WO2024085274A1 - 3d printer - Google Patents

3d printer Download PDF

Info

Publication number
WO2024085274A1
WO2024085274A1 PCT/KR2022/016006 KR2022016006W WO2024085274A1 WO 2024085274 A1 WO2024085274 A1 WO 2024085274A1 KR 2022016006 W KR2022016006 W KR 2022016006W WO 2024085274 A1 WO2024085274 A1 WO 2024085274A1
Authority
WO
WIPO (PCT)
Prior art keywords
motion control
control motor
filament
unit
printer
Prior art date
Application number
PCT/KR2022/016006
Other languages
French (fr)
Korean (ko)
Inventor
양태양
조윤익
이주연
우휘인
Original Assignee
주식회사 포커스비전
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포커스비전 filed Critical 주식회사 포커스비전
Priority to PCT/KR2022/016006 priority Critical patent/WO2024085274A1/en
Publication of WO2024085274A1 publication Critical patent/WO2024085274A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Definitions

  • the present invention relates to a 3D printer, and more specifically, to an FDM type 3D printer that simultaneously has the precision of a direct drive type and the high speed of a Bowden type.
  • 3D printers are largely divided into FDM (Fused Deposition Modeling), SLA (Stereolithography Apparatus), SLS (Selective Laser Simtering), and DLP (Direct Light Processing) methods depending on the method of producing three-dimensional output.
  • FDM Freused Deposition Modeling
  • SLA Stepolithography Apparatus
  • SLS Selective Laser Simtering
  • DLP Direct Light Processing
  • the FDM method is a method of melting and stacking plastic filaments such as PLA (Poly Latic Acid) or ABS (Acryontrie Butadiene Styrene) in a printer head. More specifically, it creates a three-dimensional shape by stacking melted and ejected plastic filaments in layers of 0.05 to 0.4 mm, which are thinner than paper.
  • PLA Poly Latic Acid
  • ABS Advanced Chemical Butadiene Styrene
  • an FDM-type 3D printer consists of a printer head that melts and discharges the print material, a bed on which the discharged print material is piled, and a driving unit to move the print head and the bed.
  • a 2-dimensional output is created.
  • a three-dimensional printout with a height along the z-axis is created.
  • the printing principle of an FDM-type 3D printer is to repeat these operations to create a three-dimensional shape of the desired shape.
  • the printer head includes an extruder, and the extruder plays an important role in supplying raw plastic filament to the nozzle and melting and seating the filament on the bed.
  • the direct extruder has an extrusion motor located right above the nozzle and pushes out the filament directly, while the Bowden separates the filament supply device from the nozzle and extrudes the head using a Teflon tube to supply the filament. It is a way to connect wealth. The difference between these two extruders is the location of the motor that pushes the filament.
  • the distance between the filament and the nozzle is short, so the filament is supplied stably and the output quality is good.
  • the extrusion motor is mounted on the head, so the load on the head device itself increases, so the head device can be moved up and down or left and right. Not only does it require a large amount of power to transfer it, but as the load on the head device increases, it has the disadvantage of not being able to achieve high speeds and being vulnerable to vibration.
  • the Bowden extruder has separate extrusion motors and heads, so the nozzle part is light and can move at high speeds, but the distance between the extrusion part and the head is long, so the load on the extrusion motor is high, and the supply of filament is unstable, leading to quality deterioration. There are disadvantages that arise.
  • the present invention was developed to solve the above problems, and its purpose is to provide a 3D printer with a new drive method that has both the precision of the direct drive method and the high speed of the Bowden method.
  • the present invention reduces the load on the printer head by installing the drive motor unit that controls the supply of filament (molding material filament, supporter filament) supplied to the printer head unit outside the 3D printer, rather than providing it in the printer head unit itself.
  • the purpose is to provide a 3D printer that can not only reduce the power required to move the printer head, but also increase the output speed by reducing the weight of the printer head.
  • the present invention allows multiple motors to always operate simultaneously to perform one motion, so even if multiple motors are provided, even if the same number of motors is used compared to existing 3D printers in which one motor performs one motion, The goal is to provide a 3D printer that can produce much greater power.
  • a 3D printer includes a casing portion providing an internal space; A work bed portion installed to be movable in the Z-axis direction within the interior space and providing a contact surface on which filaments are stacked to produce a molded sculpture; a printer head unit spaced apart from an upper part of the work bed unit and movable in at least one of the X-axis and Y-axis directions; a motion control motor unit including N motion control motors that generate rotational force to move the printer head unit in at least one of the X-axis and Y-axis directions; a timing belt unit including N timing belts connecting the print head unit and the motion control motor unit to convert the rotational force of the motion control motor unit into movement in at least one of the X-axis and Y-axis directions; a drive motor unit installed on one of the outer sides of the casing unit and extruding filament to be supplied to the printer head unit; Control the motion control motor unit and the drive motor unit to move
  • a motion included in the motion control motor unit to determine at least one of a motion consisting of a combination of X-axis movement of the printer head, Y-axis movement, extrusion of the filament, and X-axis movement, Y-axis movement, and extrusion of the filament. It includes a processor that calculates the rotation direction and rotation speed of each control motor, and the printer head unit extrudes the filament supplied from the drive motor by a motion control motor unit and a timing belt unit that operate according to the determined motion. Do it as
  • the printer head unit includes a head unit that provides a movement path for the N timing belts and moves the filament in a downward direction; A sliding support part installed on both sides of the top of the casing part so that one side and the other side can move up and down along the Y-axis direction, and moves the head part left and right along the X-axis direction; a heating unit that supplies heat to the filament moved by the head unit to cause melting; and a nozzle unit having a nozzle through which the filament raw material molten by the heating unit is output.
  • the head portion includes an upper frame; a lower frame spaced apart from the upper frame to face the upper frame; And between the upper frame and the lower frame, a plurality of pulleys arranged parallel to each other and spaced apart from each other so as to be perpendicular to the facing surfaces of each of the upper frame and the lower frame, wherein the plurality of pulleys are, the N At least one idler pulley providing a movement path for the timing belt of the dog; And at least one extruder pulley that extrudes the filament using coaxial heterogeneous torque according to the power of the N timing belts.
  • the at least one extruder pulley outputs the filament using coaxial heterogeneous torque according to the power of the N timing belts, and includes a first extruder pulley for extruding a molding material filament and a second extruder for extruding a support filament. It is characterized by including an extruder pulley.
  • Each of the first and second extruder pulleys consists of at least two belt pulley layers to which a timing belt is attached, and an extruder for extruding a filament, and the extruder is connected to the motion control motor unit. Power is transmitted from two timing belts to extrude filament when each belt pulley layer rotates in different directions, and is characterized as a tilting screw-based extruder or gear-based extruder.
  • the motion control motor unit may be provided with N motion control motors (N is a natural number of 2 or more), and when N is 2, it includes first and second motion control motors, and the first motion control motor and the second motion control motor.
  • N motion control motors position-related content deleted, position information described in the specification
  • 2 Motion control motors simultaneously rotate in the same direction, move the head unit in the X-axis direction and Y-axis direction, and the N timing belts are connected to the first and It includes a second timing belt, wherein the first timing belt transmits power of the first motion control motor, and the second timing belt transmits power of the second motion control motor.
  • the motion control motor unit includes first to fourth motion control motors, the N timing belts include first to fourth timing belts, and the first motion control motor and the second
  • the motion control motor rotates simultaneously in the same direction (deleted information related to location, description of location in the specification), it moves the head in one of the X-axis direction and the Y-axis direction (four motors move each axis simultaneously).
  • the responsible configuration is described in claim 11)
  • the third motion control motor and the fourth motion control motor rotate to perform length compensation of the third timing belt and the fourth timing belt, respectively
  • the third motion control motor rotates to perform length compensation of the third timing belt and the fourth timing belt, respectively.
  • the control motor and the fourth motion control motor (deleted content related to position, description of position in the specification) rotate simultaneously in the same direction, the head moves in a different direction, and the first motion control motor and the second motion control motor
  • the control motor rotates to perform length compensation of the first timing belt and the second timing belt, respectively, the first timing belt transmits power of the first motion control motor, and the second timing belt transmits the power of the second timing belt.
  • the third timing belt transmits the power of the motion control motor, and the fourth timing belt transmits the power of the fourth motion control motor.
  • the first motion control motor and the second motion control motor rotate simultaneously in the same direction, but when their rotational speeds (number of rotations) are different from each other or when they rotate simultaneously in opposite directions, the filament supplied to the head is extruded.
  • the third motion control motor and the fourth motion control motor rotate simultaneously in the same direction, but when the rotation speeds (number of rotations) are different from each other or when they rotate simultaneously in opposite directions, the filament supplied to the head is extruded. It is characterized by being
  • the at least one idler pulley is composed of N layers in which N idlers are stacked on a coaxial line, and a timing belt is attached to each idler of each layer.
  • the at least one idler pulley may include four idler pulleys that provide a movement path for the N timing belts.
  • the motion control motor unit includes first to fourth motion control motors
  • the N timing belts include first to fourth timing belts
  • the first to fourth motion control motors is characterized in that one motion determined from the above process is simultaneously operated and performed, and when an axis is moved, movement to the corresponding axis is performed simultaneously.
  • the load on the printer head unit is lightened, enabling a fast moving speed.
  • the maximum output speed of the 3D printer can be improved and work time can be reduced.
  • the movement of the printer head is determined by using a plurality of motors simultaneously, thereby enabling precise control of the movement of the printer head.
  • the power of the motor is transmitted using a timing belt connecting a plurality of motors and the printer head, and the filament is immediately extruded as in a direct connection method using the transmitted power of the motor, thereby eliminating the tension accumulated in the filament. there is.
  • Figure 1 is a block diagram schematically showing the overall configuration of a 3D printer according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing the detailed configuration of the printer head unit 300 shown in FIG. 1.
  • FIG. 3 is a diagram schematically showing a first embodiment of the head portion 310 shown in FIG. 2, where (a) is a perspective view and (b) is a plan view.
  • FIG. 4 is a diagram schematically showing a second embodiment of the head unit 310 shown in FIG. 2, where (a) is a perspective view and (b) is a diagram showing a timing belt attached to the head unit.
  • FIG. 5 is an example diagram for explaining the principle of movement of the head portion 810 shown in FIG. 3 in the X-axis direction.
  • FIG. 6 is an example diagram for explaining the principle of movement of the head portion 810 shown in FIG. 3 in the Y-axis direction.
  • FIG. 7 is an example diagram for explaining the principle of movement of the head portion 910 shown in FIG. 4 in the X-axis direction.
  • FIG. 8 is an example diagram for explaining the principle of movement of the head portion 910 shown in FIG. 4 in the Y-axis direction.
  • Figure 9 is an example diagram for explaining the principle of extruding filament from the head shown in Figure 4.
  • a 3D printer includes a casing portion providing an internal space; A work bed portion installed to be movable in the Z-axis direction within the interior space and providing a contact surface on which filaments are stacked to produce a molded sculpture; a printer head unit spaced apart from an upper part of the work bed unit and movable in at least one of the X-axis and Y-axis directions; a motion control motor unit including N motion control motors that generate rotational force to move the printer head unit in at least one of the X-axis and Y-axis directions; a timing belt unit including N timing belts connecting the print head unit and the motion control motor unit to convert the rotational force of the motion control motor unit into movement in at least one of the X-axis and Y-axis directions; a drive motor unit installed on one of the outer sides of the casing unit and extruding filament to be supplied to the printer head unit; Control the motion control motor unit and the drive motor unit to move the printer head unit and output the filament,
  • a motion included in the motion control motor unit to determine at least one of a motion consisting of a combination of X-axis movement of the printer head, Y-axis movement, extrusion of the filament, and X-axis movement, Y-axis movement, and extrusion of the filament. It includes a processor that calculates the rotation direction and rotation speed of each control motor, and the printer head unit extrudes the filament supplied from the drive motor by a motion control motor unit and a timing belt unit that operate according to the determined motion. Do it as
  • first, second, etc. may be used to describe various components, but the components are not limited by the terms, and the terms are used for the purpose of distinguishing one component from another component. It is used only as
  • Figure 1 is a block diagram schematically showing the overall configuration of a 3D printer according to an embodiment of the present invention.
  • the 3D printer 1 includes a casing unit 100, a work bed unit 200, a printer head unit 300, a motion control motor unit 400, and a timing belt unit. It includes at least 500, a drive motor unit 600, and a processor 700.
  • the casing part 100 provides an internal space consisting of an upper surface, a lower surface, and a side surface, and the internal space may be composed of a plurality of frames to have a box shape.
  • the work bed unit 200 is installed to be movable in the Z-axis direction within the internal space, and filaments are stacked on the top to provide a contact surface on which a molded sculpture is manufactured.
  • the printer head unit 300 is disposed on the upper part of the work bed unit 200 to be spaced apart from the contact surface, and is installed to be movable in at least one of the X-axis direction and the Y-axis direction. That is, the printer head unit 300 can not only move in the X-axis direction or the Y-axis direction, but also move diagonally according to the (x, y) coordinates of the movement target point.
  • the motion control motor unit 400 generates a rotational force to move the printer head unit 300 in at least one of the X-axis direction and the Y-axis direction, and is provided with N (N is a natural number of 2 or more) motion control motors. It can be.
  • N is a natural number of 2 or more
  • the printer head unit 300 can be moved in the X-axis direction and/or the Y-axis direction using two timing belts.
  • the motion control motor unit 400 is equipped with four motion control motors
  • the printer head unit 300 can be moved in the X-axis direction and/or Y-axis direction using four timing belts. there is.
  • This motion control motor unit 400 is not a set of two motion control motors responsible for moving one axis, but a plurality of sets, for example, two sets (four motion control motors) are responsible for moving one axis. It can also be implemented to take charge. That is, multiple motor sets can serve as motors for one core XY (core xy).
  • the timing belt unit 500 is a printer head unit 300 and a motion control motor in order to convert the rotational force of each motion control motor included in the motion control motor unit 400 into movement in the X-axis direction and/or Y-axis direction.
  • Each motion control motor of the unit 400 is connected, and N timing belts can be provided as many as the number of motion control motors.
  • one timing belt connects two motion control motors and the printer head unit 300 to form one loop, and transmits the rotational force starting from the first motion control motor to the printer head unit 300.
  • the printer head unit 300 uses this to output filament to the work bed unit 200, and the timing belt passing through the printer head unit 300 passes through the second motion control motor and returns to the first motion control motor. .
  • the first motion control motor and the second motion control motor rotate together and the tension of the timing belt can be kept constant.
  • the drive motor unit 600 is installed on one of the outer sides of the casing unit 100 and extrudes the filament so that it is supplied to the printer head unit 300.
  • the filament may be of two types: a molding material filament and a support filament, and the two filaments may be compressed and supplied to the printer head unit 300, respectively.
  • the molding material filament is the raw material that makes up the molded sculpture to be manufactured
  • the support filament is used to support the contact surface between the molded sculpture being manufactured and the work bed portion 200 or the internal space and shape of the molded sculpture and is soluble in water to be removed after the work is completed. Plastics, etc. are used.
  • the support filament can be easily removed using a plastic material that dissolves in water, thereby ensuring a smooth surface of the molded sculpture.
  • the drive motor unit 600 that supplies the filament is installed externally, and the head unit that performs the extrusion function of the filament is located closest to the heating unit to lighten the weight and at the same time reduce the tension accumulated in the filament.
  • the ejection of the filament can be stopped as soon as the extrusion of the filament stops.
  • the processor 700 controls the motion control motor unit 400 and the drive motor unit 600, respectively, for movement of the printer head unit 300 and output of filament, and the printer head unit 300 moves (x, y). ) coordinates are calculated, and the rotation direction, rotation speed, and number of rotations of each motion control motor provided in the motion control motor unit 400 are calculated so that the filament is extruded and output based on the calculated (x, y) coordinates.
  • the processor 700 can control the movement path of the timing belt in real time by optimizing the calculation formula. Through optimization of these mathematical calculations, the length and number of path changes of the timing belt can be reduced. For example, the movement path of the timing belt shown in Figures 7 and 8 is more optimized than the movement path of the timing belt shown in Figures 5 and 6.
  • the processor 700 requires a large number of calculations because it must simultaneously drive multiple motion control motors, for example, two motion control motors, four motion control motors, etc., so it can be implemented as a 32-bit-based computing system. .
  • the 3D printer according to the present invention is an extruder using coaxial heterogeneous torque by installing a drive motor unit externally that extrudes filament and supplies it to the printer head, and connects the motor and the printer head unit using a timing belt. has been implemented, allowing filament to be output like a direct drive method.
  • FIG. 2 is a block diagram showing the detailed configuration of the printer head unit 300 shown in FIG. 1.
  • the printer head unit 300 includes at least a head unit 310, a sliding support unit 320, a heating unit 330, and a nozzle unit 340. It is composed.
  • the head portion 310 provides a movement path for the N timing belts 500 and moves the filament in the downward direction.
  • the head portion 300 includes at least an upper frame 311, an idler pulley 312, an extruder pulley 313, and a lower frame 314.
  • the head portion 300 is spaced apart from each other in parallel between the upper frame 311 and the lower frame 314 arranged to face each other, so as to be perpendicular to the facing surfaces of the upper frame 311 and the lower frame 314, respectively. It includes a plurality of pulleys that are arranged.
  • the plurality of pulleys include at least one idler pulley that provides a movement path for the N timing belts, and at least one extruder pulley that outputs the filament to the bottom using coaxial heterogeneous torque according to the power of the N timing belts.
  • the extruder pulley may include a first extruder pulley for extruding a molding material filament and a second extruder pulley for extruding a support filament.
  • the idler pulley 312 has a structure in which idlers are stacked coaxially as many as the number of timing belts. If there are two timing belts, it is implemented as a two-layer structure with one timing belt attached to each layer.
  • the extruder pulley 313 receives power from the timing belt connected to each motion control motor to extrude the filament. For this, at least two timing belts must be attached and the timing belts can rotate in different directions. It is implemented. In addition, the extruder pulley 313 is configured to allow the two timing belts to rotate in the same direction, but in this case, extrusion of the filament is not performed.
  • the sliding support part 320 is installed on both sides facing each other at the upper end of the casing part 100 so that one side and the other side can move up and down along the Y-axis direction, and moves the head part 310 left and right along the X-axis direction. Support so that it can be moved.
  • the heating unit 330 supplies heat to the filament moved by the head unit 310 to cause melting.
  • This heating unit 330 can generate high temperature heat of 250°C or higher to melt the molding material filament and support filament.
  • the heating unit 330 may further include a cooling means adjacent to the heating unit 330 that can dissipate the heat of the heating unit 330 when the extrusion (output) of the filament stops. .
  • the nozzle unit 340 is provided with a nozzle (not shown) that outputs the filament raw material melted by the heating unit 330 to the work bed unit 200.
  • the nozzle unit 340 has a nozzle that outputs filaments equal to the number of extruder pulleys 313 provided in the head unit 310.
  • FIG. 3 is a diagram schematically showing a first embodiment of the head portion 310 shown in FIG. 2, where (a) is a perspective view and (b) is a plan view.
  • the 3D printer according to the present invention will be described as an example where it is equipped with four motion control motors and four timing belts.
  • the present invention is not limited to this, and may be configured with two or more motion control motors and a timing belt depending on the design.
  • the head part 810 is located on the upper part of the sliding support part 320, and includes an upper frame 811 and a lower frame ( 814), four idler pulleys (812-1, 812-2, 812-3, 812-4) and one extruder pulley (813) provided between the upper frame (811) and the lower frame (814) It is designed to include Here, the upper and lower frames are configured in a square shape, and each idler pulley is disposed adjacent to a corner of the square frame.
  • the upper frame 811, the lower frame 814, and the extruder pulley 813 are provided with one or more openings penetrating in a coaxial line, and filament flows in along the openings to form an extruder pulley.
  • the filament Depending on the rotation of each layer of the belt pulley, the filament remains stationary or is extruded downward. (It is difficult to determine from the drawings in the data how the nozzle for extruding the filament is formed, so it was created arbitrarily, so check the contents and drawings. wish.)
  • Each of the idler pulleys (812-1, 812-2, 812-3, and 812-4) provides a path where two timing belts intersect, so there is an idler with separate layers for each location where each timing belt is attached. It is configured to be stacked on a coaxial line.
  • the extruder pulley 813 has a structure in which belt pulleys separated by the number of timing belts are stacked on a coaxial line so that four timing belts are attached to each, and it depends on the rotation direction and rotation speed of the timing belt attached to each belt pulley. Perform extrusion and suspension of the filament accordingly.
  • the belt pulley is a device that has grooves at equal intervals like a gear and moves through rotation as it engages with the belt. For example, when two timing belts rotate in the same direction at the same rotation speed, the extruder pulley 813 stops extruding the filament, and the two timing belts rotate at different rotation speeds or in different directions. When rotating, the extruder pulley 813 can extrude the filament. In this way, by adjusting the rotation speed and direction of rotation of each timing belt, that is, the rotation speed and direction of rotation of the motor, the printer head unit can be controlled to extrude the filament while moving.
  • FIG. 4 is a diagram schematically showing a second embodiment of the head unit 310 shown in FIG. 2, where (a) is a perspective view and (b) is a diagram showing a timing belt attached to the head unit.
  • the 3D printer according to the present invention will be described as an example where it is equipped with four motion control motors and four timing belts.
  • the present invention is not limited to this, and may be configured with two or more motion control motors and a timing belt depending on the design.
  • the head portion 910 includes an upper frame 911, a lower frame 914, an upper frame 911, and a lower frame. It is configured to include one idler pulley 912 and two extruder pulleys 913-1 and 913-2 provided between the frames 914.
  • the upper and lower frames are configured in a triangular shape, and the idler pulley 912 and the extruder pulleys 913-1 and 913-2 are arranged adjacent to each corner of the triangle shape.
  • the positions of the idler pulley 912 and the extruder pulleys 913-1 and 913-2 are not limited to each corner, and are optimized for the center of gravity of the head portion 910 and the movement path of the timing belt. An appropriate location can be determined after consideration.
  • One idler pulley 912 has a structure in which the number of idlers corresponding to the number of timing belts is stacked on a coaxial line. In this embodiment, it is made of four layers, and each layer has a timing belt attached. It supports rotation when moving, but does not provide power.
  • all four timing belts pass through the idler pulley 912, which means that the sum of the movements of the four motion control motors is transmitted to each layer and decomposed into the final movement.
  • the four motion control motors always move in cooperation, making very precise and fast movement possible.
  • the two extruder pulleys (913-1, 913-2) have a first extruder pulley (913-1) through which the molding material filament flows into the top and is extruded toward the bottom, and a support filament flows into the top and is extruded toward the bottom. It includes a second extruder pulley (913-2).
  • Each extruder pulley (913-1, 913-2) has two belt pulley layers stacked on the same axis so that two timing belts are attached to each, and the filament is extruded in the downward direction (nozzle direction). It may include first and second extruders 915 and 916 for ease of use.
  • the first and second extruders 915 and 916 may be configured as a tilting screw-based extruder or a gear-based extruder.
  • a belt pulley is a device that has grooves at equal intervals like a gear and moves through rotation as it engages with the belt. That is, in an embodiment of the present invention, the filament is extruded and stopped according to the rotation direction and rotation speed of the timing belt attached to each belt pulley.
  • Equally spaced grooves are formed on the outer peripheral surface of each belt pulley layer of the two belt pulley layers located above the first extruder 915 and the two belt pulley layers located below the second extruder 916, , a timing belt with protrusions at the same intervals as the grooves on the outer peripheral surface of each belt pulley layer is attached to the inside and engages accurately, and through this, the rotational force of the motion control motor is transmitted to the corresponding extruder.
  • the extruder uses the transmitted rotational force to extrude the filament toward the lower nozzle part.
  • Figure 5 is an example diagram for explaining the principle of movement of the head portion 810 shown in Figure 3 in the X-axis direction
  • (a) is a diagram showing the direction of movement of the belt before movement along the This diagram shows the change in length of the timing belt after the axis moves.
  • the head part 810 when the head part 810 has a square shape, four motion control motors (4 motion control motors) are installed at each corner of the upper part of the casing part. M1, M2, M3, M4) are installed respectively, and four idler bars (11 to 18, 21 to 28) are placed between the two motion control motors.
  • the position of the motion control motor is not limited to this, and the position of the motion control motor can be any position that can provide power to the timing belt even if it is placed adjacent to one corner, thereby optimizing the movement path of the timing belt. The appropriate location can be determined by considering such factors.
  • Idler bars (11 to 18, 21 to 28) are provided to maintain tension and change direction when the timing belt moves, and are configured to enable reciprocating movement between the two motors at the upper part of the casing.
  • These idler bars may have a structure in which idlers are stacked in a coaxial line as many as the number of timing belts so that each timing belt can be attached and rotated.
  • the movement of the head unit 810 in the X-axis direction is controlled by the third and fourth motion control motors (M3, M4), and the third and fourth motion control motors (M3, M4) )
  • the fourth timing belt (long broken line-dotted line-dotted line) moves in the direction of the arrow via the idler bar (starting from M4, 18->14->12->M3->11->13->17). Forms one loop.
  • the third and fourth motion control motors (M3, M4) and the third and fourth timing belts (long broken line, long broken line-dotted line-dotted line) each form one loop and repeat infinite rotation with the formed loop. It is controlled to perform the desired motion (moving the head part, extruding and stopping the filament, moving the head part while extruding and stopping the filament, etc.).
  • the third and fourth motion control motors (M3, M4), the third and fourth timing belts (long dashed line, long dashed line-dotted line-dotted line) rotate in the first direction of the It moves over the sliding support 320 in the direction of the arrow).
  • the third and fourth timing belts (long broken line, long broken line-dotted line-dotted line) rotate in the same direction, so extrusion of the filament is not performed in the head portion 810.
  • first and second motion control motors M1 and M2 are driven to rotate the first and second timing belts (round dotted lines, broken lines).
  • the rotation of the first and second timing belts is not a rotation to move the head portion 810, but timing that occurs as the head portion 810 moves in the first direction of the X-axis direction. This is necessary to maintain belt tension. Even at this time, since the first and second timing belts (round dotted line, broken line) rotate together in the same direction, extrusion of the filament is not performed in the head portion 810.
  • the idler bars 21 to 28 move in the X-axis direction according to the movement of the head portion 810.
  • Figure 6 is an example diagram for explaining the principle of movement of the head portion 810 shown in Figure 3 in the Y-axis direction.
  • (a) is a diagram showing the direction of movement of the belt before movement along the Y-axis
  • (b) is a diagram showing the movement direction of the belt before movement along the Y-axis. This diagram shows the change in timing belt length after Y-axis movement.
  • the head part 810 when the head part 810 has a square shape, four motion control motors (4 motion control motors) are installed at each corner of the upper part of the casing part. M1, M2, M3, M4) are installed respectively, and four idler bars (11 to 18, 21 to 28) are placed between the two motion control motors.
  • the position of the motion control motor is not limited to this, and the position of the motion control motor can be any position that can provide power to the timing belt even if it is placed adjacent to one corner, thereby optimizing the movement path of the timing belt. The appropriate location can be determined by considering such factors.
  • Idler bars (11 to 18, 21 to 28) are provided to maintain tension and change direction when the timing belt moves, and are configured to enable reciprocating movement between the two motion control motors at the upper part of the casing.
  • These idler bars may have a structure in which idlers are stacked in a coaxial line as many as the number of timing belts so that each timing belt can be attached and rotated.
  • the movement of the head unit 810 in the Y-axis direction is controlled by the first and second motion control motors (M1, M2), and the first and second motion control motors (M1, M2) )
  • the second timing belt moves in the direction of the arrow and makes one loop via the idler bar (M2 starts, 23->25->27->M1->28->26->24, M2 arrives). forms.
  • the first and second motion control motors (M1, M2) and the first and second timing belts (round dotted line, dashed line) each form one loop and repeat infinite rotation with the formed loop to achieve the desired motion (head part). It is controlled to perform movement, extrusion and stopping of the filament, extrusion and stopping of the filament simultaneously with movement of the head, etc.).
  • the first and second timing belts rotate and move in the first direction of the Y-axis (black arrow direction). do.
  • the sliding support unit 320 also moves in the first direction of the Y-axis direction.
  • the third and fourth motion control motors (M3, M4) (red, blue) are driven to rotate the third and fourth timing belts (long dashed line - dotted line - dotted line).
  • the rotation of the third and fourth timing belts (long dashed line - dotted line - dotted line) is not rotation to move the head part 810, but rather moves in the first direction of the Y-axis direction of the head part 810. It is necessary to maintain the tension of the timing belt. Even at this time, since the third and fourth timing belts (long dashed line - dotted line - dotted line) rotate together in the same direction, extrusion of the filament is not performed in the head portion 810.
  • the idler bars 11 to 18 move in the first direction of the Y-axis direction as the head portion 810 moves.
  • Figure 7 is an example diagram for explaining the principle of movement of the head part 910 shown in Figure 4 in the (b) is a diagram showing the direction of movement of the belt before moving along the X-axis, and (c) is a diagram showing the change in length of the timing belt after moving along the X-axis.
  • the positions of the motion control motors (M1, M2, M3, M4) and the idler bars (31, 32, 33, 34, 35, 36, 37, 38) are not limited to this, and in the present invention, the positions of the motion control motors Since the position can be any position that can provide power to the timing belt even if it is placed adjacent to one corner, the motion control motor and idler bar can be determined at an appropriate position by considering optimization of the movement path of the timing belt.
  • the idler bars (35 to 38) are provided to maintain tension and change direction when the timing belt moves, and the idler bars (31 to 34) arranged in pairs with each motion control motor are fixed in position and are positioned between the two motion control motors.
  • the idler bars 35 to 38 arranged in are configured to be able to move back and forth between the two motion control motors at the upper end of the casing.
  • These idler bars (31, 32, 33, 34, 35, 36, 37, and 38) may have a structure in which idlers are stacked in a coaxial line as many as the number of timing belts so that each timing belt can be attached and rotated.
  • the movement of the head unit 910 in the X-axis direction is controlled by the third and fourth motion control motors (M3, M4), and the third and fourth motion control motors (M3, M4) )
  • the fourth timing belt (long broken line-dotted line-dotted line) moves in the direction of the arrow and moves the idler bar (M4 starting, 38->idler pulley->2nd extruder pulley->35->31->34-> It forms a loop via M1->37->38, arriving at M4).
  • the third and fourth motion control motors (M3, M4) and the third and fourth timing belts (long broken line, long broken line-dotted line-dotted line) each form one loop and repeat infinite rotation with the formed loop. It is controlled to perform the desired motion (moving the head part, extruding and stopping the filament, moving the head part while extruding and stopping the filament, etc.).
  • the third and fourth timing belts (long dashed line - dotted line - dotted line) rotate in the first direction of the X axis (black arrow direction). It moves on the sliding support 320 (not shown).
  • the third and fourth timing belts (long dashed line - dotted line - dotted line) rotate in the same direction, so extrusion of the filament is not performed in the head portion 910.
  • first and second motion control motors M1 and M2 are driven to rotate the first and second timing belts (round dotted lines, broken lines).
  • the rotation of the first and second timing belts (round dotted lines, broken lines) is not rotation to move the head portion 910, but timing that occurs as the head portion 910 moves in the first direction of the X-axis direction. It is necessary to maintain tension by controlling changes in belt tension. Even at this time, since the first and second timing belts (round dotted line, broken line) rotate together in the same direction, extrusion of the filament is not performed in the head portion 910.
  • the idler bars 35 to 38 move in the first direction of the X-axis direction according to the movement of the head portion 910.
  • Figure 8 is an example diagram for explaining the movement principle of the head part 910 shown in Figure 4 in the Y-axis direction
  • (a) is the position where four timing belts are attached to the idler pulley of the head part 910 This is a drawing showing
  • (b) is a drawing showing the direction of movement of the belt before moving along the Y axis
  • (c) is a drawing showing the change in length of the timing belt after moving along the Y axis.
  • the head part 910 when the head part 910 has a triangular shape, four motion control motors (4 motion control motors) are installed at each corner of the upper part of the casing part. M1, M2, M3, M4) are installed respectively, idler bars (31, 32, 33, 34) are arranged one by one in pairs with each motion control motor, and an idler bar is between the second and third motion control motors. (35, 36), two idler bars (37, 38) are disposed between the first and fourth motion control motors.
  • the positions of the motion control motors (M1, M2, M3, M4) and the idler bars (31, 32, 33, 34, 35, 36, 37, 38) are not limited to this, and in the present invention, the positions of the motion control motors Since the position can be any position that can provide power to the timing belt even if it is placed adjacent to one corner, the motion control motor and idler bar can be determined at an appropriate position by considering optimization of the movement path of the timing belt.
  • the idler bars (35 to 38) are provided to maintain tension and change direction when the timing belt moves, and the idler bars (31 to 34) arranged in pairs with each motion control motor are fixed in position and are positioned between the two motion control motors.
  • the disposed idler bars 35 to 38 are configured to be able to move back and forth between the two motion control motors at the upper end of the casing.
  • These idler bars (31, 32, 33, 34, 35, 36, 37, and 38) may have a structure in which idlers are stacked in a coaxial line as many as the number of timing belts so that each timing belt can be attached and rotated.
  • the movement of the head unit 910 in the Y-axis direction is controlled by the first and second motion control motors (M1, M2), and the first and second motion control motors (M1, M2) )
  • the second timing belt moves in the direction of the arrow and moves the idler bar (M2 starting, 36->35->M3->31->33->37->idler pulley->first extruder pulley- >36, arrives at M2) to form a loop.
  • the first and second motion control motors (M1, M2) and the first and second timing belts (round dotted line, dashed line) each form one loop and repeat infinite rotation with the formed loop to achieve the desired motion (head part). It is controlled to perform movement, extrusion and stopping of the filament, extrusion and stopping of the filament simultaneously with movement of the head, etc.).
  • the first and second timing belts rotate and move in the first direction of the Y-axis (black arrow direction). do.
  • the sliding support unit 320 also moves in the first direction of the Y-axis direction.
  • the third and fourth motion control motors M3 and M4 are driven to rotate the third and fourth timing belts (long broken line, long broken line-dotted line-dotted line).
  • the rotation of the third and fourth timing belts (long dashed line, long dashed line-dotted line-dotted line) is not rotation to move the head portion 910, but in the first direction among the Y-axis directions of the head portion 810. It is necessary to maintain tension by controlling the change in tension of the timing belt that occurs as it moves. Even at this time, since the third and fourth timing belts (long broken line, long broken line-dotted line-dotted line) rotate together in the same direction, extrusion of the filament is not performed in the head portion 910.
  • the idler bars 35 to 38 move in the first direction of the Y-axis direction as the head portion 910 moves.
  • the 3D printer according to the present invention controls the rotation of a plurality of motion control motors to perform a motion that only performs X-axis movement (filament extrusion stop) and a Y-axis movement (filament extrusion stop) according to the rotation speed and direction of rotation. Extrusion stop), motion to extrude filament in place without moving, motion to extrude filament while moving, etc. can be determined.
  • Figure 9 is an example diagram for explaining the principle of extruding filament from the head shown in Figure 4.
  • the first and second extruders are used to perform the extruder function of extruding filament from the head unit 910 provided in the printer head unit. Equipped with a truer pulley (913-1, 313-2).
  • the first and second extruder pulleys (913-1, 313-2) each have two belt pulley layers so that two timing belts are attached top and bottom to one axis (indicated by black circles),
  • the two timing belts move across different motion control motors (M1, M2), but if the two motion control motors (M1, M2) move in the same direction, the filaments (A, S) are not extruded and the head ( Only the movement of 910 is performed, and when moving in different directions, the head portion 910 does not move and only the filaments (A, S) are extruded.
  • the first extruder pulley 913-1 and the second extruder pulley 913-2 must be controlled to selectively extrude only one filament so as not to extrude the filament at the same time.
  • the head part moves and the filament is extruded by controlling the rotation direction and rotation speed of the motion control motor for motions such as X-axis movement, Y-axis movement, molding material filament (A) extrusion, and support filament (S) extrusion. Driving is also possible.
  • the first and second motion control motors are connected to the first and second timing belts (round dotted lines, dashed lines) (black circles) on the axis of the first extruder pulley (913-1). is attached and receives rotational force from the motor, thereby taking charge of Y-axis movement and extrusion of the molding material filament (A), and the third and fourth motion control motors (M3, M4) are connected to the second extruder pulley (913-
  • the 3rd and 4th timing belts (long dashed line, long dashed line-dotted line-dotted line) (black circle) are attached to the axis of 2) and receive rotational force from the motion control motor to move the X axis and the support filament (S). responsible for extrusion.
  • the head portion 910 not only moves but also performs the extruder function of the direct drive method, thereby achieving the effects of the direct drive method such as precise extrusion and good surface quality.
  • the 3D printer according to the present invention controls four motion control motors to operate simultaneously to perform one motion, so that the power is four times that of a conventional 3D printer in which one motor performs one motion (movement).
  • the weight of the head decreases, so the acceleration force also increases.
  • the vibration of the head part is much less and filament output is possible more quickly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

