WO2024084974A1 - Method for producing cyclic olefin copolymer - Google Patents

Method for producing cyclic olefin copolymer Download PDF

Info

Publication number
WO2024084974A1
WO2024084974A1 PCT/JP2023/036279 JP2023036279W WO2024084974A1 WO 2024084974 A1 WO2024084974 A1 WO 2024084974A1 JP 2023036279 W JP2023036279 W JP 2023036279W WO 2024084974 A1 WO2024084974 A1 WO 2024084974A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atom
cyclic olefin
olefin copolymer
producing
Prior art date
Application number
PCT/JP2023/036279
Other languages
French (fr)
Japanese (ja)
Inventor
健 鈴木
智之 多田
琴広 野村
Original Assignee
ポリプラスチックス株式会社
東京都公立大学法人
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポリプラスチックス株式会社, 東京都公立大学法人 filed Critical ポリプラスチックス株式会社
Publication of WO2024084974A1 publication Critical patent/WO2024084974A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring

Definitions

  • the present invention relates to a method for producing a cyclic olefin copolymer containing structural units derived from norbornene monomers and structural units derived from ethylene.
  • Cyclic olefin homopolymers and cyclic olefin copolymers have low moisture absorption and high transparency and are used in a variety of applications including optical materials such as optical disk substrates, optical films, and optical fibers.
  • a representative cyclic olefin copolymer is a copolymer of cyclic olefin and ethylene, which is widely used as a transparent resin.
  • the glass transition temperature (Tg) of the copolymer of cyclic olefin and ethylene can be changed depending on the copolymerization composition of the cyclic olefin and ethylene, so that a copolymer having a glass transition temperature adjusted in a wide temperature range can be produced (see, for example, Non-Patent Document 1).
  • Non-Patent Document 1 there is a problem that a copolymer of a cyclic olefin and ethylene cannot be produced in high yield by the method described in Non-Patent Document 1. As a countermeasure to this problem, it is considered to carry out polymerization using a highly active catalyst. However, when a highly active catalyst is used for polymerization in order to improve the production efficiency of the cyclic olefin copolymer, polyethylene-like impurities may be easily generated. If the cyclic olefin copolymer contains polyethylene-like impurities, the cyclic olefin copolymer becomes turbid when dissolved in a solvent.
  • the cyclic olefin copolymer contains polyethylene-like impurities, there is a concern that the transparency of the cyclic olefin copolymer may decrease. Furthermore, if polyethylene-like impurities are generated, a process that increases production costs is required to filter and remove insoluble polyethylene-like impurities in the general production process for producing the cyclic olefin copolymer.
  • the present invention has been made in consideration of the above problems, and aims to provide a method for producing a cyclic olefin copolymer that can efficiently produce a cyclic olefin copolymer by copolymerizing a norbornene monomer and a monomer containing ethylene while suppressing the generation of polyethylene-like impurities.
  • the present invention provides the following:
  • a method for producing a cyclic olefin copolymer containing a constituent unit derived from a norbornene monomer and a constituent unit derived from ethylene comprising the steps of: charging at least norbornene monomer and ethylene as monomers into a polymerization vessel; polymerizing the monomers in a polymerization vessel in the presence of a metal-containing catalyst;
  • the metal-containing catalyst has a bond represented by M-A-Z, M is an atom of a transition metal of Group 4 of the periodic table;
  • A is an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom;
  • Z is a phenyl group having a substituent;
  • a production method in which a hydrocarbon group which may contain a silicon atom or a germanium atom is bonded to the phenyl group at the para position relative to the position to which A is bonded.
  • the metal-containing catalyst is represented by the following formula (a1):
  • M is Ti, Zr, or Hf
  • X is an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or a halogen atom
  • L1 is represented by the following formula (a1a): is a group represented by L2 is represented by the following formula (a1b): is a group represented by In formula (a1a), R a1 to R a5 each independently represent the same or different and a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent, and two adjacent groups among R a1 to R a5 on the 5-membered ring may be bonded to each other to form a ring;
  • R a6 and R a7 may be the same or different and each independently represent a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent, and two adjacent
  • the present invention provides a method for producing a cyclic olefin copolymer that can efficiently produce a cyclic olefin copolymer by copolymerizing a norbornene monomer and a monomer containing ethylene while suppressing the generation of polyethylene-like impurities.
  • a cyclic olefin copolymer containing constituent units derived from a norbornene monomer and constituent units derived from ethylene is produced.
  • the manufacturing method includes: charging at least norbornene monomer and ethylene as monomers into a polymerization vessel; and polymerizing the monomers in a polymerization vessel in the presence of a metal-containing catalyst.
  • charging norbornene monomer and ethylene as monomers into a polymerization vessel is also referred to as a charging step
  • polymerizing the monomers in the polymerization vessel in the presence of a metal-containing catalyst is also referred to as a polymerization step.
  • the monomers in the polymerization vessel are polymerized in the presence of a metal-containing catalyst having a specific structure, which will be described later.
  • a metal-containing catalyst having a specific structure which will be described later, in the copolymerization of norbornene monomer and ethylene, the yield of cyclic olefin copolymer per unit weight of catalyst can be increased.
  • ⁇ Preparation process> In the charging step, norbornene monomer and ethylene are charged as monomers into a polymerization vessel. Norbornene monomer and other monomers other than ethylene may be charged into the polymerization vessel within a range that does not impair the object of the present invention.
  • the total ratio of the constituent units derived from norbornene monomer and the constituent units derived from ethylene is typically preferably 80% by mass or more, more preferably 95% by mass or more, and even more preferably 98% by mass or more, based on the total constituent units.
  • the norbornene monomer and the other monomer other than ethylene are not particularly limited as long as they are copolymerizable with the norbornene monomer and ethylene.
  • a typical example of such other monomer is an ⁇ -olefin.
  • the ⁇ -olefin may be substituted with at least one type of substituent such as a halogen atom.
  • C3 to C12 ⁇ -olefins are preferred.
  • the C3 to C12 ⁇ -olefins include propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, and 1-dodecene. Of these, 1-hexene, 1-octene, and 1-decene are preferred.
  • the method of feeding ethylene into the polymerization solution is not particularly limited as long as the desired amount of ethylene can be charged into the polymerization vessel.
  • ethylene is preferably charged into the polymerization vessel so that the charging pressure of ethylene in the polymerization vessel is 0.5 MPa or more.
  • the charging pressure of ethylene is more preferably 0.55 MPa or more, and even more preferably 0.6 MPa or more.
  • the charging pressure of ethylene is, for example, preferably 10 MPa or less, more preferably 5 MPa or less, and even more preferably 3 MPa or less.
  • the feeding pressure of ethylene is preferably from 0.5 to 10 MPa, more preferably from 0.55 to 5 MPa, and even more preferably from 0.6 to 3 MPa.
  • the ethylene charging pressure is a gauge pressure.
  • a solvent may be charged into the polymerization vessel together with the norbornene monomer and ethylene.
  • the solvent is not particularly limited as long as it does not inhibit the polymerization reaction.
  • Preferred solvents include, for example, hydrocarbon solvents such as aliphatic hydrocarbon solvents and aromatic hydrocarbon solvents, and halogenated hydrocarbon solvents. Hydrocarbon solvents are preferred because of their ease of handling, thermal stability, and chemical stability, and aliphatic hydrocarbon solvents are more preferred.
  • preferred solvents include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, isooctane, isododecane, mineral oil, cyclohexane, methylcyclohexane, and decahydronaphthalene (decalin), aromatic hydrocarbon solvents such as benzene, toluene, and xylene, and halogenated hydrocarbon solvents such as chloroform, methylene chloride, dichloromethane, dichloroethane, and chlorobenzene.
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, isooctane, isododecane, mineral oil, cyclohexane, methylcyclohexane, and decahydronaphthalene (decalin)
  • aromatic hydrocarbon solvents such as benzene, to
  • the concentration of the norbornene monomer is preferably, for example, 0.5% by mass or more as a lower limit, and more preferably 10% by mass or more as an upper limit, and is preferably, for example, 50% by mass or less, and more preferably 35% by mass or less as an upper limit.
  • the concentration of the norbornene monomer is preferably 0.5 to 50% by mass, and more preferably 10 to 35% by mass.
  • the norbornene monomer may be, for example, norbornene or a substituted norbornene, and is preferably norbornene.
  • the norbornene monomer may be used alone or in combination of two or more.
  • substituted norbornene is not particularly limited, and examples of the substituents that the substituted norbornene has include halogen atoms and monovalent or divalent hydrocarbon groups.
  • Specific examples of substituted norbornenes include compounds represented by the following general formula (I).
  • R 1 to R 12 may be the same or different and each represents an atom or group selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group; R 9 and R 10 , and R 11 and R 12 may combine together to form a divalent hydrocarbon group; R 9 or R 10 and R 11 or R 12 may be joined to form a ring.
  • R 1 to R 12 in the general formula (I) may be the same or different, and each is an atom or group selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
  • R 1 to R 8 include a hydrogen atom; a halogen atom such as fluorine, chlorine, or bromine; and an alkyl group having 1 to 20 carbon atoms, and these may be different from each other, may be partially different, or may all be the same.
  • R 9 to R 12 include a hydrogen atom; a halogen atom such as fluorine, chlorine, or bromine; an alkyl group having 1 to 20 carbon atoms; a cycloalkyl group such as a cyclohexyl group; a substituted or unsubstituted aromatic hydrocarbon group such as a phenyl group, a tolyl group, an ethylphenyl group, an isopropylphenyl group, a naphthyl group, or an anthryl group; a benzyl group, a phenethyl group, or an aralkyl group in which an aryl group is substituted on an alkyl group; and the like. These may be different from each other, may be partially different, or may all be the same.
  • divalent hydrocarbon group formed by combining R 9 and R 10 , or R 11 and R 12 together include alkylidene groups such as an ethylidene group, a propylidene group, and an isopropylidene group.
  • the ring formed may be a monocyclic or polycyclic ring, a polycyclic ring having a bridge, a ring having a double bond, or a ring consisting of a combination of these rings. These rings may have a substituent such as a methyl group.
  • substituted norbornene represented by the general formula (I) include 5-methyl-bicyclo[2.2.1]hept-2-ene, 5,5-dimethyl-bicyclo[2.2.1]hept-2-ene, 5-ethyl-bicyclo[2.2.1]hept-2-ene, 5-butyl-bicyclo[2.2.1]hept-2-ene, 5-ethylidene-bicyclo[2.2.1]hept-2-ene, 5-hexyl- Bicyclic olefins such as bicyclo[2.2.1]hept-2-ene, 5-octyl-bicyclo[2.2.1]hept-2-ene, 5-octadecyl-bicyclo[2.2.1]hept-2-ene, 5-methylidene-bicyclo[2.2.1]hept-2-ene, 5-vinyl-bicyclo[2.2.1]hept-2-ene, and 5-propenyl-bicyclo[2.2.1]hept-2-ene; Tri
  • alkyl-substituted norbornenes e.g., bicyclo[2.2.1]hept-2-ene substituted with one or more alkyl groups
  • alkylidene-substituted norbornenes e.g., bicyclo[2.2.1]hept-2-ene substituted with one or more alkylidene groups
  • 5-ethylidene-bicyclo[2.2.1]hept-2-ene common name: 5-ethylidene-2-norbornene, or simply ethylidenenorbornene
  • the monomers in a polymerization vessel are polymerized in the presence of the metal-containing catalyst described below.
  • the temperature during polymerization is not particularly limited. In view of good yield of the cyclic olefin copolymer, the temperature during polymerization is preferably 20° C. or higher, more preferably 30° C. or higher, even more preferably 50° C. or higher, even more preferably 60° C. or higher, and particularly preferably 70° C. or higher. The temperature during polymerization may be 80° C. or higher.
  • the upper limit of the temperature during polymerization is not particularly limited, and the upper limit of the temperature during polymerization may be, for example, 200° C. or less, 140° C.
  • the temperature during polymerization is preferably 20 to 200°C, more preferably 30 to 200°C, even more preferably 50 to 200°C, even more preferably 60 to 140°C, and particularly preferably 70 to 120°C.
  • M is an atom of a transition metal of Group 4 of the periodic table.
  • A is an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom.
  • Z is a phenyl group having a substituent. In the phenyl group, a hydrocarbon group which may contain a silicon atom or a germanium atom is bonded at the para position relative to the position to which A is bonded.
  • Ti, Zr, and Hf are preferred, and Ti and Zr are more preferred.
  • A is an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom. Of these, A is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • Z is a phenyl group having a substituent.
  • a hydrocarbon group which may contain a silicon atom or a germanium atom is bonded at the para position relative to the position to which A is bonded.
  • Such a hydrocarbon group may contain two or more atoms selected from silicon atoms and germanium atoms.
  • the number of atoms selected from silicon atoms and germanium atoms in such a hydrocarbon group is preferably 0 to 2, and more preferably 0 or 1.
  • the total number of carbon atoms, silicon atoms, and germanium atoms contained in the hydrocarbon group which may contain a silicon atom or a germanium atom is not particularly limited as long as the desired effect is not impaired.
  • the total number of carbon atoms, silicon atoms, and germanium atoms contained in the hydrocarbon group which may contain a silicon atom or a germanium atom is preferably 3 or more, more preferably 3 to 20, even more preferably 3 to 12, and particularly preferably 3 to 8.
  • Suitable examples of the branched hydrocarbon group which may contain a silicon atom or a germanium atom include a branched alkyl group, a dialkylsilyl group, a trialkylsilyl group, a diarylsilyl group, a triarylsilyl group, a dialkylgermyl group, a trialkylgermyl group, a diarylgermyl group, and a triarylgermyl group. Of these, branched alkyl groups, dialkylsilyl groups, trialkylsilyl groups, diarylsilyl groups, and triarylsilyl groups are preferred.
  • branched alkyl groups include isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, sec-pentyl, and tert-pentyl groups.
  • Specific examples of the dialkylsilyl group include a dimethylsilyl group, a diethylsilyl group, a methylethylsilyl group, a di-n-propylsilyl group, and a diisopropylsilyl group.
  • trialkylsilyl group examples include a trimethylsilyl group, a triethylsilyl group, a methyldiethylsilyl group, and a dimethylethylsilyl group.
  • a specific example of the diarylsilyl group is a diphenylsilyl group.
  • a specific example of the triarylsilyl group is a triphenylsilyl group.
  • the phenyl group represented by Z preferably has substituents at the 2- and 6-positions when the position to which A is bonded is the 1-position.
  • substituents bonded to the 2- and 6-positions are preferably organic substituents having 1 to 20 carbon atoms.
  • the organic substituent having 1 to 20 carbon atoms when the organic substituent contains a heteroatom, the type of the heteroatom is not particularly limited as long as it does not impair the object of the present invention.
  • the heteroatom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a selenium atom, and a halogen atom.
  • organic substituents include alkyl groups having 1 to 20 carbon atoms; alkoxy groups having 1 to 20 carbon atoms; cycloalkyl groups having 3 to 20 carbon atoms; aliphatic acyl groups having 2 to 20 carbon atoms; benzoyl groups; ⁇ -naphthylcarbonyl groups; ⁇ -naphthylcarbonyl groups; aromatic hydrocarbon groups having 6 to 20 carbon atoms; aralkyl groups having 7 to 20 carbon atoms; monoalkylsilyl groups, dialkylsilyl groups, and trialkylsilyl groups having 1 to 20 carbon atoms; monosubstituted amino groups substituted with a hydrocarbon group having 1 to 20 carbon atoms; and disubstituted amino groups substituted with a hydrocarbon group having 1 to 20 carbon atoms.
  • alkyl groups having 1 to 20 carbon atoms are preferred, alkyl groups having 3 to 12 carbon atoms are more preferred, and alkyl groups having 3 to 8 carbon atoms are even more preferred.
  • the organic substituents bonded to the 2- and 6-positions of the phenyl group represented by Z are preferably branched chain alkyl groups having 3 to 20 carbon atoms, more preferably branched chain alkyl groups having 3 to 12 carbon atoms, and even more preferably branched chain alkyl groups having 3 to 8 carbon atoms.
  • the substituents bonded to the 2- and 6-positions as Z are preferably an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a sec-pentyl group, and a tert-pentyl group, and more preferably an isopropyl group and a tert-butyl group.
  • phenyl groups having a substituent as Z include 4-substituted phenyl groups such as 4-methylphenyl group, 4-ethylphenyl group, 4-n-propylphenyl group, 4-isopropylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-sec-butylphenyl group, 4-tert-butylphenyl group, 4-n-pentylphenyl group, 4-isopentylphenyl group, 4-neopentylphenyl group, 4-sec-pentylphenyl group, tert-pentylphenyl group, 4-trimethylsilylphenyl group, and 4-triethylsilylphenyl group; 2,6-diisopropyl-4-methylphenyl group, ...
  • 4-substituted phenyl groups such as 4-methylphenyl group, 4-ethylphenyl group, 4-n-propyl
  • the metal-containing catalyst is preferably a compound represented by the following formula (a1).
  • M is Ti, Zr, or Hf
  • X is an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or a halogen atom
  • L1 is represented by the following formula (a1a): is a group represented by L2 is represented by the following formula (a1b): is a group represented by In formula (a1a), R a1 to R a5 may be the same or different and each independently represents a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent.
  • R a6 and R a7 may be the same or different and each independently represent a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent, and R a8 represents a hydrocarbon group which may contain a silicon atom or a germanium atom.
  • M is Ti, Zr, or Hf, with Ti being particularly preferred in terms of the ease of obtaining and producing metal-containing catalysts and the activity of the catalyst.
  • X is an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or a halogen atom.
  • the organic substituent having 1 to 20 carbon atoms which may contain a heteroatom when the organic substituent contains a heteroatom, the type of the heteroatom is not particularly limited as long as it does not impair the object of the present invention.
  • the heteroatom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a selenium atom, and a halogen atom.
  • the organic substituent is not particularly limited as long as it does not inhibit the reaction for producing the metal-containing compound represented by the above formula (a1).
  • alkyl groups having 1 to 6 carbon atoms alkoxy groups having 1 to 6 carbon atoms; cycloalkyl groups having 3 to 8 carbon atoms; aliphatic acyl groups having 2 to 6 carbon atoms; benzoyl groups; phenyl groups; benzyl groups; phenethyl groups; monoarylsilyl groups, diarylsilyl groups, and triarylsilyl groups having 6 to 20 carbon atoms; and monoalkylsilyl groups, dialkylsilyl groups, and trialkylsilyl groups having 1 to 20 carbon atoms are preferred.
  • methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, sec-butyloxy, tert-butyloxy, acetyl, propionyl, butanoyl, phenyl, triphenylsilyl, trimethylsilyl, triethylsilyl, and tert-butyldimethylsilyl are more preferred.
  • X is preferably a halogen atom, more preferably a chlorine atom or a bromine atom, and particularly preferably a chlorine atom.
  • R a1 to R a5 are each independently the same or different and are an organic or inorganic substituent having 1 to 20 carbon atoms which may contain a hydrogen atom or a heteroatom. In addition, two adjacent groups among R a1 to R a5 on the five-membered ring may be bonded to each other to form a ring. In formula (a1a), it is preferable that at least one of R a1 to R a5 is an organic substituent having 3 to 20 carbon atoms. It is more preferable that one of R a1 to R a5 is an organic substituent having 3 to 20 carbon atoms, and four of R a1 to R a5 are hydrogen atoms.
  • the organic substituents represented by R a1 to R a5 are preferably branched groups.
  • organic substituent having 1 to 20 carbon atoms which may contain a heteroatom as R a1 to R a5 are the same as the specific examples and preferred examples of the organic substituent having 1 to 20 carbon atoms which may contain a heteroatom as X.
  • an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a trimethylsilyl group, and a triethylsilyl group are preferred, and an isopropyl group, a tert-butyl group, a trimethylsilyl group, and a triethylsilyl group are more preferred.
  • the inorganic substituent is not particularly limited as long as it is a group that does not inhibit the reaction for producing the metal-containing compound represented by the above formula (a1).
  • Specific examples of the inorganic substituent include a halogen atom, a nitro group, an unsubstituted amino group, and a cyano group.
  • R a6 and R a7 may be the same or different and each independently represent a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent.
  • Specific examples and preferred examples of the organic substituents as R a6 and R a7 in formula (a1b) are the same as the specific examples and preferred examples of the organic substituents bonded to the 2- and 6-positions of the phenyl group as Z, respectively.
  • Specific examples and preferred examples of the inorganic substituents as R a6 and R a7 in formula (a1b) are the same as the specific examples and preferred examples of the inorganic substituents as R a1 to R a5 , respectively.
  • R a8 is a hydrocarbon group which may contain a silicon atom or a germanium atom.
  • the hydrocarbon group which may contain a silicon atom or a germanium atom as R a8 is the same as the hydrocarbon group which may contain a silicon atom or a germanium atom in the phenyl group represented by Z.
  • Preferred examples of the group represented by formula (a1b) include 4-substituted phenoxy groups such as 4-methylphenoxy group, 4-ethylphenoxy group, 4-n-propylphenoxy group, 4-isopropylphenoxy group, 4-n-butylphenoxy group, 4-isobutylphenoxy group, 4-sec-butylphenoxy group, 4-tert-butylphenoxy group, 4-n-pentylphenoxy group, 4-isopentylphenoxy group, 4-neopentylphenoxy group, 4-sec-pentylphenoxy group, tert-pentylphenoxy group, 4-trimethylsilylphenoxy group, and 4-triethylsilylphenoxy group; 2,6-diisopropyl-4-methylphenoxy group, 2,6 -diisopropyl-4-ethylphenoxy group, 2,6-diisopropyl-4-n-dipropylphenoxy group, 2,4,6-triisopropylphen
  • metal-containing compound represented by formula (a1) explained above include the following metal-containing compounds.
  • M in the following formula is the same as M in formula (a1).
  • Si(Me) 3 is a trimethylsilyl group
  • Si(Et) 3 is a triethylsilyl group
  • i-Pr is an isopropyl group
  • n-Bu is an n-butyl group
  • t-Bu is a tert-butyl group.
  • the polymerization of the monomer is preferably carried out in the presence of the above-mentioned metal-containing catalyst and a co-catalyst.
  • a co-catalyst any compound generally used as a co-catalyst in the polymerization of olefins can be used without any particular limitation.
  • Suitable examples of the co-catalyst include aluminoxane and ionic compounds.
  • the polymerization of the monomer is preferably carried out using at least one of aluminoxane and a borate compound as an ionic compound as a co-catalyst, and more preferably using aluminoxane as a co-catalyst.
  • the above metal-containing catalyst is preferably mixed with an aluminoxane and/or an ionic compound to form a catalyst composition.
  • the ionic compound is a compound that generates a cationic transition metal compound by reacting with a metal-containing catalyst.
  • the catalyst composition is preferably prepared using a solution of a metal-containing catalyst.
  • the solvent contained in the solution of the metal-containing catalyst is not particularly limited.
  • Preferred solvents include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, isooctane, isododecane, mineral oil, cyclohexane, methylcyclohexane, decahydronaphthalene (decalin), and mineral oil, aromatic hydrocarbon solvents such as benzene, toluene, and xylene, and halogenated hydrocarbon solvents such as chloroform, methylene chloride, dichloromethane, dichloroethane, and chlorobenzene.
  • the amount of solvent used is not particularly limited as long as it is possible to produce a catalyst composition with the desired performance.
  • an amount of solvent is used such that the concentrations of the metal-containing catalyst, aluminoxane, and ionic compound are preferably 0.00000001 to 100 mol/L, more preferably 0.00000005 to 50 mol/L, and particularly preferably 0.0000001 to 20 mol/L.
  • the value of (M b1 +M b2 )/M a is preferably 1 to 200,000, more preferably 5 to 100,000, and particularly preferably 10 to 80,000, where M a is the number of moles of the transition metal element in the metal-containing catalyst, M b1 is the number of moles of aluminum in the aluminoxane, and M b2 is the number of moles of the ionic compound.
  • the temperature at which the liquid containing the raw materials for the catalyst composition is mixed is not particularly limited, but is preferably -100 to 100°C, and more preferably -50 to 50°C.
  • the mixing of the metal-containing catalyst solution with the aluminoxane and/or ionic compound to prepare the catalyst composition may be carried out in an apparatus separate from the polymerization vessel prior to polymerization, or may be carried out in the polymerization vessel prior to or during polymerization.
  • aluminoxane As the aluminoxane, various aluminoxanes that have been conventionally used as cocatalysts in the polymerization of various olefins can be used without any particular limitation. Typically, the aluminoxane is an organic aluminoxane. In producing the catalyst composition, the aluminoxane may be used alone or in combination of two or more kinds.
  • alkylaluminoxanes are preferably used.
  • alkylaluminoxanes include compounds represented by the following formula (b1-1) or (b1-2).
  • the alkylaluminoxanes represented by the following formula (b1-1) or (b1-2) are products obtained by reacting trialkylaluminum with water.
  • R represents an alkyl group having 1 to 4 carbon atoms
  • n represents an integer of 0 to 40, preferably 2 to 30.
  • alkylaluminoxanes examples include methylaluminoxane and modified methylaluminoxanes in which some of the methyl groups of methylaluminoxane have been replaced with other alkyl groups.
  • modified methylaluminoxanes having an alkyl group with 2 to 4 carbon atoms such as an ethyl group, propyl group, isopropyl group, butyl group, or isobutyl group as the alkyl group after substitution are preferred, and modified methylaluminoxanes in which some of the methyl groups have been replaced with isobutyl groups are more preferred.
  • alkylaluminoxanes include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, methylethylaluminoxane, methylbutylaluminoxane, and methylisobutylaluminoxane, with methylaluminoxane and methylisobutylaluminoxane being preferred among them.
  • Alkyl aluminoxanes can be prepared by known methods. Commercially available alkyl aluminoxanes may also be used. Commercially available alkyl aluminoxanes include, for example, MMAO-3A, TMAO-200 series, TMAO-340 series, solid MAO (all manufactured by Tosoh Finechem Co., Ltd.), and methylaluminoxane solution (manufactured by Albemarle Corporation). It is more preferable to use alkyl aluminoxanes other than solid MAO, as this makes it easier to suppress the generation of polyethylene-like impurities.
  • An ionic compound is a compound that produces a cationic transition metal compound upon reaction with a metal-containing catalyst.
  • ionic compounds that can be used include ionic compounds containing ions such as an anion of tetrakis(pentafluorophenyl)borate, an amine cation having an active proton such as the dimethylphenylammonium cation (( CH3 ) 2N ( C6H5 )H + ), a tri-substituted carbonium cation such as ( C6H5 ) 3C + , a carborane cation, a metal carborane cation, and a ferrocenium cation having a transition metal.
  • a suitable example of an ionic compound is a borate.
  • Preferred specific examples of borates include tetrakis(pentafluorophenyl)tritylborate, dimethylphenylammonium tetrakis(pentafluorophenyl)borate, and N-methyldialkylammonium tetrakis(pentafluorophenyl)borate such as N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and N-methyldinormaldecylammonium tetrakis(pentafluorophenyl)borate.
  • the phenolic hydroxyl group and the halogen atom are bonded to the same aromatic ring, which may be a single ring or a condensed ring.
  • Hindered phenols are phenols having a bulky substituent at least on one of the two adjacent positions to the phenolic hydroxyl group.
  • the bulky substituent include alkyl groups other than methyl groups such as isopropyl, isobutyl, sec-butyl, and tert-butyl, alkenyl groups, alkynyl groups, aryl groups, heterocyclic groups, alkoxy groups, aryloxy groups, substituted amino groups, alkylthio groups, and arylthio groups.
  • hindered phenols include 2,6-di-tert-butyl-p-cresol (BHT), 2,6-di-tert-butylphenol, 2-tert-butylphenol, 2-tert-butyl-p-cresol, 3,3',5,5'-tetra-tert-butyl-4,4'-dihydroxybiphenyl, 3,3',5,5'-tetra-tert-butyl-2,2'-dihydroxybiphenyl, 4,4'-butylidenebis(3-methyl-6-tert-butylphenol), 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 4,4',4"-(1-methylpropanylidene)tris(6-tert-butyl-m-cresol), and 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenylmethyl)2,4,6-trimethylbenzene.
  • BHT 2,6-di-
  • 2,6-di-tert-butyl-p-cresol (BHT) and 2,6-di-tert-butylphenol are preferred because they have a small molecular weight and the desired effect of using the hindered phenol can be easily obtained by using a small amount of the hindered phenol.
  • the hindered phenol reacts with the alkylaluminum compound in the polymerization system, thereby contributing to an increase in the yield of the cyclic olefin copolymer. For this reason, it is preferable to use the hindered phenol together with the alkylaluminum.
  • the hindered phenol may be mixed with the alkylaluminum in the polymerization machine before use. The mixture obtained by mixing the alkylaluminum and the hindered phenol before polymerization may be introduced into the polymerization machine.
  • Aluminoxane is as explained in the manufacturing method of the catalyst composition.
  • the amount used is preferably 1 to 1,000,000 moles, and more preferably 10 to 100,000 moles, in terms of the number of moles of aluminum in the aluminoxane per mole of metal-containing catalyst.
  • the polymerization is also preferably carried out in the presence of a metal-containing catalyst, an aluminoxane, and a hindered phenol, or in the presence of a metal-containing catalyst, an ionic compound, and a hindered phenol.
  • the monomers in the polymerization vessel are polymerized in the presence of a metal-containing catalyst and an alkyl metal compound.
  • the alkyl metal compound is not particularly limited as long as it is a compound that has been conventionally applied to the polymerization reaction of olefins such as cyclic olefins.
  • Suitable alkyl metal compounds include alkyl aluminum compounds having at least one alkyl group bonded to an Al atom, and alkyl zinc compounds having at least one alkyl group bonded to a Zn atom.
  • the alkyl metal compounds may be used alone or in combination of two or more.
  • alkylaluminum compound any compound that has been conventionally used for the polymerization of olefins, etc., can be used without any particular limitation.
  • alkylaluminum compound for example, a compound represented by the following general formula (II) can be mentioned.
  • R 01 is an alkyl group having 1 to 15 carbon atoms
  • X is a halogen atom or a hydrogen atom
  • z1 is an integer of 1 to 3.
  • the number of carbon atoms in the alkyl group represented by R 01 is 1 to 15, and from the viewpoint of ease of obtaining the desired effect, is preferably 1 to 8, and is further preferably 2 to 8.
  • Specific preferred examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group.
  • alkylaluminum compounds include trialkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, trisec-butylaluminum, tri-n-pentylaluminum, tri-n-hexylaluminum, tri-n-heptylaluminum, and tri-n-octylaluminum; dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, and diisobutylaluminum chloride; dialkylaluminum hydrides such as dimethylaluminum hydride, diethylaluminum hydride, di-n-propyldimethylaluminum hydride, diisopropyldimethylaluminum hydride, di-n-butyla
  • alkylzinc compound any compound that has been conventionally used for the polymerization of olefins, etc., can be used without any particular limitation.
  • alkylzinc compound for example, a compound represented by the following general formula (III) can be mentioned.
  • R 02 z2 ZnX 2-z2 (III)
  • R02 is an alkyl group having 1 to 15, preferably 1 to 8, carbon atoms
  • X is a halogen atom or a hydrogen atom
  • z2 is an integer of 1 to 3.
  • the number of carbon atoms in the alkyl group represented by R 02 is 1 to 15, and from the viewpoint of easily obtaining the desired effect, 1 to 8 is more preferable, and 2 to 8 is even more preferable.
  • Specific preferred examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group.
  • alkyl zinc compounds include dialkyl zincs such as dimethyl zinc, diethyl zinc, di-n-propyl zinc, diisopropyl zinc, di-n-butyl zinc, diisobutyl zinc, di-sec-butyl zinc, di-n-pentyl zinc, di-n-hexyl zinc, di-n-heptyl zinc, and di-n-octyl zinc; alkyl zinc halides such as methyl zinc chloride, ethyl zinc chloride, and isobutyl zinc chloride; and alkyl zinc hydrides such as methyl zinc hydride, ethyl zinc hydride, and isobutyl zinc hydride.
  • dialkyl zincs such as dimethyl zinc, diethyl zinc, di-n-propyl zinc, diisopropyl zinc, di-n-butyl zinc, diisobutyl zinc, di-sec-butyl zinc, di-n-pentyl zinc, di-
  • alkyl metal compounds one or more selected from the group consisting of trialkylaluminum, dialkylaluminum hydride, and dialkylzinc are preferred, with trialkylaluminum and/or dialkylaluminum hydride being more preferred.
  • the amount of alkyl metal compound used together with the metal-containing catalyst is preferably 1 to 500,000 moles, and more preferably 10 to 50,000 moles, in terms of the number of moles of alkyl metal compound per mole of metal-containing catalyst.
  • the polymerization conditions are not particularly limited as long as a cyclic olefin copolymer having desired physical properties can be obtained, and known conditions can be used.
  • the amount of the catalyst composition used is derived from the amount of the metal-containing compound used in the preparation thereof.
  • the amount of the catalyst composition used is preferably 0.000000001 to 0.005 mol, more preferably 0.00000001 to 0.0005 mol, in terms of the mass of the metal-containing compound used in the preparation thereof, per mol of the norbornene monomer.
  • the polymerization time is not particularly limited, and the polymerization is carried out until a desired yield is reached or the molecular weight of the polymer increases to a desired level.
  • the polymerization time varies depending on the temperature, the catalyst composition, and the monomer composition, but is typically 0.01 to 120 hours, preferably 0.1 to 80 hours, and more preferably 0.2 to 10 hours.
  • the catalyst composition is added continuously to the polymerization vessel.
  • the cyclic olefin copolymer can be continuously produced, and the production cost of the cyclic olefin copolymer can be reduced.
  • a norbornene monomer and a monomer containing ethylene are copolymerized to efficiently produce a cyclic olefin copolymer while suppressing the production of polyethylene-like impurities.
  • the suppression of the formation of polyethylene-like impurities can be confirmed, for example, by visually observing a solution in which 0.1 g of a cyclic olefin copolymer sample is dissolved in 10 g of toluene. If no turbidity is observed when the toluene solution is visually observed, the formation of polyethylene-like impurities is suppressed.
  • the glass transition temperature of the resulting cyclic olefin copolymer is not particularly limited, but from the viewpoint of processability, it is, for example, preferably 185°C or less, more preferably 160°C or less, even more preferably 130°C or less, even more preferably 120°C or less, and particularly preferably 100°C or less.
  • a sample of a cyclic olefin copolymer is subjected to measurement by a differential scanning calorimeter under conditions of a nitrogen atmosphere and a temperature increase rate of 20° C./min according to the method described in JIS K7121, a glass transition temperature derived from the cyclic olefin copolymer is observed in the range of 50 to 250° C.
  • the obtained DSC curve does not have a peak of melting point (melting enthalpy) derived from polyethylene-like impurities. This means that there is no polyethylene-like impurity in the cyclic olefin copolymer or the amount of polyethylene-like impurities is extremely small. Note that, when the cyclic olefin copolymer contains polyethylene-like impurities, the melting point peak derived from the polyethylene-like impurities on the DSC curve is generally detected within the range of 90°C to 140°C.
  • the cyclic olefin copolymer produced by the above method has a low content of polyethylene-like impurities and is highly transparent. For this reason, the cyclic olefin copolymer produced by the above method is particularly suitable for use in optical films or sheets, and film or sheet materials for packaging materials, which require a high level of transparency from the standpoint of optical functionality and aesthetics.
  • Examples 1 to 16 and Comparative Examples 1 to 4 In producing the cyclic olefin resin composition, the following Cat. 1 to Cat. 9 were used as the metal-containing catalyst in the examples and comparative examples.
  • CC1 N-methyldialkylammonium tetrakis(pentafluorophenyl)borate (alkyl: C14 to C18 (average: C17.5) (manufactured by Tosoh Finechem Co., Ltd.)
  • CC2 6.5 mass % (as the content of Al atoms)
  • MMAO-3A toluene solution a solution of methylisobutylaluminoxane represented by [(CH 3 ) 0.7 (iso-C 4 H 9 ) 0.3 AlO] n , manufactured by Tosoh Finechem Co., Ltd., containing 6 mol % of trimethylaluminum based on the total Al).
  • Example 1 (Examples 1 to 8, Examples 10 to 16, and Comparative Examples 1 to 4)
  • Decalin as a polymerization solvent and 2-norbornene in the amount shown in Table 1 were added to a thoroughly dried 150 mL stainless steel autoclave containing a stirrer. After heating the autoclave to a polymerization temperature of 90° C., a metal-containing catalyst solution was added so that the amount of the metal-containing catalyst was 0.5 ⁇ mol. The metal-containing catalyst solution was prepared using decalin. Then, 0.93 ⁇ mol of the cocatalyst CC1 was added. Then, ethylene pressure of 0.9 MPa was applied, and the polymerization initiation point was 30 seconds later.
  • the total amount of the monomer solution immediately before the application of ethylene pressure was 80 mL. 15 minutes after the start of polymerization, the supply of ethylene was stopped, and the pressure was carefully returned to normal pressure, and then isopropyl alcohol was added to the reaction solution to stop the reaction.Then, the polymerization solution was poured into a mixed solvent of 300 mL of acetone, 200 mL of methanol or isopropyl alcohol, and 5 mL of hydrochloric acid to precipitate the copolymer. The copolymer was recovered by suction filtration, washed with acetone and methanol, and then vacuum dried at 110°C for 12 hours to obtain a copolymer of norbornene and ethylene. The copolymer yield (kg) per gram of catalyst, calculated from the amount of catalyst used and the amount of copolymer obtained, is shown in Table 1.
  • Example 9 To a thoroughly dried 150 mL stainless steel autoclave containing a stirrer, decalin as a polymerization solvent and 2-norbornene in the amount shown in Table 1 were added. Then, 5000 ⁇ mol of the cocatalyst CC2 was added. After heating the autoclave to a polymerization temperature of 90° C., a metal-containing catalyst solution was added so that the amount of the metal-containing catalyst was 0.5 ⁇ mol. The metal-containing catalyst solution was prepared using decalin. Then, ethylene pressure of 0.9 MPa was applied, and the polymerization initiation point was 30 seconds later. The total amount of the monomer solution immediately before the application of ethylene pressure was 80 mL.
  • the glass transition temperature was measured and a turbidity test was performed according to the following methods.
  • the results of the glass transition temperature measurement and the turbidity test are shown in Table 1.
  • Tg Glass transition temperature
  • DSC device Differential scanning calorimeter (PerkinElmer, DSC-8500) Measurement atmosphere: Nitrogen Measurement temperature range: 50-250°C Heating condition: 20° C./min.
  • N.D. indicates that no peak of the glass transition temperature derived from the cyclic olefin copolymer is detected in the above measurement temperature range on the DSC curve.
  • Examples 1 to 16 it is understood that by polymerizing norbornene monomer and ethylene in the presence of a metal-containing catalyst having a predetermined structure, it is possible to efficiently obtain a copolymer of norbornene and ethylene while suppressing the production of polyethylene-like impurities.
  • Comparative Examples 1 to 4 it is found that when a metal-containing catalyst having a structure other than the predetermined structure is used, it is difficult to efficiently obtain a copolymer of norbornene and ethylene, and further, ethylene-like impurities are likely to be produced. In addition, no peak corresponding to the melting point was observed on the DSC curve obtained when Tg was measured in Examples 1 to 16. On the other hand, in Comparative Examples 1 to 4, a peak corresponding to the melting point of the polyethylene-like impurity was observed on the DSC curve obtained when Tg was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

The present invention provides a method for producing a cyclic olefin copolymer, the method enabling efficient production of a cyclic olefin copolymer through copolymerization of monomers including ethylene and a norbornene monomer, while suppressing generation of polyethylene-like impurities. Monomers including a norbornene monomer and ethylene are polymerized in the presence of a metal-containing catalyst that has a specific structure. A compound which has a bond represented by M-A-Z is used as the metal-containing catalyst. M represents a group 4 transition metal atom of the periodic table. A represents an oxygen atom, a sulfur atom, a selenium atom or a tellurium atom; and Z represents a phenyl group having a substituent. With respect to the phenyl group represented by Z, a hydrocarbon group which may contain a silicon atom or a germanium atom is bonded at the para position of the position at which A is bonded.

