WO2024084147A1 - System for managing a gas contained in a tank - Google Patents

System for managing a gas contained in a tank Download PDF

Info

Publication number
WO2024084147A1
WO2024084147A1 PCT/FR2023/051508 FR2023051508W WO2024084147A1 WO 2024084147 A1 WO2024084147 A1 WO 2024084147A1 FR 2023051508 W FR2023051508 W FR 2023051508W WO 2024084147 A1 WO2024084147 A1 WO 2024084147A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
management system
compression
heat exchanger
tank
Prior art date
Application number
PCT/FR2023/051508
Other languages
French (fr)
Inventor
Bernard Aoun
Pavel BORISEVICH
Majd TRABOULSI
Original Assignee
Gaztransport Et Technigaz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2210837A external-priority patent/FR3141229A1/en
Application filed by Gaztransport Et Technigaz filed Critical Gaztransport Et Technigaz
Publication of WO2024084147A1 publication Critical patent/WO2024084147A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • F17C9/04Recovery of thermal energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • F17C2201/0157Polygonal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0323Valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0338Pressure regulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/046Localisation of the removal point in the liquid
    • F17C2223/047Localisation of the removal point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/01Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the phase
    • F17C2225/0107Single phase
    • F17C2225/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/035High pressure, i.e. between 10 and 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/03Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by the pressure level
    • F17C2225/036Very high pressure, i.e. above 80 bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/043Localisation of the filling point in the gas
    • F17C2225/044Localisation of the filling point in the gas at several points, e.g. with a device for recondensing gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2225/00Handled fluid after transfer, i.e. state of fluid after transfer from the vessel
    • F17C2225/04Handled fluid after transfer, i.e. state of fluid after transfer from the vessel characterised by other properties of handled fluid after transfer
    • F17C2225/042Localisation of the filling point
    • F17C2225/046Localisation of the filling point in the liquid
    • F17C2225/047Localisation of the filling point in the liquid with a dip tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0135Pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0171Arrangement
    • F17C2227/0185Arrangement comprising several pumps or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0339Heat exchange with the fluid by cooling using the same fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • F17C2227/0337Heat exchange with the fluid by cooling
    • F17C2227/0341Heat exchange with the fluid by cooling using another fluid
    • F17C2227/0355Heat exchange with the fluid by cooling using another fluid in a closed loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/03Dealing with losses
    • F17C2260/035Dealing with losses of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/034Treating the boil-off by recovery with cooling with condensing the gas phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/033Treating the boil-off by recovery with cooling
    • F17C2265/035Treating the boil-off by recovery with cooling with subcooling the liquid phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/037Treating the boil-off by recovery with pressurising
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/032Treating the boil-off by recovery
    • F17C2265/038Treating the boil-off by recovery with expanding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/066Fluid distribution for feeding engines for propulsion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0102Applications for fluid transport or storage on or in the water
    • F17C2270/0105Ships

Definitions

  • the present invention relates to the field of floating structures for storing and/or transporting gas in the liquid state and more particularly concerns a system for managing gas stored and/or transported within such structures.
  • a floating structure comprising a tank of gas in the liquid state intended to be consumed and/or delivered to a destination point
  • said floating structure can use the gas having evaporated within of the tank, then compress it in order to power the motor(s) of the floating structure.
  • a first disadvantage of these known technologies lies in the fact that they are not optimized from the point of view of overall system consumption. For example, oversized resources are implemented in a majority of use cases, which causes overconsumption. In such a case, the cooling of the gas cargo to the liquid state is excessive and thus leads to excess energy consumption.
  • the present invention allows optimal gas management by proposing a system for managing a gas contained in at least one tank of a floating structure which comprises at least one gas consuming device, the management system comprising: at least one circuit gas supply of the gas consuming device, the supply circuit comprising at least one compression device comprising at least a first compression stage, a second compression stage and a third compression stage and configured to compress gas gas taken in the vapor state from the tank, the compression device delivering the gas in the vapor state at three different pressure levels, at least one heat treatment circuit for the gas in the vapor state compressed by at least the one of the compression stages of the compression device, at least one first heat exchanger configured to carry out a heat exchange between the gas in vapor state circulating in the supply circuit between the tank and the compression device and the gas in the vapor state circulating in the heat treatment circuit, at least one cooling circuit comprising at least one pump configured to take the gas in the liquid state from the tank, at least one second heat exchanger configured to carry out an exchange of heat between the gas in vapor state circulating in the heat
  • the gas in the vapor state in particular the gas in the vapor state intended to be reliquefied, can be compressed at different pressure levels, each of these pressure levels being adapted to different situations in which the floating structure finds itself. From these different pressure levels, the gas in the vapor state is treated differently by circulating in the heat treatment circuit, particularly in terms of the heat exchanges occurring within the heat exchangers and the potential expansion of the gas. in vapor state.
  • the invention thus makes it possible to exploit available cold resources without over-consuming to reliquefy the gas in the vapor state.
  • the supply circuit makes it possible to take the gas in the vapor state which accumulates at the level of a tank head.
  • This gas in vapor state comes from the evaporation of part of the cargo of gas in liquid state contained in the tank.
  • the gas in the vapor state can therefore be consumed or reliquefied, but must generally be evacuated in order to regulate the pressure in the tank.
  • the compression device therefore ensures the suction of gas in vapor state from the tank and compresses it.
  • the compression device can for example be a plurality of compressors arranged in series with each other, or a single compressor with multiple compression stages.
  • the first portion is thus associated with the first pressure level, that is to say when the compressed gas leaves the compression device between the first compression stage and the second compression stage.
  • the second portion is associated with the second pressure level, that is to say when the compressed gas leaves the compression device between the second compression stage and the third compression stage.
  • the gas compressed by the third compression stage is thus compressed by the entire compression device.
  • the gas in the vapor state can then reach a pressure of between 250 and 400 bars.
  • the gas in the vapor state compressed by the second compression stage reaches a pressure lower than the pressure delivered by the third compression stage, for example between 120 and 150 bars
  • the gas in the vapor state compressed by the first stage compression reaches a pressure lower than the pressure delivered by the second compression stage, for example between 7 and 20 bars.
  • the pressure of the gas in the vapor state is particularly important for supplying the gas consuming device because the latter can only consume the gas in the vapor state if it is at a compatible pressure.
  • the gas in the vapor state If the gas in the vapor state is not compatible with the gas consuming device or if the gas consuming device does not require power, the gas in the vapor state then circulates in the treatment circuit thermal. If the gas consuming device only needs a fraction of the gas in vapor state for its own consumption, the rest of the gas in vapor state then also circulates in the heat treatment circuit. One of the functions of this heat treatment circuit is to participate in the reliquefaction of the gas in the compressed vapor state.
  • the first heat exchanger makes it possible to pre-cool the gas in the compressed vapor state on the one hand and to heat the gas in the vapor state at the tank outlet on the other hand. Precooling the compressed gas facilitates its subsequent heat treatment, in particular its reliquefaction.
  • the first heat exchanger thus makes it possible to improve the overall efficiency of the management system because the low temperature of the gas in the vapor state at the outlet of the tank participates indirectly in the reliquefaction of gas in the compressed vapor state and this via the heat exchange taking place in the first heat exchanger.
  • the cooling circuit can have several functions such as participating in the reliquefaction of the gas in vapor state circulating in the heat treatment circuit, or even in managing the pressure of the tank.
  • the gas in the liquid state of the tank is taken by the pump and circulates within the cooling circuit, this pump can for example be immersed at the bottom of the tank.
  • the gas in the liquid state can pass through the second heat exchanger, which is also crossed by the gas in the vapor state circulating in the heat treatment circuit.
  • This heat exchange thus makes it possible to reliquefy the gas in the vapor state without leading to the evaporation of the gas in the liquid state circulating in the cooling circuit.
  • the advantage of the heat treatment system according to the invention is the presence of two portions within which the gas circulates in the vapor state at different pressures.
  • the second portion Due to the pressure of the gas in the vapor state circulating there, the second portion is capable of ensuring the expansion of the gas using the expansion member. Pressurization by the second compression stage then expansion subsequently promotes the reliquefaction of the unconsumed gas, for example when the duration of the journey is long and/or the quantity of gas in the vapor state generated in the sky tank is high. If the journey is short, for example less than two days, and/or the quantity of gas in the vapor state generated in the tank head is low, then it is preferable to raise the pressure of the gas in the vapor state. steam only via the first compression stage and to circulate it within the first portion.
  • the second heat exchanger is connected to the tank by a return branch comprising a termination opening into the tank and an orifice disposed on a portion of the return branch present in the tank.
