a polyimide film having a thickness of 15 ⁇ m was obtained in the same manner as in Example 1 except that PMDA and BPDA were added in the molar ratio shown in Table 1 instead of adding PMDA alone.
  • a polyimide film having a thickness of 15 ⁇ m was obtained in the same manner as in Example 1 except that BPDA was added in the molar ratio shown in Table 1 instead of PMDA.
  • Example 1 100 - 70 30 - - Example 2 100 - 80 20 - - Example 3 100 - 50 50 - - Comparative Example 1 100 - 30 70 - - Comparative Example 2 100 - 90 10 - - Comparative Example 3 100 - 40 60 - - Comparative Example 4 100 - - - - 100 Comparative Example 5 100 - - - 25 75 Comparative Example 6 50 50 70 30 - - Comparative Example 7 - 100 70 30 - - -
  • the glass transition temperature and the moisture absorption rate of the polyimide film obtained as described above were measured in the following manner.
  • the loss modulus and storage modulus of each film were calculated using DMA, and the inflection point was measured by the glass transition temperature in the tangent graph.
  • a polyimide film was cut into squares having a size of 5 cm ⁇ 5 cm to prepare specimens. After soaking in water at 23 ° C. for 24 hours, the weight was again measured, and the moisture absorption rate was measured by expressing the difference in weight obtained as%.
  • Dielectric constant and dielectric loss rate were measured by using a ohmmeter Agilent 4294A for 72 hours.
  • the polyimide film prepared according to the embodiment of the present invention can be confirmed that not only the moisture absorption rate, dielectric constant and dielectric loss rate is significantly lower, but also the desired glass transition temperature, as described above. Likewise, all of the following conditions are satisfied.
  • the dielectric loss factor (Df) is 0.005 or less
  • Glass transition temperature (Tg) is 320 degreeC or more.
  • Comparative Examples 1 to 3 in which the content of the diamine monomer is out of the range according to the present invention can be seen that at least one of the moisture absorption rate, dielectric constant and dielectric loss rate, and glass transition temperature is significantly reduced.
  • Comparative Examples 4 and 5 having different diamine monomers from the Examples also had significant differences in dielectric constant, dielectric loss rate, and moisture absorption rate compared with the Examples.
  • Comparative Examples 4 and 5 show a significantly higher dielectric constant and dielectric loss rate compared to the examples, which can be expected to be difficult to use in electronic components in which signal transmission is performed at a high frequency in units of gigabytes.
  • Comparative Examples 4 and 5 greatly exceeds the preferred range disclosed in the present invention, which has already been described as being able to work very disadvantageously in the processing of the polyimide film.
  • the present invention has a relatively low hygroscopicity with a desired glass transition temperature due to the combination of specific dianhydride monomers, diamine monomers and their specific blending ratio, and the dielectric constant according to moisture absorption. And it can provide the polyimide film by which the dielectric loss rate raise was suppressed.
  • the present invention can also provide a flexible metal laminate that can be utilized as an electrical transmission circuit capable of high frequency communication of 2 GHz or more, including the polyimide film as described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The present invention provides a polyimide film prepared by imidizing a polyamic acid derived from the polymerization of: a diamine monomer comprising first diamine represented by chemical formula (1) and second diamine represented by chemical formula (2); and pyromellitic dianhydride (PMDA). The dielectric constant (Dk) is 3.4 or lower, and the dielectric loss rate (Df) is 0.005 or lower.