The present invention relates to a FDM-type 3D printer which simultaneously has the precision of a direct drive type and the high speed of a Bowden type, and which comprises: a casing part providing an internal space; a workbed part; a printer head part; a motion control motor part; a timing belt part; a drive motor part; and a processor for controlling each of the motion control motor part and the drive motor part.

Description

3D 프린터3D printer
본 발명은 3차원 프린터에 관한 것으로, 더욱 상세하게는, 직결(Direct Drive) 방식의 정밀성과 보우덴 방식의 빠른 속도를 동시에 가지도록 하는 FDM 방식의 3D 프린터에 관한 것이다.The present invention relates to a 3D printer, and more specifically, to an FDM type 3D printer that simultaneously has the precision of a direct drive type and the high speed of a Bowden type.
3D 프린터는 입체적인 형상의 출력물을 만들어내는 방법에 따라 크게 FDM(Fused Deposition Modeling), SLA(Stereolithography Apparatus), SLS(Selective Laser Simtering), DLP(Direct Light Processing) 방식으로 나뉜다.3D printers are largely divided into FDM (Fused Deposition Modeling), SLA (Stereolithography Apparatus), SLS (Selective Laser Simtering), and DLP (Direct Light Processing) methods depending on the method of producing three-dimensional output.
이러한 다양한 3D 프린팅 방식 중 3DSystems사(社)에 의해 1986년에 개발된 SLA 방식과 Stratasys사(社)에 의해 1989년에 개발된 FDM 방식이 가장 일반적으로 사용되고 있으며, 특히 FDM 방식의 3D 프린터는 그 구조가 간단하고 가격이 저렴하여 교육용과 개인용으로도 널리 사용되고 있다.Among these various 3D printing methods, the SLA method developed by 3D Systems in 1986 and the FDM method developed by Stratasys in 1989 are the most commonly used. In particular, FDM 3D printers are the most commonly used. Because of its simple structure and low price, it is widely used for educational and personal purposes.
FDM 방식은 PLA(Poly Latic Acid) 또는 ABS(Acryontrie Butadiene Styrene) 등의 플라스틱 필라멘트를 프린터헤드에서 녹여서 적층하는 방식이다. 더 구체적으로는 용융되어 분출된 플라스틱 필라멘트를 종이보다 얇은 0.05~0.4mm의 층으로 겹겹이 쌓아 입체적인 형상을 만들어내는 것이다.The FDM method is a method of melting and stacking plastic filaments such as PLA (Poly Latic Acid) or ABS (Acryontrie Butadiene Styrene) in a printer head. More specifically, it creates a three-dimensional shape by stacking melted and ejected plastic filaments in layers of 0.05 to 0.4 mm, which are thinner than paper.
일반적으로 FDM 방식의 3D 프린터는 출력재료를 용융시켜 토출하는 프린터헤드와 토출된 출력재료가 쌓이게 되는 베드 그리고 프린터헤드와 베드를 이동시키기 위한 구동부로 이루어진다.In general, an FDM-type 3D printer consists of a printer head that melts and discharges the print material, a bed on which the discharged print material is piled, and a driving unit to move the print head and the bed.
3차원 직교 좌표계에서 x축과 y축으로 프린터헤드와 베드를 이동시켜 출력재료를 인쇄하면 2차원의 출력물이 만들어진다. 상기의 상태에서 z축으로 프린터헤드 또는 베드를 이동하여 기존의 출력물 위에 새로운 층이 형성되도록 인쇄하면 z축으로 높이를 가진 3차원 출력물이 만들어진다. 이러한 작업을 반복하여 원하는 형태의 입체적인 형상을 만들어내는 것이 FDM 방식의 3D 프린터의 인쇄 원리이다.If the print material is printed by moving the printer head and bed along the x- and y-axes in a 3-dimensional Cartesian coordinate system, a 2-dimensional output is created. In the above state, if you move the print head or bed along the z-axis and print to form a new layer on top of the existing printout, a three-dimensional printout with a height along the z-axis is created. The printing principle of an FDM-type 3D printer is to repeat these operations to create a three-dimensional shape of the desired shape.
여기서, 프린터헤드는 익스트루더(extruder, 압출기)를 포함하며, 익스트루더(extruder, 압출기)는 원료 플라스틱 필라멘트를 노즐에 공급하고 베드에 필라멘트를 녹여 안착시키는 중요한 역할을 한다. Here, the printer head includes an extruder, and the extruder plays an important role in supplying raw plastic filament to the nozzle and melting and seating the filament on the bed.
익스트루더는 필라멘트를 밀어주는 방식에 따라 2가지 종류가 있다. 하나는 직결 익스트루더(다이렉트 방식)이고 다른 하나는 보우덴 익스트루더(보우덴 방식)이다.There are two types of extruders depending on the method of pushing the filament. One is a direct extruder (direct type) and the other is a Bowden extruder (Bowden type).
직결 익스트루더는 압출모터가 노즐 바로 위에 위치하고, 필라멘트를 다이렉트로 밀어내 주는 방식이고, 보우덴은 필라멘트를 공급하는 장치를 노즐에서 외부로 분리하고 필라멘트의 공급을 위해 테프론 튜브로 헤드부와 압출부를 연결한 방식이다. 이 두 익스트루더의 차이점은 필라멘트를 밀어주는 모터의 위치에 있다.The direct extruder has an extrusion motor located right above the nozzle and pushes out the filament directly, while the Bowden separates the filament supply device from the nozzle and extrudes the head using a Teflon tube to supply the filament. It is a way to connect wealth. The difference between these two extruders is the location of the motor that pushes the filament.
직결 익스트루더의 경우, 필라멘트와 노즐 사이의 거리가 짧아 필라멘트를 안정적으로 공급하여 출력 품질이 좋은 편이나, 압출모터가 헤드에 장착되어 있어 헤드 장치 자체의 하중이 높아지기 때문에 헤드 장치를 상하 또는 좌우로 이송하는 데에 큰 동력이 필요할 뿐만 아니라, 헤드 장치의 하중이 높아짐에 따라 빠른 속도를 내지 못하고 진동에 취약한 단점이 있다.In the case of a direct extruder, the distance between the filament and the nozzle is short, so the filament is supplied stably and the output quality is good. However, since the extrusion motor is mounted on the head, the load on the head device itself increases, so the head device can be moved up and down or left and right. Not only does it require a large amount of power to transfer it, but as the load on the head device increases, it has the disadvantage of not being able to achieve high speeds and being vulnerable to vibration.
한편, 보우덴 익스트루더는 압출모터와 헤드가 분리되어 있어 노즐부의 무게가 가벼워 고속 이동이 가능하나 압출부와 헤드의 거리가 멀어 압출모터의 부하가 많으며 필라멘트의 공급이 불안정성이 있어 품질 저하가 발생하는 단점이 있다.Meanwhile, the Bowden extruder has separate extrusion motors and heads, so the nozzle part is light and can move at high speeds, but the distance between the extrusion part and the head is long, so the load on the extrusion motor is high, and the supply of filament is unstable, leading to quality deterioration. There are disadvantages that arise.
본 발명은 상기의 문제점들을 해결하기 위하여 안출된 것으로서, 직결(Direct Drive) 방식의 정밀성과 보우덴 방식의 빠른 속도를 동시에 가지는 새로운 구동 방식의 3D 프린터를 제공하는 데 그 목적이 있다. The present invention was developed to solve the above problems, and its purpose is to provide a 3D printer with a new drive method that has both the precision of the direct drive method and the high speed of the Bowden method.
또한, 본 발명은 프린터 헤드부로 공급되는 필라멘트(성형재료 필라멘트, 서포터 필라멘트)의 공급을 제어하는 드라이브 모터부를 프린터 헤드부 자체에 구비하지 않고, 3D 프린터의 외부에 설치하도록 함으로써 프린터 헤드부의 하중을 줄여 프린터 헤드부의 이동에 필요한 동력을 절감할 수 있을 뿐만 아니라 프린터 헤드부의 경량화로 인해 출력 속도를 높일 수 있는 3D 프린터를 제공하는 데 그 목적이 있다. In addition, the present invention reduces the load on the printer head by installing the drive motor unit that controls the supply of filament (molding material filament, supporter filament) supplied to the printer head unit outside the 3D printer, rather than providing it in the printer head unit itself. The purpose is to provide a 3D printer that can not only reduce the power required to move the printer head, but also increase the output speed by reducing the weight of the printer head.
또한, 본 발명은, 복수 개의 모터가 항상 동시에 작동하여 하나의 모션을 수행하도록 함으로써 복수 개의 모터를 구비하더라도 하나의 모터가 하나의 모션을 수행하는 기존의 3D 프린터와 비교하여 동일한 모터 수를 이용하더라도 훨씬 더 큰 힘을 낼 수 있는 3D 프린터를 제공하는 데 그 목적이 있다. In addition, the present invention allows multiple motors to always operate simultaneously to perform one motion, so even if multiple motors are provided, even if the same number of motors is used compared to existing 3D printers in which one motor performs one motion, The goal is to provide a 3D printer that can produce much greater power.
상기 목적을 달성하기 위하여, 본 발명의 일 실시 형태에 따른 3D 프린터는, 내부공간을 제공하는 케이싱부; 상기 내부공간 내 Z축 방향으로 이동 가능하게 설치되며, 상부에 필라멘트가 적층되어 성형 조형물이 제작되는 접촉면을 제공하는 작업베드부; 상기 작업베드부의 상부에 이격 배치되며, X축 및 Y축 방향 중 적어도 한 방향으로 이동 가능하게 설치되는 프린터 헤드부; 상기 프린터 헤드부를 X축 및 Y축 방향 중 적어도 한 방향으로 이동시키도록 회전력을 발생시키는 N개의 모션제어 모터를 포함하는 모션제어 모터부; 상기 모션제어 모터부의 회전력을 상기 X축 및 Y축 방향 중 적어도 한 방향으로의 이동으로 전환하기 위하여 상기 프린터 헤드부와 상기 모션제어 모터부를 연결하는 N개의 타이밍벨트를 포함하는 타이밍벨트부; 상기 케이싱부의 외부 측면 중 일면에 설치되며, 필라멘트가 상기 프린터 헤드부로 공급되도록 압출하는 드라이브 모터부; 상기 프린터 헤드부의 이동과 상기 필라멘트의 출력을 위해 모션제어 모터부 및 상기 드라이브 모터부를 각각 제어하되, 상기 프린터 헤드부가 이동할 (x, y) 좌표를 연산하고, 연산된 (x, y) 좌표에 기초하여 상기 프린터 헤드부의 X축 이동, Y축 이동, 상기 필라멘트의 압출 및 X축 이동, Y축 이동 및 필라멘트의 압출로 이루어진 조합으로 구성된 모션 중 적어도 하나를 결정하도록 상기 모션제어 모터부에 포함된 모션제어 모터 각각의 회전방향 및 회전속도를 연산하는 프로세서;를 포함하며, 상기 프린터 헤드부는 결정된 모션에 따라 작동하는 모션제어 모터부 및 타이밍벨트부에 의해 상기 드라이브 모터로부터 공급된 필라멘트를 압출하는 것을 특징으로 한다.In order to achieve the above object, a 3D printer according to an embodiment of the present invention includes a casing portion providing an internal space; A work bed portion installed to be movable in the Z-axis direction within the interior space and providing a contact surface on which filaments are stacked to produce a molded sculpture; a printer head unit spaced apart from an upper part of the work bed unit and movable in at least one of the X-axis and Y-axis directions; a motion control motor unit including N motion control motors that generate rotational force to move the printer head unit in at least one of the X-axis and Y-axis directions; a timing belt unit including N timing belts connecting the print head unit and the motion control motor unit to convert the rotational force of the motion control motor unit into movement in at least one of the X-axis and Y-axis directions; a drive motor unit installed on one of the outer sides of the casing unit and extruding filament to be supplied to the printer head unit; Control the motion control motor unit and the drive motor unit to move the printer head unit and output the filament, respectively, calculate the (x, y) coordinates to which the printer head unit will move, and calculate the (x, y) coordinates to which the printer head unit will move, based on the calculated (x, y) coordinates. A motion included in the motion control motor unit to determine at least one of a motion consisting of a combination of X-axis movement of the printer head, Y-axis movement, extrusion of the filament, and X-axis movement, Y-axis movement, and extrusion of the filament. It includes a processor that calculates the rotation direction and rotation speed of each control motor, and the printer head unit extrudes the filament supplied from the drive motor by a motion control motor unit and a timing belt unit that operate according to the determined motion. Do it as
상기 프린터 헤드부는, 상기 N개의 타이밍벨트의 이동경로를 제공하고 상기 필라멘트를 하부 방향으로 이동시키는 헤드부; 상기 케이싱부의 상단 양 측면에 일측과 타측이 Y축 방향을 따라 위아래로 이동가능하도록 설치되되, 상기 헤드부를 X축 방향을 따라 좌우로 이동시키는 슬라이딩 지지부; 상기 헤드부에 의해 이동되는 필라멘트에 열을 공급하여 용융이 일어나게 하는 히팅부; 및 상기 히팅부에 의해 용융된 필라멘트 원료가 출력되는 노즐을 구비한 노즐부;를 포함하는 것을 특징으로 한다.The printer head unit includes a head unit that provides a movement path for the N timing belts and moves the filament in a downward direction; A sliding support part installed on both sides of the top of the casing part so that one side and the other side can move up and down along the Y-axis direction, and moves the head part left and right along the X-axis direction; a heating unit that supplies heat to the filament moved by the head unit to cause melting; and a nozzle unit having a nozzle through which the filament raw material molten by the heating unit is output.
상기 헤드부는, 상부 프레임; 상기 상부 프레임과 마주보도록 이격 배치되는 하부 프레임; 및 상기 상부 프레임 및 하부 프레임 사이에, 상기 상부 프레임과 상기 하부 프레임 각각의 마주 보는 면과 직교하도록 서로 나란하게 이격되어 배치되는 다수의 풀리(pulley);를 포함하며, 상기 다수의 풀리는, 상기 N개의 타이밍벨트의 이동 경로를 제공하는 적어도 하나 이상의 아이들러 풀리; 및 상기 N개의 타이밍벨트의 동력에 따른 동축 이종토크를 이용해 상기 필라멘트를 압출하는 적어도 하나 이상의 익스트루더 풀리;를 포함하는 것을 특징으로 한다.The head portion includes an upper frame; a lower frame spaced apart from the upper frame to face the upper frame; And between the upper frame and the lower frame, a plurality of pulleys arranged parallel to each other and spaced apart from each other so as to be perpendicular to the facing surfaces of each of the upper frame and the lower frame, wherein the plurality of pulleys are, the N At least one idler pulley providing a movement path for the timing belt of the dog; And at least one extruder pulley that extrudes the filament using coaxial heterogeneous torque according to the power of the N timing belts.
상기 적어도 하나 이상의 익스트루더 풀리는, 상기 N개의 타이밍벨트의 동력에 따른 동축 이종토크를 이용해 상기 필라멘트를 출력하되, 성형재료 필라멘트를 압출하는 제1 익스트루더 풀리와, 서포트 필라멘트를 압출하는 제2 익스트루더 풀리를 포함하는 것을 특징으로 한다.The at least one extruder pulley outputs the filament using coaxial heterogeneous torque according to the power of the N timing belts, and includes a first extruder pulley for extruding a molding material filament and a second extruder for extruding a support filament. It is characterized by including an extruder pulley.
상기 제1 및 제2 익스트루더 풀리 각각은, 타이밍벨트가 각각 부착되는 적어도 2개의 벨트 풀리층과, 필라멘트를 압출하는 익스트루더로 이루어지며, 상기 익스트루더는 상기 모션제어 모터부와 연결된 2개의 타이밍벨트로부터 동력을 전달받아 각 벨트 풀리층이 서로 다른 방향으로 회전될 때 필라멘트를 압출하되, 틸팅 스크류 기반의 익스트루더 또는 기어 기반의 익스트루더인 것을 특징으로 한다.Each of the first and second extruder pulleys consists of at least two belt pulley layers to which a timing belt is attached, and an extruder for extruding a filament, and the extruder is connected to the motion control motor unit. Power is transmitted from two timing belts to extrude filament when each belt pulley layer rotates in different directions, and is characterized as a tilting screw-based extruder or gear-based extruder.
상기 모션제어 모터부는, N(N은 2이상의 자연수)개의 모션제어 모터를 구비할 수 있으며, N이 2일 경우, 제1 및 제2 모션제어 모터를 포함하며, 상기 제1 모션제어 모터 및 제2 모션제어 모터는(위치 관련 내용 삭제, 명세서에서 위치에 대한 내용 기재) 동일한 방향으로 동시 회전하는 경우, 상기 헤드부를 X축 방향 및 Y축 방향으로 이동시키며, 상기 N개의 타이밍 벨트는 제1 및 제2 타이밍 벨트를 포함하며, 상기 제1 타이밍 벨트는 상기 제1 모션제어 모터의 동력을 전달하고, 상기 제2 타이밍 벨트는 상기 제2 모션제어 모터의 동력을 전달하는 것을 특징으로 한다.The motion control motor unit may be provided with N motion control motors (N is a natural number of 2 or more), and when N is 2, it includes first and second motion control motors, and the first motion control motor and the second motion control motor. 2 Motion control motors (position-related content deleted, position information described in the specification) simultaneously rotate in the same direction, move the head unit in the X-axis direction and Y-axis direction, and the N timing belts are connected to the first and It includes a second timing belt, wherein the first timing belt transmits power of the first motion control motor, and the second timing belt transmits power of the second motion control motor.
상기 모션제어 모터부는, N이 4일 경우, 제1 내지 제4 모션제어 모터를 포함하며, 상기 N개의 타이밍벨트는 제1 내지 제4 타이밍벨트를 포함하고, 상기 제1 모션제어 모터 및 제2 모션제어 모터는(위치 관련 내용 삭제, 명세서에서 위치에 대한 내용 기재) 동일한 방향으로 동시 회전하는 경우, 상기 헤드부를 X축 방향 및 Y축 방향 중 한 방향으로 이동시키며(4개의 모터가 동시에 각 축을 담당하는 구성에 대해 청구항 11항에 기재함), 상기 제3 모션제어 모터 및 제4 모션제어 모터는 각각 상기 제3 타이밍벨트 및 제4 타이밍벨트의 길이 보상을 수행하도록 회전하고, 상기 제3 모션제어 모터 및 제4 모션제어 모터는(위치 관련 내용 삭제, 명세서에서 위치에 대한 내용 기재) 동일한 방향으로 동시 회전하는 경우, 상기 헤드부를 다른 방향으로 이동시키며, 상기 제1 모션제어 모터 및 제2 모션제어 모터는 각각 상기 제1 타이밍벨트 및 제2 타이밍벨트의 길이 보상을 수행하도록 회전하고, 상기 제1 타이밍벨트는 상기 제1 모션제어 모터의 동력을 전달하고, 상기 제2 타이밍벨트는 상기 제2 모션제어 모터의 동력을 전달하고, 상기 제3 타이밍벨트는 상기 제3 모션제어 모터의 동력을 전달하고, 상기 제4 타이밍벨트는 상기 제4 모션제어 모터의 동력을 전달하는 것을 특징으로 한다.When N is 4, the motion control motor unit includes first to fourth motion control motors, the N timing belts include first to fourth timing belts, and the first motion control motor and the second When the motion control motor rotates simultaneously in the same direction (deleted information related to location, description of location in the specification), it moves the head in one of the X-axis direction and the Y-axis direction (four motors move each axis simultaneously). The responsible configuration is described in claim 11), the third motion control motor and the fourth motion control motor rotate to perform length compensation of the third timing belt and the fourth timing belt, respectively, and the third motion control motor rotates to perform length compensation of the third timing belt and the fourth timing belt, respectively. When the control motor and the fourth motion control motor (deleted content related to position, description of position in the specification) rotate simultaneously in the same direction, the head moves in a different direction, and the first motion control motor and the second motion control motor The control motor rotates to perform length compensation of the first timing belt and the second timing belt, respectively, the first timing belt transmits power of the first motion control motor, and the second timing belt transmits the power of the second timing belt. The third timing belt transmits the power of the motion control motor, and the fourth timing belt transmits the power of the fourth motion control motor.
상기 제1 모션제어 모터 및 제2 모션제어 모터는 동일한 방향으로 동시 회전하되, 회전 속도(회전수)가 서로 다른 경우 또는 서로 반대 방향으로 동시 회전하는 경우, 상기 헤드부에 공급되는 필라멘트가 압출되며, 상기 제3 모션제어 모터 및 제4 모션제어 모터는 동일한 방향으로 동시 회전하되, 회전 속도(회전수)가 서로 다른 경우 또는 서로 반대 방향으로 동시 회전하는 경우, 상기 헤드부에 공급되는 필라멘트가 압출되는 것을 특징으로 한다.The first motion control motor and the second motion control motor rotate simultaneously in the same direction, but when their rotational speeds (number of rotations) are different from each other or when they rotate simultaneously in opposite directions, the filament supplied to the head is extruded. , the third motion control motor and the fourth motion control motor rotate simultaneously in the same direction, but when the rotation speeds (number of rotations) are different from each other or when they rotate simultaneously in opposite directions, the filament supplied to the head is extruded. It is characterized by being
