JPS6037415B2 - infrared detection device - Google Patents
infrared detection deviceInfo
- Publication number
- JPS6037415B2 JPS6037415B2 JP54151635A JP15163579A JPS6037415B2 JP S6037415 B2 JPS6037415 B2 JP S6037415B2 JP 54151635 A JP54151635 A JP 54151635A JP 15163579 A JP15163579 A JP 15163579A JP S6037415 B2 JPS6037415 B2 JP S6037415B2
- Authority
- JP
- Japan
- Prior art keywords
- infrared
- sensor
- parabolic mirror
- infrared detection
- mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000001514 detection method Methods 0.000 title claims description 17
- 235000013305 food Nutrition 0.000 description 11
- 238000010586 diagram Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 4
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0831—Masks; Aperture plates; Spatial light modulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0808—Convex mirrors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0814—Particular reflectors, e.g. faceted or dichroic mirrors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0815—Light concentrators, collectors or condensers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Radiation Pyrometers (AREA)
Description
【発明の詳細な説明】
本発明は食品加熱器などに利用して、食品温度を側温制
御する赤外線検知装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared detection device that is used in a food heater or the like to control the temperature of food.
特に離れた側温物体の赤外線エネルギーをできるだけ多
くセンサに入るように光学系で工夫する内容に関するも
のである。離れた地点の光エネルギーを有効にセンサに
入光させる手段としてはしンズ系で集光する方法がある
。レンズは望遠鏡などの如く、可視光線(0.4〜0.
8rmの波長)では有効である。しかし赤外線系では入
光波長が数山肌〜20ムのと長く、レンズによる光エネ
ルギーの吸収が起こるため、レンズには光エネルギーの
吸収の少ないシリコンやゲルマニウム等の高価な材料を
用いなければならないという問題があった。それに対し
て反射鏡による集光手段は赤外線系においても有効であ
る。In particular, it concerns how to devise an optical system so that as much infrared energy as possible from a distant hot object enters the sensor. One way to effectively make light energy from a distant point enter a sensor is to use a lens system to condense the light. Lenses, such as telescopes, are used for visible light (0.4~0.
8rm wavelength). However, in infrared systems, the incident wavelength is long, ranging from a few peaks to 20 nm, and the lens absorbs light energy, so the lens must be made of an expensive material such as silicon or germanium, which absorbs little light energy. There was a problem. On the other hand, condensing means using a reflecting mirror is also effective in the infrared system.
というのは赤外線反射率の高い材料はアルミニウムや錫
など多くあり、表面の仕上がりを微細にすることでほぼ
完全な反射を得ることができるからである。本発明は赤
外線センサと反射鏡の組合せに工夫を加えたものである
。This is because there are many materials with high infrared reflectivity, such as aluminum and tin, and almost perfect reflection can be achieved by finely finishing the surface. The present invention is a combination of an infrared sensor and a reflecting mirror.
食品加熱器に搭載した場合の赤外線検知装置の従来例を
第1図に示す。FIG. 1 shows a conventional example of an infrared detection device installed in a food heater.
図中1は加熱室、2は食品教暦台、3は食品、4は食品
、5は加熱室壁、6は食品戦暦台を回転駆動するモ−夕
である。7は本体カバー、8は脚、9はモー夕で赤外線
を断続するために一部切欠き部をもつチョッパ羽根lo
を回転するように構成される。In the figure, 1 is a heating chamber, 2 is a food calendar, 3 is a food product, 4 is a food product, 5 is a wall of the heating chamber, and 6 is a motor for rotating the food food calendar table. 7 is the main body cover, 8 is the leg, and 9 is the chopper blade lo that has a cutout part for intermittent infrared rays.
configured to rotate.
11はチョツパ羽根10の切欠部の有無を検知するため
の手段である。11 is a means for detecting the presence or absence of a notch in the chopper blade 10.
