WO2019208871A1 - Distribution/transportation cable robot system and method for managing distribution by using same - Google Patents

Distribution/transportation cable robot system and method for managing distribution by using same Download PDF

Info

Publication number
WO2019208871A1
WO2019208871A1 PCT/KR2018/007034 KR2018007034W WO2019208871A1 WO 2019208871 A1 WO2019208871 A1 WO 2019208871A1 KR 2018007034 W KR2018007034 W KR 2018007034W WO 2019208871 A1 WO2019208871 A1 WO 2019208871A1
Authority
WO
WIPO (PCT)
Prior art keywords
end effector
cable
drive
cargo
pulley
Prior art date
Application number
PCT/KR2018/007034
Other languages
French (fr)
Korean (ko)
Inventor
김창세
박종오
최은표
김학준
정진우
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180047919A external-priority patent/KR102062516B1/en
Priority claimed from KR1020180047920A external-priority patent/KR102124388B1/en
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2019208871A1 publication Critical patent/WO2019208871A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls

Definitions

  • the present invention relates to a logistics transport system, and more particularly, to a multi-logistic transport cable robot system capable of transporting and sorting cargo throughout a logistics warehouse or a logistics yard as a cable-controlled robot system.
  • Logistics warehouses where many cargoes are stored, play an important role that forms the backbone of not only each business site but also the entire industry in that the more efficiently managed, the more efficient the logistics warehouse can be.
  • the related art can be broadly classified into a technology related to a management system of a logistics warehouse and a technology related to a device or a system in which cargo is transported and stacked in the warehouse.
  • FIG. Apparatus 100 For example, the 'automatic cargo loading device and the cargo transfer system using the same' disclosed in the Republic of Korea Patent Publication No. 10-2017-0047888 (published date: 2017. 05. 08) shown in FIG. Apparatus 100 and a cargo transfer system using the same.
  • the present invention is composed of a main frame 110, a plurality of loading conveyors (130, 180) provided at different heights on the main frame 110, and the transmission means 150 rotatably provided on the main frame (110)
  • a loading performance of the transfer apparatus 100 is improved, and a technology capable of automating a loading operation is proposed.
  • the prior art has the advantage of automating the loading and transportation of cargo in a large cargo warehouse, but in order to realize this requires equipment that is formed throughout the cargo loading rack (S) requires a huge installation cost, so many mechanical configurations There is a problem that requires a considerable cost for maintenance.
  • the conveyor system does not need to be installed over all the multiple cargo racks, thereby reducing the cost, and also the logistics transportation between the multiple cargo racks.
  • the present invention is to improve the problems of the prior art, the logistics transport can be made accurately and freely without the conveyor system is installed throughout the plurality of cargo racks can be reduced costs, and also between the plurality of cargo racks Logistics transfer does not need to depend on the forklift, and in the case of a cargo stack S in a high position, it is intended to provide a multi-logistics transport cable robot system and a logistics management method capable of free access of logistics.
  • the multi-logistics transport cable robot system for achieving this object, the first end effector 13 and the front end and the rear end of the first end effector 13 having a predetermined internal space having a frame shape, respectively
  • the first winch module 11 and the first end effector 13 disposed are connected to the first winch module 11 at the front and the rear, respectively, and are unwound from one of the first winch modules 11, the remaining first winch module 11 is connected to the first winch module 11.
  • the first cable robot 10 and the first end effector 13 and the first winch module which are composed of cables 121, 122, and 123 which move the first end effector 13 in the winding direction by being wound by the winch module 11.
  • a second cable robot composed of the second end effector 23, the second winch module 21, and the cables 221, 222, and 223 which are the same as the one in (11), and are arranged in parallel with the first cable robot 10 and spaced apart by a predetermined distance. 20 and the first end effector 13 and the second end effector 23, respectively.
  • the multi-logistics transport cable robot system and the logistics management method according to the present invention do not need to install a conveyor system over all of the plurality of cargo racks, while the logistics transport can be made precisely and freely across the plurality of cargo racks, thereby enormous cost. It can be reduced, and also the logistics transport between a plurality of cargo racks do not need to depend on the forklift, and even in the case of a high position cargo stack (S) there is an effect that can freely enter and exit the logistics.
  • S cargo stack
  • FIG. 2 is a perspective view of a cable robot system according to a first embodiment of the present invention
  • FIG. 3 is a perspective view of the system of FIG. 2 installed in a distribution rack;
  • FIG. 4 is an enlarged perspective view of the first cable robot in FIG.
  • FIG. 5 is an enlarged perspective view of the third cable robot in FIG.
  • FIG. 6 is a conceptual diagram illustrating an embodiment of a winch module
  • FIG. 7 is a conceptual diagram illustrating a loading module
  • FIG. 8 is a perspective view of a cable robot system according to a second embodiment of the present invention.
  • FIG. 9 is a front view of FIG. 8;
  • FIG. 10 is an operating state diagram continuing from FIG. 9;
  • 11 is a conceptual diagram showing the configuration of a drive winch.
  • the longitudinal direction of any one cargo stack S is referred to as the y axis
  • the direction in which the plurality of cargo stacks S are arranged in sequence is referred to as the x axis
  • the height direction is the z axis.
  • the cables connected to the lower front and rear of the first end effector 13 are called first and second cables 121 and 122, and the cables connected to the upper front and rear of the first end effector 13 are third cables.
  • the cables connected to the lower front and rear of the second end effector 13 are referred to as 123 and the fourth and fifth cables 221 and 222, and the cables connected to the upper front and rear of the second end effector 23.
  • the cable is called a sixth cable 223, and the cables connected to the lower front and rear of the third end effector 33 are called the seventh and eighth cables 321 and 322, and the upper front of the third end effector 33.
  • the cable connected to the rear will be referred to as the ninth cable (123).
  • the cable robot system includes first and second cable robots 10 and 20 facing each other along the longitudinal direction of the corridor formed between the cargo stacks S and disposed at right angles to the corridor direction. ), A third cable robot 30 including a third end effector 33 moved between the first and second cable robots 10 and 20, and a control unit.
  • the first cable robot 10 includes a first end effector 13 and a front end and a rear end of the first end effector 13 having a frame shape, respectively.
  • First to third cables 121, 122, and 123 to the first winch module 11 disposed and the first end effector 13 to the first winch module 11 installed at the front and the rear of the first end effector 13, respectively.
  • the cable is unwinded from any one of the first winch module 11 by connecting to the first winch module 11 to move the first end effector 13 in the winding direction when the cable is wound in the first winch module 11 It consists of three cables 121, 122 and 123.
  • the first winch module 11 varies the first cables 121 and 122 along the x-axis direction shown in FIGS. 2 and 4, where the first cables 121 and 122 are x of the first end effector 13.
  • the first end effector 13 is moved in the winding direction when one of the first cables 121 and 122 is wound up and unwinded on the other side, connected to both ends in the axial direction.
  • the second cable robot 20 is the same as the first end effector 13 and the first winch module 11, the second end effector 23 and the second winch module 21, and the fourth to sixth cables 221, 222, and 223. It is configured to, and parallel to the first cable robot 10 is arranged spaced apart by a predetermined distance.
  • the third cable robot 30 includes a third winch module 31 installed in the first end effector 13 and the second end effector 23, and the first end effector 13 and the second end effector 23. And a third end effector 33 disposed between the third end effector 33 and seventh to ninth cables 321, 322, and 323 connecting the third winch module 31 and the third end effector 33, respectively.
  • the first to third winch modules 11, 21, and 31 are installed at the front and rear of each end effector, and three drums 41 are installed at any one of the front or rear winch modules. Six drums 41 are installed in the winch modules 11, 21, and 31, respectively.
  • the controller controls the first to third winch modules 11, 21, and 31 so that the third end effector 33 finally withdraws or loads the cargo according to the place where the cargo is loaded or the place where the cargo is to be loaded. Command is sent.
  • both the first winch module 11 constituting the first cable robot 10 and the second winch module 21 constituting the second cable robot 20 are spaced at regular intervals.
  • the rack (S) arranged in parallel to form a plurality of corridors are arranged on the side of the front rack and the rear rack of the rack (S).
  • the third winch module 31 constituting the third cable robot 30 is directly the first and second end effectors 13.
  • the seventh to ninth cables 321, 322, and 323, which are installed at the 23 and connected to the third winch module 31 installed at the first and second end effectors 13 and 23, respectively, are wound on one side and some on the other.
  • the third end effector 33 moves.
  • the third end effector 33 is in charge of directly transporting or loading cargo.
  • the conveyor or similar equipment can be freely loaded or withdrawn the cargo in the required position with only each end effector that is variable by cables without having to be installed to pass each part of every rack (S). have.
  • the cable robot of any one of the first to third cable robots 10, 20, and 30 may change the end effector only on a two-dimensional plane in which the x-axis extends vertically, but the first and second end effectors 13
  • the third cable robot 30 is installed to allow the third end effector 33 to be variable between the first and second cable robots 30, that is, the third cable robot 30 is connected to the first and second cable robots 10 and 20.
  • the third cable robot 30 is finally configured to be freely movable in a three-dimensional space, so that the conveyor or the whole area of each rack S on which cargo is loaded can be moved. Since cargo can be freely loaded and transported without the construction of similar facilities, an optimal and effective logistics management system can be constructed without enormous equipment installation costs.
  • the third end effector 33 is wound when one of the seventh to ninth cables 321, 322, and 323 connected to the front and rear of the third end effector 33 are respectively wound on the y-axis direction and the other is unwound. Is moved in the direction.
  • each cargo stack S is installed high, but the first and second end effectors 13, 23 vary upward due to the first and second high-altitude pulleys 14, 24.
  • the third end effector 33 also varies in the x-axis and z-axis directions, thereby providing a cargo stack (S). You can move from one corridor between the next to the next corridor.
  • three first winch modules 11 may be installed on both sides of the first cable robot 10, respectively.
  • first cables 121, 122, 123 and the first end effector 13 may be connected by a ring method, or may be connected by using a revolute joint, or a combination of a ring and a rotating joint. May be connected.
  • first and second cables 121 and 122 support the load of the first end effector 13 and maintain the balance of the first end effector 13.
  • the third cable 123 is connected to the upper end of the first end effector 13 to maintain the load and balance of the first end effector 13.
  • the third cable robot 30 is also installed in a similar configuration as the first and second cable robot (10, 20) as shown in FIG.
  • the third end effector 33 may be made somewhat smaller than the first and second end effectors 13 and 23.
  • each of the first to third winch modules 11, 21, and 31 may be configured as shown in FIG. 6.
  • each of the first to third winch modules 11, 21, and 31 is provided with six drums 41.
  • Six drums 41 are arranged at the front and rear of each end effector, respectively, of which two cables 41 are wound on the lower end of the end effector via a high pulley 14 and 24. , The cable wound on the other drum 41 may be directly connected to the top of the end effector.
  • each of the first to third winch modules 11, 21, and 31 is provided with three cylindrical drums 41 to which cables are wound, and each drum 41 to uniformly wind the cables to the drum 41.
  • the variable mechanism includes a front timing pulley 48a coaxially connected to the drum 41 to be rotated, a rear timing timing pulley 48b disposed in parallel with the front timing pulley 48a, and front and rear timing pulleys.
  • a ball screw made of a variable nut block 46b with a variable pulley 44 By consisting of a ball screw made of a variable nut block 46b with a variable pulley 44, the cable winding position guided to the variable pulley 44 in accordance with the speed at which the cable is wound on the drum 41 is interlocked, the cable The drum 41 is wound up at even intervals.
  • the nut block 46b for moving the variable pulley 44 is directly moved by the rotation of the screw rotation shaft 46a which is rotated in conjunction with the drum 41, and the linkage is moved to the front and rear timing pulleys 48a and 48b. Since the variable pulley 44 is variable at an optimum speed according to the diameter of the front and rear timing pulleys 48a and 48b, the cable can be wound around the drum 41 at regular intervals. Therefore, there is a special effect that the cable is wound around the drum 41 at regular intervals even if a separate screw rotation shaft 46a driving mechanism is not provided and interlocked with the control unit.
  • a variable support mechanism may be necessary to prevent the nut block 46b from rotating together with the screw rotation shaft 46a and to make a linear motion.
  • the nut block 46b is connected to the guide roller 47a, and the guide roller 47a is configured to be passively variable along the guide rail 47b.
  • a variable support mechanism other than the guide roller 47a and the guide rail 47b may be adopted.
  • an encoder that detects a change in the length of the cable or a load cell (not shown) for detecting the tension may be installed.
  • the tension detection signal detected by the load cell (not shown) is transmitted to a control unit to be described later, and the control unit may perform accurate position control of the end effector by utilizing tension and encoder information of the cable transmitted from the winch.
  • the motor driver 43 may be installed to control the rotational drive of the motor by a control signal transmitted from the controller.
  • the third end effector 33 needs to be provided with a means for loading or withdrawing cargo, that is, the loading module 36 in the cargo stack (S).
  • the shape and structure of the stacking module 36 that performs this action can be adopted in the prior art without any particular limitation, one embodiment of which is shown in FIG. However, in FIG. 7, in addition to the method of maintaining the balance of the third end effector 33 by adjusting the cable, a supplemental maintaining means of the third end effector 33 is provided.
  • the loading module 36 includes a fork foot 362 and a fork foot for driving the fork foot 362 to move the cargo loaded in the third end effector 33 and load the cargo in the cargo rack as shown in FIG. 7.
  • the weight body 365 and the weight body 365 installed on the bottom of the third end effector 33 and varying the weight body ( 365 may be configured as a weight 365 driver to vary.
  • the fork foot driver 361 may be any known mechanism as long as the fork foot 362 is a mechanism capable of varying the fork foot 362.
  • the fork foot driver 361 is illustrated as a cylinder mechanism operated by pneumatic or hydraulic pressure.
  • a weight 365 driver for varying the weight body 365 may also adopt any known technique, and in FIG. 7, a pinion and a rack gear 363 are used.
  • the pinion and the rack gear 363 allow for more precise position control of the weight body 365.
  • the third end effector 33 may move in the y-axis and z-axis due to the third winch module 31, and may also be moved along with the first and second end effectors 13 and 23 to move in the x-axis.
  • the third winch module 31 has a total of five degrees of freedom since the rotation operation is possible based on the x-axis and the y-axis. Accordingly, the inclination of the third end effector 33 as the cargo moves on the third end effector 33 includes six drums included in the third winch module 31, that is, the first and second end effectors 13 and 23. 3 can be controlled by three drums 41 respectively installed.
  • control of the change in cable length can be determined by the following equation.
  • additional means for horizontal adjustment may be installed in the form of a weight body 365, rack gear 363, pinion gear 364 and the horizontal sensor 366, as will be described later.
  • the horizontal sensor 366 may transmit the information value of the degree out of the horizontal to the control unit to enable the control unit to operate the third winch module 31 to maintain the level of the third end effector 33.
  • control unit which receives the information provided by the horizontal sensor 366 operates the third winch module 31 by its own calculation or the weight body 365 in the direction in which the third end effector 33 can be horizontally maintained. ) Can be moved.
  • the logistics management method using a multi-logistics transport cable robot system when a certain horizontal direction is called the x-axis, a horizontal direction perpendicular to the x-axis is called the y-axis, and the height direction is called a z-axis
  • the first cable robot 10 is installed so that the first end effector 13 is changed into first to third cables 121, 122, and 123 along the x-axis and z-axis directions, and a predetermined distance from the first end effector 13.
  • the third cable robot 30 may vary between the seventh and ninth cables 321, 322, and 323 along the y-axis and z-axis directions between the effector 13 and the second end effector 23. ) And the third end effector 33 in the y-axis and z-axis directions with the first and second end effectors 13 and 23 stopped.
  • the second end effector 33 also moves along the x-axis and z-axis by simultaneously varying the first and second end effectors 13 and 23 in the x-axis and z-axis directions while moving the cargo.
  • the third and second end effectors 13 and 23 raise the third end effector 33 in the z-axis direction, and the first and second end effectors in the third step.
  • the third end effector 33 is moved in the x-axis direction over the loaded cargo top, in which case the time relationship between the second and third steps is Characterized in that there is no.
  • the third end effector when the cargo is moved inside the third end effector 33, the third end effector When the inclination (33) is inclined, the seventh cable (321) and the other side of the four of the seventh and eighth cables (321,322) connected to the lower end of the third end effector (33) to maintain the load and balance
  • the third end effector 33 may be rotated by a predetermined angle with respect to the y-axis to maintain the third end effector 33 horizontally.
  • the seventh and eighth cables 321 and 322 connecting lower portions of the first end effector 13 and the third end effector 33 and the lower end of the third end effector 23 and the third end effector 33 may be connected.
  • the ratio of the seventh and eighth cables 321 and 322 is that the ninth cable 323 and the second end effector 23 and the third end connecting the first end effector 13 and the third end effector 33 to the upper portion.
  • a variable fork foot 362 is installed in the third end effector 33 so that the cargo loaded in the third end effector 33 can be loaded into the rack.
  • a variable weight 365 and a horizontal sensor 366 are placed on the bottom of the third end effector 33.
  • an additional means may be provided to vary the weight body 365 in accordance with the measured value of the horizontal sensor 366 to maintain the level of the third end effector 33.
  • the present invention can carry out or load the cargo in the correct position with a system that is freely controlled by the controller at a much lower cost without installing the conveyor system in the form of passing through all points of the rack S on which the cargo is loaded.
  • the horizontal direction connecting the stack S will be referred to as the y-axis, and the vertical direction up and down will be referred to as the z-axis.
  • Logistics transport cable robot system having a cable pulley is an end effector 56 installed between the high-rise stand 53 on both sides of the cargo stack (S), the high-level stand 53 as shown in FIG. ), A drive cable 55 connecting the high-altitude stand 53 and the end effector 56, a plurality of drive winches 51 and 52 which wind or unwind the drive cable 55, and a traction mechanism 61. 62,552, the movable body 58 which is provided for each lower part of the air stand 53, and moves the air stand 53 in parallel with each other, and a control part (not shown).
  • the altitude stand 53 is installed at each side of each of the corridors formed between any two of the plurality of cargo racks S1, S2, S3, and S4 spaced apart from each other by a predetermined distance.
  • the high-altitude stand 53 is disposed on the x-axis line with the cargo stack S therebetween to face each other. Therefore, the altitude stand 53 is a set of two.
  • a plurality of drive winches 51 and 52 are installed for each air stand 53, and the cable wound or unwound by the drive winches 51 and 52 is an end effector 56 to be described later.
  • the drive winches 51 and 52 may be used to distinguish the winch for directly driving the end effector 56 to move the end effector 56 from the towing winch 61 which will be described later.) It will be called.
  • the end effector 56 is installed between two high-altitude stand 53 facing each other and varies along the x-axis.
  • the drive cable 55 (reference to the cable to be wound or wound by the drive winch (51, 52) will be referred to as the "drive cable 55" hereinafter to distinguish from the 'towing cable 552' which will be described later. ) Connects the end effector 56 and the drive winches 51, 52. Since the drive winches 51 and 52 are installed for each air stand 53 on both sides, the drive winches 51 and 52 are wound around the drive winches 51 and 52, and the drive winches 51 and 52 on the other side. When the drive cable 55 is unwound, the end effector 56 is variable toward the high-altitude stand 53 provided with the drive winches 51 and 52 to be wound.
  • the drive winches 51 and 52 are more specifically shown in FIG. 8 based on the first drive winch 51 directly connected to the end effector 56 by the drive cable 55 and the upper stand 53. As the drive cable 55 passes through the installed high pulley 54, it may be divided into a second drive winch 52 connected to the end effector 56.
  • the first and second driving winches 51 and 52 are both installed at the lower part of the high-altitude stand 53, and the driving winch is directly connected to the upper part of the end effector 56 by the driving cable 55.
  • the first drive winch 51 is referred to as a second drive winch 52
  • the drive cable 55 is connected to the lower portion of the end effector 56 through the high pulley 54 will be referred to as.
  • the end effector 56 has the x-axis and z-axis directions on a plane connecting the two high-altitude stand 53 in accordance with the extent to which the first and second drive winches 51 and 52 wind up or unwind the drive cable 55. Is variable.
  • the control unit controls the rotation of the first and second driving winches 51 and 52 and the towing winch 61 to be described later to finally control the moving distance, direction and speed of the end effector 56.
  • the end effector 56 and the drive cable 55 may be connected in various ways.
  • the drive cable 55 is fastened in a ring shape installed in the end effector 56.
  • the end effector 56 and the drive cable 55 may be connected in the form of a revolute joint.
  • the towing winch 61 pulls a portion of the drive cable 55 connecting the first drive winch 51 and the upper part of the end effector 56 to the outer direction as shown in FIGS. After raising 56, the movable body 58 prevents the interference between the drive cable 55 and the cargo stack S when the two air stands 53 are simultaneously moved in the y-axis direction. do.
  • a portion of the drive cable 55 connecting the first drive winch 51 and the upper end effector 56 is provided with a traction pulley 62 as shown in FIG. 9, and a traction pulley 62 and a traction pulley.
  • Winch 61 is connected by traction cable 552. Therefore, when the towing winch 61 winds up the towing cable 552, the towing pulley 62 is changed in the direction of the towing winch 61, and the driving cable 55 at the point where the towing pulley 62 is installed is also pulled together. In the direction of 61), as shown in FIG. 10, the drive cable 55 is completely exposed to the moving stack 58 as the cargo stack S is completely exposed as if the stage curtain is fully exposed as the stage curtain is rolled up. Interference between the drive cable 55 and the cargo stack S is prevented when the 53 is moved in the y-axis direction at the same time.
  • the tow cable 552 may appear to be connected to the drive cable 55 at the point where the tow cable 552 and the drive cable 55 meet, but the tow cable 552 is shown in FIGS. 9 and FIG.
  • the drive cable 55 is fixedly connected to the pulley pulley 62 rather than the drive cable 55, and the drive cable 55 riding the roller installed in the pulley pulley 62 passes the pulley pulley 62 to the pull cable 552.
  • towing one spot appears to be bent.
  • moving the end effector 56 from the front of the S1 to the front of the S2 may be performed by moving the high-altitude stand 53 itself by mobilizing a third piece of equipment, or under the high-temperature stand 53.
  • a similar wheel may be installed to push or pull the high-altitude stand 53 by human or equipment power.
  • the rail 57 may be installed along the moving path of the air stand 53 so that the air stand 53 moves along the rail 57.
  • the movable body 58 may be installed in the lower part of the air stand 53 as shown in FIG. 8.
  • the movable body 58 and the rail 57 may be moved to a driving unit (not shown) installed in the movable body 58.
  • the driving unit (not shown) may be a type in which a wheel is engaged with a general motor and may be configured as a linear pulse propulsion type, or a rail 57 is formed of a rack gear 163 and the movable body 58 is a motor. It may be in the form of the pinion gear 164 is driven.
  • the controller may control the moving distance of the moving body 58, and the drive cable 55 is flipped to both sides by the pulley pulley 62, and the drive cable 55 and the cargo stack S are separated.
  • the moving body 58 can be moved.
  • the movement of the moving body 58 is a target point is set in front of the cargo stack (S) of the point when the point that needs to load or withdraw the cargo (F) is selected on the system.
  • a drive motor 112 disposed in the center and side surfaces of the drive motor 112 are arranged side by side as shown in FIG. 11.
  • the dual drum 111 is connected to rotate together with the driving of the drive motor 112 is installed.
  • the double drum 111 has a form in which the drums are arranged on both sides of the driving motor 112 in a symmetrical manner, and as shown in FIG. 8, the drive cables 55 wound or unwound from each of the drums on both sides end with each other. Since the effector 56 is balanced, the end effector is controlled by simultaneously rotating a double drum 111 consisting of two drums with one driving motor 112 without the controller (not shown) synchronizing the two drums. The balance of the end effector 56 can be maintained since the two drive cables 55 that balance 56 are variable at the same speed.
  • first and second drive winches 51 and 52 are installed on both sides of the drive motor 112 and the drive motor 112, as shown in FIG. And is provided for each of the double drums 111 and consists of a variable mechanism for varying the variable pulley 114, the guide pulley 115 and the variable pulley 114 to uniformly wind the cable uniformly wound on the double drum 111 at regular intervals. It may consist of units.
  • the drive cable 55 is wound around the double drum 111 in a randomly wound manner, the cable is not wound side by side at regular intervals. A situation may arise in which control for the correct movement of 56 cannot be made.
  • variable pulley 114 which acts to change the cable position just before winding so that the cable can be wound around the drum in parallel and uniformly wound on the double drum 111 is shown in FIG. It is prepared as shown in.
  • the guide pulley 115 serves to guide the drive cable 55 to the variable pulley 114 in a fixed position.
  • a variable mechanism is responsible for allowing the variable pulley 114 to be variable along a length direction of the double drum 111 while being linked to rotation of the double drum 111.
  • the variable mechanism includes a front timing pulley 118a coaxially driven to the double drum 111 and a rear timing timing pulley 118b disposed in parallel with the front timing pulley 118a.
  • the nut block 116b for moving the variable pulley 114 is directly moved by the rotation of the screw rotation shaft 116a which is rotated in conjunction with the dual drum 111, the linkage is the front and rear timing pulleys 118a, 118b. Since the variable pulley 114 is variable at an optimum speed according to the diameters of the front and rear timing pulleys 118a and 118b, the cable may be wound on the dual drum 111 at regular intervals. Therefore, there is a special effect that the cable is wound around the double drum 111 at regular intervals even if a separate screw rotation shaft 116a driving mechanism is not provided and interlocked with the control unit.
  • a variable support mechanism may be necessary to prevent the nut block 116b from rotating together with the screw rotation shaft 116a and to make a linear motion.
  • the nut block 116b is connected to the guide roller 117a, and the guide roller 117a is configured to be passively variable along the guide rail 117b.
  • a variable support mechanism other than the guide roller 117a and the guide rail 117b may be adopted.
  • an encoder that detects a change in the length of the cable or a load cell (not shown) for detecting the tension may be installed.
  • the tension detection signal detected by the load cell (not shown) is transmitted to a controller which will be described later, and the controller may control the position of the end effector 56 by using the tension and encoder information of the cable transmitted from the winch.
  • the driving motor 112 may be provided with a motor driver 113 for controlling the rotational drive of the driving motor 112 by a control signal transmitted from the control unit as shown in FIG.
  • the end effector (when the drive cable 55 is wound or unwound with the drive winches 51 and 52) may be used. 56) in the x- or y-axis direction to load cargo F into cargo stack S with end effector 56 or to load cargo F from cargo stack S to end effector 56. Withdrawing, raising the end effector 56 in the z-axis direction while pulling or unwinding the drive cable 55 with the drive winch to raise more than the top of the cargo stack S, and towing with the towing winch 61.