Description

環状オレフィン共重合体の製造方法Method for producing cyclic olefin copolymer
 本発明は、ノルボルネン単量体由来の構成単位とエチレン由来の構成単位とを含む環状オレフィン共重合体の製造方法に関する。 The present invention relates to a method for producing a cyclic olefin copolymer containing structural units derived from norbornene monomers and structural units derived from ethylene.
 環状オレフィン単独重合体及び環状オレフィン共重合体は、低吸湿性及び高透明性を有し、光ディスク基板、光学フィルム、光学ファイバー等の光学材料の分野をはじめ、様々な用途に使用されている。
 代表的な環状オレフィン共重合体として、透明樹脂として広く使用される、環状オレフィンとエチレンとの共重合体がある。環状オレフィンとエチレンとの共重合体は、そのガラス転移温度(Tg)を環状オレフィンとエチレンとの共重合組成に応じて変えることが可能なため、広い温度領域でガラス転移温度を調整した共重合体を製造することができる(例えば、非特許文献1を参照)。
Cyclic olefin homopolymers and cyclic olefin copolymers have low moisture absorption and high transparency and are used in a variety of applications including optical materials such as optical disk substrates, optical films, and optical fibers.
A representative cyclic olefin copolymer is a copolymer of cyclic olefin and ethylene, which is widely used as a transparent resin. The glass transition temperature (Tg) of the copolymer of cyclic olefin and ethylene can be changed depending on the copolymerization composition of the cyclic olefin and ethylene, so that a copolymer having a glass transition temperature adjusted in a wide temperature range can be produced (see, for example, Non-Patent Document 1).
 しかしながら、非特許文献1に記載される方法によっては、環状オレフィンとエチレンとの共重合体を高収率で製造できない問題がある。この問題に対する対策としては、活性の高い触媒を用いて重合を行うことが考えられる。
 しかしながら、環状オレフィン共重合体の製造効率を高める目的で、活性の高い触媒を用いて重合を行うと、ポリエチレン様の不純物が生成しやすい場合がある。環状オレフィン共重合体にポリエチレン様の不純物が含まれると、環状オレフィン共重合体を溶媒に溶解させた場合に濁りが生じる。このような現象からも理解できる通り、環状オレフィン共重合体にポリエチレン様の不純物が含まれると、環状オレフィン共重合体の透明性の低下が懸念される。さらに、ポリエチレン様の不純物が生成すると、環状オレフィン共重合体を製造する一般的な製造プロセスにおいて、不溶なポリエチレン様の不純物をろ過・除去するという製造コストの増大を招くプロセスが必要である。
However, there is a problem that a copolymer of a cyclic olefin and ethylene cannot be produced in high yield by the method described in Non-Patent Document 1. As a countermeasure to this problem, it is considered to carry out polymerization using a highly active catalyst.
However, when a highly active catalyst is used for polymerization in order to improve the production efficiency of the cyclic olefin copolymer, polyethylene-like impurities may be easily generated. If the cyclic olefin copolymer contains polyethylene-like impurities, the cyclic olefin copolymer becomes turbid when dissolved in a solvent. As can be understood from this phenomenon, if the cyclic olefin copolymer contains polyethylene-like impurities, there is a concern that the transparency of the cyclic olefin copolymer may decrease. Furthermore, if polyethylene-like impurities are generated, a process that increases production costs is required to filter and remove insoluble polyethylene-like impurities in the general production process for producing the cyclic olefin copolymer.
 本発明は、上記の課題に鑑みなされたものであって、ポリエチレン様の不純物の生成を抑制しつつ、ノルボルネン単量体と、エチレンとを含むモノマーを共重合させて環状オレフィン共重合体を効率良く製造できる、環状オレフィン共重合体の製造方法を提供することを目的とする。 The present invention has been made in consideration of the above problems, and aims to provide a method for producing a cyclic olefin copolymer that can efficiently produce a cyclic olefin copolymer by copolymerizing a norbornene monomer and a monomer containing ethylene while suppressing the generation of polyethylene-like impurities.
 本発明者らは、ノルボルネン単量体と、エチレンとを含むモノマーを、特定の構造の含金属触媒の存在下に重合させることにより、上記の課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下のものを提供する。 The inventors discovered that the above problems could be solved by polymerizing a monomer containing norbornene and ethylene in the presence of a metal-containing catalyst with a specific structure, and thus completed the present invention. More specifically, the present invention provides the following:
(1)ノルボルネン単量体由来の構成単位とエチレン由来の構成単位とを含む環状オレフィン共重合体の製造方法であって、
 少なくとも、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことと、
 重合容器内のモノマーを、含金属触媒の存在下に重合させることと、を含み、
 含金属触媒が、M-A-Zで表される結合を有し、
 Mが、周期律表第4族遷移金属の原子であり、Aが、酸素原子、硫黄原子、セレン原子、又はテルル原子であり、Zが置換基を有するフェニル基であり、
 フェニル基において、Aが結合する位置に対するパラ位に、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基が結合している、製造方法。
(1) A method for producing a cyclic olefin copolymer containing a constituent unit derived from a norbornene monomer and a constituent unit derived from ethylene, comprising the steps of:
charging at least norbornene monomer and ethylene as monomers into a polymerization vessel;
polymerizing the monomers in a polymerization vessel in the presence of a metal-containing catalyst;
The metal-containing catalyst has a bond represented by M-A-Z,
M is an atom of a transition metal of Group 4 of the periodic table; A is an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom; Z is a phenyl group having a substituent;
A production method in which a hydrocarbon group which may contain a silicon atom or a germanium atom is bonded to the phenyl group at the para position relative to the position to which A is bonded.
(2)含金属触媒が、下記式(a1):
Figure JPOXMLDOC01-appb-C000004
(式(a1)中、Mは、Ti、Zr、又はHfであり、Xは、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又はハロゲン原子であり、Lは下記式(a1a):
Figure JPOXMLDOC01-appb-C000005
で表される基であり、
 Lは、下記式(a1b):
Figure JPOXMLDOC01-appb-C000006
で表される基であり、
 式(a1a)中、Ra1~Ra5は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基であり、Ra1~Ra5のうちの5員環上で隣接する2つの基は相互に結合して環を形成してもよく、
 式(a1b)中、Ra6、及びRa7は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基であり、Ra8は、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基である。)
で表される含金属化合物である、環状オレフィン共重合体の製造方法。
(2) The metal-containing catalyst is represented by the following formula (a1):
Figure JPOXMLDOC01-appb-C000004
In formula (a1), M is Ti, Zr, or Hf, X is an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or a halogen atom, and L1 is represented by the following formula (a1a):
Figure JPOXMLDOC01-appb-C000005
is a group represented by
L2 is represented by the following formula (a1b):
Figure JPOXMLDOC01-appb-C000006
is a group represented by
In formula (a1a), R a1 to R a5 each independently represent the same or different and a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent, and two adjacent groups among R a1 to R a5 on the 5-membered ring may be bonded to each other to form a ring;
In formula (a1b), R a6 and R a7 may be the same or different and each independently represent a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent, and R a8 represents a hydrocarbon group which may contain a silicon atom or a germanium atom.
The present invention relates to a method for producing a cyclic olefin copolymer, the metal-containing compound being represented by the following formula:
(3)Ra1~Ra5の少なくとも1つが、炭素原子3~20の有機置換基である、(2)に記載の環状オレフィン共重合体の製造方法。 (3) The method for producing a cyclic olefin copolymer according to (2), wherein at least one of R a1 to R a5 is an organic substituent having 3 to 20 carbon atoms.
(4)Ra1~Ra5のうちの1つが、炭素原子3~20の有機置換基であり、Ra1~Ra5のうちの4つが水素原子である、(3)に記載の環状オレフィン共重合体の製造方法。 (4) The method for producing a cyclic olefin copolymer according to (3), wherein one of R a1 to R a5 is an organic substituent having 3 to 20 carbon atoms, and four of R a1 to R a5 are hydrogen atoms.
(5)有機置換基が、分岐鎖状の基である、(4)に記載の環状オレフィン共重合体の製造方法。 (5) The method for producing a cyclic olefin copolymer according to (4), wherein the organic substituent is a branched group.
(6)MがTiである、(1)~(5)のいずれか1つに記載の環状オレフィン共重合体の製造方法。 (6) A method for producing a cyclic olefin copolymer according to any one of (1) to (5), wherein M is Ti.
(7)ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基に含まれる、炭素原子の数、ケイ素原子の数、及びゲルマニウム原子の数の合計が、3以上である、(1)~(6)のいずれか1つに記載の環状オレフィン共重合体の製造方法。 (7) A method for producing a cyclic olefin copolymer according to any one of (1) to (6), in which the total number of carbon atoms, silicon atoms, and germanium atoms contained in the hydrocarbon group, which may contain silicon atoms or germanium atoms, is 3 or more.
(8)ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基が分岐を有する、(7)に記載の環状オレフィン共重合体の製造方法。 (8) A method for producing a cyclic olefin copolymer according to (7), in which the hydrocarbon group, which may contain a silicon atom or a germanium atom, has a branch.
(9)ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基が、分岐鎖アルキル基、ジアルキルシリル基、又はトリアルキルシリル基である、(8)に記載の環状オレフィン共重合体の製造方法。 (9) The method for producing a cyclic olefin copolymer according to (8), wherein the hydrocarbon group which may contain a silicon atom or a germanium atom is a branched alkyl group, a dialkylsilyl group, or a trialkylsilyl group.
(10)モノマーを、含金属触媒と、アルミノキサン、及びボレート化合物の少なくとも一方の存在下に重合させる、(1)~(9)のいずれか1つに記載の環状オレフィン共重合体の製造方法。 (10) A method for producing a cyclic olefin copolymer according to any one of (1) to (9), in which a monomer is polymerized in the presence of a metal-containing catalyst and at least one of an aluminoxane and a borate compound.
(11)環状オレフィン共重合体の試料を、JIS K7121に記載の方法に従って、窒素雰囲気下、昇温速度20℃/分の条件で示差走査熱量計による測定を行って得られたDSC曲線が、90~140℃の範囲内にポリエチレン様の不純物に由来する融点のピークを有さない、(1)~(10)のいずれか1つに記載の環状オレフィン共重合体の製造方法。 (11) A method for producing a cyclic olefin copolymer according to any one of (1) to (10), in which a DSC curve obtained by measuring a sample of the cyclic olefin copolymer with a differential scanning calorimeter under a nitrogen atmosphere at a heating rate of 20°C/min according to the method described in JIS K7121 does not have a melting point peak due to polyethylene-like impurities within the range of 90 to 140°C.
 本発明によれば、ポリエチレン様の不純物の生成を抑制しつつ、ノルボルネン単量体と、エチレンとを含むモノマーを共重合させて環状オレフィン共重合体を効率良く製造できる、環状オレフィン共重合体の製造方法を提供することができる。 The present invention provides a method for producing a cyclic olefin copolymer that can efficiently produce a cyclic olefin copolymer by copolymerizing a norbornene monomer and a monomer containing ethylene while suppressing the generation of polyethylene-like impurities.
≪環状オレフィン共重合体の製造方法≫
 環状オレフィン共重合体の製造方法では、ノルボルネン単量体由来の構成単位とエチレン由来の構成単位とを含む環状オレフィン共重合体を製造する。
 当該製造方法は、
 少なくとも、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことと、
 重合容器内のモノマーを、含金属触媒の存在下に重合させることと、を含む。
 以下、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことを仕込み工程とも称する。また、重合容器内のモノマーを、含金属触媒の存在下に重合させることを重合工程とも称する。
<Method for producing cyclic olefin copolymer>
In the method for producing a cyclic olefin copolymer, a cyclic olefin copolymer containing constituent units derived from a norbornene monomer and constituent units derived from ethylene is produced.
The manufacturing method includes:
charging at least norbornene monomer and ethylene as monomers into a polymerization vessel;
and polymerizing the monomers in a polymerization vessel in the presence of a metal-containing catalyst.
Hereinafter, charging norbornene monomer and ethylene as monomers into a polymerization vessel is also referred to as a charging step, and polymerizing the monomers in the polymerization vessel in the presence of a metal-containing catalyst is also referred to as a polymerization step.
 重合容器内のモノマーは、後述する所定の構造の含金属触媒の存在下に重合される。ノルボルネン単量体と、エチレンとの共重合において、後述する所定の構造の含金属触媒を用いることにより、触媒の単位重量当たりの環状オレフィン共重合体の収量を高めることができる。 The monomers in the polymerization vessel are polymerized in the presence of a metal-containing catalyst having a specific structure, which will be described later. By using a metal-containing catalyst having a specific structure, which will be described later, in the copolymerization of norbornene monomer and ethylene, the yield of cyclic olefin copolymer per unit weight of catalyst can be increased.
 また、一般的に、エチレンと、ノルボルネン単量体とを、高活性な触媒の存在下に共重合させる場合、エチレン同士の重合が進行しやすく、ポリエチレン様の不純物が生成しやすい。 In addition, generally, when ethylene and norbornene monomer are copolymerized in the presence of a highly active catalyst, polymerization of ethylene units tends to proceed easily, and polyethylene-like impurities are easily produced.
 しかし、エチレンと、ノルボルネン単量体とを重合する際に、後述する所定の構造の含金属触媒を用いると、ポリエチレン様の不純物の生成を抑制しつつ環状オレフィン共重合体を良好な収率で製造しやすい。 However, when ethylene and norbornene monomer are polymerized using a metal-containing catalyst with a specific structure, described below, it becomes easier to produce cyclic olefin copolymers in good yields while suppressing the production of polyethylene-like impurities.
<仕込み工程>
 仕込み工程では、ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込む。重合容器には、本発明の目的を阻害しない範囲で、ノルボルネン単量体、及びエチレン以外の他の単量体が仕込まれてもよい。環状オレフィン共重合体における、ノルボルネン単量体に由来する構成単位の比率と、エチレンに由来する構成単位の比率との合計は、典型的には、全構成単位に対して、80質量%以上が好ましく、95質量%以上がより好ましく。98質量%以上がさらに好ましい。
<Preparation process>
In the charging step, norbornene monomer and ethylene are charged as monomers into a polymerization vessel. Norbornene monomer and other monomers other than ethylene may be charged into the polymerization vessel within a range that does not impair the object of the present invention. In the cyclic olefin copolymer, the total ratio of the constituent units derived from norbornene monomer and the constituent units derived from ethylene is typically preferably 80% by mass or more, more preferably 95% by mass or more, and even more preferably 98% by mass or more, based on the total constituent units.
 ノルボルネン単量体、及びエチレン以外の他の単量体は、ノルボルネン単量体、及びエチレンと共重合可能である限り特に限定されない。かかる他の単量体の、典型的な例としては、α-オレフィンが挙げられる。α-オレフィンは、ハロゲン原子等の少なくとも1種の置換基で置換されていてもよい。 The norbornene monomer and the other monomer other than ethylene are not particularly limited as long as they are copolymerizable with the norbornene monomer and ethylene. A typical example of such other monomer is an α-olefin. The α-olefin may be substituted with at least one type of substituent such as a halogen atom.
 α-オレフィンとしては、C3~C12のα-オレフィンが好ましい。C3~C12のα-オレフィンは特に限定されないが、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、1-オクテン、1-デセン、及び1-ドデセン等が挙げられる。中でも、1-ヘキセン、1-オクテン、1-デセンが好ましい。 As the α-olefin, C3 to C12 α-olefins are preferred. There are no particular limitations on the C3 to C12 α-olefins, but examples include propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octene, 1-decene, and 1-dodecene. Of these, 1-hexene, 1-octene, and 1-decene are preferred.
 重合溶液へのエチレンの仕込み方は、所望する量のエチレンを重合容器内に仕込める限り特に限定されない。典型的には、エチレンは、重合容器内でのエチレンの仕込み圧力が、0.5MPa以上であるように重合容器に仕込まれるのが好ましい。エチレンの仕込み圧力は、0.55MPa以上がより好ましく、0.6MPa以上がさらに好ましい。エチレンの仕込み圧力を高くすると、生成ポリマーあたりの触媒の使用量を少なくすることができる。上限について、エチレンの仕込み圧力は、例えば、10MPa以下が好ましく、5MPa以下がより好ましく、3MPa以下がさらに好ましい。
 以上より、エチレンの仕込み圧力は、0.5~10MPaが好ましく、0.55~5MPaがより好ましく、0.6~3MPaがさらに好ましい。
 なお、エチレンの仕込み圧力は、ゲージ圧である。
The method of feeding ethylene into the polymerization solution is not particularly limited as long as the desired amount of ethylene can be charged into the polymerization vessel. Typically, ethylene is preferably charged into the polymerization vessel so that the charging pressure of ethylene in the polymerization vessel is 0.5 MPa or more. The charging pressure of ethylene is more preferably 0.55 MPa or more, and even more preferably 0.6 MPa or more. By increasing the charging pressure of ethylene, the amount of catalyst used per polymer produced can be reduced. As for the upper limit, the charging pressure of ethylene is, for example, preferably 10 MPa or less, more preferably 5 MPa or less, and even more preferably 3 MPa or less.
In view of the above, the feeding pressure of ethylene is preferably from 0.5 to 10 MPa, more preferably from 0.55 to 5 MPa, and even more preferably from 0.6 to 3 MPa.
The ethylene charging pressure is a gauge pressure.
 重合容器内には、ノルボルネン単量体、及びエチレンとともに、溶媒が仕込まれてもよい。溶媒としては、重合反応を阻害しない溶媒であれば特に限定されない。好ましい溶媒としては、例えば脂肪族炭化水素溶媒や芳香族炭化水素溶媒等の炭化水素溶媒や、ハロゲン化炭化水素溶媒が挙げられ、取り扱い性や熱安定性、化学的安定性に優れることから炭化水素溶媒が好ましく、脂肪族炭化水素溶媒がより好ましい。好ましい溶媒の具体例としては、ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、イソドデカン、ミネラルオイル、シクロヘキサン、メチルシクロヘキサン、及びデカヒドロナフタレン(デカリン)等の脂肪族炭化水素溶媒や、ベンゼン、トルエン、及びキシレン等の芳香族炭化水素溶媒や、クロロホルム、メチレンクロライド、ジクロロメタン、ジクロロエタン、及びクロロベンゼン等のハロゲン化炭化水素溶媒が挙げられる。 A solvent may be charged into the polymerization vessel together with the norbornene monomer and ethylene. The solvent is not particularly limited as long as it does not inhibit the polymerization reaction. Preferred solvents include, for example, hydrocarbon solvents such as aliphatic hydrocarbon solvents and aromatic hydrocarbon solvents, and halogenated hydrocarbon solvents. Hydrocarbon solvents are preferred because of their ease of handling, thermal stability, and chemical stability, and aliphatic hydrocarbon solvents are more preferred. Specific examples of preferred solvents include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, isooctane, isododecane, mineral oil, cyclohexane, methylcyclohexane, and decahydronaphthalene (decalin), aromatic hydrocarbon solvents such as benzene, toluene, and xylene, and halogenated hydrocarbon solvents such as chloroform, methylene chloride, dichloromethane, dichloroethane, and chlorobenzene.
 溶媒中にノルボルネン単量体を仕込む場合の、ノルボルネン単量体の濃度は、下限については、例えば0.5質量%以上が好ましく、10質量%以上がより好ましい。上限については、例えば、50質量%以下が好ましく、35質量%以下がより好ましい。
 このため、溶媒中にノルボルネン単量体を仕込む場合の、ノルボルネン単量体の濃度は、0.5~50質量%が好ましく、10~35質量%がより好ましい。
When the norbornene monomer is charged into the solvent, the concentration of the norbornene monomer is preferably, for example, 0.5% by mass or more as a lower limit, and more preferably 10% by mass or more as an upper limit, and is preferably, for example, 50% by mass or less, and more preferably 35% by mass or less as an upper limit.