Description

연성금속박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성금속박적층판Polyimide film for manufacturing flexible metal laminate and flexible metal laminate comprising same
본 발명은 연성금속박적층판 제조용 폴리이미드 필름 및 이를 포함하는 연성금속박적층판에 관한 것이다.The present invention relates to a polyimide film for producing a flexible metal laminate and a flexible metal laminate comprising the same.
폴리이미드(polyimide, PI)는, 강직한 방향족 주쇄와 함께 화학적 안정성이 매우 우수한 이미드 고리를 기초로 하여, 유기 재료들 중에서도 최고 수준의 내열성, 내약품성, 전기 절연성, 내화학성, 내후성을 가지는 고분자 재료이다.Polyimide (PI) is a polymer having the highest level of heat resistance, chemical resistance, electrical insulation, chemical resistance and weather resistance among organic materials, based on an imide ring having a high chemical stability with a rigid aromatic backbone. Material.
따라서, 폴리이미드는 전술의 특성들이 강력하게 요구되는 미소 전자 부품의 절연 소재로서 각광받고 있다.Accordingly, polyimide is in the spotlight as an insulating material for microelectronic components in which the above characteristics are strongly required.
미소 전자 부품을 예로는 전자제품의 경량화와 소형화에 대응 가능하도록 회로 집적도가 높고 유연한 박형 회로기판을 들 수 있으며, 상기 폴리이미드가 박형 회로기판의 절연 필름으로 널리 이용되고 있다.Examples of the microelectronic component include a thin circuit board having a high degree of circuit integration and a flexible circuit board to cope with light weight and miniaturization of electronic products. The polyimide is widely used as an insulating film of a thin circuit board.
참고로, 박형 회로기판은, 폴리이미드 필름 상에 금속박을 포함하는 회로가 형성되어 있는 구조가 일반적이며, 이러한 박형 회로기판을 넓은 의미에서 연성금속박적층판(Flexible Metal Foil Clad Laminate)으로 지칭하기도 한다.For reference, a thin circuit board generally has a structure in which a circuit including a metal foil is formed on a polyimide film, and such a thin circuit board is also referred to as a flexible metal foil clad laminate in a broad sense.
한편, 최근 전자 기기에 다양한 기능들이 내재됨에 따라 상기 전자기기에 빠른 연산 속도와 통신 속도가 요구되고 있으며, 이를 충족하기 위해 2 GHz 이상의 고주파로 고속 통신이 가능한 박형 회로기판이 개발되고 있다.Meanwhile, as various functions are recently embedded in electronic devices, fast computing speeds and communication speeds are required for the electronic devices, and thin circuit boards capable of high-speed communication at high frequencies of 2 GHz or more have been developed to satisfy these requirements.
고주파 고속 통신을 실현하기 위해서는, 고주파에서도 전기 절연성을 유지할 수 있는 높은 임피던스(impedance)를 가지는 절연체가 필요하다.In order to realize high frequency high speed communication, an insulator having a high impedance capable of maintaining electrical insulation even at high frequencies is required.
임피던스는 절연체에 형성되는 주파수 및 유전상수(dielectric constant; Dk)와 반비례 관계인 바, 고주파에서도 절연성을 유지하기 위해서는 유전상수가 가능한 낮아야 한다.Since the impedance is inversely related to the frequency and dielectric constant (Dk) formed in the insulator, the dielectric constant should be as low as possible to maintain insulation at high frequencies.
그러나, 통상의 폴리이미드의 경우 유전상수가 3.4 내지 3.6 정도로 고주파 통신에서 충분한 절연성을 유지할 수 있을 정도로 우수한 수준은 아니며, 예를 들어, 2 GHz 이상의 고주파 통신이 진행되는 박형 회로기판에서 절연성을 부분적으로 또는 전체적으로 상실할 가능성이 존재한다.However, in the case of the conventional polyimide, the dielectric constant is not high enough to maintain sufficient insulation in the high frequency communication of about 3.4 to 3.6, and for example, the insulation is partially provided in the thin circuit board having the high frequency communication of 2 GHz or more. Or there is a possibility of total loss.
또한, 절연체의 유전상수가 낮을수록 박형 회로기판에서 바람직하지 않은 부유 용량(stray capacitance)과 노이즈의 발생을 감소시킬 수 있어, 통신 지연의 원인을 상당부분 해소할 수 있는 것으로 알려져 있는 바, 폴리이미드의 유전상수를 가능한 낮게 하는 것은 박형 회로기판의 성능에 무엇보다 중요한 요인으로 인식되고 있는 실정이다.In addition, as the dielectric constant of the insulator is lowered, it is possible to reduce undesirable stray capacitance and noise in the thin circuit board, and it is known that the cause of communication delay can be largely eliminated. As low as possible, the dielectric constant is considered to be the most important factor in the performance of thin circuit boards.
또 하나 주목할 것은, 2 GHz 이상의 고주파 통신의 경우 필연적으로 폴리이미드를 통한 유전 손실(dielectric dissipation)이 발생한다는 점 것이다.Another thing to note is that for high frequency communication above 2 GHz, dielectric dissipation through polyimide inevitably occurs.
유전 손실률(dielectric dissipation factor; Df)은 박형 회로기판의 전기 에너지 낭비 정도를 의미하고, 통신 속도를 결정하는 신호 전달 지연과 밀접하게 관련되어 있어, 폴리이미드의 유전 손실률을 가능한 낮게 하는 것 역시 박형 회로기판의 성능에 중요한 요인으로 인식되고 있다.Dielectric dissipation factor (Df) refers to the degree of waste of electrical energy in thin circuit boards and is closely related to the signal propagation delays that determine the communication speed, so that the dielectric loss rate of polyimide is as low as possible. It is recognized as an important factor for the performance of the substrate.
따라서, 유전상수와 유전 손실률 모두 상대적으로 낮은 폴리이미드 필름의 개발이 필요한 실정이다.Therefore, the development of a polyimide film having a relatively low dielectric constant and dielectric loss rate is required.
본 발명의 목적은 유전상수와 유전 손실률 모두 상대적으로 낮은 폴리이미드 필름 및 이를 포함하는 연성금속박적층판을 제공하는 것이다.It is an object of the present invention to provide a polyimide film having a relatively low dielectric constant and dielectric loss rate and a flexible metal laminate having the same.
본 발명의 일 측면에 따르면, 비극성인 지방족 부분을 포함하는 특정 디아민 단량체와 피로멜리틱디안하이드라이드를 조합하여 폴리아믹산을 제조하고, 이를 이미드화하여 제조되는 폴리이미드 필름은, 폴리이미드 고분자 사슬 중에 비극성의 지방족 부분이 포함된 특별한 구조에 기반하여, 유전상수와 유전 손실률에 악영향을 미치는 수분 흡습을 억제할 수 있다.According to one aspect of the present invention, a polyimide film prepared by combining a specific diamine monomer containing a nonpolar aliphatic moiety and a pyromellitic dianhydride, and imidizing the polyimide film is prepared in a polyimide polymer chain. Based on the special structure containing the nonpolar aliphatic moiety, it is possible to suppress moisture absorption which adversely affects the dielectric constant and the dielectric loss rate.
또 다른 일 측면에 따르면, 상기 폴리이미드 필름을 포함하는 연성금속박적층판은, 소망하는 유리전이온도를 가지면서도 폴리이미드 필름의 상대적으로 낮은 유전상수와 유전 손실률에 기반하여 높은 주파수로 고속 통신이 가능한 회로로 구현될 수 있다.According to another aspect, the flexible metal laminate comprising the polyimide film is a circuit capable of high-speed communication at a high frequency based on the relatively low dielectric constant and dielectric loss rate of the polyimide film while having a desired glass transition temperature It can be implemented as.
이에 본 발명은 이의 구체적 실시예를 제공하는데 실질적인 목적이 있다.Therefore, the present invention has a substantial object to provide a specific embodiment thereof.
상기와 같은 목적을 달성하기 위하여 본 발명은,The present invention to achieve the above object,
하기 화학식 (1)로 표현되는 제1 디아민과 하기 화학식 (2)로 표현되는 제2 디아민을 포함하는 디아민 단량체; 및A diamine monomer comprising a first diamine represented by the following formula (1) and a second diamine represented by the following formula (2); And
피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA)의 중합에서 유래된 폴리아믹산을 이미드화하여 제조되고, 유전상수(Dk)가 3.4 이하이고, 유전 손실률(Df)가 0.005 이하인 폴리이미드 필름을 제공한다.It provides a polyimide film prepared by imidizing a polyamic acid derived from polymerization of pyromellitic dianhydride (PMDA), having a dielectric constant (Dk) of 3.4 or less and a dielectric loss factor (Df) of 0.005 or less. .
Figure PCTKR2018014616-appb-I000001
(1)
Figure PCTKR2018014616-appb-I000001
(One)
Figure PCTKR2018014616-appb-I000002
(2)
Figure PCTKR2018014616-appb-I000002
(2)
본 발명에 따른 폴리이미드 필름의 경우, 소망하는 유리전이온도 및 유전상수를 가지면서도 유전 손실률도 동시에 개선되어, 높은 주파수 하에서도 절연에 대한 신뢰성이 높고, 신호 전달 지연을 최소화할 수 있다.In the case of the polyimide film according to the present invention, the dielectric loss ratio is also improved at the same time while having the desired glass transition temperature and dielectric constant, so that the insulation reliability is high even at a high frequency and signal transmission delay can be minimized.
이하에서는 본 발명에 따른 "폴리이미드 필름", "폴리이미드 필름의 제조 방법" 및 "연성금속박적층판"의 순서로 발명의 실시 형태를 보다 상세하게 설명한다.DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the invention will be described in more detail in the order of "polyimide film", "manufacturing method of polyimide film" and "flexible metal laminate board" according to the present invention.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in the present specification and claims should not be construed as being limited to the common or dictionary meanings, and the inventors should properly explain the concept of terms in order to best explain their own invention. Based on the principle that can be defined, it should be interpreted as meaning and concept corresponding to the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.Therefore, the configuration of the embodiments described herein is only one of the most preferred embodiments of the present invention and does not represent all of the technical idea of the present invention, various equivalents and modifications that may be substituted for them at the time of the present application It should be understood that examples may exist.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.As used herein, the singular forms "a", "an" and "the" include plural forms unless the context clearly indicates otherwise. As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
폴리이미드 필름Polyimide film
본 발명에 따른 폴리이미드 필름은,Polyimide film according to the present invention,
하기 화학식 (1)로 표현되는 제1 디아민과 하기 화학식 (2)로 표현되는 제2 디아민을 포함하는 디아민 단량체; 및A diamine monomer comprising a first diamine represented by the following formula (1) and a second diamine represented by the following formula (2); And
피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA)의 중합에서 유래된 폴리아믹산을 이미드화하여 제조되고, 유전상수(Dk)가 3.4 이하이고, 유전 손실률(Df)가 0.005 이하인 것을 특징으로 한다.It is prepared by imidating a polyamic acid derived from the polymerization of pyromellitic dianhydride (PMDA), and has a dielectric constant (Dk) of 3.4 or less and a dielectric loss ratio (Df) of 0.005 or less.
Figure PCTKR2018014616-appb-I000003
(1)
Figure PCTKR2018014616-appb-I000003
(One)
Figure PCTKR2018014616-appb-I000004
(2)
Figure PCTKR2018014616-appb-I000004
(2)
여기서, 상기 화학식 (1)에서 R1 및 R2는 각각 독립적으로, C1-C6 알킬기, 또는 C1-C6 알콕시기이며;Wherein in formula (1), R 1 and R 2 are each independently a C 1 -C 6 alkyl group or a C 1 -C 6 alkoxy group;
상기 화학식 (2)에서 R3는 -C(CH3)2-, -C(CF3)2-, -(CH2)n1-, 또는 -O(CH2)n2O-이고, 상기 n1 및 n2는 각각 독립적으로 1 내지 10의 정수이다.In formula (2), R 3 is —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, — (CH 2 ) n 1 —, or —O (CH 2 ) n 2 O—, wherein n 1 and n 2 Are each independently an integer of 1 to 10.
이러한 폴리이미드 필름은, Such polyimide film,
(a) 유전상수(Dk)가 3.4 이하이고,(a) the dielectric constant (Dk) is 3.4 or less,
(b) 유전 손실률(Df)가 0.005 이하이며,(b) the dielectric loss factor (Df) is 0.005 or less,
(c) 흡습율이 2.3 중량% 이하이고,(c) the moisture absorption is 2.3% by weight or less,
(d) 유리전이온도(Tg)가 320℃ 이상이다.(d) Glass transition temperature (Tg) is 320 degreeC or more.
이와 관련하여, 위 4 개의 조건들을 모두 만족하는 폴리이미드 필름의 경우, 연성금속박적층판용 절연 필름으로 활용 가능할뿐더러, 제조된 연성금속박적층판이 2 GHz 이상의 고주파로 신호를 전송하는 전기적 신호 전송 회로로 사용되더라도, 그것의 절연 안정성이 확보될 수 있고, 신호 전달 지연도 최소화할 수 있다. In this regard, in the case of the polyimide film that satisfies all the above four conditions, it can be used as an insulating film for the flexible metal laminate, and the manufactured flexible metal laminate is used as an electrical signal transmission circuit for transmitting signals at a high frequency of 2 GHz or more. Even if it is, its insulation stability can be ensured, and signal propagation delay can also be minimized.
이들 4 개의 조건들을 모두 갖는 폴리이미드 필름은 지금까지 알려지지 않은 신규한 폴리이미드 필름으로서, 이하에서 상기 4 개의 조건들에 대해서 상세하게 설명한다.The polyimide film having all four of these conditions is a novel polyimide film which has not been known so far, and the four conditions will be described in detail below.
<유전상수><Genetic constant>
유전율(Permittivity)이란 유전체(또는 절연체), 즉, 부도체의 전기적인 특성을 나타내는 중요한 특성 값으로 유전율은 DC전류에 대한 전기적 특성을 나타내는 것이 아니라 AC 전류, 특히 교류 전자기파의 특성과 직접적인 관련이 있는 것으로 알려져 있다. Permittivity is an important characteristic value that represents the electrical properties of a dielectric (or insulator), that is, a non-conductor. The permittivity is not directly representative of the electrical properties of a DC current, but is directly related to the characteristics of AC currents, especially AC electromagnetic waves. Known.
절연체(예를 들어, 폴리이미드 필름)에서 평상 시 무작위 방향으로 각자 흩어져있던 +, - 모멘트(moment) 성분은, 절연체 외부에서 인가되는 전자계의 교류 변화에 맞추어 정렬된다. 즉 모멘트 성분들이 전자계의 변화방향에 맞추어 변함으로써, 부도체라고 하더라도 내부에 전자기파의 진행을 가능하게 할 수 있다.In the insulator (for example, a polyimide film), the + and-moment components, which are normally scattered in a random direction in general, are aligned with an alternating current change of an electromagnetic field applied outside the insulator. In other words, the moment components are changed in accordance with the change direction of the electromagnetic field, it is possible to enable the progress of electromagnetic waves inside even the non-conductor.
이러한 외부의 전자계의 변화에 대해, 물질 내부의 모멘트가 얼마나 민감하게 잘 반응하여 움직이느냐의 정도를 유전율이라고 표현할 수 있다.For such a change in the external electromagnetic field, the degree of sensitivity and how sensitively the moment inside the material reacts can be expressed as permittivity.