Abstract

The present invention relates to a robot system controlled by a cable and, more specifically, to a multi-distribution/transportation cable robot system capable of transporting and classifying cargo throughout an entire distribution warehouse or distribution storage yard. The purpose of the present invention is to provide a cable robot system and a method for managing distribution, the cable robot system being capable of freely conducting distribution/transportation without a conveyor system by comprising: a first cable robot (10) comprising a first end effector (13), first winch modules (11) arranged in front of and behind the first end effector (13), and cables (121, 122, 123) for moving the first end effector (13); a second cable robot (20) comprising a second end effector (23) and second winch modules (21), which are identical to the first end effector (13) and the first winch modules (11), respectively, and cables (221, 223, 223); a third cable robot (30) comprising third winch modules (31) installed on the first and second end effectors (23), respectively, a third end effector (33) arranged between the first and second end effectors (23), and cables (321, 322, 323); and a controller.

Description

물류이송 케이블 로봇 시스템 및 이를 이용한 물류 관리 방법Logistics transfer cable robot system and logistics management method using the same
본 발명은 물류이송 시스템에 관한 것으로, 특히 케이블로 제어되는 로봇 시스템으로 물류 창고 또는 물류 야적장 전체에 걸쳐 화물 이송 및 분류가 가능한 다중 물류이송 케이블 로봇 시스템에 관한 것이다.The present invention relates to a logistics transport system, and more particularly, to a multi-logistic transport cable robot system capable of transporting and sorting cargo throughout a logistics warehouse or a logistics yard as a cable-controlled robot system.
많은 화물이 보관되는 물류 창고는 효율적으로 관리될수록 물류 유통의 원활화와 재고의 최소화를 달성할 수 있는 점에서 각 사업장뿐만 아니라 전체 산업의 골격을 이루는 중요한 역할을 담당한다.Logistics warehouses, where many cargoes are stored, play an important role that forms the backbone of not only each business site but also the entire industry in that the more efficiently managed, the more efficient the logistics warehouse can be.
따라서 물류 창고 내부에서 효율적인 화물 이송과 적재적소에의 신속한 화물 출입을 달성하고자 하는 기술은 시장 상황의 변화에 관계없이 계속 연구되고 발전되는 분야이다.Therefore, the technology to achieve efficient cargo transfer and fast cargo entry into the right place in the logistics warehouse is a field that is continuously researched and developed regardless of the market situation.
이에 관한 종래기술은 크게 물류 창고의 관리 시스템에 관한 기술과, 물류 창고 내부에서 화물의 이송과 적재가 어떤 장치나 시스템으로 이루어지는가에 관한 기술로 분류될 수 있다.The related art can be broadly classified into a technology related to a management system of a logistics warehouse and a technology related to a device or a system in which cargo is transported and stacked in the warehouse.
그런데 화물의 이송과 적재를 담당하는 장치 또는 시스템에 관한 종래기술들은 대부분 대형 컨베이어가 창고의 전 공간에 걸쳐 설치되는 형태의 기술들이 대부분이다.By the way, most of the prior art related to the device or system that is responsible for the transport and loading of cargo is a type of technology in which a large conveyor is installed over the entire space of the warehouse.
예를 들어, 도 1에 도시된 대한민국공개특허공보 제10-2017-0047888호(공개일자: 2017. 05. 08)에 개시된 '자동적재형 화물 이송장치 및 이를 이용한 화물 이송시스템'은 자동적재형 화물 이송장치(100) 및 이를 이용한 화물 이송시스템에 관한 것으로서. 본 발명은 메인프레임(110)과, 메인프레임(110)에 높이를 달리하여 구비되는 다수의 적재 컨베이어(130,180)와, 메인프레임(110)에 회전 가능하게 구비되는 전달수단(150)으로 구성되어, 다수 층의 적재 컨베이어(130,180)에 다수의 화물을 순차적으로 적재할 수 있어 이송장치(100)의 적재성능이 향상되고, 적재작업의 자동화가 가능한 기술을 제안하고 있다.For example, the 'automatic cargo loading device and the cargo transfer system using the same' disclosed in the Republic of Korea Patent Publication No. 10-2017-0047888 (published date: 2017. 05. 08) shown in FIG. Apparatus 100 and a cargo transfer system using the same. The present invention is composed of a main frame 110, a plurality of loading conveyors (130, 180) provided at different heights on the main frame 110, and the transmission means 150 rotatably provided on the main frame (110) In order to load a plurality of cargoes sequentially on the stacking conveyors 130 and 180 of a plurality of floors, a loading performance of the transfer apparatus 100 is improved, and a technology capable of automating a loading operation is proposed.
그런데 상기 종래기술은 대형 화물 창고에서 화물의 적재 및 운송이 자동화되는 장점은 있지만 이를 실현시키기 위하여 화물 적재 랙(S) 전체에 걸쳐 조성되는 장비가 필요하여 막대한 설비비용이 요구되고, 그만큼 많은 기계적 구성을 필요로 하여 유지보수에도 상당한 비용이 드는 문제가 있다.By the way, the prior art has the advantage of automating the loading and transportation of cargo in a large cargo warehouse, but in order to realize this requires equipment that is formed throughout the cargo loading rack (S) requires a huge installation cost, so many mechanical configurations There is a problem that requires a considerable cost for maintenance.
한편, 종래기술 중 대한민국등록특허공보 제10-1301151호(등록일자: 2013. 08. 21) 에 개시된 '물류 보관 공간 물품 위치관리시스템 및 물류 보관 공간 물품 위치관리방법'에서는 적재 물품의 정확한 3차원 정보가 제공되는 장점이 있으나, 정작 창고 내에서의 물류 이송은 지게차에 의존되므로 내부 물류 이송 자체는 시스템의 제어로 이루어지지 못하여, 작업자의 실수로 적재 오류가 발생될 우려가 있으며, 특히 높이가 큰 랙(S)이 설치되는 경우에는 별도의 크레인을 동원하여 위험하게 적재 작업이 이루어져야 하는 문제가 있다.Meanwhile, in the logistics storage space goods location management system and logistics storage space goods location management method disclosed in the Republic of Korea Patent Publication No. 10-1301151 (Registration Date: Aug. 21, 2013) of the prior art, accurate three-dimensional of the load goods Although there is an advantage in providing information, the logistics transfer in the warehouse is dependent on the forklift, so the internal logistics transfer itself cannot be made under the control of the system, and there is a possibility that a loading error may occur due to a worker's mistake, especially a large height. If the rack (S) is installed there is a problem that the loading operation must be made dangerously by mobilizing a separate crane.
따라서 복수개의 화물 랙 모두에 걸쳐 물류 이송이 정확하고 자유롭게 이루어질 수 있으면서도, 복수개의 화물 랙 모두에 걸쳐 컨베이어 시스템이 설치될 필요가 없어 비용이 절감될 수 있고, 또한 복수개의 화물 랙 간의 물류 이송이 지게차에 의존될 필요가 없으며, 높은 위치의 화물 스택(S)의 경우에도 자유로운 물류의 출입이 가능할 수 있는 물류이송 시스템에 관한 기술이 요청된다.Therefore, while the logistics transfer can be made accurately and freely across all the plurality of cargo racks, the conveyor system does not need to be installed over all the multiple cargo racks, thereby reducing the cost, and also the logistics transportation between the multiple cargo racks. There is no need to rely on, and even in the case of a high position cargo stack (S) is required a technology for a logistics transport system that can be freely in and out of logistics.
[선행기술문헌][Preceding technical literature]
1. 대한민국공개특허공보 제10-2017-0047888호(공개일자: 2017. 05. 08)1. Korean Patent Publication No. 10-2017-0047888 (published date: 2017. 05. 08)
2. 대한민국등록특허공보 제10-1301151호(등록일자: 2013. 08. 21)2. Republic of Korea Patent Publication No. 10-1301151 (Registration Date: 2013. 08. 21)
이에 본 발명은 종래기술의 문제점을 개선하기 위한 것으로써, 복수개의 화물 랙 전체에 걸쳐 컨베이어 시스템이 설치되지 않고도 물류 이송이 정확하고 자유롭게 이루어질 수 있어 비용이 절감될 수 있고, 또한 복수개의 화물 랙 간의 물류 이송이 지게차에 의존될 필요가 없으며, 높은 위치의 화물 스택(S)의 경우에도 자유로운 물류의 출입이 가능할 수 있는 다중 물류이송 케이블 로봇 시스템 및 물류 관리 방법을 제공하고자 한다.Accordingly, the present invention is to improve the problems of the prior art, the logistics transport can be made accurately and freely without the conveyor system is installed throughout the plurality of cargo racks can be reduced costs, and also between the plurality of cargo racks Logistics transfer does not need to depend on the forklift, and in the case of a cargo stack S in a high position, it is intended to provide a multi-logistics transport cable robot system and a logistics management method capable of free access of logistics.
이러한 목적을 달성하기 위한 본 발명에 따른 다중 물류이송 케이블 로봇 시스템은, 일정한 내부 공간이 형성되며 프레임 형상을 가지는 제1엔드이펙터(13)와, 제1엔드이펙터(13)의 전방 및 후방에 각각 배치되는 제1윈치 모듈(11) 및, 제1엔드이펙터(13)를 전방과 후방의 제1윈치 모듈(11)에 각각 연결시켜 어느 일방의 제1윈치 모듈(11)에서 권출 되면 나머지 제1윈치 모듈(11)에서 권취 됨으로써 권취 되는 방향으로 제1엔드이펙터(13)를 이동시키는 케이블(121,122,123)로 구성되는 제1케이블 로봇(10)과, 제1엔드이펙터(13) 및 제1윈치 모듈(11)과 동일한 제2엔드이펙터(23)와 제2윈치 모듈(21) 및 케이블(221,222,223)로 구성되며, 제1케이블 로봇(10)과 평행하면서 일정 거리만큼 이격되게 배치되는 제2케이블 로봇(20)과, 제1엔드이펙터(13)와 제2엔드이펙터(23)에 각각 설치되는 제3윈치 모듈(31)과, 제1엔드이펙터(13)와 제2엔드이펙터(23) 사이에 배치되는 제3엔드이펙터(33) 및, 제3윈치모듈(31)과 제3엔드이펙터(33)를 각각 연결시키는 케이블(321,322,323)로 구성되는 제3케이블 로봇(30) 및, 제1 내지 제3윈치 모듈(11,21,31)을 제어시키는 제어부로 이루어진다.The multi-logistics transport cable robot system according to the present invention for achieving this object, the first end effector 13 and the front end and the rear end of the first end effector 13 having a predetermined internal space having a frame shape, respectively When the first winch module 11 and the first end effector 13 disposed are connected to the first winch module 11 at the front and the rear, respectively, and are unwound from one of the first winch modules 11, the remaining first winch module 11 is connected to the first winch module 11. The first cable robot 10 and the first end effector 13 and the first winch module, which are composed of cables 121, 122, and 123 which move the first end effector 13 in the winding direction by being wound by the winch module 11. A second cable robot composed of the second end effector 23, the second winch module 21, and the cables 221, 222, and 223 which are the same as the one in (11), and are arranged in parallel with the first cable robot 10 and spaced apart by a predetermined distance. 20 and the first end effector 13 and the second end effector 23, respectively. The third winch module 31, the third end effector 33 disposed between the first end effector 13 and the second end effector 23, and the third winch module 31 and the third end effector ( And a third cable robot 30 composed of cables 321, 322, and 323 connecting the 33, respectively, and a control unit controlling the first to third winch modules 11, 21, and 31.
본 발명에 따른 다중 물류이송 케이블 로봇 시스템 및 물류 관리 방법은 복수개의 화물 랙 모두에 걸쳐 물류 이송이 정확하고 자유롭게 이루어질 수 있으면서도, 복수개의 화물 랙 모두에 걸쳐 컨베이어 시스템이 설치될 필요가 없어 막대한 비용이 절감될 수 있고, 또한 복수개의 화물 랙 간의 물류 이송이 지게차에 의존될 필요가 없으며, 높은 위치의 화물 스택(S)의 경우에도 자유로운 물류의 출입이 가능한 효과가 있다.The multi-logistics transport cable robot system and the logistics management method according to the present invention do not need to install a conveyor system over all of the plurality of cargo racks, while the logistics transport can be made precisely and freely across the plurality of cargo racks, thereby enormous cost. It can be reduced, and also the logistics transport between a plurality of cargo racks do not need to depend on the forklift, and even in the case of a high position cargo stack (S) there is an effect that can freely enter and exit the logistics.
도 1은 종래기술의 사시도,1 is a perspective view of the prior art,
도 2는 본 발명의 제1실시예에 따른 케이블 로봇 시스템의 사시도,2 is a perspective view of a cable robot system according to a first embodiment of the present invention;
도 3은 도 2의 시스템이 물류 랙에 설치된 사시도,3 is a perspective view of the system of FIG. 2 installed in a distribution rack;
도 4는 도 2에서 제1케이블 로봇의 확대 사시도,4 is an enlarged perspective view of the first cable robot in FIG.
도 5는 도 2에서 제3케이블 로봇의 확대 사시도,5 is an enlarged perspective view of the third cable robot in FIG.
도 6은 윈치모듈의 실시예를 나타내는 개념도,6 is a conceptual diagram illustrating an embodiment of a winch module;
도 7은 적재모듈을 나타내는 개념도,7 is a conceptual diagram illustrating a loading module;
도 8는 본 발명의 제2실시예에 따른 케이블 로봇 시스템의 사시도,8 is a perspective view of a cable robot system according to a second embodiment of the present invention;
도 9는 도 8의 정면도,9 is a front view of FIG. 8;
도 10은 도 9에 연속되는 작동 상태도,10 is an operating state diagram continuing from FIG. 9;
도 11은 구동 윈치의 구성을 나타내는 개념도.11 is a conceptual diagram showing the configuration of a drive winch.
본 발명의 실시예에서 제시되는 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있다. 또한 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 되며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Specific structural or functional descriptions presented in the embodiments of the present invention are only illustrated for the purpose of describing the embodiments according to the inventive concept, and the embodiments according to the inventive concept may be implemented in various forms. In addition, it should not be construed as limited to the embodiments described herein, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명에 대해 상세히 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail with respect to the present invention.
본 발명에 따른 물류이송 케이블 로봇 시스템 및 이를 이용한 물류 관리 방법은 이하에서 두 개의 실시예를 통하여 설명하기로 한다. 각 실시예는 모두 동일한 원리가 채택됨으로써 전 물류창고 또는 물류야적장에 걸쳐 컨베이어 시스템이 설치되지 않고도 물류 이동이 전 자동화 되어 이루어질 수 있는 구성을 제시하고 있다. Logistics transport cable robot system and a logistics management method using the same according to the present invention will be described through the following two embodiments. Each embodiment proposes a configuration in which the logistics movement is fully automated without the conveyor system being installed over the entire warehouse or logistics yard by adopting the same principle.