For this reason, when the norbornene monomer is charged into the solvent, the concentration of the norbornene monomer is preferably 0.5 to 50% by mass, and more preferably 10 to 35% by mass.
 以下、ノルボルネン単量体について説明する。 The following describes norbornene monomer.
[ノルボルネン単量体]
 ノルボルネン単量体としては、例えば、ノルボルネン及び置換ノルボルネンが挙げられ、ノルボルネンが好ましい。ノルボルネン単量体は、1種単独で又は2種以上組み合わせて使用することができる。
[Norbornene Monomer]
The norbornene monomer may be, for example, norbornene or a substituted norbornene, and is preferably norbornene. The norbornene monomer may be used alone or in combination of two or more.
 上記置換ノルボルネンは特に限定されず、この置換ノルボルネンが有する置換基としては、例えば、ハロゲン原子、1価又は2価の炭化水素基が挙げられる。置換ノルボルネンの具体例としては、下記一般式(I)で示される化合物が挙げられる。 The substituted norbornene is not particularly limited, and examples of the substituents that the substituted norbornene has include halogen atoms and monovalent or divalent hydrocarbon groups. Specific examples of substituted norbornenes include compounds represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000007
(式中、R~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれる原子、又は基であり、
 RとR10、R11とR12は、一体化して2価の炭化水素基を形成してもよく、
 R又はR10と、R11又はR12とは、互いに環を形成していてもよい。
 また、nは、0又は正の整数を示し、
 nが2以上の場合には、R~Rは、それぞれの繰り返し単位の中で、それぞれ同一でも異なっていてもよい。
 ただし、n=0の場合、R~R及びR~R12の少なくとも1個は、水素原子ではない。)
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 1 to R 12 may be the same or different and each represents an atom or group selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group;
R 9 and R 10 , and R 11 and R 12 may combine together to form a divalent hydrocarbon group;
R 9 or R 10 and R 11 or R 12 may be joined to form a ring.
In addition, n represents 0 or a positive integer,
When n is 2 or more, R 5 to R 8 may be the same or different in each repeating unit.
However, when n=0, at least one of R 1 to R 4 and R 9 to R 12 is not a hydrogen atom.
 一般式(I)で示される置換ノルボルネンについて説明する。一般式(I)におけるR~R12は、それぞれ同一でも異なっていてもよく、水素原子、ハロゲン原子、及び、炭化水素基からなる群より選ばれる原子、又は基である。 The substituted norbornene represented by the general formula (I) will be described below. R 1 to R 12 in the general formula (I) may be the same or different, and each is an atom or group selected from the group consisting of a hydrogen atom, a halogen atom, and a hydrocarbon group.
 R~Rの具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;炭素原子数1~20のアルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。 Specific examples of R 1 to R 8 include a hydrogen atom; a halogen atom such as fluorine, chlorine, or bromine; and an alkyl group having 1 to 20 carbon atoms, and these may be different from each other, may be partially different, or may all be the same.
 また、R~R12の具体例としては、例えば、水素原子;フッ素、塩素、臭素等のハロゲン原子;炭素原子数1~20のアルキル基;シクロヘキシル基等のシクロアルキル基;フェニル基、トリル基、エチルフェニル基、イソプロピルフェニル基、ナフチル基、アントリル基等の置換又は無置換の芳香族炭化水素基;ベンジル基、フェネチル基、その他アルキル基にアリール基が置換したアラルキル基等を挙げることができ、これらはそれぞれ異なっていてもよく、部分的に異なっていてもよく、また、全部が同一であってもよい。 Specific examples of R 9 to R 12 include a hydrogen atom; a halogen atom such as fluorine, chlorine, or bromine; an alkyl group having 1 to 20 carbon atoms; a cycloalkyl group such as a cyclohexyl group; a substituted or unsubstituted aromatic hydrocarbon group such as a phenyl group, a tolyl group, an ethylphenyl group, an isopropylphenyl group, a naphthyl group, or an anthryl group; a benzyl group, a phenethyl group, or an aralkyl group in which an aryl group is substituted on an alkyl group; and the like. These may be different from each other, may be partially different, or may all be the same.
 RとR10、又はR11とR12とが一体化して2価の炭化水素基を形成する場合の具体例としては、例えば、エチリデン基、プロピリデン基、イソプロピリデン基等のアルキリデン基等を挙げることができる。 Specific examples of the divalent hydrocarbon group formed by combining R 9 and R 10 , or R 11 and R 12 together, include alkylidene groups such as an ethylidene group, a propylidene group, and an isopropylidene group.
 R又はR10と、R11又はR12とが、互いに環を形成する場合には、形成される環は単環でも多環であってもよく、架橋を有する多環であってもよく、二重結合を有する環であってもよく、またこれらの環の組み合わせからなる環であってもよい。また、これらの環はメチル基等の置換基を有していてもよい。 When R9 or R10 and R11 or R12 form a ring together, the ring formed may be a monocyclic or polycyclic ring, a polycyclic ring having a bridge, a ring having a double bond, or a ring consisting of a combination of these rings. These rings may have a substituent such as a methyl group.
 一般式(I)で示される置換ノルボルネンの具体例としては、5-メチル-ビシクロ[2.2.1]ヘプタ-2-エン、5,5-ジメチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-ブチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-オクタデシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-メチリデン-ビシクロ[2.2.1]ヘプタ-2-エン、5-ビニル-ビシクロ[2.2.1]ヘプタ-2-エン、5-プロペニル-ビシクロ[2.2.1]ヘプタ-2-エン等の2環の環状オレフィン;
トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、トリシクロ[4.3.0.12,5]デカ-3-エン;トリシクロ[4.4.0.12,5]ウンデカ-3,7-ジエン若しくはトリシクロ[4.4.0.12,5]ウンデカ-3,8-ジエン又はこれらの部分水素添加物(又はシクロペンタジエンとシクロヘキセンの付加物)であるトリシクロ[4.4.0.12,5]ウンデカ-3-エン;5-シクロペンチル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキシル-ビシクロ[2.2.1]ヘプタ-2-エン、5-シクロヘキセニルビシクロ[2.2.1]ヘプタ-2-エン、5-フェニル-ビシクロ[2.2.1]ヘプタ-2-エンといった3環の環状オレフィン;
テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(単にテトラシクロドデセンともいう)、8-メチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチルテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-メチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-エチリデンテトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-ビニルテトラシクロ[4,4.0.12,5.17,10]ドデカ-3-エン、8-プロペニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エンといった4環の環状オレフィン;
8-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキシル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-シクロヘキセニル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン、8-フェニル-シクロペンチル-テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン;テトラシクロ[7.4.13,6.01,9.02,7]テトラデカ-4,9,11,13-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、テトラシクロ[8.4.14,7.01,10.03,8]ペンタデカ-5,10,12,14-テトラエン(1,4-メタノ-1,4,4a,5,10,10a-ヘキサヒドロアントラセンともいう);ペンタシクロ[6.6.1.13,6.02,7.09,14]-4-ヘキサデセン、ペンタシクロ[6.5.1.13,6.02,7.09,13]-4-ペンタデセン、ペンタシクロ[7.4.0.02,7.13,6.110,13]-4-ペンタデセン;ヘプタシクロ[8.7.0.12,9.14,7.111,17.03,8.012,16]-5-エイコセン、ヘプタシクロ[8.7.0.12,9.03,8.14,7.012,17.113,l6]-14-エイコセン;シクロペンタジエンの4量体等の多環の環状オレフィンを挙げることができる。
Specific examples of the substituted norbornene represented by the general formula (I) include 5-methyl-bicyclo[2.2.1]hept-2-ene, 5,5-dimethyl-bicyclo[2.2.1]hept-2-ene, 5-ethyl-bicyclo[2.2.1]hept-2-ene, 5-butyl-bicyclo[2.2.1]hept-2-ene, 5-ethylidene-bicyclo[2.2.1]hept-2-ene, 5-hexyl- Bicyclic olefins such as bicyclo[2.2.1]hept-2-ene, 5-octyl-bicyclo[2.2.1]hept-2-ene, 5-octadecyl-bicyclo[2.2.1]hept-2-ene, 5-methylidene-bicyclo[2.2.1]hept-2-ene, 5-vinyl-bicyclo[2.2.1]hept-2-ene, and 5-propenyl-bicyclo[2.2.1]hept-2-ene;
Tricyclo[4.3.0.1 2,5 ]deca-3,7-diene (common name: dicyclopentadiene), tricyclo[4.3.0.1 2,5 ]deca-3-ene; tricyclo[4.4.0.1 2,5 ]undeca-3,7-diene or tricyclo[4.4.0.1 2,5 ]undeca-3,8-diene, or their partial hydrogenated products (or adducts of cyclopentadiene and cyclohexene), tricyclo[4.4.0.1 2,5 ]undec-3-ene; three-ring cyclic olefins such as 5-cyclopentyl-bicyclo[2.2.1]hept-2-ene, 5-cyclohexyl-bicyclo[2.2.1]hept-2-ene, 5-cyclohexenyl-bicyclo[2.2.1]hept-2-ene, and 5-phenyl-bicyclo[2.2.1]hept-2-ene;
Tetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec - 3-ene (also simply called tetracyclododecene), 8-methyltetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethyltetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-methylidenetetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-ethylidenetetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-vinyltetracyclo[ 4,4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-propenyl-tetracyclo[4.4.0.1 2,5 . 4-ring cyclic olefins such as 17,10 ]dodec-3-ene;
8-Cyclopentyl-tetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-cyclohexyl-tetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-cyclohexenyl-tetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene, 8-phenyl-cyclopentyl-tetracyclo[4.4.0.1 2,5 . 1 7,10 ] dodec-3-ene; tetracyclo[7.4.1 3,6 . 0 1,9 . 0 2,7 ] tetradeca-4,9,11,13-tetraene (also called 1,4-methano-1,4,4a,9a-tetrahydrofluorene), tetracyclo[8.4.1 4,7 . 0 1,10 . 0 3,8 ] pentadeca-5,10,12,14-tetraene (also called 1,4-methano-1,4,4a,5,10,10a-hexahydroanthracene); pentacyclo[6.6.1.1 3,6 . 0 2,7 . 0 9,14 ] -4-hexadecene, pentacyclo[6.5.1.1 3,6 . 0 2,7 . 0 9,13 ] -4-pentadecene, pentacyclo[7.4.0.0 2,7 . 1 3,6 . 1 10,13 ] -4-pentadecene; heptacyclo[8.7.0.1 2,9 . 1 4,7 . 1 11,17 . 0 3,8 . cyclo [ 8.7.0.12,9.03,8.14,7.012,17.113,16 ] -5 - eicosene, heptacyclo[ 8.7.0.12,9.03,8.14,7.012,17.113,16 ]-14-eicosene; and polycyclic olefins such as a tetramer of cyclopentadiene .
 中でも、アルキル置換ノルボルネン(例えば、1個以上のアルキル基で置換されたビシクロ[2.2.1]ヘプタ-2-エン)、アルキリデン置換ノルボルネン(例えば、1個以上のアルキリデン基で置換されたビシクロ[2.2.1]ヘプタ-2-エン)が好ましく、5-エチリデン-ビシクロ[2.2.1]ヘプタ-2-エン(慣用名:5-エチリデン-2-ノルボルネン、又は、単にエチリデンノルボルネン)が特に好ましい。 Among these, alkyl-substituted norbornenes (e.g., bicyclo[2.2.1]hept-2-ene substituted with one or more alkyl groups) and alkylidene-substituted norbornenes (e.g., bicyclo[2.2.1]hept-2-ene substituted with one or more alkylidene groups) are preferred, with 5-ethylidene-bicyclo[2.2.1]hept-2-ene (common name: 5-ethylidene-2-norbornene, or simply ethylidenenorbornene) being particularly preferred.
<重合工程>
 重合工程では、重合容器内のモノマーを、下記の含金属触媒の存在下に重合させる。
 重合時の温度は特に限定されない。環状オレフィン共重合体の収率が良好であること等から、重合時の温度は、20℃以上が好ましく、30℃以上がより好ましく、50℃以上がさらに好ましく、60℃以上がさらにより好ましく、70℃以上が特に好ましい。重合時の温度は80℃以上であってもよい。
 重合時の温度の上限は特に限定されない、重合時の温度の上限は、例えば200℃以下であってよく、140℃以下であってもよく、120℃以下であってもよい。
 以上より、重合時の温度は、20~200℃が好ましく、30~200℃がより好ましく、50~200℃がさらに好ましく、60~140℃がさらにより好ましく、70~120℃が特に好ましい。
<Polymerization step>
In the polymerization step, the monomers in a polymerization vessel are polymerized in the presence of the metal-containing catalyst described below.
The temperature during polymerization is not particularly limited. In view of good yield of the cyclic olefin copolymer, the temperature during polymerization is preferably 20° C. or higher, more preferably 30° C. or higher, even more preferably 50° C. or higher, even more preferably 60° C. or higher, and particularly preferably 70° C. or higher. The temperature during polymerization may be 80° C. or higher.
The upper limit of the temperature during polymerization is not particularly limited, and the upper limit of the temperature during polymerization may be, for example, 200° C. or less, 140° C. or less, or 120° C. or less.
In view of the above, the temperature during polymerization is preferably 20 to 200°C, more preferably 30 to 200°C, even more preferably 50 to 200°C, even more preferably 60 to 140°C, and particularly preferably 70 to 120°C.
 含金属触媒としては、M-A-Zで表される結合を有する含金属化合物が使用される。
 Mは、周期律表第4族遷移金属の原子である。Aは、酸素原子、硫黄原子、セレン原子、又はテルル原子である。Zは、置換基を有するフェニル基である。
 フェニル基において、Aが結合する位置に対するパラ位に、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基が結合している。
As the metal-containing catalyst, a metal-containing compound having a bond represented by MAZ is used.
M is an atom of a transition metal of Group 4 of the periodic table. A is an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom. Z is a phenyl group having a substituent.
In the phenyl group, a hydrocarbon group which may contain a silicon atom or a germanium atom is bonded at the para position relative to the position to which A is bonded.
 Mとしての周期律表第4族遷移金属の原子としては、Ti、Zr、及びHfが好ましく、Ti、及びZrがより好ましい。 As the atom of a transition metal of Group 4 of the periodic table represented by M, Ti, Zr, and Hf are preferred, and Ti and Zr are more preferred.
 Aは、酸素原子、硫黄原子、セレン原子、又はテルル原子である。これらの中で、Aとしては、酸素原子、及び硫黄原子が好ましく、酸素原子がより好ましい。 A is an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom. Of these, A is preferably an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
 Zは、置換基を有するフェニル基である。Zとしての、フェニル基において、Aが結合する位置に対するパラ位に、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基が結合している。
 かかる炭化水素基は、ケイ素原子、及びゲルマニウム原子から選択される原子を、2つ以上含んでいてもよい。かかる炭化水素基における、ケイ素原子、及びゲルマニウム原子から選択される原子の数は0~2が好ましく、0又は1がより好ましい。
Z is a phenyl group having a substituent. In the phenyl group represented by Z, a hydrocarbon group which may contain a silicon atom or a germanium atom is bonded at the para position relative to the position to which A is bonded.
Such a hydrocarbon group may contain two or more atoms selected from silicon atoms and germanium atoms. The number of atoms selected from silicon atoms and germanium atoms in such a hydrocarbon group is preferably 0 to 2, and more preferably 0 or 1.
 ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基に含まれる、炭素原子の数、ケイ素原子の数、及びゲルマニウム原子の数の合計は、所望する効果が損なわれない範囲で特に限定されない。
 ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基に含まれる、炭素原子の数、ケイ素原子の数、及びゲルマニウム原子の数の合計は、3以上が好ましく、3~20がより好ましく、3~12がさらに好ましく、3~8が特に好ましい。
The total number of carbon atoms, silicon atoms, and germanium atoms contained in the hydrocarbon group which may contain a silicon atom or a germanium atom is not particularly limited as long as the desired effect is not impaired.
The total number of carbon atoms, silicon atoms, and germanium atoms contained in the hydrocarbon group which may contain a silicon atom or a germanium atom is preferably 3 or more, more preferably 3 to 20, even more preferably 3 to 12, and particularly preferably 3 to 8.
 ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基に含まれる、炭素原子の数、ケイ素原子の数、及びゲルマニウム原子の数の合計が、3以上である、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基は、分岐鎖を有するのが好ましい。
 分岐を有する、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基の好適な例としては、分岐鎖アルキル基、ジアルキルシリル基、トリアルキルシリル基、ジアリールシリル基、トリアリールシリル基、ジアルキルゲルミル基、トリアルキルゲルミル基、ジアリールゲルミル基、及びトリアリールゲルミル基が挙げられる。
 これらの中では、分岐鎖アルキル基、ジアルキルシリル基、トリアルキルシリル基、ジアリールシリル基、及びトリアリールシリル基が好ましい。
The hydrocarbon group which may contain a silicon atom or a germanium atom, in which the total number of carbon atoms, silicon atoms, and germanium atoms is 3 or more, preferably has a branched chain.
Suitable examples of the branched hydrocarbon group which may contain a silicon atom or a germanium atom include a branched alkyl group, a dialkylsilyl group, a trialkylsilyl group, a diarylsilyl group, a triarylsilyl group, a dialkylgermyl group, a trialkylgermyl group, a diarylgermyl group, and a triarylgermyl group.
Of these, branched alkyl groups, dialkylsilyl groups, trialkylsilyl groups, diarylsilyl groups, and triarylsilyl groups are preferred.
 分岐鎖アルキル基の好ましい例としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、sec-ペンチル基、及びtert-ペンチル基が挙げられる。
 ジアルキルシリル基の具体例としては、ジメチルシリル基、ジエチルシリル基、メチルエチルシリル基、ジ-n-プロピルシリル基、及びジイソプロピルシリル基が挙げられる。
 トリアルキルシリル基の具体例としては、トリメチルシリル基、トリエチルシリル基、メチルジエチルシリル基、及びジメチルエチルシリル基が挙げられる。
 ジアリールシリル基の具体例としては、ジフェニルシリル基が挙げられる。
 トリアリールシリル基の具体例としては、トリフェニルシリル基が挙げられる。
Preferred examples of branched alkyl groups include isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, sec-pentyl, and tert-pentyl groups.
Specific examples of the dialkylsilyl group include a dimethylsilyl group, a diethylsilyl group, a methylethylsilyl group, a di-n-propylsilyl group, and a diisopropylsilyl group.
Specific examples of the trialkylsilyl group include a trimethylsilyl group, a triethylsilyl group, a methyldiethylsilyl group, and a dimethylethylsilyl group.
A specific example of the diarylsilyl group is a diphenylsilyl group.
A specific example of the triarylsilyl group is a triphenylsilyl group.
 Zとしてのフェニル基は、Aが結合する位置を1位とする場合に、2位、及び6位に置換基を有するのが好ましい。
 2位、及び6位に結合する置換基は特に限定されない。2位、及び6位に結合する置換基としては、炭素原子数1~20の有機置換基が好ましい。
 炭素原子数1~20の有機置換基については、有機置換基がヘテロ原子を含む場合、ヘテロ原子の種類は本発明の目的を阻害しない範囲で特に限定されない。ヘテロ原子の具体例としては、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、及びハロゲン原子等が挙げられる。
The phenyl group represented by Z preferably has substituents at the 2- and 6-positions when the position to which A is bonded is the 1-position.
There is no particular limitation on the substituents bonded to the 2- and 6-positions, and the substituents bonded to the 2- and 6-positions are preferably organic substituents having 1 to 20 carbon atoms.
Regarding the organic substituent having 1 to 20 carbon atoms, when the organic substituent contains a heteroatom, the type of the heteroatom is not particularly limited as long as it does not impair the object of the present invention. Specific examples of the heteroatom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a selenium atom, and a halogen atom.
 有機置換基としては、例えば、炭素原子数1~20のアルキル基;炭素原子数1~20のアルコキシ基;炭素原子数3~20のシクロアルキル基;炭素原子数2~20の脂肪族アシル基;ベンゾイル基;α-ナフチルカルボニル基;β-ナフチルカルボニル基;炭素原子数6~20の芳香族炭化水素基;炭素原子数7~20のアラルキル基;炭素原子数1~20のモノアルキルシリル基、ジアルキルシリル基、及びトリアルキルシリル基;炭素原子数1~20の炭化水素基で置換されたモノ置換アミノ基;炭素原子数1~20の炭化水素基で置換されたジ置換アミノ基が挙げられる。 Examples of organic substituents include alkyl groups having 1 to 20 carbon atoms; alkoxy groups having 1 to 20 carbon atoms; cycloalkyl groups having 3 to 20 carbon atoms; aliphatic acyl groups having 2 to 20 carbon atoms; benzoyl groups; α-naphthylcarbonyl groups; β-naphthylcarbonyl groups; aromatic hydrocarbon groups having 6 to 20 carbon atoms; aralkyl groups having 7 to 20 carbon atoms; monoalkylsilyl groups, dialkylsilyl groups, and trialkylsilyl groups having 1 to 20 carbon atoms; monosubstituted amino groups substituted with a hydrocarbon group having 1 to 20 carbon atoms; and disubstituted amino groups substituted with a hydrocarbon group having 1 to 20 carbon atoms.
 これらの有機置換基の中では、炭素原子数1~20のアルキル基が好ましく、炭素原子数3~12のアルキル基がより好ましく、炭素原子数3~8のアルキル基がさらに好ましい。
 Zとしてのフェニル基の2位、及び6位に結合する有機置換基としては、炭素原子数3~20の分岐鎖アルキル基が好ましく、炭素原子数3~12の分岐鎖アルキル基がより好ましく、炭素原子数3~8の分岐鎖アルキル基がさらに好ましい。
