WO2024085324A1 - Pickering emulsion composition for heat dissipation, heat dissipation paste using same, and method for manufacturing same - Google Patents

Pickering emulsion composition for heat dissipation, heat dissipation paste using same, and method for manufacturing same Download PDF

Info

Publication number
WO2024085324A1
WO2024085324A1 PCT/KR2023/002406 KR2023002406W WO2024085324A1 WO 2024085324 A1 WO2024085324 A1 WO 2024085324A1 KR 2023002406 W KR2023002406 W KR 2023002406W WO 2024085324 A1 WO2024085324 A1 WO 2024085324A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat dissipation
paste
filler
pickering emulsion
silicone oil
Prior art date
Application number
PCT/KR2023/002406
Other languages
French (fr)
Korean (ko)
Inventor
김채빈
민성배
조용수
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2024085324A1 publication Critical patent/WO2024085324A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20472Sheet interfaces
    • H05K7/20481Sheet interfaces characterised by the material composition exhibiting specific thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to heat dissipation material technology, and more specifically, to a Pickering emulsion composition for heat dissipation, a heat dissipation paste using the same, and a method for manufacturing the same.
  • the heat generated per unit area of the device that is, heat density
  • heat density the heat generated during use of the device
  • it may cause overheating of the device, reduced lifespan, reduced reliability, reduced performance, and even explosion.
  • TIM thermal interface material
  • TIM materials have been widely used as polymer composite materials that can demonstrate both the advantages of light and formable polymers and metal/ceramic fillers.
  • Polymer composite materials are a type of polymer resin impregnated with a metal or ceramic filler, making use of both the formability and flexibility of the polymer and the thermal conductivity of the filler, making it suitable as a TIM material.
  • Polymer composite materials can be divided into metal-based and ceramic-based polymer composite materials depending on the filler used.
  • metal-based polymer composite materials gold (Au), silver (Ag), copper (Cu), etc. are used as metal fillers to achieve very high thermal conductivity, but they are also electrically conductive and are used in electronic devices that require insulation. It is unsuitable for use and it is difficult to secure lightness due to the high density of the metal.
  • ceramic polymer composite materials alumina, boron nitride, and silica are used as ceramic fillers, so unlike metal polymer composite materials, insulation properties can be secured, they are stable in the air, and the price is low.
  • it has a disadvantage in that it has a relatively low thermal conductivity and requires a high filler content to ensure sufficient thermal conductivity.
  • TIM exists in various forms depending on the purpose, and the most representative forms are paste, phase change material (PCM), adhesive, and pad.
  • PCM phase change material
  • TIM is applied between the heat source and the heat sink, and because the actual surfaces of the heat source and heat sink are very rough, it is very important to apply TIM with a minimum air gap (air layer) between the two interfaces. This is because the thermal conductivity of the voids (air) is very low, preventing effective heat transfer. In other words, it is very important to apply TIM with high thermal conductivity to effectively fill the space between two rough surfaces to maximize the actual contact area.
  • TIM that can well satisfy these conditions is a paste formulation.
  • thermal paste is a polymer composite material in which ceramic filler is dispersed in a low-molecular/polymer silicon matrix.
  • the silicone matrix of silicone heat dissipation paste has good spreadability and excellent heat and weather resistance, but its thermal conductivity is very low at the level of 0.2 W/m ⁇ K, so even if a high content of filler is filled, it is impossible to secure thermal conductivity of 1.5 to 2 W/m ⁇ K or more. There is a difficult downside. Additionally, long-term stability is poor under general TIM application conditions such as heat and pressure.
  • the purpose of the present invention is to provide a heat dissipating Pickering emulsion composition that has both excellent thermal conductivity and stability.
  • Another object of the present invention is to provide a heat dissipation paste based on the Pickering emulsion composition and a method for producing the same.
  • the present invention provides silicone oil; aliphatic alcohol; And it provides a Pickering emulsion composition for heat dissipation, comprising a thermally conductive filler.
  • the silicone oil may be selected from the group consisting of dimethyl silicone oil, methyl phenyl silicone oil, methyl hydrogen oil, fluorosilicone oil, amino-modified silicone oil, and epoxy-modified silicone oil.
  • the aliphatic alcohol may be selected from the group consisting of glycerol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, trimethylolethane, ditrimethylolethane, trimethylolpropane, and ditrimethylolpropane.
  • the silicone oil and aliphatic alcohol may be included in a volume ratio of 1:(0.1 to 2).
  • the thermally conductive filler may be selected from the group consisting of alumina, magnesia, boron nitride, silicon nitride, and silica.
  • the thermally conductive filler may be a spherical filler with an average diameter of 0.1 to 100 ⁇ m.
  • the thermally conductive filler may be included in an amount of 10 to 60 parts by volume based on 100 parts by volume of the total composition.
  • the present invention provides a liquid matrix containing silicone oil and aliphatic alcohol; and a heat conductive filler dispersed in the matrix, providing a Pickering emulsion-based heat dissipation paste.
  • the thermally conductive filler may form a segregated network within the matrix.
  • the paste may have improved thermal conductivity.
  • the paste may have improved stability against heat and moisture.
  • the paste can be recycled or reused.
  • the present invention includes the steps of mixing silicone oil and aliphatic alcohol to prepare a liquid matrix; and adding a thermally conductive filler to the prepared liquid matrix.
  • a method for producing a Pickering emulsion-based heat dissipation paste is provided.
  • the heat dissipation composition and paste according to the present invention can have better thermal conductivity and stability by forming a Pickering emulsion by adding aliphatic alcohol to a suspension-type heat dissipation paste that was conventionally used as a simple mixture of silicone oil and alumina filler.
  • the thermally conductive filler in the Pickering emulsion according to the present invention can perform heat transfer more effectively, and thus can be used as a heat dissipation material in various fields.
  • the heat dissipation paste manufacturing method according to the present invention is a low-cost, simple, and environmentally friendly method that can secure high thermal conductivity, stability, and applicability without the complicated manufacturing process of conventional heat dissipation pastes, expensive surfactants, or post-treatment processes.
  • Paste can be manufactured, and filler can be recovered and recycled from heat dissipation paste using a simple centrifugation method.
  • the above manufacturing method can be immediately applied to industrial companies for efficient manufacturing and further enables mass production, which can contribute to the production and technology development of thermal interface materials in the future.
  • Figure 1 shows the results of measuring the thermal conductivity and yield stress of the heat dissipation paste according to the filler content according to an experimental example of the present invention.
  • (a) shows the heat conduction according to the filler content of SA03, GA03, and SG5:5A03.
  • (b) is the yield stress according to the filler content of SA03, GA03, and SG5:5A03
  • (c) is the thermal conductivity according to the filler content of SA90, GA90, and SG5:5A90
  • (d) is SA90, GA90, and SG5: This shows the yield stress according to the filler content of 5A90, where SA03, GA03, SA90, GA90, SG5:5A03, and SG5:5A90 are silicone oil + 3 ⁇ m alumina, glycerol + 3 ⁇ m alumina, silicon, respectively.
  • Figure 2 is an optical microscope (OM) image of a glycerol single matrix (GA03) containing 3 ⁇ m alumina filler, with filler contents of (a) 10 vol%, (b) 20 vol%, (c) 30 vol%, and (d), respectively. ) 40 vol%, and (e) 50 vol%, and the scale bar represents 20 ⁇ m.
  • OM optical microscope
  • Figure 3 is an optical microscope (OM) image of a silicone oil/glycerol emulsion (SG5:5A03) containing 3 ⁇ m alumina filler, with filler contents of (a) 0 vol%, (b) 10 vol%, and (c) 20 vol%, respectively. %, (d) 30 vol%, (e) 40 vol%, and (f) 50 vol%, and the scale bar represents 50 ⁇ m.
  • OM optical microscope
  • Figure 4 is an optical microscope (OM) image of a silicone oil/glycerol emulsion (SG5:5A90) containing 90 ⁇ m alumina filler, with filler contents of (a) 20 vol%, (b) 30 vol%, and (c) 40 vol, respectively. %, and (d) 50 vol%, and the scale bar represents 50 ⁇ m.
  • OM optical microscope
  • Figure 5 is a graph showing the change in thermal conductivity versus yield stress of heat dissipation paste samples according to another experimental example of the present invention.
  • Figure 6 schematically shows the heat transfer paths in different heat dissipation pastes, where (a) is a heat dissipation paste in the form of a suspension and (b) is a heat dissipation paste in the form of a Pickering emulsion.
  • Figure 7 shows changes in complex viscosity, yield stress, and thermal conductivity of heat dissipation paste samples under various temperature conditions according to another experimental example of the present invention. All samples were tested at 50, 75, and 100°C before measurement. It was heat treated (annealed) for a period of time and then cooled to room temperature and then measured.
  • (a) is the complex viscosity of GA03_30 as a function of angular frequency
  • (b) is the complex viscosity of SG5:5A03_30 as a function of angular frequency
  • (c) is the yield stress of GA03_30 and SG5:5A03_30
  • (d) is the percentage change in yield stress shown in (c) relative to the value measured at 25°C
  • (e) is the thermal conductivity of GA03_30 and SG5:5A03_30
  • (f) is the percent change in yield stress shown in (e) relative to the value measured at 25°C. It represents the percentage change in thermal conductivity.
  • Figure 8 shows the hygroscopicity of heat dissipation paste samples according to another experimental example of the present invention, showing (a) hygroscopicity and (b) normalized mass value of GA03 and SG5:5A03 by content at room temperature and 95% relative humidity. It represents.
  • Figure 9 shows the weight loss of alumina recovered from a silicone oil/glycerol emulsion (SG5:5A03) containing a 3 ⁇ m alumina filler and pure alumina as the temperature rises in a nitrogen atmosphere.
  • the present inventor prepared a paste in the form of a Pickering emulsion by including a thermally conductive filler in a matrix of a mixture of immiscible silicone oil and glycerol, and its excellent thermal conductivity and By confirming stability, the present invention was completed.
  • the present invention relates to silicone oil; aliphatic alcohol; And it provides a Pickering emulsion composition for heat dissipation, comprising a thermally conductive filler.
  • “Pickering emulsion” refers to an emulsion in which two insoluble phases are stabilized using solid particles, unlike conventional emulsions that thermodynamically stabilize two immiscible phases through a surfactant. .
  • the silicone oil is a liquid silicone resin with a relatively low degree of polymerization and may include dimethyl silicone oil, methyl phenyl silicone oil, methyl hydrogen oil, fluorosilicone oil, amino-modified silicone oil, epoxy-modified silicone oil, etc. It is not limited to this.
  • the aliphatic alcohol may be an aliphatic polyhydric alcohol with relatively low volatility, for example, glycerol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, trimethylolethane, ditrimethylolethane, trimethylolpropane, ditrimethyl It may be selected from all-propane, etc., and preferably may be glycerol, but is not limited thereto.
  • the silicone oil and aliphatic alcohol may be included in a volume ratio of 1:(0.1 to 2), preferably 1:(0.5 to 1.5), but are not limited thereto.
  • the thermally conductive filler is intended to improve the thermal conductivity of the composition, and may include an inorganic filler such as alumina, magnesia, boron nitride, silicon nitride, or silica, and preferably has an average diameter such as spherical alumina, spherical magnesia, or spherical silica. It may be selected from a spherical filler with an average diameter of 0.1 to 100 ⁇ m, more preferably a spherical filler with an average diameter of 0.1 to 10 ⁇ m, but is not limited thereto.
  • an inorganic filler such as alumina, magnesia, boron nitride, silicon nitride, or silica
  • an average diameter such as spherical alumina, spherical magnesia, or spherical silica. It may be selected from a spherical filler with an average diameter of 0.1 to
  • the thermally conductive filler may be included in an amount of 10 to 60 parts by volume, preferably 10 to 50 parts by volume, based on a total of 100 parts by volume of the heat dissipating paste composition, but is not limited thereto.
  • the present invention provides a liquid matrix containing silicone oil and aliphatic alcohol; and a heat conductive filler dispersed in the matrix, providing a Pickering emulsion-based heat dissipation paste.
  • the liquid matrix may include silicone oil and aliphatic alcohol, and the corresponding features may be substituted in the above-described portion.
  • the matrix may include silicone oil and aliphatic alcohol in a volume ratio of 1:(0.1 to 2), preferably 1:(0.5 to 1.5), but is not limited thereto.
  • silicone-based matrices have good applicability due to low viscosity and surface energy, but have low thermal conductivity and low interfacial affinity between filler and matrix, so phase separation easily occurs within the paste. Accordingly, a stable emulsion-type matrix with sufficient viscosity and high thermal conductivity can be manufactured by mixing an aliphatic alcohol with a higher viscosity and thermal conductivity than a silicone-based matrix.
  • aliphatic polyhydric alcohols such as glycerol have excellent hygroscopicity and have poor long-term stability, so it is desirable to mix silicone oil and glycerol in the above volume ratio to produce a new matrix that can be used in the form of a Pickering emulsion.
  • thermally conductive filler can be substituted for the parts described above.
  • the thermally conductive filler may be included in an amount of 10 to 60 parts by volume, preferably 10 to 50 parts by volume, based on a total of 100 parts by volume of the heat dissipating paste composition, but is not limited thereto.
  • the content of the filler increases, it becomes easier to form a heat transfer path, thereby improving thermal conductivity.
  • the content of the filler is excessive, the density of the heat dissipation material increases, making it heavier, and the paste formulation cannot be maintained, resulting in lower processability.
  • it is preferable that the volume content is within the above range.
  • thermal interface material is applied between a heat source and a heat sink. It is very important to apply TIM with a minimum void (air layer) between the two interfaces, and the paste formulation provides this. can satisfy.
  • the paste formulation can maintain a short distance between the interfaces (bond line thickness) even with small pressure, minimizing thermal resistance occurring at the interface and ensuring high thermal conductivity. No curing process is required and no external interference is required. It has the advantage of absorbing stress well and enabling dissipation (damping).
  • the thermally conductive filler can be adsorbed along the interface between the insoluble silicone oil and glycerol to form a Pickering emulsion that thermodynamically stabilizes the thermodynamically unstable liquid matrix. Additionally, the thermally conductive filler can effectively form a filler network within the liquid matrix, and this filler network structure is called a segregated network.
  • the filler can further improve thermal conductivity by securing a heat transfer path by forming a segregated network on a thermodynamically stable Pickering emulsion, and can exhibit high yield stress and have excellent structural and dispersion stability. Additionally, this can improve stability against heat and moisture.
  • the paste can be used in various electronic devices as a thermal interface material to ensure heat dissipation.
  • the paste can be recycled or reused.
  • the present invention includes the steps of mixing silicone oil and aliphatic alcohol to prepare a liquid matrix; and adding a thermally conductive filler to the prepared liquid matrix.
  • a method for producing a Pickering emulsion-based heat dissipation paste is provided.
  • Silicone oil (KF-96, 350 cs) was purchased from Shinetsu chemical (Japan).
  • silicone oil and glycerol were first weighed at a volume ratio of 1:1 and mixed with a Thinky mixer at 2,000 rpm for 1 minute. Afterwards, in order to stabilize the two unstable liquid matrices, 10, 20, 30, 40, and 50 vol% of alumina is impregnated relative to the total paste content, followed by a deforming and mixing process similar to the method of producing a heat dissipation paste in the form of a suspension described above. proceeded with.
  • the produced pastes had stable formulations at all contents.
  • the thermal conductivity of the paste was measured at room temperature using a transient plain source method thermal analyzer TPS-2500S (Hot-disk AB, Sweden) in isotropic mode. Since the paste has flowability, to maintain the formulation, a vial lid with a depth and diameter of 10 mm and 20 mm, respectively, was covered with plastic wrap and the paste was placed and sealed. Afterwards, the sensor was placed between the lids of two identical vials containing paste, and thermal conductivity was measured by measuring contact resistance and temperature change.
  • TPS-2500S Transient plain source method thermal analyzer
  • Rheological properties such as complex viscosity and yield stress with respect to angular frequency were measured using a HR-20 (TA Instrument, USA) rotational rheological property meter equipped with a parallel plate with a diameter of 40 mm, and the mode used was: was small-amplitude oscillatory shear (SAOS).
  • SAOS small-amplitude oscillatory shear
  • the filler structure of the heat dissipation paste was observed using an optical microscope Eclipse LV100ND (Nikon, Japan). Each sample was spread thinly on a glass slide, stabilized at room temperature for 5 minutes, and then observed from above. To observe the temperature stability of the paste, the pastes were placed on a heating plate, heated at 50, 75, and 100°C for 1 hour each, and then cooled at room temperature.
  • the rheological properties and thermal conductivity of the cooled sample were measured in the same manner as mentioned above.
  • the weight change of the paste at room temperature was measured using an analytical balance AUW220D (Shimadzu, Japan). After filling each of the four vials with water, they were placed in an analytical balance, and the change in the weight of the paste was recorded at 10-minute intervals starting when the relative humidity reached 95%.
  • the weight change rate according to temperature increase was measured in a nitrogen atmosphere using thermogravimetric analysis (TGA).
  • Yield stress and thermal conductivity are the most important characteristics that a heat dissipation paste must have.
  • Thermal conductivity is a measure of the ability of an object to transfer heat, and yield stress refers to the minimum stress required to deform or flow the structure formed by particles. do.
  • the yield stress of the paste results from noncovalent interactions between the fillers dispersed in the matrix or from the structure they form.
  • the higher the viscosity of the composite the higher the yield stress, and the higher the yield stress, the better the structural stability.
  • the best type of heat dissipation paste is one that has high thermal conductivity and high yield stress at the same time.
  • the thermal conductivity and yield stress of heat-radiating paste composites in which different sizes and contents of alumina were dispersed in an emulsion of silicone oil, glycerol, and silicone oil and glycerol mixed at a volume ratio of 5:5 were measured.
  • Alumina used as filler has a diameter of 3 ⁇ m or 90 ⁇ m.
  • SA and GA represent suspension-type pastes composed of silicone oil, alumina, glycerol, and alumina, respectively
  • SG5:5A represents an emulsion-type paste in which alumina is impregnated in a liquid matrix of silicone oil and glycerol in a 5:5 volume ratio. it means.
  • the number after the sample name indicates the diameter of the spherical alumina used.
  • the heat dissipation paste in the form of an emulsion mixed with silicone oil and glycerol at a ratio of 5:5 always has a higher yield stress than the heat dissipation paste in the form of a suspension of silicone oil or glycerol (SA, GA) at all contents. indicated.
  • SA, GA silicone oil or glycerol
  • the yield stress rapidly increased when 10 vol% of filler was impregnated regardless of the size of the impregnated alumina, and the emulsion type paste showed a higher yield stress than the suspension type heat dissipation paste.
  • a heat dissipation paste in the form of a suspension in which alumina is randomly dispersed When a liquid resin mixed with silicone oil and glycerol is used, alumina stabilizes the unstable interface between silicone oil and glycerol, and at the same time, the interaction between alumina becomes stronger, making the interaction between alumina relatively strong. This is thought to be because it forms a strong structure, and can also be seen as strong evidence that a Pickering emulsion has been formed.
  • the yield stress also steadily increases as the filler content increases up to 40 vol%, which is believed to be because alumina is continuously located at the silicon oil/glycerol interface to form a stronger segregated network structure.
  • SG5:5A03 mixture of silicon oil and glycerol in a volume ratio of 5:5 + 3 ⁇ m alumina
  • SG5:5A90 mixture of silicon oil and glycerol in a volume ratio of 5:5 + 90 ⁇ m alumina] were solid particles. It can be expected that the interface between the two insoluble liquids is a stabilized Pickering emulsion.
  • SG5:5A03 showed higher thermal conductivity than SA03 [silicon oil + 3 ⁇ m alumina] and GA03 [glycerol + 3 ⁇ m alumina], and especially showed significantly higher thermal conductivity at high filler content.
  • the thermal conductivity of the heat dissipation paste is determined by the filler assuming that the matrix is insulating.
  • the thermal conductivity of the heat dissipation paste follows the Bruggeman model in Equation 1 below in the general case where spherical fillers are randomly distributed in the matrix:
  • V is the volume fraction of the filler
  • ⁇ p , ⁇ m , and ⁇ c are the thermal conductivities of the filler, matrix, and composite (heat dissipation paste), respectively.
  • the yield stress increases as alumina is located at the interface between silicone oil and glycerol to form a segregated network structure between fillers, thereby forming a more effective heat transfer pathway and greatly improving thermal conductivity. It can be expected that it brings , and in addition, SG5:5A03 can be judged to have the form of a Pickering emulsion.
  • the size of the alumina was very large compared to the size of the formed droplet, so the alumina did not effectively stabilize the interface between the two liquids. Therefore, it can be expected that the oil droplets and alumina were randomly dispersed rather than a normal Pickering emulsion being formed.
  • the thermal conductivity of the paste was found to be higher as the size of the filler used in the heat dissipation paste in the form of a suspension using only silicon or glycerol generally increased, but in the form of an emulsion, the thermal conductivity of the paste was higher when small-sized alumina was used.
  • the thermal conductivity showed that Pickering emulsion and segregated network structures were effectively formed when 3 ⁇ m alumina was used.
  • the structure formed by the filler has a greater impact on the thermal conductivity of the entire composite than the thermal conductivity of the matrix itself, and the yield stress of the composite is the minimum required to deform the structure formed by the filler within the composite. It refers to strength and varies depending on the degree of structure formation.
  • SA03/90 and GA03/90 which are suspension-type heat dissipation pastes, and emulsion-type heat dissipation paste were examined using an optical microscope (OM). The structure formed by the filler in SG5:5A03/90 was observed.
  • the emulsion-type composites (SG5:5A03, SG5:5A90) using a mixture of silicone oil and glycerol as a matrix showed different aspects from the suspension-type composites using only silicone or glycerol.
  • alumina is a relatively hydrophilic particle, it has more contact with glycerol than silicone oil within the emulsion. That is, an oil-in-water (O/W) emulsion is formed in which the continuous phase is glycerol and the dispersed phase is silicone oil.
  • the continuous phase represents glycerol and the droplets represent silicone oil
  • silicone oil and glycerol are simply dispersed without alumina
  • the droplet size is unstable and is in an unstable state (a).
  • alumina was impregnated with 10 vol%, the droplet size became relatively constant and alumina appeared to surround the silicon oil droplet (b).
  • the reason the droplet size is constant is because the filler surrounds the droplet and forms a stable structure, which can be judged as great evidence of a Pickering emulsion.
  • the matrix ratio decreased, the oil droplet size gradually decreased, and adjacent droplets were observed to be connected to each other by the filler.
  • the droplets were reduced to a level similar to the size of alumina, and oil droplets and alumina were observed to be densely packed in the glycerol matrix.
  • SG5:5A03 forms a stable Pickering emulsion and segregated network structure with alumina.
  • SG5:5A03 provided a more stable and strong structure, and the yield stress was found to be higher than that of SA03 and GA03.
  • the heat transfer path through which heat can pass was well formed continuously, and the thermal conductivity was also found to be higher than that of SA03 and GA03. .
  • SG5:5A90 like SG5:5A03, has a higher yield stress than SA90 and GA90 and has good stability, but the thermal conductivity is not significantly higher than GA90.
  • the diameter of the alumina is larger than the diameter of the silicon oil droplet, so the filler does not surround the droplet, but rather the droplet surrounds the filler.
  • SG5:5A90 compared to fillers randomly dispersed in a single matrix, SG5:5A90 has good stability because the droplets between fillers are packed and behave like solid particles (better yield stress than single matrix-based composite), but the fillers are sufficiently connected like random packing. Therefore, it does not bring about a significant improvement in thermal conductivity (there is no significant improvement in thermal conductivity compared to a single matrix-based composite).
  • thermal conductivity is greatly affected by the structure formed by the filler.
  • thermal conductivity is greatly affected by the structure formed by the filler.
  • the degree to which filler structure formation contributes to thermal conductivity was analyzed using a thermal conductivity prediction model.
  • Equation 2 The overall thermal resistance of composites commonly used as TIMs is given by Equation 2:
  • R bulk refers to the total thermal resistance of the TIM
  • BLT refers to the actual contact distance between the two solids
  • k TIM refers to the thermal conductivity of the composite.
  • C and m are constants
  • ⁇ y is the yield stress of the composite
  • k TIM is the thermal conductivity of the composite
  • P is the pressure required to join two solid plates.
  • the thermal conductivity of the composite is proportional to the m power of the yield stress.
  • a high m value indicates a large increase in thermal conductivity compared to the increase in yield stress, and a low m value indicates a small increase in thermal conductivity compared to the increase in yield stress. The larger the m value, the more efficiently the thermal conductivity is improved even if the filler has the same yield stress. It can be judged that a structure is formed.
  • the thermal conductivity and yield stress of the composite have percolation characteristics, so the physical properties tend to be maximized when the filler is impregnated with a certain amount or more.
  • FIGS. 1A to 1D it can be seen that the slope of increase in thermal conductivity and yield stress of all pastes increases based on 40 vol%. In other words, since the behavior of the section where percolation occurs and the section where percolation does not occur varies depending on the filler content, it is appropriate to divide the relationship between thermal conductivity and yield stress based on 40 vol%.
  • Table 1 shows the calculated m values of all pastes around 40 vol% according to Equation 3 above.
  • SG5:5A03 and SG5:5A90 had relatively high m values at ⁇ 40 vol% compared to suspension-type heat dissipation pastes, and m decreased sharply at >40 vol% compared to ⁇ 40 vol%.
  • a high m value means that the increase in thermal conductivity is large compared to the increase in yield stress. This is because at 40 vol% or less, unlike single matrix-based composites, the filler forms a segregated structure, making heat transfer effective, whereas at 40 vol% or more.
  • the rapid decrease in m means that the movement of the filler is greatly restricted by the silicone oil droplets and the maximum limit at which alumina can be impregnated is reached, and the yield stress increases significantly compared to the increase in thermal conductivity.
  • SG5:5A03 is a form in which the filler surrounds the droplet and a segregated structure is formed by the filler, but in SG5:5A90, the size of the filler is similar to that of the liquid droplet. Since it is larger than the size of the enemy, the droplet surrounds the filler, and only SG5:5A03 can be confirmed to be in the form of a Pickering emulsion.
  • the filler had a regular structure due to oil droplets compared to the random single matrix-based composite, and the increase in thermal conductivity compared to yield stress was large, showing a large m value. Above 40 vol%, the decrease in m value was significant for both SG5:5A03 and SG5:5A90. In other words, at a high content of 40 vol% or more, the increase in yield stress is greater than that of a single matrix composite. This means that oil droplets stabilized in small sizes by a large amount of filler within the composite behave like solid particles, greatly limiting the movement of the filler. This is because the yield stress rapidly increases by limiting the volume that the filler can occupy.
  • both SG5:5A03 and SG5:5A90 which used silicone oil and glycerol as matrices, theoretically showed better stability and thermal conductivity than single matrix-based composites.
  • SG5:5A03 had the form of a Pickering emulsion and was the best. It can be confirmed that it has excellent stability and thermal conductivity.
  • the Agari model is a model proposed to consider the effect on the thermal conductivity of the network formed by filler at high content, and can be expressed as Equation 4 below:
  • ⁇ c , ⁇ f and ⁇ p are the thermal conductivities of the composite, filler and matrix, respectively, and v f is the volume fraction of the filler.
  • C p is a constant that takes into account the influence of the secondary structure (crystallinity or crystal size) of the matrix depending on the filling of the filler, that is, it is a measure of whether the filler affects the thermal conductivity of the matrix, and C p is 1 This means that under ideal conditions, filler impregnation does not affect the thermal conductivity of the matrix.
  • C f is a measure of how efficiently the filler is tightly packed and forms a network at high density. In other words, it is a measure of the ability to form a heat conduction network. Generally, C f has a value between 0 and 1. The higher C f , the more airtight the network structure of the filler is, so heat transfer occurs more effectively, resulting in higher thermal conductivity. As a result, analyzing the C f value in each case through Agari fitting based on the thermal conductivity to the filler volume ratio of all composites determines which composite has the most efficient filler network structure for heat transfer. You can see how it is formed.
  • Table 2 below calculates the C f values of all composite samples after fixing C p at 1.
  • SG5:5A03 which actually formed a segregated structure by filler, showed the highest C f value compared to other complexes. In other words, it can be confirmed that SG5:5A03 has a strong network structure that is most advantageous for heat transfer.
  • SG5:5A90 also shows a relatively high C f value, which is believed to be because the movement of the filler is limited by the surrounding oil droplets and is relatively ordered compared to the single matrix-based composite.
  • SG5:5A03 not only forms an effective heat transfer path by forming a segregated structure, but also has a high yield stress, that is, structural stability and dispersion stability. That is, at ⁇ 40 vol%, it forms a segregated structure and shows a high m value, and at >40 vol%, it forms a dense structure with oil droplets, showing a rapid decrease in m, and has the highest C f value.
  • SG5:5A03 a Pickering emulsion, has high stability and high thermal conductivity, which has been theoretically proven to be due to the segregated structure formed by the filler.
  • heat dissipation paste is exposed to heat generated from electronic devices for a long time, long-term stability under high temperatures is important.
  • the heat dissipation paste in the form of a complex fluid rapidly decreases in viscosity and begins to flow.
  • a pump out phenomenon occurs in which the matrix with reduced viscosity flows out of the complex fluid and reduces stability, or a dry out phenomenon occurs in which air fills the area where the matrix disappears and the heat transfer path is reduced.
  • a phenomenon occurs.
  • the viscosity may decrease and problems with filler precipitation may occur, which is the fundamental cause of the disadvantage of heat dissipation paste products in which thermal conductivity gradually decreases during long-term use. In other words, it is important to be stable at high temperatures and have little change in viscosity.
  • the heat dissipation paste in electronic devices must maintain a stable formulation even when exposed to extreme environments with high humidity to ensure efficient heat dissipation performance.
  • Glycerol one of the matrices used in the above example, has three -OH functional groups per molecule and has hygroscopic properties. Therefore, although GA03 has a thermal conductivity comparable to that of SG5:5A03, a Pickering emulsion, it is considered unsuitable for use as a heat dissipation paste due to its hygroscopicity.
  • Hygroscopicity (%) [(W1-W0)/W0] ⁇ 100
  • each heat dissipation paste has high hygroscopicity, the mass of the heat dissipation paste will increase as it absorbs water vapor over time.
  • SG5:5A03 is a heat dissipation paste that is stable even at high temperatures and moisture as a Pickering emulsion.
  • thermogravimetric analysis TGA
  • the alumina recovered from the Pickering imulsion heat dissipation paste of low and high content fillers like pure alumina, does not change in weight due to volatilization of distilled water, glycerol, and silicone oil even at high temperatures up to 800°C. You can. This means that the recovered alumina can be reused in the future as high purity alumina without residual solvents.
  • the Pickering emulsion heat dissipation paste has the advantage of simply mixing a glycerol/silicon oil matrix and alumina filler, so the filler could be recovered through physical decomposition. This means that the filler separation method can be applied to the Pickering imulsion heat dissipation paste system, which can be applied in a variety of ways. Additionally, the recovered filler is expected to be recyclable in the manufacture of new composite materials in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a Pickering emulsion composition for heat dissipation, a heat dissipation paste using same, and a method for manufacturing same and, more specifically, provides a Pickering emulsion composition for heat dissipation comprising: a silicone oil; an aliphatic alcohol; and a thermally conductive filler, and a heat dissipation paste based on the Pickering emulsion and a method for manufacturing same. The thermally conductive filler in the Pickering emulsion forms a segregated network structure, securing high thermal conductivity and stability, and thus the emulsion can be used as a heat dissipation material in various fields. In addition, the filler can be recovered from the heat dissipation paste by using a simple centrifugation method and recycled.