두 실시예에서는 각 실시예별로 물류이송 케이블 로봇 시스템과 물류 관리 방법이 제시된다.In both embodiments, a logistics transport cable robot system and a logistics management method are presented for each embodiment.
이하에서는 각 실시예를 하나씩 설명한다.Hereinafter, each embodiment will be described one by one.
<제1실시예>First Embodiment
참고로, 도 2에 도시된 바와 같이 어느 하나의 화물 스택(S)의 길이방향을 y축이라 두고, 복수개의 화물 스택(S)이 차례로 배열되는 방향은 x축이라 두며, 높이 방향을 z축이라 두기로 한다.For reference, as shown in FIG. 2, the longitudinal direction of any one cargo stack S is referred to as the y axis, and the direction in which the plurality of cargo stacks S are arranged in sequence is referred to as the x axis, and the height direction is the z axis. Let's call it.
그리고 제1엔드이펙터(13)의 하부 전방 및 후방에 연결되는 케이블은 제1 및 제2케이블(121,122)이라 하고, 제1엔드이펙터(13)의 상부 전방 및 후방에 연결되는 케이블은 제3케이블(123)이라 하며, 제2엔드이펙터(13)의 하부 전방 및 후방에 연결되는 케이블은 제4 및 제5케이블(221,222)이라 하고, 제2엔드이펙터(23)의 상부 전방 및 후방에 연결되는 케이블은 제6케이블(223)이라 하며, 제3엔드이펙터(33)의 하부 전방 및 후방에 연결되는 케이블은 제7 및 제8케이블(321,322)이라 하고, 제3엔드이펙터(33)의 상부 전방 및 후방에 연결되는 케이블은 제9케이블(123)이라 하기로 한다.The cables connected to the lower front and rear of the first end effector 13 are called first and second cables 121 and 122, and the cables connected to the upper front and rear of the first end effector 13 are third cables. The cables connected to the lower front and rear of the second end effector 13 are referred to as 123 and the fourth and fifth cables 221 and 222, and the cables connected to the upper front and rear of the second end effector 23. The cable is called a sixth cable 223, and the cables connected to the lower front and rear of the third end effector 33 are called the seventh and eighth cables 321 and 322, and the upper front of the third end effector 33. And the cable connected to the rear will be referred to as the ninth cable (123).
본 실시예에 따른 케이블 로봇 시스템은 도 2에 도시된 바와 같이 화물 스택(S) 사이에 형성된 복도의 길이방향을 따라 대향되며 복도 방향에 직각으로 배치되는 제1 및 제2케이블 로봇(10,20)과, 제1 및 제2케이블 로봇(10,20) 사이에서 이동되는 제3엔드이펙터(33)를 포함하는 제3케이블 로봇(30) 및, 제어부로 구성된다.As shown in FIG. 2, the cable robot system according to the present exemplary embodiment includes first and second cable robots 10 and 20 facing each other along the longitudinal direction of the corridor formed between the cargo stacks S and disposed at right angles to the corridor direction. ), A third cable robot 30 including a third end effector 33 moved between the first and second cable robots 10 and 20, and a control unit.
제1케이블 로봇(10)은 도 2 및 도 4에 도시된 바와 같이 일정한 내부 공간이 형성되며 프레임 형상을 가지는 제1엔드이펙터(13)와, 제1엔드이펙터(13)의 전방 및 후방에 각각 배치되는 제1윈치 모듈(11) 및, 제1엔드이펙터(13)를 제1엔드이펙터(13)의 전방과 후방에 설치된 제1윈치 모듈(11)에 각각 제1 내지 제3케이블(121,122,123)로 연결시켜 어느 일방의 제1윈치 모듈(11)에서 케이블이 권출 되면 나머지 제1윈치 모듈(11)에서 케이블이 권취 될 때 권취 되는 방향으로 제1엔드이펙터(13)를 이동시키는 제1 내지 제3케이블(121,122,123)로 구성된다.As shown in FIGS. 2 and 4, the first cable robot 10 includes a first end effector 13 and a front end and a rear end of the first end effector 13 having a frame shape, respectively. First to third cables 121, 122, and 123 to the first winch module 11 disposed and the first end effector 13 to the first winch module 11 installed at the front and the rear of the first end effector 13, respectively. When the cable is unwinded from any one of the first winch module 11 by connecting to the first winch module 11 to move the first end effector 13 in the winding direction when the cable is wound in the first winch module 11 It consists of three cables 121, 122 and 123.
즉, 제1윈치 모듈(11)은 도 2 및 도 4에 도시된 x축 방향을 따라 제1케이블(121,122)을 가변시키는데, 여기서 제1케이블(121,122)은 제1엔드이펙터(13)의 x축 방향 양 단에 연결되어 어느 일방의 제1케이블(121,122)이 권취되고 타방에서는 권출되면, 제1엔드이펙터(13)는 권취되는 방향으로 이동된다.That is, the first winch module 11 varies the first cables 121 and 122 along the x-axis direction shown in FIGS. 2 and 4, where the first cables 121 and 122 are x of the first end effector 13. The first end effector 13 is moved in the winding direction when one of the first cables 121 and 122 is wound up and unwinded on the other side, connected to both ends in the axial direction.
제2케이블 로봇(20)은 제1엔드이펙터(13) 및 제1윈치 모듈(11)과 동일한 제2엔드이펙터(23)와 제2윈치 모듈(21) 및 제4 내지 제6케이블(221,222,223)로 구성되며, 제1케이블 로봇(10)과 평행하면서 일정 거리만큼 이격되게 배치된다.The second cable robot 20 is the same as the first end effector 13 and the first winch module 11, the second end effector 23 and the second winch module 21, and the fourth to sixth cables 221, 222, and 223. It is configured to, and parallel to the first cable robot 10 is arranged spaced apart by a predetermined distance.
제3케이블 로봇(30)은 제1엔드이펙터(13)와 제2엔드이펙터(23)에 각각 설치되는 제3윈치 모듈(31)과, 제1엔드이펙터(13)와 제2엔드이펙터(23) 사이에 배치되는 제3엔드이펙터(33) 및, 제3윈치모듈(31)과 제3엔드이펙터(33)를 각각 연결시키는 제7 내지 제9케이블(321,322,323)로 구성된다.The third cable robot 30 includes a third winch module 31 installed in the first end effector 13 and the second end effector 23, and the first end effector 13 and the second end effector 23. And a third end effector 33 disposed between the third end effector 33 and seventh to ninth cables 321, 322, and 323 connecting the third winch module 31 and the third end effector 33, respectively.
그리고 제1 내지 제3윈치 모듈(11,21,31)은 각각의 엔드이펙터 전방과 후방에 설치되고 전방 또는 후방의 어느 하나의 윈치 모듈에는 세 개의 드럼(41)이 설치되므로 제1 내지 제3윈치 모듈(11,21,31)에는 각각 6개의 드럼(41)이 설치된다.The first to third winch modules 11, 21, and 31 are installed at the front and rear of each end effector, and three drums 41 are installed at any one of the front or rear winch modules. Six drums 41 are installed in the winch modules 11, 21, and 31, respectively.
제어부는 제1 내지 제3윈치 모듈(11,21,31)을 제어시켜 화물이 적재된 장소 또는 화물이 적재되어야 할 장소에 따라 최종적으로 제3엔드이펙터(33)가 화물을 인출시키거나 적재시키도록 명령을 전달한다.The controller controls the first to third winch modules 11, 21, and 31 so that the third end effector 33 finally withdraws or loads the cargo according to the place where the cargo is loaded or the place where the cargo is to be loaded. Command is sent.
제1케이블 로봇(10)을 구성하는 제1윈치 모듈(11)과 제2케이블 로봇(20)을 구성하는 제2윈치 모듈(21)은 모두 도 3에 도시된 바와 같이 화물이 일정한 간격을 두고 복수개의 복도가 형성되게 병렬로 배치되는 랙(S)에서 랙(S)의 최전방 랙의 측면과 최후미 랙의 측면에 배치된다.As shown in FIG. 3, both the first winch module 11 constituting the first cable robot 10 and the second winch module 21 constituting the second cable robot 20 are spaced at regular intervals. In the rack (S) arranged in parallel to form a plurality of corridors are arranged on the side of the front rack and the rear rack of the rack (S).
그리고 도 5에 도시된 바와 같이 제3케이블 로봇(30)을 구성하는 제3윈치 모듈(31)은 제1 및 제2케이블 로봇(10,20)과 달리 바로 제1 및 제2엔드이펙터(13,23)에 각각 설치되고, 제1 및 제2엔드이펙터(13,23)에 각각 설치된 제3윈치 모듈(31)을 연결시키는 제7 내지 제9케이블(321,322,323)이 어느 일방은 권취되고 어느 타방은 권출됨에 따라 제3엔드이펙터(33)가 이동한다. 이때 직접 화물을 이송하여 적재시키거나 인출시키는 작용은 제3엔드이펙터(33)가 담당하게 된다.As shown in FIG. 5, unlike the first and second cable robots 10 and 20, the third winch module 31 constituting the third cable robot 30 is directly the first and second end effectors 13. , Respectively, the seventh to ninth cables 321, 322, and 323, which are installed at the 23 and connected to the third winch module 31 installed at the first and second end effectors 13 and 23, respectively, are wound on one side and some on the other. As the unwinded, the third end effector 33 moves. At this time, the third end effector 33 is in charge of directly transporting or loading cargo.
따라서 본 발명에서는 컨베이어 또는 그와 유사한 설비가 모든 랙(S)의 각 부위를 거치도록 설치될 필요 없이 오로지 케이블로 가변되는 각각의 엔드이펙터 만으로 자유롭게 필요한 위치에 화물을 적재시키거나 화물을 인출시킬 수 있다.Therefore, in the present invention, the conveyor or similar equipment can be freely loaded or withdrawn the cargo in the required position with only each end effector that is variable by cables without having to be installed to pass each part of every rack (S). have.
제1 내지 제3케이블 로봇(10,20,30) 중 어느 하나의 케이블 로봇은 엔드이펙터를 x축이 수직으로 연장되는 2차원 평면상에서만 가변시킬 수 있으나, 제1 및 제2엔드이펙터(13,23) 사이에서 제3엔드이펙터(33)가 가변될 수 있게 제3케이블 로봇(30)이 설치됨으로써, 즉, 제3케이블 로봇(30)은 제1 및 제2케이블 로봇(10,20) 사이에서 y축 방향으로 가변되게 설치됨으로써, 최종적으로 제3케이블 로봇(30)은 3차원 공간에서 자유롭게 이동 가능하게 구성되어, 화물이 적재된 각 랙(S)의 전 부위에 걸쳐 컨베이어 내지 그와 유사한 설비의 구축 없이도 자유롭게 화물의 적재 및 이송이 가능하므로 막대한 설비 설치비용 없이도 최적의 효과적인 물류 관리 시스템이 구성될 수 있다.The cable robot of any one of the first to third cable robots 10, 20, and 30 may change the end effector only on a two-dimensional plane in which the x-axis extends vertically, but the first and second end effectors 13 The third cable robot 30 is installed to allow the third end effector 33 to be variable between the first and second cable robots 30, that is, the third cable robot 30 is connected to the first and second cable robots 10 and 20. By being variably installed in the y-axis direction, the third cable robot 30 is finally configured to be freely movable in a three-dimensional space, so that the conveyor or the whole area of each rack S on which cargo is loaded can be moved. Since cargo can be freely loaded and transported without the construction of similar facilities, an optimal and effective logistics management system can be constructed without enormous equipment installation costs.
이때 제3엔드이펙터(33)는 제3엔드이펙터(33)의 전방 및 후방에 각각 연결된 제7 내지 제9케이블(321,322,323)이 y축 방향을 기준으로 어느 일방은 권취되고 나머지 타방은 권출되면 권취되는 방향으로 이동된다.At this time, the third end effector 33 is wound when one of the seventh to ninth cables 321, 322, and 323 connected to the front and rear of the third end effector 33 are respectively wound on the y-axis direction and the other is unwound. Is moved in the direction.
특히, 도 3에 도시된 바와 같이 각 화물 스택(S)은 높게 설치되지만, 제1 및 제2 엔드이펙터(13,23)가 제1 및 제2고공 도르래(14,24)로 인해 상부로 가변될 수 있으므로 결국 제1 및 제2엔드이펙터(13,23)가 x축 및 z축 방향으로 가변됨에 따라 함께 제3엔드이펙터(33)도 x축 및 z축 방향으로 가변됨으로써, 화물 스택(S) 사이의 어느 한 복도에서 인접되는 다음 복도로 넘어갈 수 있다.In particular, as shown in FIG. 3, each cargo stack S is installed high, but the first and second end effectors 13, 23 vary upward due to the first and second high-altitude pulleys 14, 24. As the first and second end effectors 13 and 23 are eventually varied in the x-axis and z-axis directions, the third end effector 33 also varies in the x-axis and z-axis directions, thereby providing a cargo stack (S). You can move from one corridor between the next to the next corridor.
제1케이블 로봇(10)을 보다 상세하게 도 4를 참조하여 살펴보면, 제1케이블 로봇(10)의 양측에 각각 세 대의 제1윈치 모듈(11)이 설치될 수 있다.Looking at the first cable robot 10 in more detail with reference to FIG. 4, three first winch modules 11 may be installed on both sides of the first cable robot 10, respectively.
이 경우, 도 4에 도시된 바와 같이 제1윈치 모듈(11)에 설치되는 드럼(41)은 양측에 3대씩 설치되므로 드럼(41)은 총 6대가 설치된다. 그리고 x축을 기준으로 제1엔드이펙터(13)의 일방에 설치된 제1윈치 모듈(11)을 구성하는 3대의 드럼(41) 중 두 대는 제1엔드이펙터(13)의 전면 하부에 제1 및 제2케이블(121,122)로 연결되고, 나머지 한 대는 제1엔드이펙터(13)의 전면 상부에 제3케이블(123)로 연결된다.In this case, as shown in FIG. 4, since the drums 41 installed on the first winch module 11 are installed in three units on both sides, a total of six drums 41 are installed. In addition, two of the three drums 41 constituting the first winch module 11 installed on one side of the first end effector 13 on the x-axis are formed on the front lower portion of the first end effector 13. Two cables 121 and 122 are connected, and the other one is connected to the upper front of the first end effector 13 by a third cable 123.
참고로 자세하게 도시되진 않았지만 제1케이블(121,122,123)과 제1엔드이펙터(13)는 고리 방식으로 연결될 수도 있고, 또는 회전 관절(revolute joint)이 이용되어 연결될 수도 있으며, 고리와 회전 관절이 복합된 형태로 연결될 수도 있다.For reference, although not shown in detail, the first cables 121, 122, 123 and the first end effector 13 may be connected by a ring method, or may be connected by using a revolute joint, or a combination of a ring and a rotating joint. May be connected.
여기서 제1 및 제2케이블(121,122)은 제1엔드이펙터(13)의 하중을 지지하면서 또한 제1엔드이펙터(13)의 균형을 유지시켜 준다.Here, the first and second cables 121 and 122 support the load of the first end effector 13 and maintain the balance of the first end effector 13.
제3케이블(123)은 제1엔드이펙터(13)의 상부에 연결되어, 제1엔드이펙터(13)의 하중 및 균형을 유지시켜 주는 작용을 한다. The third cable 123 is connected to the upper end of the first end effector 13 to maintain the load and balance of the first end effector 13.
그리고 제3케이블 로봇(30) 역시 도 5에 도시된 바와 같이 제1 및 제2케이블 로봇(10,20)과 유사한 구성으로 설치된다. 다만 제3엔드이펙터(33)는 제1 및 제2엔드이펙터(13,23) 보다 다소 작게 제작될 수도 있다.And the third cable robot 30 is also installed in a similar configuration as the first and second cable robot (10, 20) as shown in FIG. However, the third end effector 33 may be made somewhat smaller than the first and second end effectors 13 and 23.
