WO2024085027A1 - Optical device for measurement - Google Patents

Optical device for measurement Download PDF

Info

Publication number
WO2024085027A1
WO2024085027A1 PCT/JP2023/036817 JP2023036817W WO2024085027A1 WO 2024085027 A1 WO2024085027 A1 WO 2024085027A1 JP 2023036817 W JP2023036817 W JP 2023036817W WO 2024085027 A1 WO2024085027 A1 WO 2024085027A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
optical
filter
measurement
Prior art date
Application number
PCT/JP2023/036817
Other languages
French (fr)
Japanese (ja)
Inventor
明 小坂
敏 増田
洋 波多野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024085027A1 publication Critical patent/WO2024085027A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters

Definitions

  • This invention relates to an optical measurement device capable of measuring the luminance, chromaticity, etc. of a measurement object such as a display.
  • Patent document 1 proposes a technology that uses a focusing lens system to focus light on a light receiving sensor.
  • Patent Document 1 when attempting to focus light on a small sensor area using a focusing lens system, the number of lenses increases, making the configuration more complex, while the effect is limited.
  • This invention was made to solve these problems, and aims to provide an optical measurement device that can efficiently focus light on a light receiving sensor to improve the S/N ratio.
  • an objective optical system a plurality of types of photoelectric conversion units each receiving only light of a predetermined wavelength range from the light from the objective optical system;
  • a measuring optical device comprising: Each of the photoelectric conversion units is a filter that transmits only light of a predetermined wavelength range using an interference film; a light receiving sensor that receives light transmitted through the filter and whose output is amplified by an amplifier; a compound parabolic concentrator positioned between the filter and the light receiving sensor, for concentrating the light transmitted through the filter onto the light receiving sensor;
  • An optical measuring device comprising: (2) The measurement optical device according to the preceding paragraph 1, wherein the compound parabolic concentrator is formed of a transparent material.
  • a measurement optical device described in the preceding paragraph 1 or 2 which has an optical fiber that splits the light from the objective optical system and guides it to each photoelectric conversion unit, and the area of the exit surface of the split optical fiber is larger than the area of the light incident on the light receiving sensor.
  • each of the photoelectric conversion units has a filter that transmits only light of a predetermined wavelength range by an interference film, and receives the light transmitted through the filter.
  • the device has a light receiving sensor whose output is amplified by an amplifier, and a compound parabolic concentrator located between the filter and the light receiving sensor and which focuses the light transmitted through the filter on the light receiving sensor.
  • the light transmitted through the filter is focused on the light receiving sensor by the compound parabolic concentrator, it is possible to efficiently focus the light even if the sensor area is small. Furthermore, by making the sensor area smaller, it is possible to reduce the capacity of the input section of the amplifier that amplifies the output of the light receiving sensor, and the noise (N) of the amplifier can be reduced, thereby improving the S/N ratio of the measurement optical device.
  • the compound parabolic concentrator is formed from a transparent material, so the light-collecting properties of the compound parabolic concentrator are not impeded.
  • the surface of the compound parabolic concentrator facing the light receiving sensor is flat, and the compound parabolic concentrator and the light receiving sensor are joined by an optical path joining adhesive. Therefore, the light beam emitted from the compound parabolic concentrator can reach the light receiving sensor without being reflected on the surface of the light receiving sensor.
  • the compound parabolic concentrator and the light receiving sensor can be positioned and fixed, preventing fluctuations in the positional relationship between them.
  • the filter is formed by applying an interference film to the incident surface of a parallel plate, making it easy to create and maintain the filter.
  • the filter is formed by applying an interference film to the incident surface of the compound parabolic concentrator. This makes it possible to reduce the distance between the optical system element arranged on the incident side of the compound parabolic concentrator and the compound parabolic concentrator.
  • the light from the objective optical system can be split by optical fibers and guided to each photoelectric conversion unit.
  • the area of the exit surface of the split optical fibers is larger than the area of the light incident on the light receiving sensor, a sufficient amount of light can be incident on the light receiving sensor.
  • FIG. 1 is a block diagram showing the internal configuration of a tristimulus value photoelectric colorimeter, which is an optical measuring device according to an embodiment of the present invention.
  • FIG. 11 is a graph showing the relationship between the capacitance of the input section of each amplifier and noise.
  • FIG. 1 is a diagram for explaining each component of an optical system including a photoelectric conversion unit and a beam splitting member that guides light to the photoelectric conversion unit, where (A) is a diagram viewed from the front, and (B) is a diagram of the photoelectric conversion unit viewed from the light incident side.
  • 1A is a vertical cross-sectional view of the main components of a photoelectric conversion unit
  • FIG. 1B is a vertical cross-sectional view showing another configuration example of the photoelectric conversion unit.
  • FIG. 4 is a graph showing the spectral intensity distribution of a filter.
  • FIG. 1 is a conceptual diagram for explaining a compound parabolic concentrator. 1 is a diagram showing a light receiving range of a light receiving sensor and an irradiation range of light guided by a compound parabolic concentrator. FIG.
  • FIG. 1 is a block diagram showing the internal configuration of a tristimulus type photoelectric colorimeter, which is an optical measurement device in one embodiment of the present invention.
  • a tristimulus value photoelectric colorimeter 10 (hereinafter simply referred to as "colorimeter 10") in this embodiment is used, for example, in the inspection process of a liquid crystal panel manufacturing line, and measures the brightness and chromaticity of the display surface 12 of the liquid crystal panel.
  • colorimeter 10 a tristimulus value photoelectric colorimeter 10 in this embodiment is used, for example, in the inspection process of a liquid crystal panel manufacturing line, and measures the brightness and chromaticity of the display surface 12 of the liquid crystal panel.
  • the colorimeter 10 consists of a measurement probe section 14 and a measurement device main body section 16.
  • the measurement probe section 14 and the measurement device main body section 16 are constructed as a single unit.
  • the measurement probe unit 14 is placed facing the display surface 12 of the liquid crystal panel, which is the object to be measured, at a predetermined distance (for example, 3 cm).
  • the measurement probe unit 14 photoelectrically converts the light from the display surface of the liquid crystal panel into an electrical signal (analog signal) and inputs it to the measuring device main body unit 16.
  • the measurement probe section 14 is composed of a measurement optical system 27 and a light receiving system 28.
  • the measurement optical system 27 has an objective lens 21 and a beam splitting member 24.
  • the objective lens 21 is provided as an entrance portion for admitting light from the object to be measured.
  • the objective lens 21 is, for example, a plano-convex lens, and has a single positive power.
  • the beam splitting member 24 is provided as a light guiding portion for guiding the light incident by the objective lens 21. The beam splitting member 24 splits the beam that has passed through the objective lens 21 into three beams.
  • the light receiving system 28 has a photoelectric conversion section 25 and an amplifier section 26.
  • the photoelectric conversion section 25 receives the light guided by the beam splitter 24 and converts it into an electrical signal.
  • the photoelectric conversion section 25 has light receiving sensors 62p, 62q, and 62r that ultimately have the spectral sensitivity characteristics of a standard observer.
  • the light receiving sensors 62p, 62q, and 62r receive the three beams of light emitted from the beam splitter 24, photoelectrically convert them into electrical signals according to the incident intensity, and output them.
  • the amplifier section 26 has three amplifiers 26p, 26q, and 26r corresponding to the light receiving sensors 62p, 62q, and 62r, and amplifies the electrical signals (voltages) output from the light receiving sensors 62p, 62q, and 62r to a predetermined level.
  • Each amplifier 26p, 26q, 26r generates noise, and the magnitude of the noise decreases as the area of the light receiving sensors 62p, 62q, 62r becomes smaller. This point will be explained with reference to Figure 2.
  • Figure 2 is a graph showing the relationship between the capacitance of the input section of each amplifier 26p, 26q, 26r and the noise.
  • the horizontal axis is the capacitance [pF] of the input section of the amplifiers 26p, 26q, 26r, and the vertical axis is the magnitude of the noise.
  • the noise decreases as the capacitance of the input section decreases.
  • the capacitance of the input section decreases as the area of the light receiving sensors 62p, 62q, 62r decreases. Therefore, the magnitude of the noise of each amplifier 26p, 26q, 26r decreases as the light receiving area of the light receiving sensors 62p, 62q, 62r decreases.
  • the noise when the capacitance of the input section is about 230 pF, the noise is about 75. When the capacitance of the input section is about 23 pF, the noise is about 30, and the noise is reduced to 1/2.5. In other words, by reducing the area of the light receiving sensors 62p, 62q, 62r to 1/10, the S/N ratio can be increased by about three times.
  • amplifiers 26p, 26q, and 26r include an integrator circuit and a trans-impedance circuit (IV conversion circuit).
  • the measuring device main body 16 converts the electrical signal (analog signal) input from the measuring probe 14 into a digital signal and performs a specified calculation process. Through this calculation process, the measuring device main body 16 calculates tristimulus values (X, Y, Z), xyY (chromaticity coordinates, luminance) established by the CIE (International Commission on Illumination), T ⁇ uvY (correlated color temperature, color difference from the blackbody locus, luminance), and the like, and displays the calculation results on the display unit 33.
  • tristimulus values X, Y, Z
  • xyY chromaticity coordinates, luminance
  • T ⁇ uvY correlated color temperature, color difference from the blackbody locus, luminance
  • Figure 3 (A) is a diagram viewed from the front
  • Figure 3 (B) is a diagram of the photoelectric conversion unit 25 viewed from the light incident side.
  • the beam splitting member 24 is disposed on the optical axis L of the light incident on the objective lens 21 (hereinafter also simply referred to as the "optical axis of the objective lens 21").
  • the beam splitting member 24 has an optical fiber 55 that propagates light, and collimator lenses 56p, 56q, and 56r.
  • the optical fiber 55 is formed by bundling a number of optical fibers.
  • the bundled optical fibers are divided into three divisions 55p, 55q, and 55r at the middle of the length direction, and the optical fiber 55 has one light beam incident surface A and a total of three light beam exit surfaces B1, B2, and B3 at the tips of the divisions 55p, 55q, and 55r.
  • Each light beam exit surface B1, B2, and B3 is disposed at the apex of an equilateral triangle in the same vertical plane.
  • the optical fiber 55 is disposed so that the light beam incident surface A is located at a position away from the image side principal point PP of the objective lens 21 by the focal length f of the objective lens 21 (for convenience of explanation, in this embodiment, an example in which the image side principal point is approximately the same as the object side principal point is shown).
  • the objective lens 21 and the optical fiber 55 constitute a telecentric optical system.
  • an optical fiber 55 is used for the light beam splitting member 24.
  • this is not limited to the configuration, and other optical components that perform the same function as an optical fiber, such as an optical guide tube, may also be used.
  • the measurement probe 14 is set at a predetermined distance from the display surface 12 of the liquid crystal panel. Then, of the light beams emitted from each part of the measurement area AR of the liquid crystal panel, only the light beams having an emission angle of less than or equal to the maximum value ⁇ (hereinafter referred to as the maximum emission angle ⁇ ) with respect to the normal direction of the measurement area AR (in FIG. 3, the direction parallel to the optical axis L) enter the light beam incident surface A of the optical fiber 55.
  • the maximum emission angle ⁇ is determined by the focal length f of the objective lens 21 and the diameter R of the optical fiber 55 at the light beam incident surface A.