Description

방열용 피커링 에멀젼 조성물, 이를 이용한 방열 페이스트 및 이의 제조방법Pickering emulsion composition for heat dissipation, heat dissipation paste using the same, and method for manufacturing the same
본 발명은 방열 소재 기술에 관한 것으로, 보다 상세하게는 방열용 피커링 에멀젼 조성물, 이를 이용한 방열 페이스트 및 이의 제조방법에 관한 것이다.The present invention relates to heat dissipation material technology, and more specifically, to a Pickering emulsion composition for heat dissipation, a heat dissipation paste using the same, and a method for manufacturing the same.
최근 전자부품이 집약화됨에 따라 기기의 단위면적당 발생하는 열, 즉 열 밀도 (heat density)가 증가하고 있다. 기기 사용 중 발생하는 열을 단시간 내에 방출하지 않으면 기기의 과열, 수명 저하, 신뢰성 저하, 성능 저하는 물론 폭발까지 초래할 수 있다. 이를 해결하기 위해 장비 가동 중 발생하는 불필요한 열은 높은 열전도도를 갖는 열 계면 재료 (Thermal interface material, TIM)를 활용해 열원에서 히트 싱크 (heat sink)로 방출하는 것이 중요하다.Recently, as electronic components have become more integrated, the heat generated per unit area of the device, that is, heat density, is increasing. If the heat generated during use of the device is not dissipated within a short period of time, it may cause overheating of the device, reduced lifespan, reduced reliability, reduced performance, and even explosion. To solve this problem, it is important to dissipate unnecessary heat generated during equipment operation from the heat source to a heat sink using a thermal interface material (TIM) with high thermal conductivity.
지금까지 TIM 소재로 가볍고 성형성이 좋은 고분자의 장점과 금속/세라믹 계열의 필러의 장점을 모두 발현할 수 있는 고분자 복합소재가 널리 사용되어 왔다. 고분자 복합소재는 고분자 수지에 금속 또는 세라믹계의 필러를 함침한 형태로, 고분자의 성형성, 유연성을 모두 살리며 필러가 갖는 열전도성을 발현할 수 있어 TIM 소재로 적합하다.Until now, TIM materials have been widely used as polymer composite materials that can demonstrate both the advantages of light and formable polymers and metal/ceramic fillers. Polymer composite materials are a type of polymer resin impregnated with a metal or ceramic filler, making use of both the formability and flexibility of the polymer and the thermal conductivity of the filler, making it suitable as a TIM material.
고분자 복합소재는 사용한 필러에 따라 금속계, 세라믹계 고분자 복합소재로 나눌 수가 있다. 금속계 고분자 복합소재의 경우, 금속 필러로 금(Au), 은(Ag), 구리(Cu) 등이 사용되어 매우 높은 열전도도를 발현할 수 있으나, 전기전도성을 띠어 절연성이 요구되는 전자기기에 사용하기 부적합하며 금속의 높은 밀도로 인하여 경량성 확보에 어려움이 있다. 세라믹계 고분자 복합소재의 경우, 세라믹계 필러로 알루미나(alumina), 질화붕소(boron nitride), 실리카(silica) 등이 사용되어 금속계 고분자 복합소재와 달리 절연성이 확보 가능하고 대기 중에 안정하며 가격이 저렴하나, 비교적 낮은 열전도도를 가져 충분한 열전도도를 확보하기 위해서는 높은 필러 함량이 요구되는 단점이 있다.Polymer composite materials can be divided into metal-based and ceramic-based polymer composite materials depending on the filler used. In the case of metal-based polymer composite materials, gold (Au), silver (Ag), copper (Cu), etc. are used as metal fillers to achieve very high thermal conductivity, but they are also electrically conductive and are used in electronic devices that require insulation. It is unsuitable for use and it is difficult to secure lightness due to the high density of the metal. In the case of ceramic polymer composite materials, alumina, boron nitride, and silica are used as ceramic fillers, so unlike metal polymer composite materials, insulation properties can be secured, they are stable in the air, and the price is low. However, it has a disadvantage in that it has a relatively low thermal conductivity and requires a high filler content to ensure sufficient thermal conductivity.
또한, TIM은 용도에 따라 다양한 형태로 존재하는데, 크게 페이스트(paste), 상변화물질(phase change material, PCM), 접착제(adhesive), 패드(pad) 형태가 대표적이다. TIM은 열원과 히트싱크 사이에 적용되는데 실제 열원과 히트싱크의 표면은 아주 거칠기 때문에 두 계면 사이에 최소한의 공극(공기층)을 지닌 채 TIM을 적용하는 것이 매우 중요하다. 이는 공극(공기)의 열전도도가 매우 낮아 효과적인 열전달을 방해하기 때문이다. 즉, 높은 열전도도를 갖는 TIM을 적용해 거친 두 표면 사이를 효과적으로 채워 실질적인 접촉 면적을 극대화하는 것이 매우 중요하다.In addition, TIM exists in various forms depending on the purpose, and the most representative forms are paste, phase change material (PCM), adhesive, and pad. TIM is applied between the heat source and the heat sink, and because the actual surfaces of the heat source and heat sink are very rough, it is very important to apply TIM with a minimum air gap (air layer) between the two interfaces. This is because the thermal conductivity of the voids (air) is very low, preventing effective heat transfer. In other words, it is very important to apply TIM with high thermal conductivity to effectively fill the space between two rough surfaces to maximize the actual contact area.
이러한 조건을 잘 만족시킬 수 있는 TIM은 페이스트 제형으로, 일반적으로 이러한 방열 페이스트(thermal paste)는 저분자/고분자 실리콘 매트릭스(matrix)에 세라믹 필러가 분산된 고분자 복합소재이다. 실리콘 방열 페이스트의 실리콘 매트릭스는 발림성이 좋고 우수한 내열성 및 내후성을 가지나, 열전도도가 0.2 W/m·K 수준으로 매우 낮아 고함량의 필러를 충진해도 1.5 ~ 2 W/m·K 이상의 열전도도 확보가 어려운 단점이 있다. 또한, 열, 압력 등의 일반적인 TIM 적용 조건 하에서 장기안정성이 좋지 않다.TIM that can well satisfy these conditions is a paste formulation. Generally, such thermal paste is a polymer composite material in which ceramic filler is dispersed in a low-molecular/polymer silicon matrix. The silicone matrix of silicone heat dissipation paste has good spreadability and excellent heat and weather resistance, but its thermal conductivity is very low at the level of 0.2 W/m·K, so even if a high content of filler is filled, it is impossible to secure thermal conductivity of 1.5 to 2 W/m·K or more. There is a difficult downside. Additionally, long-term stability is poor under general TIM application conditions such as heat and pressure.
이에, 높은 열전도도와 높은 안정성을 동시에 갖는 방열 페이스트 제조 기술이 필요한 실정이다.Accordingly, there is a need for a heat dissipation paste manufacturing technology that has both high thermal conductivity and high stability.
본 발명의 목적은 우수한 열전도도와 안정성을 동시에 가지는 방열 피커링 에멀젼 조성물을 제공하는 데에 있다.The purpose of the present invention is to provide a heat dissipating Pickering emulsion composition that has both excellent thermal conductivity and stability.
본 발명의 다른 목적은 상기의 피커링 에멀젼 조성물을 기반으로 한 방열용 페이스트 및 이의 제조방법을 제공하는 데에 있다.Another object of the present invention is to provide a heat dissipation paste based on the Pickering emulsion composition and a method for producing the same.
상기의 목적을 달성하기 위하여, 본 발명은 실리콘 오일; 지방족 알콜; 및 열전도성 필러를 포함하는, 방열용 피커링 에멀젼 조성물을 제공한다.In order to achieve the above object, the present invention provides silicone oil; aliphatic alcohol; And it provides a Pickering emulsion composition for heat dissipation, comprising a thermally conductive filler.
상기 실리콘 오일은, 디메틸실리콘 오일, 메틸 페닐 실리콘 오일, 메틸 하이드로젠 오일, 플로로 실리콘 오일, 아미노 변성 실리콘 오일, 및 에폭시 변성 실리콘 오일로 이루어진 군에서 선택될 수 있다.The silicone oil may be selected from the group consisting of dimethyl silicone oil, methyl phenyl silicone oil, methyl hydrogen oil, fluorosilicone oil, amino-modified silicone oil, and epoxy-modified silicone oil.
상기 지방족 알콜은, 글리세롤, 에틸렌 글리콜, 프로필렌 글리콜, 부틸렌 글리콜, 네오펜틸 글리콜, 트리메틸올에탄, 디트리메틸올에탄, 트리메틸올프로판, 및 디트리메틸올프로판으로 이루어진 군에서 선택될 수 있다.The aliphatic alcohol may be selected from the group consisting of glycerol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, trimethylolethane, ditrimethylolethane, trimethylolpropane, and ditrimethylolpropane.
상기 실리콘 오일 및 지방족 알콜은, 1 : (0.1 내지 2)의 부피비로 포함될 수 있다.The silicone oil and aliphatic alcohol may be included in a volume ratio of 1:(0.1 to 2).
상기 열전도성 필러는, 알루미나, 마그네시아, 질화붕소, 질화규소, 및 실리카로 이루어진 군에서 선택될 수 있다.The thermally conductive filler may be selected from the group consisting of alumina, magnesia, boron nitride, silicon nitride, and silica.
상기 열전도성 필러는, 평균 직경이 0.1 내지 100 μm인 구상 필러일 수 있다.The thermally conductive filler may be a spherical filler with an average diameter of 0.1 to 100 μm.
상기 열전도성 필러는, 상기 조성물 전체 100 부피부에 대하여, 10 내지 60 부피부 포함될 수 있다.The thermally conductive filler may be included in an amount of 10 to 60 parts by volume based on 100 parts by volume of the total composition.
본 발명은 실리콘 오일 및 지방족 알콜을 포함하는 액상 매트릭스; 및 상기 매트릭스에 분산된 열전도성 필러를 포함하는, 피커링 에멀젼 기반 방열용 페이스트를 제공한다.The present invention provides a liquid matrix containing silicone oil and aliphatic alcohol; and a heat conductive filler dispersed in the matrix, providing a Pickering emulsion-based heat dissipation paste.
상기 열전도성 필러는, 상기 매트릭스 내에서 분리된 네트워크(segregated network)를 형성할 수 있다.The thermally conductive filler may form a segregated network within the matrix.
상기 페이스트는, 열전도도가 향상될 수 있다.The paste may have improved thermal conductivity.
상기 페이스트는, 열 및 수분에 대한 안정성이 향상될 수 있다.The paste may have improved stability against heat and moisture.
상기 페이스트는, 재활용 또는 재사용될 수 있다. The paste can be recycled or reused.
또한, 본 발명은 실리콘 오일 및 지방족 알콜을 혼합하여 액상 매트릭스를 제조하는 단계; 및 상기 제조된 액상 매트릭스에 열전도성 필러를 첨가하는 단계를 포함하는, 피커링 에멀젼 기반 방열용 페이스트의 제조방법을 제공한다.In addition, the present invention includes the steps of mixing silicone oil and aliphatic alcohol to prepare a liquid matrix; and adding a thermally conductive filler to the prepared liquid matrix. A method for producing a Pickering emulsion-based heat dissipation paste is provided.
본 발명에 따른 방열용 조성물 및 페이스트는 종래 실리콘 오일과 알루미나 필러의 단순 혼합으로 사용되던 현탁액 형태의 방열 페이스트에 지방족 알콜을 첨가하여 피커링 에멀젼을 형성함으로써, 보다 우수한 열전도도 및 안정성을 가질 수 있다.The heat dissipation composition and paste according to the present invention can have better thermal conductivity and stability by forming a Pickering emulsion by adding aliphatic alcohol to a suspension-type heat dissipation paste that was conventionally used as a simple mixture of silicone oil and alumina filler.
본 발명에 따른 피커링 에멀젼 내 열전도성 필러가 segregated network 구조를 형성함으로써, 보다 효과적으로 열전달을 수행할 수 있고, 이에 따라 다양한 분야의 방열 소재로 활용할 수 있다.By forming a segregated network structure, the thermally conductive filler in the Pickering emulsion according to the present invention can perform heat transfer more effectively, and thus can be used as a heat dissipation material in various fields.
또한, 본 발명에 따른 방열 페이스트 제조방법은 종래 방열 페이스트의 복잡한 제조 공정, 비싼 계면활성제나 후처리 과정 없이, 저비용으로 간단하고 친환경적인 방법으로 높은 열전도도, 안정성 및 도포성을 확보할 수 있는 방열 페이스트를 제조할 수 있으며, 간단한 원심분리법을 이용해 방열 페이스트로부터 필러 회수 및 재활용이 가능하다.In addition, the heat dissipation paste manufacturing method according to the present invention is a low-cost, simple, and environmentally friendly method that can secure high thermal conductivity, stability, and applicability without the complicated manufacturing process of conventional heat dissipation pastes, expensive surfactants, or post-treatment processes. Paste can be manufactured, and filler can be recovered and recycled from heat dissipation paste using a simple centrifugation method.
더불어, 상기의 제조방법은 산업체에 즉시 적용되어 효율적으로 제조할 수 있으며 나아가 대량생산이 가능한 바, 향후 열 계면 소재의 생산 및 기술 개발에 이바지할 수 있다. In addition, the above manufacturing method can be immediately applied to industrial companies for efficient manufacturing and further enables mass production, which can contribute to the production and technology development of thermal interface materials in the future.
도 1은 본 발명의 일 실험예에 따라 필러 함량에 따른 방열 페이스트의 열전도도 및 항복응력(yield stress)을 측정한 결과로, (a)는 SA03, GA03, SG5:5A03의 필러 함량에 따른 열전도도, (b)는 SA03, GA03, SG5:5A03의 필러 함량에 따른 항복응력, (c)는 SA90, GA90, SG5:5A90의 필러 함량에 따른 열전도도, (d)는 SA90, GA90, SG5:5A90의 필러 함량에 따른 항복응력을 나타낸 것이며, 여기서, SA03, GA03, SA90, GA90, SG5:5A03, SG5:5A90은 각각 실리콘 오일(silicone oil) + 3μm 알루미나, 글리세롤(glycerol) + 3μm 알루미나, 실리콘 오일 + 90μm 알루미나, 글리세롤 + 90μm 알루미나, 실리콘 오일과 글리세롤을 5:5의 부피비로 혼합한 혼합물 + 3μm 알루미나, 실리콘 오일과 글리세롤을 5:5의 부피비로 혼합한 혼합물 + 90μm 알루미나를 의미한다. (e) 및 (f)는 Bruggeman model로 예측된 방열 페이스트의 열전도도로, (e)는 매트릭스의 열전도도를 0.2 W/m·K로 고정하고 필러의 열전도도를 바꾸며 예측한 값, (f)는 필러의 열전도도를 100 W/m·K로 고정하고 매트릭스의 열전도도를 바꾸며 예측한 값이다.Figure 1 shows the results of measuring the thermal conductivity and yield stress of the heat dissipation paste according to the filler content according to an experimental example of the present invention. (a) shows the heat conduction according to the filler content of SA03, GA03, and SG5:5A03. Figure, (b) is the yield stress according to the filler content of SA03, GA03, and SG5:5A03, (c) is the thermal conductivity according to the filler content of SA90, GA90, and SG5:5A90, (d) is SA90, GA90, and SG5: This shows the yield stress according to the filler content of 5A90, where SA03, GA03, SA90, GA90, SG5:5A03, and SG5:5A90 are silicone oil + 3μm alumina, glycerol + 3μm alumina, silicon, respectively. This means oil + 90μm alumina, glycerol + 90μm alumina, a mixture of silicone oil and glycerol in a volume ratio of 5:5 + 3μm alumina, and a mixture of silicone oil and glycerol in a volume ratio of 5:5 + 90μm alumina. (e) and (f) are the thermal conductivity of the heat dissipation paste predicted by the Bruggeman model, (e) is the value predicted by fixing the thermal conductivity of the matrix at 0.2 W/m·K and changing the thermal conductivity of the filler, (f) is the value predicted by fixing the thermal conductivity of the filler at 100 W/m·K and changing the thermal conductivity of the matrix.
도 2는 3μm 알루미나 필러를 포함한 글리세롤 단일 매트릭스(GA03)의 광학현미경(OM) 이미지로, 각각 필러 함량이 (a) 10 vol%, (b) 20 vol%, (c) 30 vol%, (d) 40 vol%, 및 (e) 50 vol% 이며, 스케일 바는 20μm를 나타낸다.Figure 2 is an optical microscope (OM) image of a glycerol single matrix (GA03) containing 3 μm alumina filler, with filler contents of (a) 10 vol%, (b) 20 vol%, (c) 30 vol%, and (d), respectively. ) 40 vol%, and (e) 50 vol%, and the scale bar represents 20 μm.
도 3은 3μm 알루미나 필러를 포함한 실리콘 오일/글리세롤 에멀젼(SG5:5A03)의 광학현미경(OM) 이미지로, 각각 필러 함량이 (a) 0 vol%, (b) 10 vol%, (c) 20 vol%, (d) 30 vol%, (e) 40 vol%, 및 (f) 50 vol% 이며, 스케일 바는 50μm를 나타낸다.Figure 3 is an optical microscope (OM) image of a silicone oil/glycerol emulsion (SG5:5A03) containing 3 μm alumina filler, with filler contents of (a) 0 vol%, (b) 10 vol%, and (c) 20 vol%, respectively. %, (d) 30 vol%, (e) 40 vol%, and (f) 50 vol%, and the scale bar represents 50 μm.
도 4는 90μm 알루미나 필러를 포함한 실리콘 오일/글리세롤 에멀젼(SG5:5A90)의 광학현미경(OM) 이미지로, 각각 필러 함량이 (a) 20 vol%, (b) 30 vol%, (c) 40 vol%, 및 (d) 50 vol% 이며, 스케일 바는 50μm를 나타낸다.Figure 4 is an optical microscope (OM) image of a silicone oil/glycerol emulsion (SG5:5A90) containing 90 μm alumina filler, with filler contents of (a) 20 vol%, (b) 30 vol%, and (c) 40 vol, respectively. %, and (d) 50 vol%, and the scale bar represents 50 μm.
도 5는 본 발명의 다른 실험예에 따라 방열 페이스트 샘플들의 항복응력에 대한 열전도도의 변화를 나타낸 그래프이다.Figure 5 is a graph showing the change in thermal conductivity versus yield stress of heat dissipation paste samples according to another experimental example of the present invention.
도 6은 서로 다른 방열 페이스트 내 열전달 경로를 개략적으로 나타낸 것으로, (a)는 현탁액 형태의 방열 페이스트, (b)는 피커링 에멀젼 형태의 방열 페이스트이다.Figure 6 schematically shows the heat transfer paths in different heat dissipation pastes, where (a) is a heat dissipation paste in the form of a suspension and (b) is a heat dissipation paste in the form of a Pickering emulsion.
도 7은 본 발명의 다른 실험예에 따라 방열 페이스트 샘플들의 다양한 온도 조건 하에서의 복소 점도(complex viscosity), 항복응력 및 열전도도 변화를 나타낸 것으로, 모든 샘플들은 측정 전 50, 75, 및 100℃에서 1시간 동안 열처리 (anneal)하였으며 이후 상온에서 냉각한 뒤 측정하였다. (a)는 각진동수(angular frequency)의 함수로서, GA03_30의 복소 점도, (b)는 각진동수의 함수로서, SG5:5A03_30의 복소 점도, (c)는 GA03_30 및 SG5:5A03_30의 항복응력, (d)는 25℃에서 측정된 값에 대한 (c)에 표시된 항복응력의 백분율 변화, (e)는 GA03_30 및 SG5:5A03_30의 열전도도, (f)는 25℃에서 측정된 값에 대한 (e)에 표시된 열전도도의 백분율 변화를 나타낸 것이다.Figure 7 shows changes in complex viscosity, yield stress, and thermal conductivity of heat dissipation paste samples under various temperature conditions according to another experimental example of the present invention. All samples were tested at 50, 75, and 100°C before measurement. It was heat treated (annealed) for a period of time and then cooled to room temperature and then measured. (a) is the complex viscosity of GA03_30 as a function of angular frequency, (b) is the complex viscosity of SG5:5A03_30 as a function of angular frequency, (c) is the yield stress of GA03_30 and SG5:5A03_30, (d) is the percentage change in yield stress shown in (c) relative to the value measured at 25°C, (e) is the thermal conductivity of GA03_30 and SG5:5A03_30, and (f) is the percent change in yield stress shown in (e) relative to the value measured at 25°C. It represents the percentage change in thermal conductivity.