이러한 유전율은 통상적으로 비유전율(Relative Permittivity)을 통해 직관적 해석이 가능하도록 하는데, 비유전율이란 공기를 1로 하고, 그에 비례한 각 유전체의 유전율을 의미하는 것이며, 그 중에서도 비유전율의 산정에서 허수를 배제하고 실수로 표현한 것이 유전상수(Dk)이다. This permittivity can be intuitively interpreted through relative permittivity, which means that the dielectric constant of each dielectric is proportional to air 1, and the imaginary number in the calculation of the relative dielectric constant is calculated. The exclusion and real expression is the dielectric constant (Dk).
유전상수가 높다는 것은 전기에너지가 잘 전달된다는 것을 의미하므로, 폴리이미드 필름과 같은 절연체는 유전상수가 낮을수록 바람직하다.Higher dielectric constants mean better electrical energy transfer, and insulators such as polyimide films are preferred as the dielectric constants are lower.
그럼에도 불구하고, 통상의 폴리이미드 필름은 고주파 통신에서 충분한 절연성을 유지할 수 있을 정도의 수준은 아님을 이미 설명한 바 있다.Nevertheless, it has already been explained that conventional polyimide films are not at a level sufficient to maintain sufficient insulation in high frequency communication.
이는 액정 고분자(liquid crystal polymer)의 유전상수와 비교할 때 분명해지는데, 액정 고분자의 경우 유전상수가 대략 2.9 에서 3.3으로 알려져 있어, 대부분이 그 이상의 유전상수를 가지는 통상의 폴리이미드 대비 절연체로서는 더 우수한 것으로 볼 수 있다.This is evident when compared to the dielectric constant of liquid crystal polymers. In the case of liquid crystal polymers, the dielectric constant is known to be about 2.9 to 3.3, which is much better than an insulator compared to a conventional polyimide having most dielectric constants. can see.
반면, 본 발명에 따른 폴리이미드 필름은 상기 액정 고분자의 유전상수에 육박하거나, 또는 그보다 낮은 유전상수, 구체적으로 유전상수가 3.4 이하, 상세하게는, 3.0 이하일 수 있고, 그 하한은 적어도 2.8일 수 있다.On the other hand, the polyimide film according to the present invention may have a dielectric constant close to or lower than the dielectric constant of the liquid crystal polymer, specifically, a dielectric constant of 3.4 or less, specifically, 3.0 or less, and the lower limit thereof may be at least 2.8. have.
이는 폴리이미드 필름의 엔지니어링 특성이 최고 수준인 점을 상기할 때, 절연체로서 이상적인 형태임을 알 수 있다. It can be seen that this is an ideal form as an insulator, recalling the highest level of engineering properties of the polyimide film.
이러한 유전상수가 가지는 의미를 구체적으로 설명한다. The meaning of these dielectric constants is explained in detail.
모든 도체는 서로 떨어져 있더라도 그 사이에는 전기장에 의한 정전결합(capacitive coupling)이 항상 존재하여, 다층기판의 층과 층 사이도 전기적으로 떨어져 있다고 하더라도 이는 직류에 대해 개방 회로(open circuit)일 뿐 실제로는 그 사이에 임의의 커패시터가 연결되어 있는 것으로 볼 수 있다. Even though all conductors are separated from each other, there is always capacitive coupling between them, and even if the layers and layers of the multilayer board are electrically separated from each other, they are actually only open circuits for direct current. It can be seen that an arbitrary capacitor is connected in between.
한편, 커패시터는 그 양단의 전류나 전압의 주파수가 높을수록 임피던스가 낮아지는 성질이 있으며, 그 값은 다음 식과 같이 표현될 수 있다.On the other hand, the capacitor has a property of lowering the impedance as the frequency of the current or voltage at both ends thereof, the value can be expressed as follows.
-임피던스 = 1/(2*π*f*C); 여기서, f는 주파수이고 C=커패시턴스이다.Impedance = 1 / (2 * π * f * C); Where f is frequency and C = capacitance.
-C = e*S/d; 여기서 e는 유전상수이고, S는 도체의 면적이며, d는 거리이다.-C = e * S / d; Where e is the dielectric constant, S is the area of the conductor, and d is the distance.
일반적으로, 눈에 보이고 맨손으로 다룰 수 있는 정도의 규모에서는 두 도체를 아무리 가까이 가져다 놓아도 그 사이의 커패시턴스 값(패럿, farad)이 피코(pico) 단위를 벗어나기 어려우며, 일반 PCB도 마찬가지로 층 간의 C가 워낙 작아서 회로가 어느 정도 높은 주파수로 동작한다 해도 층 간의 절연이 잘 유지될 수 있다. In general, on a scale that can be seen and handled barely, no matter how close the two conductors are, the capacitance value (farad, farad) between them is unlikely to deviate from the pico unit. It is so small that even if the circuit operates at some high frequency, the insulation between layers can be well maintained.
반면에, 기가(GIGA) 단위의 주파수, 예를 들어 2 GHz의 초고주파로 동작하는 통신장비 등의 특수한 경우에는 상기 식에서와 같이 주파수가 워낙 높아서 임피던스가 낮아지기 때문에 절연이 유지되기 어려울 수 있다.On the other hand, in a special case such as a communication device operating at a frequency of GIGA, for example, a high frequency of 2 GHz, it may be difficult to maintain insulation because the frequency is so high that the impedance is low.
따라서, 절연체를 선택할 때, 가능한 유전상수가 낮은 물질을 사용하여 정전결합과 커패시턴스(즉, 임피던스)를 최소화하여야 하는 것이다.Therefore, when selecting an insulator, materials with the lowest possible dielectric constant should be used to minimize electrostatic coupling and capacitance (ie impedance).
이에, 본 발명에 따른 폴리이미드 필름은, 전술한 바와 같이 상대적으로 낮은 유전상수를 가짐으로써, 기가(GIGA) 단위의 주파수, 예를 들어 10GHz의 초고주파로 동작하는 통신장비 등에도 절연 유지가 용이한 이점이 있다.Accordingly, the polyimide film according to the present invention has a relatively low dielectric constant as described above, and thus is easy to maintain insulation even at a frequency in a giga (GIGA) unit, for example, communication equipment operating at a very high frequency of 10 GHz. There is an advantage.
<유전 손실률>Dielectric loss rate
"유전 손실률"은 분자들의 마찰이 교대 전기장에 의해 야기된 분자 운동을 방해할 때 유전체(또는 절연체)에 의해 소멸되는 힘을 의미한다.By "dielectric loss factor" is meant the force dissipated by the dielectric (or insulator) when the friction of the molecules interferes with the molecular motion caused by the alternating electric field.
유전 손실률의 값은 전하의 소실(유전 손실)의 용이성을 나타내는 지수로서 통상적으로 사용되며, 유전 손실률이 높을수록 전하가 소실되기가 쉬워지며, 반대로 유전 손실률이 낮을수록 전하가 소실되기가 어려워질 수 있다.The value of the dielectric loss rate is commonly used as an index indicating the ease of dissipation (dielectric loss), and the higher the dielectric loss rate, the easier the charge is to be lost. Conversely, the lower the dielectric loss rate, the more difficult it is to be lost. have.
즉, 유전 손실률은 전력 손실의 척도인 바, 유전 손실률이 낮을 수록 전력 손실에 따른 신호 전송 지연이 완화되면서 통신 속도가 빠르게 유지될 수 있다.That is, the dielectric loss rate is a measure of power loss. As the dielectric loss rate is lower, the signal transmission delay due to power loss is alleviated, and thus the communication speed can be maintained quickly.
이것은 절연 필름인 폴리이미드 필름에 강력하게 요구되는 특성으로, 본 발명에 따른 폴리이미드 필름은 약 2 GHz의 상당히 높은 주파수 하에서 유전 손실률이 0.005 이하, 상세하게는, 0.004 이하, 보다 상세하게는, 0.003 이하일 수 있다.This is a characteristic strongly required for polyimide films, which are insulating films, in which the polyimide film according to the invention has a dielectric loss factor of 0.005 or less, in particular 0.004 or less, more specifically, 0.003 under a fairly high frequency of about 2 GHz. It may be:
<흡습율>Hygroscopicity
흡습율은, 재료가 흡습하고 있는 수분량을 나타내는 비율로서, 일반적으로 흡습율이 높을 때 유전상수와 유전 손실률이 증가하는 것으로 알려져 있다.A moisture absorption rate is a ratio which shows the moisture content which a material absorbs, and generally, it is known that dielectric constant and dielectric loss rate increase when moisture absorption rate is high.
일반적으로, 물이 고체의 상태일 때, 유전상수가 100 이상이고, 액체 상태일 때, 약 80이며, 기체 상태의 수증기일 때, 1.0059로 알려져 있다.Generally, when water is in the solid state, the dielectric constant is at least 100, in the liquid state, it is about 80, and in the gaseous water vapor, it is known as 1.0059.
즉, 폴리이미드 필름 외에서 수증기 상태로 존재하는 물은 폴리이미드 필름의 유전상수와 유전 손실률에 실질적으로 영향을 끼치지 않는다.That is, water present in the water vapor state other than the polyimide film does not substantially affect the dielectric constant and dielectric loss rate of the polyimide film.
그러나 수증기가 폴리이미드 필름에 흡수 된 상태에서는 액체 상태로 존재하는데, 이 경우, 폴리이미드 필름의 유전상수와 유전 손실률은 비약적으로 증가할 수 있다.However, when water vapor is absorbed in the polyimide film, it exists in a liquid state. In this case, the dielectric constant and dielectric loss rate of the polyimide film may increase dramatically.
즉, 미량의 수분 흡수만으로도 폴리이미드 필름의 유전상수와 유전 손실률은 급변할 수 있다.That is, the dielectric constant and dielectric loss rate of the polyimide film may change rapidly even with a small amount of moisture absorption.
따라서, 흡습율을 낮게 유지하는 것은, 절연 필름으로서의 폴리이미드 필름에 매우 중요한 요소로 볼 수 있다.Therefore, keeping moisture absorption low can be seen as a very important factor for the polyimide film as an insulating film.
본 발명에 따른 폴리이미드 필름은, 폴리이미드 필름 총 중량을 기준으로 흡습율이 2.3 중량% 이하, 상세하게는, 2.0 중량% 이하, 보다 상세하게는, 1.7 중량%이하 일 수 있으며, 이의 달성은 본 발명에 따른 폴리이미드 필름의 구성적 특징에 기인한다.The polyimide film according to the present invention may have a moisture absorption of 2.3% by weight or less, in detail, 2.0% by weight or less, and more specifically 1.7% by weight or less, based on the total weight of the polyimide film. It is due to the structural features of the polyimide film according to the invention.
이에 대해서는 후에 보다 구체적으로 설명할 것이나, 본 발명에 따른 폴리이미드 필름의 분자구조 중, 비극성 부분이 포함되어 있으며, 또, 친수성에 가까운 이미드기가 상대적으로 낮게 점유된 것에 기인하는 것으로 예측된다.This will be described in more detail later, but it is expected that the non-polar part is included in the molecular structure of the polyimide film according to the present invention, and that the imide group close to hydrophilicity is occupied relatively low.
<유리전이온도><Glass transition temperature>
본 발명에서 유리전이온도는 동적 점탄성 측정 장치(DMA)에 의해 측정한 저장탄성률과 손실탄성률로부터 구할 수 있으며, 상세하게는, 산출된 손실탄성률을 저장탄성률로 나눈 값인 tan δ의 탑 피크(top peak)를 유리전이온도로 산정할 수 있다.In the present invention, the glass transition temperature can be obtained from the storage modulus and loss modulus measured by the dynamic viscoelasticity measuring device (DMA), and in detail, the top peak of tan δ which is the value of the calculated loss modulus divided by the storage modulus. ) Can be calculated as the glass transition temperature.
유리전이온도는 폴리이미드 필름의 내열성과 관련되어 있으며, 절연필름의 용도를 고려할 때 높을 수록 바람직할 수 있다.The glass transition temperature is related to the heat resistance of the polyimide film, and may be higher when considering the use of the insulating film.
다만, 폴리이미드 필름에서, 최고 수준의 유리전이온도와 유전상수 및 유선 손실률이 양립되기는 어려운데, 그 이유는 폴리이미드 필름의 강력한 내열성은 이미드기의 화학적 안정성에 기인하지만, 이미드기가 극성을 나타내므로 흡습에 상대적으로 취약한 점 때문인 것으로 예측된다.However, in the polyimide film, the highest level of glass transition temperature, dielectric constant, and wireline loss rate are difficult to achieve. The reason is that the strong heat resistance of the polyimide film is due to the chemical stability of the imide group. It is expected to be due to a relatively weak point to moisture absorption.
반면에 본 발명은 유리전이온도와 유전상수, 그리고 유선 손실률 모두를 바람직한 수준으로 양립시킨 폴리이미드 필름을 제공하고 있으며, 구체적으로, 본 발명에 따른 폴리이미드 필름의 유리전이온도는 320℃ 이상일 수 있으며, 상세하게는, 320℃ 이상 내지 380℃ 이하일 수 있고, 특히 바람직하게는 350℃ 이상 내지 370℃ 이하일 수 있다.On the other hand, the present invention provides a polyimide film in which both the glass transition temperature, the dielectric constant, and the streamline loss ratio are both at a desirable level. Specifically, the glass transition temperature of the polyimide film according to the present invention may be 320 ° C. or more. In detail, the temperature may be 320 ° C or higher and 380 ° C or lower, and particularly preferably 350 ° C or higher and 370 ° C or lower.
유리전이온도가 상기 범위보다도 낮은 경우, 라미네이트를 행할 때, 폴리이미드 필름의 점성이 상대적으로 높은 상태이므로 큰 치수 변화가 수반될 수 있다. 이는 외관 품질을 저해하는 원인이므로 바람직하지 않다.When the glass transition temperature is lower than the above range, when laminating, a large dimensional change may be accompanied because the viscosity of the polyimide film is relatively high. This is not preferable because it causes the appearance quality to be impaired.
반면 유리전이온도가 상기 범위보다도 높은 경우, 열왜곡을 완화시키는데 충분한 수준까지 코어층을 연화시키기 위해서 필요한 온도가 지나치게 높아져 기존의 라미네이트 장치로는 열응력을 충분히 완화시킬 수 없고, 치수 변화가 오히려 악화될 가능성이 있다.On the other hand, when the glass transition temperature is higher than the above range, the temperature required to soften the core layer to a level sufficient to alleviate the thermal distortion is too high, so that the existing laminate apparatus cannot sufficiently relieve thermal stress, and the dimensional change is worsened. There is a possibility.
이상에서 살펴본 바와 같이, 본 발명에 따른 폴리이미드 필름은, 상기한 4 개의 조건들을 모두 만족함에 따라, 연성금속박적층판용 절연 필름으로 활용 가능할뿐더러, 고주파에도 절연 안정성이 확보될 수 있고, 신호 전달 지연도 최소화할 수 있다.As described above, the polyimide film according to the present invention can be utilized as an insulating film for a flexible metal laminate, as well as satisfying all four conditions described above, and also ensures insulation stability even at high frequencies, and delays signal transmission. Can also be minimized.
이상의 조건들을 갖는 폴리이미드 필름에 대한 본 발명의 구현예로서, 디안하이드라이드 단량체, 디아민 단량체 및 이들의 배합비는 이하의 비제한적인 예들을 통해 상세하게 설명한다.As an embodiment of the present invention for the polyimide film having the above conditions, the dianhydride monomer, the diamine monomer and the blending ratio thereof are described in detail through the following non-limiting examples.
<디아민 단량체><Diamine Monomer>
하나의 구체적인 예에서, 상기 디아민 단량체는, 그것의 전체 몰수를 기준으로 상기 제1 디아민이 50 몰% 이상 내지 80 몰% 이하이고, 상기 제2 디아민이 20 몰% 이상 내지 50 몰% 이하일 수 있다.In one specific example, the diamine monomer may be 50 mol% or more and 80 mol% or less, and 20 mol% or more and 50 mol% or less of the first diamine, based on the total number of moles thereof. .
