WO2024084936A1 - フローティングシール装置 - Google Patents

フローティングシール装置 Download PDF

Info

Publication number
WO2024084936A1
WO2024084936A1 PCT/JP2023/035873 JP2023035873W WO2024084936A1 WO 2024084936 A1 WO2024084936 A1 WO 2024084936A1 JP 2023035873 W JP2023035873 W JP 2023035873W WO 2024084936 A1 WO2024084936 A1 WO 2024084936A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating
seal ring
ring
recess
spiral groove
Prior art date
Application number
PCT/JP2023/035873
Other languages
English (en)
French (fr)
Inventor
靖 藤原
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Publication of WO2024084936A1 publication Critical patent/WO2024084936A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/34Sealings between relatively-moving surfaces with slip-ring pressed against a more or less radial face on one member

Definitions

  • the present invention relates to a floating seal device for sealing a shaft.
  • floating seal devices have been known that provide a seal between a fixed structure and a rotating structure, such as a travel motor, roller, idler, or axle, when connecting a rotating structure so that the rotating structure can rotate relative to the fixed structure.
  • Such floating seal devices seal the sealed fluid by sliding a pair of seal rings relative to one another, and generally use an elastic ring as a secondary seal, providing a floating function that allows the pair of seal rings to tilt relative to one another.
  • a floating seal device As an example of a floating seal device, as shown in Patent Document 1, it includes a housing of a fixed side structure, a rotor of a rotating side structure, a fixed ring arranged on the inner diameter side of the housing, a rotating ring arranged on the inner diameter side of the rotor, an O-ring hermetically held between the housing and the fixed ring, and an O-ring hermetically held between the rotor and the rotating ring.
  • the inner peripheral surface of the housing and the inner peripheral surface of the rotor are inclined so that their diameters decrease in the direction away from each other.
  • outer peripheral surface of the fixed ring is approximately parallel to the inner peripheral surface of the housing and inclined with respect to the axis
  • the outer peripheral surface of the rotating ring is approximately parallel to the inner peripheral surface of the rotor and inclined with respect to the axis.
  • the two O-rings are each elastically deformed, and their respective elastic restoring forces act in a direction that brings the sliding surface of the fixed ring and the sliding surface of the rotating ring closer together.
  • the sliding surfaces of the fixed ring and the rotating ring function as a primary seal
  • the O-ring functions as a secondary seal. This makes it possible to prevent foreign matter such as soil and mud from entering the machine from outside.
  • lubricating oil is contained inside the floating seal device, improving the sliding properties between the sliding surface of the fixed ring and the sliding surface of the rotating ring.
  • the present invention was developed to address these problems, and aims to provide a floating seal device that can supply lubricating oil between the sliding surfaces.
  • the floating seal device of the present invention is the rotating side housing includes a fixed side housing, a rotating side housing rotatable relative to the fixed side housing, a fixed side seal ring arranged on the inner periphery of the fixed side housing, a rotating side seal ring arranged on the inner periphery of the rotating side housing and sliding against the fixed side seal ring, a fixed side elastic seal member interposed between the fixed side housing and the fixed side seal ring, and a rotating side elastic seal member interposed between the rotating side housing and the rotating side seal ring,
  • a floating seal device in which a fluid is accommodated on an inner peripheral side of the stationary seal ring and the rotary seal ring, The inner peripheral surface of the rotating seal ring is formed with a recess extending in a direction opposite to the direction of rotation of the rotating seal ring toward the sliding surface side end. According to this, as the rotating seal ring rotates, the fluid contained within the floating seal device is guided toward between the sliding surfaces by the recess, so that the fluid can
  • the recess may be a spiral groove. According to this, the spiral groove allows the fluid to be smoothly supplied between the sliding surfaces.
  • the width of the spiral groove may be narrower than the width of the land adjacent to the spiral groove. According to this, the fluid can be easily held in the spiral groove, so that the fluid can be reliably supplied between the sliding surfaces.
  • the recess may be open at a sliding surface side end of the inner circumferential surface of the rotating seal ring. This makes it easier to guide the fluid to the sliding surface.
  • the recess may be formed over the entire inner circumferential surface of the rotating seal ring. According to this, since the recess extends over a long range in the axial direction, a larger amount of fluid can be supplied between the sliding surfaces.
  • a bottom surface of the recess at an end portion on the sliding surface side of the rotary seal ring may be inclined toward an outer diameter side. This allows the fluid to be smoothly supplied to the sliding surface on the outer diameter side.
  • a sliding surface of the rotating seal ring is disposed on the outer diameter side of an inner circumferential surface of the rotating seal ring, and a tapered surface is formed between the sliding surface and the inner circumferential surface,
  • the recess may be provided across the inner circumferential surface and the tapered surface. According to this, the fluid is guided from the inner peripheral surface along the tapered surface to the outer diameter side, so that the fluid can be more reliably supplied between the sliding surfaces by centrifugal force.
  • a plurality of the recesses may be provided. According to this, the recesses are disposed in a dispersed manner in the circumferential direction of the inner peripheral surface of the rotating seal ring, so that the fluid can be supplied evenly in the circumferential direction of the sliding surface.
  • the rotary seal ring may have a reverse recess extending in a direction opposite to the recess extending on one circumferential side. This allows the fluid to be supplied between the sliding surfaces regardless of the rotation direction of the rotating seal ring.
  • FIG. 1 is a cross-sectional view showing a floating seal device according to a first embodiment of the present invention.
  • 4 is a view of the sliding surface of the rotating seal ring as viewed from the axial direction.
  • FIG. FIG. 4 is a cross-sectional view of the rotating seal ring.
  • FIG. 2 is a schematic diagram showing an expanded cross section taken along a spiral groove.
  • 5 is a schematic cross-sectional view showing the movement of lubricating oil when a rotating seal ring rotates.
  • FIG. 6 is a diagram showing the movement of lubricating oil when the rotating seal ring rotates, as viewed from the axial direction.
  • FIG. 10A is a cross-sectional view of a rotating seal ring according to a second embodiment of the present invention
  • FIG. 10B is a schematic view of a developed cross section taken along a spiral groove in the second embodiment.
  • FIG. 11 is a cross-sectional view of a rotating seal ring according to a third embodiment of the present invention
  • the floating seal device 1 in this embodiment 1 is a rotating shaft 9 (see Figure 1) that extends from a side frame that supports the endless track, and a track roller 3 that serves as a rotating housing is connected to it so that it can rotate relatively to the rotating shaft 9. It is used to prevent foreign matter such as soil and mud from entering the rotating shaft 9 side through the gap between the fixed housing 2 and the track roller 3.
  • the floating seal device 1 is mainly composed of a fixed side housing 2, a track roller 3, a fixed side seal ring 5, a rotating side seal ring 6, a fixed side O-ring 7 as a fixed side elastic seal member, and a rotating side O-ring 8 as a rotating side elastic seal member.
  • the fixed side housing 2 is fixed to the side frame.
  • the track roller 3 is connected to the rotating shaft 9 with the rotating shaft 9 inserted through it.
  • the fixed side seal ring 5 is disposed on the inner diameter side of the fixed side housing 2.
  • the rotating side seal ring 6 is disposed on the inner diameter side of the track roller 3.
  • the fixed side O-ring 7 is interposed between the fixed side housing 2 and the fixed side seal ring 5.
  • the rotating side O-ring 8 is interposed between the track roller 3 and the rotating side seal ring 6.
  • the track roller 3 is arranged axially spaced from the fixed housing 2 and can rotate relative to the fixed housing 2.