상기 적어도 하나 이상의 아이들러 풀리는 상기 적어도 하나 이상의 아이들러 풀리는 동축 일직선상에 N개의 아이들러(idler)가 적층된 N개의 층으로 이루어지되, 각 층의 아이들러에 타이밍벨트가 하나씩 부착되는 것을 특징으로 한다.The at least one idler pulley is composed of N layers in which N idlers are stacked on a coaxial line, and a timing belt is attached to each idler of each layer.
상기 적어도 하나 이상의 아이들러 풀리는 상기 N개의 타이밍벨트의 이동 경로를 제공하는 4개의 아이들러 풀리를 포함하는 것을 특징으로 한다.The at least one idler pulley may include four idler pulleys that provide a movement path for the N timing belts.
상기 모션제어 모터부는, N이 4일 경우, 제1 내지 제4 모션제어 모터를 포함하며, 상기 N개의 타이밍벨트는 제1 내지 제4 타이밍벨트를 포함하고, 상기 제1 내지 제4 모션제어 모터는, 상기 프로세스로부터 결정된 하나의 모션을 동시에 작동하여 수행하되, 축 이동시 해당 축으로의 이동을 동시에 작동하여 수행하는 것을 특징으로 한다. When N is 4, the motion control motor unit includes first to fourth motion control motors, the N timing belts include first to fourth timing belts, and the first to fourth motion control motors is characterized in that one motion determined from the above process is simultaneously operated and performed, and when an axis is moved, movement to the corresponding axis is performed simultaneously.
본 발명에 따르면, 벨트의 동력만으로 필라멘트를 노즐부로 압출하는 스크류 기반의 압출 방식을 이용한 기어리스 익스트루더를 제공함으로써 직결(Direct Drive) 방식의 정밀성이 가능한 효과가 있다. 이로 인해 최종 제품의 품질이 향상될 수 있다.According to the present invention, by providing a gearless extruder using a screw-based extrusion method that extrudes filament to the nozzle unit only with the power of the belt, there is an effect of enabling precision in a direct drive method. This can improve the quality of the final product.
또한, 본 발명에 따르면, 필라멘트를 프린터 헤드부로 공급하는 드라이브 모터를 외부에 설치함으로써 프린터 헤드부의 하중을 가벼워져 빠른 이동 속도가 가능한 효과가 있다. 이로 인해, 3D 프린터의 최대 출력 속도가 향상되고, 작업 시간을 줄일 수 있다. In addition, according to the present invention, by installing a drive motor that supplies filament to the printer head unit externally, the load on the printer head unit is lightened, enabling a fast moving speed. As a result, the maximum output speed of the 3D printer can be improved and work time can be reduced.
또한, 본 발명에 따르면, 다수 개의 모터를 동시에 함께 사용하여 프린터 헤드부의 이동을 결정함으로써 프린터 헤드부의 움직임에 대한 정밀한 제어가 가능한 효과가 있다. In addition, according to the present invention, the movement of the printer head is determined by using a plurality of motors simultaneously, thereby enabling precise control of the movement of the printer head.
또한, 본 발명에 따르면, 다수 개의 모터와 프린터 헤드부를 연결하는 타이밍 벨트를 이용해 모터의 동력을 전달받고 전달된 모터의 동력을 이용해 직결 방식처럼 바로 필라멘트를 압출함으로써 필라멘트에 쌓이는 장력을 제거하는 효과가 있다. In addition, according to the present invention, the power of the motor is transmitted using a timing belt connecting a plurality of motors and the printer head, and the filament is immediately extruded as in a direct connection method using the transmitted power of the motor, thereby eliminating the tension accumulated in the filament. there is.
또한, 본 발명에 따르면, 다수 개의 모터가 동시에 함께 작동하기 때문에 동일한 모터 수를 사용한 기존 3D 프린터와 비교하여 동일 비용으로 훨씬 더 큰 힘을 낼 수 있으며, 또한, 힘은 세지만 저해상도인 모터와 힘은 약하지만 고해상도인 모터를 하나의 세트로 조합하여 동시에 작동하도록 함으로써 저렴한 비용으로 높은 해상도와 큰 힘을 가지는 3D 프린터의 제작이 가능한 효과가 있다.In addition, according to the present invention, because multiple motors operate together at the same time, much greater force can be produced at the same cost compared to existing 3D printers using the same number of motors. In addition, motors with high force but low resolution and force By combining weak but high-resolution motors into one set and allowing them to operate simultaneously, it is possible to produce a 3D printer with high resolution and great power at a low cost.
또한, 본 발명에 따르면, 다수 개의 모터가 동시에 함께 작동하여 큰 힘을 낼 수 있기 때문에 비교적 저렴한 소형 모터를 사용할 수 있어 제작 비용을 절감할 수 있는 효과가 있다.In addition, according to the present invention, since multiple motors can operate together at the same time to generate a large force, a relatively inexpensive small motor can be used, which has the effect of reducing manufacturing costs.
도 1은 본 발명의 일 실시형태에 따른 3D 프린터의 전체 구성을 개략적으로 도시한 블럭도이다. Figure 1 is a block diagram schematically showing the overall configuration of a 3D printer according to an embodiment of the present invention.
도 2는 도 1에 도시된 프린터 헤드부(300)의 상세 구성을 나타낸 블럭도이다. FIG. 2 is a block diagram showing the detailed configuration of the printer head unit 300 shown in FIG. 1.
도 3은 도 2에 도시된 헤드부(310)의 제1 실시예를 개략적으로 나타낸 도면으로, (a)는 사시도이며 (b)는 평면도이다. FIG. 3 is a diagram schematically showing a first embodiment of the head portion 310 shown in FIG. 2, where (a) is a perspective view and (b) is a plan view.
도 4는 도 2에 도시된 헤드부(310)의 제2 실시예를 개략적으로 나타낸 도면으로, (a)는 사시도이며 (b)는 헤드부에 타이밍벨트가 부착된 상태를 나타낸 도면이다.FIG. 4 is a diagram schematically showing a second embodiment of the head unit 310 shown in FIG. 2, where (a) is a perspective view and (b) is a diagram showing a timing belt attached to the head unit.
도 5는 도 3에 도시된 헤드부(810)의 X축 방향으로의 이동 원리를 설명하기 위한 예시도이다.FIG. 5 is an example diagram for explaining the principle of movement of the head portion 810 shown in FIG. 3 in the X-axis direction.
도 6은, 도 3에 도시된 헤드부(810)의 Y축 방향으로의 이동 원리를 설명하기 위한 예시도이다.FIG. 6 is an example diagram for explaining the principle of movement of the head portion 810 shown in FIG. 3 in the Y-axis direction.
도 7은 도 4에 도시된 헤드부(910)의 X축 방향으로의 이동 원리를 설명하기 위한 예시도이다.FIG. 7 is an example diagram for explaining the principle of movement of the head portion 910 shown in FIG. 4 in the X-axis direction.
도 8은, 도 4에 도시된 헤드부(910)의 Y축 방향으로의 이동 원리를 설명하기 위한 예시도이다.FIG. 8 is an example diagram for explaining the principle of movement of the head portion 910 shown in FIG. 4 in the Y-axis direction.
도 9는 도 4에 도시된 헤드부에서 필라멘트를 압출하는 원리를 설명하기 위한 예시도이다.Figure 9 is an example diagram for explaining the principle of extruding filament from the head shown in Figure 4.
본 발명의 일 실시 형태에 따른 3D 프린터는, 내부공간을 제공하는 케이싱부; 상기 내부공간 내 Z축 방향으로 이동 가능하게 설치되며, 상부에 필라멘트가 적층되어 성형 조형물이 제작되는 접촉면을 제공하는 작업베드부; 상기 작업베드부의 상부에 이격 배치되며, X축 및 Y축 방향 중 적어도 한 방향으로 이동 가능하게 설치되는 프린터 헤드부; 상기 프린터 헤드부를 X축 및 Y축 방향 중 적어도 한 방향으로 이동시키도록 회전력을 발생시키는 N개의 모션제어 모터를 포함하는 모션제어 모터부; 상기 모션제어 모터부의 회전력을 상기 X축 및 Y축 방향 중 적어도 한 방향으로의 이동으로 전환하기 위하여 상기 프린터 헤드부와 상기 모션제어 모터부를 연결하는 N개의 타이밍벨트를 포함하는 타이밍벨트부; 상기 케이싱부의 외부 측면 중 일면에 설치되며, 필라멘트가 상기 프린터 헤드부로 공급되도록 압출하는 드라이브 모터부; 상기 프린터 헤드부의 이동과 상기 필라멘트의 출력을 위해 모션제어 모터부 및 상기 드라이브 모터부를 각각 제어하되, 상기 프린터 헤드부가 이동할 (x, y) 좌표를 연산하고, 연산된 (x, y) 좌표에 기초하여 상기 프린터 헤드부의 X축 이동, Y축 이동, 상기 필라멘트의 압출 및 X축 이동, Y축 이동 및 필라멘트의 압출로 이루어진 조합으로 구성된 모션 중 적어도 하나를 결정하도록 상기 모션제어 모터부에 포함된 모션제어 모터 각각의 회전방향 및 회전속도를 연산하는 프로세서;를 포함하며, 상기 프린터 헤드부는 결정된 모션에 따라 작동하는 모션제어 모터부 및 타이밍벨트부에 의해 상기 드라이브 모터로부터 공급된 필라멘트를 압출하는 것을 특징으로 한다.A 3D printer according to an embodiment of the present invention includes a casing portion providing an internal space; A work bed portion installed to be movable in the Z-axis direction within the interior space and providing a contact surface on which filaments are stacked to produce a molded sculpture; a printer head unit spaced apart from an upper part of the work bed unit and movable in at least one of the X-axis and Y-axis directions; a motion control motor unit including N motion control motors that generate rotational force to move the printer head unit in at least one of the X-axis and Y-axis directions; a timing belt unit including N timing belts connecting the print head unit and the motion control motor unit to convert the rotational force of the motion control motor unit into movement in at least one of the X-axis and Y-axis directions; a drive motor unit installed on one of the outer sides of the casing unit and extruding filament to be supplied to the printer head unit; Control the motion control motor unit and the drive motor unit to move the printer head unit and output the filament, respectively, calculate the (x, y) coordinates to which the printer head unit will move, and calculate the (x, y) coordinates to which the printer head unit will move, based on the calculated (x, y) coordinates. A motion included in the motion control motor unit to determine at least one of a motion consisting of a combination of X-axis movement of the printer head, Y-axis movement, extrusion of the filament, and X-axis movement, Y-axis movement, and extrusion of the filament. It includes a processor that calculates the rotation direction and rotation speed of each control motor, and the printer head unit extrudes the filament supplied from the drive motor by a motion control motor unit and a timing belt unit that operate according to the determined motion. Do it as
이하에서는 첨부된 도면들을 참조하여 본 발명에 대해서 자세히 설명한다. 이때, 각각의 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타낸다. 또한, 이미 공지된 기능 및/또는 구성에 대한 상세한 설명은 생략한다. 이하에 개시된 내용은, 다양한 실시 예에 따른 동작을 이해하는데 필요한 부분을 중점적으로 설명하며, 그 설명의 요지를 흐릴 수 있는 요소들에 대한 설명은 생략한다. 또한, 도면의 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니며, 따라서 각각의 도면에 그려진 구성요소들의 상대적인 크기나 간격에 의해 여기에 기재되는 내용들이 제한되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to the attached drawings. At this time, the same components in each drawing are indicated by the same symbols whenever possible. Additionally, detailed descriptions of already known functions and/or configurations will be omitted. The content disclosed below focuses on parts necessary to understand operations according to various embodiments, and descriptions of elements that may obscure the gist of the explanation are omitted. Additionally, some components in the drawings may be exaggerated, omitted, or shown schematically. The size of each component does not entirely reflect the actual size, and therefore the content described here is not limited by the relative sizes or spacing of the components drawn in each drawing.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시 예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다. In describing the embodiments of the present invention, if it is determined that a detailed description of the known technology related to the present invention may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. The terms described below are defined in consideration of the functions in the present invention, and may vary depending on the intention or custom of the user or operator. Therefore, the definition should be made based on the contents throughout this specification. The terminology used in the detailed description is only for describing embodiments of the present invention and should in no way be limiting. Unless explicitly stated otherwise, singular forms include plural meanings. In this description, expressions such as “comprising” or “comprising” are intended to indicate certain features, numbers, steps, operations, elements, parts or combinations thereof, and one or more than those described. It should not be construed to exclude the existence or possibility of any other characteristic, number, step, operation, element, or part or combination thereof.
또한, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되는 것은 아니며, 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.In addition, terms such as first, second, etc. may be used to describe various components, but the components are not limited by the terms, and the terms are used for the purpose of distinguishing one component from another component. It is used only as
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 대하여 보다 상세하게 설명하고자 한다.Hereinafter, an embodiment of the present invention will be described in more detail with reference to the attached drawings.
도 1은 본 발명의 일 실시형태에 따른 3D 프린터의 전체 구성을 개략적으로 도시한 블럭도이다. Figure 1 is a block diagram schematically showing the overall configuration of a 3D printer according to an embodiment of the present invention.
도 1에 도시된 바와 같이, 본 발명에 따른 3D 프린터(1)는, 케이싱부(100), 작업베드부(200), 프린터 헤드부(300), 모션제어 모터부(400), 타이밍벨트부(500), 드라이브 모터부(600), 프로세서(700)를 적어도 포함한다. As shown in Figure 1, the 3D printer 1 according to the present invention includes a casing unit 100, a work bed unit 200, a printer head unit 300, a motion control motor unit 400, and a timing belt unit. It includes at least 500, a drive motor unit 600, and a processor 700.
케이싱부(100)는 상부면, 하부면, 측면들로 이루어진 내부공간을 제공하는데, 내부공간은 박스 형상을 가지도록 다수의 프레임으로 구성될 수 있다. The casing part 100 provides an internal space consisting of an upper surface, a lower surface, and a side surface, and the internal space may be composed of a plurality of frames to have a box shape.
작업베드부(200)는 내부공간 내 Z축 방향으로 이동 가능하게 설치되며, 상부에 필라멘트가 적층되어 성형 조형물이 제작되는 접촉면을 제공한다. The work bed unit 200 is installed to be movable in the Z-axis direction within the internal space, and filaments are stacked on the top to provide a contact surface on which a molded sculpture is manufactured.
프린터 헤드부(300)는 작업베드부(200)의 상부에 접촉면과 이격되도록 배치되며, X축 방향 및 Y축 방향 중 적어도 어느 한 방향으로 이동 가능하게 설치된다. 즉, 프린터 헤드부(300)는 X축 방향으로만, 또는 Y축 방향으로만 이동할 뿐만 아니라, 이동 목표 지점의 (x, y) 좌표에 따라 대각선 이동도 가능하다.The printer head unit 300 is disposed on the upper part of the work bed unit 200 to be spaced apart from the contact surface, and is installed to be movable in at least one of the X-axis direction and the Y-axis direction. That is, the printer head unit 300 can not only move in the X-axis direction or the Y-axis direction, but also move diagonally according to the (x, y) coordinates of the movement target point.
모션제어 모터부(400)는 프린터 헤드부(300)를 X축 방향 및 Y축 방향 중 적어도 어느 한 방향으로 이동시키도록 회전력을 발생시키며, N(N은 2이상의 자연수)개의 모션제어 모터가 구비될 수 있다. 예를 들어, 모션제어 모터부(400)는 2개의 모션제어 모터를 구비할 경우, 2개의 타이밍벨트를 이용해 프린터 헤드부(300)를 X축 방향 및/또는 Y축 방향으로 이동시킬 수 있다. 또 다른 예를 들어, 모션제어 모터부(400)가 4개의 모션제어 모터를 구비할 경우, 4개의 타이밍벨트를 이용해 프린터 헤드부(300)를 X축 방향 및/또는 Y축 방향으로 이동시킬 수 있다.The motion control motor unit 400 generates a rotational force to move the printer head unit 300 in at least one of the X-axis direction and the Y-axis direction, and is provided with N (N is a natural number of 2 or more) motion control motors. It can be. For example, when the motion control motor unit 400 is equipped with two motion control motors, the printer head unit 300 can be moved in the X-axis direction and/or the Y-axis direction using two timing belts. For another example, when the motion control motor unit 400 is equipped with four motion control motors, the printer head unit 300 can be moved in the X-axis direction and/or Y-axis direction using four timing belts. there is.
이러한 모션제어 모터부(400)는 두 개의 모션제어 모터가 한 세트를 이루어 한 개의 축 이동을 담당하지 않고 다수 개의 세트, 예를 들어 2개의 세트(4개의 모션제어 모터)가 한 개의 축 이동을 담당하도록 구현할 수도 있다. 즉, 다수 개의 모터 세트가 하나의 코어 XY(core xy)의 모터 역할을 수행할 수 있다.This motion control motor unit 400 is not a set of two motion control motors responsible for moving one axis, but a plurality of sets, for example, two sets (four motion control motors) are responsible for moving one axis. It can also be implemented to take charge. That is, multiple motor sets can serve as motors for one core XY (core xy).
타이밍벨트부(500)는 모션제어 모터부(400)에 포함된 각 모션제어 모터의 회전력을 X축 방향 및/또는 Y축 방향으로의 이동으로 전환하기 위하여 프린터 헤드부(300)와 모션제어 모터부(400)의 각 모션제어 모터를 연결하며, 모션제어 모터의 개수만큼 N개의 타이밍벨트를 구비할 수 있다. 예를 들어, 하나의 타이밍벨트는 두 개의 모션제어 모터와 프린터 헤드부(300)를 연결하여 하나의 루프를 형성하고, 제1 모션제어 모터에서 시작되는 회전력을 프린터 헤드부(300)로 전달하고 프린터 헤드부(300)는 이를 이용해 필라멘트를 작업베드부(200)로 출력하며, 프린터 헤드부(300)를 경유한 타이밍벨트는 제2 모션제어 모터를 거쳐 다시 제1 모션제어 모터로 돌아오게 된다. 이로써 제1 모션제어 모터와 제2 모션제어 모터가 함께 회전하면서 타이밍벨트의 텐션을 일정하게 유지할 수 있다.The timing belt unit 500 is a printer head unit 300 and a motion control motor in order to convert the rotational force of each motion control motor included in the motion control motor unit 400 into movement in the X-axis direction and/or Y-axis direction. Each motion control motor of the unit 400 is connected, and N timing belts can be provided as many as the number of motion control motors. For example, one timing belt connects two motion control motors and the printer head unit 300 to form one loop, and transmits the rotational force starting from the first motion control motor to the printer head unit 300. The printer head unit 300 uses this to output filament to the work bed unit 200, and the timing belt passing through the printer head unit 300 passes through the second motion control motor and returns to the first motion control motor. . As a result, the first motion control motor and the second motion control motor rotate together and the tension of the timing belt can be kept constant.
드라이브 모터부(600)는 케이싱부(100)의 외부 측면 중 일면에 설치되며, 필라멘트가 프린터 헤드부(300)로 공급되도록 필라멘트를 압출한다. The drive motor unit 600 is installed on one of the outer sides of the casing unit 100 and extrudes the filament so that it is supplied to the printer head unit 300.