12は赤外光軸を曲げるための反射板、13は側温視野
を限定するためのフード、14は集光用の放物面鏡、1
5は赤外線入光エネルギーを電気信号に変換する赤外線
検知素子、16は加熱室壁5に設けた赤外線透過用の窓
である。12 is a reflector for bending the infrared optical axis; 13 is a hood for limiting the side temperature field; 14 is a parabolic mirror for condensing light;
5 is an infrared detection element that converts incident infrared energy into an electrical signal; 16 is a window provided in the heating chamber wall 5 for transmitting infrared rays.
矢印は食品から赤外検知素子への入光状態を模式的に示
すためのものである。次に赤外線検知素子内のセンサS
に入光するエネルギーについての考え方を第2図〜第4
図を用いて説明すると、第2図において、対象物○bj
から視野限定窓Wを通してセンサSに入光するェネルギ
ーwi′は対象物の距離を夕とするとき、′・Ar。The arrows are for schematically showing the state of light incident on the infrared detection element from the food. Next, the sensor S in the infrared detection element
Figures 2 to 4 show how to think about the energy that enters the light.
To explain using a diagram, in Figure 2, the object ○bj
The energy wi' that enters the sensor S through the field-limiting window W from the field is '.Ar, where the distance to the object is defined as evening.
4′零。4′ zero.
2汀そ2Sinad8 Wi二 汀夕2 ここで、Aは比例定数 00=肌1(字) となる。2Sinad8 Wi 2 Teiyu 2 Here, A is the proportionality constant 00 = skin 1 (character) becomes.
しかし、この入光エネルギーwi′は赤外検知素子の指
向性のために修正を加える必要がある。However, this incident light energy wi' needs to be modified due to the directivity of the infrared detection element.
素子指向性を以下に説明する。第3図イは赤外検知素子
を示す。図において、Sはセンサ、Cは素子ケースで、
Aはケースの一部に関孔を設け、ゲルマニウムなどの赤
外透過材で封止した開孔窓である。Lは素子の電気信号
取出し用のりード線である。素子の中心軸に入光する場
合(8=0)とある角度(a=8,)をもち入光する場
合に、両者の入光エネルギーが等しくともセンサSの電
子信号出力に差がある現象を素子が指向性を持つと称す
。The element directivity will be explained below. Figure 3A shows an infrared detection element. In the figure, S is the sensor, C is the element case,
A is an open window with a hole provided in a part of the case and sealed with an infrared transparent material such as germanium. L is a lead wire for taking out electric signals from the element. A phenomenon in which there is a difference in the electronic signal output of sensor S when light enters the central axis of the element (8 = 0) and when light enters at a certain angle (a = 8,) even if the incident light energy is equal for both. The element is said to have directivity.
第3図叩は8:0で感度最大・0=生で感度半分となり
、0の変化とともに余弦変化をする特性例を示す。Figure 3 shows an example of a characteristic in which the sensitivity is maximum at 8:0 and the sensitivity is half when 0 = raw, and the cosine changes as the value of 0 changes.
この場合、感度SEと角度aとの関係はSE(8)=S
maxcos(1.338)となる。Smaxは8=0
のときの感度である。このような指向性を考えた場合、
センサへの入光エネルギーwiはwiの式にセンサ指向
特性を補正することにより、第2図の場合にWi=K′
30Sin8・COS(1.338)d8ここで、Kは
比例定数80‘まねn−・(字)
となる。In this case, the relationship between sensitivity SE and angle a is SE(8)=S
maxcos(1.338). Smax is 8=0
This is the sensitivity when . Considering this kind of directionality,
The incident light energy wi to the sensor can be calculated by correcting the sensor directivity characteristic to the formula wi, and in the case of Fig. 2, Wi=K'
30Sin8・COS(1.338)d8 Here, K is the proportionality constant 80'mimicking n-・(character).
第2図でr=1仇吻、夕;40仇収とすると入力ヱネル
ーはwiU=3×10‐3×Kとなる。In Fig. 2, if r = 1, evening; 40, the input ineru becomes wiU = 3 x 10-3 x K.