  • seal rings 5, 6 and the O-rings 7, 8 divide the outer space S1, which includes the gap between the fixed housing 2 and the track roller 3, and the inner space S2 on the rotating shaft 9 side, and seal the boundary between them.
  • the fixed housing 2, the track roller 3, the seal rings 5, 6, and the O-rings 7, 8 will be described in detail.
  • the fixed housing 2 is formed in a stepped cylindrical shape into which the rotating shaft 9 can be loosely inserted.
  • the fixed housing 2 has an inner periphery 2A formed on the track roller 3 side and on the inner diameter side thereof, which opens toward the track roller 3 and is recessed in the axial direction.
  • the inner circumferential portion 2A is formed with a seal surface 20 that tapers inward as it moves axially away from the opposing track roller 3.
  • a ring-shaped wall 21 that extends radially and continues circumferentially is formed. This wall 21 comes into contact with the fixed side O-ring 7 when the fixed side O-ring 7 moves axially away from the rotating side seal ring 6, restricting axial movement.
  • the track roller 3 is formed in a stepped cylindrical shape that can be fitted onto the rotating shaft 9.
  • the track roller 3 has an inner peripheral portion 3A formed on the fixed housing 2 side and on the inner diameter side, which opens onto the fixed housing 2 side and is recessed in the axial direction.
  • the inner periphery 3A is formed with a seal surface 30 that reduces inward in diameter as it moves axially away from the opposing fixed housing 2.
  • an annular wall 31 is formed that extends radially and continues circumferentially. This wall 31 comes into contact with the rotating O-ring 8 when the rotating O-ring 8 moves axially away from the fixed seal ring 5, restricting axial movement.
  • the fixed side seal ring 5 is made of cast iron and is formed into a stepped cylinder into which the rotating shaft 9 can be loosely inserted.
  • the fixed seal ring 5 has an annular sliding surface 50 at the end opposite the rotating seal ring 6.
  • the inner peripheral surface 52 of the stationary seal ring 5 extends approximately parallel to the rotating shaft 9.
  • the inner peripheral surface 52 is disposed radially inward of the sliding surface 50 and axially farther from the rotating seal ring 6 than the sliding surface 50.
  • a tapered surface 53 is formed between the sliding surface 50 and the inner circumferential surface 52.
  • the tapered surface 53 extends from the inner circumferential surface 52 toward the rotating seal ring 6 while sloping toward the outer diameter side.
  • the fixed seal ring 5 also has an annular inclined groove in the axial center of the outer diameter side that is recessed toward the inner diameter side.
  • the bottom surface of this inclined groove is a tapered surface 51 that decreases in diameter as it moves away from the sliding surface 50.
  • Cr-Mo cast iron and Ni-Cr cast iron are preferred materials for manufacturing the fixed seal ring 5, but it may also be manufactured from copper alloys, carbon steel, SiC, cemented carbide, ceramics, etc.
  • the rotating side seal ring 6 is made of cast iron and is formed into a stepped cylinder into which the rotating shaft 9 can be loosely inserted.
  • the rotating seal ring 6 has an annular sliding surface 60 at the end opposite the fixed seal ring 5.
  • the inner peripheral surface 62 of the rotating seal ring 6 extends approximately parallel to the rotating shaft 9.
  • the inner peripheral surface 62 is disposed radially inward from the sliding surface 60 and axially farther from the fixed seal ring 5 than the sliding surface 60.
  • a tapered surface 63 is formed as a sliding surface side end surface that is connected to them.
  • the tapered surface 63 extends from the inner peripheral surface 62 toward the stationary seal ring 5 while sloping toward the outer diameter side.
  • the spiral groove 64 provided on the inner peripheral surface 62 of the rotating seal ring 6 will be described in detail later.
  • the rotating seal ring 6 also has an annular inclined groove in the axial center of the outer diameter side that is recessed toward the inner diameter side.
  • the bottom surface of this inclined groove is a tapered surface 61 that decreases in diameter as it moves away from the sliding surface 60.
  • Cr-Mo cast iron and Ni-Cr cast iron are preferred materials for manufacturing the rotating seal ring 6, but it may also be manufactured from copper alloys, carbon steel, SiC, cemented carbide, ceramics, etc.
  • the fixed side O-ring 7 and the rotating side O-ring 8 are made of rubber and are formed into an annular shape that can be fitted into the inclined grooves of the fixed side seal ring 5 and the rotating side seal ring 6.
  • the fixed side O-ring 7 and rotating side O-ring 8 are sandwiched in a compressed state between the fixed side housing 2 and the fixed side seal ring 5, and between the track roller 3 and the rotating side seal ring 6.
  • the elastic restoring force of the fixed side O-ring 7 and rotating side O-ring 8 acts in a direction that brings the fixed side seal ring 5 and the rotating side seal ring 6 closer to each other.
  • a predetermined sliding surface pressure is applied in the axial direction between the sliding surfaces 50, 60, and the sliding surfaces 50, 60 function as a primary seal.
  • the fixed side O-ring 7, which is in close contact between the fixed side housing 2 and the fixed side seal ring 5, and the rotating side O-ring 8, which is in close contact between the track roller 3 and the rotating side seal ring 6, function as secondary seals.
  • the fluid may be something other than lubricating oil.
  • the fixed side O-ring 7 and the rotating side O-ring 8 are preferably made of materials such as hydrogenated nitrile rubber (H-NBR), perfluoroelastomer, nitrile rubber (NBR) with a hardness of Duro A 60 to 70, urethane rubber (U), fluororubber (FKM), butyl rubber (IIR), and elastic resins.
  • H-NBR hydrogenated nitrile rubber
  • NBR perfluoroelastomer
  • NBR nitrile rubber
  • U urethane rubber
  • FKM fluororubber
  • IIR butyl rubber
  • the inner peripheral surface 62 of the rotating seal ring 6 has multiple (12 in this embodiment) spiral grooves 64 that act as recesses with different phases in the circumferential direction, evenly spaced.
  • the spiral groove 64 is a groove that is open in the radially inward direction and has a generally rectangular cross section, and is recessed into the inner circumferential surface 62 by laser processing or the like. That is, as shown in FIG. 3, the land 62a on the inner circumferential surface 62 other than the spiral groove 64 forms a convex stripe with a generally rectangular cross section.
  • This spiral groove 64 extends spirally in the opposite direction to the forward rotation direction of the rotating seal ring 6 toward the sliding surface 60, specifically toward the sliding surface side end 62A of the inner circumferential surface 62.
  • the rotating seal ring 6 rotates clockwise when viewed axially from the right side of Fig. 3, i.e., the side opposite the sliding surface 60 (see the arrows in Figs. 1 and 3).
  • the spiral groove 64 extends spirally toward the left side of Fig. 3, i.e., the axial sliding surface 60 side, while winding counterclockwise when viewed axially from the right side of Fig. 3.
  • the spiral groove 64 is formed on the inner surface 62 of the rotating seal ring 6, wrapping around the circumference for at least one revolution.
  • the spiral groove 64 extends so as to be inclined at approximately 45 degrees relative to the axial direction of the rotating shaft 9.
  • Experimental results have shown that it is preferable for the spiral groove 64 to be inclined at 30 degrees to 60 degrees relative to the axial direction of the rotating shaft 9, and that it is particularly preferable for the spiral groove 64 to be inclined at approximately 45 degrees relative to the axial direction of the rotating shaft 9.
  • each spiral groove 64 on the sliding surface 60 side opens from the inner diameter edge of the tapered surface 63 to the fixed seal ring 5 side (i.e., the left side in FIG. 3).
  • the end 64B of each spiral groove 64 on the opposite side to the sliding surface 60 opens from the inner diameter edge of the end face 66 on the opposite side to the sliding surface 60 to the opposite side to the fixed seal ring 5.
  • the spiral groove 64 is formed over the entire inner circumferential surface 62 of the rotating seal ring 6.
  • the width dimension L1 of the spiral groove 64 is slightly smaller than the width dimension L2 of the land 62a (L1 ⁇ L2).
  • the width dimension L1 of the spiral groove 64 is preferably 1mm to 2mm. If the width is smaller than this, the lubricating oil will not easily enter the spiral groove 64, and conversely, if the width is larger than this, the lubricating oil will easily overflow from the spiral groove 64.
  • the deeper and more the number of spiral grooves 64 the greater the volume and the greater the centrifugal force, which is preferable.