도 8은 본 발명의 다른 실험예에 따라 방열 페이스트 샘플들의 흡습성을 확인한 것으로, 실온 및 95% 상대 습도에서 함량별 GA03 및 SG5:5A03의 (a) 흡습성(hygroscopicity)과 (b) 정규화된 질량 값을 나타낸 것이다. Figure 8 shows the hygroscopicity of heat dissipation paste samples according to another experimental example of the present invention, showing (a) hygroscopicity and (b) normalized mass value of GA03 and SG5:5A03 by content at room temperature and 95% relative humidity. It represents.
도 9는 3μm 알루미나 필러를 포함한 실리콘 오일/글리세롤 에멀젼(SG5:5A03)에서 회수된 알루미나와 순수한 알루미나의 질소 분위기 승온에 따른 무게 감소를 나타낸 것이다. Figure 9 shows the weight loss of alumina recovered from a silicone oil/glycerol emulsion (SG5:5A03) containing a 3μm alumina filler and pure alumina as the temperature rises in a nitrogen atmosphere.
이하, 본 발명을 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail.
본 발명자는 높은 열전도도와 높은 안정성을 동시에 갖는 방열 페이스트를 제조하기 위하여, 서로 섞이지 않는 실리콘 오일과 글리세롤을 혼합한 매트릭스에 열전도성 필러를 포함하여 피커링 에멀젼 형태의 페이스트를 제조하였고, 이의 우수한 열전도도 및 안정성을 확인함으로써, 본 발명을 완성하였다.In order to manufacture a heat dissipation paste that has both high thermal conductivity and high stability, the present inventor prepared a paste in the form of a Pickering emulsion by including a thermally conductive filler in a matrix of a mixture of immiscible silicone oil and glycerol, and its excellent thermal conductivity and By confirming stability, the present invention was completed.
본 발명은 실리콘 오일; 지방족 알콜; 및 열전도성 필러를 포함하는, 방열용 피커링 에멀젼 조성물을 제공한다.The present invention relates to silicone oil; aliphatic alcohol; And it provides a Pickering emulsion composition for heat dissipation, comprising a thermally conductive filler.
본 명세서에서, "피커링 에멀젼(Pickering emulsion)" 이란, 일반적으로 계면활성제를 통해 서로 섞이지 않는 두 상을 열역학적으로 안정화시키는 기존의 에멀젼과 다르게 고체 입자를 이용해 불용성의 두 상을 안정화시킨 에멀젼을 의미한다.As used herein, “Pickering emulsion” refers to an emulsion in which two insoluble phases are stabilized using solid particles, unlike conventional emulsions that thermodynamically stabilize two immiscible phases through a surfactant. .
상기 실리콘 오일은 중합도가 비교적 낮은 액체 상태의 규소 수지로, 디메틸실리콘 오일, 메틸 페닐 실리콘 오일, 메틸 하이드로젠 오일, 플로로 실리콘 오일, 아미노 변성 실리콘 오일, 에폭시 변성 실리콘 오일 등을 포함할 수 있으나, 이에 제한되는 것은 아니다.The silicone oil is a liquid silicone resin with a relatively low degree of polymerization and may include dimethyl silicone oil, methyl phenyl silicone oil, methyl hydrogen oil, fluorosilicone oil, amino-modified silicone oil, epoxy-modified silicone oil, etc. It is not limited to this.
상기 지방족 알콜은 휘발성이 비교적 낮은 지방족 다가 알콜일 수 있으며, 예를 들면, 글리세롤, 에틸렌 글리콜, 프로필렌 글리콜, 부틸렌 글리콜, 네오펜틸 글리콜, 트리메틸올에탄, 디트리메틸올에탄, 트리메틸올프로판, 디트리메틸올프로판 등에서 선택될 수 있으며, 바람직하게는 글리세롤일 수 있으나, 이에 제한되는 것은 아니다.The aliphatic alcohol may be an aliphatic polyhydric alcohol with relatively low volatility, for example, glycerol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, trimethylolethane, ditrimethylolethane, trimethylolpropane, ditrimethyl It may be selected from all-propane, etc., and preferably may be glycerol, but is not limited thereto.
상기 실리콘 오일 및 지방족 알콜은 1 : (0.1 내지 2)의 부피비, 바람직하게는 1 : (0.5 내지 1.5)의 부피비로 포함될 수 있으나, 이에 제한되는 것은 아니다.The silicone oil and aliphatic alcohol may be included in a volume ratio of 1:(0.1 to 2), preferably 1:(0.5 to 1.5), but are not limited thereto.
상기 열전도성 필러는 상기 조성물의 열전도도를 향상시키기 위한 것으로, 알루미나, 마그네시아, 질화붕소, 질화규소, 실리카 등의 무기 필러를 포함할 수 있고, 바람직하게는 구상알루미나, 구상마그네시아, 구상 실리카 등 평균 직경이 0.1 내지 100 μm인 구상의 필러, 보다 바람직하게는 평균 직경이 0.1 내지 10μm인 구상의 필러에서 선택될 수 있으나, 이에 제한되는 것은 아니다.The thermally conductive filler is intended to improve the thermal conductivity of the composition, and may include an inorganic filler such as alumina, magnesia, boron nitride, silicon nitride, or silica, and preferably has an average diameter such as spherical alumina, spherical magnesia, or spherical silica. It may be selected from a spherical filler with an average diameter of 0.1 to 100 μm, more preferably a spherical filler with an average diameter of 0.1 to 10 μm, but is not limited thereto.
상기 열전도성 필러는 상기 방열용 페이스트 조성물 전체 100 부피부에 대하여, 10 내지 60 부피부, 바람직하게는 10 내지 50 부피부 포함될 수 있으나, 이에 제한되는 것은 아니다. The thermally conductive filler may be included in an amount of 10 to 60 parts by volume, preferably 10 to 50 parts by volume, based on a total of 100 parts by volume of the heat dissipating paste composition, but is not limited thereto.
본 발명은 실리콘 오일 및 지방족 알콜을 포함하는 액상 매트릭스; 및 상기 매트릭스에 분산된 열전도성 필러를 포함하는, 피커링 에멀젼 기반 방열용 페이스트를 제공한다.The present invention provides a liquid matrix containing silicone oil and aliphatic alcohol; and a heat conductive filler dispersed in the matrix, providing a Pickering emulsion-based heat dissipation paste.
상기 액상 매트릭스는 실리콘 오일 및 지방족 알콜을 포함할 수 있고, 이에 상응하는 특징들은 상술된 부분에서 대신할 수 있다.The liquid matrix may include silicone oil and aliphatic alcohol, and the corresponding features may be substituted in the above-described portion.
상기 매트릭스는 실리콘 오일 및 지방족 알콜이 1 : (0.1 내지 2)의 부피비, 바람직하게는 1 : (0.5 내지 1.5)의 부피비로 포함될 수 있으나, 이에 제한되는 것은 아니다.The matrix may include silicone oil and aliphatic alcohol in a volume ratio of 1:(0.1 to 2), preferably 1:(0.5 to 1.5), but is not limited thereto.
일반적으로 실리콘계 매트릭스는 낮은 점도와 표면에너지로 인해 도포성은 좋지만, 열전도도가 낮고 필러와 매트릭스간 계면 친화성이 낮아 만들어진 페이스트 내에서 상 분리가 쉽게 일어난다. 이에, 실리콘계 매트릭스보다 높은 점도와 열전도도를 갖는 지방족 알콜을 혼합함으로써 충분한 점도와 높은 열전도도를 가지는 안정한 에멀젼 형태의 매트릭스를 제조할 수 있다. 하지만, 글리세롤과 같은 지방족 다가 알콜은 흡습성이 우수해 장기적으로 안정성이 좋지 않은 바, 실리콘 오일과 글리세롤을 상기의 부피비로 혼합하여 피커링 에멀젼 형태로 사용 가능한 신규 매트릭스를 제작하는 것이 바람직하다.In general, silicone-based matrices have good applicability due to low viscosity and surface energy, but have low thermal conductivity and low interfacial affinity between filler and matrix, so phase separation easily occurs within the paste. Accordingly, a stable emulsion-type matrix with sufficient viscosity and high thermal conductivity can be manufactured by mixing an aliphatic alcohol with a higher viscosity and thermal conductivity than a silicone-based matrix. However, aliphatic polyhydric alcohols such as glycerol have excellent hygroscopicity and have poor long-term stability, so it is desirable to mix silicone oil and glycerol in the above volume ratio to produce a new matrix that can be used in the form of a Pickering emulsion.
상기 열전도성 필러에 상응하는 특징들은 상술된 부분에서 대신할 수 있다.Features corresponding to the thermally conductive filler can be substituted for the parts described above.
상기 열전도성 필러는 상기 방열용 페이스트 조성물 전체 100 부피부에 대하여, 10 내지 60 부피부, 바람직하게는 10 내지 50 부피부 포함될 수 있으나, 이에 제한되는 것은 아니다. 상기 필러의 함량이 높아질수록 열전달 경로의 형성이 용이해져 열전도도가 향상될 수 있으나, 필러의 함량이 과도해지면 방열 소재의 밀도가 증가하여 무게가 무거워지고, 페이스트의 제형을 유지할 수 없어 가공성이 낮아질 수 있는 바, 상기 범위의 부피 함량으로 포함되는 것이 바람직하다.The thermally conductive filler may be included in an amount of 10 to 60 parts by volume, preferably 10 to 50 parts by volume, based on a total of 100 parts by volume of the heat dissipating paste composition, but is not limited thereto. As the content of the filler increases, it becomes easier to form a heat transfer path, thereby improving thermal conductivity. However, if the content of the filler is excessive, the density of the heat dissipation material increases, making it heavier, and the paste formulation cannot be maintained, resulting in lower processability. As far as possible, it is preferable that the volume content is within the above range.
앞서 상술한 바와 같이, 열 계면 재료(TIM)는 열원과 히트싱크 사이에 적용되는데 두 계면 사이에 최소한의 공극(공기층)을 지닌 채 TIM을 적용하는 것이 매우 중요한 바, 페이스트(paste) 제형이 이를 만족시킬 수 있다. 페이스트 제형은 작은 압력으로도 짧은 계면 사이의 거리(bond line thickness)를 유지할 수 있어 계면에서 발생하는 열 저항(thermal resistance)을 최소화하고 높은 열전도도를 확보할 수 있으며, 경화 과정이 불필요하고 외부의 응력(stress)을 잘 흡수하여 소산(damping)을 가능케 하는 장점이 있다.As described above, thermal interface material (TIM) is applied between a heat source and a heat sink. It is very important to apply TIM with a minimum void (air layer) between the two interfaces, and the paste formulation provides this. can satisfy. The paste formulation can maintain a short distance between the interfaces (bond line thickness) even with small pressure, minimizing thermal resistance occurring at the interface and ensuring high thermal conductivity. No curing process is required and no external interference is required. It has the advantage of absorbing stress well and enabling dissipation (damping).
상기 열전도성 필러는 불용성인 실리콘 오일과 글리세롤의 계면을 따라 흡착되어 열역학적으로 불안정한 상기 액상 매트릭스를 열역학적으로 안정화한, 피커링 에멀젼을 형성할 수 있다. 또한, 상기 열전도성 필러는 액상 매트릭스 내에서 효과적으로 필러 네트워크를 형성할 수 있으며, 이러한 필러 네트워크 구조를 분리된 네트워크(segregated network)라고 한다. 상기 필러는 열역학적으로 안정한 피커링 에멀젼 상에서 segregated network를 형성하여 열전달 경로를 확보함으로써 열전도도가 보다 향상될 수 있으며, 높은 항복응력을 나타내어 우수한 구조적 안정성 및 분산 안정성을 가질 수 있다. 또한, 이를 통해 열과 수분에 대한 안정성을 향상시킬 수 있다.The thermally conductive filler can be adsorbed along the interface between the insoluble silicone oil and glycerol to form a Pickering emulsion that thermodynamically stabilizes the thermodynamically unstable liquid matrix. Additionally, the thermally conductive filler can effectively form a filler network within the liquid matrix, and this filler network structure is called a segregated network. The filler can further improve thermal conductivity by securing a heat transfer path by forming a segregated network on a thermodynamically stable Pickering emulsion, and can exhibit high yield stress and have excellent structural and dispersion stability. Additionally, this can improve stability against heat and moisture.
이에, 상기 페이스트는 방열성을 확보하기 위한 열 계면 재료로, 다양한 전자기기에 활용될 수 있다.Accordingly, the paste can be used in various electronic devices as a thermal interface material to ensure heat dissipation.
또한, 상기 페이스트는 재활용 또는 재사용될 수 있다.Additionally, the paste can be recycled or reused.
본 발명의 일 실험예에 따르면, 제조된 페이스트를 분해하여 회수할 경우, 잔류 용매 없이 순도 높은 필러가 회수되어 재사용될 수 있음을 확인하였다.According to an experimental example of the present invention, it was confirmed that when the manufactured paste is disassembled and recovered, high purity filler can be recovered and reused without residual solvent.
또한, 본 발명은 실리콘 오일 및 지방족 알콜을 혼합하여 액상 매트릭스를 제조하는 단계; 및 상기 제조된 액상 매트릭스에 열전도성 필러를 첨가하는 단계를 포함하는, 피커링 에멀젼 기반 방열용 페이스트의 제조방법을 제공한다.In addition, the present invention includes the steps of mixing silicone oil and aliphatic alcohol to prepare a liquid matrix; and adding a thermally conductive filler to the prepared liquid matrix. A method for producing a Pickering emulsion-based heat dissipation paste is provided.
보다 상세한 것은 하기 실시예에 의해 후술될 것이다.More details will be explained later by the examples below.
이하, 본 발명의 이해를 돕기 위하여 실시예를 들어 상세하게 설명하기로 한다. 다만 하기의 실시예는 본 발명의 내용을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.Hereinafter, the present invention will be described in detail through examples to aid understanding. However, the following examples only illustrate the content of the present invention and the scope of the present invention is not limited to the following examples. Examples of the present invention are provided to more completely explain the present invention to those skilled in the art.
<실시예 1> 피커링 에멀젼(Pickering emulsion) 형태의 복합체(방열 페이스트) 제조<Example 1> Preparation of a composite (heat dissipation paste) in the form of Pickering emulsion
1-1. 실험재료1-1. experiment material
실리콘 오일 (KF-96, 350 cs)을 Shinetsu chemical (Japan)에서 구입하였다. 글리세롤 (≥99.0%)을 Sigma-Aldrich (Republic of Korea)에서 구입하였다. 서로 다른 크기를 갖는 구상 알루미나 (3 μm, 20 μm, 90μm)를 Denka (Japan)에서 구입하였다. 상기 화학 물질은 받은 대로 사용되었다.Silicone oil (KF-96, 350 cs) was purchased from Shinetsu chemical (Japan). Glycerol (≥99.0%) was purchased from Sigma-Aldrich (Republic of Korea). Globular alumina with different sizes (3 μm, 20 μm, 90 μm) was purchased from Denka (Japan). The chemicals were used as received.
1-2. 방열 페이스트 제조1-2. heat dissipation paste manufacturing
대조군인 현탁액 형태의 방열 페이스트를 제조하기 위하여 실리콘 오일 또는 글리세롤, 그리고 다양한 크기의 알루미나를 칭량하였다. 전체 방열 페이스트에서 알루미나의 부피 함량은 각각 10, 20, 30, 40, 및 50 vol%였다. 이후, 칭량된 현탁액은 Thinky mixer AR-100 (Thinky, Japan)에서 2,000 rpm으로 1분간 고르게 혼합되었다. 페이스트 내 거품이 생기는 것을 방지하기 위하여 추가적으로 2,200 rpm에서 1 분간 디포밍(defoaming)을 진행하였고 2,000 rpm에서 1분간 혼합(mixing)을 진행하였다. 최종적으로 얻어진 페이스트는 알루미나가 50 vol% 만큼 함침 되었음에도 불구하고 흐름성을 가졌다.To prepare a control suspension-type heat dissipation paste, silicone oil or glycerol, and alumina of various sizes were weighed. The volume content of alumina in the total heat dissipation paste was 10, 20, 30, 40, and 50 vol%, respectively. Afterwards, the weighed suspension was mixed evenly for 1 minute at 2,000 rpm in a Thinky mixer AR-100 (Thinky, Japan). To prevent bubbles from forming in the paste, defoaming was additionally performed at 2,200 rpm for 1 minute and mixing was performed at 2,000 rpm for 1 minute. The final paste obtained had flowability even though it was impregnated with 50 vol% of alumina.
피커링 에멀젼 형태의 방열 페이스트를 제작하기 위해 우선 실리콘 오일과 글리세롤을 1 : 1의 부피비로 칭량한 뒤 Thinky mixer로 2,000 rpm 하에서 1분간 혼합하였다. 이후, 불안정한 두 액상 매트릭스를 안정화시키기 위해 전체 페이스트 함량 대비 10, 20, 30, 40, 및 50 vol%의 알루미나를 함침한 뒤 상기 설명한 현탁액 형태의 방열 페이스트를 제조하는 방식과 같은 디포밍 및 혼합 과정으로 진행하였다. 제작된 페이스트들은 모든 함량에서 안정한 제형을 가졌다.To produce a heat dissipation paste in the form of a Pickering emulsion, silicone oil and glycerol were first weighed at a volume ratio of 1:1 and mixed with a Thinky mixer at 2,000 rpm for 1 minute. Afterwards, in order to stabilize the two unstable liquid matrices, 10, 20, 30, 40, and 50 vol% of alumina is impregnated relative to the total paste content, followed by a deforming and mixing process similar to the method of producing a heat dissipation paste in the form of a suspension described above. proceeded with. The produced pastes had stable formulations at all contents.
1-3. 물성 분석법1-3. Physical property analysis method