이 경우, 제1 내지 제3윈치 모듈(11,21,31) 각각은 도 6에서와 같이 구성될 수 있다. 참고로 전술한 기재 및 도 2에 도시된 바와 같이 제1 내지 제3윈치 모듈(11,21,31) 각각에는 6개의 드럼(41)이 설치된다. 6개의 드럼(41)은 각각의 엔드이펙터의 전방과 후방에 각각 3개씩 배치되며, 그 중 두 개의 드럼(41)에 감긴 케이블은 고공 도르래(14,24)를 거쳐 엔드이펙터의 하부에 연결되고, 나머지 하나의 드럼(41)에 감긴 케이블은 직접 엔드이펙터의 상부에 연결될 수 있다.In this case, each of the first to third winch modules 11, 21, and 31 may be configured as shown in FIG. 6. For reference, as illustrated in the foregoing description and FIG. 2, each of the first to third winch modules 11, 21, and 31 is provided with six drums 41. Six drums 41 are arranged at the front and rear of each end effector, respectively, of which two cables 41 are wound on the lower end of the end effector via a high pulley 14 and 24. , The cable wound on the other drum 41 may be directly connected to the top of the end effector.
구체적으로 제1 내지 제3윈치 모듈(11,21,31) 각각은 케이블이 감기는 세 개의 원통형상의 드럼(41)과, 드럼(41)마다 구비되어 케이블을 드럼(41)에 균일하게 권취 시키는 가변 풀리(44) 및 가이드 풀리(45)와, 가변 풀리(44)를 드럼(41)의 길이방향을 따라 케이블 권취 속도에 대응되게 이동시키는 가변기구 및, 드럼 구동 모터(42)로 이루어진다.Specifically, each of the first to third winch modules 11, 21, and 31 is provided with three cylindrical drums 41 to which cables are wound, and each drum 41 to uniformly wind the cables to the drum 41. The variable pulley 44 and the guide pulley 45, the variable mechanism for moving the variable pulley 44 corresponding to the cable winding speed along the longitudinal direction of the drum 41, and the drum drive motor 42.
여기서 상기 가변기구는, 드럼(41)에 동축으로 연결되어 회전 구동되는 전단 타이밍 풀리(48a)와, 전단 타이밍 풀리(48a)에 나란하게 배치되는 후단 타이밍 풀리(48b)와, 전단 및 후단 타이밍 풀리(48a,48b)를 연결시켜 동기화시키는 벨트(49)와, 후단 타이밍 풀리(48b)와 동축으로 연결되는 나사회전축(46a)과 나사회전축(46a)을 타고 가변되면서 가변 풀리(44)와 연결되어 가변 풀리(44)와 함께 가변되는 너트블록(46b)으로 이루어지는 볼 스크류로 구성됨으로써, 케이블이 드럼(41)에 감기는 속도에 따라 가변 풀리(44)로 안내되는 케이블 권취 위치가 연동되어, 케이블이 드럼(41)에 균일한 간격으로 권취된다.Here, the variable mechanism includes a front timing pulley 48a coaxially connected to the drum 41 to be rotated, a rear timing timing pulley 48b disposed in parallel with the front timing pulley 48a, and front and rear timing pulleys. The belt 49 for connecting and synchronizing the 48a and 48b, and the variable screw pulley 44 while being variable by riding the screw rotation shaft 46a and the screw rotation shaft 46a coaxially connected to the rear timing pulley 48b, By consisting of a ball screw made of a variable nut block 46b with a variable pulley 44, the cable winding position guided to the variable pulley 44 in accordance with the speed at which the cable is wound on the drum 41 is interlocked, the cable The drum 41 is wound up at even intervals.
특히, 가변 풀리(44)를 이동시키는 너트블록(46b)은 바로 드럼(41)과 연동되어 회전되는 나사회전축(46a)의 회전으로 이동되고, 연동은 전단 및 후단 타이밍 풀리(48a,48b)로 이루어지므로, 전단 및 후단 타이밍 풀리(48a,48b)의 직경에 따라 가변 풀리(44)는 최적의 속도로 가변되어 일정한 간격으로 케이블을 드럼(41)에 권취시킬 수 있다. 따라서 별도의 나사회전축(46a) 구동기구를 별도로 두어 제어부로 연동시키지 않더라도 케이블이 드럼(41)에 일정한 간격으로 권취되는 것이 보장되는 각별한 효과가 있다.In particular, the nut block 46b for moving the variable pulley 44 is directly moved by the rotation of the screw rotation shaft 46a which is rotated in conjunction with the drum 41, and the linkage is moved to the front and rear timing pulleys 48a and 48b. Since the variable pulley 44 is variable at an optimum speed according to the diameter of the front and rear timing pulleys 48a and 48b, the cable can be wound around the drum 41 at regular intervals. Therefore, there is a special effect that the cable is wound around the drum 41 at regular intervals even if a separate screw rotation shaft 46a driving mechanism is not provided and interlocked with the control unit.
이 경우, 도 6에 도시된 바와 같이, 너트블록(46b)이 나사회전축(46a)과 함께 회전되는 것을 방지시키고 직선 운동을 하게끔 가변지지 기구가 필요할 수 있다. 본 발명의 실시예에서는 너트블록(46b)이 가이드 롤러(47a)에 연결되고, 가이드 롤러(47a)는 가이드 레일(47b)을 따라 피동적으로 직선 가변되게 구성된다. 다만, 공지기술이면 가이드 롤러(47a)와 가이드 레일(47b) 외의 다른 형태의 가변지지 기구가 채택될 수 있다.In this case, as shown in FIG. 6, a variable support mechanism may be necessary to prevent the nut block 46b from rotating together with the screw rotation shaft 46a and to make a linear motion. In the embodiment of the present invention, the nut block 46b is connected to the guide roller 47a, and the guide roller 47a is configured to be passively variable along the guide rail 47b. However, in the known art, a variable support mechanism other than the guide roller 47a and the guide rail 47b may be adopted.
또한, 케이블의 길이 변화를 검출하는 엔코더 또는 텐션을 검출하기 위한 로드 셀(미도시)이 설치될 수 있다. 로드 셀(미도시)에서 검출된 텐션 검출 신호는 후술하게 될 제어부로 전달되며, 제어부는 윈치에서 전달된 케이블의 텐션과 엔코더 정보를 활용하여 엔드이펙터의 정확한 위치 제어가 이루어질 수 있다.In addition, an encoder that detects a change in the length of the cable or a load cell (not shown) for detecting the tension may be installed. The tension detection signal detected by the load cell (not shown) is transmitted to a control unit to be described later, and the control unit may perform accurate position control of the end effector by utilizing tension and encoder information of the cable transmitted from the winch.
그리고 모터에는 도 6에 도시된 바와 같이 제어부에서 전달되는 제어신호에 의해 모터의 회전 구동을 제어시키는 모터 드라이버(43)가 설치될 수 있다.In addition, as shown in FIG. 6, the motor driver 43 may be installed to control the rotational drive of the motor by a control signal transmitted from the controller.
한편, 제3엔드이펙터(33)에는 화물 스택(S)에 화물을 적재시키거나 또는 인출시키는 수단, 즉 적재모듈(36)이 설치될 필요가 있다.On the other hand, the third end effector 33 needs to be provided with a means for loading or withdrawing cargo, that is, the loading module 36 in the cargo stack (S).
이러한 작용을 하는 적재모듈(36)의 형태 및 구조는 특별한 제한 없이 종래기술이라면 어떠한 것도 채택 가능하며, 그 중 하나의 실시예가 도 7에 도시되어 있다. 다만, 도 7에서는 케이블의 조절로 제3엔드이펙터(33)의 균형을 유지시키는 방법 외에도 보충적인 제3엔드이펙터(33)의 균형유지 수단이 제시된다.The shape and structure of the stacking module 36 that performs this action can be adopted in the prior art without any particular limitation, one embodiment of which is shown in FIG. However, in FIG. 7, in addition to the method of maintaining the balance of the third end effector 33 by adjusting the cable, a supplemental maintaining means of the third end effector 33 is provided.
적재모듈(36)은 도 7에 도시된 바와 같이 제3엔드이펙터(33)에 적재되는 화물을 이동시켜 화물 랙에 적재시키기 위한 지게 발(362)과, 지게 발(362)을 구동시키는 지게 발 구동기(361)와, 화물의 이동 위치에 따라 제3엔드이펙터(33)가 기울어지는 것을 방지시키기 위하여 제3엔드이펙터(33)의 저면에 설치되어 가변되는 중량체(365)와, 중량체(365)를 가변시키는 중량체(365) 구동기로 구성될 수 있다.The loading module 36 includes a fork foot 362 and a fork foot for driving the fork foot 362 to move the cargo loaded in the third end effector 33 and load the cargo in the cargo rack as shown in FIG. 7. In order to prevent the driver 361 and the third end effector 33 from inclining according to the moving position of the load, the weight body 365 and the weight body 365 installed on the bottom of the third end effector 33 and varying the weight body ( 365 may be configured as a weight 365 driver to vary.
여기서 지게 발 구동기(361)는 지게 발(362)을 가변시킬 수 있는 기구라면 공지의 어떤 것이든 채용 가능하며, 도 7에서는 공압 또는 유압으로 작동되는 실린더 기구인 것으로 도시되어 있다.Here, the fork foot driver 361 may be any known mechanism as long as the fork foot 362 is a mechanism capable of varying the fork foot 362. In FIG. 7, the fork foot driver 361 is illustrated as a cylinder mechanism operated by pneumatic or hydraulic pressure.
그리고 중량체(365)를 가변시키는 중량체(365) 구동기 역시 공지의 어떤 기술이라도 채택 가능하며, 도 7에서는 피니언과 랙 기어(363)가 사용되는 것으로 도시되어 있다. 피니언과 랙 기어(363)로 인해 중량체(365)의 위치 제어가 보다 정밀하게 이루어질 수 있다.In addition, a weight 365 driver for varying the weight body 365 may also adopt any known technique, and in FIG. 7, a pinion and a rack gear 363 are used. The pinion and the rack gear 363 allow for more precise position control of the weight body 365.
참고로 제3엔드이펙터(33)는 제3윈치 모듈(31)로 인해 y축 및 z축 이동이 가능하고, 제1 및 제2엔드이펙터(13,23)과 함께 가변되어 x축 이동도 가능하며, 제3윈치 모듈(31)로 인해 x축 및 y축을 기준으로 회전 동작이 가능하므로 총 5개의 자유도를 가진다. 따라서 제3엔드이펙터(33) 상에서 화물이 이동되면서 제3엔드이펙터(33)가 기울어지는 것은 제3윈치 모듈(31)에 포함되는 6개의 드럼, 즉 제1 및 제2엔드이펙터(13,23)에 각각 설치된 3개의 드럼(41)으로 제어될 수 있다.For reference, the third end effector 33 may move in the y-axis and z-axis due to the third winch module 31, and may also be moved along with the first and second end effectors 13 and 23 to move in the x-axis. The third winch module 31 has a total of five degrees of freedom since the rotation operation is possible based on the x-axis and the y-axis. Accordingly, the inclination of the third end effector 33 as the cargo moves on the third end effector 33 includes six drums included in the third winch module 31, that is, the first and second end effectors 13 and 23. 3 can be controlled by three drums 41 respectively installed.
그리고 참고로 케이블 길이 변화량의 제어는 아래의 식으로 결정될 수 있다.For reference, the control of the change in cable length can be determined by the following equation.
Li = ai - x - R*biLi = ai-x-R * bi
(i = 1 ~ n의 값을 가지며 n은 케이블의 수이다. 여기서 구동 케이블은 하나의 엔드이펙터에 대해 모두 6개가 연결되므로 n=6이다.)(N = 1 to n, where n is the number of cables, where n = 6, since six drive cables are all connected to one end effector.)
(Li는 i번째 케이블의 길이이고 각 케이블의 길이는 도르래 이탈점부터 엔드이펙터 연결점까지의 길이이다.)(Li is the length of the i-th cable, and each cable is the length from the pulley breakout point to the end effector connection point.)
(ai는 i번째 도르래 이탈점의 위치이다.)(ai is the position of the i-th pulley breakpoint.)
(x는 엔드이펙터의 위치이다.)(x is the position of the end effector)
(R은 엔드이펙터의 회전각도이다)(R is the rotation angle of the end effector)
(bi는 엔드이펙터 연결점 엔드이펙터 상의 위치이다.)(bi is the position on the end effector junction end effector.)
또한, 본 발명에서는 수평 조절을 위한 추가적인 수단이 후술하는 바와 같이 중량체(365), 랙기어(363), 피니언 기어(364) 및 수평 센서(366)의 형태로 설치될 수 있다. 여기서 수평 센서(366)는 제어부로 수평에서 벗어난 정도의 정보 값을 전달하여 제어부로 하여금 제3윈치 모듈(31)을 가동시켜 제3엔드이펙터(33)의 수평을 유지시켜 줄 수도 있다.In addition, in the present invention, additional means for horizontal adjustment may be installed in the form of a weight body 365, rack gear 363, pinion gear 364 and the horizontal sensor 366, as will be described later. Here, the horizontal sensor 366 may transmit the information value of the degree out of the horizontal to the control unit to enable the control unit to operate the third winch module 31 to maintain the level of the third end effector 33.
즉, 수평 센서(366)가 제공하는 정보를 받는 제어부는 자체 연산으로 제3윈치 모듈(31)을 가동시키거나 또는 제3엔드이펙터(33)의 수평이 유지될 수 있는 방향으로 중량체(365)를 이동시킬 수 있다.That is, the control unit which receives the information provided by the horizontal sensor 366 operates the third winch module 31 by its own calculation or the weight body 365 in the direction in which the third end effector 33 can be horizontally maintained. ) Can be moved.
한편, 본 실시예에 따른 다중 물류이송 케이블 로봇 시스템을 이용한 물류 관리 방법은, 일정한 수평 방향을 x축이라 하고, x축에 직각인 수평 방향을 y축이라 하며, 높이 방향을 z축이라 할 때, x축과 z축 방향을 따라 제1엔드이펙터(13)가 제1 내지 제3케이블(121,122,123)로 가변되게 제1케이블 로봇(10)을 설치하고, 제1엔드이펙터(13)와 일정 간격만큼 이격되는 지점에서 x축과 z축 방향을 따라 제2엔드이펙터(23)가 제4 내지 제6케이블(221,222,223)로 가변될 수 있게 제2케이블 로봇(20)을 설치한 다음, 제1엔드이펙터(13)와 제2엔드이펙터(23) 사이에서 y축과 z축 방향을 따라 제3엔드이펙터(33)가 제7 내지 제9케이블(321,322,323)로 가변될 수 있게 제3케이블 로봇(30)을 설치하는 제1단계와, 제1 및 제2엔드이펙터(13,23)가 정지된 상태에서 제3엔드이펙터(33)를 y축과 z축 방향으로 이동시키면서 화물을 적재 또는 반출하는 제2단계 및, 제1 및 제2엔드이펙터(13,23)를 동시에 x축 및 z축 방향으로 가변시킴으로써 제3엔드이펙터(33)도 함께 x축 및 z축 방향으로 가변시키는 제3단계로 이루어지되, 제3단계에서 제1 및 제2엔드이펙터(13,23)가 제3엔드이펙터(33)를 z축 방향으로 상승시키고, 제1 및 제2엔드이펙터(13,23)를 x축 방향으로 이동시킴으로써, 적재된 화물 상부를 넘는 형태로 제3엔드이펙터(33)를 x축 방향으로 이동시키며, 이 경우 제2단계와 제3단계 간에는 시간의 선후 관계는 없는 것을 특징으로 한다.On the other hand, in the logistics management method using a multi-logistics transport cable robot system according to the present embodiment, when a certain horizontal direction is called the x-axis, a horizontal direction perpendicular to the x-axis is called the y-axis, and the height direction is called a z-axis The first cable robot 10 is installed so that the first end effector 13 is changed into first to third cables 121, 122, and 123 along the x-axis and z-axis directions, and a predetermined distance from the first end effector 13. After installing the second cable robot 20 so that the second end effector 23 can be changed into the fourth to sixth cables 221, 222, and 223 along the x-axis and z-axis directions at the points spaced apart from each other. The third cable robot 30 may vary between the seventh and ninth cables 321, 322, and 323 along the y-axis and z-axis directions between the effector 13 and the second end effector 23. ) And the third end effector 33 in the y-axis and z-axis directions with the first and second end effectors 13 and 23 stopped. The second end effector 33 also moves along the x-axis and z-axis by simultaneously varying the first and second end effectors 13 and 23 in the x-axis and z-axis directions while moving the cargo. The third and second end effectors 13 and 23 raise the third end effector 33 in the z-axis direction, and the first and second end effectors in the third step. By moving (13,23) in the x-axis direction, the third end effector 33 is moved in the x-axis direction over the loaded cargo top, in which case the time relationship between the second and third steps is Characterized in that there is no.