  • the incident light beam is split into three light beams by splitters 55p, 55q, and 55r within the optical fiber 55. Then, they are emitted from the light beam exit surfaces B1, B2, and B3, respectively.
  • Each optical fiber that makes up optical fiber 55 has a two-layer structure with a core located in the center and a cladding that surrounds the core.
  • the core is designed to have a higher refractive index than the cladding, so light propagates while being confined within the core by total internal reflection.
  • Optical fiber 55 is bent into a predetermined shape with light beam incident surface A and light beam exit surfaces B1, B2, and B3 fixed. Therefore, unless there are changes in state due to vibration, shock, temperature change, etc., the position of optical fiber 55 is maintained, and light incident on light beam incident surface A is emitted from light beam exit surfaces B1, B2, and B3 at a predetermined angle.
  • Collimator lenses 56p, 56q, and 56r are disposed in front of the light beam exit surfaces B1, B2, and B3 of the optical fibers 55, which are positioned at the vertices of an equilateral triangle.
  • the photoelectric conversion unit 25 is disposed in front of the collimator lenses 56p, 56q, and 56r.
  • the photoelectric conversion unit 25 includes, in order from the collimator lenses 56p, 56q, 56r side, three spectral sensitivity correction filters 61p, 61q, 61r, three compound parabolic concentrators (hereinafter also referred to as CPCs) 63p, 63q, 63r, and three light receiving sensors 62p, 62q, 62r.
  • CPCs compound parabolic concentrators
  • the light beams from the collimator lenses 56p, 56q, and 56r are incident on each of the spectral sensitivity correction filters 61p, 61q, and 61r.
  • the light beams emitted from the light beam emission surfaces B1, B2, and B3 of the optical fiber 55 are refracted by each of the collimator lenses 56p, 56q, and 56r so that the angle of incidence of the light beams on each of the spectral sensitivity correction filters 61p, 61q, and 61r is as perpendicular as possible. This is because each of the spectral sensitivity correction filters 61p, 61q, and 61r has an interference film as shown below, and is therefore incident angle dependent.
  • the spectral sensitivity correction filters 61p, 61q, and 61r are intended to provide the light receiving sensors 62p, 62q, and 62r with the spectral sensitivity of the standard observer as specified by the CIE.
  • the spectral sensitivity correction filters 61p, 61q, and 61r are interference filters that utilize the interference phenomenon of a thin-film interference film.
  • each of the spectral sensitivity correction filters 61p, 61q, and 61r is formed by coating the light beam incident surface of a transparent parallel plate 611 made of glass or the like with an interference film 612. By forming the interference film 612 on the light beam incident surface of the parallel plate 611, the filters 61p, 61q, and 61r can be easily created and maintained.
  • Spectral sensitivity correction filters 61p, 61q, and 61r each transmit only light in a predetermined wavelength range.
  • spectral sensitivity correction filter 61p has filter characteristics that are sensitive to the R (red) wavelength range. This filter characteristic corrects the light sensitivity of light receiving sensor 62p to the light sensitivity of a color matching function (X bar lambda) that has high sensitivity to the red wavelength range.
  • Spectral sensitivity correction filter 61q has filter characteristics that are sensitive to the G (green) wavelength range. This filter characteristic corrects the light sensitivity of light receiving sensor 62q to the light sensitivity of a color matching function (W bar lambda) that has high sensitivity to the green wavelength range.
  • Spectral sensitivity correction filter 61r has filter characteristics that are sensitive to the B (blue) wavelength range. This filter characteristic corrects the light sensitivity of light receiving sensor 62r to the light sensitivity of a color matching function (Z bar lambda) that has high sensitivity to the blue wavelength range.
  • the spectral sensitivity correction filters 61p, 61q, and 61r are adjusted so that the light sensitivity finally obtained by the colorimeter 10 approximates the desired color matching function (defined by CIE) as shown by ⁇ in Figure 5.
  • This adjustment is performed taking into account the transmittance of the spectral sensitivity correction filters 61p, 61q, and 61r, as well as the transmittance of the optical system (lenses 56p, 56q, and 56r and optical fiber 55, etc.), the light sensitivity of the light receiving sensors 62p, 62q, and 62r, the reflection characteristics at the light receiving sensor surfaces, etc.
  • the interference film 612 can be adjusted so that the final light receiving sensitivity is close to the desired color matching function even without the collimator lenses 56p, 56q, and 56r, the collimator lenses 56p, 56q, and 56r may be eliminated.
  • the CPCs 63p, 63q, and 63r arranged between the spectral sensitivity correction filters 61p, 61q, and 61r and the light receiving sensors 62p, 62q, and 62r are each made of a transparent material such as glass, and have a circular cross section perpendicular to the optical axis.
  • the CPCs 63p, 63q, and 63r are light collectors in which the internal reflection surface around the optical axis L is a parabolic surface, and both surfaces in the optical axis direction are flat surfaces perpendicular to the optical axis L.
  • the CPC 63p is shown as a representative, but the other CPCs 63q and 63r are the same.
  • the thick line connecting a 0 b and ab 0 is the outline (reflection surface) of the cross-sectional shape of the CPC 63p when cut along the optical axis L.
  • each of the spectral sensitivity correction filters 61p, 61q, and 61r enter the entrance surface 631 of each of the CPCs 63p, 63q, and 63r, are totally reflected by the parabolic surfaces of the CPCs 63p, 63q, and 63r, and are emitted from the exit surface 632.
  • the angle of incidence on the spectral sensitivity correction filters 61p, 61q, and 61r must be as vertical as possible. For this reason, the light must be collected on the light receiving sensors 62p, 62q, and 62r after passing through the filters 61p, 61q, and 61r.
  • the areas of the light beam exit surfaces B1, B2, and B3 of the optical fiber 55 are all set to be larger than the area of the incident surface 631 of each of the CPCs 63p, 63q, and 63r, in other words, the area of the light incident on each of the light receiving sensors 62p, 62q, and 62r. This allows a sufficient amount of light to be incident from the optical fiber 55 to the CPCs 63p, 63q, and 63r and further to the light receiving sensors 62p, 62q, and 62r.
  • the spectral sensitivity correction filters 61p, 61q, and 61r are configured by applying an interference film 612 to the light beam incident surface of the parallel plate 611.
  • the filters may be configured by applying an interference film 612 to the surface of the incident surface 631 of each CPC 63p, 63q, and 63r.
  • the distance between the optical fiber 55 and collimator lenses 56p, 56q, and 56r arranged on the incident side of the CPCs 63p, 63q, and 63r and the CPCs 63p, 63q, and 63r can be reduced.
  • the light receiving sensors 62p, 62q, 62r are, for example, silicon photocells (SPCs) with approximately the same light receiving sensitivity.
  • the light receiving sensors 62p, 62q, 62r are located on the optical axes of the CPCs 63p, 63q, 63r, respectively, at positions where the irradiation range of the light collected by the CPCs 63p, 63q, 63r is the light receiving range of the light receiving sensors 62p, 62q, 62r.
  • the light receiving sensors 62p, 62q, 62r each output a light receiving signal corresponding to a tristimulus value (X, Y, Z).
  • the exit surface 632 of the CPC 63p, 63q, 63r is a plane perpendicular to the optical axis. As shown in Figures 4(A) and (B), this exit surface 632 is bonded between the light receiving sensors 62p, 62q, 62r and the light receiving sensors 62p, 62q, 63r with an optical path bonding adhesive 64 having a refractive index almost the same as that of the CPC 63p, 63q, 63r. Therefore, the light beams collected by the CPC 63p, 63q, 63r reach the light receiving sensors 62p, 62q, 62r without being reflected on the surfaces of the light receiving sensors 62p, 62q, 62r.
  • the CPC 63p, 63q, 63r and the light receiving sensors 62p, 62q, 62r can be positioned and fixed with the optical path bonding adhesive 64, and the positional relationship between the two can be prevented from fluctuating.
  • the optical path bonding adhesive 64 is a UV curing adhesive
  • the CPC 63p, 63q, 63r can be UV cured while being guided to an accurate position. This allows the CPCs 63p, 63q, and 63r to be accurately positioned and fixed relative to the light receiving sensors 62p, 62q, and 62r.
  • the light receiving sensors 62p, 62q, and 62r are mounted on a sensor board 65.
  • the sensor board 65 is fixed to a holder 66, which guides the CPCs 63p, 63q, and 63r to accurate positions relative to the light receiving sensors 62p, 62q, and 62r.
  • the light transmitted through the spectral sensitivity correction filters 61p, 61q, and 61r is focused on the light receiving sensors 62p, 62q, and 62r by the CPCs 63p, 63q, and 63r. Therefore, the light beams emitted from the light beam emission surfaces B1, B2, and B3 of the optical fiber 55 are focused on the light receiving sensors 62p, 62q, and 62r. As shown representatively in FIG.
  • the circular irradiation range LA of the light beam (equal to the area of the emission surface 632 of the CPC 63p) can be made to approximately match the rectangular area (light receiving range) SA of the light receiving sensors 62p, 62q, and 62r. Therefore, even if the area of the light receiving sensors 62p, 62q, and 62r is small, the light can be efficiently focused on the light receiving sensors 62p, 62q, and 62r.
  • the capacity of the input section of the amplifiers 26p, 26q, and 26r that amplify the output of the light receiving sensors 62p, 62q, and 62r can be reduced. This allows the noise (N) of the amplifiers 26p, 26q, and 26r to be reduced, improving the S/N ratio of the measurement optical device 10.
  • the configuration does not use a condenser lens system to collect light as in the conventional configuration, there is no need to increase the number of lenses in the condenser lens system, and the configuration is simple.
  • the condenser lens system has a lower light collecting ability than the CPCs 63p, 63q, and 63r, and can only collect light to an area approximately equal to the exit area of the optical fiber 55, so it is difficult to make all the light beams reach the light receiving sensors 62p, 62q, and 62r.
  • this embodiment by collecting light using the CPCs 63p, 63q, and 63r, it is possible to efficiently collect light even with a small sensor area.
  • an air layer is required between the exit surface of the condenser lens and the light receiving sensors 62p, 62q, and 62r for refraction, and it is not possible to fill the space between the CPCs 63p, 63q, and 63r and the light receiving sensors 62p, 62q, and 62r with the optical path coupling adhesive 64 as in this embodiment. For this reason, it is not possible to accurately position and fix the condenser lens to the light receiving sensors 62p, 62q, and 62r. In contrast, in this embodiment, the gap between the CPCs 63p, 63q, and 63r and the light receiving sensors 62p, 62q, and 62r is filled with optical path coupling adhesive 64. This allows the CPCs 63p, 63q, and 63r to be accurately positioned and fixed relative to the light receiving sensors 62p, 62q, and 62r.
  • the light beam emitted from the optical fiber 55 is focused on the light receiving range of the light receiving sensors 62p, 62q, 62r via the CPCs 63p, 63q, 63r.
  • one-third of the light beam incident on the optical fiber 55 (all light beams emitted from each part of the measurement area AR of the liquid crystal panel at an angle equal to or smaller than the maximum emission angle ⁇ with respect to the normal direction of the measurement area AR) is incident on the light receiving sensors 62p, 62q, 62r, respectively. Therefore, the amount of light received by the light receiving sensors 62p, 62q, 62r does not decrease.
  • the measuring device main body 16 has an A/D conversion unit 31, a data memory 32, a display unit 33, an operation unit 35, a control unit 36, a power supply unit 37, and a communication unit 38.
  • the A/D converter 31 converts the received light signal input from the measurement probe 14 into a digital signal (measurement data).
  • the data memory 32 stores the measurement data output from the A/D converter 31.
  • the control unit 36 controls the measurement operation by centrally controlling the operation of the measurement probe 14 and the operation of each unit in the measuring device main body 16.
  • the control unit 36 uses the measurement data stored in the data memory 32 to calculate tristimulus values (X, Y, Z), xyY (chromaticity coordinates, luminance) established by the CIE, T ⁇ uvY (correlated color temperature, color difference from the blackbody locus, luminance), etc.
  • the display unit 33 displays the results of calculations performed by the control unit 36.
  • Various information related to the measurement is input to the operation unit 35.
  • the power supply unit 37 transforms the voltage of the power supplied from an external AC adapter (not shown) and supplies power to each component via the control unit 36.
  • the communication unit 38 outputs the results of calculations performed by the control unit 36 to the outside.
  • the present invention can be used as an optical measurement device capable of measuring the brightness, chromaticity, etc. of a measurement object such as a display.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