  • the orifice is arranged at the end of the return branch present in the tank. This allows the liquefied gas leaving the second heat exchanger to return to the tank.
  • the orifice is a calibrated orifice. Thanks to this calibrated orifice, we can finish the expansion of the liquefied gas in the return branch at the level of the tank and thus reduce or even eliminate the vaporization of a fraction of the liquefied gas during its expansion.
  • the first portion of the heat treatment circuit is devoid of an expansion member.
  • the gas in the vapor state which circulates in the first portion is expanded by the pressure losses of this first portion, but the system does not include an active member which generates expansion within the first portion.
  • the first portion comprises a first valve and the second portion comprises a second valve, the first valve and the second valve being configured to control the circulation of gas within said portions.
  • the first valve and the second valve are capable of being opened or closed.
  • the heat treatment circuit comprises a point of divergence from which the first portion and the second portion begin, the point of divergence being arranged between the first heat exchanger and the second heat exchanger.
  • This is a first embodiment of the heat treatment circuit. Regardless of what pressure the gas in the vapor state is high, it passes through at least the first heat exchanger while circulating within a single portion of the heat treatment circuit. It is only downstream of the first heat exchanger that the gas in vapor state circulates in the first portion or in the second portion.
  • the first portion and the second portion begin respectively at the first compression stage and at the second compression stage of the compression device. This is therefore a second embodiment of the heat treatment circuit. Each portion is directly attached to the compression device, at the level of its own compression stage.
  • the first portion and the second portion meet at a point of convergence.
  • the two portions extend in parallel to each other until the point of convergence. Several locations can be chosen within the heat treatment circuit for said convergence point.
  • the point of convergence is arranged between the first heat exchanger and the second heat exchanger. In other words, in this configuration, it is a single portion of the heat treatment circuit which passes through the second heat exchanger. According to one aspect, if the heat treatment circuit is provided with a divergence point, then the convergence point is arranged between the divergence point and the second heat exchanger.
  • the point of convergence is arranged downstream of the second heat exchanger.
  • the first portion and the second portion therefore pass through the second heat exchanger before joining downstream of it.
  • the heat treatment circuit comprises at least a first branch connected to the first compression stage of the compression device and a second branch connected to the second compression stage of the compression device, the first branch and the second branch joining at a junction point of the heat treatment circuit arranged between the compression device and the point of divergence.
  • a configuration is specific to the first embodiment, where the first portion and the second portion are not directly connected to the compression device.
  • the first branch and the second branch that implement this function.
  • the junction point is located on the heat treatment circuit, downstream of the compression device and upstream of the divergence point.
  • the heat treatment circuit begins from the first branch and the second branch which meet at the junction point. Then, the heat treatment circuit separates at the point of divergence and forms the first portion and the second portion which extend to the point of convergence.
  • the first branch comprises a first valve and the second branch comprises a second valve, the first valve and the second valve being configured to control the circulation of gas within said branches.
  • the first valve and the second valve are arranged on the first branch and the second branch and ensure the management of the circulation of gas within those -this.
  • the first portion and the second portion of the heat treatment circuit each comprise a pass of the first heat exchanger and/or the second heat exchanger.
  • the first portion and the second portion can both pass through the first heat exchanger and/or the second heat exchanger.
  • the latter can therefore be two-pass or three-pass heat exchangers, with one pass per portion and one pass forming part of the supply circuit for the first heat exchanger, and one pass forming part of the cooling circuit for the second heat exchanger.
  • the management system comprises a third heat exchanger configured to carry out a heat exchange between the gas in the liquid state circulating in the cooling circuit and a refrigerant fluid circulating in a cooling loop.
  • This third heat exchanger makes it possible to sub-cool the gas in the liquid state, for example with the aim of improving the reliquefaction of the gas in the vapor state circulating through the second heat exchanger by circulating the gas in the subcooled liquid state within this same second heat exchanger.
  • Such a configuration can be used for example in the event of a large quantity of gas in the vapor state to be reliquefied.
  • the gas in the subcooled liquid state can also return to the tank in order to lower the overall temperature thereof and thus reduce the pressure of the tank.
  • the refrigerant fluid circulating in the cooling loop used to subcool the gas in the liquid state can for example be nitrogen.
  • the management system comprises an additional branch connecting the first compression stage of the compression device to the tank, the management system further comprising a heat exchanger configured to carry out a heat exchange between the gas in the vapor state circulating in the additional branch and a refrigerant fluid circulating in a reliquefaction loop.
  • a heat exchanger configured to carry out a heat exchange between the gas in the vapor state circulating in the additional branch and a refrigerant fluid circulating in a reliquefaction loop.
  • the presence of the additional branch and the heat exchanger can also be useful, for example, in the case where there is too little gas in vapor state circulating from the tank to the compression device to carry out pre-cooling. effective.
  • the heat exchanger can also be used when the gas in the liquid state contained in the tank is at a temperature too high to correctly reliquefy the gas in the vapor state circulating in the heat treatment circuit and when said gas is liquid state cannot be subcooled.
  • the reliquefaction loop can be passed through by a refrigerant fluid, for example nitrogen.
  • the additional branch extends to the tank so that the gas, once reliquefied within the heat exchanger, can circulate in the liquid state to the tank.
  • the supply circuit comprises at least one compression element arranged at least partially in parallel with the compression device.
  • the compression element notably has a redundancy function in the event of failure of the compression device.
  • the compression element can also assist the compression device in the event of a strong power requirement for the gas consuming device or gas consuming devices.
  • the compression element is connected to the first compression stage of the compression device. This is an output of the compression element which is connected to the first compression stage of the compression device.
  • the compression element compresses the gas to the same pressure level as the first compression stage, for example in order to be able to supply a gas consuming device at low pressure or to circulate gas. compressed gas within the first portion.
  • the heat treatment circuit joins the cooling circuit downstream of the second heat exchanger. At this stage, the gas circulating in the heat treatment circuit is reliquefied.
  • the cooling circuit extends to the tank in order to guarantee a return of reliquefied gas and gas in liquid state circulating in the cooling circuit to the tank.
  • the heat treatment circuit comprises a separation device, an inlet of which is arranged downstream of the second heat exchanger.
  • the heat treatment circuit can in fact comprise such a separator making it possible to separate the gas phase from the liquid phase of the gas circulating in the heat treatment circuit, and this after said gas has passed through the second heat exchanger.
  • the separation device can be used in the event of partial reliquefaction of the gas circulating in the heat treatment circuit in order to retain the fraction of gas which has not reliquefied.
  • the separation device comprises a steam outlet, the heat treatment circuit comprising a first path connecting the steam outlet of the separation device to the supply circuit at a point located between the tank and the first exchanger heat. The first path makes it possible to recirculate the gas in the vapor state which has not reliquefied to the supply circuit in order to be consumed by the gas consuming device or to lead to a new attempt at reliquefaction.
  • the separation device comprises a liquid outlet, the heat treatment circuit comprising a second path connecting the liquid outlet of the separation device to the cooling circuit.
  • the reliquefied gas therefore leaves the separation device in the liquid state and circulates in the second channel in order to return to the tank via the cooling circuit.
  • the invention also covers a floating structure comprising at least one tank, at least one gas-consuming device and a management system as described above.
  • FIG. 1 is a representation of a first embodiment of a management system according to the invention
  • FIG. 2 is a representation of a second embodiment of the management system according to the invention.
  • FIG. 3 illustrates a first variant of the first embodiment of the management system
  • FIG. 4 illustrates a first variant of the second embodiment of the management system
  • FIG. 5 illustrates a second variant of the first embodiment of the management system
  • FIG. 6 illustrates a second variant of the first embodiment of the management system
  • FIG. 7 illustrates a third variant of the first embodiment of the management system.
  • FIG. 1 illustrates a first embodiment of a management system 1 according to the invention.
  • the management system 1 can be integrated within a floating structure, for example a vessel for storing and/or transporting a gas in the liquid state contained in at least one tank 2 which equips the floating structure.
  • the gas in the liquid state can naturally partially evaporate within a sky 3 of the tank 2.
  • the management system 1 can treat this gas so that it supplies fuel to at least one consumer device gas.
  • the management system 1 is configured to be able to supply a high pressure gas consuming device 4 and a low pressure gas consuming device 5.
  • the high pressure gas consuming device 4 can for example be a engine ensuring the propulsion of the floating structure.
  • the low pressure gas consuming device 5 can for its part be a generator supplying the floating structure with electricity.
  • the management system 1 comprises a power supply circuit 6 extending between the tank 2 and the gas-consuming devices 4, 5.