 Zとしての2位、及び6位に結合する置換基としては、イソプロピル基、イソブチル基、sec-ブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、sec-ペンチル基、及びtert-ペンチル基が好ましく、イソプロピル基、及びtert-ブチル基がより好ましい。
Among these organic substituents, alkyl groups having 1 to 20 carbon atoms are preferred, alkyl groups having 3 to 12 carbon atoms are more preferred, and alkyl groups having 3 to 8 carbon atoms are even more preferred.
The organic substituents bonded to the 2- and 6-positions of the phenyl group represented by Z are preferably branched chain alkyl groups having 3 to 20 carbon atoms, more preferably branched chain alkyl groups having 3 to 12 carbon atoms, and even more preferably branched chain alkyl groups having 3 to 8 carbon atoms.
The substituents bonded to the 2- and 6-positions as Z are preferably an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an isopentyl group, a neopentyl group, a sec-pentyl group, and a tert-pentyl group, and more preferably an isopropyl group and a tert-butyl group.
 Zとしての置換基を有するフェニル基の具体例としては、4-メチルフェニル基、4-エチルフェニル基、4-n-プロピルフェニル基、4-イソプロピルフェニル基、4-n-ブチルフェニル基、4-イソブチルフェニル基、4-sec-ブチルフェニル基、4-tert-ブチルフェニル基、4-n-ペンチルフェニル基、4-イソペンチルフェニル基、4-ネオペンチルフェニル基、4-sec-ペンチルフェニル基、tert-ペンチルフェニル基、4-トリメチルシリルフェニル基、及び4-トリエチルシリルフェニル基等の4-置換フェニル基;2,6-ジイソプロピル-4-メチルフェニル基、2,6-ジイソプロピル-4-エチルフェニル基、2,6-ジイソプロピル-4-n-ジプロピルフェニル基、2,4,6-トリイソプロピルフェニル基、2,6-ジイソプロピル-4-n-ブチルフェニル基、2,6-ジイソプロピル-4-イソブチルフェニル基、2,6-ジイソプロピル-4-sec-ブチルフェニル基、2,6-ジイソプロピル-4-tert-ブチルフェニル基、2,6-ジイソプロピル-4-n-ペンチルフェニル基、2,6-ジイソプロピル-4-イソペンチルフェニル基、2,6-ジイソプロピル-4-ネオペンチルフェニル基、2,6-ジイソプロピル-4-sec-ペンチルフェニル基、2,6-ジイソプロピル-tert-ペンチルフェニル基、2,6-ジイソプロピル-4-トリメチルシリルフェニル基、及び2,6-ジイソプロピル-4-トリエチルシリルフェニル基等の2,6-ジイソプロピル-4-置換フェニル基;2,6-ジ-tett-ブチル-4-メチルフェニル基、2,6-ジ-tett-ブチル-4-エチルフェニル基、2,6-ジ-tett-ブチル-4-n-プロピルフェニル基、2,6-ジ-tett-ブチル-4-イソプロピルフェニル基、2,6-ジ-tett-ブチル-4-n-ブチルフェニル基、2,6-ジ-tett-ブチル-4-イソブチルフェニル基、2,6-ジ-tett-ブチル-4-sec-ブチルフェニル基、2,4,6-トリ-tett-ブチルフェニル基、2,6-ジ-tett-ブチル-4-n-ペンチルフェニル基、2,6-ジ-tett-ブチル-4-イソペンチルフェニル基、2,6-ジ-tett-ブチル-4-ネオペンチルフェニル基、2,6-ジ-tett-ブチル-4-sec-ペンチルフェニル基、2,6-ジ-tett-ブチル-tert-ペンチルフェニル基、2,6-ジ-tett-ブチル-4-トリメチルシリルフェニル基、及び2,6-ジ-tett-ブチル-4-トリエチルシリルフェニル基等の2,6-ジ-tert-ブチル-4-置換フェニル基が挙げられる。 Specific examples of phenyl groups having a substituent as Z include 4-substituted phenyl groups such as 4-methylphenyl group, 4-ethylphenyl group, 4-n-propylphenyl group, 4-isopropylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-sec-butylphenyl group, 4-tert-butylphenyl group, 4-n-pentylphenyl group, 4-isopentylphenyl group, 4-neopentylphenyl group, 4-sec-pentylphenyl group, tert-pentylphenyl group, 4-trimethylsilylphenyl group, and 4-triethylsilylphenyl group; 2,6-diisopropyl-4-methylphenyl group, ... isopropyl-4-ethylphenyl group, 2,6-diisopropyl-4-n-dipropylphenyl group, 2,4,6-triisopropylphenyl group, 2,6-diisopropyl-4-n-butylphenyl group, 2,6-diisopropyl-4-isobutylphenyl group, 2,6-diisopropyl-4-sec-butylphenyl group, 2,6-diisopropyl-4-tert-butylphenyl group, 2,6-diisopropyl-4-n-pentylphenyl group, 2,6-diisopropyl-4-isopentylphenyl group, 2,6-diisopropyl-4-neopentylphenyl group, 2,6-diisopropyl-4-sec-pentylphenyl group, 2,6-diisopropyl 2,6-diisopropyl-4-substituted phenyl groups such as propyl-tert-pentylphenyl group, 2,6-diisopropyl-4-trimethylsilylphenyl group, and 2,6-diisopropyl-4-triethylsilylphenyl group; 2,6-di-tett-butyl-4-methylphenyl group, 2,6-di-tett-butyl-4-ethylphenyl group, 2,6-di-tett-butyl-4-n-propylphenyl group, 2,6-di-tett-butyl-4-isopropylphenyl group, 2,6-di-tett-butyl-4-n-butylphenyl group, 2,6-di-tett-butyl-4-isobutylphenyl group, 2,6-di-tett-butyl- Examples of such substituted phenyl groups include 2,6-di-tert-butyl-4-substituted phenyl groups such as 4-sec-butylphenyl group, 2,4,6-tri-tett-butylphenyl group, 2,6-di-tett-butyl-4-n-pentylphenyl group, 2,6-di-tett-butyl-4-isopentylphenyl group, 2,6-di-tett-butyl-4-neopentylphenyl group, 2,6-di-tett-butyl-4-sec-pentylphenyl group, 2,6-di-tett-butyl-tert-pentylphenyl group, 2,6-di-tett-butyl-4-trimethylsilylphenyl group, and 2,6-di-tett-butyl-4-triethylsilylphenyl group.
 含金属触媒としては、下記式(a1)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000008
(式(a1)中、Mは、Ti、Zr、又はHfであり、Xは、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又はハロゲン原子であり、Lは下記式(a1a):
Figure JPOXMLDOC01-appb-C000009
で表される基であり、
 Lは、下記式(a1b):
Figure JPOXMLDOC01-appb-C000010
で表される基であり、
 式(a1a)中、Ra1~Ra5は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基である。Ra1~Ra5のうちの5員環上で隣接する2つの基は相互に結合して環を形成してもよく、
 式(a1b)中、Ra6、及びRa7は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基である。Ra8は、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基である。
The metal-containing catalyst is preferably a compound represented by the following formula (a1).
Figure JPOXMLDOC01-appb-C000008
In formula (a1), M is Ti, Zr, or Hf, X is an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or a halogen atom, and L1 is represented by the following formula (a1a):
Figure JPOXMLDOC01-appb-C000009
is a group represented by
L2 is represented by the following formula (a1b):
Figure JPOXMLDOC01-appb-C000010
is a group represented by
In formula (a1a), R a1 to R a5 may be the same or different and each independently represents a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent. Two adjacent groups among R a1 to R a5 on the five-membered ring may be bonded to each other to form a ring.
In formula (a1b), R a6 and R a7 may be the same or different and each independently represent a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent, and R a8 represents a hydrocarbon group which may contain a silicon atom or a germanium atom.
 式(a1)中、Mは、Ti、Zr、又はHfであり、含金属触媒の入手や製造が容易である点や、触媒の活性の点等からTiが特に好ましい。 In formula (a1), M is Ti, Zr, or Hf, with Ti being particularly preferred in terms of the ease of obtaining and producing metal-containing catalysts and the activity of the catalyst.
 式(a1)中、Xは、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又はハロゲン原子である。
 ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基については、有機置換基がヘテロ原子を含む場合、ヘテロ原子の種類は本発明の目的を阻害しない範囲で特に限定されない。ヘテロ原子の具体例としては、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、セレン原子、及びハロゲン原子等が挙げられる。
In formula (a1), X is an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or a halogen atom.
Regarding the organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, when the organic substituent contains a heteroatom, the type of the heteroatom is not particularly limited as long as it does not impair the object of the present invention. Specific examples of the heteroatom include an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, a selenium atom, and a halogen atom.
 有機置換基としては、上記式(a1)で表される含金属化合物の生成反応を阻害しない基であれば特に限定されない。例えば、炭素原子数1~20のアルキル基;炭素原子数1~20のアルコキシ基;炭素原子数3~20のシクロアルキル基;炭素原子数2~20の脂肪族アシル基;ベンゾイル基;α-ナフチルカルボニル基;β-ナフチルカルボニル基;炭素原子数6~20の芳香族炭化水素基;炭素原子数7~20のアラルキル基;炭素原子数6~20のモノアリールシリル基、ジアリールシリル基、及びトリアリールシリル基;炭素原子数1~20のモノアルキルシリル基、ジアルキルシリル基、及びトリアルキルシリル基;炭素原子数1~20の炭化水素基で置換されたモノ置換アミノ基;炭素原子数1~20の炭化水素基で置換されたジ置換アミノ基が挙げられる。 The organic substituent is not particularly limited as long as it does not inhibit the reaction for producing the metal-containing compound represented by the above formula (a1). For example, an alkyl group having 1 to 20 carbon atoms; an alkoxy group having 1 to 20 carbon atoms; a cycloalkyl group having 3 to 20 carbon atoms; an aliphatic acyl group having 2 to 20 carbon atoms; a benzoyl group; an α-naphthylcarbonyl group; a β-naphthylcarbonyl group; an aromatic hydrocarbon group having 6 to 20 carbon atoms; an aralkyl group having 7 to 20 carbon atoms; a monoarylsilyl group, a diarylsilyl group, and a triarylsilyl group having 6 to 20 carbon atoms; a monoalkylsilyl group, a dialkylsilyl group, and a trialkylsilyl group having 1 to 20 carbon atoms; a mono-substituted amino group substituted with a hydrocarbon group having 1 to 20 carbon atoms; and a di-substituted amino group substituted with a hydrocarbon group having 1 to 20 carbon atoms.
 これらの有機置換基の中では、炭素原子数1~6のアルキル基;炭素原子数1~6のアルコキシ基;炭素原子数3~8のシクロアルキル基;炭素原子数2~6の脂肪族アシル基;ベンゾイル基;フェニル基;ベンジル基;フェネチル基;炭素原子数6~20のモノアリールシリル基、ジアリールシリル基、及びトリアリールシリル基;炭素原子数1~20のモノアルキルシリル基、ジアルキルシリル基、及びトリアルキルシリル基が好ましい。 Among these organic substituents, alkyl groups having 1 to 6 carbon atoms; alkoxy groups having 1 to 6 carbon atoms; cycloalkyl groups having 3 to 8 carbon atoms; aliphatic acyl groups having 2 to 6 carbon atoms; benzoyl groups; phenyl groups; benzyl groups; phenethyl groups; monoarylsilyl groups, diarylsilyl groups, and triarylsilyl groups having 6 to 20 carbon atoms; and monoalkylsilyl groups, dialkylsilyl groups, and trialkylsilyl groups having 1 to 20 carbon atoms are preferred.
 有機置換基の中では、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、イソブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、アセチル基、プロピオニル基、ブタノイル基、フェニル基、トリフェニルシリル基、トリメチルシリル基、トリエチルシリル基、及びtert-ブチルジメチルシリル基がより好ましい。 Among the organic substituents, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, isobutyloxy, sec-butyloxy, tert-butyloxy, acetyl, propionyl, butanoyl, phenyl, triphenylsilyl, trimethylsilyl, triethylsilyl, and tert-butyldimethylsilyl are more preferred.
 Xとしてはハロゲン原子が好ましく、塩素原子、及び臭素原子がより好ましく、塩素原子が特に好ましい。 X is preferably a halogen atom, more preferably a chlorine atom or a bromine atom, and particularly preferably a chlorine atom.
 式(a1a)中、Ra1~Ra5は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基である。また、Ra1~Ra5のうちの5員環上で隣接する2つの基は相互に結合して環を形成してもよい。
 式(a1a)において、Ra1~Ra5の少なくとも1つが、炭素原子3~20の有機置換基であるのが好ましい。
 また、Ra1~Ra5のうちの1つが、炭素原子3~20の有機置換基であり、Ra1~Ra5のうちの4つが水素原子であるのより好ましい。
 Ra1~Ra5としての有機置換基は、分岐鎖状の基であるのが好ましい。
In formula (a1a), R a1 to R a5 are each independently the same or different and are an organic or inorganic substituent having 1 to 20 carbon atoms which may contain a hydrogen atom or a heteroatom. In addition, two adjacent groups among R a1 to R a5 on the five-membered ring may be bonded to each other to form a ring.
In formula (a1a), it is preferable that at least one of R a1 to R a5 is an organic substituent having 3 to 20 carbon atoms.
It is more preferable that one of R a1 to R a5 is an organic substituent having 3 to 20 carbon atoms, and four of R a1 to R a5 are hydrogen atoms.
The organic substituents represented by R a1 to R a5 are preferably branched groups.
 Ra1~Ra5としての、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基の具体例及び好ましい例は、それぞれ、Xとしての、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基の具体例及び好ましい例と同様である。
 Ra1~Ra5としての有機置換基の中では、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、トリメチルシリル基、及びトリエチルシリル基が好ましく、イソプロピル基、tert-ブチル基、トリメチルシリル基、及びトリエチルシリル基がより好ましい。
Specific examples and preferred examples of the organic substituent having 1 to 20 carbon atoms which may contain a heteroatom as R a1 to R a5 are the same as the specific examples and preferred examples of the organic substituent having 1 to 20 carbon atoms which may contain a heteroatom as X.
Among the organic substituents represented by R a1 to R a5 , an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a trimethylsilyl group, and a triethylsilyl group are preferred, and an isopropyl group, a tert-butyl group, a trimethylsilyl group, and a triethylsilyl group are more preferred.
 無機置換基としては、上記式(a1)で表される含金属化合物の生成反応を阻害しない基であれば特に限定されない。
 無機置換基の具体例としては、ハロゲン原子、ニトロ基、無置換のアミノ基、及びシアノ基等が挙げられる。
The inorganic substituent is not particularly limited as long as it is a group that does not inhibit the reaction for producing the metal-containing compound represented by the above formula (a1).
Specific examples of the inorganic substituent include a halogen atom, a nitro group, an unsubstituted amino group, and a cyano group.
 式(a1b)中、Ra6、及びRa7は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基である。
 式(a1b)中のRa6、及びRa7としての有機置換基の具体例及び好ましい例は、それぞれ、Zとしてのフェニル基の2位、及び6位に結合する有機置換基の具体例及び好ましい例と同様である。
 式(a1b)中のRa6、及びRa7としての無機置換基の具体例及び好ましい例は、それぞれ、Ra1~Ra5としての無機置換基の具体例及び好ましい例と同様である。
In formula (a1b), R a6 and R a7 may be the same or different and each independently represent a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent.
Specific examples and preferred examples of the organic substituents as R a6 and R a7 in formula (a1b) are the same as the specific examples and preferred examples of the organic substituents bonded to the 2- and 6-positions of the phenyl group as Z, respectively.
Specific examples and preferred examples of the inorganic substituents as R a6 and R a7 in formula (a1b) are the same as the specific examples and preferred examples of the inorganic substituents as R a1 to R a5 , respectively.
 式(a1b)中、Ra8は、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基である。Ra8としての、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基は、前述のZとしてのフェニル基における、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基と同様である。 In formula (a1b), R a8 is a hydrocarbon group which may contain a silicon atom or a germanium atom. The hydrocarbon group which may contain a silicon atom or a germanium atom as R a8 is the same as the hydrocarbon group which may contain a silicon atom or a germanium atom in the phenyl group represented by Z.
 式(a1b)で表される基の好ましい例としては、4-メチルフェノキシ基、4-エチルフェノキシ基、4-n-プロピルフェノキシ基、4-イソプロピルフェノキシ基、4-n-ブチルフェノキシ基、4-イソブチルフェノキシ基、4-sec-ブチルフェノキシ基、4-tert-ブチルフェノキシ基、4-n-ペンチルフェノキシ基、4-イソペンチルフェノキシ基、4-ネオペンチルフェノキシ基、4-sec-ペンチルフェノキシ基、tert-ペンチルフェノキシ基、4-トリメチルシリルフェノキシ基、及び4-トリエチルシリルフェノキシ基等の4-置換フェノキシ基;2,6-ジイソプロピル-4-メチルフェノキシ基、2,6-ジイソプロピル-4-エチルフェノキシ基、2,6-ジイソプロピル-4-n-ジプロピルフェノキシ基、2,4,6-トリイソプロピルフェノキシ基、2,6-ジイソプロピル-4-n-ブチルフェノキシ基、2,6-ジイソプロピル-4-イソブチルフェノキシ基、2,6-ジイソプロピル-4-sec-ブチルフェノキシ基、2,6-ジイソプロピル-4-tert-ブチルフェノキシ基、2,6-ジイソプロピル-4-n-ペンチルフェノキシ基、2,6-ジイソプロピル-4-イソペンチルフェノキシ基、2,6-ジイソプロピル-4-ネオペンチルフェノキシ基、2,6-ジイソプロピル-4-sec-ペンチルフェノキシ基、2,6-ジイソプロピル-tert-ペンチルフェノキシ基、2,6-ジイソプロピル-4-トリメチルシリルフェノキシ基、及び2,6-ジイソプロピル-4-トリエチルシリルフェノキシ基等の2,6-ジイソプロピル-4-置換フェノキシ基;2,6-ジ-tett-ブチル-4-メチルフェノキシ基、2,6-ジ-tett-ブチル-4-エチルフェノキシ基、2,6-ジ-tett-ブチル-4-n-プロピルフェノキシ基、2,6-ジ-tett-ブチル-4-イソプロピルフェノキシ基、2,6-ジ-tett-ブチル-4-n-ブチルフェノキシ基、2,6-ジ-tett-ブチル-4-イソブチルフェノキシ基、2,6-ジ-tett-ブチル-4-sec-ブチルフェノキシ基、2,4,6-トリ-tett-ブチルフェノキシ基、2,6-ジ-tett-ブチル-4-n-ペンチルフェノキシ基、2,6-ジ-tett-ブチル-4-イソペンチルフェノキシ基、2,6-ジ-tett-ブチル-4-ネオペンチルフェノキシ基、2,6-ジ-tett-ブチル-4-sec-ペンチルフェノキシ基、2,6-ジ-tett-ブチル-tert-ペンチルフェノキシ基、2,6-ジ-tett-ブチル-4-トリメチルシリルフェノキシ基、及び2,6-ジ-tett-ブチル-4-トリエチルシリルフェノキシ基等の2,6-ジ-tert-ブチル-4-置換フェノキシ基が挙げられる。 Preferred examples of the group represented by formula (a1b) include 4-substituted phenoxy groups such as 4-methylphenoxy group, 4-ethylphenoxy group, 4-n-propylphenoxy group, 4-isopropylphenoxy group, 4-n-butylphenoxy group, 4-isobutylphenoxy group, 4-sec-butylphenoxy group, 4-tert-butylphenoxy group, 4-n-pentylphenoxy group, 4-isopentylphenoxy group, 4-neopentylphenoxy group, 4-sec-pentylphenoxy group, tert-pentylphenoxy group, 4-trimethylsilylphenoxy group, and 4-triethylsilylphenoxy group; 2,6-diisopropyl-4-methylphenoxy group, 2,6 -diisopropyl-4-ethylphenoxy group, 2,6-diisopropyl-4-n-dipropylphenoxy group, 2,4,6-triisopropylphenoxy group, 2,6-diisopropyl-4-n-butylphenoxy group, 2,6-diisopropyl-4-isobutylphenoxy group, 2,6-diisopropyl-4-sec-butylphenoxy group, 2,6-diisopropyl-4-tert-butylphenoxy group, 2,6-diisopropyl-4-n-pentylphenoxy group, 2,6-diisopropyl-4-isopentylphenoxy group, 2,6-diisopropyl-4-neopentylphenoxy group, 2,6-diisopropyl-4-sec-pentylphenoxy group, 2,6-di 2,6-diisopropyl-4-substituted phenoxy groups such as isopropyl-tert-pentylphenoxy group, 2,6-diisopropyl-4-trimethylsilylphenoxy group, and 2,6-diisopropyl-4-triethylsilylphenoxy group; 2,6-di-tett-butyl-4-methylphenoxy group, 2,6-di-tett-butyl-4-ethylphenoxy group, 2,6-di-tett-butyl-4-n-propylphenoxy group, 2,6-di-tett-butyl-4-isopropylphenoxy group, 2,6-di-tett-butyl-4-n-butylphenoxy group, 2,6-di-tett-butyl-4-isobutylphenoxy group, 2,6-di-tett-butyl Examples of such substituted phenoxy groups include 2,6-di-tert-butyl-4-substituted phenoxy groups, such as 2,4,6-tri-tett-butylphenoxy group, 2,6-di-tett-butyl-4-n-pentylphenoxy group, 2,6-di-tett-butyl-4-isopentylphenoxy group, 2,6-di-tett-butyl-4-neopentylphenoxy group, 2,6-di-tett-butyl-4-sec-pentylphenoxy group, 2,6-di-tett-butyl-tert-pentylphenoxy group, 2,6-di-tett-butyl-4-trimethylsilylphenoxy group, and 2,6-di-tett-butyl-4-triethylsilylphenoxy group.
 以上説明した式(a1)で表される含金属化合物の好ましい具体例としては、以下の含金属化合物が挙げられる。なお、下記式におけるMは、式(a1)中のMと同様である。また、下記式中、Si(Me)はトリメチルシリル基であり、Si(Et)はトリエチルシリル基であり、i-Prはイソプロピル基であり、n-Buはn-ブチル基であり、t-Buはtert-ブチル基である。 Specific preferred examples of the metal-containing compound represented by formula (a1) explained above include the following metal-containing compounds. Note that M in the following formula is the same as M in formula (a1). In addition, in the following formula, Si(Me) 3 is a trimethylsilyl group, Si(Et) 3 is a triethylsilyl group, i-Pr is an isopropyl group, n-Bu is an n-butyl group, and t-Bu is a tert-butyl group.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 モノマーの重合は、上記の含金属触媒と助触媒との存在下に行われるのが好ましい。助触媒としては、一般的にオレフィンの重合において助触媒として使用されている化合物を特に限定なく用いることができる。助触媒の好適な例としては、アルミノキサン、及びイオン化合物が挙げられる。重合反応が良好に進行しやすい点から、モノマーの重合は、特に、アルミノキサン、及びイオン化合物としてのボレート化合物の少なくとも一方を助触媒として用いて行われるのが好ましく、アルミノキサンを助触媒として用いて行われるのがより好ましい。 The polymerization of the monomer is preferably carried out in the presence of the above-mentioned metal-containing catalyst and a co-catalyst. As the co-catalyst, any compound generally used as a co-catalyst in the polymerization of olefins can be used without any particular limitation. Suitable examples of the co-catalyst include aluminoxane and ionic compounds. In terms of the tendency of the polymerization reaction to proceed well, the polymerization of the monomer is preferably carried out using at least one of aluminoxane and a borate compound as an ionic compound as a co-catalyst, and more preferably using aluminoxane as a co-catalyst.