An optical device (10) for measurement comprises objective optics (21) and a plurality of kinds of photoelectric conversion units (25) that each only receive light of a predetermined wavelength region of light from the objective optics (21). Each of the photoelectric conversion units (25) includes: filters (61p), (61q), (61r) that transmit only light of the predetermined wavelength region using an interference film (612); light receiving sensors (62p), (62q), (62r) that receive the light transmitted through the filters and of which outputs are amplified by amplifiers (26p), (26q), (26r); and compound parabolic concentrators (63p), (63q), (63r) that are located between the filters (61p), (61q), (61r) and the light receiving sensors (62p), (62q), (62r), and that focus the light transmitted through the filters (61p), (61q), (61r) onto the light receiving sensors (62p), (62q), (62r).

Description

測定用光学装置Measuring Optical Device
 この発明は、例えばディスプレイ等の測定対象物の輝度や色度等を計測可能な測定用光学装置に関する。 This invention relates to an optical measurement device capable of measuring the luminance, chromaticity, etc. of a measurement object such as a display.
 例えば、OLED(Organic Light Emitting Diode)やマイクロLEDなど、より低輝度の描画が可能なディスプレイパネルが増加している。このため、このようなディスプレイパネル等の輝度、色度を計測する計測器には、より低輝度まで測定できることが求められている。 For example, there is an increase in display panels that can display images at lower brightness, such as OLEDs (Organic Light Emitting Diodes) and micro LEDs. For this reason, there is a demand for measuring instruments that measure the brightness and chromaticity of such display panels to be able to measure even lower brightnesses.
 計測器を、より低輝度まで測定できるようにするには、S/N比を向上する必要がある。S/N比においてS(信号)を増加させる為には受光センサに入射する光量を増加させる必要があるが、パネルの計測条件(測定径、開口角)の制約から難しい。よって、N(ノイズ) を減少させることで、S/N比を向上させることが提案されている。 In order to enable measuring instruments to measure lower luminance levels, it is necessary to improve the S/N ratio. To increase the S (signal) in the S/N ratio, it is necessary to increase the amount of light incident on the light receiving sensor, but this is difficult due to the constraints of the panel's measurement conditions (measurement diameter, aperture angle). Therefore, it has been proposed to improve the S/N ratio by reducing N (noise).
 受光センサの出力は増幅器で増幅されるが、増幅器のノイズ(N)は、アナログ・フロント・エンド(AFE)を使用する場合は特に、入力部の容量(=センサ容量+寄生容量)に依存する。入力部の容量は受光センサの面積に比例するので、センサ面積を小さくすることが有効であるが、センサ面積を小さくする為には、小さい面積に光を集める必要がある。 The output of the light receiving sensor is amplified by an amplifier, but the noise (N) of the amplifier depends on the capacitance of the input section (= sensor capacitance + parasitic capacitance), especially when an analog front end (AFE) is used. Since the capacitance of the input section is proportional to the area of the light receiving sensor, it is effective to reduce the sensor area, but in order to reduce the sensor area, it is necessary to concentrate light in a small area.
 特許文献1には、集光レンズ系を用いて受光センサに光を集める技術が提案されている。 Patent document 1 proposes a technology that uses a focusing lens system to focus light on a light receiving sensor.
特許第5565458号公報Patent No. 5565458
 しかしながら、特許文献1に記載のように、集光レンズ系を用いて小さいセンサ面積に光を集めようとすると、レンズ枚数が増加して構成が複雑になる一方で、効果は限定的であるという課題がある。 However, as described in Patent Document 1, when attempting to focus light on a small sensor area using a focusing lens system, the number of lenses increases, making the configuration more complex, while the effect is limited.
 この発明はこのような課題を解決するためになされたものであって、受光センサに効率よく集光してS/N比を向上させることができる測定用光学装置の提供を目的とする。 This invention was made to solve these problems, and aims to provide an optical measurement device that can efficiently focus light on a light receiving sensor to improve the S/N ratio.
 上記目的は、以下の手段によって達成される。
(1)対物光学系と、
 前記対物光学系からの光の内、各々所定の波長域の光のみを受光する複数種類の光電変換部と、
 を備えた測定用光学装置において、
 前記光電変換部のそれぞれは、
 干渉膜により所定の波長域の光のみを透過するフィルタと、
 前記フィルタを透過した光を受光するとともに、出力が増幅器により増幅される受光センサと、
 前記フィルタと受光センサの間に位置し、フィルタを透過した光を受光センサに集光する複合放物面集光器と、
 を備えている測定用光学装置。
(2)前記複合放物面集光器は透明材料で形成されている前項1に記載の測定用光学装置。
(3)前記複合放物面集光器の前記受光センサに対向する面は平面であり、前記複合放物面集光器と前記受光センサは光路結合用接着剤によって結合されている前項1または2に記載の測定用光学装置。
(4)前記フィルタは、平行平板の入射面に干渉膜が施されることにより形成されている前項1または2に記載の測定用光学装置。
(5)前記フィルタは、複合放物面集光器の入射面に干渉膜が施されることにより形成されている前項1または2に記載の測定用光学装置。
(6)前記対物光学系からの光を分割して各光電変換部に導く光ファイバーを有し、分割された光ファイバーの射出面の面積は、前記受光センサに入射する光の面積よりも大きい前項1または2に記載の測定用光学装置。
The above object can be achieved by the following means.
(1) an objective optical system;
a plurality of types of photoelectric conversion units each receiving only light of a predetermined wavelength range from the light from the objective optical system;
In a measuring optical device comprising:
Each of the photoelectric conversion units is
a filter that transmits only light of a predetermined wavelength range using an interference film;
a light receiving sensor that receives light transmitted through the filter and whose output is amplified by an amplifier;
a compound parabolic concentrator positioned between the filter and the light receiving sensor, for concentrating the light transmitted through the filter onto the light receiving sensor;
An optical measuring device comprising:
(2) The measurement optical device according to the preceding paragraph 1, wherein the compound parabolic concentrator is formed of a transparent material.
(3) An optical measurement device as described in the preceding paragraph 1 or 2, in which the surface of the compound parabolic concentrator facing the light receiving sensor is flat, and the compound parabolic concentrator and the light receiving sensor are joined by an optical path joining adhesive.
(4) The measuring optical device according to the above item 1 or 2, wherein the filter is formed by applying an interference film to the incident surface of a parallel plate.
(5) The measurement optical device according to the above item 1 or 2, wherein the filter is formed by applying an interference film to the incident surface of a compound parabolic concentrator.
(6) A measurement optical device described in the preceding paragraph 1 or 2, which has an optical fiber that splits the light from the objective optical system and guides it to each photoelectric conversion unit, and the area of the exit surface of the split optical fiber is larger than the area of the light incident on the light receiving sensor.
 前項(1)に記載の発明によれば、対物光学系と、対物光学系からの光の内、各々所定の波長域の光のみを受光する複数種類の光電変換部と、を備えた測定用光学装置において、光電変換部のそれぞれは、干渉膜により所定の波長域の光のみを透過するフィルタと、フィルタを透過した光を受光する。また、出力が増幅器により増幅される受光センサと、フィルタと受光センサの間に位置し、フィルタを透過した光を受光センサに集光する複合放物面集光器と、を備えている。つまり、フィルタを透過した光は複合放物面集光器により受光センサに集光されるから、センサ面積が小さくても効率よく集光させることができる。また、センサ面積を小さくできることで、受光センサの出力を増幅する増幅器の入力部の容量を小さくでき、増幅器のノイズ(N)を減少させることができるから、測定用光学装置のS/N比を向上することができる。 According to the invention described in the preceding paragraph (1), in a measurement optical device having an objective optical system and a plurality of types of photoelectric conversion units each of which receives only light of a predetermined wavelength range from the light from the objective optical system, each of the photoelectric conversion units has a filter that transmits only light of a predetermined wavelength range by an interference film, and receives the light transmitted through the filter. Also, the device has a light receiving sensor whose output is amplified by an amplifier, and a compound parabolic concentrator located between the filter and the light receiving sensor and which focuses the light transmitted through the filter on the light receiving sensor. In other words, since the light transmitted through the filter is focused on the light receiving sensor by the compound parabolic concentrator, it is possible to efficiently focus the light even if the sensor area is small. Furthermore, by making the sensor area smaller, it is possible to reduce the capacity of the input section of the amplifier that amplifies the output of the light receiving sensor, and the noise (N) of the amplifier can be reduced, thereby improving the S/N ratio of the measurement optical device.
 しかも、集光レンズ系を用いて集光する構成ではないから、集光レンズ系のレンズ枚数を増加させる必要はなく、構成も簡素になる。 Moreover, since the light is not focused using a focusing lens system, there is no need to increase the number of lenses in the focusing lens system, and the configuration is simple.
 前項(2)に記載の発明によれば、複合放物面集光器は透明材料で形成されるから、複合放物面集光器の集光特性が妨げられることはない。 According to the invention described in the preceding paragraph (2), the compound parabolic concentrator is formed from a transparent material, so the light-collecting properties of the compound parabolic concentrator are not impeded.
 前項(3)に記載の発明によれば、複合放物面集光器の受光センサに対向する面は平面であり、複合放物面集光器と受光センサは光路結合用接着剤によって結合される。従って、複合放物面集光器から出射された光束を、受光センサ表面で反射することなく受光センサに到達させることができる。また、複合放物面集光器と受光センサを位置決め固定することができ、両者の位置関係の変動を防止できる。 According to the invention described in the preceding paragraph (3), the surface of the compound parabolic concentrator facing the light receiving sensor is flat, and the compound parabolic concentrator and the light receiving sensor are joined by an optical path joining adhesive. Therefore, the light beam emitted from the compound parabolic concentrator can reach the light receiving sensor without being reflected on the surface of the light receiving sensor. In addition, the compound parabolic concentrator and the light receiving sensor can be positioned and fixed, preventing fluctuations in the positional relationship between them.
 前項(4)に記載の発明によれば、フィルタは平行平板の入射面に干渉膜が施されることにより形成されているから、フィルタの作成保持を容易に行うことができる。 According to the invention described in the previous paragraph (4), the filter is formed by applying an interference film to the incident surface of a parallel plate, making it easy to create and maintain the filter.
 前項(5)に記載の発明によれば、フィルタは、複合放物面集光器の入射面に干渉膜が施されることにより形成されている。このため、複合放物面集光器の入射側に配置される光学系素子と複合放物面集光器との距離を縮めることができる。 According to the invention described in the preceding paragraph (5), the filter is formed by applying an interference film to the incident surface of the compound parabolic concentrator. This makes it possible to reduce the distance between the optical system element arranged on the incident side of the compound parabolic concentrator and the compound parabolic concentrator.
 前項(6)に記載の発明によれば、対物光学系からの光を光ファイバーによって分割し、各光電変換部に導くことができる。また、分割された光ファイバーの射出面の面積は、受光センサに入射する光の面積よりも大きいから、十分な量の光を受光センサに入射させることができる。 According to the invention described in the preceding paragraph (6), the light from the objective optical system can be split by optical fibers and guided to each photoelectric conversion unit. In addition, since the area of the exit surface of the split optical fibers is larger than the area of the light incident on the light receiving sensor, a sufficient amount of light can be incident on the light receiving sensor.