페이스트의 열전도도는 등방성(isotropic) 모드로 transient plaen source method thermal analyzer TPS-2500S (Hot-disk AB, Sweden)를 사용하여 상온에서 측정되었다. 페이스트는 흐름성을 가지므로 제형을 유지하기 위해 깊이와 직경이 각각 10 mm, 그리고 20 mm인 바이알 뚜껑에 비닐랩을 씌운 후 페이스트를 담아 밀봉하였다. 이후 센서를 페이스트가 담긴 두 개의 동일한 바이알 뚜껑 사이에 위치하여 접촉 저항과 온도 변화 측정을 통해 열전도도를 측정하였다. 각진동수에 대한 복소 점도와 항복응력과 같은 유변학적 물성은 직경이 40 mm인 평행 판(parallel plate)이 장착된 HR-20 (TA Instrument, USA) 회전형 유변 물성 측정기를 통해 측정되었으며, 사용된 모드는 작은 진폭 진동 전단(small-amplitude oscillatory shear, SAOS)였다. 방열 페이스트의 필러 구조는 광학현미경 Eclipse LV100ND (Nikon, Japan)을 통해 관찰되었다. 각 샘플은 유리 슬라이드(glass slide)에 얇게 펴발라진 뒤 상온에서 5분간의 안정화를 거친 뒤 위에서 관찰되었다. 페이스트의 온도에 대한 안정성을 관찰하기 위해 페이스트들을 히팅 플레이트에 올린 뒤 50, 75, 100℃에서 각각 1시간 동안 가열한 뒤 상온에서 냉각하였다. 이후 냉각된 샘플의 유변 물성과 열전도도는 상기 언급한 방법과 동일하게 측정되었다. 방열 페이스트의 수분 안정성을 관찰하기 위해 상온에서의 페이스트의 중량 변화를 분석 저울 AUW220D (Shimadzu, Japan)을 통해 측정하였다. 네 개의 바이알에 물을 각각 채운 뒤 분석 저울 내에 비치하여 상대 습도가 95%에 도달하였을 때를 기점으로 10분 간격으로 페이스트의 중량 변화를 기록하였다. 또한 순수한 알루미나와 3 μm 알루미나를 이용한 방열 페이스트에서 회수된 알루미나를 비교하기 위해 열 중량 분석기(thermogravimetric analysis, TGA)를 이용하여 승온에 따른 무게 변화율을 질소 분위기에서 측정하였다.The thermal conductivity of the paste was measured at room temperature using a transient plain source method thermal analyzer TPS-2500S (Hot-disk AB, Sweden) in isotropic mode. Since the paste has flowability, to maintain the formulation, a vial lid with a depth and diameter of 10 mm and 20 mm, respectively, was covered with plastic wrap and the paste was placed and sealed. Afterwards, the sensor was placed between the lids of two identical vials containing paste, and thermal conductivity was measured by measuring contact resistance and temperature change. Rheological properties such as complex viscosity and yield stress with respect to angular frequency were measured using a HR-20 (TA Instrument, USA) rotational rheological property meter equipped with a parallel plate with a diameter of 40 mm, and the mode used was: was small-amplitude oscillatory shear (SAOS). The filler structure of the heat dissipation paste was observed using an optical microscope Eclipse LV100ND (Nikon, Japan). Each sample was spread thinly on a glass slide, stabilized at room temperature for 5 minutes, and then observed from above. To observe the temperature stability of the paste, the pastes were placed on a heating plate, heated at 50, 75, and 100°C for 1 hour each, and then cooled at room temperature. Afterwards, the rheological properties and thermal conductivity of the cooled sample were measured in the same manner as mentioned above. To observe the moisture stability of the heat dissipation paste, the weight change of the paste at room temperature was measured using an analytical balance AUW220D (Shimadzu, Japan). After filling each of the four vials with water, they were placed in an analytical balance, and the change in the weight of the paste was recorded at 10-minute intervals starting when the relative humidity reached 95%. In addition, to compare pure alumina and alumina recovered from a heat dissipation paste using 3 μm alumina, the weight change rate according to temperature increase was measured in a nitrogen atmosphere using thermogravimetric analysis (TGA).
<실험예 1> 방열 페이스트의 항복응력(yield stress) 및 열전도도(thermal conductivity) 확인<Experimental Example 1> Checking the yield stress and thermal conductivity of the heat dissipation paste
항복응력 및 열전도도는 방열 페이스트가 가져야 할 가장 중요한 특징으로, 열 전도도는 물체가 열을 전달하는 능력의 척도이며, 항복응력은 입자가 형성한 구조를 변형시키거나 흐르게 하는데 필요한 최소한의 응력을 의미한다. 페이스트의 항복응력은 매트릭스 내 분산된 필러간 비공유 상호작용 또는 그들이 형성한 구조에서 기인한다. 일반적으로 복합체의 점도가 높을수록 항복응력이 높으며, 항복응력이 높을수록 구조적인 안정성이 우수하다고 할 수 있다. 즉, 열전도도가 높으면서 동시에 항복응력이 높은 것이 가장 좋은 형태의 방열 페이스트라고 할 수 있다.Yield stress and thermal conductivity are the most important characteristics that a heat dissipation paste must have. Thermal conductivity is a measure of the ability of an object to transfer heat, and yield stress refers to the minimum stress required to deform or flow the structure formed by particles. do. The yield stress of the paste results from noncovalent interactions between the fillers dispersed in the matrix or from the structure they form. In general, the higher the viscosity of the composite, the higher the yield stress, and the higher the yield stress, the better the structural stability. In other words, it can be said that the best type of heat dissipation paste is one that has high thermal conductivity and high yield stress at the same time.
실리콘 오일, 글리세롤, 그리고 실리콘 오일과 글리세롤을 5 : 5의 부피비로 섞은 에멀젼에 알루미나의 크기와 함량을 다르게 분산시킨 방열 페이스트 복합체의 열전도도와 항복응력을 측정하였다. 필러로 사용한 알루미나는 3μm 또는 90μm 직경을 가진다. SA와 GA는 실리콘 오일과 알루미나, 그리고 글리세롤과 알루미나로 구성된 현탁액 형태의 페이스트를 각각 나타내고, SG5:5A는 실리콘 오일과 글리세롤이 5 : 5 부피비를 이루는 액상 매트릭스에 알루미나가 함침된 에멀젼 형태의 페이스트를 의미한다. 샘플명 뒤의 숫자는 사용된 구상 알루미나의 직경을 의미한다.The thermal conductivity and yield stress of heat-radiating paste composites in which different sizes and contents of alumina were dispersed in an emulsion of silicone oil, glycerol, and silicone oil and glycerol mixed at a volume ratio of 5:5 were measured. Alumina used as filler has a diameter of 3μm or 90μm. SA and GA represent suspension-type pastes composed of silicone oil, alumina, glycerol, and alumina, respectively, and SG5:5A represents an emulsion-type paste in which alumina is impregnated in a liquid matrix of silicone oil and glycerol in a 5:5 volume ratio. it means. The number after the sample name indicates the diameter of the spherical alumina used.
실리콘 오일, 글리세롤, 및 글리세롤/실리콘 오일을 매트릭스로 제작한 방열 페이스트의 열전도도와 항복응력을 측정한 결과, 도 1a 내지 1d에 나타난 바와 같이, 매트릭스와 필러 종류와 관계없이 필러 함량이 증가할수록 열전도도와 항복응력이 모두 증가하는 것으로 나타났다. As a result of measuring the thermal conductivity and yield stress of heat dissipation paste made with silicone oil, glycerol, and glycerol/silicon oil as a matrix, as shown in Figures 1a to 1d, regardless of the type of matrix and filler, as the filler content increases, thermal conductivity and It was found that all yield stresses increased.
먼저, 도 1b 및 1d를 참조하면, 실리콘 오일과 글리세롤을 5:5로 섞은 에멀젼 형태의 방열 페이스트는 모든 함량에서 항상 실리콘 오일 또는 글리세롤의 현탁액 형태의 방열 페이스트 (SA, GA)보다 높은 항복응력을 나타내었다. 이는 에멀젼 형태의 방열 페이스트가 항상 단일 매트릭스 기반의 현탁액 형태의 방열 페이스트보다 안정하다는 것을 의미한다. 또한, 항복응력은 함침된 알루미나의 크기에 상관없이 필러가 10 vol% 함침되었을 때 급증하며, 상기 현탁액 형태의 방열 페이스트에 비해 에멀젼 형태의 페이스트가 더 높은 항복응력을 보였다. 이는 알루미나가 랜덤하게 분산된 현탁액 형태의 방열 페이스트와 다르게 실리콘 오일과 글리세롤이 혼합된 액체 수지를 사용하면 실리콘 오일/글리세롤 간 불안정한 계면을 알루미나가 안정화를 시킴과 동시에 알루미나간 상호작용이 더 강해져 상대적으로 강한 구조를 형성하기 때문으로 사료되며, 더불어 피커링 에멀젼(Pickering emulsion)이 형성되었다는 강력한 증거로 볼 수 있다.First, referring to Figures 1b and 1d, the heat dissipation paste in the form of an emulsion mixed with silicone oil and glycerol at a ratio of 5:5 always has a higher yield stress than the heat dissipation paste in the form of a suspension of silicone oil or glycerol (SA, GA) at all contents. indicated. This means that emulsion-type heat-dissipating pastes are always more stable than single-matrix-based suspension-type heat-dissipating pastes. In addition, the yield stress rapidly increased when 10 vol% of filler was impregnated regardless of the size of the impregnated alumina, and the emulsion type paste showed a higher yield stress than the suspension type heat dissipation paste. This is different from a heat dissipation paste in the form of a suspension in which alumina is randomly dispersed. When a liquid resin mixed with silicone oil and glycerol is used, alumina stabilizes the unstable interface between silicone oil and glycerol, and at the same time, the interaction between alumina becomes stronger, making the interaction between alumina relatively strong. This is thought to be because it forms a strong structure, and can also be seen as strong evidence that a Pickering emulsion has been formed.
이후 40 vol% 까지는 필러 함량의 증가에 따라 항복응력 또한 꾸준히 증가하는데, 이는 알루미나가 실리콘 오일/글리세롤 계면에 지속적으로 위치하여 더 강한 분리된 네트워크(segregated network) 구조를 형성하기 때문인 것으로 사료된다.Afterwards, the yield stress also steadily increases as the filler content increases up to 40 vol%, which is believed to be because alumina is continuously located at the silicon oil/glycerol interface to form a stronger segregated network structure.
40 vol% 보다 높은 필러 함량에서는 항복응력 및 열전도도 모두 급증하게 되는데 (도 1a 및 1c), 이는 연속상인 글리세롤에 분산된 실리콘 오일 액적(droplet) 사이 공간을 알루미나가 채우면서 segregated network 필러 구조를 형성하여 열전달 경로가 확보되기 때문으로 사료된다.At filler content higher than 40 vol%, both yield stress and thermal conductivity rapidly increase (Figures 1a and 1c), which forms a segregated network filler structure as alumina fills the space between silicone oil droplets dispersed in glycerol, a continuous phase. This is believed to be because a heat transfer path is secured.
결과적으로 SG5:5A03 [실리콘 오일과 글리세롤을 5:5의 부피비로 혼합한 혼합물 + 3μm 알루미나], SG5:5A90 [실리콘 오일과 글리세롤을 5:5의 부피비로 혼합한 혼합물 + 90μm 알루미나]은 고체 입자에 의해 불용성의 두 액체 사이의 계면이 안정화된 피커링 에멀젼인 것으로 예상할 수 있다.As a result, SG5:5A03 [mixture of silicon oil and glycerol in a volume ratio of 5:5 + 3 μm alumina], SG5:5A90 [mixture of silicon oil and glycerol in a volume ratio of 5:5 + 90 μm alumina] were solid particles. It can be expected that the interface between the two insoluble liquids is a stabilized Pickering emulsion.
도 1a를 참조하면, SG5:5A03은 SA03 [실리콘 오일 + 3μm 알루미나], GA03 [글리세롤 + 3μm 알루미나]에 비해 높은 열전도도를 보여주었으며, 특히 필러의 고함량에서 유의하게 높은 열전도도를 나타내었다. Referring to Figure 1a, SG5:5A03 showed higher thermal conductivity than SA03 [silicon oil + 3μm alumina] and GA03 [glycerol + 3μm alumina], and especially showed significantly higher thermal conductivity at high filler content.
방열 페이스트의 열전도도는 매트릭스가 절연성이라 가정할 때 필러에 의해 결정되며, 특히 방열 페이스트의 열전도도는 구형의 필러가 매트릭스에 랜덤하게 분산되어 있는 일반적인 경우 아래 식 1의 Bruggeman model을 따른다:The thermal conductivity of the heat dissipation paste is determined by the filler assuming that the matrix is insulating. In particular, the thermal conductivity of the heat dissipation paste follows the Bruggeman model in Equation 1 below in the general case where spherical fillers are randomly distributed in the matrix:
<식 1><Equation 1>
1-V={(λpc)/(λpm)}*{(λmc)^(1/3)}1-V={(λ pc )/(λ pm )}*{(λ mc )^(1/3)}
상기 식에서, V는 필러의 부피분율, λp, λm, 및 λc는 각각 필러, 매트릭스 및 복합체(방열 페이스트)의 열전도도를 의미한다.In the above equation, V is the volume fraction of the filler, λ p , λ m , and λ c are the thermal conductivities of the filler, matrix, and composite (heat dissipation paste), respectively.
도 1e 및 1f를 참조하면, 동일한 열전도도를 갖는 매트릭스에서 필러의 열전도도가 증가할 때의 복합체 전체의 열전도도 증가량은 비교적 크지 않은 반면, 복합체 내 필러의 열전도도는 변하지 않고 매트릭스의 열전도도만 증가하면 복합체 전체의 열전도도 증가량이 매우 큰 것을 확인할 수 있다. 즉, 매트릭스의 열전도도가 클수록 복합체의 열전도도 향상에 유리하다. Referring to Figures 1e and 1f, when the thermal conductivity of the filler in a matrix having the same thermal conductivity increases, the increase in thermal conductivity of the entire composite is relatively not large, while the thermal conductivity of the filler in the composite does not change and only the thermal conductivity of the matrix increases. As it increases, it can be seen that the increase in thermal conductivity of the entire composite is very large. In other words, the greater the thermal conductivity of the matrix, the more advantageous it is to improve the thermal conductivity of the composite.
이러한 관점에서 도 1a 및 1b를 분석하면, 단일 매트릭스 기반 방열 페이스트의 경우, 글리세롤 (0.299 W/m·K)은 실리콘 오일 (0.183 W/m·K)보다 높은 열전도도를 가져 복합체에서도 더 높은 열전도도를 보였다. 반면, SG5:5A03의 실리콘 오일과 글리세롤의 혼합물의 열전도도는 0.245 W/m·K로, 글리세롤과 실리콘 오일 전도도의 중간값임에도 불구하고, 알루미나를 20 vol% 이상 첨가하게 되면 GA03보다 더 높은 열전도도를 보여 Bruggeman model과 일치하지 않는 결과를 나타내었다. 이는, 열전도도 향상에 대한 매트릭스의 효과를 이기는 어떤 다른 영향이 존재하는 것으로 사료된다. 항복응력 결과와 종합해보면, 알루미나가 실리콘 오일과 글리세롤의 계면에 위치하여 필러간 segregated network 구조를 형성함으로써 항복응력도 증가하고, 이에 따라 더 효과적인 열전달 경로(heat transfer pathway)가 형성되어 열전도도의 큰 향상을 가져오는 것이라 예상할 수 있으며, 이와 더불어 SG5:5A03은 피커링 에멀젼의 형태를 갖는다고 판단할 수 있다.Analyzing Figures 1a and 1b from this perspective, for the single matrix-based heat dissipation paste, glycerol (0.299 W/m·K) has a higher thermal conductivity than silicone oil (0.183 W/m·K), resulting in a higher thermal conductivity in the composite as well. showed the way. On the other hand, the thermal conductivity of the mixture of silicone oil and glycerol of SG5:5A03 is 0.245 W/m·K, which is an intermediate value between the conductivity of glycerol and silicone oil, but when more than 20 vol% of alumina is added, the thermal conductivity is higher than that of GA03. The diagram shows results that are inconsistent with the Bruggeman model. It is believed that there is some other influence that overcomes the effect of the matrix on improving thermal conductivity. When combined with the yield stress results, the yield stress increases as alumina is located at the interface between silicone oil and glycerol to form a segregated network structure between fillers, thereby forming a more effective heat transfer pathway and greatly improving thermal conductivity. It can be expected that it brings , and in addition, SG5:5A03 can be judged to have the form of a Pickering emulsion.
반면, 도 1c를 참조하면, SG5:5A90은 SG5:5A03보다 필러 함량 증가에 따른 열전도도 증가량이 크지 않음을 확인할 수 있다. 알루미나 3μm를 사용한 동일한 에멀젼 시스템에서는 segregated 구조로 인해 열전도도가 급증한 것으로 판단할 수 있으나 (도 1a), 알루미나 90μm를 첨가한 경우에는 동일한 매트릭스 시스템을 가짐에도 불구하고 열전도도 증가량도 작고 항복응력 증가량도 작은 것으로 나타난 바, 이는 segregated 구조가 형성되지 않았기 때문으로 사료된다. 즉, 형성된 액적 크기에 비해 알루미나의 크기가 매우 커서 두 액체간 계면을 알루미나가 효과적으로 안정화시키지 못한 것으로, 정상적인 피커링 에멀젼이 형성된 것이 아니라 오일 액적과 알루미나가 랜덤하게 분산된 형태라고 예상할 수 있다.On the other hand, referring to Figure 1c, it can be seen that the increase in thermal conductivity of SG5:5A90 due to increase in filler content is not greater than that of SG5:5A03. In the same emulsion system using 3μm of alumina, it can be judged that the thermal conductivity increased rapidly due to the segregated structure (Figure 1a), but when 90μm of alumina was added, the increase in thermal conductivity was small and the increase in yield stress was also small despite having the same matrix system. It appeared to be small, which is thought to be because a segregated structure was not formed. In other words, the size of the alumina was very large compared to the size of the formed droplet, so the alumina did not effectively stabilize the interface between the two liquids. Therefore, it can be expected that the oil droplets and alumina were randomly dispersed rather than a normal Pickering emulsion being formed.
종합하여보면, 통상적으로 실리콘 또는 글리세롤만을 사용한 현탁액 형태의 방열 페이스트에서 사용하는 필러의 크기가 커질수록 페이스트의 열전도도가 더욱 높은 것으로 나타났지만, 에멀젼 형태에서는 작은 사이즈의 알루미나를 사용했을 때 더욱 높은 페이스트 열전도도가 나타난 바, 3μm의 알루미나를 사용했을 때 피커링 에멀젼 및 segregated network 구조를 효과적으로 형성했음을 확인할 수 있다. In summary, the thermal conductivity of the paste was found to be higher as the size of the filler used in the heat dissipation paste in the form of a suspension using only silicon or glycerol generally increased, but in the form of an emulsion, the thermal conductivity of the paste was higher when small-sized alumina was used. The thermal conductivity showed that Pickering emulsion and segregated network structures were effectively formed when 3μm alumina was used.
이러한 사실들을 증명하기 위해 하기 실험예 2 에서는 광학현미경을 통해 페이스트 내 필러가 형성하는 구조 형태(morphology)를 확인하였다.To prove these facts, in Experimental Example 2 below, the morphology formed by the filler in the paste was confirmed through an optical microscope.
<실험예 2> 방열 페이스트의 모폴로지(morphology) 확인<Experimental Example 2> Confirmation of morphology of heat dissipation paste
상술한 바와 같이, 방열 페이스트 복합체 내에서 매트릭스 자체의 열전도도보다는 필러가 형성하는 구조가 복합체 전체의 열전도도에 큰 영향을 미치며, 복합체의 항복응력은 복합체 내 필러가 형성하는 구조를 변형시키는데 필요한 최소한 힘을 의미하며 구조 형성 정도에 따라 달라진다.As mentioned above, within a heat dissipation paste composite, the structure formed by the filler has a greater impact on the thermal conductivity of the entire composite than the thermal conductivity of the matrix itself, and the yield stress of the composite is the minimum required to deform the structure formed by the filler within the composite. It refers to strength and varies depending on the degree of structure formation.
따라서, 항복응력과 열전도도가 알루미나가 형성하는 구조와 갖는 상관관계를 파악하기 위해, 광학현미경(optical microscope, OM)으로 현탁액 형태의 방열 페이스트인 SA03/90, GA03/90 그리고 에멀젼 형태의 방열 페이스트인 SG5:5A03/90 내 필러가 형성하는 구조를 관찰하였다.Therefore, in order to determine the relationship between yield stress and thermal conductivity and the structure formed by alumina, SA03/90 and GA03/90, which are suspension-type heat dissipation pastes, and emulsion-type heat dissipation paste were examined using an optical microscope (OM). The structure formed by the filler in SG5:5A03/90 was observed.