상기 제2 디아민의 경우, 분자량이 400 g/mol 내지 600 g/mol일 수 있으며, 상기 제1 디아민의 경우, 분자량이 200 g/mol 내지 250 g/mol일 수 있다.For the second diamine, the molecular weight may be 400 g / mol to 600 g / mol, and for the first diamine, the molecular weight may be 200 g / mol to 250 g / mol.
따라서, 제2 디아민의 함량이 증가하면, 상기 폴리아믹산이 이미드화되어 형성된 폴리이미드 고분자 사슬의 분자량도 함께 증가할 수 있다.Therefore, when the content of the second diamine is increased, the molecular weight of the polyimide polymer chain formed by imidating the polyamic acid may also increase.
다른 관점에서, 제2 디아민의 함량에 따라 증가된 폴리이미드 고분자 사슬 하나의 총 분자량은, 상기 디아민 단량체로부터 유래된 부분 중 대다수를 제2 디아민의 방향족 부분이 차지하게 되는 반면, 제2 디아민 분자 하나당 공급되는 아민기는 2 개일 뿐이어서, 상기 디아민으로부터 유래되는 이미드기의 경우, 상기 총 분자량에서 차지하는 비율이 상대적으로 감소될 수 있다.In another aspect, the total molecular weight of one polyimide polymer chain increased with the content of the second diamine is such that the aromatic portion of the second diamine occupies most of the portion derived from the diamine monomer, while per second diamine molecule. Since only two amine groups are supplied, in the case of imide groups derived from the diamine, the proportion of the total molecular weight may be relatively reduced.
달리 말하면 상기한 폴리이미드 고분자 사슬 하나의 길이가 길어질수록 방향족 부분이 대부분을 차지할 것이므로, 상기 고분자 사슬 하나가 반복되는 전체 폴리이미드 고분자 사슬에서는 이미드기가 점유하는 상대적 비율 역시 상대적으로 적어지는 것으로 이해될 수 있을 것이다.In other words, since the longer the length of one of the polyimide polymer chains described above, the aromatic moiety occupies most of the polyimide polymer chain, it is understood that the relative proportion of imide groups occupies relatively less in the entire polyimide polymer chain in which the polymer chain is repeated. Could be.
이 경우, 폴리이미드 필름 전체에 대해서도, 소수성이 향상되어 더욱 낮은 흡습율을 기대할 수 있다.In this case, hydrophobicity improves also about the whole polyimide film, and lower moisture absorption can be expected.
그러나, 흡습율만을 고려하여 제2 디아민의 함량을 증가시키면, 상술의 이유로 이미드기의 점유 비율이 감소되므로, 이미드기의 화학적 안정성에 기인한 폴리이미드 필름의 내열성이 상당히 저하될 우려가 있다.However, if the content of the second diamine is increased in consideration of only the moisture absorption rate, since the occupancy ratio of the imide group is reduced for the above reason, there is a fear that the heat resistance of the polyimide film due to the chemical stability of the imide group is considerably lowered.
이러한 이유로, 본 발명은 상기 제2 디아민이 상기 디아민 단량체의 전체 몰수를 기준으로 50 몰%을 초과하는 것은 바람직하지 않음을 강조한다.For this reason, the present invention emphasizes that it is not desirable for the second diamine to exceed 50 mol%, based on the total moles of the diamine monomer.
또한, 반대의 이유로, 상기 제2 디아민이 상기 디아민 단량체의 전체 몰수를 기준으로 20 몰% 미만일 때, 흡습율이 소망하는 수준에 달하지 못하므로 바람직하지 않다.In addition, for the opposite reason, when the second diamine is less than 20 mol% based on the total moles of the diamine monomer, the moisture absorption rate is not preferable because it does not reach a desired level.
상기 제1 디아민의 경우, 상기 제2 디아민 대비 분자량이 상대적으로 낮은 바, 상기 디아민 단량체의 전체 분자량을 적정 수준으로 조절할 수 있고, 이는 폴리이미드 고분자 사슬 하나에서 방향족 부분이 차지하는 비율을 조절하는 것으로 이해할 수 있다.In the case of the first diamine, the molecular weight is relatively low compared to the second diamine, the overall molecular weight of the diamine monomer can be adjusted to an appropriate level, which is understood to control the proportion of the aromatic moiety in one polyimide polymer chain. Can be.
상기 제1 디아민은 또한, 소망하는 수준의 내열성을 위해, 이미드기 형성을 위한 아민기의 또 다른 공급원으로 작용할 수 있다.The first diamine may also serve as another source of amine groups for forming imide groups, for a desired level of heat resistance.
상기 제1 디아민의 함량의 상기 범위를 상회하거나 하회하는 경우, 제2디아민과 반대의 폐해가 발생할 수 있다.When above or below the range of the content of the first diamine, adverse effects opposite to the second diamine may occur.
상기 폴리아믹산이 이미드화되어 형성된 폴리이미드 고분자 사슬은, 상기 제1 디아민의 R1과 R2, 및 상기 제2 디아민의 R3로부터 유래된 지방족 부분을 포함할 수 있다.The polyimide polymer chain formed by imidating the polyamic acid may include an aliphatic moiety derived from R 1 and R 2 of the first diamine and R 3 of the second diamine.
이러한 지방족 부분은, 비극성을 가지도록 적절히 선택될 수 있으며, 이해를 돕기 위한 지방족 부분의 비제한적인 예로는, -CH3, -CF3 등을 들 수 있다. 이와 같이 R1, R2 및 R3로부터 유래된 지방족 부분이 비극성을 가짐으로써, 상기 폴리이미드 고분자 사슬의 흡습성이 저하될 수 있다.Such aliphatic moieties may be appropriately selected to have non-polarity, and non-limiting examples of aliphatic moieties for understanding include -CH 3 , -CF 3 , and the like. As described above, since the aliphatic moieties derived from R1, R2, and R3 have nonpolarity, the hygroscopicity of the polyimide polymer chain can be reduced.
다른 측면에서, 지방족 부분이 폴리아믹산에 포함된 경우, 폴리아믹산 전체에서 흡습성 증가에 상당한 영향을 미치는 아믹산기의 비율이 상대적으로 낮아질 수 있다. 따라서, 이러한 폴리아믹산을 포함하는 폴리이미드 필름의 흡습성을 낮추는데 긍정적으로 작용할 수 있다.In another aspect, when the aliphatic moiety is included in the polyamic acid, the proportion of amic acid groups that significantly affect the increase in hygroscopicity throughout the polyamic acid may be relatively low. Therefore, it can act positively to lower the hygroscopicity of the polyimide film containing such polyamic acid.
유전상수와 유전 손실률과 밀접하게 관계됨을 이미 설명한 바 있으므로, 정리하면 R1, R2 및 R3로부터 유래된 지방족 부분은 본 발명에 따른 폴리이미드 필름이 낮은 유전상수와 낮은 유전 손실률을 가지게 하는 주요한 요소로 이해할 수 있을 것이다.Having already explained the close relationship between the dielectric constant and the dielectric loss rate, the aliphatic moieties derived from R1, R2, and R3 can be understood as the main factors for the polyimide film according to the present invention to have a low dielectric constant and a low dielectric loss rate. Could be.
또한, 상기 R1, R2 및 R3로부터 유래된 지방족 부분은 비극성을 향상시킴과 동시에, 폴리이미드 필름에 바람직한 수준의 유연성을 제공하여 필름화 공정에서 불량율을 감소시키고, 연성금속박적층판을 제조하기에 적절한 수준의 유리전이온도 및 열팽창계수를 확보할 수 있다.In addition, the aliphatic moieties derived from R1, R2, and R3 improve nonpolarity and at the same time provide the desired level of flexibility in the polyimide film to reduce defect rates in the filming process and to produce levels suitable for producing flexible metal laminates. The glass transition temperature and thermal expansion coefficient of can be obtained.
이와 같이 소망하는 흡습율, 유전상수, 유전 손실률, 유연성, 유리전이온도, 및 열팽창계수를 달성하기 위해, 상기 지방족 부분의 분자량은, 상기 폴리이미드 고분자 사슬 하나의 전체 분자량을 기준으로 5 % 내지 20 %일 수 있으며, 상세하게는, 6 % 내지 17 %일 수 있다.In order to achieve the desired moisture absorption rate, dielectric constant, dielectric loss rate, flexibility, glass transition temperature, and coefficient of thermal expansion, the molecular weight of the aliphatic moiety is 5% to 20 based on the total molecular weight of one polyimide polymer chain. %, In detail, may be 6% to 17%.
상기 지방족 부분의 분자량이 상기 범위를 상회하면, 폴리이미드 필름의 기계적 물성이 저하되고, 연성금속박적층판을 제조하기에 적절한 수준의 유리전이온도 및 열팽창계수를 달성하기 어려우며, 상기 범위를 하회하면 소망하는 수준의 흡습율, 유전상수 및 유전 손실률의 달성이 어려운 바, 바람직하지 않다.When the molecular weight of the aliphatic portion exceeds the above range, the mechanical properties of the polyimide film are lowered, and it is difficult to attain a level of glass transition temperature and coefficient of thermal expansion suitable for producing a flexible metal laminate, and to be less than the above range. It is not desirable to achieve levels of moisture absorption, dielectric constant and dielectric loss rate.
하나의 구체적인 예에서, 상기 R1 및 R2는 과도한 지방족 부분의 분자량 점유를 배제하면서도, 비극성을 가지는 알킬기일 수 있으며, 상세하게는, 상기 R1 및 R2 각각 메틸기일 수 있다.In one specific example, the R1 and R2 may be an alkyl group having a non-polarity, while excluding excessive molecular weight occupancy of the aliphatic portion, in detail, each of the R1 and R2 may be a methyl group.
상기 R3 역시 과도한 지방족 부분의 분자량 점유를 배제하면서도, 비극성을 가지는 치환기일 수 있으며, 상세하게는, -C(CF3)2- 또는 -C(CH3)2-일 수 있다.R3 may also be a substituent having a nonpolarity while excluding an excessively aliphatic molecular weight occupancy, and in detail, may be -C (CF 3 ) 2 -or -C (CH 3 ) 2- .
상기 -C(CF3)2- 경우, 불소가 유전상수를 낮추는데 기여할 수 있으며, 강력한 비극성을 발현할 수 있는 바, R3로서 특히 바람직할 수 있다.In the case of -C (CF 3 ) 2- , fluorine may contribute to lowering the dielectric constant and may express strong nonpolarity, which may be particularly preferable as R 3.
하나의 구체적인 예에서, 상기 제1 디아민은 4,4'-디아미노-2,2'-디메틸바이페닐(4,4'-Diamino-2,2'-dimethylbiphenyl: m-Tolidine)일 수 있다.In one specific example, the first diamine may be 4,4'-diamino-2,2'-dimethylbiphenyl (4,4'-Diamino-2,2'-dimethylbiphenyl: m-Tolidine).
또 다른 구체적인 예에서, 상기 제2 디아민은 2,2-비스 [4-(4-아미노페녹시페닐)] 헥사플루오로프로판(2,2-Bis [4-(4-aminophenoxy phenyl)] hexafluoropropane: HFBAPP)일 수 있다.In another specific example, the second diamine is 2,2-bis [4- (4-aminophenoxyphenyl)] hexafluoropropane (2,2-Bis [4- (4-aminophenoxy phenyl)] hexafluoropropane: HFBAPP).
<디안하이드라이드 단량체><Dianhydride monomer>
전술에서는 디아민 단량체가 상대적으로 큰 분자량을 가질 수 있음을 이미 설명한 바 있다.The foregoing has already described that the diamine monomer may have a relatively large molecular weight.
상기 폴리아믹산이 이미드화되어 형성된 폴리이미드 고분자 사슬 하나의 분자량이 과도하게 크고(예를 들어, 고분자 사슬 하나당 2000 이상) 사슬 길이가 길어질수록, 폴리이미드 고분자 사슬 전체에서는 이미드기가 상대적으로 적게 존재할 수 밖에 없다.As the molecular weight of one polyimide polymer chain formed by imidation of the polyamic acid is excessively large (for example, 2000 or more per polymer chain), and as the chain length increases, relatively few imide groups may exist in the entire polyimide polymer chain. There is nothing else.
이 경우, 폴리이미드 필름의 내열성 및 저장탄성률, 손실탄성률 등의 기타 기계적 물성들이 심각하게 손실되는 바, 바람직하지 않다.In this case, other mechanical properties such as heat resistance, storage modulus, loss modulus, and the like of the polyimide film are seriously lost, which is not preferable.
이를 고려할 때, 상기 디안하이드라이드 단량체는 상대적으로 작은 분자량을 가지는 단량체들이 사용될 수 있다.In consideration of this, the dianhydride monomer may be a monomer having a relatively small molecular weight.
이에 따라 분자량이 218로 상대적으로 작은 피로멜리틱디안하이드라이드(PMDA)가 디안하이드라이드 단량체로서 바람직할 수 있다.Accordingly, pyromellitic dianhydride (PMDA) having a relatively low molecular weight of 218 may be preferred as dianhydride monomer.
상기 피로멜리틱디안하이드라이드(PMDA)는 또한, 상대적으로 강직한 구조를 가지는 디안하이드라이드 단량체로 볼 수 있다.The pyromellitic dianhydride (PMDA) may also be viewed as a dianhydride monomer having a relatively rigid structure.
강직한 구조의 단량체의 경우 고탄성률 구현에 적합한 것임이 널리 알려져 있다.It is well known that rigid monomers are suitable for high modulus.
따라서, 상기 피로멜리틱디안하이드라이드(PMDA)는 상기 폴리아믹산이 이미드화하여 제조된 폴리이미드 필름에 적절한 탄성을 부여할 수 있는 점에서 바람직하다.Therefore, the pyromellitic dianhydride (PMDA) is preferable in that it can impart proper elasticity to the polyimide film prepared by imidating the polyamic acid.
폴리이미드 필름의 제조 방법Manufacturing Method Of Polyimide Film
본 발명의 폴리이미드 필름은 폴리이미드의 전구체인 폴리아믹산 용액으로부터 얻어진다.The polyimide film of this invention is obtained from the polyamic-acid solution which is a precursor of polyimide.
폴리아믹산 용액은 방향족 디아민 단량체과 방향족 디안하이드라이드 단량체가 실질적으로 등몰량이 되도록 배합된 단량체 화합물을 유기 용매 중에 용해시키고 얻어진 폴리아믹산 유기 용매 용액을 제어된 온도 조건하에서 상기 방향족 디안하이드라이드 단량체와 상기 방향족 디아민 단량체의 중합이 완료될 때까지 교반함으로써 제조된다.The polyamic acid solution is obtained by dissolving a monomer compound blended in such a manner that the aromatic diamine monomer and the aromatic dianhydride monomer are substantially equimolar in an organic solvent, and the obtained polyamic acid organic solvent solution is prepared under controlled temperature conditions. It is prepared by stirring until the polymerization of the monomer is completed.
폴리아믹산 용액은 통상 고형분 함량이 5 내지 35 중량%, 바람직하게는 10 내지 30 중량%의 농도로 얻어진다.The polyamic acid solution is usually obtained at a solid content of 5 to 35% by weight, preferably at a concentration of 10 to 30% by weight.
이 범위의 농도인 경우, 폴리아믹산 용액은 적당한 분자량과 용액 점도를 얻는다.In concentrations in this range, the polyamic acid solution obtains the appropriate molecular weight and solution viscosity.
폴리아믹산 용액을 합성하기 위한 용매는 특별히 한정되는 것은 아니고, 폴리아믹산을 용해시키는 용매이면 어떠한 용매도 사용할 수 있지만, 아미드계 용매인 것이 바람직하다.The solvent for synthesizing the polyamic acid solution is not particularly limited, and any solvent may be used as long as it is a solvent in which the polyamic acid is dissolved, but is preferably an amide solvent.
구체적으로는, 상기 용매는 유기 극성 용매일 수 있고, 상세하게는, 비양성자성 극성 용매(aprotic polar solvent)일 수 있으며, 예를 들어, N,N'-디메틸포름아미드(DMF), N,N'-디메틸아세트아미드, N-메틸-피롤리돈(NMP), 감마 브티로 락톤(GBL), 디그림(Diglyme)으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되는 것은 아니며, 필요에 따라 단독으로 또는 2 종 이상 조합해서 사용할 수 있다.Specifically, the solvent may be an organic polar solvent, and in detail, may be an aprotic polar solvent, for example, N, N'-dimethylformamide (DMF), N, It may be one or more selected from the group consisting of N'-dimethylacetamide, N-methyl-pyrrolidone (NMP), gamma butyrolactone (GBL), Diglyme (Diglyme), but is not limited thereto. It can be used individually or in combination of 2 or more types.
하나의 예에서, 상기 용매는 N,N-디메틸포름아미드 및 N,N-디메틸아세트아미드가 특히 바람직하게 사용될 수 있다.In one example, the solvent may particularly preferably be N, N-dimethylformamide and N, N-dimethylacetamide.
이에, 본 발명의 폴리이미드 필름을 얻기 위해서는, 하기 (a) 내지 (c)단계들을 거침으로써 얻어진 폴리아믹산 용액을 제조하고, 이를 이미드화하는 제조방법이 바람직하다.Thus, in order to obtain the polyimide film of the present invention, a production method of preparing a polyamic acid solution obtained through the following steps (a) to (c) and imidating the same is preferable.
이에, 본 발명은 폴리이미드 필름의 제조 방법을 제공한다.Therefore, this invention provides the manufacturing method of a polyimide film.