この発明の一実施形態における測定用光学装置である三刺激値型光電色彩計の内部構成を示すブロック図である。1 is a block diagram showing the internal configuration of a tristimulus value photoelectric colorimeter, which is an optical measuring device according to an embodiment of the present invention. FIG. 各増幅器の入力部の容量とノイズとの関係を示すグラフである。11 is a graph showing the relationship between the capacitance of the input section of each amplifier and noise. 光電変換部と、光電変換部に導光する光束分割部材を含む光学系の各構成を説明するための図で、(A)は正面から見た時の図、(B)は光電変換部を光入射側から見た時の図である。FIG. 1 is a diagram for explaining each component of an optical system including a photoelectric conversion unit and a beam splitting member that guides light to the photoelectric conversion unit, where (A) is a diagram viewed from the front, and (B) is a diagram of the photoelectric conversion unit viewed from the light incident side. (A)は光電変換部の主要構成部材の縦断面図、(B)は光電変換部の他の構成例を示す縦断面図である。1A is a vertical cross-sectional view of the main components of a photoelectric conversion unit, and FIG. 1B is a vertical cross-sectional view showing another configuration example of the photoelectric conversion unit. フィルタの分光強度分布を示すグラフである。4 is a graph showing the spectral intensity distribution of a filter. 複合放物面集光器を説明するための概念図である。FIG. 1 is a conceptual diagram for explaining a compound parabolic concentrator. 受光センサの受光範囲と複合放物面集光器で導光される光の照射範囲を示す図である。1 is a diagram showing a light receiving range of a light receiving sensor and an irradiation range of light guided by a compound parabolic concentrator. FIG.
 以下、この発明の実施の形態について、図面を参照して説明する。 The following describes an embodiment of the present invention with reference to the drawings.
 図1は、この発明の一実施形態における測定用光学装置である三刺激値型光電色彩計の内部構成を示すブロック図である。 FIG. 1 is a block diagram showing the internal configuration of a tristimulus type photoelectric colorimeter, which is an optical measurement device in one embodiment of the present invention.
 図1において、本実施形態における三刺激値型光電色彩計10(以下、単に、「色彩計10」ともいう)は、たとえば、液晶パネルの製造ラインの検査工程で用いられ、液晶パネルの表示面12の明るさと色度とを測定する。まず、色彩計10の全体構成について説明する。 In FIG. 1, a tristimulus value photoelectric colorimeter 10 (hereinafter simply referred to as "colorimeter 10") in this embodiment is used, for example, in the inspection process of a liquid crystal panel manufacturing line, and measures the brightness and chromaticity of the display surface 12 of the liquid crystal panel. First, the overall configuration of the colorimeter 10 will be described.
 色彩計10は、測定プローブ部14と、測定器本体部16とからなる。測定プローブ部14および測定器本体部16は、一体に構成されている。 The colorimeter 10 consists of a measurement probe section 14 and a measurement device main body section 16. The measurement probe section 14 and the measurement device main body section 16 are constructed as a single unit.
 測定プローブ部14は、たとえば、被測定物である液晶パネルの表示面12から所定の距離(一例として、3cm)だけ離して対向配置される。測定プローブ部14は、液晶パネルの表示面からの光を電気信号(アナログ信号)に光電変換して測定器本体部16に入力する。 The measurement probe unit 14 is placed facing the display surface 12 of the liquid crystal panel, which is the object to be measured, at a predetermined distance (for example, 3 cm). The measurement probe unit 14 photoelectrically converts the light from the display surface of the liquid crystal panel into an electrical signal (analog signal) and inputs it to the measuring device main body unit 16.
  測定プローブ部14は、測定光学系27および受光系28から構成されている。 The measurement probe section 14 is composed of a measurement optical system 27 and a light receiving system 28.
 測定光学系27は、対物レンズ21および光束分割部材24を有する。対物レンズ21は、被測定物からの光を入射させる入射部として設けられている。対物レンズ21は、たとえば、平凸レンズからなり、単一の正のパワーを有する。光束分割部材24は、対物レンズ21により入射された光を導光する導光部として設けられている。光束分割部材24は、対物レンズ21を透過した光束を3つの光束に分割する。 The measurement optical system 27 has an objective lens 21 and a beam splitting member 24. The objective lens 21 is provided as an entrance portion for admitting light from the object to be measured. The objective lens 21 is, for example, a plano-convex lens, and has a single positive power. The beam splitting member 24 is provided as a light guiding portion for guiding the light incident by the objective lens 21. The beam splitting member 24 splits the beam that has passed through the objective lens 21 into three beams.
 受光系28は、光電変換部25および増幅部26を有する。光電変換部25は、光束分割部材24が導光する光を受光し、電気信号に変換する。光電変換部25は、図3で詳述するように、結果的に標準観測者の分光感度特性を持たせられる受光センサ62p,62q,62rを有する。受光センサ62p,62q,62rは、光束分割部材24から出射される3つの光束をそれぞれ受光し、入射強度に応じた電気信号に光電変換して出力する。増幅部26は、各受光センサ62p,62q,62rに対応する3つの増幅器26p,26q,26rを有し、各受光センサ62p,62q,62rから出力される電気信号(電圧)をそれぞれ所定のレベルに増幅する。 The light receiving system 28 has a photoelectric conversion section 25 and an amplifier section 26. The photoelectric conversion section 25 receives the light guided by the beam splitter 24 and converts it into an electrical signal. As described in detail in FIG. 3, the photoelectric conversion section 25 has light receiving sensors 62p, 62q, and 62r that ultimately have the spectral sensitivity characteristics of a standard observer. The light receiving sensors 62p, 62q, and 62r receive the three beams of light emitted from the beam splitter 24, photoelectrically convert them into electrical signals according to the incident intensity, and output them. The amplifier section 26 has three amplifiers 26p, 26q, and 26r corresponding to the light receiving sensors 62p, 62q, and 62r, and amplifies the electrical signals (voltages) output from the light receiving sensors 62p, 62q, and 62r to a predetermined level.
 各増幅器26p,26q,26rはノイズを発生し、ノイズの大きさは受光センサ62p,62q,62rの面積が小さくなるほど減少する。この点を図2を参照して説明する。 Each amplifier 26p, 26q, 26r generates noise, and the magnitude of the noise decreases as the area of the light receiving sensors 62p, 62q, 62r becomes smaller. This point will be explained with reference to Figure 2.
 図2は各増幅器26p,26q,26rの入力部の容量とノイズとの関係を示すグラフである。横軸は増幅器26p,26q,26rの入力部の容量[pF]、縦軸はノイズの大きさである。同図に示すように、入力部の容量が小さくなるとノイズも減少する。入力部の容量は、受光センサ62p,62q,62rの面積が小さくなると減少する。このため、各増幅器26p,26q,26rのノイズの大きさは受光センサ62p,62q,62rの受光面積が小さくなるほど減少する。例えば入力部の容量が約230pFのときのノイズは約75である。入力部の容量が約23pFのときのノイズは約30であり、ノイズは1/2.5に減少する。つまり、受光センサ62p,62q,62rの面積を1/10にすることで、S/N比を約3倍にすることができる。 Figure 2 is a graph showing the relationship between the capacitance of the input section of each amplifier 26p, 26q, 26r and the noise. The horizontal axis is the capacitance [pF] of the input section of the amplifiers 26p, 26q, 26r, and the vertical axis is the magnitude of the noise. As shown in the figure, the noise decreases as the capacitance of the input section decreases. The capacitance of the input section decreases as the area of the light receiving sensors 62p, 62q, 62r decreases. Therefore, the magnitude of the noise of each amplifier 26p, 26q, 26r decreases as the light receiving area of the light receiving sensors 62p, 62q, 62r decreases. For example, when the capacitance of the input section is about 230 pF, the noise is about 75. When the capacitance of the input section is about 23 pF, the noise is about 30, and the noise is reduced to 1/2.5. In other words, by reducing the area of the light receiving sensors 62p, 62q, 62r to 1/10, the S/N ratio can be increased by about three times.
 なお、本実施形態では、増幅器26p,26q,26rには積分回路やトランス・インピーダンス回路(IV変換回路)が含まれる。 In this embodiment, amplifiers 26p, 26q, and 26r include an integrator circuit and a trans-impedance circuit (IV conversion circuit).
 測定器本体部16は、測定プローブ部14から入力された電気信号(アナログ信号)をデジタル信号に変換して、所定の演算処理を行なう。測定器本体部16は、その演算処理により、三刺激値(X,Y,Z)、CIE(国際照明委員会)で制定されているxyY(色度座標、輝度)、TΔuvY(相関色温度、黒体軌跡からの色差、輝度)などを算出し、その演算結果を表示部33に表示する。 The measuring device main body 16 converts the electrical signal (analog signal) input from the measuring probe 14 into a digital signal and performs a specified calculation process. Through this calculation process, the measuring device main body 16 calculates tristimulus values (X, Y, Z), xyY (chromaticity coordinates, luminance) established by the CIE (International Commission on Illumination), TΔuvY (correlated color temperature, color difference from the blackbody locus, luminance), and the like, and displays the calculation results on the display unit 33.
 図3を参照して、光電変換部25と、光電変換部25に導光する光束分割部材24を含む光学系の各構成を詳述する。同図(A)は正面から見た時の図であり、同図(B)は光電変換部25を光入射側から見た時の図である。 Referring to Figure 3, the components of the optical system including the photoelectric conversion unit 25 and the light beam splitter member 24 that guides light to the photoelectric conversion unit 25 will be described in detail. Figure 3 (A) is a diagram viewed from the front, and Figure 3 (B) is a diagram of the photoelectric conversion unit 25 viewed from the light incident side.
 光束分割部材24は、対物レンズ21により入射された光の光軸L(以下、単に「対物レンズ21の光軸」ともいう)上に配置されている。光束分割部材24は、光を伝播させる光ファイバー55と、コリメータレンズ56p,56q,56rとを有する。 The beam splitting member 24 is disposed on the optical axis L of the light incident on the objective lens 21 (hereinafter also simply referred to as the "optical axis of the objective lens 21"). The beam splitting member 24 has an optical fiber 55 that propagates light, and collimator lenses 56p, 56q, and 56r.
 光ファイバー55は、複数本の光ファイバーが束ねられて構成されている。光ファイバー55は、束ねられた複数本の光ファイバーが長さ方向の中間部分で3つの分割部55p,55q,55rに分割されることにより、1つの光束入射面Aと、各分割部55p,55q,55rの先端の合計3つの光束出射面B1,B2,B3とを有する。各光束出射面B1,B2,B3は、同一の垂直平面内において正三角形の頂点の位置にそれぞれ配置されている。光ファイバー55は、光束入射面Aが対物レンズ21の像側主点PP(なお、説明の便宜上、本実施の形態では像側主点が物体側主点と略一致しているものを例示する)から対物レンズ21の焦点距離fだけ離れた位置となるように配置されている。すなわち、対物レンズ21および光ファイバー55によって、テレセントリック光学系が構成されている。 The optical fiber 55 is formed by bundling a number of optical fibers. The bundled optical fibers are divided into three divisions 55p, 55q, and 55r at the middle of the length direction, and the optical fiber 55 has one light beam incident surface A and a total of three light beam exit surfaces B1, B2, and B3 at the tips of the divisions 55p, 55q, and 55r. Each light beam exit surface B1, B2, and B3 is disposed at the apex of an equilateral triangle in the same vertical plane. The optical fiber 55 is disposed so that the light beam incident surface A is located at a position away from the image side principal point PP of the objective lens 21 by the focal length f of the objective lens 21 (for convenience of explanation, in this embodiment, an example in which the image side principal point is approximately the same as the object side principal point is shown). In other words, the objective lens 21 and the optical fiber 55 constitute a telecentric optical system.
 本実施の形態では、光束分割部材24に光ファイバー55を用いている。しかし、このような構成に限られず、たとえば、光導管等のように光ファイバーと同等の機能を果たす他の光学部品を用いてもよい。 In this embodiment, an optical fiber 55 is used for the light beam splitting member 24. However, this is not limited to the configuration, and other optical components that perform the same function as an optical fiber, such as an optical guide tube, may also be used.
 測定プローブ部14を液晶パネルの表示面12から所定の間隔だけ離してセットする。すると、液晶パネルの被測定領域ARの各部から出射される光束のうち、被測定領域ARの法線方向(図3中では、光軸Lに平行な方向)に対する出射角の最大値α(以下、最大出射角αという)以下の光束だけが、光ファイバー55の光束入射面Aに入射する。なお、最大出射角αは、対物レンズ21の焦点距離fと、光ファイバー55の光束入射面Aにおける直径Rとによって決定される。入射した光束は、光ファイバー55内で分割部55p,55q,55rにより3つの光束に分割される。そして、それぞれ、光束出射面B1,B2,B3から出射される。 The measurement probe 14 is set at a predetermined distance from the display surface 12 of the liquid crystal panel. Then, of the light beams emitted from each part of the measurement area AR of the liquid crystal panel, only the light beams having an emission angle of less than or equal to the maximum value α (hereinafter referred to as the maximum emission angle α) with respect to the normal direction of the measurement area AR (in FIG. 3, the direction parallel to the optical axis L) enter the light beam incident surface A of the optical fiber 55. The maximum emission angle α is determined by the focal length f of the objective lens 21 and the diameter R of the optical fiber 55 at the light beam incident surface A. The incident light beam is split into three light beams by splitters 55p, 55q, and 55r within the optical fiber 55. Then, they are emitted from the light beam exit surfaces B1, B2, and B3, respectively.