그 결과, 도 2 내지 도 4에 나타난 바와 같이, 실리콘 또는 글리세롤만을 사용한 단일 매트릭스 기반 현탁액에 분산된 필러와 에멀젼 내 필러는 서로 다른 개형을 보여주었다. As a result, as shown in Figures 2 to 4, the filler dispersed in a single matrix-based suspension using only silicone or glycerol and the filler in the emulsion showed different modifications.
먼저, 도 2를 참조하면, GA03처럼 단일 매트릭스에 필러가 분산된 경우, 필러가 무작위로 분산된 형태를 나타내었으며, 이후, 필러 함량이 증가함에 따라 필러가 빽빽하게 함침된 양상을 보였다. 이로 인해, 필러끼리 상호접속(interconnection)이 이루어진 퍼콜레이션 임계치(percolation threshold) (> 40 vol%) 이후부터 열전도도와 항복응력이 급증하는 현상을 보인 것이다 (도 1a 내지 1d).First, referring to Figure 2, when the filler was dispersed in a single matrix like GA03, the filler appeared to be randomly dispersed, and then, as the filler content increased, the filler appeared to be densely impregnated. As a result, thermal conductivity and yield stress rapidly increased after the percolation threshold (> 40 vol%), at which fillers were interconnected (FIGS. 1a to 1d).
반면, 매트릭스로 실리콘 오일과 글리세롤의 혼합물을 사용한 에멀젼 형태의 복합체 (SG5:5A03, SG5:5A90)는 실리콘 또는 글리세롤만을 사용한 현탁액 형태의 복합체와는 다른 양상을 보였다. 알루미나는 상대적으로 친수성 입자이기 때문에 에멀젼 내에서 실리콘 오일에 비해 글리세롤과 더 많이 접촉하는 양상을 띤다. 즉, 연속상이 글리세롤이며 분산상이 실리콘 오일인 수중유(oil in water, O/W) 형태의 에멀젼을 이루게 된다.On the other hand, the emulsion-type composites (SG5:5A03, SG5:5A90) using a mixture of silicone oil and glycerol as a matrix showed different aspects from the suspension-type composites using only silicone or glycerol. Because alumina is a relatively hydrophilic particle, it has more contact with glycerol than silicone oil within the emulsion. That is, an oil-in-water (O/W) emulsion is formed in which the continuous phase is glycerol and the dispersed phase is silicone oil.
따라서, 도 3에 나타난 바와 같이, 연속상은 글리세롤, 액적은 실리콘 오일을 나타내며, 알루미나 없이 실리콘 오일과 글리세롤이 단순히 분산된 경우에는 액적 크기가 일정하지 않은 불안정한 상태임을 확인할 수 있다 (a). 알루미나가 10 vol% 함침됨에 따라, 액적 크기가 비교적 변함없이 일정해지며 알루미나가 실리콘 오일 액적 주변을 감싸고 있는 양상이 나타났다 (b). 액적 크기가 일정한 것은 필러가 액적을 둘러싸며 안정한 구조를 형성했기 때문이고, 이는 피커링 에멀젼의 큰 증거로 판단할 수 있다. 이후 필러 함량이 증가함에 따라 매트릭스의 비율이 감소하면서 오일 액적 크기는 점점 감소하였고 인접한 액적끼리 서로 필러에 의해 연결되는 양상이 관찰되었다. 최종적으로, 액적은 알루미나 크기와 비슷한 수준으로 감소하며 글리세롤 매트릭스에 오일 액적과 알루미나가 빽빽하게 패킹(packing)된 모습이 관찰되었다.Therefore, as shown in Figure 3, the continuous phase represents glycerol and the droplets represent silicone oil, and when silicone oil and glycerol are simply dispersed without alumina, it can be confirmed that the droplet size is unstable and is in an unstable state (a). As alumina was impregnated with 10 vol%, the droplet size became relatively constant and alumina appeared to surround the silicon oil droplet (b). The reason the droplet size is constant is because the filler surrounds the droplet and forms a stable structure, which can be judged as great evidence of a Pickering emulsion. Afterwards, as the filler content increased, the matrix ratio decreased, the oil droplet size gradually decreased, and adjacent droplets were observed to be connected to each other by the filler. Finally, the droplets were reduced to a level similar to the size of alumina, and oil droplets and alumina were observed to be densely packed in the glycerol matrix.
이를 통해, SG5:5A03이 알루미나에 의해 안정한 피커링 에멀젼 및 segregated network 구조가 형성됨을 확인할 수 있다. 또한, SG5:5A03은 더 안정하고 강한 구조를 제공하여 항복응력이 SA03, GA03 보다 높은 것으로 나타났으며, 열이 지나갈 수 있는 열전달 경로가 연속적으로 잘 형성되어 열전도도도 SA03, GA03보다 높은 것으로 나타났다.Through this, it can be confirmed that SG5:5A03 forms a stable Pickering emulsion and segregated network structure with alumina. In addition, SG5:5A03 provided a more stable and strong structure, and the yield stress was found to be higher than that of SA03 and GA03. The heat transfer path through which heat can pass was well formed continuously, and the thermal conductivity was also found to be higher than that of SA03 and GA03. .
앞서 SG5:5A90은 SG5:5A03처럼 SA90, GA90보다 높은 항복응력을 가져 좋은 안정성을 가지나, 열전도도는 GA90 대비 크게 높지 않음을 확인하였다. 도 4를 참조하면, 알루미나의 직경이 실리콘 오일 액적의 직경보다 커서 필러가 액적을 감싸는 양상이 아니라 오히려 액적이 필러를 감싸는 형태이기 때문이다. Previously, it was confirmed that SG5:5A90, like SG5:5A03, has a higher yield stress than SA90 and GA90 and has good stability, but the thermal conductivity is not significantly higher than GA90. Referring to FIG. 4, the diameter of the alumina is larger than the diameter of the silicon oil droplet, so the filler does not surround the droplet, but rather the droplet surrounds the filler.
즉, 단일 매트릭스에서 랜덤하게 분산된 필러에 비해 SG5:5A90은 필러 사이 액적이 패킹되어 고체 입자처럼 거동하여 안정성은 좋으나 (단일 매트릭스 기반 복합체보다 항복응력이 좋음), 필러 사이가 랜덤 패킹처럼 충분히 연결되지 못하기 때문에 큰 열전도도의 향상을 가져오지 못한다 (단일 매트릭스 기반 복합체에 비해 큰 열전도도 향상이 없음).In other words, compared to fillers randomly dispersed in a single matrix, SG5:5A90 has good stability because the droplets between fillers are packed and behave like solid particles (better yield stress than single matrix-based composite), but the fillers are sufficiently connected like random packing. Therefore, it does not bring about a significant improvement in thermal conductivity (there is no significant improvement in thermal conductivity compared to a single matrix-based composite).
이처럼, 복합체 내 필러가 형성하는 구조에 따라 열전도도와 항복응력이 크게 영향을 받음을 알 수 있으며, 최종적으로 SG5:5A03만이 피커링 에멀젼이라고 할 수 있다.In this way, it can be seen that thermal conductivity and yield stress are greatly affected by the structure formed by the filler in the composite, and ultimately, only SG5:5A03 can be said to be a Pickering emulsion.
<실험예 3> 방열 페이스트의 이론적 분석<Experimental Example 3> Theoretical analysis of heat dissipation paste
앞선 결과에 따르면, 필러가 형성하는 구조에 따라 열전도도가 크게 영향을 받음을 알 수 있다. 즉, 필러가 형성한 구조의 강도의 척도를 나타내는 항복응력과 열전도도의 관계를 통해 형성된 필러의 구조가 열전도도를 얼마나 효과적으로 향상시켰는지 알 수 있다. 추가적으로 열전도도 예측 모델을 이용해 필러의 구조 형성이 열전도도에 기여하는 정도를 분석하였다.According to the previous results, it can be seen that thermal conductivity is greatly affected by the structure formed by the filler. In other words, it can be seen how effectively the structure of the filler has improved thermal conductivity through the relationship between the yield stress and thermal conductivity, which represents a measure of the strength of the structure formed by the filler. Additionally, the degree to which filler structure formation contributes to thermal conductivity was analyzed using a thermal conductivity prediction model.
일반적으로 TIM으로 사용되는 복합체의 전체 열 저항은 하기 식 2와 같다:The overall thermal resistance of composites commonly used as TIMs is given by Equation 2:
<식 2><Equation 2>
Rbulk = BLT/kTIM R bulk = BLT/k TIM
상기 식에서, Rbulk는 TIM의 전체 열저항, BLT는 실제 두 고체간 접촉 거리, kTIM은 복합체의 열전도도를 의미한다.In the above equation, R bulk refers to the total thermal resistance of the TIM, BLT refers to the actual contact distance between the two solids, and k TIM refers to the thermal conductivity of the composite.
BLT를 해석하기 위해서는 복합체가 어떤 형태의 유체(fluid)인지를 파악하는 것인지가 중요한데, 종래 연구 결과 TIM의 점도는 Herschel-Buckley (H-B) 유체 거동을 보이며 BLT는 평형상태에서 복합체의 항복응력에만 의존함에 따라 실험적으로 TIM의 항복응력과 열전도도는 하기 식 3의 관계를 가짐이 보고되었다:In order to analyze BLT, it is important to determine what type of fluid the composite is. Previous research has shown that the viscosity of TIM shows Herschel-Buckley (H-B) fluid behavior, and BLT depends only on the yield stress of the composite in equilibrium. Accordingly, it was experimentally reported that the yield stress and thermal conductivity of TIM have the following equation 3:
<식 3><Equation 3>
kTIM = (1/Rbulk)C(τy/P)^m k TIM = (1/R bulk )C(τ y /P)^m
상기 식에서, C, m은 상수, τy는 복합체의 항복응력, kTIM는 복합체의 열전도도, P는 두 고체 평판을 접합하는데 필요한 압력을 의미한다.In the above equation, C and m are constants, τ y is the yield stress of the composite, k TIM is the thermal conductivity of the composite, and P is the pressure required to join two solid plates.
결과적으로, Rbulk는 모든 경우에 대해 최소 즉, 0에 가깝고 P도 모든 경우에 대해 일정하다는 가정 하에, 복합체의 열전도도는 항복응력의 m 승에 비례한다는 결과를 추론할 수 있다. 높은 m 값은 항복응력 증가량 대비 열전도도의 증가량이 크고, 낮은 m 값은 항복응력 증가량 대비 열전도도의 증가량이 작은 바, m 값이 클수록 필러가 같은 항복응력을 갖더라도 더 효율적으로 열전도도를 향상시키는 구조를 형성한다고 판단할 수 있다.As a result, under the assumption that R bulk is the minimum in all cases, that is, close to 0 and that P is also constant in all cases, it can be inferred that the thermal conductivity of the composite is proportional to the m power of the yield stress. A high m value indicates a large increase in thermal conductivity compared to the increase in yield stress, and a low m value indicates a small increase in thermal conductivity compared to the increase in yield stress. The larger the m value, the more efficiently the thermal conductivity is improved even if the filler has the same yield stress. It can be judged that a structure is formed.
일반적으로, 복합체의 열전도도와 항복응력은 퍼콜레이션(percolation) 특성을 가져 특정 함량 이상의 필러가 함침될 시 물성이 극대화되는 경향이 있다. 도 1a 내지 1d를 참조하면, 40 vol%를 기준으로 모든 페이스트의 열전도도와 항복응력의 증가 기울기가 상승함을 확인할 수 있다. 즉, 필러의 함량에 따라 퍼콜레이션이 일어나는 구간과 일어나지 않는 구간의 거동이 다르므로, 40 vol%를 기준으로 열전도도와 항복응력의 관계를 나누어 보는 것이 적절하다.In general, the thermal conductivity and yield stress of the composite have percolation characteristics, so the physical properties tend to be maximized when the filler is impregnated with a certain amount or more. Referring to FIGS. 1A to 1D, it can be seen that the slope of increase in thermal conductivity and yield stress of all pastes increases based on 40 vol%. In other words, since the behavior of the section where percolation occurs and the section where percolation does not occur varies depending on the filler content, it is appropriate to divide the relationship between thermal conductivity and yield stress based on 40 vol%.
하기 표 1은 상기 식 3에 따라 40 vol% 전후의 모든 페이스트의 계산된 m 값을 나타낸 것이다.Table 1 below shows the calculated m values of all pastes around 40 vol% according to Equation 3 above.
Figure PCTKR2023002406-appb-img-000001
Figure PCTKR2023002406-appb-img-000001
상기 표 1 및 도 5를 참조하면, 모든 페이스트는 40 vol% 이후에서 더 낮은 m 값을 나타내는데, 이는 40 vol% 이후에서 필러가 급격히 상호접속되는 퍼콜레이션 거동을 보여 항복응력이 열전도도에 비해 급증하게 되기 때문이다.Referring to Table 1 and Figure 5, all pastes show lower m values after 40 vol%, which shows percolation behavior in which fillers are rapidly interconnected after 40 vol%, resulting in a rapid increase in yield stress compared to thermal conductivity. Because it happens.
모든 페이스트는 충진한 필러의 크기가 커질수록 모든 함량에서 필러끼리 접촉하면서 필러의 계면에서 발생하는 계면 열 저항(interfacial thermal resistance)이 감소하여 복합체의 열전도도가 증가하고, 필러 크기가 증가함에 따라 복합체 전체의 점도 즉, 항복응력이 감소하여 m이 증가하게 된다.In all pastes, as the size of the filled filler increases, the interfacial thermal resistance that occurs at the interface of the fillers as the fillers come into contact with each other at all contents decreases, increasing the thermal conductivity of the composite, and as the size of the filler increases, the interfacial thermal resistance of the composite decreases. The overall viscosity, that is, the yield stress, decreases and m increases.
SG5:5A03과 SG5:5A90은 현탁액 형태의 방열 페이스트에 비해 < 40 vol%에서는 비교적 높은 m 값을 갖고, > 40 vol%에서는 m이 < 40 vol%일 때보다 급격히 감소하였다. 높은 m 값은 항복응력 증가량 대비 열전도도의 증가량이 크다는 것을 의미하는 바, 40 vol% 이하에서는 단일 매트릭스 기반의 복합체들과 다르게 필러가 segregated 구조를 형성해 열전달이 효과적으로 되기 때문인 반면, 40 vol% 이상에서 m이 급격히 감소하는 것은 실리콘 오일 액적에 의해 필러의 움직임이 크게 제한되고 알루미나가 함침될 수 있는 최대 한계점에 도달하여 항복응력이 열전도도 증가량에 비해 크게 증가했음의 의미한다.SG5:5A03 and SG5:5A90 had relatively high m values at <40 vol% compared to suspension-type heat dissipation pastes, and m decreased sharply at >40 vol% compared to <40 vol%. A high m value means that the increase in thermal conductivity is large compared to the increase in yield stress. This is because at 40 vol% or less, unlike single matrix-based composites, the filler forms a segregated structure, making heat transfer effective, whereas at 40 vol% or more. The rapid decrease in m means that the movement of the filler is greatly restricted by the silicone oil droplets and the maximum limit at which alumina can be impregnated is reached, and the yield stress increases significantly compared to the increase in thermal conductivity.
도 1 내지 도 5를 종합적으로 판단해보면, 먼저, 도 3 및 4에 나타난 바와 같이, SG5:5A03은 필러가 액적을 둘러싸 필러에 의해 segregated 구조가 형성된 형태이지만, SG5:5A90은 필러의 크기가 액적의 크기보다 커서 오히려 액적이 필러를 둘러싼 형태로, SG5:5A03만 피커링 에멀젼 형태임을 확인할 수 있다.Comprehensively judging Figures 1 to 5, first, as shown in Figures 3 and 4, SG5:5A03 is a form in which the filler surrounds the droplet and a segregated structure is formed by the filler, but in SG5:5A90, the size of the filler is similar to that of the liquid droplet. Since it is larger than the size of the enemy, the droplet surrounds the filler, and only SG5:5A03 can be confirmed to be in the form of a Pickering emulsion.
하지만, SG5:5A03, SG5:5A90 모두 40 vol% 이하에서는 랜덤한 단일 매트릭스 기반 복합체에 비해 필러가 오일 액적에 의해 규칙적인 구조를 가지게 되어 항복응력 대비 열전도도 증가량이 커서 큰 m 값을 보여주었으며, 40 vol% 이상에서는 m 값의 감소량이 SG5:5A03, SG5:5A90 모두 크게 나타났다. 즉, 40 vol% 이상 고함량에서 항복응력 증가량이 단일 매트릭스 복합체보다 크다는 뜻으로, 이는 복합체 내에서 많은 양의 필러에 의해 작은 크기로 안정화된 오일 액적이 고체 입자처럼 거동해 필러의 움직임을 크게 제한하고, 필러가 차지할 수 있는 부피를 제한하여 항복응력이 급증하기 때문이다.However, at 40 vol% or less for both SG5:5A03 and SG5:5A90, the filler had a regular structure due to oil droplets compared to the random single matrix-based composite, and the increase in thermal conductivity compared to yield stress was large, showing a large m value. Above 40 vol%, the decrease in m value was significant for both SG5:5A03 and SG5:5A90. In other words, at a high content of 40 vol% or more, the increase in yield stress is greater than that of a single matrix composite. This means that oil droplets stabilized in small sizes by a large amount of filler within the composite behave like solid particles, greatly limiting the movement of the filler. This is because the yield stress rapidly increases by limiting the volume that the filler can occupy.
결과적으로, 실리콘 오일 및 글리세롤을 매트릭스로 사용한 SG5:5A03, SG5:5A90 모두 이론적으로 단일 매트릭스 기반 복합체보다는 더 좋은 안정성과 열전도도를 보여주었으며, 그 중에서도, SG5:5A03은 피커링 에멀젼의 형태를 가져 가장 우수한 안정성과 열전도도를 가짐을 확인할 수 있다.As a result, both SG5:5A03 and SG5:5A90, which used silicone oil and glycerol as matrices, theoretically showed better stability and thermal conductivity than single matrix-based composites. Among them, SG5:5A03 had the form of a Pickering emulsion and was the best. It can be confirmed that it has excellent stability and thermal conductivity.
다음으로, 복합체의 열전도도 예측 모델인 Agari model을 통해 필러가 형성하는 내부 구조가 얼마나 잘 형성되었는지 확인할 수 있다.Next, you can check how well the internal structure formed by the filler is formed through the Agari model, which is a thermal conductivity prediction model for the composite.
Agari model은 고함량에서의 필러가 형성하는 네트워크의 열전도도에 대한 영향을 고려하기 위해 제안된 모델로, 하기 식 4와 같이 나타낼 수 있다:The Agari model is a model proposed to consider the effect on the thermal conductivity of the network formed by filler at high content, and can be expressed as Equation 4 below:
<식 4><Equation 4>
logλc= vfCflogλf + (1 - vf) log(Cpλp)logλ c = v f C f logλ f + (1 - v f ) log(C p λ p )
상기 식에서, λc, λf 및 λp는 각각 복합체, 필러, 및 매트릭스의 열전도도, vf는 필러의 부피 분율(volume fraction)을 의미한다. In the above equation, λ c , λ f and λ p are the thermal conductivities of the composite, filler and matrix, respectively, and v f is the volume fraction of the filler.