이 경우, 제2단계에서 제3엔드이펙터(33)로 어느 하나의 화물을 화물 스택(S)에 적재 또는 반출함에 있어, 화물이 제3엔드이펙터(33) 내부에서 이동될 때 제3엔드이펙터(33)가 기울어지는 경우, 제3엔드이펙터(33)의 하부에 연결되어 하중 및 균형을 유지시키는 네 개의 제7 및 제8케이블(321,322) 중 일 측의 제7케이블(321)과 타 측의 제8케이블(322)의 권취 또는 권출 길이를 서로 다르게 변화시킴으로써 제3엔드이펙터(33)를 y축을 기준으로 일정 각도만큼 회전되게 조정하여 제3엔드이펙터(33)의 수평을 유지시킬 수 있다.In this case, in loading or unloading any cargo into the cargo stack S in the second end effector 33 in the second step, when the cargo is moved inside the third end effector 33, the third end effector When the inclination (33) is inclined, the seventh cable (321) and the other side of the four of the seventh and eighth cables (321,322) connected to the lower end of the third end effector (33) to maintain the load and balance By varying the winding or unwinding length of the eighth cable 322, the third end effector 33 may be rotated by a predetermined angle with respect to the y-axis to maintain the third end effector 33 horizontally. .
또는, 제1엔드이펙터(13)와 제3엔드이펙터(33) 하부를 연결시키는 제7 및 제8케이블(321,322)과 제2엔드이펙터(23)와 제3엔드이펙터(33) 하부를 연결시키는 제7 및 제8케이블(321,322)의 비율이, 제1엔드이펙터(13)와 제3엔드이펙터(33) 상부를 연결시키는 제9케이블(323)과 제2엔드이펙터(23)와 제3엔드이펙터(33) 상부를 연결시키는 제9케이블(323)의 비율과 다르도록 변화시켜 제3엔드이펙터(33)를 x축을 기준으로 일정 각도만큼 회전되게 조정함으로써, 제3엔드이펙터(33)의 수평을 유지시킬 수 있다.Alternatively, the seventh and eighth cables 321 and 322 connecting lower portions of the first end effector 13 and the third end effector 33 and the lower end of the third end effector 23 and the third end effector 33 may be connected. The ratio of the seventh and eighth cables 321 and 322 is that the ninth cable 323 and the second end effector 23 and the third end connecting the first end effector 13 and the third end effector 33 to the upper portion. By changing the third end effector 33 to be rotated by an angle with respect to the x-axis by changing the ratio of the ninth cable 323 connecting the upper part of the effector 33 to the horizontal level of the third end effector 33. Can be maintained.
특히, 제2단계에서는 도 7에 도시된 바와 같이 제3엔드이펙터(33)에는 제3엔드이펙터(33)에 적재된 화물을 랙에 적재시킬 수 있도록 가변 가능한 지게 발(362)을 설치하고, 지게 발(362)이 화물을 랙 방향으로 이동시킴에 따라 제3엔드이펙터(33)가 기울어질 때, 제3엔드이펙터(33) 저면에 가변 가능한 중량체(365)와 수평 센서(366)를 설치하여, 수평 센서(366)의 측정값에 따라 중량체(365)를 가변시켜 제3엔드이펙터(33)의 수평을 유지시킬 수 있는 추가적인 수단이 마련될 수도 있다.In particular, in the second step, as shown in FIG. 7, a variable fork foot 362 is installed in the third end effector 33 so that the cargo loaded in the third end effector 33 can be loaded into the rack. When the third end effector 33 is tilted as the fork foot 362 moves the cargo in the rack direction, a variable weight 365 and a horizontal sensor 366 are placed on the bottom of the third end effector 33. In addition, an additional means may be provided to vary the weight body 365 in accordance with the measured value of the horizontal sensor 366 to maintain the level of the third end effector 33.
이와 같이 본 발명에서는 화물이 적재되는 랙(S)의 모든 지점을 거치는 형태의 컨베이어 시스템이 설치되지 않고도 훨씬 저렴한 비용으로 자유롭게 제어부로 통제되는 시스템으로 화물을 정확한 위치에 반출 또는 적재시킬 수 있다.As described above, the present invention can carry out or load the cargo in the correct position with a system that is freely controlled by the controller at a much lower cost without installing the conveyor system in the form of passing through all points of the rack S on which the cargo is loaded.
<제2실시예>Second Embodiment
참고로 도 8을 기준으로 할 때, 도 8에 도시된 바와 같이 이하에서는 화물 스택(S) 양측의 두 고공 스탠드(53)을 연결시키는 방향을 x축, x축에 직각이고 병렬로 배열되는 화물 스택(S)을 연결시키는 수평 방향을 y축, 상하 수직 방향을 z축이라 칭하기로 한다.For reference, as shown in FIG. 8, as shown in FIG. 8, in the following, the direction in which two high-altitude stands 53 on both sides of the cargo stack S are connected in a direction perpendicular to the x-axis and the x-axis is arranged in parallel. The horizontal direction connecting the stack S will be referred to as the y-axis, and the vertical direction up and down will be referred to as the z-axis.
본 실시예에 따른 케이블 견인 도르래를 갖는 물류이송 케이블 로봇 시스템은 도 8에 도시된 바와 같이 화물 스택(S) 양측의 고공 스탠드(53)와, 고공 스탠드(53)사이에 설치되는 엔드이펙터(56)와, 고공 스탠드(53)과 엔드이펙터(56)를 연결시키는 구동 케이블(55)과, 구동 케이블(55)을 감거나 풀어내는 복수개의 구동 윈치(51,52)와, 견인 기구(61,62,552)와, 고공 스탠드(53)의 하부마다 설치되어 고공 스탠드(53)를 서로 평행하게 이동시키는 이동체(58) 및, 제어부(미도시)로 구성된다.Logistics transport cable robot system having a cable pulley according to the present embodiment is an end effector 56 installed between the high-rise stand 53 on both sides of the cargo stack (S), the high-level stand 53 as shown in FIG. ), A drive cable 55 connecting the high-altitude stand 53 and the end effector 56, a plurality of drive winches 51 and 52 which wind or unwind the drive cable 55, and a traction mechanism 61. 62,552, the movable body 58 which is provided for each lower part of the air stand 53, and moves the air stand 53 in parallel with each other, and a control part (not shown).
고공 스탠드(53)는 도 8에 도시된 바와 같이 서로 일정 간격 이격되는 복수개의 화물 랙(S1,S2,S3,S4) 중 어느 두 개 사이에 형성되는 복도의 양측에 하나씩 설치된다. 즉, 고공 스탠드(53)는 화물 스택(S)을 사이에 두고 x축 선상에 모두 배치되어 서로 대향된다. 따라서 고공 스탠드(53)는 두 대가 한 세트를 이룬다.As shown in FIG. 8, the altitude stand 53 is installed at each side of each of the corridors formed between any two of the plurality of cargo racks S1, S2, S3, and S4 spaced apart from each other by a predetermined distance. In other words, the high-altitude stand 53 is disposed on the x-axis line with the cargo stack S therebetween to face each other. Therefore, the altitude stand 53 is a set of two.
구동 윈치(51,52)는 도 8에 도시된 바와 같이 하나의 고공 스탠드(53) 마다 복수개가 설치되며, 구동 윈치(51,52)에서 권취 또는 권출되는 케이블은 후술하게 될 엔드이펙터(56)를 구동시킨다.(이하에서는 엔드이펙터(56)의 이동을 위해 엔드이펙터(56)를 직접 구동시키는 윈치를 후술하게 될 ‘견인 윈치(61)’와 구별시키기 위해‘구동 윈치(51,52)’라 칭하기로 한다.)As shown in FIG. 8, a plurality of drive winches 51 and 52 are installed for each air stand 53, and the cable wound or unwound by the drive winches 51 and 52 is an end effector 56 to be described later. (Hereinafter, the drive winches 51 and 52 may be used to distinguish the winch for directly driving the end effector 56 to move the end effector 56 from the towing winch 61 which will be described later.) It will be called.)
엔드이펙터(56)는 도 8에 도시된 바와 같이 서로 대향되는 두 대의 고공 스탠드(53) 사이에 설치되어 x축을 따라 가변된다.As shown in FIG. 8, the end effector 56 is installed between two high-altitude stand 53 facing each other and varies along the x-axis.
구동 케이블(55)(참고로 구동 윈치(51,52)로 권출되거나 권취되는 케이블을 후술하게 될 ‘견인 케이블(552)’과 구별시키기 위해 이하에서는 ‘구동 케이블(55)’이라 칭하기로 한다.)은 엔드이펙터(56)와 구동 윈치(51,52)를 연결시킨다. 구동 윈치(51,52)는 양측의 고공 스탠드(53) 마다 설치되므로 어느 한 측의 구동 윈치(51,52)에서 구동 케이블(55)을 권취시키고 나머지 한 측의 구동 윈치(51,52)에서 구동 케이블(55)을 권출시키면, 권취시키는 구동 윈치(51,52)가 설치된 고공 스탠드(53)를 향하여 엔드이펙터(56)가 가변된다.The drive cable 55 (reference to the cable to be wound or wound by the drive winch (51, 52) will be referred to as the "drive cable 55" hereinafter to distinguish from the 'towing cable 552' which will be described later. ) Connects the end effector 56 and the drive winches 51, 52. Since the drive winches 51 and 52 are installed for each air stand 53 on both sides, the drive winches 51 and 52 are wound around the drive winches 51 and 52, and the drive winches 51 and 52 on the other side. When the drive cable 55 is unwound, the end effector 56 is variable toward the high-altitude stand 53 provided with the drive winches 51 and 52 to be wound.
여기서 구동 윈치(51,52)는 보다 구체적으로 도 8을 기준으로 볼 때 엔드이펙터(56)에 구동 케이블(55)로 직접 연결되는 제1구동 윈치(51)와, 고공 스탠드(53) 상부에 설치된 고공 도르래(54)를 구동 케이블(55)이 통과함으로써 엔드이펙터(56)로 연결되는 제2구동 윈치(52)로 나누어질 수 있다. Herein, the drive winches 51 and 52 are more specifically shown in FIG. 8 based on the first drive winch 51 directly connected to the end effector 56 by the drive cable 55 and the upper stand 53. As the drive cable 55 passes through the installed high pulley 54, it may be divided into a second drive winch 52 connected to the end effector 56.
즉, 도 8에서 제1 및 제2구동 윈치(51,52)는 모두 고공 스탠드(53)의 하부에 설치되며, 엔드이펙터(56)의 상부에 구동 케이블(55)로 직접 연결되는 구동 윈치를 제1구동 윈치(51)라 하고, 구동 케이블(55)이 고공 도르래(54)를 통과하여 엔드이펙터(56)의 하부와 연결되는 구동 윈치를 제2구동 윈치(52)라 칭하기로 한다.That is, in FIG. 8, the first and second driving winches 51 and 52 are both installed at the lower part of the high-altitude stand 53, and the driving winch is directly connected to the upper part of the end effector 56 by the driving cable 55. The first drive winch 51 is referred to as a second drive winch 52, the drive cable 55 is connected to the lower portion of the end effector 56 through the high pulley 54 will be referred to as.
이 경우 제1구동 윈치(51)가 구동 케이블(55)을 권출시키고, 제2구동 윈치(52)가 구동 케이블(55)을 권취시키면 엔드이펙터(56)는 상승되며, 제1구동 윈치(51)가 구동 케이블(55)을 권취시키고, 제2구동 윈치(52)가 구동 케이블(55)을 권출시키면 엔드이펙터(56)는 하강된다. In this case, when the first drive winch 51 unwinds the drive cable 55, and the second drive winch 52 winds up the drive cable 55, the end effector 56 is raised and the first drive winch 51. ) Winds up the drive cable 55, and when the second drive winch 52 unwinds the drive cable 55, the end effector 56 is lowered.
따라서 제1 및 제2구동 윈치(51,52)가 구동 케이블(55)을 권취 또는 권출시키는 정도에 따라 엔드이펙터(56)는 양측 고공 스탠드(53)를 연결시키는 평면상에서 x축과 z축 방향으로 가변된다.Accordingly, the end effector 56 has the x-axis and z-axis directions on a plane connecting the two high-altitude stand 53 in accordance with the extent to which the first and second drive winches 51 and 52 wind up or unwind the drive cable 55. Is variable.
제어부는 제1 및 제2구동 윈치(51,52) 및 후술하게 될 견인 윈치(61)의 회전을 제어하여 최종적으로 엔드이펙터(56)의 이동거리와 방향 및 속도를 제어시킨다.The control unit controls the rotation of the first and second driving winches 51 and 52 and the towing winch 61 to be described later to finally control the moving distance, direction and speed of the end effector 56.
참고로 엔드이펙터(56)와 구동 케이블(55)이 연결되는 형태에는 다양한 방식이 있을 수 있으며, 본 실시예에 따른 실시예에서는 구동 케이블(55)이 엔드이펙터(56)에 설치된 고리 형태로 체결 또는 결속되는 것으로 도시되어 있으나, 회전 관절(revolute joint) 형태로 엔드이펙터(56)와 구동 케이블(55)이 연결될 수도 있다.(미도시)For reference, the end effector 56 and the drive cable 55 may be connected in various ways. In the embodiment according to the present embodiment, the drive cable 55 is fastened in a ring shape installed in the end effector 56. Alternatively, although shown as being coupled, the end effector 56 and the drive cable 55 may be connected in the form of a revolute joint.
견인 윈치(61)는 도 8 내지 도 10에 도시된 바와 같이 제1구동 윈치(51)와 엔드이펙터(56) 상부를 연결시키는 구동 케이블(55)의 일 부위를 외곽 방향으로 견인시켜서, 엔드이펙터(56)를 상승시킨 후, 이동체(58)로 두 대의 고공 스탠드(53)를 동시에 y축 방향으로 이동시킬 때 구동 케이블(55)과 화물 스택(S) 사이에 간섭이 일어나는 것을 방지시키는 작용을 한다.The towing winch 61 pulls a portion of the drive cable 55 connecting the first drive winch 51 and the upper part of the end effector 56 to the outer direction as shown in FIGS. After raising 56, the movable body 58 prevents the interference between the drive cable 55 and the cargo stack S when the two air stands 53 are simultaneously moved in the y-axis direction. do.
여기서 제1구동 윈치(51)와 엔드이펙터(56) 상부를 연결시키는 구동 케이블(55)의 일 부위에는 도 9에 도시된 바와 같이 견인 도르래(62)가 설치되고, 견인 도르래(62)와 견인 윈치(61)는 견인 케이블(552)로 연결된다. 따라서 견인 윈치(61)가 견인 케이블(552)을 권취시키면 견인 도르래(62)가 견인 윈치(61) 방향으로 가변되면서, 견인 도르래(62)가 설치된 지점의 구동 케이블(55)도 함께 견인 윈치(61) 방향으로 당겨서, 도 10에 도시된 바와 같이 구동 케이블(55)이 마치 무대 커튼이 걷히면서 무대 장치가 완전히 드러나는 것처럼 화물 스택(S)이 완전하게 드러남으로써 이동체(58)로 두 대의 고공 스탠드(53)를 동시에 y축 방향으로 이동시킬 때 구동 케이블(55)과 화물 스택(S) 간의 간섭이 방지된다.Here, a portion of the drive cable 55 connecting the first drive winch 51 and the upper end effector 56 is provided with a traction pulley 62 as shown in FIG. 9, and a traction pulley 62 and a traction pulley. Winch 61 is connected by traction cable 552. Therefore, when the towing winch 61 winds up the towing cable 552, the towing pulley 62 is changed in the direction of the towing winch 61, and the driving cable 55 at the point where the towing pulley 62 is installed is also pulled together. In the direction of 61), as shown in FIG. 10, the drive cable 55 is completely exposed to the moving stack 58 as the cargo stack S is completely exposed as if the stage curtain is fully exposed as the stage curtain is rolled up. Interference between the drive cable 55 and the cargo stack S is prevented when the 53 is moved in the y-axis direction at the same time.
이러한 간섭 방지로 인해서, 비로소 도 8에 도시된 화물 스택(S) 중 첫 번째 화물 스택(S)인 S1 정면으로부터 두 번째 화물 스택(S)인 S2 의 정면으로 엔드이펙터(56)을 이동시키는 것이 가능하다.Due to this interference prevention, it is only necessary to move the end effector 56 from the front of the first cargo stack S of the cargo stack S shown in FIG. 8 to the front of the second cargo stack S of S2. It is possible.
참고로, 도 8에서는 견인 케이블(552)과 구동 케이블(55)이 만나는 지점에서 견인 케이블(552)이 구동 케이블(55)과 연결되는 것처럼 보일 수 있으나, 견인 케이블(552)은 도 9 및 도 10에 도시된 바와 같이 구동 케이블(55)이 아니라 견인 도르래(62)에 고정 연결되며, 견인 도르래(62)에 설치된 롤러를 타고 있는 구동 케이블(55)은 견인 도르래(62)를 견인 케이블(552)이 견인시키면, 한 지점이 꺾이는 것처럼 보이게 된다.For reference, in FIG. 8, the tow cable 552 may appear to be connected to the drive cable 55 at the point where the tow cable 552 and the drive cable 55 meet, but the tow cable 552 is shown in FIGS. 9 and FIG. As shown in FIG. 10, the drive cable 55 is fixedly connected to the pulley pulley 62 rather than the drive cable 55, and the drive cable 55 riding the roller installed in the pulley pulley 62 passes the pulley pulley 62 to the pull cable 552. When towing, one spot appears to be bent.