여기서, 필라멘트는 성형재료 필라멘트와 서포트 필라멘트 두 종류를 구비할 수 있으며, 두 개의 필라멘트를 각각 프린터 헤드부(300)로 압축하여 공급할 수 있다. 성형재료 필라멘트는 제작할 성형 조형물을 이루는 원료이며, 서포트 필라멘트는 제작되는 성형 조형물과 작업베드부(200)의 접촉면이나 성형 조형물의 내부 공간 및 형태를 지지하기 위해 사용되고 작업이 완료된 후 제거되도록 물에 녹는 플라스틱 등이 사용된다. Here, the filament may be of two types: a molding material filament and a support filament, and the two filaments may be compressed and supplied to the printer head unit 300, respectively. The molding material filament is the raw material that makes up the molded sculpture to be manufactured, and the support filament is used to support the contact surface between the molded sculpture being manufactured and the work bed portion 200 or the internal space and shape of the molded sculpture and is soluble in water to be removed after the work is completed. Plastics, etc. are used.
서포트 필라멘트의 제거는 사포를 이용하여 이루어지기도 하지만, 본 발명에서는 서포트 필라멘트를 물에 녹는 플라스틱 재질을 사용하여 용이하게 제거할 수 있도록 구현하며, 이를 통해 성형 조형물의 표면이 매끄럽게 형성되도록 한다.Removal of the support filament is sometimes done using sandpaper, but in the present invention, the support filament can be easily removed using a plastic material that dissolves in water, thereby ensuring a smooth surface of the molded sculpture.
본 실시예에 있어서, 필라멘트의 공급을 수행하는 드라이브 모터부(600)를 외부에 설치하면서, 필라멘트의 압출기능을 수행하는 헤드부를 히팅부에 가장 가깝게 위치하도록 함으로써 무게를 가볍게 하는 동시에 필라멘트에 쌓이는 장력을 최소화해서 필라멘트의 압출이 멈추는 즉시 필라멘트의 토출을 멈추게 할 수 있다.In this embodiment, the drive motor unit 600 that supplies the filament is installed externally, and the head unit that performs the extrusion function of the filament is located closest to the heating unit to lighten the weight and at the same time reduce the tension accumulated in the filament. By minimizing the filament, the ejection of the filament can be stopped as soon as the extrusion of the filament stops.
프로세서(700)는 프린터 헤드부(300)의 이동과 필라멘트의 출력을 위해 모션제어 모터부(400) 및 드라이브 모터부(600)를 각각 제어하되, 프린터 헤드부(300)가 이동할 (x, y) 좌표를 연산하고, 연산된 (x, y) 좌표에 기초하여 필라멘트가 압출 및 출력되도록 모션제어 모터부(400)에 구비된 모션제어 모터 각각의 회전방향, 회전속도 및 회전수를 연산한다. The processor 700 controls the motion control motor unit 400 and the drive motor unit 600, respectively, for movement of the printer head unit 300 and output of filament, and the printer head unit 300 moves (x, y). ) coordinates are calculated, and the rotation direction, rotation speed, and number of rotations of each motion control motor provided in the motion control motor unit 400 are calculated so that the filament is extruded and output based on the calculated (x, y) coordinates.
또한, 프로세서(700)는 연산에 따른 수식을 최적화하여 타이밍벨트의 이동 경로를 실시간 제어할 수 있다. 이러한 수식 연산의 최적화를 통해 타이밍벨트의 길이 및 경로 변경 횟수를 감소시킬 수 있다. 예를 들어, 도 5, 6에 도시된 타이밍벨트의 이동경로보다 도 7, 8에 도시된 타이밍벨트의 이동경로가 더 최적화된 것이다.Additionally, the processor 700 can control the movement path of the timing belt in real time by optimizing the calculation formula. Through optimization of these mathematical calculations, the length and number of path changes of the timing belt can be reduced. For example, the movement path of the timing belt shown in Figures 7 and 8 is more optimized than the movement path of the timing belt shown in Figures 5 and 6.
또한, 프로세서(700)는 다수 개의 모션제어 모터, 예를 들어, 2개의 모션제어 모터, 4개의 모션제어 모터 등을 동시 구동해야 하기 때문에 연산량이 많으므로 32-bit 기반의 컴퓨팅 시스템으로 구현할 수 있다. In addition, the processor 700 requires a large number of calculations because it must simultaneously drive multiple motion control motors, for example, two motion control motors, four motion control motors, etc., so it can be implemented as a 32-bit-based computing system. .
상술한 바와 같이 본 발명에 따른 3D 프린터는, 필라멘트를 압출하여 프린터 헤드부에 공급하는 드라이브 모터부를 외부에 설치하는 동시에, 모터와 프린터 헤드부를 타이밍벨트를 이용해 연결함으로써 동축 이종토크를 이용한 익스트루더가 구현되어 직결(Direct Drive) 방식과 같이 필라멘트를 출력할 수 있다.As described above, the 3D printer according to the present invention is an extruder using coaxial heterogeneous torque by installing a drive motor unit externally that extrudes filament and supplies it to the printer head, and connects the motor and the printer head unit using a timing belt. has been implemented, allowing filament to be output like a direct drive method.
이로써 본 발명에 따르면, 직결(Direct Drive) 방식의 정밀성과 보우덴 방식의 빠른 속도를 동시에 가지는 3D 프린터를 제공할 수 있다. Accordingly, according to the present invention, it is possible to provide a 3D printer that simultaneously has the precision of the direct drive method and the high speed of the Bowden method.
도 2는 도 1에 도시된 프린터 헤드부(300)의 상세 구성을 나타낸 블럭도이다.FIG. 2 is a block diagram showing the detailed configuration of the printer head unit 300 shown in FIG. 1.
도 2에 도시된 바와 같이, 본 발명의 일 실시형태에 따른 프린터 헤드부(300)는 헤드부(310), 슬라이딩 지지부(320), 히팅부(330) 및 노즐부(340)를 적어도 포함하여 구성된다.As shown in FIG. 2, the printer head unit 300 according to an embodiment of the present invention includes at least a head unit 310, a sliding support unit 320, a heating unit 330, and a nozzle unit 340. It is composed.
헤드부(310)는, N개의 타이밍벨트(500)의 이동경로를 제공하고 필라멘트를 하부 방향으로 이동시킨다. The head portion 310 provides a movement path for the N timing belts 500 and moves the filament in the downward direction.
이를 위해, 헤드부(300)는 상부 프레임(311), 아이들러 풀리(312), 익스트루더 풀리(313) 및 하부 프레임(314)을 적어도 포함하여 구성된다.To this end, the head portion 300 includes at least an upper frame 311, an idler pulley 312, an extruder pulley 313, and a lower frame 314.
즉, 헤드부(300)는 상부 프레임(311)과 마주보도록 이격 배치되는 하부 프레임(314) 사이에, 상부 프레임(311)과 하부 프레임(314) 각각의 마주 보는 면과 직교하도록 서로 나란하게 이격되어 배치되는 다수의 풀리(pulley)를 포함한다.That is, the head portion 300 is spaced apart from each other in parallel between the upper frame 311 and the lower frame 314 arranged to face each other, so as to be perpendicular to the facing surfaces of the upper frame 311 and the lower frame 314, respectively. It includes a plurality of pulleys that are arranged.
여기서, 다수의 풀리는, N개의 타이밍벨트의 이동 경로를 제공하는 적어도 하나 이상의 아이들러 풀리와, N개의 타이밍벨트의 동력에 따른 동축 이종토크를 이용해 필라멘트를 하단으로 출력하는 적어도 하나 이상의 익스트루더 풀리를 포함한다. 익스트루더 풀리는 성형 재료 필라멘트를 압출하는 제1 익스트루더 풀리와 서포트 필라멘트를 압출하는 제2 익스트루더 풀리를 포함하여 구성될 수 있다. Here, the plurality of pulleys include at least one idler pulley that provides a movement path for the N timing belts, and at least one extruder pulley that outputs the filament to the bottom using coaxial heterogeneous torque according to the power of the N timing belts. Includes. The extruder pulley may include a first extruder pulley for extruding a molding material filament and a second extruder pulley for extruding a support filament.
먼저, 아이들러 풀리(312)는, 아이들러(idler)가 동축으로 타이밍벨트의 개수만큼 적층된 구조이며, 타이밍벨트가 2개이면, 2층 구조로 각 층에 하나의 타이밍벨트가 부착되도록 구현된다. First, the idler pulley 312 has a structure in which idlers are stacked coaxially as many as the number of timing belts. If there are two timing belts, it is implemented as a two-layer structure with one timing belt attached to each layer.
익스트루더 풀리(313)는 각 모션제어 모터와 연결되는 타이밍벨트로부터 동력을 전달받아 필라멘트의 압출을 수행하는데, 이를 위해 적어도 2개의 타이밍벨트가 부착되어야 하며 서로 다른 방향으로 타이밍벨트가 회전 가능하도록 구현된다. 또한, 익스트루더 풀리(313)는 2개의 타이밍벨트가 서로 동일 방향으로 회전 가능하도록 구성되는데, 이때는 필라멘트의 압출이 수행되지 않는다. The extruder pulley 313 receives power from the timing belt connected to each motion control motor to extrude the filament. For this, at least two timing belts must be attached and the timing belts can rotate in different directions. It is implemented. In addition, the extruder pulley 313 is configured to allow the two timing belts to rotate in the same direction, but in this case, extrusion of the filament is not performed.
슬라이딩 지지부(320)는 케이싱부(100)의 상단부에서 서로 마주보는 양 측면에 일측과 타측이 Y축 방향을 따라 위아래로 이동가능하도록 설치되되, 헤드부(310)를 X축 방향을 따라 좌우로 이동 가능하도록 지지한다.The sliding support part 320 is installed on both sides facing each other at the upper end of the casing part 100 so that one side and the other side can move up and down along the Y-axis direction, and moves the head part 310 left and right along the X-axis direction. Support so that it can be moved.
히팅부(330)는 헤드부(310)에 의해 이동되는 필라멘트에 열을 공급하여 용융이 일어나게 한다. 이러한 히팅부(330)는 성형재료 필라멘트, 서포트 필라멘트를 용융할 수 있도록 250 ℃ 이상의 고온의 열을 발생할 수 있다. 한편, 도시하지는 않았지만, 히팅부(330)는 히팅부(330)에 인접하여 필라멘트의 압출(출력)이 멈출었을 때 히팅부(330)의 열을 발산할 수 있는 냉각수단을 더 구비할 수 있다. The heating unit 330 supplies heat to the filament moved by the head unit 310 to cause melting. This heating unit 330 can generate high temperature heat of 250°C or higher to melt the molding material filament and support filament. Meanwhile, although not shown, the heating unit 330 may further include a cooling means adjacent to the heating unit 330 that can dissipate the heat of the heating unit 330 when the extrusion (output) of the filament stops. .
노즐부(340)는 히팅부(330)에 의해 용융된 필라멘트 원료를 작업베드부(200)에 출력시키는 노즐(미도시)을 구비한다. 노즐부(340)는 헤드부(310)에서 구비하는 익스트루더 풀리(313)의 개수만큼 필라멘트를 출력하는 노즐을 구비한다. The nozzle unit 340 is provided with a nozzle (not shown) that outputs the filament raw material melted by the heating unit 330 to the work bed unit 200. The nozzle unit 340 has a nozzle that outputs filaments equal to the number of extruder pulleys 313 provided in the head unit 310.
상술한 헤드부(310)의 실제 구현 사례에 대해 이하 도 3 및 도 4를 참조하여 설명하도록 한다. An actual implementation example of the above-described head unit 310 will be described below with reference to FIGS. 3 and 4.
도 3은 도 2에 도시된 헤드부(310)의 제1 실시예를 개략적으로 나타낸 도면으로, (a)는 사시도이며 (b)는 평면도이다. 여기서, 본 발명에 따른 3D 프린터는 4개의 모션제어 모터와 4개의 타이밍벨트를 구비한 경우를 예를 들어 설명하도록 한다. 하지만, 본 발명은 이에 한정되는 것은 아니며, 설계에 따라 2개 이상의 모션제어 모터 및 타이밍벨트를 구비하여 구성될 수 있다. FIG. 3 is a diagram schematically showing a first embodiment of the head portion 310 shown in FIG. 2, where (a) is a perspective view and (b) is a plan view. Here, the 3D printer according to the present invention will be described as an example where it is equipped with four motion control motors and four timing belts. However, the present invention is not limited to this, and may be configured with two or more motion control motors and a timing belt depending on the design.
도 3의 (a) 및 (b)에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 헤드부(810)는 슬라이딩 지지부(320) 상부에 위치하며, 상부 프레임(811), 하부 프레임(814), 상부 프레임(811)과 하부 프레임(814) 사이에 구비된 4개의 아이들러 풀리(812-1, 812-2, 812-3, 812-4)와 하나의 익스트루더 풀리(813)를 포함하도록 구성된다. 여기서, 상/하부 프레임은 사각 형상으로 구성되고 각 아이들러 풀리는 사각 형상의 프레임의 모서리에 인접하도록 배치된다. As shown in Figures 3 (a) and (b), the head part 810 according to the first embodiment of the present invention is located on the upper part of the sliding support part 320, and includes an upper frame 811 and a lower frame ( 814), four idler pulleys (812-1, 812-2, 812-3, 812-4) and one extruder pulley (813) provided between the upper frame (811) and the lower frame (814) It is designed to include Here, the upper and lower frames are configured in a square shape, and each idler pulley is disposed adjacent to a corner of the square frame.
상부 프레임(811), 하부 프레임(814) 및 익스트루더 풀리(813)는 동축 일직선상으로 관통하는 개구부가 하나 이상 구비되며, 개구부를 따라 필라멘트가 유입되어 익스트루더 풀리(pulley)를 구성하는 벨트 풀리(pulley)의 각 층별 회전에 따라 필라멘트가 정지 상태를 유지하거나 하부로 압출된다.(필라멘트의 압출을 위한 노즐이 어떻게 형성되는지 자료상의 도면으로는 확인이 어려워, 임의로 작성하였으니 내용 및 도면 확인 바랍니다.)The upper frame 811, the lower frame 814, and the extruder pulley 813 are provided with one or more openings penetrating in a coaxial line, and filament flows in along the openings to form an extruder pulley. Depending on the rotation of each layer of the belt pulley, the filament remains stationary or is extruded downward. (It is difficult to determine from the drawings in the data how the nozzle for extruding the filament is formed, so it was created arbitrarily, so check the contents and drawings. wish.)
아이들러 풀리(812-1, 812-2, 812-3, 812-4) 각각은 2개의 타이밍벨트가 교차하는 경로를 제공하므로, 각 타이밍벨트가 부착되는 위치별로 층이 분리된 아이들러(idler)가 동축 일직선상에 적층되도록 구성된다. Each of the idler pulleys (812-1, 812-2, 812-3, and 812-4) provides a path where two timing belts intersect, so there is an idler with separate layers for each location where each timing belt is attached. It is configured to be stacked on a coaxial line.
익스트루더 풀리(813)는 4개의 타이밍벨트가 각각 부착되도록 동축 일직선상에 타이밍벨트 수만큼 분리된 벨트 풀리가 적층된 구조를 가지며, 각 벨트 풀리에 부착되는 타이밍벨트의 회전 방향 및 회전 속도에 따라 필라멘트의 압출 및 정지를 수행한다. 여기서, 벨트 풀리는 기어처럼 등간격의 홈을 가지며 벨트와 맞물림에 따라 회전을 통해 움직이는 장치이다. 예를 들어, 두 개의 타이밍벨트가 동일한 회전속도로 동일한 방향으로 회전할 경우, 익스트루더 풀리(813)는 필라멘트의 압출을 정지하고, 두 개의 타이밍벨트가 다른 회전 속도로 회전하거나 서로 다른 방향으로 회전할 경우 익스트루더 풀리(813)는 필라멘트의 압출을 수행할 수 있다. 이처럼 각 타이밍벨트의 회전 속도 및 회전 방향, 즉, 모터의 회전 속도 및 회전 방향을 조절함으로써 프린터 헤드부가 이동하면서도 필라멘트의 압출을 수행하도록 제어할 수 있다. The extruder pulley 813 has a structure in which belt pulleys separated by the number of timing belts are stacked on a coaxial line so that four timing belts are attached to each, and it depends on the rotation direction and rotation speed of the timing belt attached to each belt pulley. Perform extrusion and suspension of the filament accordingly. Here, the belt pulley is a device that has grooves at equal intervals like a gear and moves through rotation as it engages with the belt. For example, when two timing belts rotate in the same direction at the same rotation speed, the extruder pulley 813 stops extruding the filament, and the two timing belts rotate at different rotation speeds or in different directions. When rotating, the extruder pulley 813 can extrude the filament. In this way, by adjusting the rotation speed and direction of rotation of each timing belt, that is, the rotation speed and direction of rotation of the motor, the printer head unit can be controlled to extrude the filament while moving.
도 4는 도 2에 도시된 헤드부(310)의 제2 실시예를 개략적으로 나타낸 도면으로, (a)는 사시도이며 (b)는 헤드부에 타이밍벨트가 부착된 상태를 나타낸 도면이다. 여기서, 본 발명에 따른 3D 프린터는 4개의 모션제어 모터와 4개의 타이밍벨트를 구비한 경우를 예를 들어 설명하도록 한다. 하지만, 본 발명은 이에 한정되는 것은 아니며, 설계에 따라 2개 이상의 모션제어 모터 및 타이밍벨트를 구비하여 구성될 수 있다. FIG. 4 is a diagram schematically showing a second embodiment of the head unit 310 shown in FIG. 2, where (a) is a perspective view and (b) is a diagram showing a timing belt attached to the head unit. Here, the 3D printer according to the present invention will be described as an example where it is equipped with four motion control motors and four timing belts. However, the present invention is not limited to this, and may be configured with two or more motion control motors and a timing belt depending on the design.
도 4의 (a) 및 (b)에 도시된 바와 같이, 본 발명의 제2 실시예에 따른 헤드부(910)는 상부 프레임(911), 하부 프레임(914), 상부 프레임(911)과 하부 프레임(914) 사이에 구비된 1개의 아이들러 풀리(912)와 2개의 익스트루더 풀리(913-1, 913-2)를 포함하도록 구성된다. 여기서, 상/하부 프레임은 삼각형 모양으로 구성되고, 아이들러 풀리(912) 및 익스트루더 풀리(913-1, 913-2)는 삼각형 모양의 각 모서리에 인접하도록 배치된다. 하지만, 아이들러 풀리(912) 및 익스트루더 풀리(913-1, 913-2)의 위치는 각 모서리에 한정되는 것은 아니며, 헤드부(910)의 무게 중심, 타이밍벨트의 이동 경로의 최적화 등을 고려하여 적절한 위치로 결정될 수 있다. As shown in Figures 4 (a) and (b), the head portion 910 according to the second embodiment of the present invention includes an upper frame 911, a lower frame 914, an upper frame 911, and a lower frame. It is configured to include one idler pulley 912 and two extruder pulleys 913-1 and 913-2 provided between the frames 914. Here, the upper and lower frames are configured in a triangular shape, and the idler pulley 912 and the extruder pulleys 913-1 and 913-2 are arranged adjacent to each corner of the triangle shape. However, the positions of the idler pulley 912 and the extruder pulleys 913-1 and 913-2 are not limited to each corner, and are optimized for the center of gravity of the head portion 910 and the movement path of the timing belt. An appropriate location can be determined after consideration.
1개의 아이들러 풀리(912)는 아이들러(idler)가 타이밍벨트의 개수에 해당하는 수만큼 동축 일직선상에 적층되는 구조로, 본 실시예에서는 4개의 층으로 이루어지며, 각 층은 타이밍벨트가 부착되어 이동시 회전을 지원하지만 동력을 제공하지는 않는다. One idler pulley 912 has a structure in which the number of idlers corresponding to the number of timing belts is stacked on a coaxial line. In this embodiment, it is made of four layers, and each layer has a timing belt attached. It supports rotation when moving, but does not provide power.
즉, 본 발명의 실시예에 있어서, 아이들러 풀리(912)에 네 개의 타이밍벨트가 모두 경유하게 되는데, 이는 네 개의 모션제어 모터 움직임의 합산이 각 층에 전달되어 최종 움직임으로 다시 분해되는 것이다. 그 결과 작은 움직임이라도 항상 네 개의 모션제어 모터가 협업해서 움직이게 되므로 매우 정밀하고 빠른 움직임이 가능하게 된다. That is, in the embodiment of the present invention, all four timing belts pass through the idler pulley 912, which means that the sum of the movements of the four motion control motors is transmitted to each layer and decomposed into the final movement. As a result, even if there is a small movement, the four motion control motors always move in cooperation, making very precise and fast movement possible.
2개의 익스트루더 풀리(913-1, 913-2)는 성형 재료 필라멘트가 상부로 유입되어 하부로 압출되는 제1 익스트루더 풀리(913-1)와 서포트 필라멘트가 상부로 유입되어 하부로 압출되는 제2 익스트루더 풀리(913-2)를 포함한다.The two extruder pulleys (913-1, 913-2) have a first extruder pulley (913-1) through which the molding material filament flows into the top and is extruded toward the bottom, and a support filament flows into the top and is extruded toward the bottom. It includes a second extruder pulley (913-2).