Cp는 필러의 충진에 따라 매트릭스의 2차구조 (crystallinity or crystal size)가 받는 영향을 고려한 상수로, 즉, 필러가 매트릭스의 열전도도에 영향을 미치는지에 대한 척도를 의미하며, Cp가 1이라는 것은 이상적인 조건으로 필러의 함침이 매트릭스의 열전도도에 영향을 주지 않는다는 의미이다. 대개 고분자 복합소재에서 Cp = 1에 가까운 것으로 알려져 있어, 본 실험예에서는 Cp = 1로 고정하였다.C p is a constant that takes into account the influence of the secondary structure (crystallinity or crystal size) of the matrix depending on the filling of the filler, that is, it is a measure of whether the filler affects the thermal conductivity of the matrix, and C p is 1 This means that under ideal conditions, filler impregnation does not affect the thermal conductivity of the matrix. In general, polymer composite materials are known to be close to C p = 1, so in this experimental example, C p = 1 was fixed.
Cf는 필러가 얼마나 효율적으로 높은 밀도로 기밀하게 패킹 및 네트워크를 형성을 했는지를 나타내는 척도로, 다시 말해 열전도 네트워크(heat conduction network)를 형성하는 능력의 척도이다. 일반적으로 Cf는 0~1 사이의 값을 가지며 Cf가 높을수록 필러의 네트워크 구조가 더 기밀하여 열전달이 효과적으로 일어나 열전도도가 높다. 결과적으로, 모든 복합체의 필러 부피 비율(filler volume ratio)에 대한 열전도도를 기반으로 Agari fitting을 하여 각 경우의 Cf 값을 분석하면 어떤 복합체가 가장 열전달에 효율적인 필러 네트워크(filler network)의 구조를 형성하는지 알 수 있다.C f is a measure of how efficiently the filler is tightly packed and forms a network at high density. In other words, it is a measure of the ability to form a heat conduction network. Generally, C f has a value between 0 and 1. The higher C f , the more airtight the network structure of the filler is, so heat transfer occurs more effectively, resulting in higher thermal conductivity. As a result, analyzing the C f value in each case through Agari fitting based on the thermal conductivity to the filler volume ratio of all composites determines which composite has the most efficient filler network structure for heat transfer. You can see how it is formed.
하기 표 2는 Cp를 1로 고정한 뒤 모든 복합체 샘플의 Cf 값을 계산한 것이다.Table 2 below calculates the C f values of all composite samples after fixing C p at 1.
Figure PCTKR2023002406-appb-img-000002
Figure PCTKR2023002406-appb-img-000002
상기 표 2를 참조하면, 실제로 필러에 의해 segregated 구조가 형성된 SG5:5A03이 다른 복합체들에 비해 Cf값이 가장 높게 나타났다. 즉, SG5:5A03이 열전달에 가장 유리한 강력한 네트워크 구조를 갖음을 확인할 수 있다.Referring to Table 2 above, SG5:5A03, which actually formed a segregated structure by filler, showed the highest C f value compared to other complexes. In other words, it can be confirmed that SG5:5A03 has a strong network structure that is most advantageous for heat transfer.
또한, SG5:5A90도 비교적 높은 Cf값을 보여주는데, 이는 단일 매트릭스 기반 복합체에 비해 필러의 움직임이 둘러싼 오일 액적에 의해 제한되어 비교적 질서(order)를 갖추기 때문인 것으로 사료된다.In addition, SG5:5A90 also shows a relatively high C f value, which is believed to be because the movement of the filler is limited by the surrounding oil droplets and is relatively ordered compared to the single matrix-based composite.
도 6을 참조하면, SG5:5A03은 단일 매트릭스 기반 복합체와 다르게, segregated 구조를 이루어 효과적인 열전달 경로를 형성할 뿐만 아니라, 높은 항복응력 즉, 구조적 안정성 및 분산 안정성을 가짐을 확인할 수 있다. 즉, < 40 vol%에서 segregated 구조를 형성하여 높은 m 값을 보이고, > 40 vol%에서 오일 액적에 의해 빽빽한 구조를 형성해 급격한 m의 감소를 보이며, 가장 높은 Cf 값을 가진다. 결과적으로, 피커링 에멀젼인 SG5:5A03은 높은 안정성을 가짐과 동시에 높은 열전도도를 갖는데, 이는 필러가 형성한 segregated 구조에 기인함이 이론적으로 증명된 것이다.Referring to Figure 6, it can be seen that, unlike single matrix-based composites, SG5:5A03 not only forms an effective heat transfer path by forming a segregated structure, but also has a high yield stress, that is, structural stability and dispersion stability. That is, at <40 vol%, it forms a segregated structure and shows a high m value, and at >40 vol%, it forms a dense structure with oil droplets, showing a rapid decrease in m, and has the highest C f value. As a result, SG5:5A03, a Pickering emulsion, has high stability and high thermal conductivity, which has been theoretically proven to be due to the segregated structure formed by the filler.
<실험예 4> 방열 페이스트의 안정성 평가<Experimental Example 4> Stability evaluation of heat dissipation paste
방열 페이스트는 전자기기에서 발생하는 열에 오랜 시간 동안 노출되기 때문에 높은 온도 하에서의 장기 안정성이 중요하다. 고온 하에서 복합 유체(complex fluid) 형태의 방열 페이스트는 점도가 급격히 감소해 흐르기 시작한다. 이처럼 과도한 열이 집중되게 되면 점도가 감소한 매트릭스가 복합 유체로부터 흘러나와 안정성이 저하되는 펌프 아웃(pump out) 현상이 일어나거나 매트릭스가 사라진 부분에 공기가 채워져 열전달 경로가 감소하는 드라이 아웃(dry out) 현상이 일어난다. 또한, 점도가 감소하며 필러가 침전되는 문제가 발생할 수 있으며, 이는 장기적 사용시 열전도도가 점차 떨어지는 방열 페이스트 제품 단점의 근본적 원인이다. 즉, 고온 하에서 안정한, 점도의 변화가 적은 것이 중요하다.Because heat dissipation paste is exposed to heat generated from electronic devices for a long time, long-term stability under high temperatures is important. Under high temperatures, the heat dissipation paste in the form of a complex fluid rapidly decreases in viscosity and begins to flow. When excessive heat is concentrated in this way, a pump out phenomenon occurs in which the matrix with reduced viscosity flows out of the complex fluid and reduces stability, or a dry out phenomenon occurs in which air fills the area where the matrix disappears and the heat transfer path is reduced. A phenomenon occurs. In addition, the viscosity may decrease and problems with filler precipitation may occur, which is the fundamental cause of the disadvantage of heat dissipation paste products in which thermal conductivity gradually decreases during long-term use. In other words, it is important to be stable at high temperatures and have little change in viscosity.
현탁액 형태와 에멀젼 형태의 방열 페이스트의 온도에 따른 점도 변화를 관찰하기 위하여 열전도도가 비교적 비슷한 GA03과 SG5:5A03의 온도에 따른 점도 변화를 관찰하였다. To observe the change in viscosity according to temperature of the heat dissipation paste in the form of suspension and emulsion, the change in viscosity according to temperature was observed for GA03 and SG5:5A03, which have relatively similar thermal conductivities.
상온부터 100℃까지 온도를 충분히 올린 뒤 다시 상온으로 온도를 낮춰 고온 방열 페이스트의 각 진동수(angular frequency)에 따른 복소 점도(complex viscosity), 항복응력 및 열전도도의 변화를 살펴본 결과, 도 7에 나타난 바와 같이, 온도가 올라감에 따라 GA03의 복소 점도는 급격히 감소하는 것으로 나타났으며, 고온에서 점도가 감소함에 따라 항복응력 또한 상온 대비 0.5% 수준으로 급격히 감소하였다. 고온에서 열처리 후 상온에서 측정된 열전도도 또한 열처리 없이 측정된 열전도도에 비해 30% 가량 감소한 것으로 나타났다. 이는 온도가 상승함에 따라 복합체 내 매트릭스가 급격히 흘러 필러와의 상 분리가 일어나기 때문이다. 이러한 결과는 GA03의 열적 안정성이 좋지 않음을 의미한다.After sufficiently raising the temperature from room temperature to 100°C, the temperature was lowered back to room temperature, and the changes in complex viscosity, yield stress, and thermal conductivity according to the angular frequency of the high-temperature heat dissipation paste were examined. As a result, shown in Figure 7. As shown, the complex viscosity of GA03 was found to decrease rapidly as the temperature increased, and as the viscosity decreased at high temperature, the yield stress also decreased rapidly to 0.5% compared to room temperature. The thermal conductivity measured at room temperature after heat treatment at high temperature was also found to decrease by about 30% compared to the thermal conductivity measured without heat treatment. This is because as the temperature rises, the matrix within the composite flows rapidly and phase separation from the filler occurs. These results mean that GA03 has poor thermal stability.
반면, SG5:5A03의 경우, 온도가 상승함에 따라 복소 점도가 감소하지만 GA03에 비해 감소폭이 매우 적은 것으로 나타났으며, 고온에서 점도가 감소함에 따라 항복응력 또한 상온 대비 50% 수준으로 감소하지만 GA03에 비해 매우 적음을 확인할 수 있다. 고온에서 열전도도 또한 상온에서의 열전도도에 비해 5% 가량 감소하지만 역시나 GA03에 비해 매우 적은 것으로 나타났다. 즉, 피커링 에멀젼인 SG5:5A03은 필러가 segregated network 구조를 형성함으로써 구조적으로 안정하여 고온에서의 상분리 현상을 억제함을 알 수 있다. 이를 통해, SG5:5A03은 열적으로 매우 안정함을 확인할 수 있다.On the other hand, in the case of SG5:5A03, the complex viscosity decreases as the temperature increases, but the decrease is very small compared to GA03. As the viscosity decreases at high temperature, the yield stress also decreases to 50% compared to room temperature, but in GA03 You can see that it is very small. At high temperatures, the thermal conductivity also decreases by about 5% compared to the thermal conductivity at room temperature, but it is still very small compared to GA03. In other words, it can be seen that SG5:5A03, a Pickering emulsion, is structurally stable as the filler forms a segregated network structure, suppressing phase separation at high temperatures. Through this, it can be confirmed that SG5:5A03 is thermally very stable.
또한, 전자기기 내 방열 페이스트는 때로 고습도의 극한의 환경에 노출되는 경우에도 안정한 제형을 유지해야 효율적인 방열 성능을 확보할 수 있다. In addition, the heat dissipation paste in electronic devices must maintain a stable formulation even when exposed to extreme environments with high humidity to ensure efficient heat dissipation performance.
상기 실시예에서 사용한 매트릭스 중 하나인 글리세롤은 분자 당 3개의 -OH 관능기를 지녀 흡습성의 특성을 가진다. 따라서, GA03은 비교적 피커링 에멀젼인 SG5:5A03에 견주는 열전도도를 갖지만, 흡습성으로 인해 방열 페이스트로 사용하는 것은 부적절할 것으로 사료된다.Glycerol, one of the matrices used in the above example, has three -OH functional groups per molecule and has hygroscopic properties. Therefore, although GA03 has a thermal conductivity comparable to that of SG5:5A03, a Pickering emulsion, it is considered unsuitable for use as a heat dissipation paste due to its hygroscopicity.
GA03과 SG5:5A03의 흡습성을 시험하기 위해 각각의 다른 함량의 필러를 갖는 방열 페이스트들을 상온 및 상대습도가 95 %인 환경 하에서 시간에 따른 무게 변화를 측정하여 하기 식 5를 이용하여 나타내었다:To test the hygroscopicity of GA03 and SG5:5A03, the weight change over time of heat dissipating pastes with different filler contents was measured at room temperature and a relative humidity of 95%, and was expressed using Equation 5 below:
<식 5><Equation 5>
흡습성(Hygroscopicity, %)=[(W1-W0)/W0]×100Hygroscopicity (%)=[(W1-W0)/W0]×100
각각의 방열 페이스트들이 높은 흡습성을 갖는다면 시간이 지남에 따라 수증기를 흡수하여 방열 페이스트의 질량이 증가할 것이다.If each heat dissipation paste has high hygroscopicity, the mass of the heat dissipation paste will increase as it absorbs water vapor over time.
도 8을 참조하면, 모든 복합체들은 필러의 함량이 증가함에 따라 구조적 안정성 향상 및 상대적인 매트릭스의 양 감소로 인하여 무게 증가가 적은 것으로 나타났다. GA03은 가장 높은 함량인 GA03_50에서도 초기 무게 대비 약 20% 증가하였는데, 이는 글리세롤의 높은 흡습성 때문이다. 반면, SG5:5A03은 필러 로딩이 가장 적은 SG5:5A03_10 (10 vol%)에서도 초기 무게 대비 7% 만 증가한 것으로 나타났으며, SG5:5A03_50에서는 초기 무게 대비 1% 만 증가하여 거의 흡습성이 없다고 할 수 있다. 이는 글리세롤이 일부 포함되어 있지만, 필러가 형성하는 segregated 구조에 기인한 것이다. 결과적으로, SG5:5A03은 피커링 에멀젼으로 고온에도 안정하며 습기에도 안정한 방열 페이스트임을 확인할 수 있다.Referring to Figure 8, all composites showed a small increase in weight due to improved structural stability and a decrease in the relative amount of matrix as the filler content increased. Even at the highest content, GA03_50, GA03 increased by about 20% compared to the initial weight, which is due to the high hygroscopicity of glycerol. On the other hand, SG5:5A03 showed an increase of only 7% compared to the initial weight even at SG5:5A03_10 (10 vol%) with the lowest filler loading, and in SG5:5A03_50, it increased only 1% compared to the initial weight, so it can be said to have almost no hygroscopicity. there is. This is due to the segregated structure formed by the filler, although it contains some glycerol. As a result, it can be confirmed that SG5:5A03 is a heat dissipation paste that is stable even at high temperatures and moisture as a Pickering emulsion.
<실험예 5> 방열 페이스트 필러 회수<Experimental Example 5> Heat dissipation paste filler recovery
최근 지속 가능성과 친환경 및 재활용 가능한 소재에 대한 수요가 크게 증가하고 있다. 또한, 고분자 복합재료에서 필러는 대개 가격이 높기 때문에 복합재료에 사용되는 필러의 회수 및 재활용/재사용은 산업적으로 매우 중요한 의미를 가진다. 이러한 이유로 본 발명에서 제작된 피커링 이멀젼 방열 페이스트로부터 알루미나 필러의 재활용을 위한 회수 실험을 진행하였다.Recently, the demand for sustainability, eco-friendly and recyclable materials has increased significantly. In addition, because fillers in polymer composite materials are usually expensive, recovery and recycling/reuse of fillers used in composite materials are of great industrial importance. For this reason, a recovery experiment was conducted for recycling of alumina filler from the Pickering imulsion heat dissipation paste produced in the present invention.
저함량의 필러로 제작된 SG5:5A03_10의 피커링 이멀젼 방열 페이스트에 대해 우선적으로 실험이 진행되었다. 먼저 원심분리기(Labogene 1248R)를 이용하여 4,000 rpm의 회전속도로 상온에서 약 10분간 3번 반복하여 원심 분리를 실시하였다. 이를 통해 필러와 매트릭스의 상분리를 유도한 후 알루미나를 회수하였다. 회수된 알루미나는 핵세인과 증류수로 수차례 세척하였다. 핵세인은 실리콘 오일을 녹일 수 있는 용매로, 증류수는 글리세롤을 녹일 수 있는 용매로 사용되었다. 이 후, 진공 여과 장치를 통해 상 분리된 알루미나 복합재료에서 실리콘 오일과 글리세롤을 제거하였다. 추가로, 잔류 용매를 제거하기 위해 여과된 알루미나를 100℃, 진공 하에 약 2일간 건조하였다.Experiments were first conducted on the Pickering imulsion heat dissipation paste of SG5:5A03_10, which was manufactured with a low content of filler. First, centrifugation was repeated three times for about 10 minutes at room temperature at a rotation speed of 4,000 rpm using a centrifuge (Labogene 1248R). Through this, phase separation of the filler and matrix was induced and alumina was recovered. The recovered alumina was washed several times with hexane and distilled water. Hexane was used as a solvent that could dissolve silicone oil, and distilled water was used as a solvent that could dissolve glycerol. Afterwards, silicone oil and glycerol were removed from the phase-separated alumina composite material through a vacuum filtration device. Additionally, to remove residual solvent, the filtered alumina was dried at 100°C under vacuum for about 2 days.
또한, 고함량의 필러로 제작된 SG5:5A03_50의 피커링 이멀젼 방열 페이스트의 경우에서도 필러의 회수가 가능한지 확인하였다. 우선 SGA03_50을 핵세인과 증류수를 통해 묽게 희석한 후, Thinky mixer와 소니케이터를 이용하여 필러를 고르게 분산시켰다. 이를 상기 언급된 SGA03_10 방열 페이스트와 마찬가지로 원심 분리, 세척, 여과 및 건조 순으로 하여 매트릭스와 필러를 분리하였다. In addition, it was confirmed whether recovery of filler was possible in the case of Pickering emulsion heat dissipation paste of SG5:5A03_50, which was manufactured with a high content of filler. First, SGA03_50 was diluted with hexane and distilled water, and then the filler was evenly dispersed using a Thinky mixer and sonicator. As with the above-mentioned SGA03_10 heat dissipation paste, the matrix and filler were separated by centrifugation, washing, filtration, and drying.
회수된 알루미나의 평가는 열중량분석(TGA)을 통해 진행되었다. 도 9를 참조하면, 저함량과 고함량 필러의 피커링 이멀젼 방열 페이스트에서 회수된 알루미나 모두 순수한 알루미나와 같이, 800℃까지의 고온에서도 증류수, 글리세롤 및 실리콘 오일의 휘발에 의한 무게의 변화가 없음을 확인할 수 있다. 이는 회수된 알루미나가 잔류 용매 없이 순도 높은 알루미나로써 향후 재사용이 가능하다는 것을 의미한다.Evaluation of the recovered alumina was conducted through thermogravimetric analysis (TGA). Referring to Figure 9, it can be seen that the alumina recovered from the Pickering imulsion heat dissipation paste of low and high content fillers, like pure alumina, does not change in weight due to volatilization of distilled water, glycerol, and silicone oil even at high temperatures up to 800°C. You can. This means that the recovered alumina can be reused in the future as high purity alumina without residual solvents.
상기 피커링 이멀젼 방열 페이스트는 단순히 글리세롤/실리콘 오일 매트릭스와 알루미나 필러를 혼합하였다는 장점을 가지므로, 물리적 분해를 통해 필러를 다시 회수할 수 있었다. 이는 다양하게 응용이 가능한 피커링 이멀젼 방열 페이스트시스템에 대해서도 필러의 분리 방법이 적용될 수 있음을 의미한다. 또한 회수된 필러는 향후 새로운 복합재료 제조에도 재활용이 가능할 것으로 기대된다.The Pickering emulsion heat dissipation paste has the advantage of simply mixing a glycerol/silicon oil matrix and alumina filler, so the filler could be recovered through physical decomposition. This means that the filler separation method can be applied to the Pickering imulsion heat dissipation paste system, which can be applied in a variety of ways. Additionally, the recovered filler is expected to be recyclable in the manufacture of new composite materials in the future.
이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, we have looked at specific embodiments of the present invention. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