 光ファイバー55を構成する各光ファイバーは、中心部に配置されるコアと、コアの周囲を覆うクラッドとの二層構造を有する。コアは、クラッドと比較して屈折率が高く設計されているため、光は、全反射によりコア内に閉じこめられた状態で伝搬する。 Each optical fiber that makes up optical fiber 55 has a two-layer structure with a core located in the center and a cladding that surrounds the core. The core is designed to have a higher refractive index than the cladding, so light propagates while being confined within the core by total internal reflection.
 光ファイバー55は、光束入射面Aと、光束射出面B1,B2,B3とが固定された状態において、所定の形状に曲げられた姿勢で設けられている。このため、振動衝撃や温度変化等の状態変化がなければ、光ファイバー55の姿勢は維持されており、光束入射面Aに入射した光は、光束射出面B1,B2,B3より所定の角度で出射する。 Optical fiber 55 is bent into a predetermined shape with light beam incident surface A and light beam exit surfaces B1, B2, and B3 fixed. Therefore, unless there are changes in state due to vibration, shock, temperature change, etc., the position of optical fiber 55 is maintained, and light incident on light beam incident surface A is emitted from light beam exit surfaces B1, B2, and B3 at a predetermined angle.
 正三角形の頂点の位置に配置された光ファイバー55の各光束射出面B1,B2,B3の前方には、それぞれコリメータレンズ56p,56q,56rが配置されている。コリメータレンズ56p,56q,56rの前方に光電変換部25が配置されている。 Collimator lenses 56p, 56q, and 56r are disposed in front of the light beam exit surfaces B1, B2, and B3 of the optical fibers 55, which are positioned at the vertices of an equilateral triangle. The photoelectric conversion unit 25 is disposed in front of the collimator lenses 56p, 56q, and 56r.
 光電変換部25はコリメータレンズ56p,56q,56r側から順に、3個の分光感度補正フィルタ61p,61q,61rと、3個の複合放物面集光器(以下、CPCともいう)63p,63q,63rと、3個の受光センサ62p,62q,62rを備えている。 The photoelectric conversion unit 25 includes, in order from the collimator lenses 56p, 56q, 56r side, three spectral sensitivity correction filters 61p, 61q, 61r, three compound parabolic concentrators (hereinafter also referred to as CPCs) 63p, 63q, 63r, and three light receiving sensors 62p, 62q, 62r.
 各分光感度補正フィルタ61p,61q,61rには、各コリメータレンズ56p,56q,56rからの光束が入射される。光ファイバー55の光束射出面B1,B2,B3から出射された光束の各分光感度補正フィルタ61p,61q,61rへの入射角度ができるだけ垂直になるように、各コリメータレンズ56p,56q,56rによって屈折される。各分光感度補正フィルタ61p,61q,61rは以下のように干渉膜を有しているので、入射角依存性があるからである。 The light beams from the collimator lenses 56p, 56q, and 56r are incident on each of the spectral sensitivity correction filters 61p, 61q, and 61r. The light beams emitted from the light beam emission surfaces B1, B2, and B3 of the optical fiber 55 are refracted by each of the collimator lenses 56p, 56q, and 56r so that the angle of incidence of the light beams on each of the spectral sensitivity correction filters 61p, 61q, and 61r is as perpendicular as possible. This is because each of the spectral sensitivity correction filters 61p, 61q, and 61r has an interference film as shown below, and is therefore incident angle dependent.
 分光感度補正フィルタ61p,61q,61rは、受光センサ62p,62q,62rにCIE規定の標準観測者の分光感度を持たせるためのものである。この実施形態では、各分光感度補正フィルタ61p,61q,61rは、薄膜の干渉膜の干渉現象を利用した干渉フィルタである。各分光感度補正フィルタ61p,61q,61rは、図4(A)に拡大断面図で示すように、ガラス等からなる透明な平行平板611の光束入射側の面に干渉膜612が被覆形成されることにより構成されている。平行平板611の光束入射側の面に干渉膜612を形成することで、フィルタ61p,61q,61rの作成保持を容易に行うことができる。 The spectral sensitivity correction filters 61p, 61q, and 61r are intended to provide the light receiving sensors 62p, 62q, and 62r with the spectral sensitivity of the standard observer as specified by the CIE. In this embodiment, the spectral sensitivity correction filters 61p, 61q, and 61r are interference filters that utilize the interference phenomenon of a thin-film interference film. As shown in the enlarged cross-sectional view of FIG. 4A, each of the spectral sensitivity correction filters 61p, 61q, and 61r is formed by coating the light beam incident surface of a transparent parallel plate 611 made of glass or the like with an interference film 612. By forming the interference film 612 on the light beam incident surface of the parallel plate 611, the filters 61p, 61q, and 61r can be easily created and maintained.
 分光感度補正フィルタ61p,61q,61rは、それぞれ所定の波長域の光のみを透過する。具体的には、分光感度補正フィルタ61pは、R(赤)の波長領域に感度を有するフィルタ特性を有する。このフィルタ特性によって受光センサ62pの受光感度は、赤の波長域に大きな感度を有する等色関数(エックス・バー・ラムダ)の受光感度に補正されている。分光感度補正フィルタ61qは、G(緑)の波長領域に感度を有するフィルタ特性を有する。このフィルタ特性によって受光センサ62qの受光感度は、緑の波長域に大きな感度を有する等色関数(ワイ・バー・ラムダ)の受光感度に補正されている。分光感度補正フィルタ61rは、B(青)の波長領域に感度を有するフィルタ特性を有する。このフィルタ特性によって受光センサ62rの受光感度は、青の波長域に大きな感度を有する等色関数(ゼット・バー・ラムダ)の受光感度に補正されている。 Spectral sensitivity correction filters 61p, 61q, and 61r each transmit only light in a predetermined wavelength range. Specifically, spectral sensitivity correction filter 61p has filter characteristics that are sensitive to the R (red) wavelength range. This filter characteristic corrects the light sensitivity of light receiving sensor 62p to the light sensitivity of a color matching function (X bar lambda) that has high sensitivity to the red wavelength range. Spectral sensitivity correction filter 61q has filter characteristics that are sensitive to the G (green) wavelength range. This filter characteristic corrects the light sensitivity of light receiving sensor 62q to the light sensitivity of a color matching function (W bar lambda) that has high sensitivity to the green wavelength range. Spectral sensitivity correction filter 61r has filter characteristics that are sensitive to the B (blue) wavelength range. This filter characteristic corrects the light sensitivity of light receiving sensor 62r to the light sensitivity of a color matching function (Z bar lambda) that has high sensitivity to the blue wavelength range.
 また、最終的に色彩計10で得られる受光感度が、図5にβで示すような所望の(CIEで規定される)等色関数に近似したものとなるように、各分光感度補正フィルタ61p,61q,61rが調製されている。この調整は、分光感度補正フィルタ61p,61q,61rの透過率に加え、光学系(レンズ56p,56q,56rや、光ファイバー55等)の透過率、受光センサ62p,62q,62rの受光感度、受光センサ面等での反射特性などの特性を加味して行われる。 Furthermore, the spectral sensitivity correction filters 61p, 61q, and 61r are adjusted so that the light sensitivity finally obtained by the colorimeter 10 approximates the desired color matching function (defined by CIE) as shown by β in Figure 5. This adjustment is performed taking into account the transmittance of the spectral sensitivity correction filters 61p, 61q, and 61r, as well as the transmittance of the optical system ( lenses 56p, 56q, and 56r and optical fiber 55, etc.), the light sensitivity of the light receiving sensors 62p, 62q, and 62r, the reflection characteristics at the light receiving sensor surfaces, etc.
 なお、コリメータレンズ56p,56q,56rがなくても、最終的に得られる受光感度が所望の等色関数に近似したものとなるように干渉膜612を調製することができれば、コリメータレンズ56p,56q,56rを廃止してもよい。 In addition, if the interference film 612 can be adjusted so that the final light receiving sensitivity is close to the desired color matching function even without the collimator lenses 56p, 56q, and 56r, the collimator lenses 56p, 56q, and 56r may be eliminated.
 各分光感度補正フィルタ61p,61q,61rと各受光センサ62p,62q,62rとの間に配置されたCPC63p,63q,63rは、それぞれガラス等の透明材料からなり、光軸と垂直な断面が円形である。 The CPCs 63p, 63q, and 63r arranged between the spectral sensitivity correction filters 61p, 61q, and 61r and the light receiving sensors 62p, 62q, and 62r are each made of a transparent material such as glass, and have a circular cross section perpendicular to the optical axis.
 CPC63p,63q,63rは図6の概念図に示すように、光軸Lの周囲の内部反射面が放物面に、光軸方向の両面が光軸Lに垂直な平面に形成された集光器である。図6ではCPC63pを代表として示しているが、他のCPC63q,63rについても同じである。同図において、abおよびabを結ぶ太線部が光軸Lに沿って切断したときのCPC63pの断面形状の輪郭(反射面)である。入射面631に垂直な光軸Lに対し許容半角θmax/2以内の角度で入射してきた光は、放物線の一部であるab(放物線A、対称軸AA’、焦点a)またはba(放物線B、対称軸BB’、焦点b)の鏡面により、放物線の特徴から高々一回の反射で射出面632に集光される。従って、左右両面を考えると、許容角θmax内の角度で入射面631から入射してくる光は全て射出面632に集光することができる。 As shown in the conceptual diagram of FIG. 6, the CPCs 63p, 63q, and 63r are light collectors in which the internal reflection surface around the optical axis L is a parabolic surface, and both surfaces in the optical axis direction are flat surfaces perpendicular to the optical axis L. In FIG. 6, the CPC 63p is shown as a representative, but the other CPCs 63q and 63r are the same. In the figure, the thick line connecting a 0 b and ab 0 is the outline (reflection surface) of the cross-sectional shape of the CPC 63p when cut along the optical axis L. Light incident at an angle within the allowable half angle θ max /2 with respect to the optical axis L perpendicular to the entrance surface 631 is collected on the exit surface 632 with at most one reflection due to the characteristics of the parabola by the mirror surface of a 0 b (parabola A 0 , symmetry axis AA', focus a) or b 0 a (parabola B 0 , symmetry axis BB', focus b), which is a part of the parabola. Therefore, considering both the left and right surfaces, all of the light incident from the entrance surface 631 at angles within the allowable angle θ max can be collected on the exit surface 632 .
 このように、各分光感度補正フィルタ61p,61q,61rを通過した光束はCPC63p,63q,63rの各入射面631に入射し、CPC63p,63q,63rの放物面で全反射して射出面632から射出される。なお、分光感度補正フィルタ61p,61q,61rへの入射角度はできるだけ垂直になるようにする必要がある。このため、受光センサ62p,62q,62rへの集光はフィルタ61p,61q,61rを透過した後に行う必要がある。 In this way, the light beams that pass through each of the spectral sensitivity correction filters 61p, 61q, and 61r enter the entrance surface 631 of each of the CPCs 63p, 63q, and 63r, are totally reflected by the parabolic surfaces of the CPCs 63p, 63q, and 63r, and are emitted from the exit surface 632. Note that the angle of incidence on the spectral sensitivity correction filters 61p, 61q, and 61r must be as vertical as possible. For this reason, the light must be collected on the light receiving sensors 62p, 62q, and 62r after passing through the filters 61p, 61q, and 61r.
 また、この実施形態では、光ファイバー55の光束射出面B1,B2,B3の面積は、いずれも、各CPC63p,63q,63rの入射面631の面積、換言すれば各受光センサ62p,62q,62rに入射する光の面積よりも大きく設定されている。これにより、十分な量の光を光ファイバー55からCPC63p,63q,63rへさらに受光センサ62p,62q,62rへと入射させることができる。 In addition, in this embodiment, the areas of the light beam exit surfaces B1, B2, and B3 of the optical fiber 55 are all set to be larger than the area of the incident surface 631 of each of the CPCs 63p, 63q, and 63r, in other words, the area of the light incident on each of the light receiving sensors 62p, 62q, and 62r. This allows a sufficient amount of light to be incident from the optical fiber 55 to the CPCs 63p, 63q, and 63r and further to the light receiving sensors 62p, 62q, and 62r.
 前述したように、分光感度補正フィルタ61p,61q,61rが、平行平板611の光束入射側の面に干渉膜612が施されることにより構成されている例を示した。しかし、図4(B)に示すように、各CPC63p,63q,63rの入射面631の表面に干渉膜612が施されることにより構成されてよい。CPC63p,63q,63rの入射面631に干渉膜612が施されていることで、CPC63p,63q,63rの入射側に配置される光ファイバー55やコリメータレンズ56p,56q,56rとCPC63p,63q,63rとの距離を縮めることができる。 As described above, an example has been shown in which the spectral sensitivity correction filters 61p, 61q, and 61r are configured by applying an interference film 612 to the light beam incident surface of the parallel plate 611. However, as shown in FIG. 4B, the filters may be configured by applying an interference film 612 to the surface of the incident surface 631 of each CPC 63p, 63q, and 63r. By applying the interference film 612 to the incident surface 631 of the CPCs 63p, 63q, and 63r, the distance between the optical fiber 55 and collimator lenses 56p, 56q, and 56r arranged on the incident side of the CPCs 63p, 63q, and 63r and the CPCs 63p, 63q, and 63r can be reduced.