이 경우, 엔드이펙터(56)를 S1의 정면으로부터 S2의 정면으로 이동시키는 것은 고공 스탠드(53) 자체를 제3의 장비를 동원하여 이동시킴으로써 수행할 수도 있으며, 또는 고공 스탠드(53) 하부에 캐스터 또는 유사한 바퀴가 설치됨으로써 사람의 힘이나 장비의 힘으로 고공 스탠드(53)를 밀거나 당겨서 이동시킬 수도 있다.In this case, moving the end effector 56 from the front of the S1 to the front of the S2 may be performed by moving the high-altitude stand 53 itself by mobilizing a third piece of equipment, or under the high-temperature stand 53. Alternatively, a similar wheel may be installed to push or pull the high-altitude stand 53 by human or equipment power.
또는, 가장 바람직하게는 도 8에 도시된 바와 같이 레일(57)이 고공 스탠드(53)의 이동 경로를 따라 설치되어 고공 스탠드(53)가 레일(57)을 따라 이동됨으로써 이루어질 수 있다. Alternatively, as shown in FIG. 8, the rail 57 may be installed along the moving path of the air stand 53 so that the air stand 53 moves along the rail 57.
이때 레일(57)을 따라 고공 스탠드(53)가 이동되기 위해서 고공 스탠드(53) 하부에는 도 8에 도시된 바와 같이 이동체(58)가 설치될 수 있다. 이동체(58)와 레일(57)은 이동체(58)에 설치되는 구동 유닛(미도시)으로 이동될 수 있다. 구동 유닛(미도시)은 일반적인 모터와 차륜이 맞물려 작동되는 형태일 수도 있고 리니어 펄스 추진 형태로 구성될 수도 있으며, 또는 레일(57)이 랙 기어(163)로 형성되고 이동체(58)는 모터로 구동되는 피니언 기어(164)로 이루어지는 형태일 수도 있다.In this case, in order to move the air stand 53 along the rail 57, the movable body 58 may be installed in the lower part of the air stand 53 as shown in FIG. 8. The movable body 58 and the rail 57 may be moved to a driving unit (not shown) installed in the movable body 58. The driving unit (not shown) may be a type in which a wheel is engaged with a general motor and may be configured as a linear pulse propulsion type, or a rail 57 is formed of a rack gear 163 and the movable body 58 is a motor. It may be in the form of the pinion gear 164 is driven.
이 경우, 제어부(미도시)는 이동체(58)의 이동 거리를 제어시킬 수 있으며, 견인 도르래(62)로 구동 케이블(55)이 양측으로 젖혀지면서 구동 케이블(55)과 화물 스택(S) 간의 간섭이 발생되지 않는 시점이 되면 이동체(58)를 이동시킬 수 있다. 이동체(58)의 이동은 화물(F)의 적재 또는 인출이 필요한 지점이 시스템상에서 선택되면 그 지점의 화물 스택(S) 정면으로 목표지점이 정해지게 된다.In this case, the controller (not shown) may control the moving distance of the moving body 58, and the drive cable 55 is flipped to both sides by the pulley pulley 62, and the drive cable 55 and the cargo stack S are separated. When the interference does not occur, the moving body 58 can be moved. The movement of the moving body 58 is a target point is set in front of the cargo stack (S) of the point when the point that needs to load or withdraw the cargo (F) is selected on the system.
한편, 본 발명의 일 실시예에 따른 제1 및 제2구동 윈치(51,52)에는 도 11에 도시된 바와 같이 중심에 배치되는 구동 모터(112)와, 구동 모터(112) 양측에 나란하게 연결되어 구동 모터(112)의 구동에 따라 함께 회전되는 이중 드럼(111)이 설치된다.Meanwhile, in the first and second drive winches 51 and 52 according to an embodiment of the present invention, a drive motor 112 disposed in the center and side surfaces of the drive motor 112 are arranged side by side as shown in FIG. 11. The dual drum 111 is connected to rotate together with the driving of the drive motor 112 is installed.
여기서 이중 드럼(111)은 구동 모터(112) 양측에 드럼이 좌우 대칭으로 하나씩 배치되는 형태이고, 도 8에 도시된 바와 같이 양측의 드럼 각각에서 권취 또는 권출되는 구동 케이블(55)은 서로 함께 엔드이펙터(56)의 균형을 유지시키게 되므로, 제어부(미도시)가 두 대의 드럼을 동기화시킬 필요 없이 하나의 구동 모터(112)가 두 대의 드럼으로 구성되는 이중 드럼(111)을 동시에 회전시킴으로써 엔드이펙터(56)의 균형을 유지시키는 두 구동 케이블(55)이 함께 동일한 속도로 가변되므로 엔드이펙터(56)의 균형이 유지될 수 있다.Here, the double drum 111 has a form in which the drums are arranged on both sides of the driving motor 112 in a symmetrical manner, and as shown in FIG. 8, the drive cables 55 wound or unwound from each of the drums on both sides end with each other. Since the effector 56 is balanced, the end effector is controlled by simultaneously rotating a double drum 111 consisting of two drums with one driving motor 112 without the controller (not shown) synchronizing the two drums. The balance of the end effector 56 can be maintained since the two drive cables 55 that balance 56 are variable at the same speed.
또한, 제1 및 제2구동 윈치(51,52)는 도 5에 도시된 바와 같이 구동 모터(112)와, 구동 모터(112)의 양측에 설치되어 각각 케이블이 감기는 이중 드럼(111)과, 이중 드럼(111)마다 구비되며 가변 풀리(114)와 가이드 풀리(115) 및 가변 풀리(114)를 가변시키는 가변기구로 이루어져 케이블을 이중 드럼(111)에 일정한 간격으로 균일하게 권취 시키는 균일 권취 유닛으로 이루어질 수 있다.In addition, the first and second drive winches 51 and 52 are installed on both sides of the drive motor 112 and the drive motor 112, as shown in FIG. And is provided for each of the double drums 111 and consists of a variable mechanism for varying the variable pulley 114, the guide pulley 115 and the variable pulley 114 to uniformly wind the cable uniformly wound on the double drum 111 at regular intervals. It may consist of units.
이중 드럼(111)에서 구동 케이블(55)이 권취되는 부위에는 구동 케이블(55)이 무질서하게 권취 될 경우 케이블이 일정한 간격으로 나란하게 권취되지 않고 겹쳐지면서 권취됨으로써 회전에 따른 권취 길이가 달라져 엔드이펙터(56)의 정확한 이동을 위한 제어가 이루어질 수 없는 상황이 발생될 수 있다.If the drive cable 55 is wound around the double drum 111 in a randomly wound manner, the cable is not wound side by side at regular intervals. A situation may arise in which control for the correct movement of 56 cannot be made.
따라서 케이블이 가지런하게 병렬로 드럼에 감길 수 있게 권취 직전의 케이블 위치를 가변시켜서 구동 케이블(55)이 이중 드럼(111)에 균일하게 권취될 수 있게 하는 작용을 하는 가변 풀리(114)가 도 11에 도시된 바와 같이 마련된다. 이때 가이드 풀리(115)는 고정된 위치에서 구동 케이블(55)을 가변 풀리(114)로 안내하는 작용을 한다.Therefore, the variable pulley 114 which acts to change the cable position just before winding so that the cable can be wound around the drum in parallel and uniformly wound on the double drum 111 is shown in FIG. It is prepared as shown in. At this time, the guide pulley 115 serves to guide the drive cable 55 to the variable pulley 114 in a fixed position.
가변 풀리(114)이 이중 드럼(111)의 회전에 연동되어 일정한 속도로 가변되면서 이중 드럼(111)의 길이 방향을 따라 가변될 수 있게 하는 작용은 가변 기구가 담당한다.A variable mechanism is responsible for allowing the variable pulley 114 to be variable along a length direction of the double drum 111 while being linked to rotation of the double drum 111.
가변 기구는 도 11에 도시된 바와 같이 이중 드럼(111)에 동축으로 연결되어 회전 구동되는 전단 타이밍 풀리(118a)와, 전단 타이밍 풀리(118a)에 나란하게 배치되는 후단 타이밍 풀리(118b)와, 전단 및 후단 타이밍 풀리(118a,118b)를 연결시켜 동기화시키는 벨트(119)와, 후단 타이밍 풀리(118b)와 동축으로 연결되는 나사회전축(116a)과 나사회전축(116a)을 타고 가변되면서 가변 풀리(114)와 연결되어 가변 풀리(114)와 함께 가변되는 너트블록(116b)으로 이루어지는 볼 스크류로 구성됨으로써, 케이블이 이중 드럼(111)에 감기는 속도에 따라 가변 풀리(114)로 안내되는 케이블 권취 위치가 연동되어, 케이블이 이중 드럼(111)에 균일한 간격으로 권취된다.As shown in FIG. 11, the variable mechanism includes a front timing pulley 118a coaxially driven to the double drum 111 and a rear timing timing pulley 118b disposed in parallel with the front timing pulley 118a. The belt 119 for connecting and synchronizing the front and rear timing pulleys 118a and 118b, and the variable pulley (Variable Pulley) while being mounted on the screw rotation shaft 116a and the screw rotation shaft 116a coaxially connected to the rear timing pulley 118b. It is composed of a ball screw consisting of a nut block 116b connected with the variable pulley 114 is connected to the 114, the cable winding guided to the variable pulley 114 according to the speed of the cable is wound on the double drum (111) The position is interlocked so that the cables are wound around the double drum 111 at even intervals.
특히, 가변 풀리(114)를 이동시키는 너트블록(116b)은 바로 이중 드럼(111)과 연동되어 회전되는 나사회전축(116a)의 회전으로 이동되고, 연동은 전단 및 후단 타이밍 풀리(118a,118b)로 이루어지므로, 전단 및 후단 타이밍 풀리(118a,118b)의 직경에 따라 가변 풀리(114)는 최적의 속도로 가변되어 일정한 간격으로 케이블을 이중 드럼(111)에 권취시킬 수 있다. 따라서 별도의 나사회전축(116a) 구동기구를 별도로 두어 제어부로 연동시키지 않더라도 케이블이 이중 드럼(111)에 일정한 간격으로 권취되는 것이 보장되는 각별한 효과가 있다.In particular, the nut block 116b for moving the variable pulley 114 is directly moved by the rotation of the screw rotation shaft 116a which is rotated in conjunction with the dual drum 111, the linkage is the front and rear timing pulleys 118a, 118b. Since the variable pulley 114 is variable at an optimum speed according to the diameters of the front and rear timing pulleys 118a and 118b, the cable may be wound on the dual drum 111 at regular intervals. Therefore, there is a special effect that the cable is wound around the double drum 111 at regular intervals even if a separate screw rotation shaft 116a driving mechanism is not provided and interlocked with the control unit.
이 경우, 도 11에 도시된 바와 같이, 너트블록(116b)이 나사회전축(116a)과 함께 회전되는 것을 방지시키고 직선 운동을 하게끔 가변지지 기구가 필요할 수 있다. 본 발명의 실시예에서는 너트블록(116b)이 가이드 롤러(117a)에 연결되고, 가이드 롤러(117a)는 가이드 레일(117b)을 따라 피동적으로 직선 가변되게 구성된다. 다만, 공지기술이면 가이드 롤러(117a)와 가이드 레일(117b) 외의 다른 형태의 가변지지 기구가 채택될 수 있다.In this case, as shown in FIG. 11, a variable support mechanism may be necessary to prevent the nut block 116b from rotating together with the screw rotation shaft 116a and to make a linear motion. In an embodiment of the present invention, the nut block 116b is connected to the guide roller 117a, and the guide roller 117a is configured to be passively variable along the guide rail 117b. However, in the known art, a variable support mechanism other than the guide roller 117a and the guide rail 117b may be adopted.
또한, 케이블의 길이 변화를 검출하는 엔코더 또는 텐션을 검출하기 위한 로드 셀(미도시)이 설치될 수 있다. 로드 셀(미도시)에서 검출된 텐션 검출 신호는 후술하게 될 제어부로 전달되며, 제어부는 윈치에서 전달된 케이블의 텐션과 엔코더 정보를 할용하여 엔드이펙터(56)의 정확한 위치 제어가 이루어질 수 있다.In addition, an encoder that detects a change in the length of the cable or a load cell (not shown) for detecting the tension may be installed. The tension detection signal detected by the load cell (not shown) is transmitted to a controller which will be described later, and the controller may control the position of the end effector 56 by using the tension and encoder information of the cable transmitted from the winch.
그리고 구동 모터(112)에는 도 11에 도시된 바와 같이 제어부에서 전달되는 제어신호에 의해 구동 모터(112)의 회전 구동을 제어시키는 모터 드라이버(113)가 설치될 수 있다.In addition, the driving motor 112 may be provided with a motor driver 113 for controlling the rotational drive of the driving motor 112 by a control signal transmitted from the control unit as shown in FIG.
한편, 본 실시예에 따른 물류이송 케이블 로봇 시스템을 이용한 물류 관리 방법은, 도 9 및 도 10을 참고로 하면, 구동 윈치(51,52)로 구동 케이블(55)를 권취 또는 권출시키면서 엔드이펙터(56)을 x축 또는 y축 방향으로 이동시켜 엔드이펙터(56)로 화물 스택(S)에 화물(F)을 적재시키거나 또는 화물 스택(S)으로부터 엔드이펙터(56)로 화물(F)을 인출시키는 단계와, 구동 윈치로 구동 케이블(55)를 권취 또는 권출시키면서 엔드이펙터(56)을 z축 방향으로 상승시켜 화물 스택(S) 상단보다 더 인상시키는 단계와, 견인 윈치(61)로 견인 케이블(552)을 권취시켜 견인 도르래(62)를 고공 스탠드(53)응 향하여 x축 방향으로 견인시키는 단계 및, 이동체(58)로 양측의 고공 스탠드(53)를 동시에 평행하게 y축 방향으로 이동시킴으로써 엔드이펙터(56)를 화물 스택(S) 상단 위로 통과시키는 단계로 이루어진다.Meanwhile, in the logistics management method using the logistics transport cable robot system according to the present embodiment, referring to FIGS. 9 and 10, the end effector (when the drive cable 55 is wound or unwound with the drive winches 51 and 52) may be used. 56) in the x- or y-axis direction to load cargo F into cargo stack S with end effector 56 or to load cargo F from cargo stack S to end effector 56. Withdrawing, raising the end effector 56 in the z-axis direction while pulling or unwinding the drive cable 55 with the drive winch to raise more than the top of the cargo stack S, and towing with the towing winch 61. Winding the cable 552 to pull the pulley 62 in the x-axis direction toward the high-stand stand 53; and moving the high-level stand 53 on both sides in parallel to the y-axis direction with the movable body 58 at the same time. Pass the end effector 56 over the top of the cargo stack (S). It is a step.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명백할 것이다.The present invention described above is not limited to the above-described embodiment and the accompanying drawings, and various substitutions, modifications, and changes are possible within the scope without departing from the technical spirit of the present invention. It will be evident to those who have knowledge of.
[부호의 설명][Description of the code]
S,S1,S2,S3,S4: 화물 스택 F: 화물S, S1, S2, S3, S4: Cargo Stack F: Cargo
10,20,30: 케이블 로봇 11,21,31: 윈치 모듈10,20,30: cable robot 11,21,31: winch module
13,23,33,56: 엔드이펙터 14,24,54: 고공 도르래13,23,33,56: End effectors 14,24,54: High pulley
35: 상부 도르래 36: 적재모듈 35: upper pulley 36: loading module
41: 드럼 42,112 : 구동 모터 41: drum 42,112: drive motor
43,113: 모터 드라이버 44,114: 가변 풀리43,113: Motor driver 44,114: Variable pulley
45,115: 가이드 풀리 46a,116a: 나사회전축45,115: guide pulley 46a, 116a: screw rotation shaft
46b,116b: 너트블록 47a,117a : 가이드 롤러46b and 116b: nut block 47a and 117a: guide roller
47b,117b: 가이드 레일 48a,118a : 전단 타이밍 풀리47b, 117b: guide rails 48a, 118a: shear timing pulley
48b,118b: 후단 타이밍 풀리 49,119: 벨트48b, 118b: Rear timing pulley 49, 119: Belt
51,52: 구동 윈치 53: 고공 스탠드51, 52: Drive Winch 53: High Altitude Stand
55: 구동 케이블 57: 레일55: drive cable 57: rail
58: 이동체 61: 견인 윈치58: mobile 61: towing winch
62: 견인 도르래 111: 이중 드럼62: towing pulley 111: double drum
121,122,123,221,222,223,321,322,323: 케이블121,122,123,221,222,223,321,322,323: cable
361: 지게 발 구동기 362: 지게 발361: Fork Foot Driver 362: Fork Foot
363: 랙 기어 364: 피니언 기어363: rack gear 364: pinion gear
365: 중량체 366: 수평 센서365: weight 366: horizontal sensor
552: 견인 케이블 552: towing cable