  • the power supply circuit 6 comprises a compression device 7 making it possible to suck up the gas in the vapor state contained in the sky 3 and the tank 2 and to compress it up to a pressure compatible with the needs of the device consuming gas at high pressure 4, for example above 250 bars, or of the low pressure gas consuming device 5, in particular between 7 and 20 bars.
  • the compression device 7 is illustrated by a series of compressors, but the compression device 7 can also be a single multi-compressor. floor.
  • the compression device 7 has several compression stages in order to compress the gas in the vapor state at a more or less high pressure, such a compression device 7 comprising at least three outlets, at least two of which are arranged between two stages compression. The more the gas in the vapor state passes through compression stages, the more its pressure is increased.
  • the compression device 7 shown in Figure 1 thus comprises at least a first compression stage 11, a second compression stage 12 and a third compression stage 13.
  • the compression device 7 also comprises a first outlet 56 arranged between the first compression stage 11 and the second compression stage 12, a second outlet 57 arranged between the second compression stage 12 and the third compression stage 13 and a third outlet 58 after the third compression stage 13.
  • These three outlets 56, 57, 58 each ensure an exit of the gas in the vapor state from the compression device 7.
  • the gas in the vapor state passes through the entire compression device 7 and leaves via the third outlet 58 to reach the pressure compatible with the supply of the high pressure gas consuming device 4.
  • the gas in the vapor state can reach a pressure of between 250 and 400 bars.
  • the gas in the vapor state compressed by the first compression stage 11 has a pressure of between 7 and 20 bars while the gas in the vapor state compressed by the second compression stage 12 has a pressure of between 120 and 150 bars .
  • the first compression stage 11 also makes it possible to raise the pressure of the gas in the vapor state to a value compatible with supplying the low-pressure gas consuming device 5.
  • the management system 1 also includes a heat treatment circuit 8.
  • the heat treatment circuit 8 is connected to the power supply circuit 6, more particularly at the level of the compression device 7.
  • the heat treatment circuit 8 comprises a first branch 9 and a second branch 10, respectively connected to the first outlet 56 of the compression device 7 disposed downstream of the first compression stage 11 and upstream of the second compression stage 12, and at the second outlet 57 of the compression device 7 disposed downstream of the second compression stage 11 and upstream of the third compression stage 13.
  • the first branch 9 and the second branch 10 make it possible to circulate the gas in the vapor state within the heat treatment circuit 8 at two different pressure levels.
  • the first branch 9 and the second branch 10 join at a junction point 53.
  • the gas in the vapor state only circulates within one of the two branches 9, 10
  • the first branch 9 comprises a first valve 43 and the second branch 10 comprises a second valve 44.
  • the management system 1 includes a first heat exchanger 14 configured to carry out a heat exchange between the gas in the compressed vapor state circulating in the heat treatment circuit 8 and the gas in the vapor state circulating in the supply circuit 6 upstream of the heat treatment device compression 7.
  • the first heat exchanger 14 thus makes it possible to pre-cool the gas in the vapor state circulating in the heat treatment circuit 8 by using the gas in the vapor state leaving the tank 2. The latter is then heated by capturing the calories of the gas in the vapor state circulating in the heat treatment circuit 8.
  • the gas in vapor state circulating in the heat treatment circuit 8 is pre-cooled within the first heat exchanger 14, regardless of the branch 9 or 10 used.
  • the junction point 53 is advantageously arranged upstream of the first heat exchanger 14 so that all of the gas in the vapor state circulating in the heat treatment circuit 8 passes through the first heat exchanger 14 to be pre-cooled .
  • the first heat exchanger 14 comprises two passes, one of which circulates the gas in the circulating vapor state. in the supply circuit 6 upstream of the compression device 7 and the other where the gas circulates in the compressed vapor state circulating in the heat treatment circuit 8 after the first branch 9 and the second branch 10 have joined at junction point 53.
  • the gas in the pre-cooled vapor state continues its circulation at the outlet of the first heat exchanger 14.
  • the particularity of the management system 1 according to the invention is that the heat treatment circuit 8 comprises a first portion 51 and a second portion 52, each being adapted to the circulation of gas in the vapor state previously compressed by the first compression stage 11 or by the second compression stage 12.
  • the second portion 52 includes a trigger member 15, while the first portion 51 does not. It is thus understood that the first portion 51 is specific to the circulation of gas in the vapor state compressed only by the first compression stage 11, while the second portion 52 is specific to the circulation of gas in the vapor state compressed by the second compression stage 12. Putting the pressure on the second compression stage 12 requires subsequent expansion, which is ensured by the expansion member 15.
  • the management system 1 makes it possible to optimize the reliquefaction of the gas in the vapor state by saving a maximum of energy and by maintaining the temperature of the gas cargo in the state below a threshold. determined. This optimization is obtained by favoring the use of the first branch 9 combined with the use of the first portion 51, compared to the use of the second branch 10 combined with the use of the second portion 52.
  • the heat treatment circuit 8 illustrated in Figures 1, 3 and 5 comprises a point of divergence 54 and a point of convergence 55, respectively where start and end terminate the first portion 51 and the second portion 52.
  • the latter also respectively comprise a first valve 41 and a second valve 42 which control the circulation of gas within the respective portions.
  • the gas in vapor state After circulating within the first portion 51 or the second portion 52, the gas in vapor state then passes through a second heat exchanger 16 with the aim of being at least partially reliquefied.
  • the point of convergence 55 is arranged upstream of the second heat exchanger 16.
  • the second heat exchanger 16 comprises two passes.
  • the management system 1 comprises a cooling circuit 17 within which circulates gas in the liquid state taken from the tank 2.
  • the cooling circuit 17 comprises a pump 18, advantageously immersed at the bottom of the tank 2 and which circulates gas in the liquid state within the cooling circuit 17.
  • the cooling circuit 17 one of them is to participate in the reliquefaction of the gas to be the vapor state circulating in the heat treatment circuit 8.
  • the gas in the liquid state circulating in the cooling circuit 17 can thus pass through the second heat exchanger 16 within which the heat exchange with the gas takes place in the vapor state circulating in the heat treatment circuit 8.
  • the gas in the vapor state is then reliquefied.
  • the management system 1 comprises a third heat exchanger 19, that the gas in the liquid state circulating in the cooling circuit 17 can cross or go around.
  • the third heat exchanger 19 makes it possible to sub-cool the gas in the liquid state in order to compensate for the calories captured by the gas in the liquid state during the heat exchange occurring within the second heat exchanger 16.
  • the system 1 according to the invention can comprise a cooling loop 20 which passes through the third heat exchanger 19, such a cooling loop 20 being traversed by a refrigerant fluid ensuring the sub-cooling of the gas to the liquid state.
  • the refrigerant fluid circulating in the cooling loop 20 can for example be nitrogen.
  • the choice of sub-cooling the gas in the liquid state via the third heat exchanger 19 or not is also dependent on the quantity of gas in the vapor state generated in the tank 2 and/or the duration of the journey of the floating work, just as for the choice of the level of pressure applied to the gas in the vapor state intended to be reliquefied.
  • Such a choice makes it possible to determine whether or not it is necessary to use the third heat exchanger 19 and the cooling loop 20 to ensure the reliquefaction of the gas in the vapor state circulating in the heat treatment circuit 8. This avoids thus to use this cooling loop 20 in a superfluous manner when this is not essential for the reliquefaction of the gas in the vapor state, which limits energy consumption.
  • the reliquefied gas joins the cooling circuit 17, also at the outlet of the second heat exchanger 16.
  • the cooling circuit 17 extends to the tank 2 so that the return of the gas to the liquid state can take place within it.
  • the cooling circuit 17 therefore comprises at least one termination 29 which may be an orifice 30 arranged at the bottom of the tank 2.
  • the management system 1 can be configured to provide the gas to the latter.
  • the management system 1 can include an additional power supply circuit 33.
  • the additional supply circuit 33 comprises an additional pump 35, a high pressure pump 36 and a high pressure evaporator 37.
  • the additional pump is an additional pump 35, a high pressure pump 36 and a high pressure evaporator 37.
  • the high pressure evaporator 37 makes it possible to evaporate the gas in the liquid state placed under pressure. high pressure so that the gas passes into the vapor state and can be consumed by the high pressure gas consuming device 4.
  • the additional pump 35 and the pump 18 of the cooling circuit 17 are separate and distinct pumps. According to an alternative, the system does not have an additional pump dedicated to the additional power circuit 33.
  • the additional power circuit 33 is connected to the cooling circuit 17, between an outlet of the pump 18 and an inlet of the second heat exchanger 16 and it is the pump 18 which, in addition to its initial function, takes gas in the liquid state from the tank 2 to supply it to the high pressure pump 36.
  • Figure 2 represents a second embodiment of the management system 1 according to the invention.
