WO2024085276A1 - Robotic device performing construction work and synchronization control system comprising same - Google Patents

Robotic device performing construction work and synchronization control system comprising same Download PDF

Info

Publication number
WO2024085276A1
WO2024085276A1 PCT/KR2022/016014 KR2022016014W WO2024085276A1 WO 2024085276 A1 WO2024085276 A1 WO 2024085276A1 KR 2022016014 W KR2022016014 W KR 2022016014W WO 2024085276 A1 WO2024085276 A1 WO 2024085276A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
transfer unit
control
rail
construction work
Prior art date
Application number
PCT/KR2022/016014
Other languages
French (fr)
Korean (ko)
Inventor
김종찬
김효곤
박지현
황정환
박정우
최영호
노경석
이효준
박인규
Original Assignee
한국로봇융합연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국로봇융합연구원 filed Critical 한국로봇융합연구원
Publication of WO2024085276A1 publication Critical patent/WO2024085276A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • the present invention relates to a robotic device, and more specifically, to a robotic device that performs construction work by compensating for errors in position and posture that occur while moving a curved rail for construction work, and a synchronous control system including the same. It's about.
  • the problem to be solved by the present invention is to provide a robot device that performs construction work by compensating for errors in position and posture due to slippage occurring while moving a curved rail, and a synchronous control system including the same.
  • Another problem to be solved by the present invention is to provide a robot device that performs construction work that minimizes operational constraints on power supply and data communication that occur while moving on rails, and a synchronous control system including the same.
  • Another problem to be solved by the present invention is to provide a robot device that performs construction work that supports synchronization control for driving a plurality of robot devices on the same rail and a synchronization control system including the same.
  • the robot device is provided with a plurality of wheels, a transfer unit that moves on a rail having a curvature structure through the plurality of wheels, and the transfer unit is provided with the rail at preset intervals.
  • a camera that generates image information by photographing the marker displayed on the transfer unit, a sensor unit that is provided on the transfer unit and generates measurement information by detecting the drive and posture of the transfer unit, and is provided on the top of the transfer unit and has many degrees of freedom.
  • the transfer unit moves the transfer unit to the target position using a work unit that performs construction work while exercising and the image information and the measurement information, and controls the work unit to perform the construction work, wherein the plurality of wheels
  • the plurality of wheels When at least one of the rails slips and the position and posture of the transfer unit differ from the preset standard, it includes a control unit that compensates for errors in the position and attitude of each wheel and controls the transfer unit to reach the target position.
  • it further includes a communication unit that communicates with a monitoring device that monitors the movement and the construction work, and a power unit that receives power from an external power source, wherein the communication unit and the power unit are in the form of a trolley-bar and send a control signal and It is characterized by being provided with power.
  • control unit detects only control commands corresponding to a preset protocol among a plurality of control commands included in the control signal, and controls the operation of the transfer unit and the working unit according to the detected control command.
  • control unit generates a position profile and a velocity profile considering the target position and the current position, and applies the generated position profile and velocity profile to an anti-windup control technique to compensate for the error in the position. It is characterized by:
  • control unit compares absolute position information calculated using the image information and driving position information calculated using the driving states of the plurality of wheels, and when the compared difference value is greater than a preset standard. , characterized in that it is determined that there is an abnormality in marker recognition included in the image information and the operation of the transfer unit is restricted.
  • the control method of a robot device that performs construction work while moving on a rail having a curvature structure through a plurality of wheels according to the present invention includes receiving a control signal related to the construction work, and moving to a target position according to the control signal. determining whether a slip phenomenon has occurred during the movement; compensating for errors in the position and posture of each wheel when at least one of the plurality of wheels slips on the rail and the position and posture are different from a preset standard. and reaching the target location and performing the construction work.
  • the synchronous control system includes a rail that has a curvature structure and displays markers at preset intervals, a plurality of robot devices that perform construction work while moving on the rail, and the construction work while synchronizing the plurality of robot devices. and a monitoring device that transmits a control signal to perform work and monitors a state related to the construction work, wherein the robot device has a plurality of wheels and moves on the rail through the plurality of wheels.
  • a transfer unit a camera provided in the transfer unit and generating image information by photographing markers displayed on the rail at preset intervals, a sensor unit provided in the transfer unit and generating measurement information by detecting the drive and posture of the transfer unit,
  • a work unit is provided on the upper part of the transfer unit and performs construction work while performing multi-degree-of-freedom movement, and the transfer unit is moved to the target location using the image information and the measurement information, and the construction work is performed through the work unit.
  • the transfer unit is moved to the target location using the image information and the measurement information, and the construction work is performed through the work unit.
  • the rail displays the markers at regular intervals and assigns an identification number to each marker to support the robot device to calculate absolute location information.
  • the monitoring device is characterized in that it stops the operation of the plurality of robot devices when two neighboring robot devices among the plurality of robot devices approach less than a preset interval to prevent the plurality of robot devices from colliding with each other.
  • the monitoring device is characterized in that it controls synchronization of the plurality of robot devices based on the EtherCAT protocol.
  • errors in position and posture caused by slipping while moving a curved rail are compensated based on marker recognition and yaw measurements to support more precise construction work. You can.
  • EtherCAT based on EtherCAT, it can stably support synchronization control to drive multiple robot devices on the same rail.
  • FIG. 1 is a diagram for explaining a synchronization control system according to an embodiment of the present invention.
  • Figure 2 is a diagram for explaining how a robot device moves on a rail according to an embodiment of the present invention.
  • Figure 3 is a diagram for explaining how a robot device according to an embodiment of the present invention connects reinforcing bars to a bridge pier.
  • Figure 4 is a block diagram for explaining a robot device according to an embodiment of the present invention.
  • Figure 5 is a diagram for explaining the structure of a robot device according to an embodiment of the present invention.
  • Figure 6 is a diagram for explaining how a robot device checks a marker according to an embodiment of the present invention.
  • Figure 7 is a diagram for explaining position control of a robot device according to an embodiment of the present invention.
  • Figure 8 is a flowchart for explaining a control method of a robot device according to an embodiment of the present invention.
  • Figure 9 is a block diagram for explaining a computing device according to an embodiment of the present invention.
  • a component when a component is mentioned as being 'connected' or 'connected' to another component, it may be directly connected or connected to the other component, but may be connected to the other component in the middle. It should be understood that may exist. On the other hand, in this specification, when it is mentioned that a component is 'directly connected' or 'directly connected' to another component, it should be understood that there are no other components in between.
  • 'and/or' includes a combination of a plurality of listed items or any of the plurality of listed items.
  • 'A or B' may include 'A', 'B', or 'both A and B'.
  • FIG. 1 is a diagram illustrating a synchronization control system according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating a robot device moving on a rail according to an embodiment of the present invention
  • FIG. 3 is a diagram illustrating a synchronization control system according to an embodiment of the present invention. This is a drawing to explain how a robot device according to an embodiment connects reinforcing bars to a bridge pier.
  • the synchronous control system 500 compensates for errors in position and posture due to slippage occurring while moving the rail 200.
  • the synchronous control system 500 minimizes operational constraints on power supply and data communication that occur while moving on the rail 200.
  • the synchronization control system 500 supports synchronization control for driving a plurality of robot devices 100 on the same rail 200.
  • the synchronization control system 500 includes a robot device 100, a rail 200, and a monitoring device 300, and may further include a user terminal 400.
  • the robot device 100 performs construction work while moving on the rail 200.
  • the construction work refers to the work of constructing a bridge pier, but is not limited to this and may refer to construction work performed at a high location.
  • a workbench 610 is installed on the pier to protect foreign substances generated during construction work from falling to the outside, and major accidents due to separation of the robot device 100 can be prevented in advance.
  • the robot device 100 includes a plurality of robot devices 100a, 100b, and 100c, and the drawing shows three robot devices, but is not limited thereto.
  • Each robot device (100a, 100b, 100c) receives power and control signals through the interface 620 installed on the workbench 610 of the bridge pier, and can perform construction work while moving on the rail 200.
  • the interface 620 may be formed entirely along the inner circumferential surface of the work table 610, or may be formed in a portion.
  • the plurality of robot devices 100a, 100b, and 100c can move in both directions.
  • the plurality of robot devices 100a, 100b, and 100c may move clockwise or counterclockwise.
  • the plurality of robot devices 100a, 100b, and 100c can prevent collisions with each other.
  • the plurality of robot devices 100a, 100b, and 100c slip on the rail 200 while moving to the target location, they can reach the target location by compensating for errors in position and posture that occur while sliding.
  • a plurality of robot devices 100a, 100b, and 100c may perform construction work on a bridge pier.
  • a plurality of robot devices (100a, 100b, 100c) perform bridge construction work by repeatedly stacking the reinforcing bar structures (I) layer by layer along the length of the bridge. That is, each of the plurality of robot devices (100a, 100b, 100c) can pour cement, etc. in a state where the reinforcing bar structure (I) is piled up, and then connect the reinforcing bar structure (I) thereon again.
  • each of the plurality of robot devices (100a, 100b, and 100c) may perform the task of combining the stacked steel structures (I1, I2) with the coupler (C).
  • the rail 200 is a line along which the robot device 100 moves and has a curvature structure.
  • the rail 200 may be formed in a circular or ring-shaped structure.
  • the rail 200 is formed of a double line, and one of the two lines is connected to the front wheels (2) of the robot device 100, and the other line can be connected to the rear wheels (2) of the robot device 100.
  • the lane 200 may have a first circular rail, and a second circular rail smaller than the first circular rail may be formed within the first circular rail.
  • the monitoring device 300 synchronizes the plurality of robot devices 100 and transmits a control signal to perform construction work to the plurality of robot devices 100.
  • the monitoring device 300 may transmit a control signal to a plurality of robot devices 100 through the interface 620 and receive status information from each robot device 100.
  • the monitoring device 300 can generate monitoring information for each robot device using the received status information of each robot device 100 and monitor the state related to construction work using the generated monitoring information.
  • the monitoring device 300 stops the operation of the plurality of robot devices 100 when two neighboring robot devices among the plurality of robot devices 100 approach less than a preset interval to prevent the plurality of robot devices 100 from colliding with each other. Control signals can be generated.