각 익스트루더 풀리(913-1, 913-2)는 2개의 타이밍벨트가 각각 부착되도록 동축 일직선상에 적층된 2개의 벨트 풀리(pulley)층과, 필라멘트를 하부 방향(노즐 방향)으로 압출을 용이하게 하기 위한 제1 및 제2 익스트루더(915, 916)를 포함할 수 있다. 여기서, 제1 및 제2 익스트루더(915, 916)는 틸팅 스크류 기반의 익스트루더 또는 기어 기반의 익스트루더로 구성될 수 있다. 벨트 풀리는 기어처럼 등간격의 홈을 가지며 벨트와 맞물림에 따라 회전을 통해 움직이는 장치이다. 즉, 본 발명의 실시예에서, 각 벨트 풀리에 부착되는 타이밍벨트의 회전 방향 및 회전 속도에 따라 필라멘트의 압출 및 정지를 수행한다. Each extruder pulley (913-1, 913-2) has two belt pulley layers stacked on the same axis so that two timing belts are attached to each, and the filament is extruded in the downward direction (nozzle direction). It may include first and second extruders 915 and 916 for ease of use. Here, the first and second extruders 915 and 916 may be configured as a tilting screw-based extruder or a gear-based extruder. A belt pulley is a device that has grooves at equal intervals like a gear and moves through rotation as it engages with the belt. That is, in an embodiment of the present invention, the filament is extruded and stopped according to the rotation direction and rotation speed of the timing belt attached to each belt pulley.
제1 익스트루더(915) 상부에 위치한 2개의 벨트 풀리층과, 제2 익스트루더(916) 하부에 위치한 2개의 벨트 풀리층의 각 벨트 풀리층의 외주면에는 등간격의 홈이 형성되어 있으며, 내측에 각 벨트 풀리층의 외주면의 홈과 동일한 간격의 돌기가 형성된 하나의 타이밍벨트가 부착되어 정확히 맞물리고, 이를 통해 모션제어 모터의 회전력을 해당하는 익스트루더로 전달하게 된다. 해당 익스트루더는 전달된 회전력을 이용해 필라멘트를 하부 노즐부 방향으로 압출한다. Equally spaced grooves are formed on the outer peripheral surface of each belt pulley layer of the two belt pulley layers located above the first extruder 915 and the two belt pulley layers located below the second extruder 916, , a timing belt with protrusions at the same intervals as the grooves on the outer peripheral surface of each belt pulley layer is attached to the inside and engages accurately, and through this, the rotational force of the motion control motor is transmitted to the corresponding extruder. The extruder uses the transmitted rotational force to extrude the filament toward the lower nozzle part.
도 5는 도 3에 도시된 헤드부(810)의 X축 방향으로의 이동 원리를 설명하기 위한 예시도로, (a)는 X축 이동 전 벨트의 움직임 방향을 나타낸 도면이며, (b)는 X축 이동 후 타이밍벨트의 길이 변화를 나타낸 도면이다. Figure 5 is an example diagram for explaining the principle of movement of the head portion 810 shown in Figure 3 in the X-axis direction, (a) is a diagram showing the direction of movement of the belt before movement along the This diagram shows the change in length of the timing belt after the axis moves.
도 5의 (a) 및 (b)에 도시된 바와 같이, 본 발명의 일 실시형태에 있어서, 헤드부(810)가 사각 형상을 가지는 경우, 케이싱부의 상단부의 각 모서리에 4개의 모션제어 모터(M1, M2, M3, M4)가 각각 설치되고, 두 모션제어 모터의 사이에 아이들러 바(11 ~ 18, 21~ 28)가 4개씩 배치된다. 하지만, 본 발명은 모션제어 모터의 위치가 이에 한정되지 않으며, 모션제어 모터의 위치는 한쪽 모서리에 인접하여 배치되더라도 타이밍벨트에 동력을 줄 수 있는 위치이면 모두 가능하므로, 타이밍벨트의 이동 경로의 최적화 등을 고려하여 적절한 위치로 결정될 수 있다. As shown in Figures 5 (a) and (b), in one embodiment of the present invention, when the head part 810 has a square shape, four motion control motors (4 motion control motors) are installed at each corner of the upper part of the casing part. M1, M2, M3, M4) are installed respectively, and four idler bars (11 to 18, 21 to 28) are placed between the two motion control motors. However, in the present invention, the position of the motion control motor is not limited to this, and the position of the motion control motor can be any position that can provide power to the timing belt even if it is placed adjacent to one corner, thereby optimizing the movement path of the timing belt. The appropriate location can be determined by considering such factors.
아이들러 바(11 ~ 18, 21~ 28)는 타이밍벨트의 이동시 텐션 유지와 방향 전환을 위해 구비되며, 캐이싱의 상단부에서 두 모터 사이를 왕복 이동이 가능하도록 구성된다. 이러한 아이들러 바(11 ~ 18, 21~ 28)는 각 타이밍벨트가 부착되어 회전가능하도록 아이들러가 타이밍벨트 수만큼 동축 일직선상에 적층된 구조를 가질 수 있다. Idler bars (11 to 18, 21 to 28) are provided to maintain tension and change direction when the timing belt moves, and are configured to enable reciprocating movement between the two motors at the upper part of the casing. These idler bars (11 to 18, 21 to 28) may have a structure in which idlers are stacked in a coaxial line as many as the number of timing belts so that each timing belt can be attached and rotated.
먼저, 본 발명의 실시예에 따르면, 헤드부(810)의 X축 방향 이동은 제3 및 제4 모션제어 모터(M3, M4)가 제어하며, 제3 및 제4 모션제어 모터(M3, M4) 각각이 구동하여 제3 및 제4 타이밍벨트(긴 파선, 긴파선-점선-점선)에 회전력을 전달하고, 제3 타이밍벨트(긴 파선)가 화살표 방향으로 이동하면서 아이들러 바(M3에서 시작, 11->15->17->M4->18->16->12, M3 도착)를 경유하여 하나의 루프를 형성한다. 동시에, 제4 타이밍벨트(긴파선-점선-점선)가 화살표 방향으로 이동하면서 아이들러 바(M4에서 시작, 18->14->12->M3->11->13->17)를 경유하여 하나의 루프를 형성한다. 이때, 제3 및 제4 모션제어 모터(M3, M4)와 제3 및 제4 타이밍벨트(긴 파선, 긴파선-점선-점선)는 각각 하나의 루프를 형성하고 형성된 루프로 무한 회전을 반복함으로써 원하는 모션(헤드부의 이동, 필라멘트의 압출 및 정지, 헤드부의 이동과 동시에 필라멘트의 압출 및 정지 등)을 수행하도록 제어된다.First, according to an embodiment of the present invention, the movement of the head unit 810 in the X-axis direction is controlled by the third and fourth motion control motors (M3, M4), and the third and fourth motion control motors (M3, M4) ) Each drives to transmit rotational force to the 3rd and 4th timing belts (long dashed line, long dashed line-dotted line-dotted line), and the 3rd timing belt (long dashed line) moves in the direction of the arrow and the idler bar (starting from M3, 11->15->17->M4->18->16->12, arrives at M3) to form a loop. At the same time, the fourth timing belt (long broken line-dotted line-dotted line) moves in the direction of the arrow via the idler bar (starting from M4, 18->14->12->M3->11->13->17). Forms one loop. At this time, the third and fourth motion control motors (M3, M4) and the third and fourth timing belts (long broken line, long broken line-dotted line-dotted line) each form one loop and repeat infinite rotation with the formed loop. It is controlled to perform the desired motion (moving the head part, extruding and stopping the filament, moving the head part while extruding and stopping the filament, etc.).
이처럼 제3 및 제4 모션제어 모터(M3, M4)의 구동을 통해 제3 및 제4 타이밍벨트(긴 파선, 긴파선-점선-점선)가 회전하게 되어 X축 방향의 제1 방향(검은색 화살표 방향)으로 슬라이딩 지지부(320) 위를 이동하게 된다. In this way, through the driving of the third and fourth motion control motors (M3, M4), the third and fourth timing belts (long dashed line, long dashed line-dotted line-dotted line) rotate in the first direction of the It moves over the sliding support 320 in the direction of the arrow).
이때, 제3 및 제4 타이밍벨트(긴 파선, 긴파선-점선-점선)는 동일한 방향으로 회전하므로 헤드부(810)에서 필라멘트의 압출이 수행되지 않는다. At this time, the third and fourth timing belts (long broken line, long broken line-dotted line-dotted line) rotate in the same direction, so extrusion of the filament is not performed in the head portion 810.
또한, 마찬가지로, 제1 및 제2 모션제어 모터(M1, M2)도 구동하여 제1 및 제2 타이밍벨트(둥근 점선, 파선)을 회전시킨다. 하지만, 제1 및 제2 타이밍벨트(둥근 점선, 파선)의 회전은 헤드부(810)를 이동시키기 위한 회전이 아니라, 헤드부(810)의 X축 방향 중 제1 방향으로 이동함에 따라 생기는 타이밍벨트의 텐션을 유지하기 위해서 필요하다. 이때도, 제1 및 제2 타이밍벨트(둥근 점선, 파선)가 동일한 방향으로 함께 회전하므로 헤드부(810)에서는 필라멘트의 압출이 수행되지 않는다.Additionally, similarly, the first and second motion control motors M1 and M2 are driven to rotate the first and second timing belts (round dotted lines, broken lines). However, the rotation of the first and second timing belts (round dotted lines, broken lines) is not a rotation to move the head portion 810, but timing that occurs as the head portion 810 moves in the first direction of the X-axis direction. This is necessary to maintain belt tension. Even at this time, since the first and second timing belts (round dotted line, broken line) rotate together in the same direction, extrusion of the filament is not performed in the head portion 810.
그리고, 아이들러 바(21~ 28)는 헤드부(810)의 이동에 따라 X축 방향으로 이동하게 된다.And, the idler bars 21 to 28 move in the X-axis direction according to the movement of the head portion 810.
상술한 바와 같이 본 발명에 따른 3D 프린터에서는, 4개의 모션제어 모터가 동시에 회전하여 X축 이동이라는 하나의 모션을 수행하게 된다.As described above, in the 3D printer according to the present invention, four motion control motors rotate simultaneously to perform one motion called X-axis movement.
도 6은, 도 3에 도시된 헤드부(810)의 Y축 방향으로의 이동 원리를 설명하기 위한 예시도로, (a)는 Y축 이동 전 벨트의 움직임 방향을 나타낸 도면이며, (b)는 Y축 이동 후 타이밍벨트의 길이 변화를 나타낸 도면이다. Figure 6 is an example diagram for explaining the principle of movement of the head portion 810 shown in Figure 3 in the Y-axis direction. (a) is a diagram showing the direction of movement of the belt before movement along the Y-axis, and (b) is a diagram showing the movement direction of the belt before movement along the Y-axis. This diagram shows the change in timing belt length after Y-axis movement.
도 6의 (a) 및 (b)에 도시된 바와 같이, 본 발명의 일 실시형태에 있어서, 헤드부(810)가 사각 형상을 가지는 경우, 케이싱부의 상단부의 각 모서리에 4개의 모션제어 모터(M1, M2, M3, M4)가 각각 설치되고, 두 모션제어 모터의 사이에 아이들러 바(11 ~ 18, 21~ 28)가 4개씩 배치된다. 하지만, 본 발명은 모션제어 모터의 위치가 이에 한정되지 않으며, 모션제어 모터의 위치는 한쪽 모서리에 인접하여 배치되더라도 타이밍벨트에 동력을 줄 수 있는 위치이면 모두 가능하므로, 타이밍벨트의 이동 경로의 최적화 등을 고려하여 적절한 위치로 결정될 수 있다. As shown in Figures 6 (a) and (b), in one embodiment of the present invention, when the head part 810 has a square shape, four motion control motors (4 motion control motors) are installed at each corner of the upper part of the casing part. M1, M2, M3, M4) are installed respectively, and four idler bars (11 to 18, 21 to 28) are placed between the two motion control motors. However, in the present invention, the position of the motion control motor is not limited to this, and the position of the motion control motor can be any position that can provide power to the timing belt even if it is placed adjacent to one corner, thereby optimizing the movement path of the timing belt. The appropriate location can be determined by considering such factors.
아이들러 바(11 ~ 18, 21~ 28)는 타이밍벨트의 이동시 텐션 유지와 방향 전환을 위해 구비되며, 캐이싱의 상단부에서 두 모션제어 모터 사이를 왕복 이동이 가능하도록 구성된다. 이러한 아이들러 바(11 ~ 18, 21~ 28)는 각 타이밍벨트가 부착되어 회전가능하도록 아이들러가 타이밍벨트 수만큼 동축 일직선상에 적층된 구조를 가질 수 있다. Idler bars (11 to 18, 21 to 28) are provided to maintain tension and change direction when the timing belt moves, and are configured to enable reciprocating movement between the two motion control motors at the upper part of the casing. These idler bars (11 to 18, 21 to 28) may have a structure in which idlers are stacked in a coaxial line as many as the number of timing belts so that each timing belt can be attached and rotated.
먼저, 본 발명의 실시예에 따르면, 헤드부(810)의 Y축 방향 이동은 제1 및 제2 모션제어 모터(M1, M2)가 제어하며, 제1 및 제2 모션제어 모터(M1, M2) 각각이 구동하여 제1 및 제2 타이밍벨트(둥근 점선, 파선)에 회전력을 전달하고, 제1 타이밍벨트(둥근 점선)가 화살표 방향으로 이동하면서 아이들러 바(M1 시작, 28->22->24->M2->23->21->27, M1 도착)를 경유하여 하나의 루프를 형성한다. 동시에, 제2 타이밍벨트(파선)가 화살표 방향으로 이동하면서 아이들러 바(M2 시작, 23->25->27->M1->28->26->24, M2 도착)를 경유하여 하나의 루프를 형성한다. 이때, 제1 및 제2 모션제어 모터(M1, M2)와 제1 및 제2 타이밍벨트(둥근 점선, 파선)는 각각 하나의 루프를 형성하고 형성된 루프로 무한 회전을 반복함으로써 원하는 모션(헤드부의 이동, 필라멘트의 압출 및 정지, 헤드부의 이동과 동시에 필라멘트의 압출 및 정지 등)을 수행하도록 제어된다.First, according to an embodiment of the present invention, the movement of the head unit 810 in the Y-axis direction is controlled by the first and second motion control motors (M1, M2), and the first and second motion control motors (M1, M2) ) Each drives to transmit rotational force to the first and second timing belts (round dotted line, dashed line), and as the first timing belt (round dotted line) moves in the direction of the arrow, the idler bar (M1 starts, 28->22-> 24->M2->23->21->27, arrives at M1) to form a loop. At the same time, the second timing belt (dashed line) moves in the direction of the arrow and makes one loop via the idler bar (M2 starts, 23->25->27->M1->28->26->24, M2 arrives). forms. At this time, the first and second motion control motors (M1, M2) and the first and second timing belts (round dotted line, dashed line) each form one loop and repeat infinite rotation with the formed loop to achieve the desired motion (head part). It is controlled to perform movement, extrusion and stopping of the filament, extrusion and stopping of the filament simultaneously with movement of the head, etc.).
이처럼 제1 및 제2 모션제어 모터(M1, M2)의 구동을 통해 제1 및 제2 타이밍벨트(둥근 점선, 파선)가 회전하게 되어 Y축 방향의 제1 방향(검정색 화살표 방향)으로 이동하게 된다. 이때, 슬라이딩 지지부(320)도 함께 Y축 방향의 제1 방향으로 이동한다. In this way, through the driving of the first and second motion control motors (M1, M2), the first and second timing belts (round dotted lines, broken lines) rotate and move in the first direction of the Y-axis (black arrow direction). do. At this time, the sliding support unit 320 also moves in the first direction of the Y-axis direction.
이때, 제1 및 제2 타이밍벨트(둥근 점선, 파선)는 동일한 방향으로 회전하므로 헤드부(810)에서 필라멘트의 압출이 수행되지 않는다. At this time, since the first and second timing belts (round dotted line, broken line) rotate in the same direction, extrusion of the filament is not performed in the head portion 810.
또한, 마찬가지로, 제3 및 제4 모션제어 모터(M3, M4)(적색, 청색)도 구동하여 제3 및 제4 타이밍벨트(긴파선-점선-점선)을 회전시킨다. 하지만, 제3 및 제4 타이밍벨트(긴파선-점선-점선)의 회전은 헤드부(810)를 이동시키기 위한 회전이 아니라, 헤드부(810)의 Y축 방향 중 제1 방향으로 이동함에 따라 생기는 타이밍벨트의 텐션을 유지하기 위해서 필요하다. 이때도, 제3 및 제4 타이밍벨트(긴파선-점선-점선)가 동일한 방향으로 함께 회전하므로 헤드부(810)에서는 필라멘트의 압출이 수행되지 않는다.Additionally, similarly, the third and fourth motion control motors (M3, M4) (red, blue) are driven to rotate the third and fourth timing belts (long dashed line - dotted line - dotted line). However, the rotation of the third and fourth timing belts (long dashed line - dotted line - dotted line) is not rotation to move the head part 810, but rather moves in the first direction of the Y-axis direction of the head part 810. It is necessary to maintain the tension of the timing belt. Even at this time, since the third and fourth timing belts (long dashed line - dotted line - dotted line) rotate together in the same direction, extrusion of the filament is not performed in the head portion 810.
그리고, 아이들러 바(11~ 18)는 헤드부(810)의 이동에 따라 Y축 방향의 제1 방향으로 이동하게 된다.And, the idler bars 11 to 18 move in the first direction of the Y-axis direction as the head portion 810 moves.
상술한 바와 같이 본 발명에 따른 3D 프린터에서는, 4개의 모션제어 모터가 동시에 구동하여 4개의 타이밍벨트를 모두 회전시킴으로써 Y축 이동이라는 하나의 모션을 수행하도록 제어한다.As described above, in the 3D printer according to the present invention, four motion control motors are driven simultaneously to rotate all four timing belts to perform one motion called Y-axis movement.
도 7은 도 4에 도시된 헤드부(910)의 X축 방향으로의 이동 원리를 설명하기 위한 예시도로, (a)는 헤드부(910)의 아이들러 풀리에 4개의 타이밍벨트가 부착되는 위치를 나타낸 도면이며, (b)는 X축 이동 전 벨트의 움직임 방향을 나타낸 도면이며, (c)는 X축 이동 후 타이밍벨트의 길이 변화를 나타낸 도면이다. Figure 7 is an example diagram for explaining the principle of movement of the head part 910 shown in Figure 4 in the (b) is a diagram showing the direction of movement of the belt before moving along the X-axis, and (c) is a diagram showing the change in length of the timing belt after moving along the X-axis.
도 7의 (a) 내지 (c)에 도시된 바와 같이, 본 발명의 일 실시형태에 있어서, 헤드부(910)가 삼각형 형상을 가지는 경우, 케이싱부의 상단부의 각 모서리에 4개의 모션제어 모터(M1, M2, M3, M4)가 각각 설치되고, 각 모터와 쌍으로 나란하게 아이들러 바(31, 32, 33, 34)가 하나씩 배치되고, 제2 및 제3 모션제어 모터 사이에 아이들러 바(35, 36)가, 제1 및 제4 모션제어 모터 사이에 아이들러 바(37, 38)가 2개씩 배치된다. 여기서, 모션제어 모터(M1, M2, M3, M4) 및 아이들러 바(31, 32, 33, 34, 35, 36, 37, 38)의 위치는 이에 한정되는 것은 아니며, 본 발명에서 모션제어 모터의 위치는 한쪽 모서리에 인접하여 배치되더라도 타이밍벨트에 동력을 줄 수 있는 위치이면 모두 가능하므로, 모션제어 모터 및 아이들러 바는 타이밍벨트의 이동 경로의 최적화 등을 고려하여 적절한 위치로 결정할 수 있다. As shown in Figures 7 (a) to (c), in one embodiment of the present invention, when the head part 910 has a triangular shape, four motion control motors (4 motion control motors) are installed at each corner of the upper part of the casing part. M1, M2, M3, M4) are installed respectively, idler bars (31, 32, 33, 34) are arranged one by one in pairs with each motor, and an idler bar (35) is placed between the second and third motion control motors. , 36), two idler bars 37 and 38 are disposed between the first and fourth motion control motors. Here, the positions of the motion control motors (M1, M2, M3, M4) and the idler bars (31, 32, 33, 34, 35, 36, 37, 38) are not limited to this, and in the present invention, the positions of the motion control motors Since the position can be any position that can provide power to the timing belt even if it is placed adjacent to one corner, the motion control motor and idler bar can be determined at an appropriate position by considering optimization of the movement path of the timing belt.
아이들러 바(35 ~ 38)는 타이밍벨트의 이동시 텐션 유지와 방향 전환을 위해 구비되며, 각 모션제어 모터와 쌍으로 배치된 아이들러 바(31 ~ 34)는 그 위치가 고정되며, 두 모션제어 모터 사이에 배치된 아이들러 바(35 ~ 38)는 캐이싱부의 상단부에서 두 모션제어 모터 사이를 왕복 이동이 가능하도록 구성된다. 이러한 아이들러 바(31, 32, 33, 34, 35, 36, 37, 38)는 각 타이밍벨트가 부착되어 회전가능하도록 아이들러가 타이밍벨트 수만큼 동축 일직선상에 적층된 구조를 가질 수 있다. The idler bars (35 to 38) are provided to maintain tension and change direction when the timing belt moves, and the idler bars (31 to 34) arranged in pairs with each motion control motor are fixed in position and are positioned between the two motion control motors. The idler bars 35 to 38 arranged in are configured to be able to move back and forth between the two motion control motors at the upper end of the casing. These idler bars (31, 32, 33, 34, 35, 36, 37, and 38) may have a structure in which idlers are stacked in a coaxial line as many as the number of timing belts so that each timing belt can be attached and rotated.