 つまり、モノマーを、含金属触媒と、アルミノキサン及びボレート化合物の少なくとも一方との存在下に重合させるのが好ましく、モノマーを、含金属触媒と、アルミノキサンとの存在下に重合させるのがより好ましい。 In other words, it is preferable to polymerize the monomer in the presence of a metal-containing catalyst and at least one of an aluminoxane and a borate compound, and it is more preferable to polymerize the monomer in the presence of a metal-containing catalyst and an aluminoxane.
 上記の含金属触媒は、アルミノキサン、及び/又はイオン化合物と混合して、触媒組成物とされるのが好ましい。
 ここで、イオン化合物は、含金属触媒との反応によりカチオン性遷移金属化合物を生成させる化合物である。
The above metal-containing catalyst is preferably mixed with an aluminoxane and/or an ionic compound to form a catalyst composition.
Here, the ionic compound is a compound that generates a cationic transition metal compound by reacting with a metal-containing catalyst.
 触媒組成物は、含金属触媒の溶液を用いて調製されるのが好ましい。含金属触媒の溶液に含まれる溶媒は、特に限定されない。好ましい溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、イソオクタン、イソドデカン、ミネラルオイル、シクロヘキサン、メチルシクロヘキサン、デカヒドロナフタレン(デカリン)、及びミネラルオイル等の脂肪族炭化水素溶媒や、ベンゼン、トルエン、及びキシレン等の芳香族炭化水素溶媒や、クロロホルム、メチレンクロライド、ジクロロメタン、ジクロロエタン、及びクロロベンゼン等のハロゲン化炭化水素溶媒が挙げられる。 The catalyst composition is preferably prepared using a solution of a metal-containing catalyst. The solvent contained in the solution of the metal-containing catalyst is not particularly limited. Preferred solvents include aliphatic hydrocarbon solvents such as pentane, hexane, heptane, octane, isooctane, isododecane, mineral oil, cyclohexane, methylcyclohexane, decahydronaphthalene (decalin), and mineral oil, aromatic hydrocarbon solvents such as benzene, toluene, and xylene, and halogenated hydrocarbon solvents such as chloroform, methylene chloride, dichloromethane, dichloroethane, and chlorobenzene.
 溶媒の使用量は、所望する性能の触媒組成物を製造できる限り特に限定されない。典型的には、含金属触媒、アルミノキサン、及びイオン化合物の濃度が、好ましくは0.00000001~100mol/L、より好ましくは0.00000005~50mol/L、特に好ましくは0.0000001~20mol/Lである量の溶媒が使用される。 The amount of solvent used is not particularly limited as long as it is possible to produce a catalyst composition with the desired performance. Typically, an amount of solvent is used such that the concentrations of the metal-containing catalyst, aluminoxane, and ionic compound are preferably 0.00000001 to 100 mol/L, more preferably 0.00000005 to 50 mol/L, and particularly preferably 0.0000001 to 20 mol/L.
 触媒組成物の原料を含む液を混合する際、含金属触媒中の遷移金属元素のモル数をMとし、アルミノキサン中のアルミニウムのモル数をMb1とし、イオン化合物のモル数をMb2とする場合において、(Mb1+Mb2)/Mの値が、好ましくは1~200000、より好ましくは5~100000、特に好ましくは10~80000であるように、触媒組成物の原料を含む液が混合されるのが好ましい。 When mixing the liquids containing the raw materials for the catalyst composition, it is preferable to mix the liquids containing the raw materials for the catalyst composition so that the value of (M b1 +M b2 )/M a is preferably 1 to 200,000, more preferably 5 to 100,000, and particularly preferably 10 to 80,000, where M a is the number of moles of the transition metal element in the metal-containing catalyst, M b1 is the number of moles of aluminum in the aluminoxane, and M b2 is the number of moles of the ionic compound.
 触媒組成物の原料を含む液を混合する温度は特に限定されないが、-100~100℃が好ましく、-50~50℃がより好ましい。 The temperature at which the liquid containing the raw materials for the catalyst composition is mixed is not particularly limited, but is preferably -100 to 100°C, and more preferably -50 to 50°C.
 触媒組成物を調製するための含金属触媒の溶液と、アルミノキサン、及び/又はイオン化合物との混合は、重合前に、重合容器とは別の装置内で行われてもよく、重合容器において、重合前、又は重合中に行われてもよい。 The mixing of the metal-containing catalyst solution with the aluminoxane and/or ionic compound to prepare the catalyst composition may be carried out in an apparatus separate from the polymerization vessel prior to polymerization, or may be carried out in the polymerization vessel prior to or during polymerization.
 以下、触媒組成物の調製に使用される材料や、触媒組成物の調製条件について説明する。 The following describes the materials used to prepare the catalyst composition and the preparation conditions for the catalyst composition.
[アルミノキサン]
 アルミノキサンとしては、従来より種々のオレフィンの重合において助触媒等として使用されている種々のアルミノキサンを特に制限なく用いることができる。典型的には、アルミノキサンは有機アルミノキサンである。
 触媒組成物の製造に際して、アルミノキサンは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
[Aluminoxane]
As the aluminoxane, various aluminoxanes that have been conventionally used as cocatalysts in the polymerization of various olefins can be used without any particular limitation. Typically, the aluminoxane is an organic aluminoxane.
In producing the catalyst composition, the aluminoxane may be used alone or in combination of two or more kinds.
 アルミノキサンとしては、アルキルアルミノキサンが好ましく用いられる。アルキルアルミノキサンとしては、例えば、下記式(b1-1)又は(b1-2)で表される化合物が挙げられる。下記式(b1-1)又は(b1-2)で表されるアルキルアルミノキサンは、トリアルキルアルミニウムと水との反応により得られる生成物である。 As the aluminoxane, alkylaluminoxanes are preferably used. Examples of alkylaluminoxanes include compounds represented by the following formula (b1-1) or (b1-2). The alkylaluminoxanes represented by the following formula (b1-1) or (b1-2) are products obtained by reacting trialkylaluminum with water.
Figure JPOXMLDOC01-appb-C000014
(式(b1-1)及び式(b1-2)中、Rは炭素原子数1~4のアルキル基、nは0~40、好ましくは2~30の整数を示す。)
Figure JPOXMLDOC01-appb-C000014
(In formula (b1-1) and formula (b1-2), R represents an alkyl group having 1 to 4 carbon atoms, and n represents an integer of 0 to 40, preferably 2 to 30.)
 アルキルアルミノキサンとしては、メチルアルミノキサン及びメチルアルミノキサンのメチル基の一部を他のアルキル基で置換した修飾メチルアルミノキサンが挙げられる。修飾メチルアルミノキサンとしては、例えば、置換後のアルキル基として、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等の炭素原子数2~4のアルキル基を有する修飾メチルアルミノキサンが好ましく、特に、メチル基の一部をイソブチル基で置換した修飾メチルアルミノキサンがより好ましい。アルキルアルミノキサンの具体例としては、メチルアルミノキサン、エチルアルミノキサン、プロピルアルミノキサン、ブチルアルミノキサン、イソブチルアルミノキサン、メチルエチルアルミノキサン、メチルブチルアルミノキサン、メチルイソブチルアルミノキサン等が挙げられ、中でも、メチルアルミノキサン及びメチルイソブチルアルミノキサンが好ましい。 Examples of alkylaluminoxanes include methylaluminoxane and modified methylaluminoxanes in which some of the methyl groups of methylaluminoxane have been replaced with other alkyl groups. For example, modified methylaluminoxanes having an alkyl group with 2 to 4 carbon atoms such as an ethyl group, propyl group, isopropyl group, butyl group, or isobutyl group as the alkyl group after substitution are preferred, and modified methylaluminoxanes in which some of the methyl groups have been replaced with isobutyl groups are more preferred. Specific examples of alkylaluminoxanes include methylaluminoxane, ethylaluminoxane, propylaluminoxane, butylaluminoxane, isobutylaluminoxane, methylethylaluminoxane, methylbutylaluminoxane, and methylisobutylaluminoxane, with methylaluminoxane and methylisobutylaluminoxane being preferred among them.
 アルキルアルミノキサンは、公知の方法で調製することができる。また、アルキルアルミノキサンとしては、市販品を用いてもよい。アルキルアルミノキサンの市販品としては、例えば、MMAO-3A、TMAO-200シリーズ、TMAO-340シリーズ、固体MAO(いずれも東ソー・ファインケム(株)製)やメチルアルミノキサン溶液(アルベマール社製)等が挙げられる。ポリエチレン様の不純物の生成を抑制しやすい点から、固体MAO以外のアルキルアルミノキサンを用いることがより好ましい。 Alkyl aluminoxanes can be prepared by known methods. Commercially available alkyl aluminoxanes may also be used. Commercially available alkyl aluminoxanes include, for example, MMAO-3A, TMAO-200 series, TMAO-340 series, solid MAO (all manufactured by Tosoh Finechem Co., Ltd.), and methylaluminoxane solution (manufactured by Albemarle Corporation). It is more preferable to use alkyl aluminoxanes other than solid MAO, as this makes it easier to suppress the generation of polyethylene-like impurities.
[イオン化合物]
 イオン化合物は、含金属触媒との反応によりカチオン性遷移金属化合物を生成する化合物である。
 かかるイオン化合物としては、テトラキス(ペンタフルオロフェニル)ボレートのアニオン、ジメチルフェニルアンモニウムカチオン((CHN(C)H)のような活性プロトンを有するアミンカチオン、(Cのような三置換カルボニウムカチオン、カルボランカチオン、メタルカルボランカチオン、遷移金属を有するフェロセニウムカチオン等のイオンを含むイオン性化合物を用いることができる。
[Ionic compounds]
An ionic compound is a compound that produces a cationic transition metal compound upon reaction with a metal-containing catalyst.
Examples of such ionic compounds that can be used include ionic compounds containing ions such as an anion of tetrakis(pentafluorophenyl)borate, an amine cation having an active proton such as the dimethylphenylammonium cation (( CH3 ) 2N ( C6H5 )H + ), a tri-substituted carbonium cation such as ( C6H5 ) 3C + , a carborane cation, a metal carborane cation, and a ferrocenium cation having a transition metal.
 イオン化合物の好適な例としては、ボレートが挙げられる。ボレートの好ましい具体例としては、テトラキス(ペンタフルオロフェニル)トリチルボレート、ジメチルフェニルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、及びN,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N-メチルジノルマルデシルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート等のN-メチルジアルキルアンモニウムテトラキス(ペンタフルオロフェニル)ボレートが挙げられる。 A suitable example of an ionic compound is a borate. Preferred specific examples of borates include tetrakis(pentafluorophenyl)tritylborate, dimethylphenylammonium tetrakis(pentafluorophenyl)borate, and N-methyldialkylammonium tetrakis(pentafluorophenyl)borate such as N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate and N-methyldinormaldecylammonium tetrakis(pentafluorophenyl)borate.
 また、良好な収率で環状オレフィン共重合体を製造しやすい点から、重合容器内には、含金属触媒、又は含金属触媒を含む触媒組成物を加える前に、アルミノキサン、1又は複数のフェノール性水酸基と1又は複数のハロゲン原子とを芳香環上に有する芳香族化合物、及びヒンダードフェノールから選択される1種以上を存在させるのが好ましい。
 フェノール性水酸基とハロゲン原子とを有する上記の芳香族化合物において、フェノール性水酸基とハロゲン原子とは、単環であっても縮合環であってもよい同一の芳香環上に結合する。
 ヒンダードフェノールとは、フェノール性水酸基の2つの隣接位の少なくとも一方に、かさ高い置換基を有するフェノール類である。かさ高い置換基としては、例えば、イソプロピル基、イソブチル基、sec-ブチル基、及びtert-ブチル木等のメチル基以外のアルキル基、アルケニル基、アルキニル基、アリール基、複素環式基、アルコキシ基、アリールオキシ基、置換アミノ基、アルキルチオ基、並びにアリールチオ基等が挙げられる。
In addition, from the viewpoint of facilitating the production of a cyclic olefin copolymer in a good yield, it is preferable to have one or more selected from an aluminoxane, an aromatic compound having one or more phenolic hydroxyl groups and one or more halogen atoms on an aromatic ring, and a hindered phenol present in the polymerization vessel before the metal-containing catalyst or the catalyst composition containing a metal-containing catalyst is added.
In the above aromatic compounds having a phenolic hydroxyl group and a halogen atom, the phenolic hydroxyl group and the halogen atom are bonded to the same aromatic ring, which may be a single ring or a condensed ring.
Hindered phenols are phenols having a bulky substituent at least on one of the two adjacent positions to the phenolic hydroxyl group. Examples of the bulky substituent include alkyl groups other than methyl groups such as isopropyl, isobutyl, sec-butyl, and tert-butyl, alkenyl groups, alkynyl groups, aryl groups, heterocyclic groups, alkoxy groups, aryloxy groups, substituted amino groups, alkylthio groups, and arylthio groups.
 ヒンダードフェノールの具体例としては、例えば、2,6-ジ-tert-ブチル-p-クレゾール(BHT)、2,6-ジ-tert-ブチルフェノール、2-tert-ブチルフェノール、2-tert-ブチル-p-クレゾール、3,3’,5,5’-テトラ-tert-ブチル-4,4’-ジヒドロキシビフェニル、3,3’,5,5’-テトラ-tert-ブチル-2,2’-ジヒドロキシビフェニル、4,4’-ブチリデンビス(3-メチル-6-tert-ブチルフェノール)、2,2’-メチレンビス(6-tert-ブチル-4-メチルフェノール)、4,4’,4”-(1-メチルプロパニル-3-イリデン)トリス(6-tert-ブチル-m-クレゾール)、及び1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルメチル)2,4,6-トリメチルベンゼン等が挙げられる。
 これらの中では、分子量が小さく、少量の使用によりヒンダードフェノールの使用による所望する効果を得やすいことから、2,6-ジ-tert-ブチル-p-クレゾール(BHT)、及び2,6-ジ-tert-ブチルフェノールが好ましい。
 ヒンダードフェノールは、重合系内でアルキルアルミニウム化合物と反応することにより、環状オレフィン共重合体の収量増に寄与する。このため、ヒンダードフェノールは、アルキルアルミニウムとともに使用されるのが好ましい。また、ヒンダードフェノールは、重合機内でアルキルアルミニウムと混合させて用いられてもよい。重合前にアルキルアルミニウムとヒンダードフェノールとを混合して得た混合物を、重合機内に導入してもよい。
Specific examples of hindered phenols include 2,6-di-tert-butyl-p-cresol (BHT), 2,6-di-tert-butylphenol, 2-tert-butylphenol, 2-tert-butyl-p-cresol, 3,3',5,5'-tetra-tert-butyl-4,4'-dihydroxybiphenyl, 3,3',5,5'-tetra-tert-butyl-2,2'-dihydroxybiphenyl, 4,4'-butylidenebis(3-methyl-6-tert-butylphenol), 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 4,4',4"-(1-methylpropanylidene)tris(6-tert-butyl-m-cresol), and 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenylmethyl)2,4,6-trimethylbenzene.
Among these, 2,6-di-tert-butyl-p-cresol (BHT) and 2,6-di-tert-butylphenol are preferred because they have a small molecular weight and the desired effect of using the hindered phenol can be easily obtained by using a small amount of the hindered phenol.
The hindered phenol reacts with the alkylaluminum compound in the polymerization system, thereby contributing to an increase in the yield of the cyclic olefin copolymer. For this reason, it is preferable to use the hindered phenol together with the alkylaluminum. The hindered phenol may be mixed with the alkylaluminum in the polymerization machine before use. The mixture obtained by mixing the alkylaluminum and the hindered phenol before polymerization may be introduced into the polymerization machine.
 アルミノキサンについては、触媒組成物の製造方法において説明した通りである。 Aluminoxane is as explained in the manufacturing method of the catalyst composition.
 含金属触媒、又は含金属触媒を含む触媒組成物を加える前に、重合容器内にアルミノキサンを加える場合の使用量は、含金属触媒1モルに対するアルミノキサン中のアルミニウムのモル数として、1~1000000モルが好ましく、10~100000モルがより好ましい。 When aluminoxane is added to a polymerization vessel before adding a metal-containing catalyst or a catalyst composition containing a metal-containing catalyst, the amount used is preferably 1 to 1,000,000 moles, and more preferably 10 to 100,000 moles, in terms of the number of moles of aluminum in the aluminoxane per mole of metal-containing catalyst.
 重合は、含金属触媒と、アルミノキサンと、ヒンダードフェノールとの存在下、又は含金属触媒と、イオン化合物と、ヒンダードフェノールの存在下に行われるのも好ましい。 The polymerization is also preferably carried out in the presence of a metal-containing catalyst, an aluminoxane, and a hindered phenol, or in the presence of a metal-containing catalyst, an ionic compound, and a hindered phenol.
 重合容器内のモノマーが、含金属触媒と、アルキル金属化合物との存在下に重合されるのも好ましい。
 アルキル金属化合物は、従来から、環状オレフィン等のオレフィンの重合反応に適用されている化合物であれば特に限定されない。好適なアルキル金属化合物としては、Al原子に結合するアルキル基を少なくとも1つ有するアルキルアルミニウム化合物、及びZn原子に結合するアルキル基を少なくとも1つ有するアルキル亜鉛化合物が挙げられる。
 上記の含金属触媒と、アルキル金属化合物とを組み合わせて用いると、ポリエチレン様の不純物の生成を抑制しつつ、ノルボルネン単量体と、エチレンとを含むモノマーを共重合させて環状オレフィン共重合体を効率良く製造することが特に容易である。
It is also preferred that the monomers in the polymerization vessel are polymerized in the presence of a metal-containing catalyst and an alkyl metal compound.
The alkyl metal compound is not particularly limited as long as it is a compound that has been conventionally applied to the polymerization reaction of olefins such as cyclic olefins. Suitable alkyl metal compounds include alkyl aluminum compounds having at least one alkyl group bonded to an Al atom, and alkyl zinc compounds having at least one alkyl group bonded to a Zn atom.
By using the above-mentioned metal-containing catalyst in combination with an alkyl metal compound, it is particularly easy to efficiently produce a cyclic olefin copolymer by copolymerizing a norbornene monomer and a monomer containing ethylene while suppressing the production of polyethylene-like impurities.
 アルキル金属化合物は、1種を単独で使用されてもよく、2種以上を組み合わせて使用されてもよい。 The alkyl metal compounds may be used alone or in combination of two or more.
 アルキルアルミニウム化合物としては、オレフィン類の重合等に従来より用いられている化合物を特に限定なく使用できる。アルキルアルミニウム化合物としては、例えば、下記一般式(II)で示される化合物が挙げられる。
(R01z1AlX3-z1 (II)
(式(II)中、R01は炭素原子数が1~15のアルキル基であり、Xはハロゲン原子又は水素原子であり、z1は1~3の整数である。)
As the alkylaluminum compound, any compound that has been conventionally used for the polymerization of olefins, etc., can be used without any particular limitation. As the alkylaluminum compound, for example, a compound represented by the following general formula (II) can be mentioned.
(R 01 ) z1 AlX 3-z1 (II)
(In formula (II), R 01 is an alkyl group having 1 to 15 carbon atoms, X is a halogen atom or a hydrogen atom, and z1 is an integer of 1 to 3.)
 R01としてのアルキル基の炭素原子数は1~15であり、所望する効果を得やすい点から1~8がより好ましく、2~8がさらに好ましい。アルキル基の好ましい具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。 The number of carbon atoms in the alkyl group represented by R 01 is 1 to 15, and from the viewpoint of ease of obtaining the desired effect, is preferably 1 to 8, and is further preferably 2 to 8. Specific preferred examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group.
 アルキルアルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリn-プロピルアルミニウム、トリイソプロピルアルミニウム、トリn-ブチルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリn-ペンチルアルミニウム、トリn-ヘキシルアルミニウム、トリn-ヘプチルアルミニウム、トリn-オクチルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジイソブチルアルミニウムクロリド等のジアルキルアルミニウムハライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジn-プロピルジメチルアルミニウムハイドライド、ジイソプロピルジメチルアルミニウムハイドライド、ジn-ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジsec-ブチルアルミニウムハイドライド、ジn-ペンチルアルミニウムハイドライド、ジn-ヘキシルアルミニウムハイドライド、ジn-ヘプチルアルミニウムハイドライド、ジn-オクチルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド;ジメチルアルミニウムメトキシド等のジアルキルアルミニウムアルコキシドが挙げられる。 Specific examples of alkylaluminum compounds include trialkylaluminums such as trimethylaluminum, triethylaluminum, tri-n-propylaluminum, triisopropylaluminum, tri-n-butylaluminum, triisobutylaluminum, trisec-butylaluminum, tri-n-pentylaluminum, tri-n-hexylaluminum, tri-n-heptylaluminum, and tri-n-octylaluminum; dialkylaluminum halides such as dimethylaluminum chloride, diethylaluminum chloride, and diisobutylaluminum chloride; dialkylaluminum hydrides such as dimethylaluminum hydride, diethylaluminum hydride, di-n-propyldimethylaluminum hydride, diisopropyldimethylaluminum hydride, di-n-butylaluminum hydride, diisobutylaluminum hydride, disec-butylaluminum hydride, di-n-pentylaluminum hydride, di-n-hexylaluminum hydride, di-n-heptylaluminum hydride, and di-n-octylaluminum hydride; and dialkylaluminum alkoxides such as dimethylaluminum methoxide.