  • the second embodiment differs from the first embodiment in that the first portion 51 and the second portion 52 extend over the entirety or substantially the entirety of the heat treatment circuit 8.
  • the second embodiment of the management system 1 illustrated in Figure 2 therefore does not include the first branch, the second branch, the junction point and the divergence point.
  • the first portion 51 and the second portion 52 which are directly connected to the compression device 7, respectively to the first outlet 56, at the level of the first compression stage 11, and to the second outlet 57, between the second stage of compression 12 and the third compression stage 13.
  • the first valve 41 and the second valve 42 are always present in order to control the circulation of the gas in the vapor state within the first portion 51 and the second portion 52.
  • the heat treatment circuit 8 comprises a flow regulating member 40 disposed downstream of the point of convergence 55 between the first portion 51 and the second portion 52. This flow regulating member 40 adapts the pressure and the flow rate within the heat treatment circuit 8 so as to bring this pressure closer to the pressure which reigns within the tank 2.
  • This flow regulation member 40 is arranged downstream of the branch of the heat treatment circuit 8 which passes through the second heat exchanger 16, and upstream of a mixing point 39 between the heat treatment circuit 8 and the cooling circuit 17.
  • the first portion 51 and the second portion 52 thus extend in parallel to each other, including within the first heat exchanger 14 and the second heat exchanger 16.
  • the heat exchangers 14, 16 are thus composed of three passes, at the rate of one pass per portion of the heat treatment circuit 8, of a pass where the gas circulates in the vapor state circulating in the supply circuit 6 upstream of the compression device 7 for the first heat exchanger 14, and a pass where the gas in the liquid state circulates circulating in the cooling circuit 17 for the second heat exchanger 16.
  • the point of convergence 55 between the first portion 51 and the second portion 52 is arranged downstream of the second heat exchanger 16.
  • the heat treatment circuit 8 subsequently joins the cooling circuit 17.
  • the positioning of the point of convergence 55, but also that of the junction point 53 and the point of divergence 54 illustrated in Figure 1, may differ in a non-exhaustive manner from what is illustrated in Figures 1 and 2.
  • the first heat exchanger 14 and the second heat exchanger 16 may comprise two or three passes.
  • the expansion member 15 is always positioned at the level of the second portion 52 and ensures the expansion of the gas compressed by the second compression stage 12.
  • the level of compression of the gas by the compression device 7 as well as the use of the third heat exchanger 19 and the cooling loop 20 are dependent for example on the duration of the journey of the floating structure and the quantity of gas in the vapor state generated in the sky 3 of tank 2.
  • Figures 3 to 6 represent a variant of the first embodiment or a variant of the second embodiment of the management system 1 according to the invention. Only the structural and functional differences compared to what has been mentioned previously will be described about these variants. We will therefore refer to the description of Figure 1 and/or Figure 2 for all the characteristics not detailed below concerning these variants.
  • Figures 3 and 4 thus respectively represent a first variant of the first embodiment and a first variant of the second embodiment.
  • This first variant differs from what has been described previously in particular by the absence of the third heat exchanger making it possible to sub-cool the gas in the liquid state circulating in the cooling circuit 17.
  • this comprises an additional branch 48 connected to the first output 56 of the compression device 7, in parallel with the first branch 9 or the first portion 51 according to the embodiment, and which extends to the tank 2.
  • This additional branch 48 conducts the gas in the vapor state through a heat exchanger 49, which is configured to carry out a heat exchange between the gas in the vapor state and a refrigerant fluid circulating in a reliquefaction loop 50.
  • the reliquefied gas circulates in the additional branch 48 until returning to the tank 2.
  • the additional branch 48 and the heat exchanger 49 can thus be used when it is not possible to sub-cool the gas in the liquid state within the cooling circuit 17, which can lead to poor reliquefaction.
  • gas in the state steam passing through the second heat exchanger 16 for example in a case where it is desired to limit the heating of the cargo or in the case of gas in the vapor state in too large a quantity.
  • the operation of the management system 1 can also depend on the duration of the journey of the floating structure.
  • a compression element 32 arranged at least partially in parallel with the compression device 7, in particular at least with the first compression stage 11. This compression element 32 ensures at least partial redundancy with the compression device 7. This compression element 32 is optional.
  • the compression element 32 is configured to compress the gas in the vapor state to a pressure identical or similar to that delivered by the first compression stage 11 of the compression device 7.
  • An admission of the compression element 32 is connected to the supply circuit 6 at a point located between the outlet of the first heat exchanger 14 and an inlet of the compression device 7.
  • the compression element 32 is also capable of supplying the device consuming low pressure gas 5 in gas in the vapor state, the supply circuit 6 then comprising a line connecting an outlet of the compression element 32 with an inlet of the device consuming low pressure gas 5.
  • the gas in the vapor state compressed by the compression element 32 can also circulate in the first branch 9 or directly in the first portion 51 depending on the embodiment of the management system 1. Finally, the gas in the vapor state vapor compressed by the compression element 32 can also join the compression device 7 and be further compressed by the latter by means of the second compression stage 12, to circulate in the second branch 10 or the second portion 52, or be more compressed by the third compression stage 13 to supply the high pressure gas consuming device 4.
  • the compression element 32 is shown in Figures 3 and 4, but can also be integrated into the embodiments illustrated in Figures 1 and 2, as well as the variants described below.
  • Figures 5 and 6 respectively represent a second variant of the first embodiment and a second variant of the second embodiment.
  • This second variant differs from what is illustrated in Figures 1 and 2 in that the heat treatment circuit 8 comprises at least one separation device 21 arranged downstream of the second heat exchanger 16.
  • Such a separation device 21 has the advantage of preventing a fraction of gas in the vapor state from circulating to tank 2.
  • the mainly reliquefied or completely reliquefied gas can circulate to the separation device 21.
  • the latter allows to separate a liquid fraction from a vapor fraction of the gas if the latter is not entirely reliquefied.
  • the separation device 21 comprises a vapor outlet 23 authorizing the exit of the vapor fraction out of the separation device 21 and a liquid outlet 24 authorizing the exit of the liquid fraction out of the separation device 21.
  • the steam fraction if it is present in the separation device 21, can exit via the steam outlet 23 and circulate within a first channel 25.
  • the first channel 25 is connected to the supply circuit 6 and allows the recirculation of the gas in the non-reliquefied vapor state within said supply circuit 6 so that said gas is consumed or reliquefied.
  • the liquid fraction present in the separation device 21 can for its part exit through the liquid outlet 24 and circulate within a second path 26 which connects the separation device 21 to the cooling circuit 17. After joining the latter, the reliquefied gas then circulates to tank 2 via orifice 30.
  • the separation device 21 and the two channels 25, 26 are illustrated within a management system equipped with the third heat exchanger 19. It is nevertheless entirely possible to combine the first variant and the second variant of the management system 1 illustrated in Figures 3 to 6, and thus to implement a management system 1 with the separation device 21, the two channels 25, 26, as well as the additional branch 48 and the heat exchanger 49, whatever the embodiment of said management system 1.
  • Figure 7 represents a management system similar to Figure 1 and additionally comprising a calibrated orifice 60.
  • the management system 1 comprises the second heat exchanger 16 connected to the tank 2 by a return branch comprising a termination 29 opening into the tank and an orifice 30 disposed on a portion of the return branch present in the tank.
  • the orifice 30 is arranged at the end of the return branch present in the tank.
  • the orifice 30 is a calibrated orifice 60.
  • the reduction in pressure will be 2 bars.
  • the reduction in pressure will be 2.2 bars.
  • the reduction in pressure will be 2.1 bars.
  • the calibrated orifice 60 is illustrated only in Figure 7 but it is nevertheless entirely possible to combine the presence of the calibrated orifice 60 with the variants of the first mode and the second mode as well as its first variant of the management system 1 illustrated in Figures 1 to 5.
  • the invention achieves the goal it set for itself, and proposes a system for managing a gas contained in a floating structure that can optimize the consumption necessary to liquefy the gas not consumed by the consuming device of the floating structure, according to conditions linked to the duration of a journey of the floating structure and/or to a quantity of gas in the state steam present in the tank head.
  • Variants not described here could be implemented without departing from the context of the invention, since, in accordance with the invention, they include a management system according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The present invention relates to a management system (1) comprising: at least one supply circuit (6) comprising a compression device (7) including a first compression stage (11), a second compression stage (12) and a third compression stage (13), at least one heat treatment circuit (8), at least one first heat exchanger (14), at least one cooling circuit (17), and at least one second heat exchanger (16), characterised in that the heat treatment circuit (8) comprises a first portion (51) configured to circulate gas compressed by the first compression stage (11) and a second portion (52) configured to circulate gas compressed by the second compression stage (12), the second portion (52) being provided with an expansion member (15).