상기 제조방법은,The manufacturing method,
(a)상기 디아민 단량체 및 상기 디안하이드라이드 단량체를 유기 극성 용매에 첨가하는 단계,(a) adding the diamine monomer and the dianhydride monomer to an organic polar solvent,
(b)상기 유기 극성 용매 중에서, 상기 디아민 단량체 및 상기 디안하이드라이드 단량체를 서로 중합하여 폴리아믹산을 수득하는 단계,(b) polymerizing the diamine monomer and the dianhydride monomer with each other in the organic polar solvent to obtain a polyamic acid,
(c)상기 폴리아믹산을 지지체 상에 제막한 후, 200 내지 400℃의 온도로 열처리하여 상기 폴리아믹산이 이미드화된 폴리이미드 필름을 수득하는 단계를 포함할 수 있다.(c) forming the polyamic acid on a support, followed by heat treatment at a temperature of 200 to 400 ° C. to obtain a polyimide film imidated with the polyamic acid.
다만, 단량체의 종류 및 소망하는 폴리이미드 필름의 물성에 따라서 상기 (a)단계에서 모든 단량체들이 일거에 첨가되거나, 또는 각 단량체들을 순차적으로 첨가할 수 있으며, 이 경우, 단량체 간 부분적 중합이 일어날 수 있음은 물론이다.However, depending on the type of monomer and the physical properties of the desired polyimide film, all monomers may be added in one step or the monomers may be sequentially added in step (a), and in this case, partial polymerization between monomers may occur. Of course.
상기 (a) 내지 (b)의 단계를 거쳐서 제조된 최종 폴리아믹산은, 서로 다른 물성을 가지는 부분쇄가 연결된 형태의 분자 구조를 가진다.The final polyamic acid prepared through the steps (a) to (b) has a molecular structure in which partial chains having different physical properties are connected.
상기 부분쇄의 위치, 길이 및 이를 구성하는 단량체의 종류 및 함량을 조절하여, 상기 폴리아믹산을 이미드화하여 얻어지는 폴리이미드 필름의 물성, 예를 들어, 유전상수, 유전 손실률, 유리전이온도, 흡습율 등을 보다 세밀하게 조절할 수 있다.The physical properties of the polyimide film obtained by imidating the polyamic acid by adjusting the position, length of the partial chain and the type and content of the monomer constituting the same, for example, dielectric constant, dielectric loss rate, glass transition temperature, moisture absorption rate You can fine tune your back.
또한, 상기 "폴리아믹산 용액 제조 공정"에서는 접동성, 열전도성, 도전성, 코로나 내성, 루프 경도 등 필름의 여러 가지 특성을 개선할 목적으로 충전재를 첨가할 수도 있다.In addition, in the "polyamic acid solution manufacturing process", the filler may be added for the purpose of improving various properties of the film, such as sliding, thermal conductivity, conductivity, corona resistance, loop hardness.
첨가되는 충전재는 특별히 한정되는 것은 아니지만, 바람직한 예로는 실리카, 산화티탄, 알루미나, 질화규소, 질화붕소, 인산수소칼슘, 인산칼슘, 운모 등을 들 수 있다.The filler to be added is not particularly limited, but preferred examples thereof include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, mica and the like.
충전재의 입경은 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성과 첨가하는 충전재의 종류에 따라서 결정할 수 있다.The particle size of the filler is not particularly limited and can be determined according to the film properties to be modified and the type of filler to be added.
일반적으로는, 평균 입경이 0.05 내지 100 ㎛, 바람직하게는 0.1 내지 75 ㎛, 더욱 바람직하게는 0.1 내지 50 ㎛, 특히 바람직하게는 0.1 내지 25 ㎛일 수 있다.In general, the average particle diameter may be from 0.05 to 100 μm, preferably from 0.1 to 75 μm, more preferably from 0.1 to 50 μm, particularly preferably from 0.1 to 25 μm.
입경이 이 범위를 하회하면 개질 효과가 나타나기 어려워지고, 이 범위를 상회하면 표면성을 크게 손상시키거나, 기계적 특성이 크게 저하되는 경우가 있다.If the particle size is less than this range, the modifying effect is less likely to appear. If the particle size is larger than this range, the surface properties may be largely impaired, or the mechanical properties may be greatly reduced.
또한, 충전재의 첨가량에 대해서도 특별히 한정되는 것은 아니고, 개질하여야 할 필름 특성이나 충전재 입경 등에 의해 결정할 수 있다.The addition amount of the filler is not particularly limited, and can be determined by the film characteristics to be modified, the particle size of the filler, and the like.
일반적으로, 충전재의 첨가량은 폴리이미드 100 중량부에 대하여 0.01 내지 100 중량부, 바람직하게는 0.01 내지 90 중량부, 더욱 바람직하게는 0.02 내지 80 중량부일 수 있다.In general, the addition amount of the filler may be 0.01 to 100 parts by weight, preferably 0.01 to 90 parts by weight, more preferably 0.02 to 80 parts by weight based on 100 parts by weight of polyimide.
충전재 첨가량이 이 범위를 하회하면, 충전재에 의한 개질 효과가 나타나기 어렵고, 이 범위를 상회하면 필름의 기계적 특성이 크게 손상될 가능성이 있다.If the amount of filler added is less than this range, the effect of modification by the filler is less likely to appear, and if it exceeds this range, mechanical properties of the film may be largely impaired.
충전재의 첨가 방법은 특별히 한정되는 것은 아니고, 공지된 어떠한 방법을 이용할 수도 있다.The addition method of a filler is not specifically limited, Any known method can also be used.
상기한 바와 같이 제조한 폴리아믹산 용액을 이미드화하여 폴리이미드 필름을 제조하는 방법에 대해서는, 종래 공지된 방법을 사용할 수 있다.As a method for producing a polyimide film by imidating the polyamic acid solution prepared as described above, a conventionally known method can be used.
구체적으로는 열 이미드화법, 화학 이미드화법 또는 열 이미드화법과 화학 이미드화법을 병용한 복합이미드화법을 들 수 있다.Specifically, the thermal imidation method, the chemical imidation method, or the composite imidation method which used the thermal imidation method and the chemical imidation method together is mentioned.
열 이미드화법은 탈수제 등의 촉매를 사용하지 않고, 가열만으로 폴리아믹산 용액을 이미드화 하는 방법으로서, 폴리아믹산을 지지체 상에 제막한 후, 40℃ 내지 400℃, 바람직하게는 40℃ 내지 300℃의 온도범위에서 서서히 승온시키며 1 내지 8 시간 열처리하여 상기 폴리아믹산이 이미드화된 폴리이미드 필름을 수득하는 방법이다.The thermal imidization method is a method of imidizing a polyamic acid solution by heating only without using a catalyst such as a dehydrating agent. After forming a polyamic acid on a support, it is 40 to 400 degreeC, Preferably it is 40 to 300 degreeC It is a method of obtaining a polyimide film in which the polyamic acid is imidated by gradually increasing the temperature in the temperature range of 1 to 8 hours.
화학 이미드화법은 탈수제 및/또는 이미드화제 등의 촉매를 사용하여 폴리아믹산 용액의 이미드화를 촉진하는 방법이다.The chemical imidation method is a method of promoting imidization of a polyamic acid solution using a catalyst such as a dehydrating agent and / or an imidizing agent.
복합이미드화법은 폴리아믹산 용액에 탈수제 및 이미드화 촉매를 투입하여 지지체상에 제막한 후 80 내지 200℃, 바람직하게는 100 내지 180℃에서 가열하여, 부분적으로 경화 및 건조한 후에 200 내지 400℃에서 5 내지 400 초간 가열함으로써 폴리이미드 필름을 얻을 수 있다.In the composite imidization method, a dehydrating agent and an imidization catalyst are added to a polyamic acid solution to form a film on a support, and then heated at 80 to 200 ° C, preferably 100 to 180 ° C, partially cured and dried, and then at 200 to 400 ° C. The polyimide film can be obtained by heating for 5 to 400 seconds.
한편, 탈수제는, 예를 들면 지방족 산 무수물, 방향족 산 무수물, N,N'-디알킬카르보디이미드, 할로겐화 저급 지방족, 할로겐화 저급 지방산 무수물, 아릴포스폰산디할로겐화물, 및 티오닐할로겐화물, 또는 이들 2종 이상의 혼합물을 들 수 있다.On the other hand, dehydrating agents are, for example, aliphatic acid anhydride, aromatic acid anhydride, N, N'-dialkylcarbodiimide, halogenated lower aliphatic, halogenated lower fatty acid anhydride, arylphosphonic acid dihalide, and thionyl halide, or And mixtures of two or more thereof.
그 중에서도 입수의 용이성, 및 비용의 관점에서 아세트산 무수물, 프로피온산 무수물, 및 락트산 무수물 등의 지방족 산 무수물, 또는 이들 2종 이상의 혼합물을 바람직하게 사용할 수 있다.Among them, aliphatic acid anhydrides such as acetic anhydride, propionic anhydride, and lactic anhydride, or a mixture of two or more thereof can be preferably used in view of ease of availability and cost.
또한, 이미드화제는, 예를 들면 지방족 3 급 아민, 방향족 3 급 아민, 및 복소환식 3 급 아민 등이 이용된다.In addition, as an imidation agent, an aliphatic tertiary amine, an aromatic tertiary amine, a heterocyclic tertiary amine, etc. are used, for example.
그 중에서도 촉매로서의 반응성의 관점에서 복소환식 3급 아민으로부터 선택되는 것이 특히 바람직하게 이용된다.Among them, those selected from heterocyclic tertiary amines are particularly preferably used in view of reactivity as a catalyst.
구체적으로는 퀴놀린, 이소퀴놀린, β-피콜린, 피리딘 등이 바람직하게 이용된다.Specifically, quinoline, isoquinoline, β-picolin, pyridine and the like are preferably used.
상기 이미드화 공정에서 화학 이미드화법을 이용하는 경우, 상기 이미드화 공정은 상기 폴리아믹산 용액을 포함하는 제막용 조성물을 지지체 상에 도포하고, 지지체 상에서 40℃ 내지 300℃의 온도범위로 열처리하여 겔 필름을 형성하고, 지지체로부터 겔 필름을 박리하는 공정 및 상기 겔 필름을 더욱 가열하여, 남은 아믹산(amic acid)을 이미드화하고 건조시키는 공정(이하, "소성 과정"이라고도 함)을 포함하는 것이 바람직하다.When the chemical imidation method is used in the imidization step, the imidization step is performed by applying the film forming composition containing the polyamic acid solution on a support, and heat treating the film to a temperature range of 40 ° C. to 300 ° C. on the support. And a step of peeling the gel film from the support and further heating the gel film to imidize and dry the remaining amic acid (hereinafter also referred to as "firing process"). Do.
이하에 상기한 각 공정에 대해서 상세히 설명한다.Each process mentioned above is demonstrated in detail below.
겔 필름 제조하기 위해서는, 우선 탈수제 및/또는 이미드화제를 저온으로 폴리아믹산 용액 중에 혼합하여 제막용 조성물을 얻는다.In order to manufacture a gel film, first, a dehydrating agent and / or an imidating agent are mixed in a polyamic-acid solution at low temperature, and a composition for film forming is obtained.
상기 탈수제 및 이미드화제는 특별히 한정되는 것은 아니지만, 상기 예시한 화합물을 선택하여 사용할 수 있다.Although the said dehydrating agent and the imidating agent are not specifically limited, The compound illustrated above can be selected and used.
또한, 상기 겔 필름 제조 공정에서는 화학 전환제 및 이미드화 촉매를 포함하는 경화제를 이용하여, 폴리아믹산 용액 중에 혼합하여 제막용 조성물을 얻을 수도 있다.Moreover, in the said gel film manufacturing process, it can also mix in a polyamic-acid solution using the hardening | curing agent containing a chemical conversion agent and an imidation catalyst, and can also obtain a composition for film forming.
탈수제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 0.5 내지 5 몰의 범위 내인 것이 바람직하고, 1.0 내지 4 몰의 범위 내인 것이 보다 바람직하다.It is preferable to exist in the range of 0.5-5 mol with respect to 1 mol of amic acid groups in polyamic acid, and, as for the addition amount of a dehydrating agent, it is more preferable to exist in the range of 1.0-4 mol.
또한, 이미드화제의 첨가량은 폴리아믹산 중 아믹산기 1 몰에 대하여 0.05 내지 3 몰의 범위 내인 것이 바람직하고, 0.2 내지 2 몰의 범위 내인 것이 특히 바람직하다.Moreover, it is preferable that it is in the range of 0.05-3 mol with respect to 1 mol of amic acid groups in polyamic acid, and, as for the addition amount of the imidating agent, it is especially preferable that it is in the range of 0.2-2 mol.
탈수제 및 이미드화제가 상기 범위를 하회하면 화학적 이미드화가 불충분하고, 소성 도중에 파단되거나, 기계적 강도가 저하되는 경우가 있다.If the dehydrating agent and the imidating agent are less than the above ranges, the chemical imidation may be insufficient, and may break during firing or the mechanical strength may decrease.
또한, 이들 양이 상기 범위를 상회하면 이미드화가 빠르게 진행되어, 필름형으로 캐스팅하는 것이 곤란해지는 경우가 있기 때문에 바람직하지 않다.Moreover, when these amounts exceed the said range, since imidation advances rapidly and it may become difficult to cast in a film form, it is not preferable.
한편, 다음으로 상기 제막용 조성물을 유리판, 알루미늄 박, 무단(endless) 스테인레스 벨트, 또는 스테인레스 드럼 등의 지지체 상에 필름형으로 캐스팅한다.On the other hand, the film forming composition is then cast in a film form on a support such as a glass plate, an aluminum foil, an endless stainless belt, or a stainless drum.
그 후, 지지체 상에서 제막용 조성물을 80 ℃ 내지 200 ℃, 바람직하게는 100 ℃ 내지 180 ℃의 온도 영역에서 가열한다.Thereafter, the film forming composition is heated on a support in a temperature range of 80 ° C to 200 ° C, preferably 100 ° C to 180 ° C.
이와 같이 함으로써, 탈수제 및 이미드화제가 활성화되고, 부분적으로 경화 및/또는 건조가 일어남으로써, 겔 필름이 형성된다.By doing so, the dehydrating agent and the imidizing agent are activated, and partially hardening and / or drying occurs, thereby forming a gel film.
그 후, 지지체로부터 박리하여 겔 필름을 얻는다.Then, it peels from a support body and obtains a gel film.
상기 겔 필름은 폴리아믹산으로부터 폴리이미드에의 경화의 중간 단계에 있고, 자기 지지성을 갖는다.The gel film is in the intermediate stage of curing from polyamic acid to polyimide and is self supporting.
연성동박적층판Flexible Copper Clad Laminates
본 발명은, 상술한 폴리이미드 필름 및 전기전도성의 금속박을 포함하는 연성금속박적층판을 제공한다.This invention provides the flexible metal foil laminated board containing the polyimide film mentioned above and an electrically conductive metal foil.
사용하는 금속박으로는 특별히 한정되는 것은 아니지만, 전자 기기 또는 전기 기기용도에 본 발명의 연성금속박적층판을 이용하는 경우에는, 예를 들면 구리 또는 구리 합금, 스테인레스강 또는 그의 합금, 니켈 또는 니켈 합금(42 합금도 포함함), 알루미늄 또는 알루미늄 합금을 포함하는 금속박일 수 있다.Although it does not specifically limit as metal foil to be used, When using the flexible metal foil laminated board of this invention for an electronic device or an electrical device use, it is copper or a copper alloy, stainless steel or its alloys, nickel or a nickel alloy (alloy 42, for example). And metal foil including aluminum or an aluminum alloy.
일반적인 연성금속박적층판에서는 압연 동박, 전해 동박이라는 구리박이 많이 사용되며, 본 발명에서도 바람직하게 사용할 수 있다.In general flexible metal foil laminated sheets, copper foil, such as a rolled copper foil and an electrolytic copper foil, is used abundantly, and can also be used suitably also in this invention.
또한, 이들 금속박의 표면에는 방청층, 내열층 또는 접착층이 도포되어 있을 수도 있다.Moreover, the antirust layer, a heat resistant layer, or an adhesive layer may be apply | coated to the surface of these metal foils.
본 발명에서 상기 금속박의 두께에 대해서는 특별히 한정되는 것은 아니고, 그 용도에 따라서 충분한 기능을 발휘할 수 있는 두께이면 된다.It does not specifically limit about the thickness of the said metal foil in this invention, What is necessary is just a thickness which can exhibit sufficient function according to the use.