  • the monitoring device 300 can perform real-time synchronization by controlling a plurality of robot devices 100 in real time based on Ethernet.
  • the monitoring device 300 can perform synchronization between the plurality of robot devices 100 using the EtherCAT protocol.
  • the user terminal 400 is a terminal used by a user and includes at least one.
  • the user terminal 400 communicates with the monitoring device 300 and receives monitoring information from the monitoring device 300.
  • the user terminal 400 supports users to intuitively check information related to construction work by outputting the received monitoring information.
  • FIG. 4 is a block diagram for explaining a robot device according to an embodiment of the present invention
  • FIG. 5 is a diagram for explaining the structure of a robot device according to an embodiment of the present invention
  • FIG. 6 is a block diagram for explaining the structure of a robot device according to an embodiment of the present invention.
  • This is a diagram for explaining how a robot device according to an embodiment of the present invention checks a marker
  • FIG. 7 is a diagram for explaining the position control of a robot device according to an embodiment of the present invention.
  • the robot device 100 includes a camera 20, a sensor unit 30, a control unit 40, a transfer unit 50, and a work unit 60, and a communication unit ( 10), it may further include a power supply unit 70 and a storage unit 80.
  • the communication unit 10 communicates with the monitoring device 300.
  • the communication unit 10 receives control signals related to movement and construction work from the monitoring device 300.
  • the communication unit 10 transmits status information indicating driving to the monitoring device 300.
  • the communication unit 10 may be formed in a trolley bar shape in a direction opposite to the interface 620 installed on the work table 610. That is, the communication unit 10 can communicate with the monitoring device 300 through the interface 620.
  • the camera 20 is provided on the transfer unit 50 and generates image information by photographing the marker 210 displayed on the rail 200 at preset intervals.
  • the camera 20 may be provided at the lower part of the transfer unit 50 to easily photograph the marker 210.
  • the marker 210 is a mark indicating the absolute value of the current position of the transfer unit 50 and may include identification information. That is, the first marker 210a is displayed at a first location and includes first identification information, the second marker 210b is displayed at a second location and includes second identification information, and the third marker 210c is It is displayed at a third location and includes third identification information.
  • the sensor unit 30 is provided in the transfer unit 50 and generates measurement information by detecting the drive and posture of the transfer unit.
  • the sensor unit 30 is provided with an encoder (30a, 30b) for each wheel (50a, 50b) to detect the driving of the transfer unit (50) to measure the moving distance of each wheel (50a, 50b). Detects and generates driving measurement information using the detected moving distance.
  • the sensor unit 30 is equipped with an inertial measurement unit (IMU) (not shown) in a part of the transfer unit 50 to detect the yaw value, and Posture measurement information is generated using the detected yaw value.
  • the yaw value may represent the posture distortion caused by the transfer unit 50 slipping on the rail 200.
  • the control unit 40 performs overall control of the robot device 100.
  • the control unit 40 performs driving control according to the control signal received through the communication unit 10.
  • the control unit 40 uses image information and measurement information (drive measurement information and posture measurement information) based on the control signal to move the transfer unit 50 to the target location and perform construction work through the work unit 60. Control.
  • control unit 40 detects only the control command corresponding to a preset protocol among a plurality of control commands included in the control signal received from the communication unit 10. That is, the control unit 40 detects only the control command corresponding to itself from the control signal including all control commands instructed for each robot device.
  • the control unit 40 can control the operation of the transfer unit 50 and the work unit 60 according to the detected control command.
  • the control unit 40 detects an error in the position and posture of each wheel. By compensating, the transfer unit 50 is controlled to reach the target position. That is, the control unit 40 generates a position profile and a speed profile (trapezoidal speed profile) that take into account the target position set by the control signal and the current position detected by mark recognition, and converts the generated position profile and speed profile into PID (Proportional- Errors in the position of the transfer unit 50 can be compensated for using an Integral-Differential (FIG. 7) controller.
  • a position profile and a speed profile trapezoidal speed profile
  • PID Proportional- Errors in the position of the transfer unit 50 can be compensated for using an Integral-Differential (FIG. 7) controller.
  • control unit 40 may use a PID controller equipped with an anti-windup control technique that reduces tracking error. Additionally, the control unit 40 may determine the incorrect posture of the transfer unit 50 using the yaw value, and use the determined result to compensate for the incorrect posture of the transfer unit 50 to the correct basic posture.
  • control unit 40 may determine whether there is an abnormality in marker recognition performed to drive the transfer unit 50.
  • the control unit 40 compares and analyzes absolute position information calculated using image information and driving position information calculated using the driving states of the plurality of wheels 50a and 50b. If the difference value resulting from the comparison and analysis is greater than a preset standard, the control unit 40 determines that there is an error in marker recognition included in the image information. That is, the control unit 40 may determine that an abnormality, such as the shooting direction of the camera 20 is wrong or the position of the marker 200 is changed, has occurred. If the control unit 40 determines that an error has occurred in marker recognition, it stops the operation of the transfer unit 50 and transmits an alarm message to the monitoring server 300 to help the user recognize the matter.
  • the transfer unit 50 is provided with a plurality of wheels 50a and 50b and moves on the rail 200 through the plurality of wheels 50a and 50b.
  • the transfer unit 50 may include four wheels, but is not limited to this. Additionally, the transfer unit 50 can move in a basically horizontal position.
  • the working unit 60 may be provided at the top of the transfer unit 50, and preferably at the upper center.
  • the work unit 60 includes a plurality of joints and performs construction work while exercising with many degrees of freedom through the plurality of joints. That is, the work unit 60 can handle, assemble, install, and construct objects in various directions.
  • the working unit 60 may be a robot arm such as a manipulator.
  • the power supply unit 70 receives power from an external power source and allows the robot device 100 to be driven through the provided power source.
  • the power supply unit 70 can receive power in a three-phase, four-wire system, and for this purpose, it may include terminals for the R phase, S phase, T phase, and N phase.
  • the power unit 70 may receive power in the form of a trolley bar.
  • one interface 620 installed on the work table 610 can provide control signals and power at the same time. Meanwhile, the trolley bar forms a protective film in an ' ⁇ ' shape at the top, minimizing contact with the outside (water, foreign substances, etc.), which can prevent safety accidents from occurring in advance.
  • the storage unit 80 stores a program or algorithm for driving the robot device 100.
  • the storage unit 80 stores image information generated from the camera 20 and measurement information generated from the sensor unit 30. Additionally, the storage unit 80 stores setting values related to markers and setting values related to construction work.
  • the storage unit 80 includes a flash memory type, hard disk type, multimedia card micro type, card type memory (for example, SD or XD memory, etc.), Random Access Memory (RAM), Static Random Access Memory (SRAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), magnetic memory, It may include at least one storage medium of a magnetic disk and an optical disk.
  • Figure 8 is a flowchart for explaining a control method of a robot device according to an embodiment of the present invention.
  • the control method of the robot device 100 compensates for errors in position and posture due to slippage occurring while moving a curved rail based on marker recognition and yaw measurement values. , can support more precise construction work.
  • the control method can minimize operational constraints on power supply and data communication that occur while moving on the rail by preventing cable entanglement through a trolley bar.
  • the robot device 100 receives a control signal and is supplied with power.
  • the robot device 100 can receive control signals and power simultaneously in the form of a trolley bar.
  • the robot device 100 can detect only the control command corresponding to the preset protocol among the plurality of control commands included in the control signal.
  • the control signal may include control commands for controlling a plurality of robot devices.
  • step S120 the robot device 100 moves to the target location.
  • the robot device 100 moves to a target location to perform construction work according to control commands.
  • step S130 the robot device 100 determines whether a slip phenomenon has occurred while moving to the target position.
  • the robot device 100 uses an encoder and an IMU sensor to determine whether a slipping phenomenon has occurred due to the rail 200 having a curvature structure.
  • the robot device 100 performs step S140 when it is determined that a slip phenomenon has occurred, and performs step S150 when it determines that a slip phenomenon has not occurred.
  • step S140 the robotic device 100 compensates for the position and posture.
  • the robot device 100 uses marker recognition displayed on the rail 200 to determine whether the current position has reached the target position, and if it has not reached the target position, it compensates for this and moves to the target position. Additionally, the robot device 100 uses the yaw value to determine whether the current posture is a preset basic posture, and if the posture is incorrect, it compensates for this and corrects the posture to the default posture.
  • step S150 the robotic device 100 performs construction work.
  • the robot device 100 When the robot device 100 reaches the target location, it performs construction work according to control commands.
  • the construction work refers to the work of constructing a bridge pier, but is not limited to this and may refer to construction work performed at a high location.
  • Figure 9 is a block diagram for explaining a computing device according to an embodiment of the present invention.
  • the computing device TN100 may be a device described herein (eg, a robot device, a monitoring device, a user terminal, etc.).
  • the computing device TN100 may include at least one processor TN110, a transceiver device TN120, and a memory TN130. Additionally, the computing device TN100 may further include a storage device TN140, an input interface device TN150, an output interface device TN160, etc. Components included in the computing device TN100 may be connected by a bus TN170 and communicate with each other.
  • the processor TN110 may execute a program command stored in at least one of the memory TN130 and the storage device TN140.
  • the processor TN110 may refer to a central processing unit (CPU), a graphics processing unit (GPU), or a dedicated processor on which methods according to embodiments of the present invention are performed.
  • Processor TN110 may be configured to implement procedures, functions, and methods described in connection with embodiments of the present invention.
  • the processor TN110 may control each component of the computing device TN100.
  • Each of the memory TN130 and the storage device TN140 can store various information related to the operation of the processor TN110.
  • Each of the memory TN130 and the storage device TN140 may be comprised of at least one of a volatile storage medium and a non-volatile storage medium.
  • the memory TN130 may be comprised of at least one of read only memory (ROM) and random access memory (RAM).
  • the transceiving device TN120 can transmit or receive wired signals or wireless signals.
  • the transmitting and receiving device (TN120) can be connected to a network and perform communication.
  • the embodiments of the present invention are not only implemented through the apparatus and/or method described so far, but may also be implemented through a program that realizes the function corresponding to the configuration of the embodiment of the present invention or a recording medium on which the program is recorded.
  • This implementation can be easily implemented by anyone skilled in the art from the description of the above-described embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manipulator (AREA)
  • Computer Networks & Wireless Communication (AREA)