Description

DESCRIPTION DESCRIPTION
Titre de l'invention : Système de gestion d’un gaz contenu dans une cuve Title of the invention: System for managing a gas contained in a tank
La présente invention se rapporte au domaine des ouvrages flottants de stockage et/ou de transport de gaz à l’état liquide et concerne plus particulièrement un système de gestion d’un gaz stocké et/ou transporté au sein de tels ouvrages. The present invention relates to the field of floating structures for storing and/or transporting gas in the liquid state and more particularly concerns a system for managing gas stored and/or transported within such structures.
Au cours d’un trajet effectué par un ouvrage flottant comprenant une cuve de gaz à l’état liquide destiné à être consommé et/ou à être livré à un point de destination, ledit ouvrage flottant peut utiliser le gaz s’étant évaporé au sein de la cuve, puis comprimer celui-ci afin d’alimenter le ou les moteurs de l’ouvrage flottant. During a journey made by a floating structure comprising a tank of gas in the liquid state intended to be consumed and/or delivered to a destination point, said floating structure can use the gas having evaporated within of the tank, then compress it in order to power the motor(s) of the floating structure.
11 est également connu, en cas d’excès de gaz évaporé au sein de la cuve, de reliquéfier le gaz n’ayant pas servi à alimenter le ou les moteurs de l’ouvrage flottant en le faisant circuler à travers un ou plusieurs échangeurs de chaleur, puis en le renvoyant dans la cuve. It is also known, in the event of excess gas evaporated within the tank, to reliquefy the gas not used to power the motor(s) of the floating structure by circulating it through one or more heat exchangers. heat, then returning it to the tank.
Lors d’un trajet d’un point de départ vers un point de destination effectué par l’ouvrage flottant, il arrive que ce dernier ne présente pas les mêmes besoins en termes d’alimentation des consommateurs en gaz à l’état vapeur, par exemple en fonction de la durée du trajet, ou en fonction d’une quantité de gaz à l’état vapeur susceptible de se former au sein de la cuve. Ces données influent par ailleurs sur la capacité de reliquéfaction du gaz à l’état vapeur par le système de gestion. During a journey from a starting point to a destination point carried out by the floating structure, it happens that the latter does not have the same needs in terms of supplying consumers with gas in the vapor state, for example example according to the duration of the journey, or according to a quantity of gas in the vapor state likely to form within the tank. These data also influence the capacity for reliquefaction of the gas in vapor state by the management system.
11 est donc connu de reliquéfîer ce gaz pour éviter que celui-ci devienne une perte. Il est notamment connu de reliquéfîer une part de gaz comprimé qui n’a pas été consommé sur l’ouvrage flottant. It is therefore known to reliquefy this gas to prevent it from becoming a loss. It is particularly known to reliquefy a portion of compressed gas which has not been consumed on the floating structure.
Un premier inconvénient de ces technologies connues réside dans le fait qu’elles ne sont pas optimisé d’un point vue consommation globale du système. Par exemple, des moyens surdimensionnés dans une majorité des cas d’utilisation sont mis en oeuvre, ce qui provoque une surconsommation. Dans un tel cas, le refroidissement de la cargaison de gaz à l’état liquide est excessif et entraîne ainsi une surconsommation d’énergie. La présente invention permet une gestion optimale du gaz en proposant un système de gestion d’un gaz contenu dans au moins une cuve d’un ouvrage flottant qui comporte au moins un appareil consommateur de gaz, le système de gestion comprenant : au moins un circuit d’alimentation en gaz de l’appareil consommateur de gaz, le circuit d’alimentation comprenant au moins un dispositif de compression comportant au moins un premier étage de compression, un deuxième étage de compression et un troisième étage de compression et configuré pour comprimer du gaz prélevé à l’état vapeur dans la cuve, le dispositif de compression délivrant le gaz à l’état vapeur à trois niveaux de pression différents, au moins un circuit de traitement thermique du gaz à l’état vapeur comprimé par au moins l’un des étages de compression du dispositif de compression, au moins un premier échangeur de chaleur configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur circulant dans le circuit d’alimentation entre la cuve et le dispositif de compression et le gaz à l’état vapeur circulant dans le circuit de traitement thermique, au moins un circuit de refroidissement comprenant au moins une pompe configurée pour prélever le gaz à l’état liquide dans la cuve, au moins un deuxième échangeur de chaleur configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur circulant dans le circuit de traitement thermique en aval du premier échangeur de chaleur et le gaz circulant dans le circuit de refroidissement, caractérisé en ce que le circuit de traitement thermique comprend au moins une première portion configurée pour faire circuler du gaz comprimé par le premier étage de compression du dispositif de compression et une deuxième portion configurée pour faire circuler du gaz comprimé par le deuxième étage de compression du dispositif de compression, le deuxième étage de compression étant disposé en aval du premier étage de compression, la première portion et la deuxième portion s’étendant au moins partiellement entre le dispositif de compression et le deuxième échangeur de chaleur, la deuxième portion étant pourvue d’un organe de détente. A first disadvantage of these known technologies lies in the fact that they are not optimized from the point of view of overall system consumption. For example, oversized resources are implemented in a majority of use cases, which causes overconsumption. In such a case, the cooling of the gas cargo to the liquid state is excessive and thus leads to excess energy consumption. The present invention allows optimal gas management by proposing a system for managing a gas contained in at least one tank of a floating structure which comprises at least one gas consuming device, the management system comprising: at least one circuit gas supply of the gas consuming device, the supply circuit comprising at least one compression device comprising at least a first compression stage, a second compression stage and a third compression stage and configured to compress gas gas taken in the vapor state from the tank, the compression device delivering the gas in the vapor state at three different pressure levels, at least one heat treatment circuit for the gas in the vapor state compressed by at least the one of the compression stages of the compression device, at least one first heat exchanger configured to carry out a heat exchange between the gas in vapor state circulating in the supply circuit between the tank and the compression device and the gas in the vapor state circulating in the heat treatment circuit, at least one cooling circuit comprising at least one pump configured to take the gas in the liquid state from the tank, at least one second heat exchanger configured to carry out an exchange of heat between the gas in vapor state circulating in the heat treatment circuit downstream of the first heat exchanger and the gas circulating in the cooling circuit, characterized in that the heat treatment circuit comprises at least a first portion configured for circulating compressed gas through the first compression stage of the compression device and a second portion configured to circulate compressed gas through the second compression stage of the compression device, the second compression stage being arranged downstream of the first stage compression, the first portion and the second portion extending at least partially between the compression device and the second heat exchanger, the second portion being provided with an expansion member.
Grâce au système de gestion selon l’invention, le gaz à l’état vapeur, notamment le gaz à l’état vapeur destiné à être reliquéfié, peut être comprimé à différents niveaux de pression, chacun de ces niveaux de pression étant adaptés à différentes situations dans lequel se trouve l’ouvrage flottant. A partir de ces différents niveaux de pression, le gaz à l’état vapeur est traité différemment en circulant dans le circuit de traitement thermique, notamment au niveau des échanges de chaleur se produisant au sein des échangeurs de chaleur et de la potentielle détente du gaz à l’état vapeur. L’invention permet ainsi d’exploiter des ressources en froid disponibles sans pour autant sur-consommer pour reliquéfier le gaz à l’état vapeur. Thanks to the management system according to the invention, the gas in the vapor state, in particular the gas in the vapor state intended to be reliquefied, can be compressed at different pressure levels, each of these pressure levels being adapted to different situations in which the floating structure finds itself. From these different pressure levels, the gas in the vapor state is treated differently by circulating in the heat treatment circuit, particularly in terms of the heat exchanges occurring within the heat exchangers and the potential expansion of the gas. in vapor state. The invention thus makes it possible to exploit available cold resources without over-consuming to reliquefy the gas in the vapor state.
Le circuit d’alimentation permet de prélever le gaz à l’état vapeur qui s’accumule au niveau d’un ciel de cuve. Ce gaz à l’état vapeur provient de l’évaporation d’une partie de la cargaison de gaz à l’état liquide contenu dans la cuve. Le gaz à l’état vapeur peut donc être consommé ou reliquéfié, mais doit d’une manière générale être évacué afin de réguler la pression dans la cuve. The supply circuit makes it possible to take the gas in the vapor state which accumulates at the level of a tank head. This gas in vapor state comes from the evaporation of part of the cargo of gas in liquid state contained in the tank. The gas in the vapor state can therefore be consumed or reliquefied, but must generally be evacuated in order to regulate the pressure in the tank.