Claims (13)

  1. 실리콘 오일; 지방족 알콜; 및 열전도성 필러를 포함하는, 방열용 피커링 에멀젼 조성물.silicone oil; aliphatic alcohol; And a Pickering emulsion composition for heat dissipation, comprising a thermally conductive filler.
  2. 제 1 항에 있어서,According to claim 1,
    상기 실리콘 오일은,The silicone oil is,
    디메틸실리콘 오일, 메틸 페닐 실리콘 오일, 메틸 하이드로젠 오일, 플로로 실리콘 오일, 아미노 변성 실리콘 오일, 및 에폭시 변성 실리콘 오일로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는, 방열용 피커링 에멀젼 조성물. A Pickering emulsion composition for heat dissipation, characterized in that it is at least one selected from the group consisting of dimethyl silicone oil, methyl phenyl silicone oil, methyl hydrogen oil, fluorosilicone oil, amino-modified silicone oil, and epoxy-modified silicone oil.
  3. 제 1 항에 있어서,According to claim 1,
    상기 지방족 알콜은,The aliphatic alcohol is
    글리세롤, 에틸렌 글리콜, 프로필렌 글리콜, 부틸렌 글리콜, 네오펜틸 글리콜, 트리메틸올에탄, 디트리메틸올에탄, 트리메틸올프로판, 및 디트리메틸올프로판으로 이루어진 군에서 선택되는 하나 이상의 지방족 다가 알콜인 것을 특징으로 하는, 방열용 피커링 에멀젼 조성물. Characterized in that it is one or more aliphatic polyhydric alcohols selected from the group consisting of glycerol, ethylene glycol, propylene glycol, butylene glycol, neopentyl glycol, trimethylolethane, ditrimethylolethane, trimethylolpropane, and ditrimethylolpropane. , Pickering emulsion composition for heat dissipation.
  4. 제 1 항에 있어서,According to claim 1,
    상기 실리콘 오일 및 지방족 알콜은,The silicone oil and aliphatic alcohol are,
    1 : (0.1 내지 2)의 부피비로 포함되는 것을 특징으로 하는, 방열용 피커링 에멀젼 조성물. A Pickering emulsion composition for heat dissipation, characterized in that it is contained in a volume ratio of 1: (0.1 to 2).
  5. 제 1 항에 있어서,According to claim 1,
    상기 열전도성 필러는,The thermally conductive filler is,
    알루미나, 마그네시아, 질화붕소, 질화규소, 및 실리카로 이루어진 군에서 선택되는 하나 이상인 것을 특징으로 하는, 방열용 피커링 에멀젼 조성물. A Pickering emulsion composition for heat dissipation, characterized in that it is at least one selected from the group consisting of alumina, magnesia, boron nitride, silicon nitride, and silica.
  6. 제 1 항에 있어서,According to claim 1,
    상기 열전도성 필러는,The thermally conductive filler is,
    평균 직경이 0.1 내지 100 μm인 구상 필러인 것을 특징으로 하는, 방열용 피커링 에멀젼 조성물. A Pickering emulsion composition for heat dissipation, characterized in that it is a spherical filler with an average diameter of 0.1 to 100 μm.
  7. 제 1 항에 있어서,According to claim 1,
    상기 열전도성 필러는,The thermally conductive filler is,
    상기 조성물 전체 100 부피부에 대하여, 10 내지 60 부피부 포함되는 것을 특징으로 하는, 방열용 피커링 에멀젼 조성물. A Pickering emulsion composition for heat dissipation, characterized in that it contains 10 to 60 parts by volume based on a total of 100 parts by volume of the composition.
  8. 실리콘 오일 및 지방족 알콜을 포함하는 액상 매트릭스; 및A liquid matrix containing silicone oil and aliphatic alcohol; and
    상기 매트릭스에 분산된 열전도성 필러를 포함하는, 피커링 에멀젼 기반 방열용 페이스트. A Pickering emulsion-based heat dissipation paste comprising a thermally conductive filler dispersed in the matrix.
  9. 제 8 항에 있어서,According to claim 8,
    상기 열전도성 필러는,The thermally conductive filler is,
    상기 매트릭스 내에서 분리된 네트워크(segregated network)를 형성하는 것을 특징으로 하는, 피커링 에멀젼 기반 방열용 페이스트. A Pickering emulsion-based heat dissipation paste, characterized in that it forms a separated network within the matrix.
  10. 제 8 항에 있어서,According to claim 8,
    상기 페이스트는,The paste is,
    열전도도가 향상된 것을 특징으로 하는, 피커링 에멀젼 기반 방열용 페이스트. Pickering emulsion-based heat dissipation paste, characterized by improved thermal conductivity.
  11. 제 8 항에 있어서,According to claim 8,
    상기 페이스트는,The paste is,
    열 및 수분에 대한 안정성이 향상된 것을 특징으로 하는, 피커링 에멀젼 기반 방열용 페이스트. A Pickering emulsion-based heat dissipation paste characterized by improved stability against heat and moisture.
  12. 제 8 항에 있어서,According to claim 8,
    상기 페이스트는,The paste is,
    재활용 또는 재사용이 가능한 것을 특징으로 하는, 피커링 에멀젼 기반 방열용 페이스트. Pickering emulsion-based heat dissipation paste, characterized in that it can be recycled or reused.
  13. 실리콘 오일 및 지방족 알콜을 혼합하여 액상 매트릭스를 제조하는 단계; 및Preparing a liquid matrix by mixing silicone oil and aliphatic alcohol; and
    상기 제조된 액상 매트릭스에 열전도성 필러를 첨가하는 단계를 포함하는, 피커링 에멀젼 기반 방열용 페이스트의 제조방법.A method for producing a Pickering emulsion-based heat dissipation paste, comprising adding a thermally conductive filler to the prepared liquid matrix.
PCT/KR2023/002406 2022-10-21 2023-02-20 Pickering emulsion composition for heat dissipation, heat dissipation paste using same, and method for manufacturing same WO2024085324A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220136296A KR20240056092A (en) 2022-10-21 2022-10-21 Pickering emulsion composition for heat dissipation, thermal paste using the same, and manufacturing method thereof
KR10-2022-0136296 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024085324A1 true WO2024085324A1 (en) 2024-04-25