Abstract

Disclosed are a robotic device performing construction work and a synchronization control system comprising same. The robotic device comprises: a transport unit which has a plurality of wheels and, which, by means of the plurality of wheels, moves on a rail structured to have a curvature; a camera which generates image information by capturing markers displayed on the rail at predetermined intervals; a sensor unit which generates measurement information by detecting the driving and posture of the transport unit; a work unit which performs construction work via multiple-degrees-of-freedom motions; and a control unit which controls so that the transport unit moves to a target location by using the image information and the measurement information, and corresponding construction work is performed by means of the work unit.

Description

건설 작업을 수행하는 로봇 장치 및 이를 포함하는 동기 제어 시스템Robotic devices performing construction tasks and synchronous control systems comprising the same
본 발명은 로봇 장치에 관한 것으로, 더욱 상세하게는 건설 작업을 위하여 곡률을 가지는 레일을 이동하면서 발생되는 위치와 자세에 대한 오차를 보상하는 건설 작업을 수행하는 로봇 장치 및 이를 포함하는 동기 제어 시스템에 관한 것이다.The present invention relates to a robotic device, and more specifically, to a robotic device that performs construction work by compensating for errors in position and posture that occur while moving a curved rail for construction work, and a synchronous control system including the same. It's about.
종래의 교각 건설 작업은 작업자가 직접 수 미터 높이의 거푸집 난간에 올라가 안전고리를 착용하고, 교각을 시공하여 왔으나, 이로 인해 매년 크고 작은 안전사고가 발생되었다.In the conventional bridge construction work, workers climbed the railings of formwork several meters high, wore safety rings, and constructed the bridge. However, this resulted in large and small safety accidents occurring every year.
이러한 문제를 해결하기 위해 로봇을 이용하여 교각 건설 작업을 수행하려는 움직임이 진행되고 있다. 하지만 교각 건설을 위해 이동하는 로봇들이 레일에서 미끄러지는 현상으로 인해 정밀한 제어를 할 수 없는 문제점이 발생되면서 보다 안전하고 정밀한 로봇 제어를 위한 연구가 필요한 실정이다.To solve these problems, there is a movement to use robots to perform bridge construction work. However, as the robots moving for bridge construction slip on the rails, a problem arises in which precise control is not possible, and research for safer and more precise robot control is needed.
본 발명이 해결하고자 하는 과제는, 곡률을 가지는 레일을 이동하면서 발생되는 미끄러짐에 의한 위치와 자세에 대한 오차를 보상하는 건설 작업을 수행하는 로봇 장치 및 이를 포함하는 동기 제어 시스템을 제공하는 것이다.The problem to be solved by the present invention is to provide a robot device that performs construction work by compensating for errors in position and posture due to slippage occurring while moving a curved rail, and a synchronous control system including the same.
본 발명이 해결하고자 하는 다른 과제는, 레일에서 이동하면서 발생되는 전원 공급 및 데이터 통신에 대한 운용 제약을 최소화하는 건설 작업을 수행하는 로봇 장치 및 이를 포함하는 동기 제어 시스템을 제공하는 것이다.Another problem to be solved by the present invention is to provide a robot device that performs construction work that minimizes operational constraints on power supply and data communication that occur while moving on rails, and a synchronous control system including the same.
본 발명이 해결하고자 하는 또 다른 과제는, 동일한 레일 상에 복수의 로봇 장치를 구동시키기 위한 동기화 제어를 지원하는 건설 작업을 수행하는 로봇 장치 및 이를 포함하는 동기 제어 시스템을 제공하는 것이다.Another problem to be solved by the present invention is to provide a robot device that performs construction work that supports synchronization control for driving a plurality of robot devices on the same rail and a synchronization control system including the same.
상기 과제를 해결하기 위해 본 발명에 따른 로봇 장치는, 복수의 바퀴를 구비하고, 상기 복수의 바퀴를 통해 곡률 구조를 가지는 레일 위를 이동하는 이송부, 상기 이송부에 구비되고, 기 설정된 간격마다 상기 레일에 표시된 마커를 촬영하여 영상정보를 생성하는 카메라, 상기 이송부에 구비되고, 상기 이송부의 구동 및 자세를 감지하여 측정정보를 생성하는 센서부, 상기 이송부의 상부에 구비되고, 다자유도(many degree of freedom) 운동을 하면서 건설 작업을 수행하는 작업부 및 상기 영상정보 및 상기 측정정보를 이용하여 상기 이송부를 목표 위치까지 이동시키고, 상기 작업부를 통해 해당 건설 작업을 수행하도록 제어하되, 상기 복수의 바퀴 중 적어도 하나가 상기 레일에서 미끄러져 상기 이송부의 위치 및 자세가 기 설정된 기준과 달라진 경우, 각 바퀴별 위치 및 자세에 대한 오차를 보상하여 상기 이송부를 상기 목표 위치까지 도달하도록 제어하는 제어부를 포함한다.In order to solve the above problem, the robot device according to the present invention is provided with a plurality of wheels, a transfer unit that moves on a rail having a curvature structure through the plurality of wheels, and the transfer unit is provided with the rail at preset intervals. A camera that generates image information by photographing the marker displayed on the transfer unit, a sensor unit that is provided on the transfer unit and generates measurement information by detecting the drive and posture of the transfer unit, and is provided on the top of the transfer unit and has many degrees of freedom. of freedom) moves the transfer unit to the target position using a work unit that performs construction work while exercising and the image information and the measurement information, and controls the work unit to perform the construction work, wherein the plurality of wheels When at least one of the rails slips and the position and posture of the transfer unit differ from the preset standard, it includes a control unit that compensates for errors in the position and attitude of each wheel and controls the transfer unit to reach the target position. .
또한 상기 이동 및 상기 건설 작업과 관련된 모니터링하는 모니터링 장치와 통신하는 통신부 및 외부 전원으로부터 전원을 제공받는 전원부를 더 포함하고, 상기 통신부 및 상기 전원부는, 트롤리바(Trolley-bar) 형태로 제어신호 및 전원을 제공받는 것을 특징으로 한다.In addition, it further includes a communication unit that communicates with a monitoring device that monitors the movement and the construction work, and a power unit that receives power from an external power source, wherein the communication unit and the power unit are in the form of a trolley-bar and send a control signal and It is characterized by being provided with power.
또한 상기 제어부는, 상기 제어신호에 포함된 복수의 제어명령 중 기 설정된 프로토콜에 해당하는 제어명령만을 검출하고, 상기 검출된 제어명령에 따라 상기 이송부 및 상기 작업부의 구동을 제어하는 것을 특징으로 한다.In addition, the control unit detects only control commands corresponding to a preset protocol among a plurality of control commands included in the control signal, and controls the operation of the transfer unit and the working unit according to the detected control command.
또한 상기 제어부는, 상기 목표 위치와 현재 위치가 고려된 위치 프로파일 및 속도 프로파일을 생성하고, 생성된 위치 프로파일 및 속도 프로파일을 안티 와인드업(Anti-Windup) 제어 기법에 적용하여 상기 위치에 대한 오차를 보상하는 것을 특징으로 한다.In addition, the control unit generates a position profile and a velocity profile considering the target position and the current position, and applies the generated position profile and velocity profile to an anti-windup control technique to compensate for the error in the position. It is characterized by:
또한 상기 제어부는, 상기 영상정보를 이용하여 산출된 절대 위치정보와, 상기 복수의 바퀴에 대한 구동 상태를 이용하여 산출된 구동 위치정보를 비교하고, 상기 비교된 차이값이 기 설정된 기준보다 큰 경우, 상기 영상정보에 포함된 마커 인식이 이상이 있다고 판단하여 상기 이송부의 구동을 제한하는 것을 특징으로 한다.In addition, the control unit compares absolute position information calculated using the image information and driving position information calculated using the driving states of the plurality of wheels, and when the compared difference value is greater than a preset standard. , characterized in that it is determined that there is an abnormality in marker recognition included in the image information and the operation of the transfer unit is restricted.
본 발명에 따른 복수의 바퀴를 통해 곡률 구조를 가지는 레일 위를 이동하면서 건설 작업을 수행하는 로봇 장치의 제어 방법은, 건설 작업과 관련된 제어신호를 수신하는 단계, 상기 제어신호에 따라 목표 위치로 이동하는 단계, 상기 이동 중 미끄러짐 현상이 발생되었는지 판단하는 단계, 상기 복수의 바퀴 중 적어도 하나가 상기 레일에서 미끄러져 위치 및 자세가 기 설정된 기준과 달라진 경우, 각 바퀴별 위치 및 자세에 대한 오차를 보상하여 상기 목표 위치까지 도달하는 단계 및 상기 건설 작업을 수행하는 단계를 포함한다.The control method of a robot device that performs construction work while moving on a rail having a curvature structure through a plurality of wheels according to the present invention includes receiving a control signal related to the construction work, and moving to a target position according to the control signal. determining whether a slip phenomenon has occurred during the movement; compensating for errors in the position and posture of each wheel when at least one of the plurality of wheels slips on the rail and the position and posture are different from a preset standard. and reaching the target location and performing the construction work.
본 발명에 따른 동기 제어 시스템은, 곡률 구조를 가지고, 기 설정된 간격마다 마커를 표시하는 레일, 상기 레일 위를 이동하면서 건설 작업을 수행하는 복수의 로봇 장치 및 상기 복수의 로봇 장치를 동기화하면서 상기 건설 작업을 수행하도록 하는 제어신호를 전송하고, 상기 건설 작업과 관련된 상태를 모니터링하는 모니터링 장치를 포함하고, 상기 로봇 장치는, 복수의 바퀴를 구비하고, 상기 복수의 바퀴를 통해 상기 레일 위를 이동하는 이송부, 상기 이송부에 구비되고, 기 설정된 간격마다 상기 레일에 표시된 마커를 촬영하여 영상정보를 생성하는 카메라, 상기 이송부에 구비되고, 상기 이송부의 구동 및 자세를 감지하여 측정정보를 생성하는 센서부, 상기 이송부의 상부에 구비되고, 다자유도 운동을 하면서 건설 작업을 수행하는 작업부 및 상기 영상정보 및 상기 측정정보를 이용하여 상기 이송부를 목표 위치까지 이동시키고, 상기 작업부를 통해 해당 건설 작업을 수행하도록 제어하되, 상기 복수의 바퀴 중 적어도 하나가 상기 레일에서 미끄러져 상기 이송부의 위치 및 자세가 기 설정된 기준과 달라진 경우, 각 바퀴별 위치 및 자세에 대한 오차를 보상하여 상기 이송부를 상기 목표 위치까지 도달하도록 제어하는 제어부를 포함하는 것을 특징으로 한다.The synchronous control system according to the present invention includes a rail that has a curvature structure and displays markers at preset intervals, a plurality of robot devices that perform construction work while moving on the rail, and the construction work while synchronizing the plurality of robot devices. and a monitoring device that transmits a control signal to perform work and monitors a state related to the construction work, wherein the robot device has a plurality of wheels and moves on the rail through the plurality of wheels. A transfer unit, a camera provided in the transfer unit and generating image information by photographing markers displayed on the rail at preset intervals, a sensor unit provided in the transfer unit and generating measurement information by detecting the drive and posture of the transfer unit, A work unit is provided on the upper part of the transfer unit and performs construction work while performing multi-degree-of-freedom movement, and the transfer unit is moved to the target location using the image information and the measurement information, and the construction work is performed through the work unit. However, when at least one of the plurality of wheels slips on the rail and the position and posture of the transfer unit differ from the preset standard, errors in the position and attitude of each wheel are compensated to move the transfer unit to the target position. It is characterized by including a control unit that controls it to reach.
또한 상기 레일은, 일정한 간격으로 상기 마커를 표시하고, 각 마커마다 식별번호를 부여하여 상기 로봇 장치가 절대 위치정보를 산출하도록 지원하는 것을 특징으로 한다.In addition, the rail displays the markers at regular intervals and assigns an identification number to each marker to support the robot device to calculate absolute location information.
또한 상기 모니터링 장치는, 상기 복수의 로봇 장치가 서로 충돌하지 않도록 상기 복수의 로봇 장치 중 이웃하는 두 개의 로봇 장치가 기 설정된 간격 이하로 접근되면, 해당 로봇 장치들의 구동을 정지시키는 것을 특징으로 한다.In addition, the monitoring device is characterized in that it stops the operation of the plurality of robot devices when two neighboring robot devices among the plurality of robot devices approach less than a preset interval to prevent the plurality of robot devices from colliding with each other.