Le dispositif de compression assure donc l’aspiration du gaz à l’état vapeur hors de la cuve et comprime celui-ci. Le dispositif de compression peut par exemple être une pluralité de compresseurs disposés en série les uns par rapport à autres, ou un unique compresseur avec des étages de compression multiples. The compression device therefore ensures the suction of gas in vapor state from the tank and compresses it. The compression device can for example be a plurality of compressors arranged in series with each other, or a single compressor with multiple compression stages.
La première portion est ainsi associée au premier niveau de pression, c'est-à-dire lorsque le gaz comprimé sort du dispositif de compression entre le premier étage de compression et le deuxième étage de compression. The first portion is thus associated with the first pressure level, that is to say when the compressed gas leaves the compression device between the first compression stage and the second compression stage.
La deuxième portion est associée au deuxième niveau de pression, c'est-à-dire lorsque le gaz comprimé sort du dispositif de compression entre le deuxième étage de compression et le troisième étage de compression. Le gaz comprimé par le troisième étage de compression est ainsi comprimé par la totalité du dispositif de compression. Le gaz à l’état vapeur peut alors atteindre une pression comprise entre 250 et 400 bars. Le gaz à l’état vapeur comprimé par le deuxième étage de compression atteint une pression inférieure à la pression délivrée par le troisième étage de compression, par exemple entre 120 et 150 bars, et le gaz à l’état vapeur comprimé par le premier étage de compression atteint une pression inférieure à la pression délivrée par le deuxième étage de compression, par exemple entre 7 et 20 bars.The second portion is associated with the second pressure level, that is to say when the compressed gas leaves the compression device between the second compression stage and the third compression stage. The gas compressed by the third compression stage is thus compressed by the entire compression device. The gas in the vapor state can then reach a pressure of between 250 and 400 bars. The gas in the vapor state compressed by the second compression stage reaches a pressure lower than the pressure delivered by the third compression stage, for example between 120 and 150 bars, and the gas in the vapor state compressed by the first stage compression reaches a pressure lower than the pressure delivered by the second compression stage, for example between 7 and 20 bars.
La pression du gaz à l’état vapeur est notamment importante pour alimenter l’appareil consommateur de gaz car ce dernier ne peut consommer le gaz à l’état vapeur que si celui-ci est à une pression compatible. The pressure of the gas in the vapor state is particularly important for supplying the gas consuming device because the latter can only consume the gas in the vapor state if it is at a compatible pressure.
Si le gaz à l’état vapeur n’est pas compatible avec l’appareil consommateur de gaz ou si l’appareil consommateur de gaz ne nécessite pas d’être alimenté, le gaz à l’état vapeur circule alors dans le circuit de traitement thermique. Si l’appareil consommateur de gaz n’a besoin que d’une fraction du gaz à l’état vapeur pour sa propre consommation, le reste du gaz à l’état vapeur circule alors également dans le circuit de traitement thermique. L’une des fonctions de ce circuit de traitement thermique est de participer à la reliquéfaction du gaz à l’état vapeur comprimé. If the gas in the vapor state is not compatible with the gas consuming device or if the gas consuming device does not require power, the gas in the vapor state then circulates in the treatment circuit thermal. If the gas consuming device only needs a fraction of the gas in vapor state for its own consumption, the rest of the gas in vapor state then also circulates in the heat treatment circuit. One of the functions of this heat treatment circuit is to participate in the reliquefaction of the gas in the compressed vapor state.
Le premier échangeur de chaleur permet de pré-refroidir le gaz à l’état vapeur comprimé d’une part et de réchauffer le gaz à l’état vapeur en sortie de cuve d’autre part. Le prérefroidissement du gaz comprimé facilite son traitement thermique par la suite, notamment sa reliquéfaction. Le premier échangeur de chaleur permet ainsi d’améliorer le rendement global du système de gestion car la basse température du gaz à l’état vapeur en sortie de la cuve participe de manière indirecte à la reliquéfaction de gaz à l’état vapeur comprimé et ce via l’échange de chaleur se déroulant dans le premier échangeur de chaleur. The first heat exchanger makes it possible to pre-cool the gas in the compressed vapor state on the one hand and to heat the gas in the vapor state at the tank outlet on the other hand. Precooling the compressed gas facilitates its subsequent heat treatment, in particular its reliquefaction. The first heat exchanger thus makes it possible to improve the overall efficiency of the management system because the low temperature of the gas in the vapor state at the outlet of the tank participates indirectly in the reliquefaction of gas in the compressed vapor state and this via the heat exchange taking place in the first heat exchanger.
Le circuit de refroidissement peut présenter plusieurs fonctions comme la participation à la reliquéfaction du gaz à l’état vapeur circulant dans le circuit de traitement thermique, ou encore à la gestion de la pression de la cuve. Pour ce faire, le gaz à l’état liquide de la cuve est prélevé par la pompe et circule au sein du circuit de refroidissement, cette pompe pouvant par exemple être immergée au fond de la cuve. The cooling circuit can have several functions such as participating in the reliquefaction of the gas in vapor state circulating in the heat treatment circuit, or even in managing the pressure of the tank. To do this, the gas in the liquid state of the tank is taken by the pump and circulates within the cooling circuit, this pump can for example be immersed at the bottom of the tank.
En circulant dans le circuit de refroidissement, le gaz à l’état liquide peut traverser le deuxième échangeur de chaleur, qui est également traversé par le gaz à l’état vapeur circulant dans le circuit de traitement thermique. Cet échange de chaleur permet ainsi de reliquéfier le gaz à l’état vapeur sans conduire à l’évaporation du gaz à l’état liquide circulant dans le circuit de refroidissement. Une fois le gaz à l’état vapeur reliquéfié, ce dernier peut retourner au sein de la cuve, tout comme le gaz à l’état liquide utilisé pour la reliquéfaction en circulant au sein du circuit de refroidissement. By circulating in the cooling circuit, the gas in the liquid state can pass through the second heat exchanger, which is also crossed by the gas in the vapor state circulating in the heat treatment circuit. This heat exchange thus makes it possible to reliquefy the gas in the vapor state without leading to the evaporation of the gas in the liquid state circulating in the cooling circuit. Once the gas in the vapor state is reliquefied, it can return to the tank, just like the gas in the liquid state used for reliquefaction by circulating within the cooling circuit.
L’avantage du système de traitement thermique selon l’invention est la présence de deux portions au sein desquelles circulent le gaz à l’état vapeur à des pressions différentes. Ainsi, en fonction par exemple de la durée du trajet effectué par l’ouvrage flottant et/ou en fonction de la quantité de gaz à l’état vapeur généré dans le ciel de cuve, il peut être plus judicieux de comprimer le gaz à l’état vapeur jusqu’au premier niveau de compression ou jusqu’au deuxième niveau de compression, le système de gestion permettant un tel choix afin d’opérer une reliquéfaction du gaz à l’état vapeur la moins consommatrice d’énergie. The advantage of the heat treatment system according to the invention is the presence of two portions within which the gas circulates in the vapor state at different pressures. Thus, depending for example on the duration of the journey made by the floating structure and/or depending on the quantity of gas in the vapor state generated in the tank head, it may be more judicious to compress the gas to the the vapor state up to the first compression level or up to the second compression level, the management system allowing such a choice in order to carry out reliquefaction of the gas in the vapor state which consumes the least energy.
Du fait de la pression du gaz à l’état vapeur y circulant, la deuxième portion est apte à assurer la détente du gaz à l’aide de l’organe de détente. Une mise sous pression par le deuxième étage de compression puis une détente par la suite favorise la reliquéfaction du gaz non consommé, par exemple lorsque la durée du trajet est importante et/ou que la quantité de gaz à l’état vapeur générée dans le ciel de cuve est élevée. Si le trajet est court, par exemple inférieur à deux jours, et/ou que la quantité de gaz à l’état vapeur générée dans le ciel de cuve est faible, alors il est préférable d’élever la pression du gaz à l’état vapeur seulement via le premier étage de compression et de le faire circuler au sein de la première portion. Due to the pressure of the gas in the vapor state circulating there, the second portion is capable of ensuring the expansion of the gas using the expansion member. Pressurization by the second compression stage then expansion subsequently promotes the reliquefaction of the unconsumed gas, for example when the duration of the journey is long and/or the quantity of gas in the vapor state generated in the sky tank is high. If the journey is short, for example less than two days, and/or the quantity of gas in the vapor state generated in the tank head is low, then it is preferable to raise the pressure of the gas in the vapor state. steam only via the first compression stage and to circulate it within the first portion.