 受光センサ62p,62q,62rは、略同一の受光感度を有する、たとえば、SPC(シリコンフォトセル)からなる。受光センサ62p,62q,62rは、それぞれ、CPC63p,63q,63rの光軸上であって、CPC63p,63q,63rによって集光される光の照射範囲が受光センサ62p,62q,62rの受光範囲となる位置に配置されている。受光センサ62p,62q,62rからは、それぞれ三刺激値(X,Y,Z)に相当する受光信号が出力される。 The light receiving sensors 62p, 62q, 62r are, for example, silicon photocells (SPCs) with approximately the same light receiving sensitivity. The light receiving sensors 62p, 62q, 62r are located on the optical axes of the CPCs 63p, 63q, 63r, respectively, at positions where the irradiation range of the light collected by the CPCs 63p, 63q, 63r is the light receiving range of the light receiving sensors 62p, 62q, 62r. The light receiving sensors 62p, 62q, 62r each output a light receiving signal corresponding to a tristimulus value (X, Y, Z).
 さらに、この実施形態では、CPC63p,63q,63rの射出面632は光軸に垂直な平面である。図4(A)(B)に示すように、この射出面632は受光センサ62p,62q,62rとの間で屈折率がCPC63p,63q,63rとほぼ同じ光路接合用接着剤64で接合されている。このため、CPC63p,63q,63rで集光された光束は受光センサ62p,62q,62rの表面で反射されることなく受光センサ62p,62q,62rに到達する。また、CPC63p,63q,63rと受光センサ62p,62q,62rを光路接合用接着剤64で位置決め固定することができ、両者の位置関係の変動を防止できる。また、光路接合用接着剤64はUV硬化接着剤なので、CPC63p,63q,63rが正確な位置にガイドされた状態でUV硬化させることができる。これにより、受光センサ62p,62q,62rに対してCPC63p,63q,63rを正確に位置決め固定することができる。 Furthermore, in this embodiment, the exit surface 632 of the CPC 63p, 63q, 63r is a plane perpendicular to the optical axis. As shown in Figures 4(A) and (B), this exit surface 632 is bonded between the light receiving sensors 62p, 62q, 62r and the light receiving sensors 62p, 62q, 63r with an optical path bonding adhesive 64 having a refractive index almost the same as that of the CPC 63p, 63q, 63r. Therefore, the light beams collected by the CPC 63p, 63q, 63r reach the light receiving sensors 62p, 62q, 62r without being reflected on the surfaces of the light receiving sensors 62p, 62q, 62r. In addition, the CPC 63p, 63q, 63r and the light receiving sensors 62p, 62q, 62r can be positioned and fixed with the optical path bonding adhesive 64, and the positional relationship between the two can be prevented from fluctuating. In addition, since the optical path bonding adhesive 64 is a UV curing adhesive, the CPC 63p, 63q, 63r can be UV cured while being guided to an accurate position. This allows the CPCs 63p, 63q, and 63r to be accurately positioned and fixed relative to the light receiving sensors 62p, 62q, and 62r.
 図3に示すように、各受光センサ62p,62q,62rはセンサ基板65に搭載されている。センサ基板65はホルダー66に固定され、ホルダー66はCPC63p,63q,63rを受光センサ62p,62q,62rに対して正確な位置にガイドする。 As shown in FIG. 3, the light receiving sensors 62p, 62q, and 62r are mounted on a sensor board 65. The sensor board 65 is fixed to a holder 66, which guides the CPCs 63p, 63q, and 63r to accurate positions relative to the light receiving sensors 62p, 62q, and 62r.
 このように、この実施形態では、分光感度補正フィルタ61p,61q,61rを透過した光はCPC63p,63q,63rによって受光センサ62p,62q,62rに集光される。従って、光ファイバー55の各光束出射面B1,B2,B3から出射される光束は各受光センサ62p,62q,62rに集光される。図7にCPC63p及び受光センサ62pについて代表して示すように、当該光束の円形の照射範囲LA(CPC63pの射出面632の面積に等しい)を受光センサ62p,62q,62rの矩形の面積(受光範囲)SAに略一致させることができる。このため、受光センサ62p,62q,62rの面積が小さくても効率よく受光センサ62p,62q,62rに集光させることができる。また、受光センサ62p,62q,62rの面積を小さくできることで、受光センサ62p,62q,62rの出力を増幅する増幅器26p,26q,26rの入力部の容量を小さくできる。そのため、増幅器26p,26q,26rのノイズ(N)を減少させることができるから、測定用光学装置10のS/N比を向上することができる。 In this embodiment, the light transmitted through the spectral sensitivity correction filters 61p, 61q, and 61r is focused on the light receiving sensors 62p, 62q, and 62r by the CPCs 63p, 63q, and 63r. Therefore, the light beams emitted from the light beam emission surfaces B1, B2, and B3 of the optical fiber 55 are focused on the light receiving sensors 62p, 62q, and 62r. As shown representatively in FIG. 7 for the CPC 63p and the light receiving sensor 62p, the circular irradiation range LA of the light beam (equal to the area of the emission surface 632 of the CPC 63p) can be made to approximately match the rectangular area (light receiving range) SA of the light receiving sensors 62p, 62q, and 62r. Therefore, even if the area of the light receiving sensors 62p, 62q, and 62r is small, the light can be efficiently focused on the light receiving sensors 62p, 62q, and 62r. In addition, by reducing the area of the light receiving sensors 62p, 62q, and 62r, the capacity of the input section of the amplifiers 26p, 26q, and 26r that amplify the output of the light receiving sensors 62p, 62q, and 62r can be reduced. This allows the noise (N) of the amplifiers 26p, 26q, and 26r to be reduced, improving the S/N ratio of the measurement optical device 10.
 しかも、従来のように集光レンズ系を用いて集光する構成ではないから、集光レンズ系のレンズ枚数を増加させる必要はなく、構成も簡素になる。なお、集光レンズ系では集光能力がCPC63p,63q,63rよりも低く、光ファイバー55の射出面積と同程度の面積にしか集光できない為に全ての光束を受光センサ62p,62q,62rに到達させることは難しい。しかし、本実施形態ではCPC63p,63q,63rを用いて集光することで、小さいセンサ面積でも効率よく集光することができる。また、集光レンズの射出面と受光センサ62p,62q,62rの間には屈折の為に空気層が必要であり、本実施形態のようにCPC63p,63q,63rと受光センサ62p,62q,62rとの間を光路結合用接着剤64で埋めることができない。このため、受光センサ62p,62q,62rに対して集光レンズを正確に位置決め固定することもできない。これに対して本実施形態では、CPC63p,63q,63rと受光センサ62p,62q,62rとの間を光路結合用接着剤64で埋めている。このため、受光センサ62p,62q,62rに対してCPC63p,63q,63rを正確に位置決め固定できる。 Moreover, since the configuration does not use a condenser lens system to collect light as in the conventional configuration, there is no need to increase the number of lenses in the condenser lens system, and the configuration is simple. Note that the condenser lens system has a lower light collecting ability than the CPCs 63p, 63q, and 63r, and can only collect light to an area approximately equal to the exit area of the optical fiber 55, so it is difficult to make all the light beams reach the light receiving sensors 62p, 62q, and 62r. However, in this embodiment, by collecting light using the CPCs 63p, 63q, and 63r, it is possible to efficiently collect light even with a small sensor area. In addition, an air layer is required between the exit surface of the condenser lens and the light receiving sensors 62p, 62q, and 62r for refraction, and it is not possible to fill the space between the CPCs 63p, 63q, and 63r and the light receiving sensors 62p, 62q, and 62r with the optical path coupling adhesive 64 as in this embodiment. For this reason, it is not possible to accurately position and fix the condenser lens to the light receiving sensors 62p, 62q, and 62r. In contrast, in this embodiment, the gap between the CPCs 63p, 63q, and 63r and the light receiving sensors 62p, 62q, and 62r is filled with optical path coupling adhesive 64. This allows the CPCs 63p, 63q, and 63r to be accurately positioned and fixed relative to the light receiving sensors 62p, 62q, and 62r.
 なお、受光センサ62p,62q,62rにワイヤボンディングを施す場合、図7に示す矩形の受光範囲SAのうちの円形の照射範囲LAを除く部分に施せば良い。 When applying wire bonding to the light receiving sensors 62p, 62q, and 62r, it is sufficient to apply it to the rectangular light receiving area SA shown in FIG. 7 excluding the circular irradiation area LA.
 こうして、光ファイバー55から出射される光束をCPC63p,63q,63rを介して受光センサ62p,62q,62rの受光範囲に集光する。これにより、光ファイバー55に入射された光束(液晶パネルの被測定領域ARの各部から出射される当該被測定領域ARの法線方向に対する最大出射角α以下の全ての光束)は1/3ずつそれぞれ受光センサ62p,62q,62rに入射される。このため、受光センサ62p,62q,62rでの受光光量が低下することはない。 In this way, the light beam emitted from the optical fiber 55 is focused on the light receiving range of the light receiving sensors 62p, 62q, 62r via the CPCs 63p, 63q, 63r. As a result, one-third of the light beam incident on the optical fiber 55 (all light beams emitted from each part of the measurement area AR of the liquid crystal panel at an angle equal to or smaller than the maximum emission angle α with respect to the normal direction of the measurement area AR) is incident on the light receiving sensors 62p, 62q, 62r, respectively. Therefore, the amount of light received by the light receiving sensors 62p, 62q, 62r does not decrease.
 次に、図1を参照して、測定器本体部16の構成についてより具体的に説明する。測定器本体部16は、A/D変換部31と、データメモリ32と、表示部33と、操作部35と、制御部36と、電源部37と、通信部38とを有する。 Next, the configuration of the measuring device main body 16 will be described in more detail with reference to FIG. 1. The measuring device main body 16 has an A/D conversion unit 31, a data memory 32, a display unit 33, an operation unit 35, a control unit 36, a power supply unit 37, and a communication unit 38.
 A/D変換部31は、測定プローブ部14から入力される受光信号をデジタルの信号(測定データ)に変換する。データメモリ32は、A/D変換部31から出力される測定データを記憶する。制御部36は、測定プローブ部14の動作や、測定器本体部16内の各部の動作を集中的に制御することで測定動作を制御する。制御部36は、データメモリ32に格納された測定データを用いて、三刺激値(X,Y,Z)、CIEで制定されているxyY(色度座標、輝度)、TΔuvY(相関色温度、黒体軌跡からの色差、輝度)などを演算する。 The A/D converter 31 converts the received light signal input from the measurement probe 14 into a digital signal (measurement data). The data memory 32 stores the measurement data output from the A/D converter 31. The control unit 36 controls the measurement operation by centrally controlling the operation of the measurement probe 14 and the operation of each unit in the measuring device main body 16. The control unit 36 uses the measurement data stored in the data memory 32 to calculate tristimulus values (X, Y, Z), xyY (chromaticity coordinates, luminance) established by the CIE, TΔuvY (correlated color temperature, color difference from the blackbody locus, luminance), etc.
 表示部33は、制御部36における演算結果を表示する。操作部35には、測定に関する各種情報(測定の指示、表示モードの設定、測定レンジ等)が入力される。電源部37は、外部のACアダプター(不図示)から供給される電力の電圧を変圧して制御部36を介して各構成要素に電力を供給する。通信部38は、制御部36における演算結果を外部に出力する。 The display unit 33 displays the results of calculations performed by the control unit 36. Various information related to the measurement (measurement instructions, display mode settings, measurement range, etc.) is input to the operation unit 35. The power supply unit 37 transforms the voltage of the power supplied from an external AC adapter (not shown) and supplies power to each component via the control unit 36. The communication unit 38 outputs the results of calculations performed by the control unit 36 to the outside.
 本願は、2022年10月21日付で出願された日本国特許出願の特願2022-169417号の優先権主張を伴うものであり、その開示内容は、そのまま本願の一部を構成するものである。 This application claims priority from Japanese Patent Application No. 2022-169417, filed on October 21, 2022, the disclosures of which are incorporated herein by reference in their entirety.
 本発明は、例えばディスプレイ等の測定対象物の輝度や色度等を計測可能な測定用光学装置として利用可能である。 The present invention can be used as an optical measurement device capable of measuring the brightness, chromaticity, etc. of a measurement object such as a display.
 10 三刺激値型光電色彩計
 12 表示面
 14 測定プローブ部
 16 測定器本体部
 21 対物レンズ
 24 光束分割部材
 25 光電変換部
 26 増幅部
 26p,26q,26r 増幅器
 27 測定光学系
 28 受光系
 31 A/D変換部
 32 データメモリ
 33 表示部
 35 操作部
 36 制御部
 37 電源部
 38 通信部
 55 光ファイバー
 55p,55q,55r 分割部
 56p,56q,56r コリメータレンズ
 61p,61q,61r 分光感度補正フィルタ
 62p,62q,62r 受光センサ
 63p,63q,63r 複合放物面集光器
 64 光路接合用接着剤
 65 センサ基板
 66 ホルダー
 611 平行平板
 612 干渉膜
 631 入射面
 632 射出面
REFERENCE SIGNS LIST 10 Tristimulus value photoelectric colorimeter 12 Display surface 14 Measurement probe section 16 Measuring device main body 21 Objective lens 24 Light beam splitting member 25 Photoelectric conversion section 26 Amplification section 26p, 26q, 26r Amplifier 27 Measurement optical system 28 Light receiving system 31 A/D conversion section 32 Data memory 33 Display section 35 Operation section 36 Control section 37 Power supply section 38 Communication section 55 Optical fiber 55p, 55q, 55r Splitting section 56p, 56q, 56r Collimator lens 61p, 61q, 61r Spectral sensitivity correction filter 62p, 62q, 62r Light receiving sensor 63p, 63q, 63r Compound parabolic concentrator 64 Optical path joining adhesive 65 Sensor substrate 66 Holder 611 Parallel plate 612 interference film 631 incident surface 632 exit surface