  • the depth dimension L3 of the spiral groove 64 is substantially constant along the extension direction of the spiral groove 64. This allows the lubricating oil to be smoothly guided to the sliding surface 60. Note that FIG. 4 shows an expanded cross section cut along the spiral groove.
  • the lubricating oil discharged from the end 64A of each spiral groove 64 to the tapered surface 63 flows toward the outer diameter side in the extension direction of the spiral groove 64, i.e., in the direction opposite to the forward rotation direction of the rotating seal ring 6, and reaches between the sliding surfaces 50, 60 (see especially the arrow in Figure 6).
  • the lubricating oil in the machine interior space S2 is sequentially guided by the spiral groove 64 toward the area between the sliding surfaces 50, 60, preventing the exposed areas above the oil level of the lubricating oil on the sliding surfaces 50, 60 from becoming poorly lubricated. In other words, seizure between the sliding surfaces 50, 60 can be suppressed.
  • end 64A of the spiral groove 64 is open toward the tapered surface 63 of the rotating seal ring 6, making it easy to guide the lubricating oil toward the space between the sliding surfaces 50, 60.
  • the spiral groove 64 is formed over the entire inner circumferential surface 62 of the rotating seal ring 6. In other words, because the spiral groove 64 extends over a long range in the axial direction, more lubricating oil can be supplied between the sliding surfaces 50, 60.
  • multiple spiral grooves 64 are evenly spaced on the inner circumferential surface 62 of the rotating seal ring 6. This allows lubricating oil to be supplied evenly in the circumferential direction between the sliding surfaces 50, 60.
  • the width dimension L2 of the land 62a is larger than the width dimension L1 of the spiral groove 64, the lubricating oil is prevented from moving from the spiral groove 64 over the land 62a to the adjacent spiral groove 64, so that the lubricating oil can be reliably supplied between the sliding surfaces 50, 60.
  • the spiral groove 64 has a rectangular shape in cross section, the side wall surfaces that make up the spiral groove 64 prevent the lubricating oil from moving to adjacent spiral grooves 64, making it easier to retain the lubricating oil within the spiral groove 64.
  • spiral groove 64 is recessed into the inner surface 62 of the rotating seal ring 6 by laser processing or the like, so that the rotating seal ring 6 and the spiral groove 64 can be easily constructed from a single member.
  • FIG. 7(b) is an expanded view of a cross section cut along the spiral groove.
  • the spiral groove 264 of the rotating seal ring 26 of this embodiment 2 has an end 264A that extends in the outer radial direction and is open.
  • the spiral groove 264 is provided across the inner circumferential surface 262 and the tapered surface 263 of the rotating seal ring 26.
  • the spiral groove 264 has a first bottom surface 264a and a second bottom surface 264b.
  • the first bottom surface 264a extends approximately parallel to the inner peripheral surface 262 of the rotating seal ring 26.
  • the second bottom surface 264b is provided closer to the end 264A of the spiral groove 264 than the first bottom surface 264a, and is inclined so as to expand in diameter toward the sliding surface 260.
  • the end 264A extends from the inner circumferential surface 262 of the rotating seal ring 26 along the tapered surface 263 in the outer diameter direction and is open, and the lubricating oil is guided to the outer diameter side, so that the lubricating oil can be more reliably supplied to the sliding surface 260 by centrifugal force.
  • the second bottom surface 264b on the end 264A side of the spiral groove 264 is inclined so as to expand in diameter toward the sliding surface 260, so that lubricating oil can be smoothly supplied to the sliding surface 260 on the outer diameter side by centrifugal force.
  • Example 3 the floating seal device of Example 3 will be described with reference to FIG. 8. Note that the description of the same configuration as Example 1 will be omitted.
  • the inner peripheral surface 362 of the rotating seal ring 36 of this embodiment 2 is provided with a plurality of spiral grooves 364 and reverse spiral grooves 365.
  • the reverse spiral grooves 365 extend in a reverse spiral shape to the spiral grooves 364.
  • the reverse spiral groove 365 extends in a spiral shape toward the axial sliding surface 360 while winding clockwise when viewed in the axial direction from the right side of FIG. 8. This reverse spiral groove 365 intersects and communicates with the spiral groove 364 at multiple points.
  • the number of reverse spiral grooves 365 is smaller than the number of spiral grooves 364.
  • the number of reverse spiral grooves 365 is 1/3 of the number of spiral grooves 364.
  • the lubricating oil when the rotating seal ring 36 rotates in the forward direction, the lubricating oil is supplied to the sliding surface 360 by the spiral groove 364, and when the rotating seal ring 36 rotates in the reverse direction, the lubricating oil is supplied to the sliding surface 360 by the reverse spiral groove 365. In other words, the lubricating oil can be supplied to the sliding surface 360 regardless of the rotation direction of the rotating seal ring 36.
  • the reverse spiral grooves 365 are less likely to affect the lubricating oil supplied from the spiral grooves 364 during forward rotation of the rotating seal ring 36.
  • the recess is a spiral groove that is wound around the circumference one or more times, but this is not limited to this, and the recess may be wound around less than one time.
  • the sliding surface side end of the recess is shown as being open, but the sliding surface side end of the recess may be closed near the sliding surface side end face of the rotating seal ring.
  • the recess is inclined at approximately 45 degrees to the axial direction, but this is not limited, and the angle of the recess with respect to the axial direction may be freely changed.
  • the recesses have been illustrated as having a shape in which the groove width, winding pitch, and depth are constant in the extension direction, but they may vary in the extension direction.
  • the groove width, winding pitch, depth, etc. of the recesses may be freely changed.
  • the recesses are formed on the inner peripheral surface of the rotating seal ring by laser processing or the like, but, for example, a ring member having a recess formed therein may be fitted into the inner peripheral surface of the rotating seal ring to form a recess.
  • the inner peripheral surface of the rotating seal ring may be provided with a plurality of protrusions protruding toward the inner diameter side, and a recess may be formed between adjacent protrusions, or a ring member having a plurality of protrusions and having a recess formed between adjacent protrusions may be fitted into the inner peripheral surface of the rotating seal ring to form a recess.
  • the recess has a rectangular cross section, but this is not limited thereto, and the recess may have a curved cross section, etc.
  • the floating seal device was described as being used in the side frames and track rollers that make up the endless track, but it is not limited to this and may also be used in travel motors, idlers, axles, etc.
  • the fixed side housing is described as the fixed side housing 2 attached to the fixed side structure, but it is not limited to this and may be part of the fixed side structure or the fixed side structure itself, and is not limited to this.
  • the rotating side housing is described as a track roller which is the rotating side structure itself, but it is not limited to this and may be attached to the rotating side structure or form part of the rotating side structure, and is not limited to this.
  • the fixed shaft and the rotating housing rotate relative to the fixed housing, but the rotating housing may be rotatably fixed to a fixed shaft that passes through the fixed seal ring and the rotating seal ring, and the fixed shaft and the rotating housing may rotate relative to each other.
  • the stationary seal ring and the rotating seal ring may also be made of the same material.
  • recesses are also arranged symmetrically on the inner peripheral surface of the stationary seal ring, with the sliding surface as the boundary.
  • Rotating side seal ring 1 Floating seal device 2 Fixed side housing 3 Track roller (rotating side housing) 5: Fixed side seal ring 6: Rotating side seal ring 7: Fixed side O-ring (fixed side elastic seal member) 8 Rotation side O-ring (rotation side elastic seal member) 9 Rotating shaft 36 Rotating side seal ring 60 Sliding surface 62 Inner peripheral surface 62A Sliding surface side end 62a Land 63 Tapered surface (sliding surface side end surface) 64 Spiral groove (recess) 64A End (Outlet End) 365 Reverse spiral groove S1 Outer space S2 Inner space