Selon une caractéristique de l’invention, le deuxième échangeur de chaleur est relié à la cuve par une branche de retour comprenant une terminaison débouchant dans la cuve et un orifice disposé sur une portion de la branche de retour présente dans la cuve. De préférence, l’orifice est disposé à l’extrémité de la branche de retour présente dans la cuve. Cela permet ainsi au gaz liquéfié en sortie du deuxième échangeur de chaleur de retourner dans la cuve. According to one characteristic of the invention, the second heat exchanger is connected to the tank by a return branch comprising a termination opening into the tank and an orifice disposed on a portion of the return branch present in the tank. Of preferably, the orifice is arranged at the end of the return branch present in the tank. This allows the liquefied gas leaving the second heat exchanger to return to the tank.
Selon une caractéristique de l’invention, l’orifice est un orifice calibré. Grâce à cet orifice calibré, on peut finir la détente du gaz liquéfié dans la branche de retour au niveau de la cuve et ainsi réduire voire supprimer la vaporisation d’une fraction du gaz liquéfié lors de sa détente. According to one characteristic of the invention, the orifice is a calibrated orifice. Thanks to this calibrated orifice, we can finish the expansion of the liquefied gas in the return branch at the level of the tank and thus reduce or even eliminate the vaporization of a fraction of the liquefied gas during its expansion.
Selon une caractéristique de l’invention, la première portion du circuit de traitement thermique est dépourvue d’organe de détente. Le gaz à l’état vapeur qui circule dans la première portion est détendu par les pertes de charge de cette première portion, mais le système ne comprend pas d’organe actif qui génère une détente au sein de la première portion. According to one characteristic of the invention, the first portion of the heat treatment circuit is devoid of an expansion member. The gas in the vapor state which circulates in the first portion is expanded by the pressure losses of this first portion, but the system does not include an active member which generates expansion within the first portion.
Selon une caractéristique de l’invention, la première portion comprend une première vanne et la deuxième portion comprend une deuxième vanne, la première vanne et la deuxième vanne étant configurées pour contrôler la circulation du gaz au sein desdites portions. En fonction de la portion au sein de laquelle il est souhaitable de faire circuler le gaz comprimé, un tel choix étant relatif à la pression souhaité dans le circuit de traitement thermique du gaz à l’état vapeur, la première vanne et la deuxième vanne sont aptes à être ouvertes ou fermées. According to one characteristic of the invention, the first portion comprises a first valve and the second portion comprises a second valve, the first valve and the second valve being configured to control the circulation of gas within said portions. Depending on the portion within which it is desirable to circulate the compressed gas, such a choice being relative to the desired pressure in the heat treatment circuit of the gas in the vapor state, the first valve and the second valve are capable of being opened or closed.
Selon une caractéristique de l’invention, le circuit de traitement thermique comprend un point de divergence à partir duquel débutent la première portion et la deuxième portion, le point de divergence étant disposé entre le premier échangeur de chaleur et le deuxième échangeur de chaleur. Il s’agit d’un premier mode de réalisation du circuit de traitement thermique. Peu importe à quelle pression le gaz à l’état vapeur est élevé, celui-ci traverse au moins le premier échangeur de chaleur en circulant au sein d’une unique portion du circuit de traitement thermique. C’est seulement en aval du premier échangeur de chaleur que le gaz à l’état vapeur circule dans la première portion ou dans la deuxième portion. Selon une autre caractéristique de l’invention, la première portion et la deuxième portion débutent respectivement au premier étage de compression et au deuxième étage de compression du dispositif de compression. Il s’agit donc d’un deuxième mode de réalisation du circuit de traitement thermique. Chaque portion est directement rattachée au dispositif de compression, au niveau de l’étage de compression qui lui est propre.According to one characteristic of the invention, the heat treatment circuit comprises a point of divergence from which the first portion and the second portion begin, the point of divergence being arranged between the first heat exchanger and the second heat exchanger. This is a first embodiment of the heat treatment circuit. Regardless of what pressure the gas in the vapor state is high, it passes through at least the first heat exchanger while circulating within a single portion of the heat treatment circuit. It is only downstream of the first heat exchanger that the gas in vapor state circulates in the first portion or in the second portion. According to another characteristic of the invention, the first portion and the second portion begin respectively at the first compression stage and at the second compression stage of the compression device. This is therefore a second embodiment of the heat treatment circuit. Each portion is directly attached to the compression device, at the level of its own compression stage.
Selon une caractéristique de l’invention, la première portion et la deuxième portion se rejoignent en un point de convergence. Quel que soit le mode de réalisation du circuit de traitement thermique, les deux portions s’étendent en parallèle l’une par rapport à l’autre jusqu’au point de convergence. Plusieurs emplacements peuvent être choisis au sein du circuit de traitement thermique pour ledit point de convergence. According to a characteristic of the invention, the first portion and the second portion meet at a point of convergence. Whatever the embodiment of the heat treatment circuit, the two portions extend in parallel to each other until the point of convergence. Several locations can be chosen within the heat treatment circuit for said convergence point.
Selon une caractéristique de l’invention, le point de convergence est disposé entre le premier échangeur de chaleur et le deuxième échangeur de chaleur. Autrement dit, dans cette configuration, c’est une unique portion du circuit de traitement thermique qui traverse le deuxième échangeur de chaleur. Selon un aspect, si le circuit de traitement thermique est pourvu d’un point de divergence, alors le point de convergence est disposé entre le point de divergence et le deuxième échangeur de chaleur. According to one characteristic of the invention, the point of convergence is arranged between the first heat exchanger and the second heat exchanger. In other words, in this configuration, it is a single portion of the heat treatment circuit which passes through the second heat exchanger. According to one aspect, if the heat treatment circuit is provided with a divergence point, then the convergence point is arranged between the divergence point and the second heat exchanger.
Selon une autre caractéristique de l’invention, le point de convergence est disposé en aval du deuxième échangeur de chaleur. Dans ce mode de réalisation du circuit de traitement thermique, la première portion et la deuxième portion traversent donc le deuxième échangeur de chaleur avant de se rejoindre en aval de celui-ci. According to another characteristic of the invention, the point of convergence is arranged downstream of the second heat exchanger. In this embodiment of the heat treatment circuit, the first portion and the second portion therefore pass through the second heat exchanger before joining downstream of it.
Selon une caractéristique de l’invention, le circuit de traitement thermique comprend au moins une première branche raccordée au premier étage de compression du dispositif de compression et une deuxième branche raccordée au deuxième étage de compression du dispositif de compression, la première branche et la deuxième branche se rejoignant en un point de jonction du circuit de traitement thermique disposé entre le dispositif de compression et le point de divergence. Une telle configuration est spécifique au premier mode de réalisation, où la première portion et la deuxième portion ne sont pas directement raccordées au dispositif de compression. Lorsque la première portion et la deuxième portion ne sont pas directement raccordées au dispositif de compression, ce sont la première branche et la deuxième branche qui mettent en œuvre cette fonction. Le point de jonction est quant à lui situé sur le circuit de traitement thermique, en aval du dispositif de compression et en amont du point de divergence. Autrement dit, le circuit de traitement thermique débute à partir de la première branche et de la deuxième branche qui se rejoignent au niveau du point de jonction. Puis, le circuit de traitement thermique se sépare au niveau du point de divergence et forme la première portion et la deuxième portion qui s’étendent jusqu’au point de convergence. According to one characteristic of the invention, the heat treatment circuit comprises at least a first branch connected to the first compression stage of the compression device and a second branch connected to the second compression stage of the compression device, the first branch and the second branch joining at a junction point of the heat treatment circuit arranged between the compression device and the point of divergence. Such a configuration is specific to the first embodiment, where the first portion and the second portion are not directly connected to the compression device. When the first portion and the second portion are not directly connected to the compression device, this are the first branch and the second branch that implement this function. The junction point is located on the heat treatment circuit, downstream of the compression device and upstream of the divergence point. In other words, the heat treatment circuit begins from the first branch and the second branch which meet at the junction point. Then, the heat treatment circuit separates at the point of divergence and forms the first portion and the second portion which extend to the point of convergence.
Selon une caractéristique de l’invention, la première branche comprend une première valve et la deuxième branche comprend une deuxième valve, la première valve et la deuxième valve étant configurées pour contrôler la circulation du gaz au sein desdites branches. Tout comme la première vanne et la deuxième vanne disposées respectivement sur la première portion et la deuxième portion, la première valve et la deuxième valve sont disposées sur la première branche et la deuxième branche et assurent la gestion de la circulation du gaz au sein de celles-ci. According to one characteristic of the invention, the first branch comprises a first valve and the second branch comprises a second valve, the first valve and the second valve being configured to control the circulation of gas within said branches. Just like the first valve and the second valve arranged respectively on the first portion and the second portion, the first valve and the second valve are arranged on the first branch and the second branch and ensure the management of the circulation of gas within those -this.