Family

ID=90738020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002406 WO2024085324A1 (en) 2022-10-21 2023-02-20 Pickering emulsion composition for heat dissipation, heat dissipation paste using same, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20240056092A (en)
WO (1) WO2024085324A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254275A1 (en) * 2001-05-14 2004-12-16 Hiroshi Fukui Heat-conductive silicone composition
WO2012011356A1 (en) * 2010-07-21 2012-01-26 三菱エンジニアリングプラスチックス株式会社 Highly-thermally-conductive polycarbonate resin composition and molded body
CN102924924A (en) * 2012-11-13 2013-02-13 东莞兆舜有机硅新材料科技有限公司 Paste heat-conductive silicone grease and preparation method thereof
KR20150127648A (en) * 2013-03-06 2015-11-17 디아이씨 가부시끼가이샤 Epoxy resin composition, cured product, heat radiating material, and electronic member

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110122484A (en) 2010-05-04 2011-11-10 주식회사 케이씨씨 Silicone polymer composition having an excellent heat-radiating function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040254275A1 (en) * 2001-05-14 2004-12-16 Hiroshi Fukui Heat-conductive silicone composition
WO2012011356A1 (en) * 2010-07-21 2012-01-26 三菱エンジニアリングプラスチックス株式会社 Highly-thermally-conductive polycarbonate resin composition and molded body
CN102924924A (en) * 2012-11-13 2013-02-13 东莞兆舜有机硅新材料科技有限公司 Paste heat-conductive silicone grease and preparation method thereof
KR20150127648A (en) * 2013-03-06 2015-11-17 디아이씨 가부시끼가이샤 Epoxy resin composition, cured product, heat radiating material, and electronic member

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHO, YONG-SOO ET AL.: "Stable Pickering Emulsion with High Thermal Conductivity for Thermal Paste", THE POLYMER SOCIETY OF KOREA 2022 ANNUAL FALL MEETING, vol. 47, no. 2, 5 October 2022 (2022-10-05), pages 78, XP009554680 *

Also Published As

Publication number Publication date
KR20240056092A (en) 2024-04-30

Similar Documents

Publication Publication Date Title
Xu et al. Thermally conducting aluminum nitride polymer-matrix composites
US5098609A (en) Stable high solids, high thermal conductivity pastes
US6822018B2 (en) Thermally-conductive electrically-insulating polymer-base material
US5051275A (en) Silicone resin electronic device encapsulant
EP0875531B1 (en) High thermal conductivity polybenzoxazine-based compositions and method for their preparation
KR100362961B1 (en) A high thermal conductivity molding compound based on an improved boron nitride composition and a polymer
Wooster et al. Thermal, mechanical, and conductivity properties of cyanate ester composites
US5773561A (en) Polymer sealants/adhesives and use thereof in electronic package assembly
CA1331245C (en) Thermally conductive ceramic/polymer composites
US20040214377A1 (en) Low thermal expansion adhesives and encapsulants for cryogenic and high power density electronic and photonic device assembly and packaging
WO2024085324A1 (en) Pickering emulsion composition for heat dissipation, heat dissipation paste using same, and method for manufacturing same
WO2014119930A1 (en) Silicone rubber composition for adhering semiconductor chip
WO2016047988A1 (en) Surface modified boron nitride, composition having same dispersed therein, and wire coated with the composition
KR102648484B1 (en) Potting compounds, methods for electrically insulating electrical or electronic components, and electrically insulating components
WO2020105968A1 (en) Single molecule-bonded boron nitride nanotubes, and method for preparing colloid solution by using same
Chiang et al. A study of encapsulation resin containing hexagonal boron nitride (hBN) as inorganic filler
Li et al. An improvement of thermal conductivity of underfill materials for flip-chip packages
US8937128B2 (en) Curable reaction resin system
WO2020141925A1 (en) Method for manufacturing heat dissipation sheet
Liu et al. Evaluation of a lead glass for encapsulating high-temperature power modules for aerospace application
WO2021153972A1 (en) Hollow particles, preparation method therefor, and heat-radiating fluid composition comprising same
WO2023054945A1 (en) Chip bonding composition for power semiconductor package
WO2019132175A1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using same
WO2024049205A1 (en) Composition
WO2023059153A1 (en) Curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879910

Country of ref document: EP

Kind code of ref document: A1