본 발명에 따른 연성금속박적층판은, 상기 폴리이미드 필름의 일면에 금속박이 라미네이트되어 있거나, 상기 폴리이미드 필름의 일면에 열가소성 폴리이미드를 함유하는 접착층이 부가되어 있고, 상기 금속박이 접착층에 부착된 상태에서 라미네이트되어있는 구조일 수 있다.In the flexible metal laminate sheet according to the present invention, a metal foil is laminated on one surface of the polyimide film, or an adhesive layer containing thermoplastic polyimide is added to one surface of the polyimide film, and the metal foil is attached to the adhesive layer. It may be a laminated structure.
본 발명은 또한, 상기 연성금속박적층판을 전기적 신호 전송 회로로서 포함하는 전자 부품을 제공한다.The present invention also provides an electronic component comprising the flexible metal laminate sheet as an electrical signal transmission circuit.
상기 전기적 신호 전송 회로는, 적어도 2 GHz의 고주파, 상세하게는 적어도 5 GHz의 고주파, 더욱 상세하게는 적어도 10 GHz의 고주파로 신호를 전송하는 전자 부품일 수 있다.The electrical signal transmission circuit may be an electronic component that transmits a signal at a high frequency of at least 2 GHz, specifically at a high frequency of at least 5 GHz, and more particularly at a high frequency of at least 10 GHz.
상기 전자 부품은 예를 들어, 휴대 단말기용 통신 회로, 컴퓨터용 통신 회로, 또는 우주 항공용 통신회로일 수 있으나 이것으로 한정되는 것은 아니다.The electronic component may be, for example, a communication circuit for a portable terminal, a communication circuit for a computer, or a communication circuit for aerospace, but is not limited thereto.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.Hereinafter, the operation and effects of the invention will be described in more detail with reference to specific examples of the invention. However, these embodiments are only presented as an example of the invention, whereby the scope of the invention is not determined.
<실시예 1><Example 1>
반응계 내를 10 ℃로 유지한 상태에서 DMF에 PMDA를 하기 표 1에 나타낸 몰비로 첨가하고, 1 시간동안 교반을 행하였다.PMDA was added to DMF in the reaction system maintained at 10 degreeC in the molar ratio shown in following Table 1, and it stirred for 1 hour.
용해된 것을 육안으로 확인한 후, m-tolidine을 표 1에 나타낸 몰비로 첨가하고 용해 시킨 후 HFBAPP를 표 1에 나타낸 몰비로 첨가하고, 1 시간동안 교반을 행하여 폴리아믹산을 제조 하였다.After visually confirming the dissolution, m-tolidine was added in the molar ratio shown in Table 1, dissolved, and HFBAPP was added in the molar ratio shown in Table 1, and stirred for 1 hour to prepare a polyamic acid.
이렇게 수득된 폴리아믹산 용액에 아세트산 무수물/이소퀴놀린/DMF(중량비 46 %/13 %/41 %)를 포함하는 이미드화 촉진제를 폴리아믹산 용액 100 중량부를 기준으로 50 중량부로 첨가하고, 얻어진 혼합물을 스테인리스판에 도포 후 닥터블레이드를 사용해 400 ㎛ 갭을 사용해 캐스팅한 후 120℃ 오븐에서 열풍으로 4 분간 건조하여 겔 필름을 제조하였다.The imidation promoter including acetic anhydride / isoquinoline / DMF (46% / 13% / 41% by weight) was added to the polyamic acid solution thus obtained at 50 parts by weight based on 100 parts by weight of the polyamic acid solution, and the obtained mixture was made of stainless steel. After application to the plate was cast using a 400 μm gap using a doctor blade and dried for 4 minutes with hot air in a 120 ℃ oven to prepare a gel film.
이렇게 제조된 겔 필름을 스테인리스 판으로부터 떼어내어 프레임 핀으로 고정한 후 겔 필름이 고정된 프레임을 400℃에서 7 분간 열처리한 후에 필름을 떼어내어 평균 두께가 15 ㎛인 폴리이미드 필름을 얻었다.The gel film thus prepared was peeled off from the stainless steel plate and fixed with a frame pin. After heat-treating the frame on which the gel film was fixed at 400 ° C. for 7 minutes, the film was removed to obtain a polyimide film having an average thickness of 15 μm.
<실시예 2><Example 2>
m-tolidine과 HFBAPP의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.A polyimide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that the molar ratio of m-tolidine and HFBAPP was changed as in Table 1.
<실시예 3><Example 3>
m-tolidine과 HFBAPP의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.A polyimide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that the molar ratio of m-tolidine and HFBAPP was changed as in Table 1.
<비교예 1>Comparative Example 1
m-tolidine과 HFBAPP의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.A polyimide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that the molar ratio of m-tolidine and HFBAPP was changed as in Table 1.
<비교예 2>Comparative Example 2
m-tolidine과 HFBAPP의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.A polyimide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that the molar ratio of m-tolidine and HFBAPP was changed as in Table 1.
<비교예 3>Comparative Example 3
m-tolidine과 HFBAPP의 몰비를 표 1과 같이 변경한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.A polyimide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that the molar ratio of m-tolidine and HFBAPP was changed as in Table 1.
<비교예 4><Comparative Example 4>
m-tolidine과 HFBAPP 대신 ODA를 표 1에 나타낸 몰비로 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.A polyimide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that ODA was added in the molar ratio shown in Table 1 instead of m-tolidine and HFBAPP.
<비교예 5>Comparative Example 5
m-tolidine과 HFBAPP 대신 ODA와 PPD를 표 1에 나타낸 몰비로 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.A polyimide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that ODA and PPD were added in the molar ratio shown in Table 1 instead of m-tolidine and HFBAPP.
<비교예 6>Comparative Example 6
PMDA를 단독으로 투입하는 대신 PMDA와 BPDA를 표 1에 나타낸 몰비로 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.A polyimide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that PMDA and BPDA were added in the molar ratio shown in Table 1 instead of adding PMDA alone.
<비교예 7>Comparative Example 7
PMDA 대신 BPDA를 표 1에 나타낸 몰비로 첨가한 것을 제외하면 실시예 1과 동일한 방법으로 두께 15 ㎛의 폴리이미드 필름을 얻었다.A polyimide film having a thickness of 15 μm was obtained in the same manner as in Example 1 except that BPDA was added in the molar ratio shown in Table 1 instead of PMDA.
디안하이드라이드 단량체(몰%)Dianhydride monomer (mol%) 디아민 단량체(몰%)Diamine Monomer (mol%)
PMDAPMDA BPDABPDA m-Tolidinem-Tolidine HFBAPPHFBAPP PPDPPD ODAODA
실시예 1Example 1 100100 -- 7070 3030 -- --
실시예 2Example 2 100100 -- 8080 2020 -- --
실시예 3Example 3 100100 -- 5050 5050 -- --
비교예 1Comparative Example 1 100100 -- 3030 7070 -- --
비교예 2Comparative Example 2 100100 -- 9090 1010 -- --
비교예 3Comparative Example 3 100100 -- 4040 6060 -- --
비교예 4Comparative Example 4 100100 -- -- -- -- 100100
비교예 5Comparative Example 5 100100 -- -- -- 2525 7575
비교예 6Comparative Example 6 5050 5050 7070 3030 -- --
비교예 7Comparative Example 7 -- 100100 7070 3030 -- --
<실험예 1>Experimental Example 1
이상에서 얻어진 폴리이미드 필름을 다음과 같은 방식으로 유리전이온도와 흡습율을 측정하였다.The glass transition temperature and the moisture absorption rate of the polyimide film obtained as described above were measured in the following manner.
그 후, 폴리이미드 필름의 양면에 동박을 롤-투-롤 방식의 라미네이션을 행하여 연성금속박적층판을 제조하였고, 다음과 같은 방식으로 유전상수와 유전 손실률을 측정하였다.Thereafter, copper foil was roll-laminated on both sides of the polyimide film to prepare a flexible metal laminate, and the dielectric constant and dielectric loss rate were measured in the following manner.
이상의 결과는 하기 표 2에 나타나있다. The above results are shown in Table 2 below.
1) 유리전이온도1) Glass transition temperature
유리전이온도는 DMA를 이용하여 각 필름의 손실 탄성률과 저장 탄성률을 구하고, 이들의 탄젠트 그래프에서 변곡점을 유리전이온도로 측정하였다.For glass transition temperature, the loss modulus and storage modulus of each film were calculated using DMA, and the inflection point was measured by the glass transition temperature in the tangent graph.
2) 흡습율 2) moisture absorption rate
ASTM D570 방법에 의거하여 폴리이미드 필름을 크기 5 ㎝ × 5 ㎝의 정방형으로 절단하여 시편을 제조하고, 절단된 시편을 50℃의 오븐에 24 시간 이상 건조한 후 무게를 측정하였으며, 무게를 측정한 시편을 24 시간 동안 23℃의 물에 침지한 후 다시 무게를 측정하고, 여기서 얻어진 무게의 차이를 %로 나타내어 흡습율을 측정하였다.According to ASTM D570 method, a polyimide film was cut into squares having a size of 5 cm × 5 cm to prepare specimens. After soaking in water at 23 ° C. for 24 hours, the weight was again measured, and the moisture absorption rate was measured by expressing the difference in weight obtained as%.
3) 유전상수 및 유전 손실률 측정3) Measurement of dielectric constant and dielectric loss rate
유전상수 및 유전 손실률은 저항계 Agilent 4294A을 사용하여 72 시간동안 연성금속박적층판을 방치하여 측정하였다.Dielectric constant and dielectric loss rate were measured by using a ohmmeter Agilent 4294A for 72 hours.
유전상수(Dk)Dielectric constant (Dk) 유전손실률(Df)Dielectric loss rate (Df) 유리전이온도(℃)Glass transition temperature (℃) 흡습율(%)Hygroscopicity (%)
실시예 1Example 1 3.23.2 0.0040.004 365365 1.41.4
실시예 2Example 2 3.33.3 0.0050.005 371371 1.61.6
실시예 3Example 3 33 0.0040.004 323323 1.21.2
비교예 1Comparative Example 1 2.82.8 0.0040.004 280280 1.21.2
비교예 2Comparative Example 2 3.53.5 0.0050.005 377377 1.81.8
비교예 3Comparative Example 3 2.92.9 0.0040.004 302302 1.31.3
비교예 4Comparative Example 4 3.73.7 0.0170.017 403403 2.82.8
비교예 5Comparative Example 5 3.73.7 0.0170.017 422422 33
비교예 6Comparative Example 6 3.23.2 0.0040.004 304304 1.31.3
비교예 7Comparative Example 7 3.13.1 0.0040.004 297297 1.11.1
표 2에서 보이는 바와 같이, 본 발명의 실시예에 따라 제조된 폴리이미드 필름은 흡습율, 유전상수와 유전 손실률이 현저히 낮을 뿐만 아니라, 유리전이온도도 소망하는 수준임을 확인할 수 있고, 이는 앞서 설명한 바와 같이, 하기의 조건을 모두 만족하는 것이다.As shown in Table 2, the polyimide film prepared according to the embodiment of the present invention can be confirmed that not only the moisture absorption rate, dielectric constant and dielectric loss rate is significantly lower, but also the desired glass transition temperature, as described above. Likewise, all of the following conditions are satisfied.
(a) 유전상수(Dk)가 3.4 이하이고,(a) the dielectric constant (Dk) is 3.4 or less,
(b) 유전 손실률(Df)가 0.005 이하이며,(b) the dielectric loss factor (Df) is 0.005 or less,
(c) 흡습율이 2.3 중량% 이하이고,(c) the moisture absorption is 2.3% by weight or less,
(d) 유리전이온도(Tg)가 320℃ 이상.(d) Glass transition temperature (Tg) is 320 degreeC or more.
이러한 결과는 지방족 부분을 유래시키는 특정 디아민 단량체들과, 분자량이 상대적으로 낮은 PMDA의 조합에 의해 달성되는 것이며, 각 단량체들의 함량이 결정적 역할을 한다는 것을 알 수 있다.This result is achieved by the combination of specific diamine monomers derived from aliphatic moieties with PMDA having a relatively low molecular weight, and it can be seen that the content of each monomer plays a decisive role.
반면, 디아민 단량체들의 함량이 본 발명에 따른 범위에서 벗어나는 비교예 1 내지 비교예 3은 흡습율, 유전상수와 유전 손실률 및 유리전이온도 중 적어도 하나가 상당히 저하된 것을 확인할 수 있다. On the other hand, Comparative Examples 1 to 3 in which the content of the diamine monomer is out of the range according to the present invention can be seen that at least one of the moisture absorption rate, dielectric constant and dielectric loss rate, and glass transition temperature is significantly reduced.
또한, 실시예들과 상이한 디아민 단량체를 가지는 비교예 4 및 비교예 5 역시, 유전상수, 유전 손실률 및 흡습율이 모두 실시예와 비교하여 현저한 차이가 있음이 확인되었다.In addition, it was also confirmed that Comparative Examples 4 and 5 having different diamine monomers from the Examples also had significant differences in dielectric constant, dielectric loss rate, and moisture absorption rate compared with the Examples.
특히, 비교예 4 및 5는 실시예 대비 현저하게 높은 유전상수 및 유전 손실률을 나타낸바, 이들은 기가 단위의 고주파로 신호 전송이 이루어지는 전자 부품에 사용되기 어려움을 예상할 수 있다.In particular, Comparative Examples 4 and 5 show a significantly higher dielectric constant and dielectric loss rate compared to the examples, which can be expected to be difficult to use in electronic components in which signal transmission is performed at a high frequency in units of gigabytes.
또한, 비교예 4 및 5의 유리전이온도는 본 발명에서 개시한 바람직한 범위를 크게 상회하는데, 이는 폴리이미드 필름의 가공 시 매우 불리하게 작용할 수 있음을 이미 설명한 바 있다.In addition, the glass transition temperature of Comparative Examples 4 and 5 greatly exceeds the preferred range disclosed in the present invention, which has already been described as being able to work very disadvantageously in the processing of the polyimide film.
한편, 디안하이드라이드 단량체로서 BPDA를 PMDA와 모두 포함하는 비교예 6 및 BPDA만을 포함하는 비교예 7의 경우, 유리전이온도가 실시예와 비교하여 현저한 차이가 있음을 확인할 수 있다.On the other hand, in the case of Comparative Example 6 containing only BPDA as both dianhydride monomer and PMDA and Comparative Example 7 including only BPDA, it can be seen that there is a significant difference in glass transition temperature compared to the Example.
이상 본 발명의 실시예들을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면, 상기 내용을 바탕을 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Although described above with reference to embodiments of the present invention, those skilled in the art will be able to perform various applications and modifications within the scope of the present invention based on the above contents.
이상에서 설명한 바와 같이, 본 발명은 특정 디안하이드라이드 단량체들과, 디아민 단량체들의 조합 및 이들의 특정한 배합비에 기인하여, 소망하는 유리전이온도를 가지면서도 상대적으로 낮은 흡습성을 가지며, 흡습에 따른 유전상수와 유전 손실률 상승이 억제된 폴리이미드 필름을 제공할 수 있다.As described above, the present invention has a relatively low hygroscopicity with a desired glass transition temperature due to the combination of specific dianhydride monomers, diamine monomers and their specific blending ratio, and the dielectric constant according to moisture absorption. And it can provide the polyimide film by which the dielectric loss rate raise was suppressed.
본 발명은 또한, 상기와 같은 폴리이미드 필름을 포함하여, 2 GHz 이상의 고주파 통신이 가능한 전기적 전송 회로로서 활용할 수 있는 연성금속박적층판을 제공할 수 있다.The present invention can also provide a flexible metal laminate that can be utilized as an electrical transmission circuit capable of high frequency communication of 2 GHz or more, including the polyimide film as described above.