또한 상기 모니터링 장치는, 이더캣(EtherCAT) 프로토콜을 기반으로 상기 복수의 로봇 장치에 대한 동기화를 제어하는 것을 특징으로 한다.Additionally, the monitoring device is characterized in that it controls synchronization of the plurality of robot devices based on the EtherCAT protocol.
본 발명의 실시예에 따르면, 곡률을 가지는 레일을 이동하면서 발생되는 미끄러짐에 의한 위치와 자세에 대한 오차에 대해, 마커 인식 및 요(yaw) 측정값을 기반으로 보상함으로써, 보다 정밀한 건설 작업을 지원할 수 있다.According to an embodiment of the present invention, errors in position and posture caused by slipping while moving a curved rail are compensated based on marker recognition and yaw measurements to support more precise construction work. You can.
또한 트롤리바(Tralley-bar)를 통해 케이블 엉킴 현상을 미연에 차단함으로써, 레일에서 이동하면서 발생되는 전원 공급 및 데이터 통신에 대한 운용 제약을 최소화할 수 있다.In addition, by preventing cable tangles in advance through a trolley-bar, operational constraints on power supply and data communication that occur while moving on the rail can be minimized.
또한 이더캣(EtherCAT)을 기반으로 동일한 레일 상에 복수의 로봇 장치를 구동시키기 위한 동기화 제어를 안정적으로 지원할 수 있다.Additionally, based on EtherCAT, it can stably support synchronization control to drive multiple robot devices on the same rail.
도 1은 본 발명의 실시예에 따른 동기 제어 시스템을 설명하기 위한 도면이다.1 is a diagram for explaining a synchronization control system according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 로봇 장치가 레일 위에서 이동하는 모습을 설명하기 위한 도면이다.Figure 2 is a diagram for explaining how a robot device moves on a rail according to an embodiment of the present invention.
도 3은 본 발명의 실시예에 따른 로봇 장치가 교각에 철근을 연결하는 모습을 설명하기 위한 도면이다.Figure 3 is a diagram for explaining how a robot device according to an embodiment of the present invention connects reinforcing bars to a bridge pier.
도 4는 본 발명의 실시예에 따른 로봇 장치를 설명하기 위한 블록도이다.Figure 4 is a block diagram for explaining a robot device according to an embodiment of the present invention.
도 5는 본 발명의 실시예에 따른 로봇 장치의 구조를 설명하기 위한 도면이다.Figure 5 is a diagram for explaining the structure of a robot device according to an embodiment of the present invention.
도 6은 본 발명의 실시예에 따른 로봇 장치가 마커를 확인하는 모습을 설명하기 위한 도면이다.Figure 6 is a diagram for explaining how a robot device checks a marker according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 로봇 장치의 위치 제어를 설명하기 위한 도면이다. Figure 7 is a diagram for explaining position control of a robot device according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 로봇 장치의 제어방법을 설명하기 위한 순서도이다. Figure 8 is a flowchart for explaining a control method of a robot device according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 컴퓨팅 장치를 설명하기 위한 블록도이다.Figure 9 is a block diagram for explaining a computing device according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다. Below, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention. However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts unrelated to the description are omitted, and similar parts are given similar reference numerals throughout the specification.
본 명세서 및 도면(이하 '본 명세서')에서, 동일한 구성요소에 대해서 중복된 설명은 생략한다.In this specification and drawings (hereinafter referred to as “this specification”), duplicate descriptions of the same components are omitted.
또한 본 명세서에서, 어떤 구성요소가 다른 구성요소에 '연결되어' 있다거나 '접속되어' 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에 본 명세서에서, 어떤 구성요소가 다른 구성요소에 '직접 연결되어' 있다거나 '직접 접속되어' 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.Also, in this specification, when a component is mentioned as being 'connected' or 'connected' to another component, it may be directly connected or connected to the other component, but may be connected to the other component in the middle. It should be understood that may exist. On the other hand, in this specification, when it is mentioned that a component is 'directly connected' or 'directly connected' to another component, it should be understood that there are no other components in between.
또한, 본 명세서에서 사용되는 용어는 단지 특정한 실시예를 설명하기 위해 사용되는 것으로써, 본 발명을 한정하려는 의도로 사용되는 것이 아니다. Additionally, the terms used in this specification are merely used to describe specific embodiments and are not intended to limit the present invention.
또한 본 명세서에서, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함할 수 있다. Also, in this specification, singular expressions may include plural expressions, unless the context clearly dictates otherwise.
또한 본 명세서에서, '포함하다' 또는 '가지다' 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품, 또는 이들을 조합한 것이 존재함을 지정하려는 것일 뿐, 하나 또는 그 이상의 다른 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 할 것이다.In addition, in this specification, terms such as 'include' or 'have' are only intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, and one or more It should be understood that this does not exclude in advance the presence or addition of other features, numbers, steps, operations, components, parts, or combinations thereof.
또한 본 명세서에서, '및/또는' 이라는 용어는 복수의 기재된 항목들의 조합 또는 복수의 기재된 항목들 중의 어느 항목을 포함한다. 본 명세서에서, 'A 또는 B'는, 'A', 'B', 또는 'A와 B 모두'를 포함할 수 있다.Also, in this specification, the term 'and/or' includes a combination of a plurality of listed items or any of the plurality of listed items. In this specification, 'A or B' may include 'A', 'B', or 'both A and B'.
또한 본 명세서에서, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략될 것이다.Additionally, in this specification, detailed descriptions of well-known functions and configurations that may obscure the gist of the present invention will be omitted.
도 1은 본 발명의 실시예에 따른 동기 제어 시스템을 설명하기 위한 도면이고, 도 2는 본 발명의 실시예에 따른 로봇 장치가 레일 위에서 이동하는 모습을 설명하기 위한 도면이며, 도 3은 본 발명의 실시예에 따른 로봇 장치가 교각에 철근을 연결하는 모습을 설명하기 위한 도면이다.FIG. 1 is a diagram illustrating a synchronization control system according to an embodiment of the present invention, FIG. 2 is a diagram illustrating a robot device moving on a rail according to an embodiment of the present invention, and FIG. 3 is a diagram illustrating a synchronization control system according to an embodiment of the present invention. This is a drawing to explain how a robot device according to an embodiment connects reinforcing bars to a bridge pier.
도 1 내지 도 3을 참조하면, 동기 제어 시스템(500)은 레일(200)을 이동하면서 발생되는 미끄러짐에 의한 위치와 자세에 대한 오차를 보상한다. 동기 제어 시스템(500)은 레일(200)에서 이동하면서 발생되는 전원 공급 및 데이터 통신에 대한 운용 제약을 최소화한다. 동기 제어 시스템(500)은 동일한 레일(200) 상에 복수의 로봇 장치(100)를 구동시키기 위한 동기화 제어를 지원한다. 동기 제어 시스템(500)은 로봇 장치(100), 레일(200) 및 모니터링 장치(300)를 포함하고, 사용자 단말(400)을 더 포함할 수 있다.Referring to FIGS. 1 to 3, the synchronous control system 500 compensates for errors in position and posture due to slippage occurring while moving the rail 200. The synchronous control system 500 minimizes operational constraints on power supply and data communication that occur while moving on the rail 200. The synchronization control system 500 supports synchronization control for driving a plurality of robot devices 100 on the same rail 200. The synchronization control system 500 includes a robot device 100, a rail 200, and a monitoring device 300, and may further include a user terminal 400.
로봇 장치(100)는 레일(200) 위를 이동하면서 건설 작업을 수행한다. 여기서 건설 작업은 교각을 시공하는 작업을 의미하지만 이에 한정하지 않고 높은 위치에서 수행되는 시공 작업을 의미할 수 있다. 교각은 작업대(610)가 설치되어 건설 작업 중 발생되는 이물질이 외부로 낙하되지 않도록 보호하고, 로봇 장치(100)의 이탈로 인한 대형사고를 미연에 방지할 수 있다. 로봇 장치(100)은 복수의 로봇 장치(100a, 100b, 100c)를 포함하고, 도면에서는 3개의 로봇 장치를 도시하고 있으나, 이에 한정하지 않는다. 각 로봇 장치(100a, 100b, 100c)는 교각의 작업대(610)에 설치된 인터페이스(620)를 통해 전원과 제어신호를 제공받고, 레일(200) 위를 이동하면서 건설 작업을 수행할 수 있다. 여기서 인터페이스(620)는 작업대(610)의 내부 원주면을 따라 전체적으로 형성되거나, 일부분에 형성될 수 있다.The robot device 100 performs construction work while moving on the rail 200. Here, the construction work refers to the work of constructing a bridge pier, but is not limited to this and may refer to construction work performed at a high location. A workbench 610 is installed on the pier to protect foreign substances generated during construction work from falling to the outside, and major accidents due to separation of the robot device 100 can be prevented in advance. The robot device 100 includes a plurality of robot devices 100a, 100b, and 100c, and the drawing shows three robot devices, but is not limited thereto. Each robot device (100a, 100b, 100c) receives power and control signals through the interface 620 installed on the workbench 610 of the bridge pier, and can perform construction work while moving on the rail 200. Here, the interface 620 may be formed entirely along the inner circumferential surface of the work table 610, or may be formed in a portion.
상세하게는 복수의 로봇 장치(100a, 100b, 100c)는 양방향으로 이동할 수 있다. 예를 들어 복수의 로봇 장치(100a, 100b, 100c)는 시계 방향으로 이동하거나, 반시계 방향으로 이동할 수 있다. 이때 복수의 로봇 장치(100a, 100b, 100c)는 서로 간의 충돌을 미연에 방지할 수 있다. 또한 복수의 로봇 장치(100a, 100b, 100c)는 목표 위치까지 이동하는 중 레일(200)에서 미끄러지는 경우, 해당 미끄러지면서 발생되는 위치 및 자세에 대한 오차를 보상하여 목표 위치까지 도달할 수 있다.In detail, the plurality of robot devices 100a, 100b, and 100c can move in both directions. For example, the plurality of robot devices 100a, 100b, and 100c may move clockwise or counterclockwise. At this time, the plurality of robot devices 100a, 100b, and 100c can prevent collisions with each other. Additionally, when the plurality of robot devices 100a, 100b, and 100c slip on the rail 200 while moving to the target location, they can reach the target location by compensating for errors in position and posture that occur while sliding.
복수의 로봇 장치(100a, 100b, 100c)는 교각에 대한 건설 작업을 수행할 수 있다. 복수의 로봇 장치(100a, 100b, 100c)는 교각 길이에 따라 철근으로 형성된 철근 구조물(I)을 층층이 적층하는 작업을 반복하여 교각 건설 작업을 수행한다. 즉 복수의 로봇 장치(100a, 100b, 100c) 각각은 철근 구조물(I)를 쌓아 올린 상태에서 시멘트 등을 타설한 다음, 그 위에 다시 철근 구조물(I)를 연결할 수 있다. 예를 들어 복수의 로봇 장치(100a, 100b, 100c) 각각은 서로 적층된 철근 구조물(I1, I2)을 커플러(C)로 결합하는 작업을 수행할 수 있다.A plurality of robot devices 100a, 100b, and 100c may perform construction work on a bridge pier. A plurality of robot devices (100a, 100b, 100c) perform bridge construction work by repeatedly stacking the reinforcing bar structures (I) layer by layer along the length of the bridge. That is, each of the plurality of robot devices (100a, 100b, 100c) can pour cement, etc. in a state where the reinforcing bar structure (I) is piled up, and then connect the reinforcing bar structure (I) thereon again. For example, each of the plurality of robot devices (100a, 100b, and 100c) may perform the task of combining the stacked steel structures (I1, I2) with the coupler (C).
레일(200)은 로봇 장치(100)가 이동하는 라인으로써, 곡률 구조를 가진다. 바람직하게는 레일(200)은 원형 또는 링형 구조로 형성될 수 있다. 레일(200)은 이중 라인으로 형성되고, 두 개의 라인 중 하나는 로봇 장치(100)의 앞바퀴(2개)와 연결되고, 나머지 하나는 로봇 장치(100)의 뒷바퀴(2개)와 연결될 수 있다. 예를 들어 레인(200)은 제1 원형 레일이 있고, 제1 원형 레일보다 크기가 작은 제2 원형 레일이 제1 원형 레일 내부에 포함하는 형태로 형성될 수 있다. The rail 200 is a line along which the robot device 100 moves and has a curvature structure. Preferably, the rail 200 may be formed in a circular or ring-shaped structure. The rail 200 is formed of a double line, and one of the two lines is connected to the front wheels (2) of the robot device 100, and the other line can be connected to the rear wheels (2) of the robot device 100. . For example, the lane 200 may have a first circular rail, and a second circular rail smaller than the first circular rail may be formed within the first circular rail.