먼저, 본 발명의 실시예에 따르면, 헤드부(910)의 X축 방향 이동은 제3 및 제4 모션제어 모터(M3, M4)가 제어하며, 제3 및 제4 모션제어 모터(M3, M4) 각각이 구동하여 제3 및 제4 타이밍벨트(긴 파선, 긴파선-점선-점선)에 회전력을 전달하고, 제3 타이밍벨트(긴 파선)가 화살표 방향으로 이동하면서 아이들러 바(M3 시작, 35->36->M2->32->34->38->아이들러 풀리->제2 익스트루더 풀리->35, M3 도착)를 경유하여 하나의 루프를 형성한다. 동시에, 제4 타이밍벨트(긴파선-점선-점선)가 화살표 방향으로 이동하면서 아이들러 바(M4 시작, 38->아이들러 풀리-> 제2 익스트루더 풀리->35->31->34->M1->37->38, M4 도착)를 경유하여 하나의 루프를 형성한다. 이때, 제3 및 제4 모션제어 모터(M3, M4)와 제3 및 제4 타이밍벨트(긴 파선, 긴파선-점선-점선)는 각각 하나의 루프를 형성하고 형성된 루프로 무한 회전을 반복함으로써 원하는 모션(헤드부의 이동, 필라멘트의 압출 및 정지, 헤드부의 이동과 동시에 필라멘트의 압출 및 정지 등)을 수행하도록 제어된다.First, according to an embodiment of the present invention, the movement of the head unit 910 in the X-axis direction is controlled by the third and fourth motion control motors (M3, M4), and the third and fourth motion control motors (M3, M4) ) Each drives to transmit rotational force to the 3rd and 4th timing belts (long dashed line, long dashed line-dashed line-dashed line), and the 3rd timing belt (long dashed line) moves in the direction of the arrow and moves the idler bar (M3 starting, 35 ->36->M2->32->34->38->idler pulley->2nd extruder pulley->35, arrives at M3) to form one loop. At the same time, the fourth timing belt (long broken line-dotted line-dotted line) moves in the direction of the arrow and moves the idler bar (M4 starting, 38->idler pulley->2nd extruder pulley->35->31->34-> It forms a loop via M1->37->38, arriving at M4). At this time, the third and fourth motion control motors (M3, M4) and the third and fourth timing belts (long broken line, long broken line-dotted line-dotted line) each form one loop and repeat infinite rotation with the formed loop. It is controlled to perform the desired motion (moving the head part, extruding and stopping the filament, moving the head part while extruding and stopping the filament, etc.).
이처럼 제3 및 제4 모션제어 모터(M3, M4)의 구동을 통해 제3 및 제4 타이밍벨트(긴파선-점선-점선)가 회전하게 되어 X축 방향의 제1 방향(검정색 화살표 방향)으로 슬라이딩 지지부(320)(미도시) 위를 이동하게 된다. In this way, through the driving of the third and fourth motion control motors (M3, M4), the third and fourth timing belts (long dashed line - dotted line - dotted line) rotate in the first direction of the X axis (black arrow direction). It moves on the sliding support 320 (not shown).
이때, 제3 및 제4 타이밍벨트(긴파선-점선-점선)는 동일한 방향으로 회전하므로 헤드부(910)에서 필라멘트의 압출이 수행되지 않는다. At this time, the third and fourth timing belts (long dashed line - dotted line - dotted line) rotate in the same direction, so extrusion of the filament is not performed in the head portion 910.
또한, 마찬가지로, 제1 및 제2 모션제어 모터(M1, M2)도 구동하여 제1 및 제2 타이밍벨트(둥근 점선, 파선)을 회전시킨다. 하지만, 제1 및 제2 타이밍벨트(둥근 점선, 파선)의 회전은 헤드부(910)를 이동시키기 위한 회전이 아니라, 헤드부(910)의 X축 방향 중 제1 방향으로 이동함에 따라 생기는 타이밍벨트의 텐션 변화를 조절하여 텐션을 유지하기 위해서 필요하다. 이때도, 제1 및 제2 타이밍벨트(둥근 점선, 파선)가 동일한 방향으로 함께 회전하므로 헤드부(910)에서는 필라멘트의 압출이 수행되지 않는다.Additionally, similarly, the first and second motion control motors M1 and M2 are driven to rotate the first and second timing belts (round dotted lines, broken lines). However, the rotation of the first and second timing belts (round dotted lines, broken lines) is not rotation to move the head portion 910, but timing that occurs as the head portion 910 moves in the first direction of the X-axis direction. It is necessary to maintain tension by controlling changes in belt tension. Even at this time, since the first and second timing belts (round dotted line, broken line) rotate together in the same direction, extrusion of the filament is not performed in the head portion 910.
그리고, 아이들러 바(35~ 38)은 헤드부(910)의 이동에 따라 X축 방향의 제1 방향으로 이동하게 된다.And, the idler bars 35 to 38 move in the first direction of the X-axis direction according to the movement of the head portion 910.
상술한 바와 같이 본 발명에 따른 3D 프린터에서는, 4개의 모션제어 모터가 동시에 회전하여 4개의 타이밍벨트를 모두 회전시킴으로써 X축 이동이라는 하나의 모션을 수행하도록 제어한다.As described above, in the 3D printer according to the present invention, four motion control motors rotate simultaneously to rotate all four timing belts to perform one motion called X-axis movement.
도 8은, 도 4에 도시된 헤드부(910)의 Y축 방향으로의 이동 원리를 설명하기 위한 예시도로, (a)는 헤드부(910)의 아이들러 풀리에 4개의 타이밍벨트가 부착되는 위치를 나타낸 도면이며, (b)는 Y축 이동 전 벨트의 움직임 방향을 나타낸 도면이며, (c)는 Y축 이동 후 타이밍벨트의 길이 변화를 나타낸 도면이다. Figure 8 is an example diagram for explaining the movement principle of the head part 910 shown in Figure 4 in the Y-axis direction, (a) is the position where four timing belts are attached to the idler pulley of the head part 910 This is a drawing showing, (b) is a drawing showing the direction of movement of the belt before moving along the Y axis, and (c) is a drawing showing the change in length of the timing belt after moving along the Y axis.
도 8의 (a) 내지 (c)에 도시된 바와 같이, 본 발명의 일 실시형태에 있어서, 헤드부(910)가 삼각형 형상을 가지는 경우, 케이싱부의 상단부의 각 모서리에 4개의 모션제어 모터(M1, M2, M3, M4)가 각각 설치되고, 각 모션제어 모터와 쌍으로 나란하게 아이들러 바(31, 32, 33, 34)가 하나씩 배치되고, 제2 및 제3 모션제어 모터 사이에 아이들러 바(35, 36)가, 제1 및 제4 모션제어 모터 사이에 아이들러 바(37, 38)가 2개씩 배치된다. 여기서, 모션제어 모터(M1, M2, M3, M4) 및 아이들러 바(31, 32, 33, 34, 35, 36, 37, 38)의 위치는 이에 한정되는 것은 아니며, 본 발명에서 모션제어 모터의 위치는 한쪽 모서리에 인접하여 배치되더라도 타이밍벨트에 동력을 줄 수 있는 위치이면 모두 가능하므로, 모션제어 모터 및 아이들러 바는 타이밍벨트의 이동 경로의 최적화 등을 고려하여 적절한 위치로 결정할 수 있다. As shown in (a) to (c) of Figure 8, in one embodiment of the present invention, when the head part 910 has a triangular shape, four motion control motors (4 motion control motors) are installed at each corner of the upper part of the casing part. M1, M2, M3, M4) are installed respectively, idler bars (31, 32, 33, 34) are arranged one by one in pairs with each motion control motor, and an idler bar is between the second and third motion control motors. (35, 36), two idler bars (37, 38) are disposed between the first and fourth motion control motors. Here, the positions of the motion control motors (M1, M2, M3, M4) and the idler bars (31, 32, 33, 34, 35, 36, 37, 38) are not limited to this, and in the present invention, the positions of the motion control motors Since the position can be any position that can provide power to the timing belt even if it is placed adjacent to one corner, the motion control motor and idler bar can be determined at an appropriate position by considering optimization of the movement path of the timing belt.
아이들러 바(35 ~ 38)는 타이밍벨트의 이동시 텐션 유지와 방향 전환을 위해 구비되며, 각 모션제어 모터와 쌍으로 배치된 아이들러 바(31 ~ 34)는 위치가 고정되며, 두 모션제어 모터 사이에 배치된 아이들러 바(35 ~ 38)는 캐이싱부의 상단부에서 두 모션제어 모터 사이를 왕복 이동이 가능하도록 구성된다. 이러한 아이들러 바(31, 32, 33, 34, 35, 36, 37, 38)는 각 타이밍벨트가 부착되어 회전가능하도록 아이들러가 타이밍벨트 수만큼 동축 일직선상에 적층된 구조를 가질 수 있다. The idler bars (35 to 38) are provided to maintain tension and change direction when the timing belt moves, and the idler bars (31 to 34) arranged in pairs with each motion control motor are fixed in position and are positioned between the two motion control motors. The disposed idler bars 35 to 38 are configured to be able to move back and forth between the two motion control motors at the upper end of the casing. These idler bars (31, 32, 33, 34, 35, 36, 37, and 38) may have a structure in which idlers are stacked in a coaxial line as many as the number of timing belts so that each timing belt can be attached and rotated.
먼저, 본 발명의 실시예에 따르면, 헤드부(910)의 Y축 방향 이동은 제1 및 제2 모션제어 모터(M1, M2)가 제어하며, 제1 및 제2 모션제어 모터(M1, M2) 각각이 구동하여 제1 및 제2 타이밍벨트(둥근 점선, 파선)에 회전력을 전달하고, 제1 타이밍벨트(둥근 점선)가 화살표 방향으로 이동하면서 아이들러 바(M1 시작, 37->아이들러 풀리->제1 익스트루더 풀리->36->32->34->M4->38->37, M1 도착)를 경유하여 하나의 루프를 형성한다. 동시에, 제2 타이밍벨트(파선)가 화살표 방향으로 이동하면서 아이들러 바(M2 시작, 36->35->M3->31->33->37->아이들러 풀리->제1 익스트루더 풀리->36, M2 도착)를 경유하여 하나의 루프를 형성한다. 이때, 제1 및 제2 모션제어 모터(M1, M2)와 제1 및 제2 타이밍벨트(둥근 점선, 파선)는 각각 하나의 루프를 형성하고 형성된 루프로 무한 회전을 반복함으로써 원하는 모션(헤드부의 이동, 필라멘트의 압출 및 정지, 헤드부의 이동과 동시에 필라멘트의 압출 및 정지 등)을 수행하도록 제어된다.First, according to an embodiment of the present invention, the movement of the head unit 910 in the Y-axis direction is controlled by the first and second motion control motors (M1, M2), and the first and second motion control motors (M1, M2) ) Each drives to transmit rotational force to the first and second timing belts (round dotted line, broken line), and as the first timing belt (round dotted line) moves in the direction of the arrow, the idler bar (M1 starts, 37->idler pulley- >First extruder pulley->36->32->34->M4->38->37, arrives at M1) to form one loop. At the same time, the second timing belt (dashed line) moves in the direction of the arrow and moves the idler bar (M2 starting, 36->35->M3->31->33->37->idler pulley->first extruder pulley- >36, arrives at M2) to form a loop. At this time, the first and second motion control motors (M1, M2) and the first and second timing belts (round dotted line, dashed line) each form one loop and repeat infinite rotation with the formed loop to achieve the desired motion (head part). It is controlled to perform movement, extrusion and stopping of the filament, extrusion and stopping of the filament simultaneously with movement of the head, etc.).
이처럼 제1 및 제2 모션제어 모터(M1, M2)의 구동을 통해 제1 및 제2 타이밍벨트(둥근 점선, 파선)가 회전하게 되어 Y축 방향의 제1 방향(검정색 화살표 방향)으로 이동하게 된다. 이때, 슬라이딩 지지부(320)도 함께 Y축 방향의 제1 방향으로 이동한다. In this way, through the driving of the first and second motion control motors (M1, M2), the first and second timing belts (round dotted lines, broken lines) rotate and move in the first direction of the Y-axis (black arrow direction). do. At this time, the sliding support unit 320 also moves in the first direction of the Y-axis direction.
이때, 제1 및 제2 타이밍벨트(둥근 점선, 파선)는 동일한 방향으로 회전하므로 헤드부(910)에서 필라멘트의 압출이 수행되지 않는다. At this time, since the first and second timing belts (round dotted line, broken line) rotate in the same direction, extrusion of the filament is not performed in the head portion 910.
또한, 마찬가지로, 제3 및 제4 모션제어 모터(M3, M4)도 구동하여 제3 및 제4 타이밍벨트(긴 파선, 긴 파선-점선-점선)을 회전시킨다. 하지만, 제3 및 제4 타이밍벨트(긴 파선, 긴 파선-점선-점선)의 회전은 헤드부(910)를 이동시키기 위한 회전이 아니라, 헤드부(810)의 Y축 방향 중 제1 방향으로 이동함에 따라 생기는 타이밍벨트의 텐션 변화를 조절하여 텐션을 유지하기 위해서 필요하다. 이때도, 제3 및 제4 타이밍벨트(긴 파선, 긴 파선-점선-점선)가 동일한 방향으로 함께 회전하므로 헤드부(910)에서 필라멘트의 압출이 수행되지 않는다.Additionally, similarly, the third and fourth motion control motors M3 and M4 are driven to rotate the third and fourth timing belts (long broken line, long broken line-dotted line-dotted line). However, the rotation of the third and fourth timing belts (long dashed line, long dashed line-dotted line-dotted line) is not rotation to move the head portion 910, but in the first direction among the Y-axis directions of the head portion 810. It is necessary to maintain tension by controlling the change in tension of the timing belt that occurs as it moves. Even at this time, since the third and fourth timing belts (long broken line, long broken line-dotted line-dotted line) rotate together in the same direction, extrusion of the filament is not performed in the head portion 910.
그리고, 아이들러 바(35~ 38)는 헤드부(910)의 이동에 따라 Y축 방향의 제1 방향으로 이동하게 된다.And, the idler bars 35 to 38 move in the first direction of the Y-axis direction as the head portion 910 moves.
상술한 바와 같이 본 발명에 따른 3D 프린터에서는, 4개의 모션제어 모터가 동시에 구동하여 4개의 타이밍벨트를 모두 회전시킴으로써 Y축 이동이라는 하나의 모션을 수행하도록 제어한다.As described above, in the 3D printer according to the present invention, four motion control motors are driven simultaneously to rotate all four timing belts to perform one motion called Y-axis movement.
이와 같이 도 5 내지 도 8을 참조하여 살펴본 바, 본 발명에 따른 3D 프린터는, 4개의 모션제어 모터가 동시에 회전하여 X축 이동, Y축 이동, 성형재료 필라멘트 압출, 서포트 필라멘트 압출, 이들의 조합 중 하나의 모션을 결정하고 이를 수행하도록 제어한다. 예를 들어, 본 발명에 따른 3D 프린터는 복수 개의 모션제어 모터의 회전을 제어하여 회전속도 및 회전방향에 따라서 X축 이동만 수행하는 모션(필라멘트 압출 정지), Y축 이동만 수행하는 모션(필라멘트 압출 정지), 이동없이 제자리에서 필라멘트 압출하는 모션, 이동하면서 필라멘트 압출하는 모션 등을 결정할 수 있다. As seen with reference to FIGS. 5 to 8, in the 3D printer according to the present invention, four motion control motors rotate simultaneously to perform X-axis movement, Y-axis movement, molding material filament extrusion, support filament extrusion, and combinations thereof. Determine one of the motions and control it to perform it. For example, the 3D printer according to the present invention controls the rotation of a plurality of motion control motors to perform a motion that only performs X-axis movement (filament extrusion stop) and a Y-axis movement (filament extrusion stop) according to the rotation speed and direction of rotation. Extrusion stop), motion to extrude filament in place without moving, motion to extrude filament while moving, etc. can be determined.
도 9는 도 4에 도시된 헤드부에서 필라멘트를 압출하는 원리를 설명하기 위한 예시도이다.Figure 9 is an example diagram for explaining the principle of extruding filament from the head shown in Figure 4.
도 9에 도시된 바와 같이, 본 발명의 일 실시형태에 따른 3D 프린터에 있어서, 프린터 헤드부에 구비된 헤드부(910)에서 필라멘트를 압출하는 익스트루더 기능을 수행하도록 제1 및 제2 익스트루더 풀리(913-1, 313-2)을 구비한다. As shown in Figure 9, in the 3D printer according to an embodiment of the present invention, the first and second extruders are used to perform the extruder function of extruding filament from the head unit 910 provided in the printer head unit. Equipped with a truer pulley (913-1, 313-2).
제1 및 제2 익스트루더 풀리(913-1, 313-2) 각각은 한 축에 2개의 타이밍벨트가 위아래로 부착되도록 2개의 벨트 풀리(pulley)층을 구비하고(검정 원으로 표시), 2개의 타이밍벨트가 서로 다른 모션제어 모터(M1, M2)를 교차해서 움직이되, 두 개의 모션제어 모터(M1, M2)를 같은 방향으로 움직이면 필라멘트(A, S)를 압출하지 않고 헤드부(910)의 이동만을 하게 되고, 서로 다른 방향으로 움직이게 되면 헤드부(910)가 이동하지 않고 필라멘트(A, S)만 압출하게 된다. 이때, 제1 익스트루더 풀리(913-1) 및 제2 익스트루더 풀리(913-2)는 동시에 필라멘트를 압출하지 않도록 선택적으로 하나만 필라멘트 압출을 수행하도록 제어되어야 한다.The first and second extruder pulleys (913-1, 313-2) each have two belt pulley layers so that two timing belts are attached top and bottom to one axis (indicated by black circles), The two timing belts move across different motion control motors (M1, M2), but if the two motion control motors (M1, M2) move in the same direction, the filaments (A, S) are not extruded and the head ( Only the movement of 910 is performed, and when moving in different directions, the head portion 910 does not move and only the filaments (A, S) are extruded. At this time, the first extruder pulley 913-1 and the second extruder pulley 913-2 must be controlled to selectively extrude only one filament so as not to extrude the filament at the same time.
즉, X축 이동, Y축 이동, 성형재료 필라멘트(A) 압출, 서포트 필라멘트(S) 압출과 같은 모션에 대해 모션제어 모터의 회전방향과 회전속도를 조절함으로써 헤드부가 이동하면서 필라멘트를 압출하는 모션도 구동이 가능하게 된다.In other words, the head part moves and the filament is extruded by controlling the rotation direction and rotation speed of the motion control motor for motions such as X-axis movement, Y-axis movement, molding material filament (A) extrusion, and support filament (S) extrusion. Driving is also possible.
예를 들어, 제1 및 제2 모션제어 모터(M1, M2)가 제1 익스트루더 풀리(913-1)의 축에 제1 및 제2 타이밍벨트(둥근 점선, 파선)(검정원 표시)가 부착되어 모터로부터 회전력을 전달받음으로써 Y축 이동 및 성형재료 필라멘트(A)의 압출을 담당하게 되고, 제3 및 제4 모션제어 모터(M3, M4)가 제2 익스트루더 풀리(913-2)의 축에 제3 및 제4 타이밍벨트(긴 파선, 긴 파선-점선-점선)(검정원 표시)가 부착되어 모션제어 모터로부터 회전력을 전달받음으로써 X축 이동 및 서포트 필라멘트(S)의 압출을 담당하게 된다. For example, the first and second motion control motors (M1, M2) are connected to the first and second timing belts (round dotted lines, dashed lines) (black circles) on the axis of the first extruder pulley (913-1). is attached and receives rotational force from the motor, thereby taking charge of Y-axis movement and extrusion of the molding material filament (A), and the third and fourth motion control motors (M3, M4) are connected to the second extruder pulley (913- The 3rd and 4th timing belts (long dashed line, long dashed line-dotted line-dotted line) (black circle) are attached to the axis of 2) and receive rotational force from the motion control motor to move the X axis and the support filament (S). Responsible for extrusion.
이와 같이 본 발명은 헤드부(910)가 이동뿐만 아니라, 직결(Direct Drive) 방식의 익스트루더 기능을 수행함으로써 정밀한 압출 및 좋은 표면 품질과 같은 직결(Direct Drive) 방식의 효과를 얻을 수 있다. As such, in the present invention, the head portion 910 not only moves but also performs the extruder function of the direct drive method, thereby achieving the effects of the direct drive method such as precise extrusion and good surface quality.
또한, 본 발명에 따른 3D 프린터는 네 개의 모션제어 모터가 동시에 작동하여 하나의 모션을 수행하도록 제어함으로써 1개의 모터가 하나의 모션(이동)을 수행하는 기존 3D 프린터와 비교하여 그 파워가 4배이상 증가하며, 헤드부의 무게가 감소되므로 가속력도 증가하게 된다. 이로 인해 헤드부의 진동이 훨씬 적고 더 빠르게 필라멘트의 출력이 가능하게 된다. In addition, the 3D printer according to the present invention controls four motion control motors to operate simultaneously to perform one motion, so that the power is four times that of a conventional 3D printer in which one motor performs one motion (movement). As this increases, the weight of the head decreases, so the acceleration force also increases. As a result, the vibration of the head part is much less and filament output is possible more quickly.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다. The above description is merely an illustrative explanation of the technical idea of the present invention, and various modifications and variations will be possible to those skilled in the art without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but are for illustrative purposes, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be construed as being included in the scope of rights of the present invention.