 アルキル亜鉛化合物としては、オレフィン類の重合等に従来より用いられている化合物を特に限定なく使用できる。アルキル亜鉛化合物としては、例えば、下記一般式(III)で示される化合物が挙げられる。
(R02z2ZnX2-z2 (III)
(式(II)中、R02は炭素原子数が1~15、好ましくは1~8のアルキル基であり、Xはハロゲン原子又は水素原子であり、z2は1~3の整数である。)
As the alkylzinc compound, any compound that has been conventionally used for the polymerization of olefins, etc., can be used without any particular limitation. As the alkylzinc compound, for example, a compound represented by the following general formula (III) can be mentioned.
(R 02 ) z2 ZnX 2-z2 (III)
(In formula (II), R02 is an alkyl group having 1 to 15, preferably 1 to 8, carbon atoms, X is a halogen atom or a hydrogen atom, and z2 is an integer of 1 to 3.)
 R02としてのアルキル基の炭素原子数は1~15であり、所望する効果を得やすい点から1~8がより好ましく、2~8がさらに好ましい。アルキル基の好ましい具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。 The number of carbon atoms in the alkyl group represented by R 02 is 1 to 15, and from the viewpoint of easily obtaining the desired effect, 1 to 8 is more preferable, and 2 to 8 is even more preferable. Specific preferred examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, an n-pentyl group, an n-hexyl group, an n-heptyl group, and an n-octyl group.
 アルキル亜鉛化合物の具体例としては、ジメチル亜鉛、ジエチル亜鉛、ジn-プロピル亜鉛、ジイソプロピル亜鉛、ジn-ブチル亜鉛、ジイソブチル亜鉛、ジsec-ブチル亜鉛、ジn-ペンチル亜鉛、ジn-ヘキシル亜鉛、ジn-ヘプチル亜鉛、ジn-オクチル亜鉛等のジアルキル亜鉛;メチル亜鉛クロリド、エチル亜鉛クロリド、イソブチル亜鉛クロリド等のアルキル亜鉛ハライド;メチル亜鉛ハイドライド、エチル亜鉛ハイドライド、イソブチル亜鉛ハイドライド等のアルキル亜鉛ハイドライドが挙げられる。 Specific examples of alkyl zinc compounds include dialkyl zincs such as dimethyl zinc, diethyl zinc, di-n-propyl zinc, diisopropyl zinc, di-n-butyl zinc, diisobutyl zinc, di-sec-butyl zinc, di-n-pentyl zinc, di-n-hexyl zinc, di-n-heptyl zinc, and di-n-octyl zinc; alkyl zinc halides such as methyl zinc chloride, ethyl zinc chloride, and isobutyl zinc chloride; and alkyl zinc hydrides such as methyl zinc hydride, ethyl zinc hydride, and isobutyl zinc hydride.
 アルキル金属化合物の中では、トリアルキルアルミニウム、ジアルキルアルミニウムハイドライド、及びジアルキル亜鉛からなる群より選択される1種以上が好ましく、トリアルキルアルミニウム、及び/又はジアルキルアルミニウムハイドライドがより好ましい。 Among the alkyl metal compounds, one or more selected from the group consisting of trialkylaluminum, dialkylaluminum hydride, and dialkylzinc are preferred, with trialkylaluminum and/or dialkylaluminum hydride being more preferred.
 含金属触媒とともに使用されるアルキル金属化合物の使用量は、含金属触媒1モルに対するアルキル金属化合物のモル数として、1~500000モルが好ましく、10~50000モルがより好ましい。 The amount of alkyl metal compound used together with the metal-containing catalyst is preferably 1 to 500,000 moles, and more preferably 10 to 50,000 moles, in terms of the number of moles of alkyl metal compound per mole of metal-containing catalyst.
 重合条件は、所望する物性の環状オレフィン共重合体が得られる条件であれば、特に限定されず、公知の条件を用いることができる。
 触媒組成物の使用量は、その調製に用いられる含金属化合物の使用量から導出される。触媒組成物の使用量は、その調製に用いられた含金属化合物の質量として、ノルボルネン単量体1モルに対し、0.000000001~0.005モルが好ましく、0.00000001~0.0005モルがより好ましい。
The polymerization conditions are not particularly limited as long as a cyclic olefin copolymer having desired physical properties can be obtained, and known conditions can be used.
The amount of the catalyst composition used is derived from the amount of the metal-containing compound used in the preparation thereof. The amount of the catalyst composition used is preferably 0.000000001 to 0.005 mol, more preferably 0.00000001 to 0.0005 mol, in terms of the mass of the metal-containing compound used in the preparation thereof, per mol of the norbornene monomer.
 重合時間は特に限定されず、所望する収率に達するか、重合体の分子量が所望する程度に上昇するまで重合が行われる。
 重合時間は、温度や、触媒の組成や、単量体組成によっても異なるが、典型的には0.01時間~120時間であり、0.1時間~80時間が好ましく、0.2時間~10時間がより好ましい。
The polymerization time is not particularly limited, and the polymerization is carried out until a desired yield is reached or the molecular weight of the polymer increases to a desired level.
The polymerization time varies depending on the temperature, the catalyst composition, and the monomer composition, but is typically 0.01 to 120 hours, preferably 0.1 to 80 hours, and more preferably 0.2 to 10 hours.
 触媒組成物の少なくとも一部、好ましくは全部が、重合容器に連続的に添加されるのが好ましい。
 触媒組成物を連続的に添加することにより、環状オレフィン共重合体の連続製造が可能になり、環状オレフィン共重合体の製造コストを低減させることが可能になる。
It is preferred that at least a portion, and preferably all, of the catalyst composition is added continuously to the polymerization vessel.
By continuously adding the catalyst composition, the cyclic olefin copolymer can be continuously produced, and the production cost of the cyclic olefin copolymer can be reduced.
 以上説明した方法によれば、ノルボルネン単量体と、エチレンとを含むモノマーを共重合させて、ポリエチレン様の不純物の生成を抑制しつつ、環状オレフィン共重合体を効率良く製造できる。
 ポリエチレン様の不純物の生成の抑制は、例えば、環状オレフィン共重合体の試料0.1gを、トルエン10gに溶解させた溶液を、目視観察することにより確認できる。トルエン溶液を目視した際に、濁りが観察されない場合、ポリエチレン様の不純物の生成が抑制されている。
 得られる環状オレフィン共重合体のガラス転移温度は特に限定されないが、加工性の観点から、例えば185℃以下が好ましく、160℃以下がより好ましく、130℃以下がさらに好ましく、120℃以下がさらにより好ましく、100℃以下が特に好ましい。
 通常、環状オレフィン共重合体の試料を用いて、JIS K7121に記載の方法に従って、窒素雰囲気下、昇温速度20℃/分の条件で示差走査熱量計による測定を行うと、得られるDSC曲線において、50~250℃の範囲内に環状オレフィン共重合体に由来するガラス転移温度が観測される。
 また、上記の方法により製造される環状オレフィン共重合体の試料を、JIS K7121に記載の方法に従って、窒素雰囲気下、昇温速度20℃/分の条件で示差走査熱量計(DSC)により測定した場合、得られたDSC曲線が、ポリエチレン様の不純物に由来する融点(融解エンタルピー)のピークを有さないことが好ましい。このことは、環状オレフィン共重合体中のポリエチレン様の不純物が存在しないか極めて少ないことを意味する。なお、環状オレフィン共重合体中にポリエチレン様の不純物が含まれている場合、DSC曲線上のポリエチレン様の不純物に由来する融点のピークは、一般的に90℃~140℃の範囲内に検出される。
According to the method described above, a norbornene monomer and a monomer containing ethylene are copolymerized to efficiently produce a cyclic olefin copolymer while suppressing the production of polyethylene-like impurities.
The suppression of the formation of polyethylene-like impurities can be confirmed, for example, by visually observing a solution in which 0.1 g of a cyclic olefin copolymer sample is dissolved in 10 g of toluene. If no turbidity is observed when the toluene solution is visually observed, the formation of polyethylene-like impurities is suppressed.
The glass transition temperature of the resulting cyclic olefin copolymer is not particularly limited, but from the viewpoint of processability, it is, for example, preferably 185°C or less, more preferably 160°C or less, even more preferably 130°C or less, even more preferably 120°C or less, and particularly preferably 100°C or less.
Usually, when a sample of a cyclic olefin copolymer is subjected to measurement by a differential scanning calorimeter under conditions of a nitrogen atmosphere and a temperature increase rate of 20° C./min according to the method described in JIS K7121, a glass transition temperature derived from the cyclic olefin copolymer is observed in the range of 50 to 250° C. in the obtained DSC curve.
In addition, when a sample of the cyclic olefin copolymer produced by the above method is measured by a differential scanning calorimeter (DSC) under a nitrogen atmosphere at a heating rate of 20°C/min according to the method described in JIS K7121, it is preferable that the obtained DSC curve does not have a peak of melting point (melting enthalpy) derived from polyethylene-like impurities. This means that there is no polyethylene-like impurity in the cyclic olefin copolymer or the amount of polyethylene-like impurities is extremely small. Note that, when the cyclic olefin copolymer contains polyethylene-like impurities, the melting point peak derived from the polyethylene-like impurities on the DSC curve is generally detected within the range of 90°C to 140°C.
 上記の方法により製造される環状オレフィン共重合体は、ポリエチレン様の不純物の含有量が少なく透明性に優れる。このため、上記の方法により製造される環状オレフィン共重合体は、光学的な機能面や美観の点から高度な透明性が要求される、光学フィルム又は光学シートや、包装材料用のフィルム又はシートの材料等に特に好ましく使用される。 The cyclic olefin copolymer produced by the above method has a low content of polyethylene-like impurities and is highly transparent. For this reason, the cyclic olefin copolymer produced by the above method is particularly suitable for use in optical films or sheets, and film or sheet materials for packaging materials, which require a high level of transparency from the standpoint of optical functionality and aesthetics.
 以下、実施例を示し、本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。 The present invention will be explained in detail below with examples, but the present invention is not limited to these examples.
[実施例1~16、及び比較例1~4]
 環状オレフィン樹脂組成物を製造するに際し、実施例、及び比較例において、含金属触媒として下記のCat.1~Cat.9を用いた。
[Examples 1 to 16 and Comparative Examples 1 to 4]
In producing the cyclic olefin resin composition, the following Cat. 1 to Cat. 9 were used as the metal-containing catalyst in the examples and comparative examples.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 実施例、及び比較例において、助触媒として下記のCC1、及びCC2を用いた。
CC1:N-メチルジアルキルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート(アルキル:C14~C18(平均:C17.5)(東ソー・ファインケム(株)製)
CC2:6.5質量%(Al原子の含有量として)MMAO-3Aトルエン溶液([(CH0.7(iso-C0.3AlO]で表されるメチルイソブチルアルミノキサンの溶液、東ソー・ファインケム(株)製、なお全Alに対して6mol%のトリメチルアルミニウムを含有する)
In the examples and comparative examples, the following cocatalysts CC1 and CC2 were used.
CC1: N-methyldialkylammonium tetrakis(pentafluorophenyl)borate (alkyl: C14 to C18 (average: C17.5) (manufactured by Tosoh Finechem Co., Ltd.)
CC2: 6.5 mass % (as the content of Al atoms) MMAO-3A toluene solution (a solution of methylisobutylaluminoxane represented by [(CH 3 ) 0.7 (iso-C 4 H 9 ) 0.3 AlO] n , manufactured by Tosoh Finechem Co., Ltd., containing 6 mol % of trimethylaluminum based on the total Al).
(実施例1~8、実施例10~16、及び比較例1~4)
 よく乾燥させた、撹拌子を含む150mLステンレス製オートクレーブに、重合溶媒としてのデカリン、及び表1に記載の量の2-ノルボルネンを加えた。
 重合温度90℃になるまでオートクレーブを加熱した後、含金属触媒溶液を、含金属触媒量が0.5μmolとなるように添加した。含金属触媒溶液はデカリンを用いて調製された。次いで、助触媒CC1を、0.93μmol加えた。次いでゲージ圧0.9MPaのエチレン圧をかけた後、30秒後を重合開始点とした。
 また、エチレン圧をかける直前のモノマー溶液の全量は、80mLとした。
 重合開始から15分後、エチレン供給を停止し、注意深く圧力を常圧に戻した後、反応溶液中にイソプロピルアルコールを加えて反応を停止させた。その後、アセトン300mL、メタノールあるいはイソプロピルアルコール200mL、塩酸5mLの混合溶媒に重合溶液を投入して共重合体を沈殿化させた。共重合体を吸引濾過にて回収し、アセトン、メタノールで洗浄後、共重合体を110℃で12時間真空乾燥を行い、ノルボルネンとエチレンとの共重合体を得た。
 触媒の使用量と、共重合体の取得量とから算出される、触媒1g当たりの共重合体収量(kg)を、表1に記す。
(Examples 1 to 8, Examples 10 to 16, and Comparative Examples 1 to 4)
Decalin as a polymerization solvent and 2-norbornene in the amount shown in Table 1 were added to a thoroughly dried 150 mL stainless steel autoclave containing a stirrer.
After heating the autoclave to a polymerization temperature of 90° C., a metal-containing catalyst solution was added so that the amount of the metal-containing catalyst was 0.5 μmol. The metal-containing catalyst solution was prepared using decalin. Then, 0.93 μmol of the cocatalyst CC1 was added. Then, ethylene pressure of 0.9 MPa was applied, and the polymerization initiation point was 30 seconds later.
The total amount of the monomer solution immediately before the application of ethylene pressure was 80 mL.
15 minutes after the start of polymerization, the supply of ethylene was stopped, and the pressure was carefully returned to normal pressure, and then isopropyl alcohol was added to the reaction solution to stop the reaction.Then, the polymerization solution was poured into a mixed solvent of 300 mL of acetone, 200 mL of methanol or isopropyl alcohol, and 5 mL of hydrochloric acid to precipitate the copolymer.The copolymer was recovered by suction filtration, washed with acetone and methanol, and then vacuum dried at 110°C for 12 hours to obtain a copolymer of norbornene and ethylene.
The copolymer yield (kg) per gram of catalyst, calculated from the amount of catalyst used and the amount of copolymer obtained, is shown in Table 1.
(実施例9)
 よく乾燥させた、撹拌子を含む150mLステンレス製オートクレーブに、重合溶媒としてのデカリン、及び表1に記載の量の2-ノルボルネンを加えた。次いで、助触媒CC2を、5000μmol加えた。
 重合温度90℃になるまでオートクレーブを加熱した後、含金属触媒溶液を、含金属触媒量が0.5μmolとなるように添加した。含金属触媒溶液はデカリンを用いて調製された。次いでゲージ圧0.9MPaのエチレン圧をかけた後、30秒後を重合開始点とした。
 また、エチレン圧をかける直前のモノマー溶液の全量は、80mLとした。
 重合開始から15分後、エチレン供給を停止し、注意深く圧力を常圧に戻した後、反応溶液中にイソプロピルアルコールを加えて反応を停止させた。その後、アセトン300mL、メタノールあるいはイソプロピルアルコール200mL、塩酸5mLの混合溶媒に重合溶液を投入して共重合体を沈殿化させた。共重合体を吸引濾過にて回収し、アセトン、メタノールで洗浄後、共重合体を110℃で12時間真空乾燥を行い、ノルボルネンとエチレンとの共重合体を得た。
 触媒の使用量と、共重合体の取得量とから算出される、触媒1g当たりの共重合体収量(kg)を、表1に記す。
Example 9
To a thoroughly dried 150 mL stainless steel autoclave containing a stirrer, decalin as a polymerization solvent and 2-norbornene in the amount shown in Table 1 were added. Then, 5000 μmol of the cocatalyst CC2 was added.
After heating the autoclave to a polymerization temperature of 90° C., a metal-containing catalyst solution was added so that the amount of the metal-containing catalyst was 0.5 μmol. The metal-containing catalyst solution was prepared using decalin. Then, ethylene pressure of 0.9 MPa was applied, and the polymerization initiation point was 30 seconds later.
The total amount of the monomer solution immediately before the application of ethylene pressure was 80 mL.
15 minutes after the start of polymerization, the supply of ethylene was stopped, and the pressure was carefully returned to normal pressure, and then isopropyl alcohol was added to the reaction solution to stop the reaction.Then, the polymerization solution was poured into a mixed solvent of 300 mL of acetone, 200 mL of methanol or isopropyl alcohol, and 5 mL of hydrochloric acid to precipitate the copolymer.The copolymer was recovered by suction filtration, washed with acetone and methanol, and then vacuum dried at 110°C for 12 hours to obtain a copolymer of norbornene and ethylene.
The copolymer yield (kg) per gram of catalyst, calculated from the amount of catalyst used and the amount of copolymer obtained, is shown in Table 1.
 また、以下の方法に従い、ガラス転移温度の測定と、濁り試験とを行った。また、ガラス転移温度の測定結果と濁り試験の結果とを、表1に記す。  In addition, the glass transition temperature was measured and a turbidity test was performed according to the following methods. The results of the glass transition temperature measurement and the turbidity test are shown in Table 1.
<ガラス転移温度(Tg)>
 DSC法(JIS K7121記載の方法)によって、環状オレフィン共重合体のTgを測定した。
DSC装置:示差走査熱量計(パーキンエルマー社製、DSC-8500)
測定雰囲気:窒素
測定温度範囲:50-250℃
昇温条件:20℃/分
 なお、表1中のN.D.は、DSC曲線上において、上記測定温度範囲に環状オレフィン共重合体に由来するガラス転移温度のピークが検出されないことを示す。
<Glass transition temperature (Tg)>
The Tg of the cyclic olefin copolymer was measured by a DSC method (the method described in JIS K7121).
DSC device: Differential scanning calorimeter (PerkinElmer, DSC-8500)
Measurement atmosphere: Nitrogen Measurement temperature range: 50-250°C
Heating condition: 20° C./min. In Table 1, N.D. indicates that no peak of the glass transition temperature derived from the cyclic olefin copolymer is detected in the above measurement temperature range on the DSC curve.
<不純物熱分析>
 ガラス転移温度の測定により得られたDSC曲線において、90~140℃の範囲内に観察されるポリエチレン様の不純物に由来する融点のピーク面積から発熱量(mJ/mg)を算出した。算出された発熱量が大きいほど、ポリエチレン様の不純物の含有量が多い。
 なお、表1中のN.D.は、DSC曲線上においてポリエチレン様の不純物に由来する融点のピークが検出されないことを示す。
<Impurity Thermal Analysis>
In the DSC curve obtained by measuring the glass transition temperature, the calorific value (mJ/mg) was calculated from the peak area of the melting point derived from polyethylene-like impurities observed in the range of 90 to 140° C. The larger the calculated calorific value, the higher the content of polyethylene-like impurities.
In addition, N.D. in Table 1 indicates that no melting point peak due to polyethylene-like impurities is detected on the DSC curve.
<濁り試験>
 得られた環状オレフィン共重合体0.1gを、トルエン10gに溶解させた後、溶液における濁りの有無を観察した。濁りが認められた場合、環状オレフィン共重合体にポリエチレン様の不純物が含まれる。濁りが認められなかった場合、環状オレフィン共重合体にポリエチレン様の不純物が含まれない。濁りの有無を、表1に記す。
<Turbidity test>
0.1 g of the obtained cyclic olefin copolymer was dissolved in 10 g of toluene, and the presence or absence of turbidity in the solution was observed. If turbidity was observed, the cyclic olefin copolymer contained polyethylene-like impurities. If no turbidity was observed, the cyclic olefin copolymer did not contain polyethylene-like impurities. The presence or absence of turbidity is shown in Table 1.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 実施例1~16によれば、ノルボルネン単量体と、エチレンとを、所定の構造の含金属触媒の存在下に重合させることにより、ポリエチレン様の不純物の生成を抑制しつつ、ノルボルネンとエチレンとの共重合体を効率良く得ることができることが分かる。
 他方、比較例1~4によれば、所定の構造以外の構造の含金属触媒を用いる場合、ノルボルネンとエチレンとの共重合体を効率良く得ることが難しく、さらに、エチレン様の不純物が生成しやすいことが分かる。
 なお、実施例1~16では、Tgを測定した際に得られたDSC曲線上に、融点に相当するピークが見られなかった。他方で、比較例1~4では、Tgを測定した際に得られたDSC曲線上に、ポリエチレン様不純物の融点に相当するピークが観察された。
According to Examples 1 to 16, it is understood that by polymerizing norbornene monomer and ethylene in the presence of a metal-containing catalyst having a predetermined structure, it is possible to efficiently obtain a copolymer of norbornene and ethylene while suppressing the production of polyethylene-like impurities.
On the other hand, according to Comparative Examples 1 to 4, it is found that when a metal-containing catalyst having a structure other than the predetermined structure is used, it is difficult to efficiently obtain a copolymer of norbornene and ethylene, and further, ethylene-like impurities are likely to be produced.
In addition, no peak corresponding to the melting point was observed on the DSC curve obtained when Tg was measured in Examples 1 to 16. On the other hand, in Comparative Examples 1 to 4, a peak corresponding to the melting point of the polyethylene-like impurity was observed on the DSC curve obtained when Tg was measured.