모니터링 장치(300)는 복수의 로봇 장치(100)를 동기화하면서 건설 작업을 수행하도록 하는 제어신호를 복수의 로봇 장치(100)로 전송한다. 이때 모니터링 장치(300)는 인터페이스(620)를 통해 제어신호를 복수의 로봇 장치(100)로 전송하고, 각 로봇 장치(100)로부터 상태정보를 수신할 수 있다. 모니터링 장치(300)는 수신된 각 로봇 장치(100)의 상태정보를 이용하여 로봇 장치별 모니터링 정보를 생성하고, 생성된 모니터링 정보를 이용하여 건설 작업과 관련된 상태를 모니터링할 수 있다. 또한 모니터링 장치(300)는 복수의 로봇 장치(100)가 서로 충돌되지 않도록 복수의 로봇 장치(100) 중 이웃하는 두 개의 로봇 장치가 기 설정된 간격 이하로 접근되면, 해당 로봇 장치들의 구동을 정지시키는 제어신호를 생성할 수 있다. 한편 모니터링 장치(300)은 이더넷을 기반으로 복수의 로봇 장치(100)를 실시간으로 제어함으로써, 실시간 동기화를 할 수 있다. 바람직하게는 모니터링 장치(300)은 이더캣(EtherCAT) 프로토콜을 이용하여 복수의 로봇 장치(100) 간에 동기화를 수행할 수 있다.The monitoring device 300 synchronizes the plurality of robot devices 100 and transmits a control signal to perform construction work to the plurality of robot devices 100. At this time, the monitoring device 300 may transmit a control signal to a plurality of robot devices 100 through the interface 620 and receive status information from each robot device 100. The monitoring device 300 can generate monitoring information for each robot device using the received status information of each robot device 100 and monitor the state related to construction work using the generated monitoring information. In addition, the monitoring device 300 stops the operation of the plurality of robot devices 100 when two neighboring robot devices among the plurality of robot devices 100 approach less than a preset interval to prevent the plurality of robot devices 100 from colliding with each other. Control signals can be generated. Meanwhile, the monitoring device 300 can perform real-time synchronization by controlling a plurality of robot devices 100 in real time based on Ethernet. Preferably, the monitoring device 300 can perform synchronization between the plurality of robot devices 100 using the EtherCAT protocol.
사용자 단말(400)은 사용자가 사용하는 단말로써, 적어도 하나를 포함한다. 사용자 단말(400)은 모니터링 장치(300)와 통신을 수행하고, 모니터링 장치(300)로부터 모니터링 정보를 수신한다. 사용자 단말(400)은 수신된 모니터링 정보를 출력함으로써, 사용자가 직관적으로 건설 작업과 관련된 정보를 확인할 수 있도록 지원한다. The user terminal 400 is a terminal used by a user and includes at least one. The user terminal 400 communicates with the monitoring device 300 and receives monitoring information from the monitoring device 300. The user terminal 400 supports users to intuitively check information related to construction work by outputting the received monitoring information.
도 4는 본 발명의 실시예에 따른 로봇 장치를 설명하기 위한 블록도이고, 도 5는 본 발명의 실시예에 따른 로봇 장치의 구조를 설명하기 위한 도면이며, 도 6은 본 발명의 실시예에 따른 로봇 장치가 마커를 확인하는 모습을 설명하기 위한 도면이며, 도 7은 본 발명의 실시예에 따른 로봇 장치의 위치 제어를 설명하기 위한 도면이다. FIG. 4 is a block diagram for explaining a robot device according to an embodiment of the present invention, FIG. 5 is a diagram for explaining the structure of a robot device according to an embodiment of the present invention, and FIG. 6 is a block diagram for explaining the structure of a robot device according to an embodiment of the present invention. This is a diagram for explaining how a robot device according to an embodiment of the present invention checks a marker, and FIG. 7 is a diagram for explaining the position control of a robot device according to an embodiment of the present invention.
도 1, 도 4 내지 도 7을 참조하면, 로봇 장치(100)는 카메라(20), 센서부(30), 제어부(40), 이송부(50) 및 작업부(60)를 포함하고, 통신부(10), 전원부(70) 및 저장부(80)를 더 포함할 수 있다.1, 4 to 7, the robot device 100 includes a camera 20, a sensor unit 30, a control unit 40, a transfer unit 50, and a work unit 60, and a communication unit ( 10), it may further include a power supply unit 70 and a storage unit 80.
통신부(10)는 모니터링 장치(300)와 통신을 수행한다. 통신부(10)는 모니터링 장치(300)로부터 이동 및 건설 작업과 관련된 제어신호를 수신한다. 통신부(10)는 구동에 대해 나타내는 상태정보를 모니터링 장치(300)로 전송한다. 통신부(10)는 작업대(610)에 설치된 인터페이스(620)와 대향하는 방향에 트롤리바 형태로 형성될 수 있다. 즉 통신부(10)는 인터페이스(620)를 매개체로 모니터링 장치(300)와 통신을 할 수 있다. The communication unit 10 communicates with the monitoring device 300. The communication unit 10 receives control signals related to movement and construction work from the monitoring device 300. The communication unit 10 transmits status information indicating driving to the monitoring device 300. The communication unit 10 may be formed in a trolley bar shape in a direction opposite to the interface 620 installed on the work table 610. That is, the communication unit 10 can communicate with the monitoring device 300 through the interface 620.
카메라(20)는 이송부(50)에 구비되고, 기 설정된 간격마다 레일(200)에 표시된 마커(210)를 촬영하여 영상정보를 생성한다. 바람직하게는 카메라(20)는 마커(210)의 촬영을 쉽게 하기 위해 이송부(50)의 하부에 구비될 수 있다. 마커(210)는 이송부(50)의 현재 위치에 대한 절대값을 알려주는 표시로써, 식별정보를 포함할 수 있다. 즉 제1 마커(210a)는 제1 위치에 표시되면서 제1 식별정보를 포함하고, 제2 마커(210b)는 제2 위치에 표시되면서 제2 식별정보를 포함하며, 제3 마커(210c)는 제3 위치에 표시되면서 제3 식별정보를 포함한다. The camera 20 is provided on the transfer unit 50 and generates image information by photographing the marker 210 displayed on the rail 200 at preset intervals. Preferably, the camera 20 may be provided at the lower part of the transfer unit 50 to easily photograph the marker 210. The marker 210 is a mark indicating the absolute value of the current position of the transfer unit 50 and may include identification information. That is, the first marker 210a is displayed at a first location and includes first identification information, the second marker 210b is displayed at a second location and includes second identification information, and the third marker 210c is It is displayed at a third location and includes third identification information.
센서부(30)는 이송부(50)에 구비되고 이송부의 구동 및 자세를 감지하여 측정정보를 생성한다. 상세하게는 센서부(30)는 이송부(50)의 구동을 감지하기 위해 각 바퀴(50a, 50b)마다 엔코더(encoder)(30a, 30b)를 구비하여 각 바퀴(50a, 50b)의 이동거리를 감지하고, 감지된 이동거리를 이용하여 구동 측정정보를 생성한다. 또한 센서부(30)는 이송부(50)의 자세를 감지하기 위해 이송부(50)의 일부에 관성 측정장치(Inertial Measurement Unit, IMU)(미도시)를 구비하여 요(yaw) 값을 감지하고, 감지된 요 값을 이용하여 자세 측정정보를 생성한다. 여기서 요 값은 이송부(50)가 레일(200)에서 미끄러져 발생되는 자세 틀어짐을 나타낼 수 있다.The sensor unit 30 is provided in the transfer unit 50 and generates measurement information by detecting the drive and posture of the transfer unit. In detail, the sensor unit 30 is provided with an encoder (30a, 30b) for each wheel (50a, 50b) to detect the driving of the transfer unit (50) to measure the moving distance of each wheel (50a, 50b). Detects and generates driving measurement information using the detected moving distance. In addition, the sensor unit 30 is equipped with an inertial measurement unit (IMU) (not shown) in a part of the transfer unit 50 to detect the yaw value, and Posture measurement information is generated using the detected yaw value. Here, the yaw value may represent the posture distortion caused by the transfer unit 50 slipping on the rail 200.
제어부(40)는 로봇 장치(100)의 전반적인 제어를 수행한다. 제어부(40)는 통신부(10)를 통해 수신된 제어신호에 따라 구동 제어를 한다. 제어부(40)는 제어신호를 기반으로 영상정보 및 측정정보(구동 측정정보와 자세 측정정보)를 이용하여 이송부(50)를 목표 위치까지 이동시키고, 작업부(60)를 통해 건설 작업을 수행하도록 제어한다.The control unit 40 performs overall control of the robot device 100. The control unit 40 performs driving control according to the control signal received through the communication unit 10. The control unit 40 uses image information and measurement information (drive measurement information and posture measurement information) based on the control signal to move the transfer unit 50 to the target location and perform construction work through the work unit 60. Control.
상세하게는 제어부(40)는 통신부(10)를 수신된 제어신호에 포함된 복수의 제어명령 중 기 설정된 프로토콜에 해당하는 제어명령만을 검출한다. 즉 제어부(40)는 각 로봇 장치마다 지시하는 제어명령을 모두 포함하는 제어신호에서 자기 자신에 해당하는 제어명령만을 검출한다. 제어부(40)는 검출된 제어명령에 따라 이송부(50) 및 작업부(60)의 구동을 제어할 수 있다. In detail, the control unit 40 detects only the control command corresponding to a preset protocol among a plurality of control commands included in the control signal received from the communication unit 10. That is, the control unit 40 detects only the control command corresponding to itself from the control signal including all control commands instructed for each robot device. The control unit 40 can control the operation of the transfer unit 50 and the work unit 60 according to the detected control command.
여기서 제어부(40)는 복수의 바퀴(50a, 50b) 중 적어도 하나가 레일(200)에서 미끄러져 이송부(50)의 위치 및 자세가 기 설정된 기준과 달라진 경우, 각 바퀴별 위치 및 자세에 대한 오차를 보상하여 이송부(50)를 목표 위치까지 도달하도록 제어한다. 즉 제어부(40)는 제어신호에 의해 설정된 목표 위치와 마크 인식으로 검출된 현재 위치가 고려된 위치 프로파일 및 속도 프로파일(사다리꼴 속도 프로파일)을 생성하고, 생성된 위치 프로파일 및 속도 프로파일을 PID(Proportional-Integral-Differential) 컨트롤러를 이용하여 이송부(50)의 위치에 대한 오차를 보상할 수 있다(도 7). 바람직하게는 제어부(40)는 추종 오차(tracking error)를 줄여주는 안티 와인드업 제어 기법이 적용된 PID 컨트롤러를 이용할 수 있다. 또한 제어부(40)는 요 값을 이용하여 이송부(50)의 틀어진 자세를 판단하고, 판단된 결과를 이용하여 이송부(50)의 틀어진 자세를 올바른 자세인 기본 자세로 보상할 수 있다. Here, when at least one of the plurality of wheels 50a and 50b slips on the rail 200 and the position and posture of the transfer unit 50 change from the preset standard, the control unit 40 detects an error in the position and posture of each wheel. By compensating, the transfer unit 50 is controlled to reach the target position. That is, the control unit 40 generates a position profile and a speed profile (trapezoidal speed profile) that take into account the target position set by the control signal and the current position detected by mark recognition, and converts the generated position profile and speed profile into PID (Proportional- Errors in the position of the transfer unit 50 can be compensated for using an Integral-Differential (FIG. 7) controller. Preferably, the control unit 40 may use a PID controller equipped with an anti-windup control technique that reduces tracking error. Additionally, the control unit 40 may determine the incorrect posture of the transfer unit 50 using the yaw value, and use the determined result to compensate for the incorrect posture of the transfer unit 50 to the correct basic posture.
한편 제어부(40)는 이송부(50)의 구동을 위해 수행되는 마커 인식의 이상 여부를 판단할 수 있다. 제어부(40)는 영상정보를 이용하여 산출된 절대 위치정보와, 복수의 바퀴(50a, 50b)에 대한 구동 상태를 이용하여 산출된 구동 위치정보를 비교 분석한다. 제어부(40)는 비교 분석된 결과인 차이값이 기 설정된 기준보다 큰 경우, 영상정보에 포함된 마커 인식이 이상이 있다고 판단한다. 즉 제어부(40)는 카메라(20)의 촬영 방향이 틀어지거나, 마커(200) 위치의 변경 등과 같은 이상이 발생했다고 판단할 수 있다. 제어부(40)는 마커 인식에 이상이 발생된 것으로 판단하면 이송부(50)의 구동을 정지하고, 경보 메시지를 모니터링 서버(300)로 전송하여 사용자로 하여금 해당 사항을 인지할 수 있도록 지원한다.Meanwhile, the control unit 40 may determine whether there is an abnormality in marker recognition performed to drive the transfer unit 50. The control unit 40 compares and analyzes absolute position information calculated using image information and driving position information calculated using the driving states of the plurality of wheels 50a and 50b. If the difference value resulting from the comparison and analysis is greater than a preset standard, the control unit 40 determines that there is an error in marker recognition included in the image information. That is, the control unit 40 may determine that an abnormality, such as the shooting direction of the camera 20 is wrong or the position of the marker 200 is changed, has occurred. If the control unit 40 determines that an error has occurred in marker recognition, it stops the operation of the transfer unit 50 and transmits an alarm message to the monitoring server 300 to help the user recognize the matter.