Claims (11)

  1. 내부공간을 제공하는 케이싱부;A casing portion providing an internal space;
    상기 내부공간 내 Z축 방향으로 이동 가능하게 설치되며, 상부에 필라멘트가 적층되어 성형 조형물이 제작되는 접촉면을 제공하는 작업베드부;A work bed portion installed to be movable in the Z-axis direction within the interior space and providing a contact surface on which filaments are stacked to produce a molded sculpture;
    상기 작업베드부의 상부에 이격 배치되며, X축 및 Y축 방향 중 적어도 한 방향으로 이동 가능하게 설치되는 프린터 헤드부;a printer head unit spaced apart from an upper part of the work bed unit and movable in at least one of the X-axis and Y-axis directions;
    상기 프린터 헤드부를 X축 및 Y축 방향 중 적어도 한 방향으로 이동시키도록 회전력을 발생시키는 N개의 모션제어 모터를 포함하는 모션제어 모터부;a motion control motor unit including N motion control motors that generate rotational force to move the printer head unit in at least one of the X-axis and Y-axis directions;
    상기 모션제어 모터부의 회전력을 상기 X축 및 Y축 방향 중 적어도 한 방향으로의 이동으로 전환하기 위하여 상기 프린터 헤드부와 상기 모션제어 모터부를 연결하는 N개의 타이밍벨트를 포함하는 타이밍벨트부;a timing belt unit including N timing belts connecting the print head unit and the motion control motor unit to convert the rotational force of the motion control motor unit into movement in at least one of the X-axis and Y-axis directions;
    상기 케이싱부의 외부 측면 중 일면에 설치되며, 필라멘트가 상기 프린터 헤드부로 공급되도록 압출하는 드라이브 모터부;a drive motor unit installed on one of the outer sides of the casing unit and extruding filament to be supplied to the printer head unit;
    상기 프린터 헤드부의 이동과 상기 필라멘트의 출력을 위해 모션제어 모터부 및 상기 드라이브 모터부를 각각 제어하되, 상기 프린터 헤드부가 이동할 (x, y) 좌표를 연산하고, 연산된 (x, y) 좌표에 기초하여 상기 프린터 헤드부의 X축 이동, Y축 이동, 상기 필라멘트의 압출 및 X축 이동, Y축 이동 및 필라멘트의 압출로 이루어진 조합으로 구성된 모션 중 적어도 하나를 결정하도록 상기 모션제어 모터부에 포함된 모션제어 모터 각각의 회전방향 및 회전속도를 연산하는 프로세서;를 포함하며,Control the motion control motor unit and the drive motor unit to move the printer head unit and output the filament, respectively, calculate the (x, y) coordinates to which the printer head unit will move, and calculate the (x, y) coordinates to which the printer head unit will move, based on the calculated (x, y) coordinates. A motion included in the motion control motor unit to determine at least one of a motion consisting of a combination of X-axis movement of the printer head, Y-axis movement, extrusion of the filament, and X-axis movement, Y-axis movement, and extrusion of the filament. It includes a processor that calculates the rotation direction and rotation speed of each control motor,
    상기 프린터 헤드부는 결정된 모션에 따라 작동하는 모션제어 모터부 및 타이밍벨트부에 의해 상기 드라이브 모터로부터 공급된 필라멘트를 압출하는 3D 프린터.The printer head unit is a 3D printer that extrudes filament supplied from the drive motor by a motion control motor unit and a timing belt unit that operate according to a determined motion.
  2. 제1항에 있어서,According to paragraph 1,
    상기 프린터 헤드부는, 상기 N개의 타이밍벨트의 이동경로를 제공하고 상기 필라멘트를 하부 방향으로 이동시키는 헤드부; The printer head unit includes a head unit that provides a movement path for the N timing belts and moves the filament in a downward direction;
    상기 케이싱부의 상단 양 측면에 일측과 타측이 Y축 방향을 따라 위아래로 이동가능하도록 설치되되, 상기 헤드부를 X축 방향을 따라 좌우로 이동시키는 슬라이딩 지지부;A sliding support part installed on both sides of the top of the casing part so that one side and the other side can move up and down along the Y-axis direction, and moves the head part left and right along the X-axis direction;
    상기 헤드부에 의해 이동되는 필라멘트에 열을 공급하여 용융이 일어나게 하는 히팅부; 및 a heating unit that supplies heat to the filament moved by the head unit to cause melting; and
    상기 히팅부에 의해 용융된 필라멘트 원료가 출력되는 노즐을 구비한 노즐부;를 포함하는 것을 특징으로 하는 3D 프린터.A 3D printer comprising a nozzle unit through which the filament raw material melted by the heating unit is output.
  3. 제2항에 있어서,According to paragraph 2,
    상기 헤드부는, 상부 프레임;The head portion includes an upper frame;
    상기 상부 프레임과 마주보도록 이격 배치되는 하부 프레임; 및a lower frame spaced apart from the upper frame; and
    상기 상부 프레임 및 하부 프레임 사이에, 상기 상부 프레임과 상기 하부 프레임 각각의 마주 보는 면과 직교하도록 서로 나란하게 이격되어 배치되는 다수의 풀리(pulley);를 포함하며,Between the upper frame and the lower frame, a plurality of pulleys arranged parallel to each other and spaced apart from each other so as to be perpendicular to opposing surfaces of each of the upper frame and the lower frame,
    상기 다수의 풀리는, 상기 N개의 타이밍벨트의 이동 경로를 제공하는 적어도 하나 이상의 아이들러 풀리; 및The plurality of pulleys include at least one idler pulley providing a movement path for the N timing belts; and
    상기 N개의 타이밍벨트의 동력에 따른 동축 이종토크를 이용해 상기 필라멘트를 압출하는 적어도 하나 이상의 익스트루더 풀리;를 포함하는 것을 특징으로 하는 3D 프린터.A 3D printer comprising: at least one extruder pulley that extrudes the filament using coaxial heterogeneous torque according to the power of the N timing belts.
  4. 제3항에 있어서,According to paragraph 3,
    상기 적어도 하나 이상의 익스트루더 풀리는, 상기 N개의 타이밍벨트의 동력에 따른 동축 이종토크를 이용해 상기 필라멘트를 출력하되, 성형재료 필라멘트를 압출하는 제1 익스트루더 풀리와, 서포트 필라멘트를 압출하는 제2 익스트루더 풀리를 포함하는 것을 특징으로 하는 3D 프린터.The at least one extruder pulley outputs the filament using coaxial heterogeneous torque according to the power of the N timing belts, and includes a first extruder pulley for extruding a molding material filament and a second extruder for extruding a support filament. A 3D printer comprising an extruder pulley.
  5. 제4항에 있어서,According to clause 4,
    상기 제1 및 제2 익스트루더 풀리 각각은, 타이밍벨트가 각각 부착되는 적어도 2개의 벨트 풀리층과, 필라멘트를 압출하는 익스트루더로 이루어지며,Each of the first and second extruder pulleys includes at least two belt pulley layers to which a timing belt is attached, and an extruder for extruding a filament,
    상기 익스트루더는 상기 모션제어 모터부와 연결된 2개의 타이밍벨트로부터 동력을 전달받아 각 벨트 풀리층이 서로 다른 방향으로 회전될 때 필라멘트를 압출하되, 틸팅 스크류 기반의 익스트루더 또는 기어 기반의 익스트루더인 것을 특징으로 하는 3D 프린터.The extruder receives power from two timing belts connected to the motion control motor unit and extrudes the filament when each belt pulley layer rotates in different directions. The extruder is a tilting screw-based extruder or a gear-based extruder. A 3D printer characterized by being a truer.
  6. 제5항에 있어서,According to clause 5,
    상기 모션제어 모터부는, N(N은 2이상의 자연수)개의 모션제어 모터를 구비할 수 있으며, N이 2일 경우, 제1 및 제2 모션제어 모터를 포함하며,The motion control motor unit may include N motion control motors (N is a natural number of 2 or more), and when N is 2, it includes first and second motion control motors,
    상기 제1 및 제2 모션제어 모터는 동일한 방향으로 동시 회전하는 경우, 상기 헤드부를 X축 방향 및 Y축 방향 중 적어도 한 방향으로 이동시키고, When the first and second motion control motors rotate simultaneously in the same direction, the head unit moves in at least one of the X-axis direction and the Y-axis direction,
    상기 N개의 타이밍벨트는 제1 및 제2 타이밍 벨트를 포함하며, The N timing belts include first and second timing belts,
    상기 제1 타이밍 벨트는 상기 제1 모션제어 모터의 동력을 전달하고, 상기 제2 타이밍 벨트는 상기 제2 모션제어 모터의 동력을 전달하는 것을 특징으로 하는 3D 프린터.The first timing belt transmits power of the first motion control motor, and the second timing belt transmits power of the second motion control motor.
  7. 제5항에 있어서,According to clause 5,
    상기 모션제어 모터부는, N이 4일 경우, 제1 내지 제4 모션제어 모터를 포함하며, When N is 4, the motion control motor unit includes first to fourth motion control motors,
    상기 N개의 타이밍벨트는 제1 내지 제4 타이밍벨트를 포함하고,The N timing belts include first to fourth timing belts,
    상기 제1 모션제어 모터 및 제2 모션제어 모터는 동일한 방향으로 동시 회전하는 경우, 상기 헤드부를 X축 방향 및 Y축 방향 중 한 방향으로 이동시키며, 상기 제3 모션제어 모터 및 제4 모션제어 모터는 각각 상기 제3 타이밍벨트 및 제4 타이밍벨트의 길이 보상을 수행하도록 회전하고, When the first motion control motor and the second motion control motor simultaneously rotate in the same direction, the head unit moves in one of the X-axis direction and the Y-axis direction, and the third motion control motor and the fourth motion control motor rotates to perform length compensation of the third and fourth timing belts, respectively,
    제3 모션제어 모터 및 제4 모션제어 모터는 동일한 방향으로 동시 회전하는 경우, 상기 헤드부를 다른 방향으로 이동시키며, 상기 제1 모션제어 모터 및 제2 모션제어 모터는 각각 상기 제1 타이밍벨트 및 제2 타이밍벨트의 길이 보상을 수행하도록 회전하고,When the third motion control motor and the fourth motion control motor simultaneously rotate in the same direction, the head part moves in a different direction, and the first motion control motor and the second motion control motor are respectively connected to the first timing belt and the second motion control motor. 2 Rotate to perform length compensation of the timing belt,
    상기 제1 타이밍벨트는 상기 제1 모션제어 모터의 동력을 전달하고, 상기 제2 타이밍벨트는 상기 제2 모션제어 모터의 동력을 전달하고, 상기 제3 타이밍벨트는 상기 제3 모션제어 모터의 동력을 전달하고, 상기 제4 타이밍벨트는 상기 제4 모션제어 모터의 동력을 전달하는 것을 특징으로 하는 3D 프린터.The first timing belt transmits power of the first motion control motor, the second timing belt transmits power of the second motion control motor, and the third timing belt transmits power of the third motion control motor. , and the fourth timing belt transmits power of the fourth motion control motor.
  8. 제7항에 있어서,In clause 7,
    상기 제1 모션제어 모터 및 제2 모션제어 모터는 동일한 방향으로 동시 회전하되, 회전 속도(회전수)가 서로 다른 경우 또는 서로 반대 방향으로 동시 회전하는 경우, 상기 헤드부에 공급되는 필라멘트가 압출되며, The first motion control motor and the second motion control motor rotate simultaneously in the same direction, but when their rotational speeds (number of rotations) are different from each other or when they rotate simultaneously in opposite directions, the filament supplied to the head is extruded. ,
    상기 제3 모션제어 모터 및 제4 모션제어 모터는 동일한 방향으로 동시 회전하되, 회전 속도(회전수)가 서로 다른 경우 또는 서로 반대 방향으로 동시 회전하는 경우, 상기 헤드부에 공급되는 필라멘트가 압출되는 것을 특징으로 하는 3D 프린터. The third motion control motor and the fourth motion control motor rotate simultaneously in the same direction, but when their rotation speeds (number of rotations) are different from each other or when they rotate simultaneously in opposite directions, the filament supplied to the head is extruded. A 3D printer characterized in that.
  9. 제6항 또는 제8에 있어서,According to paragraph 6 or 8,
    상기 적어도 하나 이상의 아이들러 풀리는 동축 일직선상에 N개의 아이들러(idler)가 적층된 N개의 층으로 이루어지되, 각 층의 아이들러에 타이밍벨트가 하나씩 부착되는 것을 특징으로 하는 3D 프린터. The at least one idler pulley is made of N layers in which N idlers are stacked on a coaxial line, and a timing belt is attached to each idler of each layer.
  10. 제9항에 있어서,According to clause 9,
    상기 적어도 하나 이상의 아이들러 풀리는 상기 N개의 타이밍벨트의 이동 경로를 각각 제공하는 4개의 아이들러 풀리를 포함하는 것을 특징으로 하는 3D 프린터. A 3D printer, wherein the at least one idler pulley includes four idler pulleys that each provide a movement path for the N timing belts.
  11. 제7항에 있어서,In clause 7,
    상기 모션제어 모터부는, N이 4일 경우, 제1 내지 제4 모션제어 모터를 포함하며, 상기 N개의 타이밍벨트는 제1 내지 제4 타이밍벨트를 포함하고,When N is 4, the motion control motor unit includes first to fourth motion control motors, and the N timing belts include first to fourth timing belts,
    상기 제1 내지 제4 모션제어 모터는, 상기 프로세스로부터 결정된 하나의 모션을 동시에 작동하여 수행하되, 축 이동시 해당 축으로의 이동을 동시에 작동하여 수행하는 것을 특징으로 하는 3D 프린터. The first to fourth motion control motors simultaneously operate and perform one motion determined in the process, and when an axis moves, the 3D printer is characterized in that it simultaneously operates and performs movement to the corresponding axis.
PCT/KR2022/016006 2022-10-20 2022-10-20 3d printer WO2024085274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/016006 WO2024085274A1 (en) 2022-10-20 2022-10-20 3d printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/016006 WO2024085274A1 (en) 2022-10-20 2022-10-20 3d printer