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Sealing (AREA)

Abstract

潤滑油を摺動面間に供給できるフローティングシール装置を提供する。 回転側シールリング6の内周面62には、摺動面60側端部62Aに向けて回転側シールリング6の回転方向と逆向きに延びる凹部64が形成されている。

Description

フローティングシール装置
 本発明は、軸封するフローティングシール装置に関する。
 従来、走行モータ、ローラー、アイドラ、アクスル等のように、固定側構造に対して相対的に回転可能に回転側構造を連結するにあたって、固定側構造と回転側構造との間を軸封するフローティングシール装置が知られている。このようなフローティングシール装置は、一対のシールリングを相対摺動させて被密封流体をシールするものであり、一般に二次シールとして弾性リングを用いることで、一対のシールリングの相対的な傾動を許容するフローティングの機能が備わっている。
 フローティングシール装置の一例を示すと、特許文献1に示されるように、固定側構造のハウジングと、回転側構造の回転体と、ハウジングの内径側に配置される固定リングと、回転体の内径側に配置される回転リングと、ハウジングと固定リングとの間に密封状に狭持されるOリングと、回転体と回転リングとの間に密封状に狭持されるOリングと、を備えている。ハウジングの内周面と回転体の内周面は、互いに離れる方向に縮径するように傾斜している。また、固定リングの外周面はハウジングの内周面と略平行で軸に対して傾斜しており、回転リングの外周面は回転体の内周面と略平行で軸に対して傾斜している。
 2つのOリングはそれぞれ弾性変形されており、それぞれの弾性復帰力は固定リングの摺動面と回転リングの摺動面とを近付ける方向に作用している。これにより、固定リングの摺動面と回転リングの摺動面とは一次シールとして機能し、Oリングは二次シールとして機能するようになっている。これらにより、機外から機内に土砂や泥といった異物の進入を防止できるようになっている。また、フローティングシール装置の機内には、潤滑油が収容されており、固定リングの摺動面と回転リングの摺動面との摺動性が向上されている。
特公昭60-18869号公報(第1頁、第1図)
 しかしながら、特許文献1のようなフローティングシール装置を備える建設機械等にあっては、傾斜地や不陸地で稼働されることが多く、フローティングシール装置が傾いた場合、潤滑油が傾斜側に寄ってしまい、潤滑油の油面よりも上部に露出された部分に十分に潤滑油を供給できず、潤滑性が低下する虞があった。また、回転リングの高速回転時にも潤滑油の油面よりも上部に露出された部分に十分に潤滑油を供給できない虞があった。
 本発明は、このような問題点に着目してなされたもので、潤滑油を摺動面間に供給できるフローティングシール装置を提供することを目的とする。
 前記課題を解決するために、本発明のフローティングシール装置は、
 固定側ハウジングと、前記固定側ハウジングに対して相対回転可能な回転側ハウジングと、前記固定側ハウジングの内周側に配置された固定側シールリングと、前記回転側ハウジングの内周側に配置され、前記固定側シールリングと対向して摺動する回転側シールリングと、前記固定側ハウジングと前記固定側シールリングとの間に介在される固定側弾性シール部材と、前記回転側ハウジングと前記回転側シールリングとの間に介在される回転側弾性シール部材と、を備え、
 前記固定側シールリング及び前記回転側シールリングの内周側に流体が収容されるフローティングシール装置であって、
 前記回転側シールリングの内周面には、摺動面側端部に向けて該回転側シールリングの回転方向と逆向きに延びる凹部が形成されている。
 これによれば、回転側シールリングが回転することにより、フローティングシール装置内部に収容される流体が凹部により摺動面間に向けて誘導されるため、摺動面間に流体を供給できる。
 前記凹部は螺旋溝であってもよい。
 これによれば、螺旋溝により摺動面間に流体をスムーズに供給できる。
 前記螺旋溝の幅が、該螺旋溝に隣り合うランドの幅よりも狭くなっていてもよい。
 これによれば、流体を螺旋溝に保持しやすいため、流体を摺動面間に確実に供給できる。
 前記凹部が前記回転側シールリングの前記内周面のうち摺動面側端部に開口されていてもよい。
 これによれば、摺動面に流体を導きやすい。
 前記回転側シールリングの内周面全面に亘って前記凹部が形成されていてもよい。
 これによれば、軸方向の長い範囲に凹部が延びているため、より多くの流体を摺動面間に供給できる。
 前記凹部のうち前記回転側シールリングの摺動面側端部の底面は、外径側に向けて傾斜していてもよい。
 これによれば、外径側の摺動面に流体を円滑に供給することができる。
 前記回転側シールリングの摺動面は、前記回転側シールリングの内周面よりも外径側に配置されており、前記摺動面と前記内周面との間にはテーパ面が形成されており、
 前記凹部は前記内周面と前記テーパ面に亘って設けられていてもよい。
 これによれば、内周面からテーパ面に沿って流体が外径側に誘導されるので、遠心力により摺動面間に流体をより確実に供給できる。
 前記凹部は複数設けられていてもよい。
 これによれば、回転側シールリングの内周面の周方向に分散して凹部が配置されるため、摺動面の周方向に亘って均等に流体を供給できる。
 前記回転側シールリングは、周方向一方側に延びる前記凹部と逆方向に延びる逆凹部を有していてもよい。
 これによれば、回転側シールリングの回転方向に関わらず、流体を摺動面間に供給できる。
本発明の実施例1におけるフローティングシール装置を示す断面図である。 回転側シールリングの摺動面を軸方向から見た図である。 回転側シールリングの断面図である。 螺旋溝に沿って切断した断面を展開した概略図である。 回転側シールリングの回転時における潤滑油の動きを示す概略断面図である。 回転側シールリングの回転時における潤滑油の動きを軸方向から見た図である。 (a)は、本発明の実施例2における回転側シールリングの断面図、(b)は実施例2における螺旋溝に沿って切断した断面を展開した概略図である。 本発明の実施例3における回転側シールリングの断面図である。
 本発明に係るフローティングシール装置を実施するための形態を実施例に基づいて以下に説明する。