Claims (6)

  1.  対物光学系と、
     前記対物光学系からの光の内、各々所定の波長域の光のみを受光する複数種類の光電変換部と、
     を備えた測定用光学装置において、
     前記光電変換部のそれぞれは、
     干渉膜により所定の波長域の光のみを透過するフィルタと、
     前記フィルタを透過した光を受光するとともに、出力が増幅器により増幅される受光センサと、
     前記フィルタと受光センサの間に位置し、フィルタを透過した光を受光センサに集光する複合放物面集光器と、
     を備えている測定用光学装置。
    An objective optical system;
    a plurality of types of photoelectric conversion units each receiving only light of a predetermined wavelength range from the light from the objective optical system;
    In a measuring optical device comprising:
    Each of the photoelectric conversion units is
    a filter that transmits only light of a predetermined wavelength range using an interference film;
    a light receiving sensor that receives light transmitted through the filter and whose output is amplified by an amplifier;
    a compound parabolic concentrator positioned between the filter and the light receiving sensor, for concentrating the light transmitted through the filter onto the light receiving sensor;
    An optical measuring device comprising:
  2.  前記複合放物面集光器は透明材料で形成されている請求項1に記載の測定用光学装置。 The optical measurement device of claim 1, wherein the compound parabolic concentrator is formed of a transparent material.
  3.  前記複合放物面集光器の前記受光センサに対向する面は平面であり、前記複合放物面集光器と前記受光センサは光路結合用接着剤によって結合されている請求項1または2に記載の測定用光学装置。 The optical measurement device according to claim 1 or 2, wherein the surface of the compound parabolic concentrator facing the light receiving sensor is flat, and the compound parabolic concentrator and the light receiving sensor are joined by an adhesive for optical path joining.
  4.  前記フィルタは、平行平板の入射面に干渉膜が施されることにより形成されている請求項1または2に記載の測定用光学装置。 The optical measurement device according to claim 1 or 2, wherein the filter is formed by applying an interference film to the incident surface of a parallel plate.
  5.  前記フィルタは、複合放物面集光器の入射面に干渉膜が施されることにより形成されている請求項1または2に記載の測定用光学装置。 The measurement optical device according to claim 1 or 2, wherein the filter is formed by applying an interference film to the incident surface of a compound parabolic concentrator.
  6.  前記対物光学系からの光を分割して各光電変換部に導く光ファイバーを有し、分割された光ファイバーの射出面の面積は、前記受光センサに入射する光の面積よりも大きい請求項1または2に記載の測定用光学装置。
     