Publications (1)

Publication Number Publication Date
WO2024085274A1 true WO2024085274A1 (en) 2024-04-25

Family

ID=90737829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/016006 WO2024085274A1 (en) 2022-10-20 2022-10-20 3d printer

Country Status (1)

Country Link
WO (1) WO2024085274A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021541A (en) * 2014-08-18 2016-02-26 엘지전자 주식회사 3D printer
KR20170040060A (en) * 2015-10-02 2017-04-12 주식회사 쓰리디컨트롤즈 Three dimensional printing apparatus and method using method metal powder-containing material
KR102159342B1 (en) * 2019-09-04 2020-09-23 이주엽 3d rinter including function for preventing cut of filament and method for preventing cut of filament
KR20210036516A (en) * 2019-09-26 2021-04-05 (주)엘에스비 3d food printer with tube wringer
DE102021102843A1 (en) * 2021-02-08 2022-08-11 Paul Leonhard Völker Nozzle for a print head for 3D printing of a material, such a print head and a manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160021541A (en) * 2014-08-18 2016-02-26 엘지전자 주식회사 3D printer
KR20170040060A (en) * 2015-10-02 2017-04-12 주식회사 쓰리디컨트롤즈 Three dimensional printing apparatus and method using method metal powder-containing material
KR102159342B1 (en) * 2019-09-04 2020-09-23 이주엽 3d rinter including function for preventing cut of filament and method for preventing cut of filament
KR20210036516A (en) * 2019-09-26 2021-04-05 (주)엘에스비 3d food printer with tube wringer
DE102021102843A1 (en) * 2021-02-08 2022-08-11 Paul Leonhard Völker Nozzle for a print head for 3D printing of a material, such a print head and a manufacturing method

Similar Documents

Publication Publication Date Title
KR101528850B1 (en) 6 DOF(Degrees of Freedom) 3D Printer
US20160251486A1 (en) Consumable filaments having reversible reinforcement for extrusion-based additive manufacturing
US20200031057A1 (en) Polymer multi-material high-flexibility laser additive manufacturing system and method thereof
WO2015135434A1 (en) Print head and three-dimensional printer
WO2015131833A1 (en) Print head and three-dimensional printer
WO2024085274A1 (en) 3d printer
CN109159421B (en) Laser additive manufacturing system and method for polymer wire
CN104708815A (en) print head module
WO2016200015A1 (en) Three-dimensional printer and operation method therefor
KR101721547B1 (en) 3d printer
KR20170056836A (en) Extruder for 3d printer and multicolor 3d printer with the same
KR20180001340A (en) 3d printer having a plurality of extruders moving independently and 3d printing method by using the same
WO2016011934A1 (en) Molded wire and preparation method therefor
WO2018038326A1 (en) 3d printing nozzle having enhanced ability to mix different materials, and 3d printer including same
JPH11254509A (en) Blow molding method and apparatus therefor
KR20240055310A (en) 3d printer
KR20150134184A (en) 3d printer
WO2015152662A1 (en) Automatic adjusting device for horizontal adjustment of worktable for 3d printer, and adjusting method for same
US20240157639A1 (en) Printing Head Assembly for a 3D Printer and a 3D Printer with this Assembly
EP1582332B1 (en) Forming machine and method of controlling the same
CN208324225U (en) Double end polychrome 3D printer
WO2017126816A1 (en) Web guide apparatus
WO2014098356A1 (en) Device for producing composite material, composite material produced using same, and method for producing composite material
KR20200143306A (en) 3D printer device for diagonal printouts
JP7485536B2 (en) 3D modeling equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962836

Country of ref document: EP

Kind code of ref document: A1