이송부(50)는 복수의 바퀴(50a, 50b)를 구비하고, 복수의 바퀴(50a, 50b)를 통해 레일(200) 위를 이동한다. 바람직하게는 이송부(50)는 4개의 바퀴를 포함할 수 있으나, 이에 한정하지 않는다. 또한 이송부(50)는 기본적으로 수평을 유지하는 자세로 이동할 수 있다. The transfer unit 50 is provided with a plurality of wheels 50a and 50b and moves on the rail 200 through the plurality of wheels 50a and 50b. Preferably, the transfer unit 50 may include four wheels, but is not limited to this. Additionally, the transfer unit 50 can move in a basically horizontal position.
작업부(60)는 이송부(50)의 상부에 구비되고, 바람직하게는 중앙 상부에 구비될 수 있다. 작업부(60)는 복수의 관절을 포함하고, 복수의 관절을 통해 다자유도(many degree of freedom) 운동을 하면서 건설 작업을 수행한다. 즉 작업부(60)는 다양한 방향에서 대상물을 핸들링(handling), 조립, 설치 및 시공을 수행할 수 있다. 바람직하게는 작업부(60)는 매니퓰레이터(manipulator) 등과 같은 로봇팔일 수 있다.The working unit 60 may be provided at the top of the transfer unit 50, and preferably at the upper center. The work unit 60 includes a plurality of joints and performs construction work while exercising with many degrees of freedom through the plurality of joints. That is, the work unit 60 can handle, assemble, install, and construct objects in various directions. Preferably, the working unit 60 may be a robot arm such as a manipulator.
전원부(70)는 외부 전원으로 전원을 제공받고, 제공된 전원을 통해 로봇 장치(100)가 구동되도록 한다. 전원부(70)는 3상4선식으로 전원을 공급받을 수 있으며, 이를 위해 R상, S상, T상 및 N상에 대한 단자를 포함할 수 있다. 바람직하게는 전원부(70)는 트롤리바 형태로 전원을 제공받을 수 있다. 이때 전원부(70)와 통신부(10)가 하나의 트롤리바 형태로 형성됨에 따라 작업대(610)에 설치된 하나의 인터페이스(620)는 제어신호 및 전원을 동시에 제공할 수 있다. 한편 트롤리바는 상부가 'ㄱ'자 형상으로 보호막을 형성함으로써, 외부와의 접촉(물, 이물질 등)을 최소화시켜 안전사고를 미연에 발생할 수 있다. The power supply unit 70 receives power from an external power source and allows the robot device 100 to be driven through the provided power source. The power supply unit 70 can receive power in a three-phase, four-wire system, and for this purpose, it may include terminals for the R phase, S phase, T phase, and N phase. Preferably, the power unit 70 may receive power in the form of a trolley bar. At this time, since the power unit 70 and the communication unit 10 are formed in the form of one trolley bar, one interface 620 installed on the work table 610 can provide control signals and power at the same time. Meanwhile, the trolley bar forms a protective film in an 'ㄱ' shape at the top, minimizing contact with the outside (water, foreign substances, etc.), which can prevent safety accidents from occurring in advance.
저장부(80)는 로봇 장치(100)가 구동되기 위한 프로그램 또는 알고리즘이 저장된다. 저장부(80)는 카메라(20)로부터 생성된 영상정보, 센서부(30)로부터 생성된 측정정보가 저장된다. 또한 저장부(80)는 마커와 관련된 설정값, 건설 작업과 관련된 설정값이 저장된다. 저장부(80)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기메모리, 자기 디스크 및 광디스크 중 적어도 하나의 저장매체를 포함할 수 있다. The storage unit 80 stores a program or algorithm for driving the robot device 100. The storage unit 80 stores image information generated from the camera 20 and measurement information generated from the sensor unit 30. Additionally, the storage unit 80 stores setting values related to markers and setting values related to construction work. The storage unit 80 includes a flash memory type, hard disk type, multimedia card micro type, card type memory (for example, SD or XD memory, etc.), Random Access Memory (RAM), Static Random Access Memory (SRAM), Read-Only Memory (ROM), Electrically Erasable Programmable Read-Only Memory (EEPROM), Programmable Read-Only Memory (PROM), magnetic memory, It may include at least one storage medium of a magnetic disk and an optical disk.
도 8은 본 발명의 실시예에 따른 로봇 장치의 제어방법을 설명하기 위한 순서도이다. Figure 8 is a flowchart for explaining a control method of a robot device according to an embodiment of the present invention.
도 1 및 도 8을 참조하면, 로봇 장치(100)의 제어방법은 곡률을 가지는 레일을 이동하면서 발생되는 미끄러짐에 의한 위치와 자세에 대한 오차에 대해, 마커 인식 및 요 측정값을 기반으로 보상함으로써, 보다 정밀한 건설 작업을 지원할 수 있다. 제어방법은 트롤리바를 통해 케이블 엉킴 현상을 미연에 차단함으로써, 레일에서 이동하면서 발생되는 전원 공급 및 데이터 통신에 대한 운용 제약을 최소화할 수 있다.Referring to Figures 1 and 8, the control method of the robot device 100 compensates for errors in position and posture due to slippage occurring while moving a curved rail based on marker recognition and yaw measurement values. , can support more precise construction work. The control method can minimize operational constraints on power supply and data communication that occur while moving on the rail by preventing cable entanglement through a trolley bar.
S110 단계에서, 로봇 장치(100)은 제어신호를 입력받고, 전원을 공급받는다. 로봇 장치(100)는 트롤리바 형태로 제어신호와 전원을 동시에 제공받을 수 있다. 이때 로봇 장치(100)는 제어신호에 포함된 복수의 제어명령 중 기 설정된 프로토콜에 해당하는 제어명령만을 검출할 수 있다. 여기서 제어신호는 복수의 로봇 장치를 제어하기 위한 제어명령이 포함될 수 있다. In step S110, the robot device 100 receives a control signal and is supplied with power. The robot device 100 can receive control signals and power simultaneously in the form of a trolley bar. At this time, the robot device 100 can detect only the control command corresponding to the preset protocol among the plurality of control commands included in the control signal. Here, the control signal may include control commands for controlling a plurality of robot devices.
S120 단계에서, 로봇 장치(100)는 목표 위치로 이동한다. 로봇 장치(100)는 제어명령에 따라 건설 작업을 수행하기 위한 목표 위치로 이동한다.In step S120, the robot device 100 moves to the target location. The robot device 100 moves to a target location to perform construction work according to control commands.
S130 단계에서, 로봇 장치(100)는 목표 위치로의 이동 중 미끄러짐 현상이 발생하였는지 판단한다. 로봇 장치(100)는 엔코더 및 IMU 센서를 이용하여 곡률 구조를 가지는 레일(200)로 인해 미끄러짐 현상이 발생되었는지 판단한다. 로봇 장치(100)는 미끄러짐 현상이 발생되었다고 판단되면 S140 단계를 수행하고, 미발생되었다고 판단되면 S150 단계를 수행한다. In step S130, the robot device 100 determines whether a slip phenomenon has occurred while moving to the target position. The robot device 100 uses an encoder and an IMU sensor to determine whether a slipping phenomenon has occurred due to the rail 200 having a curvature structure. The robot device 100 performs step S140 when it is determined that a slip phenomenon has occurred, and performs step S150 when it determines that a slip phenomenon has not occurred.
S140 단계에서, 로봇 장치(100)는 위치 및 자세를 보상한다. 로봇 장치(100)는 레일(200)에 표시된 마커 인식을 이용하여 현재 위치가 목표 위치에 도달하였는지 판단하고, 도달하지 않은 경우 이를 보상하여 목표 위치까지 이동을 한다. 또한 로봇 장치(100)는 요 값을 이용하여 현재의 자세가 기 설정된 기본 자세인지 판단하고, 자세가 틀어진 경우 이를 보상하여 기본 자세로 자세 보정을 한다. In step S140, the robotic device 100 compensates for the position and posture. The robot device 100 uses marker recognition displayed on the rail 200 to determine whether the current position has reached the target position, and if it has not reached the target position, it compensates for this and moves to the target position. Additionally, the robot device 100 uses the yaw value to determine whether the current posture is a preset basic posture, and if the posture is incorrect, it compensates for this and corrects the posture to the default posture.
S150 단계에서, 로봇 장치(100)는 건설 작업을 수행한다. 로봇 장치(100)는 목표 위치에 도달하면 제어명령에 따라 건설 작업을 수행한다. 여기서 건설 작업은 교각을 시공하는 작업을 의미하지만 이에 한정하지 않고 높은 위치에서 수행되는 시공 작업을 의미할 수 있다.In step S150, the robotic device 100 performs construction work. When the robot device 100 reaches the target location, it performs construction work according to control commands. Here, the construction work refers to the work of constructing a bridge pier, but is not limited to this and may refer to construction work performed at a high location.
도 9는 본 발명의 실시예에 따른 컴퓨팅 장치를 설명하기 위한 블록도이다.Figure 9 is a block diagram for explaining a computing device according to an embodiment of the present invention.
도 9를 참조하면, 컴퓨팅 장치(TN100)는 본 명세서에서 기술된 장치(예를 들면 로봇 장치, 모니터링 장치, 사용자 단말 등) 일 수 있다. Referring to FIG. 9, the computing device TN100 may be a device described herein (eg, a robot device, a monitoring device, a user terminal, etc.).
컴퓨팅 장치(TN100)는 적어도 하나의 프로세서(TN110), 송수신 장치(TN120), 및 메모리(TN130)를 포함할 수 있다. 또한, 컴퓨팅 장치(TN100)는 저장 장치(TN140), 입력 인터페이스 장치(TN150), 출력 인터페이스 장치(TN160) 등을 더 포함할 수 있다. 컴퓨팅 장치(TN100)에 포함된 구성 요소들은 버스(bus)(TN170)에 의해 연결되어 서로 통신을 수행할 수 있다.The computing device TN100 may include at least one processor TN110, a transceiver device TN120, and a memory TN130. Additionally, the computing device TN100 may further include a storage device TN140, an input interface device TN150, an output interface device TN160, etc. Components included in the computing device TN100 may be connected by a bus TN170 and communicate with each other.
프로세서(TN110)는 메모리(TN130) 및 저장 장치(TN140) 중에서 적어도 하나에 저장된 프로그램 명령(program command)을 실행할 수 있다. 프로세서(TN110)는 중앙 처리 장치(CPU: central processing unit), 그래픽 처리 장치(GPU: graphics processing unit), 또는 본 발명의 실시예에 따른 방법들이 수행되는 전용의 프로세서를 의미할 수 있다. 프로세서(TN110)는 본 발명의 실시예와 관련하여 기술된 절차, 기능, 및 방법 등을 구현하도록 구성될 수 있다. 프로세서(TN110)는 컴퓨팅 장치(TN100)의 각 구성 요소를 제어할 수 있다.The processor TN110 may execute a program command stored in at least one of the memory TN130 and the storage device TN140. The processor TN110 may refer to a central processing unit (CPU), a graphics processing unit (GPU), or a dedicated processor on which methods according to embodiments of the present invention are performed. Processor TN110 may be configured to implement procedures, functions, and methods described in connection with embodiments of the present invention. The processor TN110 may control each component of the computing device TN100.
메모리(TN130) 및 저장 장치(TN140) 각각은 프로세서(TN110)의 동작과 관련된 다양한 정보를 저장할 수 있다. 메모리(TN130) 및 저장 장치(TN140) 각각은 휘발성 저장 매체 및 비휘발성 저장 매체 중에서 적어도 하나로 구성될 수 있다. 예를 들어, 메모리(TN130)는 읽기 전용 메모리(ROM: read only memory) 및 랜덤 액세스 메모리(RAM: random access memory) 중에서 적어도 하나로 구성될 수 있다. Each of the memory TN130 and the storage device TN140 can store various information related to the operation of the processor TN110. Each of the memory TN130 and the storage device TN140 may be comprised of at least one of a volatile storage medium and a non-volatile storage medium. For example, the memory TN130 may be comprised of at least one of read only memory (ROM) and random access memory (RAM).
송수신 장치(TN120)는 유선 신호 또는 무선 신호를 송신 또는 수신할 수 있다. 송수신 장치(TN120)는 네트워크에 연결되어 통신을 수행할 수 있다. The transceiving device TN120 can transmit or receive wired signals or wireless signals. The transmitting and receiving device (TN120) can be connected to a network and perform communication.
한편, 본 발명의 실시예는 지금까지 설명한 장치 및/또는 방법을 통해서만 구현되는 것은 아니며, 본 발명의 실시예의 구성에 대응하는 기능을 실현하는 프로그램 또는 그 프로그램이 기록된 기록 매체를 통해 구현될 수도 있으며, 이러한 구현은 상술한 실시예의 기재로부터 본 발명이 속하는 기술 분야의 통상의 기술자라면 쉽게 구현할 수 있는 것이다. Meanwhile, the embodiments of the present invention are not only implemented through the apparatus and/or method described so far, but may also be implemented through a program that realizes the function corresponding to the configuration of the embodiment of the present invention or a recording medium on which the program is recorded. This implementation can be easily implemented by anyone skilled in the art from the description of the above-described embodiments.
이상에서 본 발명의 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 통상의 기술자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements made by those skilled in the art using the basic concept of the present invention defined in the following claims are also possible. It falls within the scope of invention rights.