第4図に平行光線を集点に集光する放物反射鏡のの例を
示し、反射鏡と中心軸の交点を放物面鏡の原点○と呼び
、集点をfと呼ぶことにする。次に第1図で示した放物
面鏡と赤外検知素子の組合せ構成例を第5図に示す。こ
の構成の特徴は側溢物体○bj、鏡の集点f、センサS
、関孔窓A、鏡の原点○の順番で中心光軸上にならんで
いることである。このような構成は可視光の望遠鏡など
で多く用いられているものであり、視野径を大きくとれ
る場合非常に有効である。しかし、第1図実施例の如く
、加熱室壁5に開ける関孔16の径をあまり大きくとれ
ない場合は赤外検知素子15が放物面鏡14への入光を
さえぎるため、必ずしも最適とはいえない。Figure 4 shows an example of a parabolic reflector that focuses parallel rays onto a focal point.The intersection of the reflecting mirror and the central axis is called the origin ○ of the parabolic mirror, and the focused point is called f. . Next, FIG. 5 shows an example of a combination configuration of the parabolic mirror shown in FIG. 1 and the infrared detection element. The features of this configuration are the side overflow object ○bj, the focal point f of the mirror, and the sensor S.
, Sekihole window A, and mirror origin ○ are arranged on the central optical axis in this order. This kind of configuration is often used in visible light telescopes and is very effective when the field of view can be made large. However, as in the embodiment shown in FIG. 1, if the diameter of the barrier hole 16 formed in the heating chamber wall 5 cannot be made very large, the infrared detection element 15 blocks light from entering the parabolic mirror 14, so it is not necessarily optimal. No, no.
集点距離f=2仇岬の放物面鏡14で第5図の如く視野
窪め(例えばぐ=2物肋とする)をのぞくときセンサS
への入光エネルギーはWil=K′多;Sin8・CO
S(1‐338)daに81=ねn−1(家。When looking into a concave field of view (for example, 2 object lines) as shown in Fig. 5 with the parabolic mirror 14 at the focal point distance f=2
The incident light energy is Wil=K′; Sin8・CO
S (1-338) da to 81 = ne n-1 (house.
〉で 。>in .
2=tan−・(器)を入れて計算することwi,=1
.36×10‐1×Kを得る。Calculate by inserting 2=tan-・(vessel) wi,=1
.. We get 36×10-1×K.
第2図において、視野窪めを2仇松とし、センサSと対
象物○bjとの距離を40仇奴としたときの入力エネル
ギーwi。In FIG. 2, the input energy wi is when the field of view is 2 meters wide and the distance between the sensor S and the object ○bj is 40 meters.
はwi。=3.0×10‐3×Kとなり、前記wi,に
較べて約49音となる。一方、第2図の場合と第5図の
場合の実測値を求めたところ、wi,はwi。wi. =3.0×10−3×K, which is about 49 tones compared to the above wi. On the other hand, when the actual measured values were obtained for the case of FIG. 2 and the case of FIG. 5, wi, was wi.
の5M音を得たが、これは前記計算値とよく近似してお
り、前記計算式が正しいことが判明した。本発明は上記
考え方を基礎にしてなされたものであり、以下、本発明
の実施例について第6図、第7図により説明する。A 5M sound was obtained, which closely approximated the above calculated value, and it was found that the above calculation formula was correct. The present invention has been made based on the above concept, and embodiments of the present invention will be described below with reference to FIGS. 6 and 7.
14aは対物面鏡、15aは赤外線検知素子であり、側
温物体(対象物)○け、開孔窓A、センサS、対物面鏡
の集点fと鏡の原点○の順でならんでいる。14a is an objective mirror, and 15a is an infrared detection element, which are arranged in the following order: a side-warming object (object) ○, an aperture window A, a sensor S, the focal point f of the objective mirror, and the origin ○ of the mirror. .