Claims (16)

  1. 일정한 내부 공간이 형성되며 프레임 형상을 가지는 제1엔드이펙터(13)와, 제1엔드이펙터(13)의 전방 및 후방에 각각 배치되는 제1윈치 모듈(11) 및, 제1엔드이펙터(13)를 전방과 후방의 제1윈치 모듈(11)에 각각 연결시켜 어느 일방의 제1윈치 모듈(11)에서 권출 되면 나머지 제1윈치 모듈(11)에서 권취 됨으로써 권취 되는 방향으로 제1엔드이펙터(13)를 이동시키는 케이블(121,122,123)로 구성되는 제1케이블 로봇(10)과;The first end effector 13 having a predetermined internal space and having a frame shape, the first winch module 11 disposed at the front and the rear of the first end effector 13, and the first end effector 13, respectively. To the first winch module 11 at the front and the rear, respectively, when unwound by one of the first winch modules 11, the first end effector 13 in the direction of being wound by being wound by the first winch module 11. A first cable robot (10) composed of cables (121, 122, 123) for moving);
    제1엔드이펙터(13) 및 제1윈치 모듈(11)과 동일한 제2엔드이펙터(23)와 제2윈치 모듈(21) 및 케이블(221,222,223)로 구성되며, 제1케이블 로봇(10)과 평행하면서 일정 거리만큼 이격되게 배치되는 제2케이블 로봇(20)과;The second end effector 23, the same as the first end effector 13 and the first winch module 11, the second winch module 21, and the cables 221, 222, and 223, and are parallel to the first cable robot 10. And second cable robot 20 and spaced apart by a predetermined distance;
    제1엔드이펙터(13)와 제2엔드이펙터(23)에 각각 설치되는 제3윈치 모듈(31)과, 제1엔드이펙터(13)와 제2엔드이펙터(23) 사이에 배치되는 제3엔드이펙터(33) 및, 제3윈치모듈(31)과 제3엔드이펙터(33)를 각각 연결시키는 케이블(321,322,323)로 구성되는 제3케이블 로봇(30); 및,A third winch module 31 installed in the first end effector 13 and the second end effector 23, and a third end disposed between the first end effector 13 and the second end effector 23. A third cable robot 30 comprising an effector 33 and cables 321, 322, 323 connecting the third winch module 31 and the third end effector 33, respectively; And,
    제1 내지 제3윈치 모듈(11,21,31)을 제어시키는 제어부;로 이루어지는 물류이송 케이블 로봇 시스템.Logistics transfer cable robot system consisting of; a control unit for controlling the first to third winch modules (11, 21, 31).
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 내지 제3엔드이펙터(13,23,33)의 전방 또는 후방에 설치되는 제1 내지 제3윈치 모듈(11,21,31) 각각은 케이블을 감거나 풀어내는 세 개의 드럼(41)을 포함하고,Each of the first to third winch modules 11, 21, and 31 installed at the front or the rear of the first to third end effectors 13, 23, and 33 may have three drums 41 for winding or unwinding cables. Including,
    세 개의 드럼(41) 중 두 개는 제1 내지 제3엔드이펙터(13,23,33)의 하부 양측에 케이블(121,122,221,222,321,322)로 연결되어 제1 내지 제3엔드이펙터(33)의 하중 및 균형을 유지시키고, 세 개의 드럼(41) 중 나머지 하나는 제1 내지 제3엔드이펙터(13,23,33)의 상부 중심에 케이블(123,223,323)로 연결되어 하중 및 균형을 유지시키며,Two of the three drums 41 are connected to both lower sides of the first to third end effectors 13, 23, and 33 by cables 121, 122, 221, 222, 321, and 322 to balance the load and balance of the first to third end effectors 33. And the other one of the three drums 41 is connected to the upper center of the first to third end effectors 13, 23, 33 by cables 123, 223, 323 to maintain load and balance,
    제1 및 제2엔드이펙터(13,23)의 하부 양측에 연결되는 케이블(121,122,221,222)은 고공 도르래(14,24)를 통과하여 제1 및 제2엔드이펙터(13,23) 하부에 연결됨으로써, 제1 및 제2엔드이펙터(13,23)가 고공 도르래(14,24) 높이까지 현수 가능한 것을 특징으로 하는 물류이송 케이블 로봇 시스템.Cables 121, 122, 221, and 222 connected to the lower sides of the first and second end effectors 13 and 23 are connected to the lower parts of the first and second end effectors 13 and 23 through the high-altitude pulleys 14 and 24. Logistics transfer cable robot system, characterized in that the first and second end effectors (13, 23) can be suspended to the height of the high pulley (14, 24).
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 내지 제3엔드이펙터(13,23,33)의 어느 일방에 설치된 제1 내지 제3윈치 모듈(11,21,31) 각각은 케이블이 감기는 세 개의 원통형상의 드럼(41)과, 드럼(41)마다 구비되어 케이블을 드럼(41)에 균일하게 권취 시키는 가변 풀리(44) 및 가이드 풀리(45)와, 가변 풀리(44)를 드럼(41)의 길이방향을 따라 케이블 권취 속도에 대응되게 이동시키는 가변기구 및, 드럼 구동 모터(42)로 이루어지는 것을 특징으로 하는 물류이송 케이블 로봇 시스템.Each of the first to third winch modules 11, 21, and 31 installed on any one of the first to third end effectors 13, 23, and 33 may include three cylindrical drums 41 to which cables are wound. The variable pulley 44 and the guide pulley 45 which are provided for each drum 41 to wind the cable uniformly to the drum 41, and the variable pulley 44 at the cable winding speed along the longitudinal direction of the drum 41 are provided. Logistic transfer cable robot system comprising a variable mechanism for moving correspondingly, and a drum drive motor (42).
  4. 제3항에 있어서,The method of claim 3,
    상기 가변기구는, 드럼(41)에 동축으로 연결되어 회전 구동되는 전단 타이밍 풀리(48a)와, 전단 타이밍 풀리(48a)에 나란하게 배치되는 후단 타이밍 풀리(48b)와, 전단 및 후단 타이밍 풀리(48a,48b)를 연결시켜 동기화시키는 벨트(49)와, 후단 타이밍 풀리(48b)와 동축으로 연결되는 나사회전축(46a)과 나사회전축(46a)을 타고 가변되면서 가변 풀리(44)와 연결되어 가변 풀리(44)와 함께 가변되는 너트블록(46b)으로 이루어지는 볼 스크류로 구성됨으로써, 케이블이 드럼(41)에 감기는 속도에 따라 가변 풀리(44)로 안내되는 케이블 권취 위치가 연동되어, 케이블이 드럼(41)에 균일한 간격으로 권취되는 것을 특징으로 하는 물류이송 케이블 로봇 시스템.The variable mechanism includes a front timing pulley 48a coaxially connected to the drum 41 for rotational drive, a rear end timing pulley 48b disposed in parallel with the front timing pulley 48a, and a front and rear timing pulley ( 48a and 48b are connected to the belt 49 for synchronizing and the screw rotation shaft 46a and the screw rotation shaft 46a which are coaxially connected to the rear end timing pulley 48b are variable while being connected to the variable pulley 44 By consisting of a ball screw made of a nut block 46b that is variable with the pulley 44, the cable winding position guided to the variable pulley 44 according to the speed at which the cable is wound on the drum 41 is interlocked, so that the cable Logistics transfer cable robot system, characterized in that the drum 41 is wound at a uniform interval.
  5. 제1항에 있어서,The method of claim 1,
    상기 제3엔드이펙터(33)에는 제3엔드이펙터(33)에 적재되는 화물을 이동시켜 화물 랙에 적재시키기 위한 지게 발(362)과, 지게 발(362)을 구동시키는 지게 발 구동기(361)와, 화물의 이동 위치에 따라 제3엔드이펙터(33)가 기울어지는 것을 방지시키기 위하여 제3엔드이펙터(33)의 저면에 설치되어 가변되는 중량체(365)와, 중량체(365)를 가변시키는 중량체(365) 구동기로 구성되는 적재모듈(36)이 설치되는 것을 특징으로 하는 물류이송 케이블 로봇 시스템.The third end effector 33 includes a fork foot 362 for moving the cargo loaded in the third end effector 33 and loading the cargo in the cargo rack, and a fork foot driver 361 for driving the fork foot 362. And a weight body 365 and a weight body 365 installed on the bottom of the third end effector 33 to prevent the third end effector 33 from tilting according to the moving position of the cargo. Logistics transfer cable robot system, characterized in that the loading module (36) consisting of a weight body (365) driver to be installed.
  6. 제1항 내지 제5항 중 어느 하나의 항으로 이루어지는 물류이송 케이블 로봇 시스템을 이용한 물류 관리 방법으로서,Claims 1 to 5 of the logistics management method using the logistics transport cable robot system consisting of any one of the claims,
    일정한 수평 방향을 x축이라 하고, x축에 직각인 수평 방향을 y축이라 하며, 높이 방향을 z축이라 할 때,When the constant horizontal direction is called the x axis, the horizontal direction perpendicular to the x axis is called the y axis, and the height direction is called the z axis,
    x축과 z축 방향을 따라 제1엔드이펙터(13)가 제1 내지 제3케이블(121,122,123)로 가변되게 제1케이블 로봇(10)을 설치하고, 제1엔드이펙터(13)와 일정 간격만큼 이격되는 지점에서 x축과 z축 방향을 따라 제2엔드이펙터(23)가 제4 내지 제6케이블(221,222,223)로 가변될 수 있게 제2케이블 로봇(20)을 설치한 다음, 제1엔드이펙터(13)와 제2엔드이펙터(23) 사이에서 y축과 z축 방향을 따라 제3엔드이펙터(33)가 제7 내지 제9케이블(321,322,323)로 가변될 수 있게 제3케이블 로봇(30)을 설치하는 제1단계와;The first cable robot 10 is installed so that the first end effector 13 is changed into the first to third cables 121, 122, and 123 along the x-axis and z-axis directions, and the first end effector 13 is fixed by a predetermined distance from the first end effector 13. After installing the second cable robot 20 so that the second end effector 23 can be changed into the fourth to sixth cables 221, 222, and 223 along the x and z-axis directions at the spaced apart point, the first end effector The third cable robot 30 allows the third end effector 33 to be varied with the seventh through ninth cables 321, 322, and 323 along the y-axis and z-axis directions between the 13 and the second end effector 23. Installing the first step;
    제1 및 제2엔드이펙터(13,23)가 정지된 상태에서 제3엔드이펙터(33)를 y축과 z축 방향으로 이동시키면서 화물을 적재 또는 반출하는 제2단계; 및,A second step of loading or unloading cargo while moving the third end effector 33 in the y-axis and z-axis directions while the first and second end effectors 13 and 23 are stopped; And,
    제1 및 제2엔드이펙터(13,23)를 동시에 x축 및 z축 방향으로 가변시킴으로써 제3엔드이펙터(33)도 함께 x축 및 z축 방향으로 가변시키는 제3단계;로 이루어지되,By varying the first and second end effector (13, 23) in the x-axis and z-axis direction at the same time, the third end effector (33) is also changed in the x-axis and z-axis direction;
    상기 제3단계에서 제1 및 제2엔드이펙터(13,23)가 제3엔드이펙터(33)를 z축 방향으로 상승시키고, 제1 및 제2엔드이펙터(13,23)를 x축 방향으로 이동시킴으로써, 적재된 화물 상부를 넘는 형태로 제3엔드이펙터(33)를 x축 방향으로 이동시키며,In the third step, the first and second end effectors 13 and 23 raise the third end effector 33 in the z-axis direction, and the first and second end effectors 13 and 23 in the x-axis direction. By moving, the third end effector 33 is moved in the x-axis direction in a form over the loaded cargo top,
    제2단계와 제3단계 간에는 시간의 선후 관계는 없는 것을 특징으로 하는 물류 관리 방법.Logistics management method characterized in that there is no relationship between time between the second step and the third step.
  7. 제6항에 있어서,The method of claim 6,
    상기 제2단계에서 y축 방향을 따라 길게 배치되는 복수개의 화물 스택(S)이 병렬로 이격되게 배치되고, 제3엔드이펙터(33)로 화물을 어느 하나의 화물 스택(S)에 적재 또는 반출함에 있어,In the second step, a plurality of cargo stacks (S) arranged long along the y-axis direction are spaced apart in parallel, and the cargo is loaded or unloaded into any one cargo stack (S) by the third end effector (33). In the ship,
    화물이 제3엔드이펙터(33) 내부에서 이동될 때 제3엔드이펙터(33)가 기울어지는 경우, 제3엔드이펙터(33)의 하부에 연결되어 하중 및 균형을 유지시키는 네 개의 제7 및 제8케이블(321,322) 중 일 측의 제7케이블(321)과 타 측의 제8케이블(322)의 권취 또는 권출 길이를 서로 다르게 변화시킴으로써 제3엔드이펙터(33)를 y축을 기준으로 일정 각도만큼 회전되게 조정하거나,When the third end effector 33 is inclined when the cargo is moved inside the third end effector 33, the four seventh and the fifth are connected to the lower part of the third end effector 33 to maintain load and balance. By varying the winding or unwinding lengths of the seventh cable 321 on one side and the eighth cable 322 on the other side of the eight cables 321 and 322, the third end effector 33 has a predetermined angle with respect to the y axis. To be rotated,
    또는 제1엔드이펙터(13)와 제3엔드이펙터(33) 하부를 연결시키는 제7 및 제8케이블(321,322)과 제2엔드이펙터(23)와 제3엔드이펙터(33) 하부를 연결시키는 제7 및 제8케이블(321,322)의 비율이, 제1엔드이펙터(13)와 제3엔드이펙터(33) 상부를 연결시키는 제9케이블(323)과 제2엔드이펙터(23)와 제3엔드이펙터(33) 상부를 연결시키는 제9케이블(323)의 비율과 다르도록 변화시켜 제3엔드이펙터(33)를 x축을 기준으로 일정 각도만큼 회전되게 조정함으로써,Alternatively, the seventh and eighth cables 321 and 322 connecting the lower end of the first end effector 13 and the third end effector 33 and the lower end of the third end effector 23 and the third end effector 33 are connected to each other. The ratio of the seventh and eighth cables 321 and 322 is that the ninth cable 323 and the second end effector 23 and the third end effector connecting the upper end of the first end effector 13 and the third end effector 33. (33) By changing the third end effector 33 to be rotated by a predetermined angle with respect to the x-axis by changing it so as to be different from the ratio of the ninth cable 323 connecting the upper part,
    제3엔드이펙터(33)의 수평을 유지시키는 것을 특징으로 하는 물류 관리 방법.Logistics management method characterized in that the level of the third end effector (33).
  8. 제7항에 있어서,The method of claim 7, wherein
    제3엔드이펙터(33)에는 제3엔드이펙터(33)에 적재된 화물을 랙에 적재시킬 수 있도록 가변 가능한 지게 발(362)을 설치하고, 지게 발(362)이 화물을 랙 방향으로 이동시킴에 따라 제3엔드이펙터(33)가 기울어질 때, 제3엔드이펙터(33) 저면에 가변 가능한 중량체(365)와 수평 센서(366)를 설치하여, 수평 센서(366)의 측정값에 따라 중량체(365)를 가변시켜 제3엔드이펙터(33)의 수평을 유지시키는 것을 특징으로 하는 물류 관리 방법.In the third end effector 33, a variable fork foot 362 is installed to load the cargo loaded in the third end effector 33 in the rack, and the fork foot 362 moves the cargo in the rack direction. When the third end effector 33 is tilted accordingly, a variable weight body 365 and a horizontal sensor 366 are disposed on the bottom of the third end effector 33, according to the measured value of the horizontal sensor 366. Logistics management method characterized in that the weight of the variable 365 to maintain the level of the third end effector (33).
  9. 일정 간격 이격되어 서로 마주보게 배치되는 두 대의 고공 스탠드(53)와;Two high-altitude stands 53 spaced apart at regular intervals to face each other;
    상기 두 대의 고공 스탠드(53)사이에 배치되어 어느 하나의 고공 스탠드(53)를 향하여 가변되는 엔드이펙터(56)와;An end effector 56 disposed between the two air stands 53 and variable toward the one air stand 53;
    상기 고공 스탠드(53)과 엔드이펙터(56)을 연결시키는 구동 케이블(55)과;A drive cable 55 connecting the high air stand 53 and the end effector 56;
    상기 고공 스탠드(53)에 설치되어 구동 케이블(55)을 감거나 풀어냄으로써 엔드이펙터(56)를 가변시키는 구동 윈치(51,52)와;Drive winches (51, 52) installed in the high-altitude stand (53) for varying the end effector (56) by winding or unwinding the drive cable (55);
    상기 고공 스탠드(53)에 설치되어 구동 케이블(55)의 일정 부위를 고공 스탠드(53) 상부로 끌어당기는 견인 기구(61,62,552)와;A traction mechanism (61, 62, 552) installed in the high air stand (53) to pull a predetermined portion of the drive cable (55) above the high air stand (53);
    상기 고공 스탠드(53)의 하부마다 설치되어 고공 스탠드(53)를 서로 평행하게 이동시키는 이동체(58); 및,A movable body 58 installed at each lower portion of the high stand 53 to move the high stand 53 in parallel with each other; And,
    구동 윈치(51,52)와 견인기구를 제어시키는 제어부;로 구성되는 물류이송 케이블 로봇 시스템.Logistics transfer cable robot system consisting of; a control unit for controlling the drive winch (51, 52) and the traction mechanism.
  10. 제9항에 있어서,The method of claim 9,
    상기 견인 기구(61,62,552)는 고공 스탠드(53) 상부에 설치되는 견인 윈치(61)와,The towing mechanisms 61, 62, and 552 may include a towing winch 61 installed on an upper stand 53.
    상기 구동 케이블(55)의 일정 부위에 설치되어 구동 케이블(55)과 접촉되어 회전되는 견인 도르래(62) 및,A traction pulley 62 installed at a predetermined portion of the drive cable 55 to rotate in contact with the drive cable 55;
    견인 윈치(61)와 견인 도르래(62)를 연결시키며, 견인 윈치(61)로 권취 또는 권출되는 견인 케이블(552)로 구성되는 것을 특징으로 하는 물류이송 케이블 로봇 시스템.Towing winch 61 and the towing pulley 62, logistics transport cable robot system characterized in that consisting of a traction cable 552 is wound or unwound by the traction winch (61).
  11. 제9항에 있어서,The method of claim 9,
    상기 구동 윈치(51,52)는 고공 스탠드(53)의 하부에 설치되고, 일부 구동 윈치(51)는 구동 케이블(55)로 엔드이펙터(56)와 직접 연결되며, 나머지 구동 윈치(52)는 구동 케이블(55)이 고공 스탠드(53) 상부에 설치된 고공 롤러를 거쳐서 엔드이펙터(56)로 연결되고,The drive winches 51 and 52 are installed below the high-altitude stand 53, and some drive winches 51 are directly connected to the end effector 56 by a drive cable 55, and the other drive winches 52 are connected to the end effector 56. The drive cable 55 is connected to the end effector 56 via a high-speed roller installed on the high-stand stand 53,
    엔드이펙터(56)와 일부 구동 윈치(51)를 직접 연결시키는 구동 케이블(55)의 소정 위치에는 구동 케이블(55)의 가변에 따라 회전되는 견인 도르래(62)가 설치되며, At a predetermined position of the drive cable 55 directly connecting the end effector 56 and some drive winches 51, a traction pulley 62 is rotated according to the variable of the drive cable 55.
    상기 견인 윈치(61)가 견인 케이블(552)을 권취 시켜, 견인 도르래(62)가 구동 케이블(55)을 견인시킴으로써, 상기 이동체(58)로 인해 마주보는 고공 스탠드(53)가 동시에 이동될 때 구동 케이블(55)과 화물 스택(S) 간의 간섭이 방지되는 것을 특징으로 하는 물류이송 케이블 로봇 시스템.When the towing winch 61 winds up the traction cable 552, and the traction pulley 62 pulls the drive cable 55, when the high-altitude stand 53 facing the movable body 58 is moved at the same time. Logistics transfer cable robot system, characterized in that the interference between the drive cable 55 and the cargo stack (S) is prevented.
  12. 제9항에 있어서,The method of claim 9,
    상기 물류 창고의 양측에 각각 배치되는 고공 스탠드(53) 하부에는 서로 평행한 방향으로 레일(57)이 각각 설치되어, 상기 이동체(58)가 레일(57)을 따라 이동되는 것을 특징으로 하는 물류이송 케이블 로봇 시스템.The rails 57 are installed in parallel to each other in the lower part of the air stand 53 respectively disposed on both sides of the distribution warehouse, and the moving body 58 is moved along the rails 57. Cable robotic system.
  13. 제10항에 있어서,The method of claim 10,
    상기 구동 윈치(51,52)에 설치되어 구동 케이블(55)을 감거나 풀어내는 드럼은, 중심에 배치되는 구동 모터(112)와, 구동 모터(112) 양측에 나란하게 연결되어 구동 모터(112)의 구동에 따라 함께 회전되는 이중 드럼(111)인 것을 특징으로 하는 물류이송 케이블 로봇 시스템.The drums installed on the driving winches 51 and 52 to wind or unwind the drive cables 55 may be connected to the drive motor 112 disposed at the center and side by side to both sides of the drive motor 112. Logistics transfer cable robot system, characterized in that the double drum (111) rotated together in accordance with the drive.
  14. 제13항에 있어서,The method of claim 13,
    상기 구동 윈치(51,52)는 구동 모터(112)와, 구동 모터(112)의 양측에 설치되어 각각 케이블이 감기는 이중 드럼(111)과, 이중 드럼(111)마다 구비되어 구동 케이블(55)을 이중 드럼(111)에 일정 간격으로 권취시키는 가변 풀리(114) 및 구동 케이블(55)을 가변 풀리(114)로 전달시키는 가이드 풀리(115)와, 가변 풀리(114)를 가변시키는 가변기구(116a,116b,118a,118b,119)로 이루어지는 것을 특징으로 하는 물류이송 케이블 로봇 시스템.The drive winches 51 and 52 are provided at both sides of the drive motor 112, the drive motor 112, and the double drums 111 to which the cables are wound, and each of the double drums 111, and the drive cables 55. ), A variable pulley 114 for winding the double drum 111 at regular intervals, a guide pulley 115 for transmitting the drive cable 55 to the variable pulley 114, and a variable mechanism for varying the variable pulley 114. Logistics transfer cable robot system, characterized in that consisting of (116a, 116b, 118a, 118b, 119).
  15. 제14항에 있어서,The method of claim 14,
    상기 가변 기구는 이중 드럼(111)에 동축으로 연결되어 회전 구동되는 전단 타이밍 풀리(118a)와, 전단 타이밍 풀리(118a)에 나란하게 배치되는 후단 타이밍 풀리(118b)와, 전단 및 후단 타이밍 풀리(118a,118b)를 연결시켜 동기화시키는 벨트(119)와, 후단 타이밍 풀리(118b)와 동축으로 연결되는 나사회전축(116a)과 나사회전축(116a)을 타고 가변되면서 가변 풀리(114)와 연결되어 가변 풀리(114)와 함께 가변되는 너트블록(116b)으로 이루어지는 볼 스크류로 구성됨으로써, 케이블이 이중 드럼(111)에 감기는 속도에 따라 가변 풀리(114)로 안내되는 케이블 권취 위치가 연동되어, 케이블이 이중 드럼(111)에 균일한 간격으로 권취되는 것을 특징으로 하는 물류이송 케이블 로봇 시스템.The variable mechanism includes a front timing pulley 118a coaxially connected to the dual drum 111 to be driven in rotation, a rear end timing pulley 118b disposed in parallel to the front timing pulley 118a, and a front and rear timing pulley ( 118a and 118b are connected to the belt 119 for synchronizing and the screw rotation shaft 116a and the screw rotation shaft 116a which are coaxially connected to the rear end timing pulley 118b and are connected to the variable pulley 114 to be variable. By consisting of a ball screw made of a nut block 116b that is variable with the pulley 114, the cable winding position guided to the variable pulley 114 in accordance with the speed at which the cable is wound on the double drum 111 is interlocked, the cable Logistics transfer cable robot system characterized in that the double drum 111 is wound at a uniform interval.
  16. 제9항 내지 제15항 중 어느 하나의 항으로 이루어지는 물류이송 케이블 로봇 시스템을 이용한 물류 관리 방법으로서,A logistics management method using a logistics transport cable robot system comprising any one of claims 9 to 15,
    복수개의 화물 스택(S)이 길이 방향이 평행하게 병렬로 배치되어 화물 스택(S) 간에 평행한 다수의 복도가 형성되는 물류 창고에서, 화물 스택(S)의 길이 방향을 x축이라 두고, 화물 스택(S) 간을 연결시키는 방향을 y축이라 두며, 수직 방향을 z방향이라 둘 때,In a distribution warehouse in which a plurality of cargo stacks S are arranged in parallel in parallel in the longitudinal direction to form a plurality of corridors parallel to the cargo stacks S, the length of the cargo stack S is referred to as an x-axis, When the direction connecting the stacks (S) is called the y-axis, and the vertical direction is called the z-direction,
    상기 구동 윈치로 구동 케이블(55)을 권취 또는 권출시키면서 엔드이펙터(56)을 x축 또는 z축 방향으로 이동시켜 엔드이펙터(56)로 화물 스택(S)에 화물(F)을 적재시키거나 또는 화물 스택(S)으로부터 엔드이펙터(56)로 화물(F)을 인출시키는 단계와;While moving or winding the drive cable 55 with the drive winch to move the end effector 56 in the x-axis or z-axis direction to load the cargo (F) in the cargo stack (S) with the end effector 56 or Withdrawing cargo F from cargo stack S to end effector 56;
    상기 구동 윈치로 구동 케이블(55)을 권취 또는 권출시키면서 엔드이펙터(56)을 z축 방향으로 상승시켜 화물 스택(S) 상단보다 더 인상시키는 단계와;Lifting the end effector 56 in the z-axis direction while winding or unwinding the drive cable 55 with the drive winch to raise more than the top of the cargo stack S;
    상기 견인 윈치(61)로 견인 케이블(552)을 권취시켜 견인 도르래(62)를 고공 스탠드(53)을 향하여 x축 방향으로 견인시키는 단계; 및,Winding the traction cable 552 with the traction winch 61 to pull the traction pulley 62 toward the high-altitude stand 53 in the x-axis direction; And,
    상기 이동체(58)로 양측의 고공 스탠드(53)를 y축 방향으로 이동시킴으로써 엔드이펙터(56)을 화물 스택(S) 상단 위로 통과시키는 단계;로 이루어지는 물류이송 케이블 로봇 시스템을 이용한 물류 관리 방법.Passing the end effector 56 over the upper end of the cargo stack (S) by moving the high-altitude stand (53) on both sides with the movable body (58) in the y-axis direction; logistics management method using a logistics transport cable robot system.
PCT/KR2018/007034 2018-04-25 2018-06-21 Distribution/transportation cable robot system and method for managing distribution by using same WO2019208871A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0047920 2018-04-25
KR1020180047919A KR102062516B1 (en) 2018-04-25 2018-04-25 Multi cable robot freight distribution system and freight distribution method using it
KR10-2018-0047919 2018-04-25
KR1020180047920A KR102124388B1 (en) 2018-04-25 2018-04-25 Freight distribution cable robot system having a pulley and freight distribution method using it