 実施例1に係るフローティングシール装置につき、図1から図6を参照して説明する。尚、説明の便宜上、図面において、摺動面に形成される溝等にドットを付すこともある。
 本実施例1に係るフローティングシール装置1は、無限軌道を支持するサイドフレームから延びる回転軸9(図1参照)に対して回転側ハウジングとしてのトラックローラ3が相対的に回転可能に連結されたものであり、固定側ハウジング2とトラックローラ3との隙間から回転軸9側に土砂や泥等の異物が侵入することを防止するために用いられるものである。
 図1に示されるように、フローティングシール装置1は、固定側ハウジング2と、トラックローラ3と、固定側シールリング5と、回転側シールリング6と、固定側弾性シール部材としての固定側Oリング7と、回転側弾性シール部材としての回転側Oリング8と、から主に構成されている。
 固定側ハウジング2は、サイドフレームに固定されている。トラックローラ3は、回転軸9を挿通した状態で当該回転軸9に連結されている。固定側シールリング5は、固定側ハウジング2の内径側に配置されている。回転側シールリング6は、トラックローラ3の内径側に配置されている。固定側Oリング7は、固定側ハウジング2と固定側シールリング5との間に介在されている。回転側Oリング8は、トラックローラ3と回転側シールリング6との間に介在されている。
 トラックローラ3は、固定側ハウジング2と軸方向に離間した状態で配置されており、固定側ハウジング2に対して相対的に回転可能である。
 また、各シールリング5,6及び各Oリング7,8により、固定側ハウジング2とトラックローラ3との隙間を含む機外側空間S1及び回転軸9側の機内側空間S2は区画されているとともに、それらの境界がシールされている。以降、固定側ハウジング2、トラックローラ3、各シールリング5,6及び各Oリング7,8について具体的に説明する。
 先ず、固定側ハウジング2について説明する。図1を参照して、固定側ハウジング2は、回転軸9を遊挿可能な段付き円筒状に形成されている。固定側ハウジング2は、トラックローラ3側かつ内径側に、トラックローラ3側に開口して軸方向に凹む内周部2Aが形成されている。
 内周部2Aには、対向配置されるトラックローラ3側から軸方向に離間するほどに内径側に縮径するシール面20が形成されている。また、内周部2Aのトラックローラ3側の開口とは反対側には、径方向に延び周方向に連続する環状の壁21が形成されている。この壁21は、固定側Oリング7が回転側シールリング6から軸方向に離れる方向に移動したときに、該固定側Oリング7に当接して軸方向への移動を規制するようになっている。
 次に、トラックローラ3について説明する。図1を参照して、トラックローラ3は、回転軸9に外嵌可能な段付き円筒状に形成されている。トラックローラ3は固定側ハウジング2側かつ内径側に、固定側ハウジング2側に開口して軸方向に凹む内周部3Aが形成されている。
 内周部3Aには、対向配置される固定側ハウジング2側から軸方向に離間するほどに内径側に縮径するシール面30が形成されている。また、内周部3Aの固定側ハウジング2側の開口とは反対側には、径方向に延び周方向に連続する環状の壁31が形成されている。この壁31は、回転側Oリング8が固定側シールリング5から軸方向に離れる方向に移動したときに、該回転側Oリング8に当接して軸方向への移動を規制するようになっている。
 次に、固定側シールリング5について説明する。固定側シールリング5は、鋳鉄製であり、回転軸9を遊挿可能な段付き円筒状に形成されている。
 固定側シールリング5は、回転側シールリング6と対向する端部に環状の摺動面50を備えている。
 固定側シールリング5の内周面52は、回転軸9と略平行に延びている。内周面52は、摺動面50よりも内径側、かつ摺動面50よりも回転側シールリング6から軸方向に離れた位置に配置されている。
 また、摺動面50と内周面52との間には、それらに連なるテーパ面53が形成されている。すなわち、テーパ面53は、内周面52から回転側シールリング6側に向けて外径側に傾斜しながら延びている。
 また、固定側シールリング5は、外径側軸方向中央部に、内径側へ凹む環状の傾斜溝を備えている。この傾斜溝の底面は、摺動面50から離間するほどに縮径するテーパ面51となっている。
 尚、固定側シールリング5を製造するにあたり、Cr-Mo鋳鉄、Ni-Cr鋳鉄が好ましい材料であり、この他、銅合金、炭素鋼、SiC、超硬合金、セラミックス等で製造してもよい。
 次に、回転側シールリング6について説明する。回転側シールリング6は、鋳鉄製であり、回転軸9を遊挿可能な段付き円筒状に形成されている。
 図1および図2に示されるように、回転側シールリング6は、固定側シールリング5と対向する端部に環状の摺動面60を備えている。
 回転側シールリング6の内周面62は、回転軸9と略平行に延びている。内周面62は、摺動面60よりも内径側、かつ摺動面60よりも固定側シールリング5から軸方向に離れた位置に配置されている。
 また、摺動面60と内周面62との間には、それらに連なる摺動面側端面としてのテーパ面63が形成されている。すなわち、テーパ面63は、内周面62から固定側シールリング5側に向けて外径側に傾斜しながら延びている。尚、回転側シールリング6の内周面62に設けられる螺旋溝64については、後に詳述する。
 また、回転側シールリング6は、外径側軸方向中央部に、内径側へ凹む環状の傾斜溝を備えている。この傾斜溝の底面は、摺動面60から離間するほどに縮径するテーパ面61となっている。
 尚、回転側シールリング6を製造するにあたり、Cr-Mo鋳鉄、Ni-Cr鋳鉄が好ましい材料であり、この他、銅合金、炭素鋼、SiC、超硬合金、セラミックス等で製造してもよい。
 次に、固定側Oリング7および回転側Oリング8について説明する。図1に戻って、固定側Oリング7および回転側Oリング8は、ゴム材製であり、固定側シールリング5および回転側シールリング6の傾斜溝に外嵌可能な環状に形成されている。
 これら固定側Oリング7および回転側Oリング8は、固定側ハウジング2と固定側シールリング5との間、トラックローラ3と回転側シールリング6との間に圧縮した状態で狭持されている。固定側Oリング7および回転側Oリング8の弾性復帰力は、固定側シールリング5と回転側シールリング6とを互いに近付ける方向に作用している。