Claims (11)

  1.  ノルボルネン単量体由来の構成単位とエチレン由来の構成単位とを含む環状オレフィン共重合体の製造方法であって、
     少なくとも、前記ノルボルネン単量体と、エチレンとをモノマーとして重合容器内に仕込むことと、
     前記重合容器内の前記モノマーを、含金属触媒の存在下に重合させることと、を含み、
     前記含金属触媒が、M-A-Zで表される結合を有し、
     前記Mが、周期律表第4族遷移金属の原子であり、前記Aが、酸素原子、硫黄原子、セレン原子、又はテルル原子であり、前記Zが置換基を有するフェニル基であり、
     前記フェニル基において、前記Aが結合する位置に対するパラ位に、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基が結合している、製造方法。
    A method for producing a cyclic olefin copolymer containing a constituent unit derived from a norbornene monomer and a constituent unit derived from ethylene, comprising the steps of:
    charging at least the norbornene monomer and ethylene as monomers into a polymerization vessel;
    and polymerizing the monomer in the polymerization vessel in the presence of a metal-containing catalyst,
    The metal-containing catalyst has a bond represented by M-A-Z,
    M is an atom of a transition metal of Group 4 of the periodic table, A is an oxygen atom, a sulfur atom, a selenium atom, or a tellurium atom, and Z is a phenyl group having a substituent;
    A production method in which a hydrocarbon group which may contain a silicon atom or a germanium atom is bonded to the phenyl group at a para position relative to the position to which A is bonded.
  2.  前記含金属触媒が、下記式(a1):
    Figure JPOXMLDOC01-appb-C000001
    (式(a1)中、Mは、Ti、Zr、又はHfであり、Xは、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又はハロゲン原子であり、Lは下記式(a1a):
    Figure JPOXMLDOC01-appb-C000002
    で表される基であり、
     Lは、下記式(a1b):
    Figure JPOXMLDOC01-appb-C000003
    で表される基であり、
     式(a1a)中、Ra1~Ra5は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基であり、Ra1~Ra5のうちの5員環上で隣接する2つの基は相互に結合して環を形成してもよく、
     式(a1b)中、Ra6、及びRa7は、それぞれ独立に、同一でも異なっていてもよく、水素原子、ヘテロ原子を含んでいてもよい炭素原子数1~20の有機置換基、又は無機置換基であり、Ra8は、ケイ素原子、又はゲルマニウム原子を含んでいてもよい炭化水素基である。)
    で表される含金属化合物である、請求項1に記載の環状オレフィン共重合体の製造方法。
    The metal-containing catalyst is represented by the following formula (a1):
    Figure JPOXMLDOC01-appb-C000001
    In formula (a1), M is Ti, Zr, or Hf, X is an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or a halogen atom, and L1 is represented by the following formula (a1a):
    Figure JPOXMLDOC01-appb-C000002
    is a group represented by
    L2 is represented by the following formula (a1b):
    Figure JPOXMLDOC01-appb-C000003
    is a group represented by
    In formula (a1a), R a1 to R a5 each independently represent the same or different and a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent, and two adjacent groups among R a1 to R a5 on the 5-membered ring may be bonded to each other to form a ring;
    In formula (a1b), R a6 and R a7 may be the same or different and each independently represent a hydrogen atom, an organic substituent having 1 to 20 carbon atoms which may contain a heteroatom, or an inorganic substituent, and R a8 represents a hydrocarbon group which may contain a silicon atom or a germanium atom.
    The method for producing a cyclic olefin copolymer according to claim 1, wherein the metal-containing compound is represented by the formula:
  3.  前記Ra1~Ra5の少なくとも1つが、炭素原子3~20の有機置換基である、請求項2に記載の環状オレフィン共重合体の製造方法。 3. The method for producing a cyclic olefin copolymer according to claim 2, wherein at least one of R a1 to R a5 is an organic substituent having 3 to 20 carbon atoms.
  4.  前記Ra1~Ra5のうちの1つが、炭素原子3~20の有機置換基であり、前記Ra1~Ra5のうちの4つが水素原子である、請求項3に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to claim 3, wherein one of R a1 to R a5 is an organic substituent having 3 to 20 carbon atoms, and four of R a1 to R a5 are hydrogen atoms.
  5.  前記有機置換基が、分岐鎖状の基である、請求項4に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to claim 4, wherein the organic substituent is a branched group.
  6.  前記MがTiである、請求項1~5のいずれか1項に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to any one of claims 1 to 5, wherein M is Ti.
  7.  ケイ素原子、又はゲルマニウム原子を含んでいてもよい前記炭化水素基に含まれる、炭素原子の数、ケイ素原子の数、及びゲルマニウム原子の数の合計が、3以上である、請求項1~5のいずれか1項に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to any one of claims 1 to 5, wherein the total number of carbon atoms, silicon atoms, and germanium atoms contained in the hydrocarbon group, which may contain silicon atoms or germanium atoms, is 3 or more.
  8.  ケイ素原子、又はゲルマニウム原子を含んでいてもよい前記炭化水素基が分岐を有する、請求項7に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to claim 7, wherein the hydrocarbon group, which may contain a silicon atom or a germanium atom, has a branch.
  9.  ケイ素原子、又はゲルマニウム原子を含んでいてもよい前記炭化水素基が、分岐鎖アルキル基、ジアルキルシリル基、又はトリアルキルシリル基である、請求項8に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to claim 8, wherein the hydrocarbon group, which may contain a silicon atom or a germanium atom, is a branched alkyl group, a dialkylsilyl group, or a trialkylsilyl group.
  10.  前記モノマーを、前記含金属触媒と、アルミノキサン、及びボレート化合物の少なくとも一方の存在下に重合させる、請求項1~5のいずれか1項に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to any one of claims 1 to 5, wherein the monomer is polymerized in the presence of the metal-containing catalyst and at least one of an aluminoxane and a borate compound.
  11.  前記環状オレフィン共重合体の試料を、JIS K7121に記載の方法に従って、窒素雰囲気下、昇温速度20℃/分の条件で示差走査熱量計による測定を行って得られたDSC曲線が、90~140℃の範囲内にポリエチレン様の不純物に由来する融点のピークを有さない、請求項1~5のいずれか1項に記載の環状オレフィン共重合体の製造方法。 The method for producing a cyclic olefin copolymer according to any one of claims 1 to 5, wherein a DSC curve obtained by measuring a sample of the cyclic olefin copolymer with a differential scanning calorimeter under a nitrogen atmosphere at a heating rate of 20°C/min according to the method described in JIS K7121 does not have a melting point peak derived from polyethylene-like impurities within the range of 90 to 140°C.
PCT/JP2023/036279 2022-10-18 2023-10-04 Method for producing cyclic olefin copolymer WO2024084974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022167028 2022-10-18
JP2022-167028 2022-10-18