Claims (14)

  1. 하기 화학식 (1)로 표현되는 제1 디아민과 하기 화학식 (2)로 표현되는 제2 디아민을 포함하는 디아민 단량체; 및A diamine monomer comprising a first diamine represented by the following formula (1) and a second diamine represented by the following formula (2); And
    피로멜리틱디안하이드라이드(pyromellitic dianhydride; PMDA)의 중합에서 유래된 폴리아믹산을 이미드화하여 제조되고, 유전상수(Dk)가 3.4 이하이고, 유전 손실률(Df)가 0.005 이하인 폴리이미드 필름:A polyimide film prepared by imidizing a polyamic acid derived from the polymerization of pyromellitic dianhydride (PMDA), having a dielectric constant (Dk) of 3.4 or less and a dielectric loss factor (Df) of 0.005 or less:
    Figure PCTKR2018014616-appb-I000005
    (1)
    Figure PCTKR2018014616-appb-I000005
    (One)
    Figure PCTKR2018014616-appb-I000006
    (2)
    Figure PCTKR2018014616-appb-I000006
    (2)
    상기 화학식 (1)에서 R1 및 R2는 각각 독립적으로, C1-C6 알킬기, 또는 C1-C6 알콕시기이며;R 1 and R 2 in the formula (1) are each independently a C 1 -C 6 alkyl group or a C 1 -C 6 alkoxy group;
    상기 화학식 (2)에서 R3는 -C(CH3)2-, -C(CF3)2-, -(CH2)n1-, 또는 -O(CH2)n2O-이고, 상기 n1 및 n2는 각각 독립적으로 1 내지 10의 정수이다.In formula (2), R 3 is —C (CH 3 ) 2 —, —C (CF 3 ) 2 —, — (CH 2 ) n 1 —, or —O (CH 2 ) n 2 O—, wherein n 1 and n 2 Are each independently an integer of 1 to 10.
  2. 제1항에 있어서,The method of claim 1,
    상기 폴리이미드 필름은 유리전이 온도가 320℃ 이상인 폴리이미드 필름.The polyimide film is a polyimide film having a glass transition temperature of 320 ℃ or more.
  3. 제1항에 있어서,The method of claim 1,
    상기 폴리이미드 필름은 열팽창 계수(CTE)가 10 내지 25 ppm/℃ 인 폴리이미드 필름.The polyimide film has a coefficient of thermal expansion (CTE) of 10 to 25 ppm / ℃ polyimide film.
  4. 제1항에 있어서,The method of claim 1,
    상기 디아민 단량체의 전체 몰수를 기준으로, 상기 제1 디아민이 50 몰% 이상 내지 80 몰% 이하이고, 상기 제2 디아민이 20 몰% 이상 내지 50 몰% 이하인 폴리이미드 필름.Based on the total number of moles of the diamine monomer, the first diamine is at least 50 mol% to 80 mol%, the second diamine is at least 20 mol% to 50 mol% polyimide film.
  5. 제1항에 있어서,The method of claim 1,
    상기 폴리아믹산이 이미드화되어 형성된 폴리이미드 고분자 사슬은, 상기 제1 디아민의 R1과 R2, 및 상기 제2 디아민의 R3로부터 유래된 지방족 부분을 포함하는 폴리이미드 필름.The polyimide polymer chain formed by imidating the polyamic acid comprises an aliphatic moiety derived from R1 and R2 of the first diamine and R3 of the second diamine.
  6. 제5항에 있어서,The method of claim 5,
    상기 지방족 부분의 분자량은, 상기 폴리이미드 고분자 사슬 하나의 전체 분자량을 기준으로 5 % 내지 20 %인 폴리이미드 필름.The molecular weight of the aliphatic moiety is 5% to 20% based on the total molecular weight of one polyimide polymer chain.
  7. 제1항에 있어서,The method of claim 1,
    상기 R1 및 R2는 각각 메틸기이고, 상기 R3는 -C(CF3)2- 또는 -C(CH3)2-인 폴리이미드 필름.R 1 and R 2 are each a methyl group, and R 3 is —C (CF 3 ) 2 — or —C (CH 3 ) 2 —.
  8. 제1항에 있어서,The method of claim 1,
    상기 제1 디아민은 4,4'-디아미노-2,2'-디메틸바이페닐(4,4'-Diamino-2,2'-dimethylbiphenyl: m-Tolidine)인 폴리이미드 필름.The first diamine is 4,4'-diamino-2,2'-dimethylbiphenyl (4,4'-Diamino-2,2'-dimethylbiphenyl: m-Tolidine) polyimide film.
  9. 제1항에 있어서,The method of claim 1,
    상기 제2 디아민은 2,2-비스 [4-(4-아미노페녹시페닐)] 헥사플루오로프로판(2,2-Bis [4-(4-aminophenoxy phenyl)] hexafluoropropane: HFBAPP)인 폴리이미드 필름.The second diamine is 2,2-bis [4- (4-aminophenoxyphenyl)] hexafluoropropane (2,2-Bis [4- (4-aminophenoxy phenyl)] hexafluoropropane: HFBAPP) polyimide film .
  10. 제1항에 따른 폴리이미드 필름을 제조하는 방법으로서, As a method of manufacturing the polyimide film according to claim 1,
    상기 디아민 단량체 및 상기 디안하이드라이드 단량체를 유기 극성 용매에 첨가하는 단계;Adding the diamine monomer and the dianhydride monomer to an organic polar solvent;
    상기 유기 극성 용매 중에서, 상기 디아민 단량체 및 상기 디안하이드라이드 단량체를 서로 중합하여 폴리아믹산을 수득하는 단계; 및Polymerizing the diamine monomer and the dianhydride monomer with each other in the organic polar solvent to obtain a polyamic acid; And
    상기 폴리아믹산을 지지체 상에 제막한 후, 200 내지 450℃의 온도로 열처리하여 상기 폴리아믹산이 이미드화된 폴리이미드 필름을 수득하는 단계를 포함하는 폴리이미드 필름의 제조방법.After forming the polyamic acid on a support, a heat treatment at a temperature of 200 to 450 ℃ to obtain a polyimide film in which the polyamic acid is imidized manufacturing method of a polyimide film.
  11. 제1항에 따른 폴리이미드 필름 및 전기전도성의 금속박을 포함하는, 연성금속박적층판. A flexible metal foil laminate comprising the polyimide film according to claim 1 and an electrically conductive metal foil.
  12. 제11항에 있어서,The method of claim 11,
    상기 폴리이미드 필름의 일면에 금속박이 라미네이트되어 있거나,Metal foil is laminated on one surface of the polyimide film,
    상기 폴리이미드 필름의 일면에 열가소성 폴리이미드를 함유하는 접착층이 부가되어 있고, 상기 금속박이 접착층에 부착된 상태에서 라미네이트되어있는, 연성금속박적층판.An adhesive layer containing a thermoplastic polyimide is added to one surface of the polyimide film, and the flexible metal foil laminate is laminated in a state where the metal foil is attached to the adhesive layer.
  13. 제11항에 따른 연성금속박적층판을 전기적 신호 전송 회로로서 포함하는 전자 부품.An electronic component comprising the flexible metal laminate according to claim 11 as an electrical signal transmission circuit.
  14. 제13항에 있어서, 상기 전기적 신호 전송 회로는, 적어도 2 GHz의 고주파로 신호를 전송하는 전자 부품.The electronic component of claim 13, wherein the electrical signal transmission circuit transmits a signal at a high frequency of at least 2 GHz.
PCT/KR2018/014616 2018-04-05 2018-11-26 Polyimide film for preparing flexible metal foil-clad laminate and flexible metal foil-clad laminate comprising same WO2019194386A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880091990.0A CN111918907B (en) 2018-04-05 2018-11-26 Polyimide film for preparing flexible metal foil laminate and flexible metal foil laminate comprising same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0039692 2018-04-05
KR1020180039692A KR102141893B1 (en) 2018-04-05 2018-04-05 Polyimide Film for Preparing Flexible Metal Foil Clad Laminate And Flexible Metal Foil Clad Laminate Comprising the Same