 これにより、摺動面50,60間には軸方向に所定の摺動面圧が付与され、摺動面50,60は一次シールとして機能することとなる。
 また、固定側ハウジング2と固定側シールリング5との間に密着した固定側Oリング7、トラックローラ3と回転側シールリング6との間に密着した回転側Oリング8は、二次シールとして機能することになる。
 このようにして、機外側空間S1から流体としての潤滑油を収容した機内側空間S2内に土砂や泥といった異物の侵入を確実に防止することができるようになっている。尚、流体は潤滑油以外であってもよい。
 尚、固定側Oリング7および回転側Oリング8は、例えば、水素化ニトリルゴム(H-NBR)、パーフロロエラストマー、ニトリルゴム(NBR)の硬度DuroA60から70、ウレタンゴム(U)、フッ素ゴム(FKM)、ブチルゴム(IIR)、弾性力を有する樹脂等が好ましい材料である。
 次に、回転側シールリング6の螺旋溝64について図2~図4を用いて説明する。
 図2~図4に示されるように、回転側シールリング6の内周面62には、周方向に位相が異なる凹部としての螺旋溝64が複数(本実施例では12本)等配されている。
 螺旋溝64は、内径方向に開口する断面略矩形状の凹溝であり、レーザ加工等により内周面62に凹設されている。すなわち、図3に示すように、内周面62の螺旋溝64以外のランド62aは断面略矩形状の凸条を成している。
 この螺旋溝64は、摺動面60に向けて詳しくは内周面62の摺動面側端部62Aに向けて回転側シールリング6の正回転方向と逆向きに螺旋状に延びている。
 具体的には、回転側シールリング6は、図3の右側、すなわち摺動面60とは反対側から軸方向に見て、時計回りに回転するようになっている(図1、図3の矢印参照)。一方、螺旋溝64は、図3の右側から軸方向に見て、反時計回り巻きながら図3の左側、すなわち軸方向摺動面60側に向けて螺旋状に延びている。
 螺旋溝64は、回転側シールリング6の内周面62において周方向に1周以上巻いて形成されている。
 本実施例では、螺旋溝64が回転軸9の軸方向に対して略45度傾斜するように延びている。実験の結果、螺旋溝64が回転軸9の軸方向に対して30度~60度傾斜することが好ましく、特に回転軸9の軸方向に対して略45度傾斜することが好ましいとする結果が得られた。
 各螺旋溝64の摺動面60側の端部64Aは、テーパ面63の内径縁から固定側シールリング5側(すなわち図3の左側)に開放している。また、各螺旋溝64の摺動面60と反対側の端部64Bは、摺動面60と反対側の端面66の内径縁から固定側シールリング5と反対側に開放している。
 言い換えれば、螺旋溝64は、回転側シールリング6の内周面62全面に亘って形成されている。
 また、螺旋溝64の幅寸法L1は、ランド62aの幅寸法L2よりも若干小さくなっている(L1<L2)。ランド62aの幅寸法L2を螺旋溝64の幅寸法L1以上とすることでランド62aを乗り越えて下流側に向かう潤滑油が少なくなり、潤滑油は確実に摺動面60側に導かれる。尚、螺旋溝64の幅寸法L1は、好ましくは、1mm~2mmである。これよりも幅が小さいと潤滑油が螺旋溝64内に入りにくく、逆にこれよりも幅が大きいと潤滑油が螺旋溝64から溢れやすいためである。また、螺旋溝64は、深い程及び本数が多いほど体積が増し、遠心力が大きくなるため好ましい。
 また、特に図4に示されるように、螺旋溝64の深さ寸法L3は、該螺旋溝64の延設方向に亘って略一定となっている。これにより、潤滑油は円滑に摺動面60側に導かれる。尚、図4は、螺旋溝に沿って切断した断面を展開した状態を示している。
 このようなフローティングシール装置1にあっては、固定側シールリング5の摺動面50と回転側シールリング6の摺動面60との上方の一部が機内側空間S2内の潤滑油の油面よりも上部に露出されている(図6参照)。
 図5及び図6に示されるように、回転側シールリング6が回転すると、機内側空間S2内の潤滑油は、遠心力を受け、各螺旋溝64から摺動面60側に導かれる。詳しくは、潤滑油は、各螺旋溝64により持ち上げられ、各螺旋溝64の端部64Aから摺動面50,60間における潤滑油の油面よりも上部に露出した部分に向けて供給される(図5及び図6の矢印参照)。各螺旋溝64の端部64Aからテーパ面63に排出された潤滑油は、螺旋溝64の延設方向、すなわち回転側シールリング6の正回転方向と逆向き方向に向けて外径側に流れて摺動面50,60間に到達する(特に図6の矢印参照)。
 このように、回転側シールリング6が回転することにより、機内側空間S2内の潤滑油が螺旋溝64により摺動面50,60間に向けて順次導かれるため、摺動面50,60における潤滑油の油面よりも上部に露出した部分が貧潤滑となることが回避される。すなわち、摺動面50,60間の焼付きを抑制できる。
 また、螺旋溝64の端部64Aが回転側シールリング6のテーパ面63側に開放されているので、摺動面50,60間に向けて潤滑油を導きやすい。
 また、螺旋溝64は、回転側シールリング6の内周面62全面に亘って形成されている。言い換えれば、軸方向の長い範囲に螺旋溝64が延びているため、より多くの潤滑油を摺動面50,60間に供給できる。
 また、螺旋溝64は、回転側シールリング6の内周面62に複数等配されている。これによれば、摺動面50,60間の周方向に亘って均等に潤滑油を供給できる。
 また、ランド62aの幅寸法L2は螺旋溝64の幅寸法L1よりも大きいため、螺旋溝64からランド62aを乗り越えて隣の螺旋溝64に潤滑油が移動することを抑制できるため、摺動面50,60間に向けて確実に潤滑油を供給できる。
 また、螺旋溝64は、断面視矩形状をなしているため、螺旋溝64を構成する側壁面により潤滑油が隣の螺旋溝64に移動することが抑制され、螺旋溝64内に潤滑油を保持しやすい。
 また、螺旋溝64は、レーザ加工等により回転側シールリング6の内周面62に凹設されるため、回転側シールリング6と螺旋溝64を1つの部材で簡便に構成することができる。
 次に、実施例2に係るフローティングシール装置につき、図7を参照して説明する。尚、前記実施例1と同一構成で重複する構成の説明を省略する。また、図7(b)は、螺旋溝に沿って切断した断面を展開した図である。
 図7(a)および図7(b)に示されるように、本実施例2の回転側シールリング26の螺旋溝264は、端部264Aが外径方向に延びて開放されている。言い換えれば、螺旋溝264は、回転側シールリング26の内周面262とテーパ面263とに亘って設けられている。