このような構成にすると、視野径が小さくても赤外入光
エネルギーがセンサに有効に入る。With such a configuration, infrared incident light energy can effectively enter the sensor even if the field of view diameter is small.
集点距離f=0.4柵の対物面鏡14aで第6図の如く
視野性め=12側をのぞくとき、センサ入力エネルギ−
一はWね=K′宣言Sin8‐C。Focusing distance f = 0.4 When looking into the visibility = 12 side as shown in Fig. 6 with the objective mirror 14a of the fence, the sensor input energy
One is Wne=K' declaration Sin8-C.
Sく1‐338)d8に83=ねn→(袋)84=ねn
イ(雲)を入れることでw;2 >15×10‐1×K
となる。Sku1-338) 83=ne n → (bag) 84=ne n on d8
By adding i (cloud), w;2 >15×10-1×K
becomes.
第5図で視野径◇=2仇帆を見る場合と同等以上の入力
エネルギーを視野窪め=12肌で入力できる。このよう
に本発明によれば、視野径が小さくても充分な入力エネ
ルギーがセンサに入るので、食品加熱器などに応用する
場合、壁にある穴が小さくてもよい。In Fig. 5, the input energy equivalent to or more than that when viewing the field of view diameter ◇ = 2 enemies can be input with a field of view concave = 12 skin. As described above, according to the present invention, sufficient input energy enters the sensor even if the field of view is small, so when the sensor is applied to a food heater or the like, the hole in the wall may be small.
また、、組立立てる場合も、光学系の赤外線入光通路に
赤外検知素子を設けるのにくらべて、簡単になる。Furthermore, assembly is also easier than when an infrared detection element is provided in the infrared light entrance path of the optical system.
なお、上記説明では全て放物面の場合で行なっているが
、この放物面鏡を曲線近似、直線近似の形状としてもよ
い。In the above description, the mirror is all parabolic, but the parabolic mirror may have a shape approximating a curve or a straight line.
第1図は従来の赤外線検知装置を搭載した食品加熱器の
断面図、第2図は対象物とセンサの間にレンズや反射鏡
を介在させない場合の説明図、第3図イ,口は赤外線検
知素子の断面図および同素子の指向性を説明するための
特性図、第4図は一般の放物面鏡の説明図、第5図は従
来の赤外線検知装置の構成図、第6図は本発明の赤外線
検知装置の一実施例を示す構成図、第7図は第5図の放
物面鏡と赤外検知素子との部分の拡大図である。
○け・・・・・・対象物、A・・・・・・素子の開孔窓
、S・・・・・・センサ、f・・・・・・対物面鏡の集
点、0・・・・・・対物面鏡の原点、14a・・・・・
・放物面鏡、15a・・・・・・赤外線検知素子。第1
図
第2図
第3図
第4図
第5図
第6図
第7図Figure 1 is a cross-sectional view of a food heater equipped with a conventional infrared detection device, Figure 2 is an explanatory diagram when no lens or reflector is interposed between the object and the sensor, and Figure 3 A. The mouth is infrared rays. A cross-sectional view of the detection element and a characteristic diagram for explaining the directivity of the element, Fig. 4 is an explanatory diagram of a general parabolic mirror, Fig. 5 is a configuration diagram of a conventional infrared detection device, and Fig. 6 is a diagram illustrating the directivity of the element. FIG. 7 is an enlarged view of the parabolic mirror and infrared detecting element shown in FIG. 5. FIG. ○Ke...Target, A...Aperture window of element, S...Sensor, f...Convergent point of objective mirror, 0... ...Origin of objective mirror, 14a...