Publications (1)

Publication Number Publication Date
WO2019208871A1 true WO2019208871A1 (en) 2019-10-31

Family

ID=68295620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007034 WO2019208871A1 (en) 2018-04-25 2018-06-21 Distribution/transportation cable robot system and method for managing distribution by using same

Country Status (1)

Country Link
WO (1) WO2019208871A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650035A (en) * 2021-09-16 2021-11-16 南京信息工程大学 Rope-driven automobile gear shifting robot

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504397A (en) * 2010-11-24 2014-02-20 サムスン ヘビー インダストリーズ カンパニー リミテッド Control system and method of autonomous mobile device using wire
KR20140065058A (en) * 2012-11-21 2014-05-29 주식회사 에스에프에이 Multitasking stoker system
KR20140118309A (en) * 2013-03-28 2014-10-08 현대제철 주식회사 Transfer jig for parts of a car body
KR101667274B1 (en) * 2015-09-24 2016-10-19 대우조선해양 주식회사 Cable robot for back heating
KR20170137504A (en) * 2016-06-03 2017-12-13 전남대학교산학협력단 Winch module for a cable robot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504397A (en) * 2010-11-24 2014-02-20 サムスン ヘビー インダストリーズ カンパニー リミテッド Control system and method of autonomous mobile device using wire
KR20140065058A (en) * 2012-11-21 2014-05-29 주식회사 에스에프에이 Multitasking stoker system
KR20140118309A (en) * 2013-03-28 2014-10-08 현대제철 주식회사 Transfer jig for parts of a car body
KR101667274B1 (en) * 2015-09-24 2016-10-19 대우조선해양 주식회사 Cable robot for back heating
KR20170137504A (en) * 2016-06-03 2017-12-13 전남대학교산학협력단 Winch module for a cable robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650035A (en) * 2021-09-16 2021-11-16 南京信息工程大学 Rope-driven automobile gear shifting robot

Similar Documents

Publication Publication Date Title
SU1711666A3 (en) Conveyer-type device for loading and discharging cargoes from ships
JP2004284704A (en) Article conveyance device
JP2004284702A (en) Article conveyance device
WO2013133521A1 (en) Transportation device and transportation system using same
CN109843751B (en) Overhead transport vehicle and transport system
KR102253938B1 (en) Return system and return method
WO2019213902A1 (en) Goods loading and unloading vehicle, goods transfer system and method for automatically adjusting layout of goods
WO2019213903A1 (en) Freight loading and unloading vehicle, freight transport system, and unloading method of freight loading and unloading vehicle
WO2020004777A1 (en) Main driving device for stacker crane
WO2019208871A1 (en) Distribution/transportation cable robot system and method for managing distribution by using same
EP0275004A1 (en) Automatic silo for automobiles
KR20220130218A (en) lifting of containers
WO2019213900A1 (en) Cargo loading/unloading vehicle, cargo transfer system, and automatic leveling method for cargo loading/unloading vehicle
CN110789906A (en) Stacker for automatically storing and taking single or multiple horizontal steel coils for iron core column raw material steel coils
WO2023063745A1 (en) Single load lift device
WO2021002732A1 (en) Counterweight roping device and elevator roping device comprising same
KR102062516B1 (en) Multi cable robot freight distribution system and freight distribution method using it
CN113348140B (en) storage system
WO2020004887A1 (en) Intelligent vehicle transfer robot for executing parking and unparking by loading vehicle
WO2017217820A1 (en) Storehouse in which containers are to be loaded
KR102124388B1 (en) Freight distribution cable robot system having a pulley and freight distribution method using it
US11802030B2 (en) Lifting device
WO2011025164A2 (en) Container loading system capable of random loading and carrying
WO2022080584A1 (en) Multistage load-adjustable moving cart
TW202241781A (en) Carrier and mobile lifting conveyor containing the carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18915876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18915876

Country of ref document: EP

Kind code of ref document: A1