 具体的には、図7(b)に示されるように、螺旋溝264は、第1底面264aと第2底面264bとを備えている。第1底面264aは回転側シールリング26の内周面262と略平行に延びている。第2底面264bは、第1底面264aよりも螺旋溝264の端部264A側に設けられており、摺動面260に向けて拡径するように傾斜している。
 これによれば、回転側シールリング26の内周面262からテーパ面263に沿って端部264Aが外径方向に延びて開放されており、潤滑油が外径側に誘導されるので、遠心力により摺動面260に潤滑油をより確実に供給できる。
 また、螺旋溝264における端部264A側の第2底面264bは、摺動面260に向けて拡径するように傾斜しているため、外径側の摺動面260に潤滑油を遠心力により円滑に供給することができる。
 次に、実施例3に係るフローティングシール装置につき、図8を参照して説明する。尚、前記実施例1と同一構成で重複する構成の説明を省略する。
 図8に示されるように、本実施例2の回転側シールリング36の内周面362には、螺旋溝364と、逆螺旋溝365と、が複数個ずつ設けられている。逆螺旋溝365は、螺旋溝364と逆巻き螺旋状に延びる溝である。
 具体的には、逆螺旋溝365は、図8の右側から軸方向に見て、時計回り巻きながら軸方向摺動面360側に向けて螺旋状に延びている。この逆螺旋溝365は、螺旋溝364と複数箇所で交差して連通している。
 尚、逆螺旋溝365は、旋溝364よりも数量が少ない。例えば、逆螺旋溝365は、旋溝364の1/3の数量となっている。
 これによれば、回転側シールリング36の正回転時には、螺旋溝364により潤滑油が摺動面360に供給され、回転側シールリング36の逆回転時には、逆螺旋溝365により潤滑油が摺動面360に供給されるようになっている。すなわち、回転側シールリング36の回転方向に関わらず、潤滑油を摺動面360に供給できる。
 また、逆螺旋溝365は、旋溝364よりも数量が少ないので、回転側シールリング36の正回転時に螺旋溝364から供給される潤滑油に、逆螺旋溝365が影響を与えにくくなっている。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例1~3では、凹部が周方向に一周以上巻いて形成される螺旋溝である形態を例示したが、これに限られず、凹部の巻きが一周未満であってもよい。
 また、前記実施例1~3では、凹部の摺動面側端部が開放している形態を例示したが、凹部の摺動面側端部が回転側シールリングにおける摺動面側端面近傍で閉塞されていてもよい。
 また、前記実施例1~3では、凹部の摺動面とは反対側の端部が固定側リングと反対側に開放されている形態を例示したが、反対側の端部が閉塞されていてもよい。
 また、前記実施例1~3では、凹部が軸方向に対して略45度傾斜していたが、これに限られず、軸方向に対する凹部の角度は自由に変更してもよい。
 また、前記実施例1~3では、凹部は、溝幅、巻きのピッチ、深さが延設方向に一定である形態を例示したが、延設方向に異なっていてもよい。また、凹部の溝幅、巻きのピッチ、深さ等は自由に変更してもよい。
 また、前記実施例1~3では、回転側シールリングの内周面に凹部が複数等配される形態を例示したが、等配に限られず、各螺旋溝同士の離間距離はそれぞれ自由に変更できる。また、凹部は少なくとも1つあればよく、数量は自由に変更できる。
 また、前記実施例1~3では、凹部が回転側シールリングの内周面にレーザ加工などにより凹設される形態を例示したが、例えば、凹部が形成されたリング部材を回転側シールリングの内周面に内嵌させることで回転側シールリングの内周面に凹部を形成してもよい。また、回転側シールリングの内周面に内径側に突出する凸部を複数設け、隣り合う凸部間に凹部が形成されてもよいし、凸部を複数設けることで隣り合う凸部間に凹部が形成されたリング部材を回転側シールリングの内周面に内嵌させることで、回転側シールリングの内周面に凹部が形成されてもよい。
 また、前記実施例1~3では、凹部が断面矩形状である形態を例示したが、これに限られず、断面曲面形状等であってもよい。
 また、例えば、前記実施例1~3において、フローティングシール装置は、無限軌道を構成するサイドフレーム及びトラックローラに使用される態様として説明したが、これに限らず、走行モータ、アイドラ、アクスル等に使用されてもよく、限定されるものではない。
 また、前記実施例1~3では、固定側ハウジングは、固定側構造に取付けられる固定側ハウジング2である態様として説明したが、これに限らず、固定側構造の一部、または固定側構造そのものであってもよく、限定されるものではない。同様に、回転側ハウジングは、回転側構造そのものであるトラックローラとして説明したが、これに限らず、回転側構造に取付けられるもの、または回転側構造の一部を構成するものであってもよく、限定されるものではない。
 また、前記実施例1~3では、固定側ハウジングに対して固定軸および回転側ハウジングが回転する形態を例示したが、固定側シールリングと回転側シールリングとを貫通する固定軸に対して回転側ハウジングが回転可能に固定され、固定軸と回転側ハウジングが相対的に回転するようになっていてもよい。
 また、固定側シールリングと回転側シールリングとを同じ部材としてもよい。この場合、摺動面を境界として、固定側シールリングの内周面にも凹部が対称に配置される。
1        フローティングシール装置
2        固定側ハウジング
3        トラックローラ(回転側ハウジング)
5        固定側シールリング
6        回転側シールリング
7        固定側Oリング(固定側弾性シール部材)
8        回転側Oリング(回転側弾性シール部材)
9        回転軸
36       回転側シールリング
60       摺動面
62       内周面
62A      摺動面側端部
62a      ランド
63       テーパ面(摺動面側端面)
64       螺旋溝(凹部)
64A      端部(出口側端部)
365      逆螺旋溝
S1       機外側空間
S2       機内側空間