- Parabolic mirror, 15a... Infrared detection element. 1st
Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7
Claims (1)
、赤外線を集光する放物面鏡の組合せにおいて、前記赤
外線検知素子を前記放物面鏡の中心軸上に、かつ、開孔
窓が放物面鏡の原点からみて放物面鏡の集点よりも離れ
た位置に来るように構成し、測温される対象物、前記開
孔窓、センサ、前記放物面鏡の原点の順で位置するよう
に構成したことを特徴とする赤外線検知装置。1. In a combination of an infrared sensing element having an aperture window that transmits infrared rays and a parabolic mirror that condenses infrared rays, the infrared sensing element is placed on the central axis of the parabolic mirror, and the aperture window is It is configured to be located at a position further away from the convergence point of the parabolic mirror when viewed from the origin of the parabolic mirror, and the object whose temperature is to be measured, the aperture window, the sensor, and the origin of the parabolic mirror are arranged in the following order: An infrared detection device characterized in that it is configured to be located at.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54151635A JPS6037415B2 (en) | 1979-11-22 | 1979-11-22 | infrared detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54151635A JPS6037415B2 (en) | 1979-11-22 | 1979-11-22 | infrared detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5674626A JPS5674626A (en) | 1981-06-20 |
JPS6037415B2 true JPS6037415B2 (en) | 1985-08-26 |
Family
ID=15522846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54151635A Expired JPS6037415B2 (en) | 1979-11-22 | 1979-11-22 | infrared detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6037415B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024085027A1 (en) * | 2022-10-21 | 2024-04-25 | コニカミノルタ株式会社 | Optical device for measurement |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01102837U (en) * | 1987-12-28 | 1989-07-11 | ||
IT1317648B1 (en) | 2000-05-19 | 2003-07-15 | Tecnica S R L | PERFECTED INFRARED THERMOMETER |
DE10321649A1 (en) * | 2003-05-13 | 2004-12-02 | Heimann Sensor Gmbh | Infrared sensor for infrared gas spectroscopy comprises a temperature reference element having a linear dependency of the reference voltage on the temperature |
DE102007013839A1 (en) * | 2007-03-22 | 2008-09-25 | BSH Bosch und Siemens Hausgeräte GmbH | Cooking field sensor device for collection of parameter of cooking utensil by radiation, for cooking field, has sensor unit, which is assigned to spectral range of radiation, and optical unit that is provided to upstream sensor unit |
JP6462991B2 (en) * | 2014-03-28 | 2019-01-30 | 旭化成エレクトロニクス株式会社 | Infrared detector and method of manufacturing field-limiting unit |
-
1979
- 1979-11-22 JP JP54151635A patent/JPS6037415B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024085027A1 (en) * | 2022-10-21 | 2024-04-25 | コニカミノルタ株式会社 | Optical device for measurement |
Also Published As
Publication number | Publication date |
---|---|
JPS5674626A (en) | 1981-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6037415B2 (en) | infrared detection device | |
JP2000146701A (en) | Temperature sensing device | |
US20040076217A1 (en) | Wave-collecting device of non-contact type thermometer | |
JP3309957B2 (en) | Infrared detector | |
JP3670450B2 (en) | Narrow-field thermistor bolometer | |
JPH0275916A (en) | Infrared ray detector | |
JP3554797B2 (en) | Infrared detector | |
JP3219797B2 (en) | Focus detector | |
JPH07120379A (en) | Optical system for high-sensitivity reflection measuring apparatus | |
JPH06201996A (en) | Wide angle condensing lens | |
JPS6093324A (en) | Temperature sensor | |
JPS634652B2 (en) | ||
EP0537024A1 (en) | Infra-red detection apparatus | |
JP2874288B2 (en) | UV absorption detector | |
JP2531197B2 (en) | Compound optical system device | |
US4220859A (en) | Infra red radiation detector | |
JPH102792A (en) | Pyroelectric infrared sensor | |
JPS5866027A (en) | Optical measuring device | |
JP3327372B2 (en) | Micro bolometer element | |
JPH0718753B2 (en) | Infrared optics | |
JPH09105668A (en) | Pyroelectric type infrared sensor | |
JPH0713241Y2 (en) | Heat ray detector | |
JP3670442B2 (en) | Narrow-field thermistor bolometer | |
JPH08275925A (en) | Radiative clinical thermometer | |
JP3898833B2 (en) | Optical measuring device |