     
    3. The measurement optical device according to claim 1, further comprising an optical fiber that splits the light from the objective optical system and guides it to each photoelectric conversion unit, and the area of the exit surface of the split optical fiber is larger than the area of the light incident on the light receiving sensor.

PCT/JP2023/036817 2022-10-21 2023-10-11 Optical device for measurement WO2024085027A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-169417 2022-10-21
JP2022169417 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024085027A1 true WO2024085027A1 (en) 2024-04-25

Family

ID=90737453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036817 WO2024085027A1 (en) 2022-10-21 2023-10-11 Optical device for measurement

Country Status (1)

Country Link
WO (1) WO2024085027A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037415B2 (en) * 1979-11-22 1985-08-26 松下電器産業株式会社 infrared detection device
WO2011142071A1 (en) * 2010-05-14 2011-11-17 コニカミノルタセンシング株式会社 Optical system for measurement, luminance meter using the optical system, color luminance meter, and color meter
US20140145069A1 (en) * 2012-11-28 2014-05-29 Intersil Americas LLC Packaged light detector semiconductor devices with non-imaging optics for ambient light and/or optical proxmity sensing, methods for manufacturing the same, and systems including the same
JP2017150935A (en) * 2016-02-24 2017-08-31 コニカミノルタ株式会社 Optical characteristic measurement system and optical device for measurement
US20200073099A1 (en) * 2016-09-30 2020-03-05 Intel Corporation Compound parabolic concentrator including protrusion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6037415B2 (en) * 1979-11-22 1985-08-26 松下電器産業株式会社 infrared detection device
WO2011142071A1 (en) * 2010-05-14 2011-11-17 コニカミノルタセンシング株式会社 Optical system for measurement, luminance meter using the optical system, color luminance meter, and color meter
US20140145069A1 (en) * 2012-11-28 2014-05-29 Intersil Americas LLC Packaged light detector semiconductor devices with non-imaging optics for ambient light and/or optical proxmity sensing, methods for manufacturing the same, and systems including the same
JP2017150935A (en) * 2016-02-24 2017-08-31 コニカミノルタ株式会社 Optical characteristic measurement system and optical device for measurement
US20200073099A1 (en) * 2016-09-30 2020-03-05 Intel Corporation Compound parabolic concentrator including protrusion

Similar Documents

Publication Publication Date Title
WO2021197240A1 (en) Multi-channel light-receiving module
TWI405958B (en) Optical system for measurement
TWI451073B (en) Measuring the optical system and the use of its brightness meter, color brightness meter and color meter
US20110228230A1 (en) Laser light source device and image display apparatus
JP5733919B2 (en) High sensitivity detector device
CN102183359A (en) Method and device for detecting collimation of light beams
JP2010025558A (en) Optical system for measurement
CN105675132A (en) Anastigmatic spectrometer
TW535004B (en) Measuring optical system and three-stimulation value photoelectric colorimeter provided therewith
JP2002277348A (en) Transmissivity measuring method and device
WO2024085027A1 (en) Optical device for measurement
CN201611279U (en) Brightness measuring unit
KR101170140B1 (en) Optical System for corona discharge detection and apparatus for detecting ultraviolet rays
CN102053396B (en) Method and device for measuring thickness of liquid crystal box
JP7200936B2 (en) Measuring optics, luminance and colorimeters
JP5604959B2 (en) Light measuring device
WO2019077917A1 (en) Optical linear sensor unit
EP2047219B1 (en) Angle selective photo sensor structures for accurate color control, out coupling and background rejection, in led luminaries
JP6277206B2 (en) Optical measuring device
KR102100573B1 (en) Optical device for measurement
US20190063995A1 (en) Color parameter measurement device and color parameter measurement method
JP2001083012A (en) Optical path split type colorimeter
CN212459386U (en) Optical measuring instrument
WO2016208462A1 (en) Measureing device and method of manufacturing measureing device
JPS62105117A (en) Variable focus optical coupling lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23879670

Country of ref document: EP

Kind code of ref document: A1