Claims (9)

  1.  固定側ハウジングと、前記固定側ハウジングに対して相対回転可能な回転側ハウジングと、前記固定側ハウジングの内周側に配置された固定側シールリングと、前記回転側ハウジングの内周側に配置され、前記固定側シールリングと対向して摺動する回転側シールリングと、前記固定側ハウジングと前記固定側シールリングとの間に介在される固定側弾性シール部材と、前記回転側ハウジングと前記回転側シールリングとの間に介在される回転側弾性シール部材と、を備え、
     前記固定側シールリング及び前記回転側シールリングの内周側に流体が収容されるフローティングシール装置であって、
     前記回転側シールリングの内周面には、摺動面側端部に向けて該回転側シールリングの回転方向と逆向きに延びる凹部が形成されているフローティングシール装置。
  2.  前記凹部は螺旋溝である請求項1に記載のフローティングシール装置。
  3.  前記螺旋溝の幅が、該螺旋溝に隣り合うランドの幅よりも狭くなっている請求項2に記載のフローティングシール装置。
  4.  前記凹部が前記回転側シールリングの前記内周面のうち摺動面側端部に開口されている請求項1に記載のフローティングシール装置。
  5.  前記回転側シールリングの内周面全面に亘って前記凹部が形成されている請求項4に記載のフローティングシール装置。
  6.  前記凹部のうち前記回転側シールリングの摺動面側端部の底面は、外径側に向けて傾斜している請求項4に記載のフローティングシール装置。
  7.  前記回転側シールリングの摺動面は、前記回転側シールリングの内周面よりも外径側に配置されており、前記摺動面と前記内周面との間にはテーパ面が形成されており、
     前記凹部は前記内周面と前記テーパ面に亘って設けられている請求項1ないし6のいずれかに記載のフローティングシール装置。
  8.  前記凹部は複数設けられている請求項1に記載のフローティングシール装置。
  9.  前記回転側シールリングは、周方向一方側に延びる前記凹部と逆方向に延びる逆凹部を有している請求項1に記載のフローティングシール装置。
PCT/JP2023/035873 2022-10-17 2023-10-02 フローティングシール装置 WO2024084936A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022166430 2022-10-17
JP2022-166430 2022-10-17

Publications (1)

Publication Number Publication Date
WO2024084936A1 true WO2024084936A1 (ja) 2024-04-25

Family

ID=90737713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/035873 WO2024084936A1 (ja) 2022-10-17 2023-10-02 フローティングシール装置

Country Status (1)

Country Link
WO (1) WO2024084936A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50117261U (ja) * 1974-03-08 1975-09-25
JPS58104798U (ja) * 1982-01-11 1983-07-16 イ−グル工業株式会社 油潤滑式船尾管軸封装置
JPH04312269A (ja) * 1991-04-05 1992-11-04 Hitachi Constr Mach Co Ltd フローティングシール装置
CN201177044Y (zh) * 2008-02-26 2009-01-07 上海申科滑动轴承有限公司 一种螺纹浮动密封圈
US20100253005A1 (en) * 2009-04-03 2010-10-07 Liarakos Nicholas P Seal for oil-free rotary displacement compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50117261U (ja) * 1974-03-08 1975-09-25
JPS58104798U (ja) * 1982-01-11 1983-07-16 イ−グル工業株式会社 油潤滑式船尾管軸封装置
JPH04312269A (ja) * 1991-04-05 1992-11-04 Hitachi Constr Mach Co Ltd フローティングシール装置
CN201177044Y (zh) * 2008-02-26 2009-01-07 上海申科滑动轴承有限公司 一种螺纹浮动密封圈
US20100253005A1 (en) * 2009-04-03 2010-10-07 Liarakos Nicholas P Seal for oil-free rotary displacement compressor

Similar Documents

Publication Publication Date Title
JP6861730B2 (ja) しゅう動部品
JP7242658B2 (ja) シールリング
JP7036748B2 (ja) 摺動部品
CN110168240B (zh) 滑动部件
JP3563354B2 (ja) ころ軸受を組み込んだローラチェーン
US5967524A (en) Hybrid seal device
US4610319A (en) Hydrodynamic lubricant seal for drill bits
CA2259027C (en) Gas lubricated slow speed seal
CA2229339C (en) Bearing housing seal
JP4363370B2 (ja) シールリング及びシールリング付転がり軸受ユニット
JP7210565B2 (ja) シールリング
CN104220769A (zh) 具有内部面密封表面的旋转卡盘密封件
JPS6128799B2 (ja)
JP6852260B2 (ja) ころ軸受
AU721777B2 (en) Unitary bearing seal
WO2024084936A1 (ja) フローティングシール装置
US11486444B2 (en) Bearing with at least one sealing element and at least one adjusting shim for axially displacing said sealing element
US8807842B2 (en) Sealing assembly in a thrust bearing king pin application
AU2002329686B2 (en) Seal and bearing assembly
WO2020202948A1 (ja) 密封装置
US2908521A (en) Fluid seal for relatively rotating members
WO2022224673A1 (ja) 摺動部品
JP2021102976A (ja) 遊星ローラ式動力伝達装置
KR102626375B1 (ko) 밀봉장치
JP7166985B2 (ja) メカニカルシール用回り止めピン