Claims (10)

  1. 복수의 바퀴를 구비하고, 상기 복수의 바퀴를 통해 곡률 구조를 가지는 레일 위를 이동하는 이송부;A transfer unit having a plurality of wheels and moving on a rail having a curvature structure through the plurality of wheels;
    상기 이송부에 구비되고, 기 설정된 간격마다 상기 레일에 표시된 마커를 촬영하여 영상정보를 생성하는 카메라;a camera provided on the transfer unit and generating image information by photographing markers displayed on the rail at preset intervals;
    상기 이송부에 구비되고, 상기 이송부의 구동 및 자세를 감지하여 측정정보를 생성하는 센서부;A sensor unit provided in the transfer unit and generating measurement information by detecting the drive and posture of the transfer unit;
    상기 이송부의 상부에 구비되고, 다자유도(many degree of freedom) 운동을 하면서 건설 작업을 수행하는 작업부; 및a work unit provided on the upper part of the transfer unit and performing construction work while exercising with many degrees of freedom; and
    상기 영상정보 및 상기 측정정보를 이용하여 상기 이송부를 목표 위치까지 이동시키고, 상기 작업부를 통해 해당 건설 작업을 수행하도록 제어하되, The image information and the measurement information are used to move the transfer unit to the target location and control the construction work to be performed through the work unit,
    상기 복수의 바퀴 중 적어도 하나가 상기 레일에서 미끄러져 상기 이송부의 위치 및 자세가 기 설정된 기준과 달라진 경우, 각 바퀴별 위치 및 자세에 대한 오차를 보상하여 상기 이송부를 상기 목표 위치까지 도달하도록 제어하는 제어부;When at least one of the plurality of wheels slips on the rail and the position and posture of the transfer unit differ from a preset standard, the error in the position and attitude of each wheel is compensated to control the transfer unit to reach the target position. control unit;
    를 포함하는 로봇 장치.A robotic device comprising:
  2. 제 1항에 있어서,According to clause 1,
    상기 이동 및 상기 건설 작업과 관련된 모니터링하는 모니터링 장치와 통신하는 통신부; 및a communication unit in communication with a monitoring device for monitoring the movement and related construction operations; and
    외부 전원으로부터 전원을 제공받는 전원부;를 더 포함하고,It further includes a power supply unit that receives power from an external power source,
    상기 통신부 및 상기 전원부는,The communication unit and the power unit,
    트롤리바(Trolley-bar) 형태로 제어신호 및 전원을 제공받는 것을 특징으로 하는 로봇 장치.A robot device characterized by receiving control signals and power in the form of a trolley-bar.
  3. 제 2항에 있어서,According to clause 2,
    상기 제어부는,The control unit,
    상기 제어신호에 포함된 복수의 제어명령 중 기 설정된 프로토콜에 해당하는 제어명령만을 검출하고, 상기 검출된 제어명령에 따라 상기 이송부 및 상기 작업부의 구동을 제어하는 것을 특징으로 하는 로봇 장치.A robot device characterized in that it detects only control commands corresponding to a preset protocol among a plurality of control commands included in the control signal, and controls the operation of the transfer unit and the working unit according to the detected control command.
  4. 제 1항에 있어서,According to clause 1,
    상기 제어부는,The control unit,
    상기 목표 위치와 현재 위치가 고려된 위치 프로파일 및 속도 프로파일을 생성하고, 생성된 위치 프로파일 및 속도 프로파일을 안티 와인드업(Anti-Windup) 제어 기법에 적용하여 상기 위치에 대한 오차를 보상하는 것을 특징으로 하는 로봇 장치.Characterized by generating a position profile and a velocity profile considering the target position and the current position, and compensating for errors in the position by applying the generated position profile and velocity profile to an anti-windup control technique. robotic device.
  5. 제 1항에 있어서,According to clause 1,
    상기 제어부는,The control unit,
    상기 영상정보를 이용하여 산출된 절대 위치정보와, 상기 복수의 바퀴에 대한 구동 상태를 이용하여 산출된 구동 위치정보를 비교하고, 상기 비교된 차이값이 기 설정된 기준보다 큰 경우, 상기 영상정보에 포함된 마커 인식이 이상이 있다고 판단하여 상기 이송부의 구동을 제한하는 것을 특징으로 하는 로봇 장치.Absolute position information calculated using the image information is compared with driving position information calculated using the driving states of the plurality of wheels, and if the compared difference value is greater than a preset standard, the image information A robot device characterized in that it determines that there is an abnormality in the included marker recognition and limits the operation of the transfer unit.
  6. 복수의 바퀴를 통해 곡률 구조를 가지는 레일 위를 이동하면서 건설 작업을 수행하는 로봇 장치의 제어 방법에 있어서,In the control method of a robot device that performs construction work while moving on a rail having a curvature structure through a plurality of wheels,
    건설 작업과 관련된 제어신호를 수신하는 단계;Receiving control signals related to construction work;
    상기 제어신호에 따라 목표 위치로 이동하는 단계;moving to a target position according to the control signal;
    상기 이동 중 미끄러짐 현상이 발생되었는지 판단하는 단계;determining whether a slip phenomenon occurred during the movement;
    상기 복수의 바퀴 중 적어도 하나가 상기 레일에서 미끄러져 위치 및 자세가 기 설정된 기준과 달라진 경우, 각 바퀴별 위치 및 자세에 대한 오차를 보상하여 상기 목표 위치까지 도달하는 단계; 및When at least one of the plurality of wheels slips on the rail and the position and posture are different from a preset standard, compensating for errors in the position and posture of each wheel to reach the target position; and
    상기 건설 작업을 수행하는 단계;carrying out the construction work;
    를 포함하는 로봇 장치의 제어 방법.A control method for a robot device comprising:
  7. 곡률 구조를 가지고, 기 설정된 간격마다 마커를 표시하는 레일;A rail that has a curvature structure and displays markers at preset intervals;
    상기 레일 위를 이동하면서 건설 작업을 수행하는 복수의 로봇 장치; 및a plurality of robot devices that perform construction work while moving on the rails; and
    상기 복수의 로봇 장치를 동기화하면서 상기 건설 작업을 수행하도록 하는 제어신호를 전송하고, 상기 건설 작업과 관련된 상태를 모니터링하는 모니터링 장치;를 포함하고,It includes a monitoring device that transmits a control signal to perform the construction work while synchronizing the plurality of robot devices, and monitors a state related to the construction work,
    상기 로봇 장치는,The robot device is,
    복수의 바퀴를 구비하고, 상기 복수의 바퀴를 통해 상기 레일 위를 이동하는 이송부;a transfer unit having a plurality of wheels and moving on the rail through the plurality of wheels;
    상기 이송부에 구비되고, 기 설정된 간격마다 상기 레일에 표시된 마커를 촬영하여 영상정보를 생성하는 카메라;a camera provided on the transfer unit and generating image information by photographing markers displayed on the rail at preset intervals;
    상기 이송부에 구비되고, 상기 이송부의 구동 및 자세를 감지하여 측정정보를 생성하는 센서부;A sensor unit provided in the transfer unit and generating measurement information by detecting the drive and posture of the transfer unit;
    상기 이송부의 상부에 구비되고, 다자유도 운동을 하면서 건설 작업을 수행하는 작업부; 및a work unit provided on an upper part of the transfer unit and performing construction work while performing multiple degrees of freedom movements; and
    상기 영상정보 및 상기 측정정보를 이용하여 상기 이송부를 목표 위치까지 이동시키고, 상기 작업부를 통해 해당 건설 작업을 수행하도록 제어하되, The image information and the measurement information are used to move the transfer unit to the target location and control the construction work to be performed through the work unit,
    상기 복수의 바퀴 중 적어도 하나가 상기 레일에서 미끄러져 상기 이송부의 위치 및 자세가 기 설정된 기준과 달라진 경우, 각 바퀴별 위치 및 자세에 대한 오차를 보상하여 상기 이송부를 상기 목표 위치까지 도달하도록 제어하는 제어부;When at least one of the plurality of wheels slips on the rail and the position and posture of the transfer unit differ from a preset standard, the error in the position and attitude of each wheel is compensated to control the transfer unit to reach the target position. control unit;
    를 포함하는 것을 특징으로 하는 동기 제어 시스템.A synchronous control system comprising:
  8. 제 7항에 있어서,According to clause 7,
    상기 레일은,The rail is,
    일정한 간격으로 상기 마커를 표시하고, 각 마커마다 식별번호를 부여하여 상기 로봇 장치가 절대 위치정보를 산출하도록 지원하는 것을 특징으로 하는 동기 제어 시스템A synchronous control system that displays the markers at regular intervals and assigns an identification number to each marker to support the robot device to calculate absolute position information.
  9. 제 7항에 있어서,According to clause 7,
    상기 모니터링 장치는,The monitoring device is,
    상기 복수의 로봇 장치가 서로 충돌하지 않도록 상기 복수의 로봇 장치 중 이웃하는 두 개의 로봇 장치가 기 설정된 간격 이하로 접근되면, 해당 로봇 장치들의 구동을 정지시키는 것을 특징으로 하는 동기 제어 시스템.A synchronization control system characterized in that when two neighboring robot devices among the plurality of robot devices approach within a preset distance or less, the operation of the corresponding robot devices is stopped to prevent the plurality of robot devices from colliding with each other.
  10. 제 7항에 있어서,According to clause 7,
    상기 모니터링 장치는,The monitoring device is,
    이더캣(EtherCAT) 프로토콜을 기반으로 상기 복수의 로봇 장치에 대한 동기화를 제어하는 것을 특징으로 하는 동기 제어 시스템.A synchronization control system that controls synchronization of the plurality of robot devices based on the EtherCAT protocol.
PCT/KR2022/016014 2022-10-18 2022-10-20 Robotic device performing construction work and synchronization control system comprising same WO2024085276A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0134411 2022-10-18
KR1020220134411A KR20240054094A (en) 2022-10-18 2022-10-18 Robot apparatus for performing construction work, and synchronous control system comprising the same