Publications (1)

Publication Number Publication Date
WO2019194386A1 true WO2019194386A1 (en) 2019-10-10

Family

ID=68101047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014616 WO2019194386A1 (en) 2018-04-05 2018-11-26 Polyimide film for preparing flexible metal foil-clad laminate and flexible metal foil-clad laminate comprising same

Country Status (4)

Country Link
KR (1) KR102141893B1 (en)
CN (1) CN111918907B (en)
TW (1) TWI705988B (en)
WO (1) WO2019194386A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102347633B1 (en) * 2019-11-07 2022-01-10 피아이첨단소재 주식회사 Polyimide film with improved dielectric properties and manufacturing method thereof
KR102345722B1 (en) * 2019-11-07 2022-01-03 피아이첨단소재 주식회사 High Heat Resistant and Low Dielectric Polyimide Film and Manufacturing Method Thereof
KR102347588B1 (en) 2019-11-07 2022-01-10 피아이첨단소재 주식회사 High Heat Resistant and Low Dielectric Polyimide Film and Manufacturing Method Thereof
KR102347634B1 (en) * 2019-11-13 2022-01-10 피아이첨단소재 주식회사 High Adhesion and Low Dielectric Polyimide Film and Manufactufing Mehtod Thereof
KR102347632B1 (en) * 2019-11-13 2022-01-10 피아이첨단소재 주식회사 Low Dielectric Polyimide Film and Manufacutring Method Thereof
KR102437830B1 (en) * 2020-11-17 2022-08-31 피아이첨단소재 주식회사 LOW DIELECTRIC Polyimide Film WITH IMPROVED DIMENSIONAL STABILITY and MANUFACTURING METHOD THEREOF

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363283A (en) * 2001-06-06 2002-12-18 Nitto Denko Corp Polyamide acid, polyimide resin obtained from the same and utilization of them for circuit substrate
JP2014195947A (en) * 2013-03-29 2014-10-16 新日鉄住金化学株式会社 Method of producing double-surface flexible metal-clad laminate sheet
KR20150058835A (en) * 2013-11-21 2015-05-29 주식회사 엘지화학 Separation Method of Multi-layered Polyimide Film, Analytical Method and System for Composition of Monomer in Multi-layered Polyimide Film
JP2016188298A (en) * 2015-03-30 2016-11-04 新日鉄住金化学株式会社 Polyimide, resin film, metal-clad laminate, and circuit board
JP2017025214A (en) * 2015-07-23 2017-02-02 大日本印刷株式会社 Polyimide resin and laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5310863A (en) * 1993-01-08 1994-05-10 International Business Machines Corporation Polyimide materials with improved physico-chemical properties
JP5049594B2 (en) * 2004-09-24 2012-10-17 株式会社カネカ Novel polyimide film with improved adhesion
JP5185535B2 (en) * 2005-01-18 2013-04-17 株式会社カネカ Novel polyimide film with improved adhesion
KR101338328B1 (en) * 2011-12-28 2013-12-09 웅진케미칼 주식회사 Manufacturing Method Of Polyamic acid Composition, Polyamic acid Composition, Polyimide Film And Substrateused For Display Device Using The Same
KR101493595B1 (en) 2013-05-22 2015-02-13 에스케이씨코오롱피아이 주식회사 Polyimide Film
KR102239605B1 (en) * 2014-12-23 2021-04-12 주식회사 두산 Double-sided flexible metallic laminate and method thereof
KR102531268B1 (en) * 2015-12-31 2023-05-12 주식회사 동진쎄미켐 Polyimideprecursor, method for producing thereof and method for producing polyimide film using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002363283A (en) * 2001-06-06 2002-12-18 Nitto Denko Corp Polyamide acid, polyimide resin obtained from the same and utilization of them for circuit substrate
JP2014195947A (en) * 2013-03-29 2014-10-16 新日鉄住金化学株式会社 Method of producing double-surface flexible metal-clad laminate sheet
KR20150058835A (en) * 2013-11-21 2015-05-29 주식회사 엘지화학 Separation Method of Multi-layered Polyimide Film, Analytical Method and System for Composition of Monomer in Multi-layered Polyimide Film
JP2016188298A (en) * 2015-03-30 2016-11-04 新日鉄住金化学株式会社 Polyimide, resin film, metal-clad laminate, and circuit board
JP2017025214A (en) * 2015-07-23 2017-02-02 大日本印刷株式会社 Polyimide resin and laminate

Also Published As

Publication number Publication date
KR102141893B1 (en) 2020-08-07
CN111918907A (en) 2020-11-10
KR20190116725A (en) 2019-10-15
TW201943764A (en) 2019-11-16
CN111918907B (en) 2023-04-04
TWI705988B (en) 2020-10-01

Similar Documents

Publication Publication Date Title
WO2019194389A1 (en) Polyimide film for preparing flexible metal foil-clad laminate and flexible metal foil-clad laminate comprising same
WO2019194386A1 (en) Polyimide film for preparing flexible metal foil-clad laminate and flexible metal foil-clad laminate comprising same
WO2015183056A1 (en) Polyimide-based liquid and polyimide-based film produced using same
WO2020105888A1 (en) Polyimide film having low dielectric constant and low hygroscopicity, and manufacturing method therefor
WO2019164068A1 (en) Graphite sheet polyimide film comprising spherical pi-based filler, manufacturing method therefor, and graphite sheet manufactured using same
WO2016108491A1 (en) Thermal fusion multilayer polyimide film using crosslinked water-soluble thermoplastic polyamic acid, and preparation method thereof
WO2020105889A1 (en) Low-hygroscopic polyimide film, and flexible metal foil clad laminate comprising same
WO2020096363A1 (en) Polyimide composite film having excellent dielectic characteristics and method for forming same
WO2021091011A1 (en) Highly heat-resistant and low dialectric-polyimide film and method for producing same
WO2021095975A1 (en) Low-dialectric polyimide film and method for producing same
WO2020091432A1 (en) Polyimide precursor composition for enhancing adhesiveness of polyimide film and polyimide film manufactured therefrom
WO2021091014A1 (en) Polyimide film having improved dielectric properties, and manufacturing method for same
WO2019132184A1 (en) Polyimide film for manufacturing flexible copper clad laminate and flexible copper clad laminate comprising same
WO2018080222A2 (en) Polyimide film forming composition and polyimide film produced by using same
WO2020111399A1 (en) Polyimide film comprising two or more fillers with different particle diameters and electronic apparatus comprising same
WO2021096245A2 (en) Polyimide film having improved dimensional stability and manufacturing method thereof
WO2020017697A1 (en) Polyimide film including fluorine-containing silane additive and carbon black, and method for producing same
WO2020040356A1 (en) Polyimide varnish comprising aromatic carboxylic acid for conductor coating and manufacturing method therefor
WO2016108490A1 (en) Crosslinked water-soluble thermoplastic polyamic acid and method for preparing same
WO2020091147A1 (en) Conductor-coating polyimide varnish for improving heat resistance of polyimide-coated product, and polyimide-coated product manufactured therefrom
WO2022065804A1 (en) Low-dielectric-constant polyimide film and manufacturing method therefor
WO2020241983A1 (en) Highly elastic polyimide film and flexible metal foil clad laminate comprising same
WO2022108296A1 (en) Low-dielectric polyamic acid comprising liquid crystal powder, polyimide film, and method for producing same
WO2022098042A1 (en) Polyimide film having high dimensional stability, and method for manufacturing same
WO2020209555A1 (en) Multilayer polyimide film having excellent dimensional stability and adhesiveness, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913217

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913217

Country of ref document: EP

Kind code of ref document: A1