Publications (1)

Publication Number Publication Date
WO2024084974A1 true WO2024084974A1 (en) 2024-04-25

Family

ID=90737366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/036279 WO2024084974A1 (en) 2022-10-18 2023-10-04 Method for producing cyclic olefin copolymer

Country Status (1)

Country Link
WO (1) WO2024084974A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279630A (en) * 1997-04-04 1998-10-20 Sumitomo Chem Co Ltd Production of olefin polymer
US20030065118A1 (en) * 1999-12-14 2003-04-03 Phillips Petroleum Company Dialkenyl-tricyclic-nonaromatic/olefin polymers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279630A (en) * 1997-04-04 1998-10-20 Sumitomo Chem Co Ltd Production of olefin polymer
US20030065118A1 (en) * 1999-12-14 2003-04-03 Phillips Petroleum Company Dialkenyl-tricyclic-nonaromatic/olefin polymers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TSUBOTA, MIKI: "Copolymerization of Ethylene and Cyclic Olefin Using Various Group 4 Transition Metal Complex Catalysts", ABSTRACTS OF THE SYMPOSIUM ON PETROLEUM AND PETROCHEMISTRY, vol. 32, 2002, pages 284 - 285 *

Similar Documents

Publication Publication Date Title
WO2020204188A1 (en) Production method for cyclic olefin copolymer
JP2018145425A (en) Cyclic olefin resin composition, method for producing the same, and molding
JP6491804B1 (en) Copolymer and process for producing copolymer
WO2020204187A1 (en) Cyclic olefin copolymer production method
CN106232641B (en) Process for producing cyclic olefin copolymer
US11795256B2 (en) Production method for cyclic olefin copolymer and catalyst composition for copolymerization of norbornene monomer and ethylene
WO2024084974A1 (en) Method for producing cyclic olefin copolymer
JP7175426B2 (en) Method for producing cyclic olefin copolymer
JP7073467B2 (en) Method for Producing Cyclic Olefin Copolymer
JP7257595B2 (en) Method for producing cyclic olefin copolymer
JP7329720B1 (en) Method for producing cyclic olefin copolymer and catalyst composition
JP7361239B1 (en) Method for producing cyclic olefin copolymer
JP2022060007A (en) Cyclic olefin copolymer, molding, and manufacturing method of cyclic olefin copolymer
JP7101063B2 (en) A method for verifying the catalytic activity of a metallocene catalyst, a method for producing a catalyst composition for olefin monomer polymerization, and a method for producing a polymer.
JP7127231B1 (en) transparent goods
JP7383852B1 (en) Cyclic olefin copolymer and method for producing cyclic olefin copolymer
JP7426543B2 (en) Cyclic olefin copolymers, resin compositions, and film-like or sheet-like molded products
JP7383853B1 (en) Cyclic olefin copolymer and method for producing cyclic olefin copolymer
JP2023042441A (en) Method for producing norbornane skeleton-containing polymer, and norbornane skeleton-containing polymer
JP2022030194A (en) Cyclic olefin copolymer and method for producing cyclic olefin copolymer
JP2023112594A (en) Solution composition and film
JPS63308010A (en) Branched alpha-olefin copolymer and production thereof