Publications (1)

Publication Number Publication Date
WO2024085276A1 true WO2024085276A1 (en) 2024-04-25

Family

ID=90737733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016014 WO2024085276A1 (en) 2022-10-18 2022-10-20 Robotic device performing construction work and synchronization control system comprising same

Country Status (2)

Country Link
KR (1) KR20240054094A (en)
WO (1) WO2024085276A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292343A (en) * 2000-04-07 2001-10-19 Nhk Engineering Services Inc Camera system
KR20180031158A (en) * 2016-09-19 2018-03-28 한국기계연구원 Decentralized device for controlling motor and decentralized method for controlling motor and articulation robot system using the same
CN109079798A (en) * 2018-10-19 2018-12-25 北京市政建设集团有限责任公司 A kind of intelligent O&M extension rail crusing robot and its method for inspecting for underground pipe gallery
KR20220039359A (en) * 2020-09-22 2022-03-29 세메스 주식회사 Transfer apparatus
KR102390707B1 (en) * 2020-10-26 2022-04-25 한국로봇융합연구원 Multi robot device and method for controlling of the same
KR20220116970A (en) * 2021-02-16 2022-08-23 한국생산기술연구원 A worker-robot collaboration system based on overhead mobile platform

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102376965B1 (en) 2020-11-26 2022-03-18 한국로봇융합연구원 Multiple hydraulic robot system for precise installing of girder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292343A (en) * 2000-04-07 2001-10-19 Nhk Engineering Services Inc Camera system
KR20180031158A (en) * 2016-09-19 2018-03-28 한국기계연구원 Decentralized device for controlling motor and decentralized method for controlling motor and articulation robot system using the same
CN109079798A (en) * 2018-10-19 2018-12-25 北京市政建设集团有限责任公司 A kind of intelligent O&M extension rail crusing robot and its method for inspecting for underground pipe gallery
KR20220039359A (en) * 2020-09-22 2022-03-29 세메스 주식회사 Transfer apparatus
KR102390707B1 (en) * 2020-10-26 2022-04-25 한국로봇융합연구원 Multi robot device and method for controlling of the same
KR20220116970A (en) * 2021-02-16 2022-08-23 한국생산기술연구원 A worker-robot collaboration system based on overhead mobile platform

Also Published As

Publication number Publication date
KR20240054094A (en) 2024-04-25

Similar Documents

Publication Publication Date Title
JP6861604B2 (en) Management system and control method
US6092678A (en) Overhead hoist transfer
WO2019054558A1 (en) Device and method for controlling cooperative robot
US10923370B2 (en) Transport system and transport method
WO2021118013A1 (en) Crane collision prevention apparatus and method
WO2016153147A1 (en) Apparatus for driving three-dimensional microgravity cable
KR102020662B1 (en) Communicating method between the slave and master for controlling of gripper-unit in hoist device of rail car
WO2017111446A1 (en) Device for controlling horizontality of small ship by using variable mast
WO2012124933A2 (en) Device and method for recognizing the location of a robot
WO2020184776A1 (en) Location recognition and movement path setting method using code recognition, unmanned mobility, and operation system
WO2024085276A1 (en) Robotic device performing construction work and synchronization control system comprising same
WO2020231080A1 (en) Method for generating intersection point pattern recognition model using sensor data of mobile robot and intersection point pattern recognition system
WO2022114385A1 (en) Multiple hydraulic robot system for precisely mounting girder
WO2019107648A1 (en) System and method for preventing crane collision
JP2008057243A (en) Method and device for managing building of bridge
WO2022037013A1 (en) Balance hoisting apparatus, vehicle-mounted exchange box system and multi-oil-cylinder synchronization method
WO2022139066A1 (en) Apparatus and method for detecting tension problem or meandering problem of conveyor belt on basis of vision sensor
CN114753256B (en) Steel beam hoisting monitoring system and method based on machine vision
JP4862383B2 (en) Cooperative transport method and cooperative transport apparatus
JPH08169684A (en) Position sensing method for article to be suspended by overhead traveling crane
CN114955879A (en) Wafer transportation collision avoidance system and wafer transportation collision avoidance method
WO2023128077A1 (en) Substrate conveying hand, substrate conveying apparatus, and substrate conveying method
KR101649163B1 (en) Augmented reality system for a nuclear fuel exchanger ram emergency operating robot
JPS61101389A (en) Container crane
WO2019208871A1 (en) Distribution/transportation cable robot system and method for managing distribution by using same