Selon une caractéristique de l’invention, la première portion et la deuxième portion du circuit de traitement thermique comprennent chacune une passe du premier échangeur de chaleur et/ ou du deuxième échangeur de chaleur. En fonction du positionnement du point de convergence, et éventuellement de celui du point de divergence et du point de jonction, la première portion et la deuxième portion peuvent toutes deux traverser le premier échangeur de chaleur et/ou le deuxième échangeur de chaleur. Ces derniers peuvent donc être des échangeurs de chaleur à deux passes ou trois passes, à raison d’une passe par portion et d’une passe formant une partie du circuit d’alimentation pour le premier échangeur de chaleur, et d’une passe formant une partie du circuit de refroidissement pour le deuxième échangeur de chaleur. According to one characteristic of the invention, the first portion and the second portion of the heat treatment circuit each comprise a pass of the first heat exchanger and/or the second heat exchanger. Depending on the positioning of the convergence point, and possibly that of the divergence point and the junction point, the first portion and the second portion can both pass through the first heat exchanger and/or the second heat exchanger. The latter can therefore be two-pass or three-pass heat exchangers, with one pass per portion and one pass forming part of the supply circuit for the first heat exchanger, and one pass forming part of the cooling circuit for the second heat exchanger.
Selon une caractéristique de l’invention, le système de gestion comprend un troisième échangeur de chaleur configuré pour opérer un échange de chaleur entre le gaz à l’état liquide circulant dans le circuit de refroidissement et un fluide réfrigérant circulant dans une boucle de refroidissement. Ce troisième échangeur de chaleur permet de sous- refroidir le gaz à l’état liquide, par exemple dans le but d’améliorer la reliquéfaction du gaz à l’état vapeur circulant à travers le deuxième échangeur de chaleur en faisant circuler le gaz à l’état liquide sous-refroidi au sein de ce même deuxième échangeur de chaleur. Une telle configuration peut être utilisée par exemple en cas d’importante quantité de gaz à l’état vapeur à reliquéfîer. Le gaz à l’état liquide sous-refroidi peut également retourner dans la cuve afin d’abaisser la température globale de celle-ci et ainsi de diminuer la pression de la cuve. Le fluide réfrigérant circulant dans la boucle de refroidissement utilisée pour sous-refroidir le gaz à l’état liquide peut par exemple être de l’azote. According to one characteristic of the invention, the management system comprises a third heat exchanger configured to carry out a heat exchange between the gas in the liquid state circulating in the cooling circuit and a refrigerant fluid circulating in a cooling loop. This third heat exchanger makes it possible to sub-cool the gas in the liquid state, for example with the aim of improving the reliquefaction of the gas in the vapor state circulating through the second heat exchanger by circulating the gas in the subcooled liquid state within this same second heat exchanger. Such a configuration can be used for example in the event of a large quantity of gas in the vapor state to be reliquefied. The gas in the subcooled liquid state can also return to the tank in order to lower the overall temperature thereof and thus reduce the pressure of the tank. The refrigerant fluid circulating in the cooling loop used to subcool the gas in the liquid state can for example be nitrogen.
Selon une caractéristique de l’invention, le système de gestion comprend une branche additionnelle reliant le premier étage de compression du dispositif de compression à la cuve, le système de gestion comprenant en outre un échangeur thermique configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur circulant dans la branche additionnelle et un fluide réfrigérant circulant dans une boucle de reliquéfaction. Il s’agit d’une configuration alternative pouvant être mis en oeuvre par exemple en l’absence du troisième échangeur de chaleur évoqué précédemment pour traiter une forte quantité de gaz à l’état vapeur destiné à être reliquéfîé. According to one characteristic of the invention, the management system comprises an additional branch connecting the first compression stage of the compression device to the tank, the management system further comprising a heat exchanger configured to carry out a heat exchange between the gas in the vapor state circulating in the additional branch and a refrigerant fluid circulating in a reliquefaction loop. This is an alternative configuration that can be implemented for example in the absence of the third heat exchanger mentioned previously to treat a large quantity of gas in the vapor state intended to be reliquefied.
La présence de la branche additionnelle et de l’échangeur thermique peut également être utile par exemple dans le cas où il y a trop peu de gaz à l’état vapeur circulant de la cuve jusqu’au dispositif de compression pour opérer un pré-refroidissement efficace. L’échangeur thermique peut aussi être utilisé lorsque le gaz à l’état liquide contenu dans la cuve est à une température trop élevée pour reliquéfîer correctement le gaz à l’état vapeur circulant dans le circuit de traitement thermique et que ledit gaz à l’état liquide ne peut par ailleurs pas être sous-refroidi. The presence of the additional branch and the heat exchanger can also be useful, for example, in the case where there is too little gas in vapor state circulating from the tank to the compression device to carry out pre-cooling. effective. The heat exchanger can also be used when the gas in the liquid state contained in the tank is at a temperature too high to correctly reliquefy the gas in the vapor state circulating in the heat treatment circuit and when said gas is liquid state cannot be subcooled.
Dans cette configuration, au moins une partie du gaz à l’état vapeur comprimé et destiné à être reliquéfié peut circuler dans la branche additionnelle et être reliquéfîée à part grâce à l’échange de chaleur opéré au sein de l’échangeur thermique. Tout comme la boucle de refroidissement évoquée précédemment, la boucle de reliquéfaction peut être parcouru par un fluide réfrigérant, par exemple de l’azote. La branche additionnelle s’étend jusqu’à la cuve afin que le gaz, une fois reliquéfîé au sein de l’échangeur thermique, puisse circuler à l’état liquide jusqu’à la cuve. In this configuration, at least part of the gas in the compressed vapor state and intended to be reliquefied can circulate in the additional branch and be reliquefied separately thanks to the heat exchange carried out within the heat exchanger. Just like the cooling loop mentioned previously, the reliquefaction loop can be passed through by a refrigerant fluid, for example nitrogen. The additional branch extends to the tank so that the gas, once reliquefied within the heat exchanger, can circulate in the liquid state to the tank.
Selon une caractéristique de l’invention, le circuit d’alimentation comprend au moins un élément de compression agencé au moins partiellement en parallèle du dispositif de compression. L’élément de compression a notamment une fonction de redondance en cas de panne du dispositif de compression. L’élément de compression peut également assister le dispositif de compression en cas de fort besoin d’alimentation de l’appareil consommateur de gaz ou des appareils consommateurs de gaz. According to one characteristic of the invention, the supply circuit comprises at least one compression element arranged at least partially in parallel with the compression device. The compression element notably has a redundancy function in the event of failure of the compression device. The compression element can also assist the compression device in the event of a strong power requirement for the gas consuming device or gas consuming devices.
Selon une caractéristique de l’invention, l’élément de compression est raccordé au premier étage de compression du dispositif de compression. Il s’agit d’une sortie de l’élément de compression qui est raccordée au premier étage de compression du dispositif de compression. D’une manière avantageuse, l’élément de compression comprime le gaz à un même niveau de pression que le premier étage de compression, par exemple afin de pouvoir opérer une alimentation d’un appareil consommateur de gaz à basse pression ou bien faire circuler du gaz comprimé au sein de la première portion.According to one characteristic of the invention, the compression element is connected to the first compression stage of the compression device. This is an output of the compression element which is connected to the first compression stage of the compression device. Advantageously, the compression element compresses the gas to the same pressure level as the first compression stage, for example in order to be able to supply a gas consuming device at low pressure or to circulate gas. compressed gas within the first portion.
Selon une caractéristique de l’invention, le circuit de traitement thermique rejoint le circuit de refroidissement en aval du deuxième échangeur de chaleur. A ce stade, le gaz circulant dans le circuit de traitement thermique est reliquéfîé. Le circuit de refroidissement s’étend jusqu’à la cuve afin de garantir un retour du gaz reliquéfié et du gaz à l’état liquide circulant dans le circuit de refroidissement jusqu’à la cuve. According to one characteristic of the invention, the heat treatment circuit joins the cooling circuit downstream of the second heat exchanger. At this stage, the gas circulating in the heat treatment circuit is reliquefied. The cooling circuit extends to the tank in order to guarantee a return of reliquefied gas and gas in liquid state circulating in the cooling circuit to the tank.
Selon une caractéristique de l’invention, le circuit de traitement thermique comprend un dispositif de séparation dont une entrée est disposée en aval du deuxième échangeur de chaleur. Avant de rejoindre le circuit de refroidissement, le circuit de traitement thermique peut en effet comprendre un tel séparateur permettant de séparer la phase gazeuse de la phase liquide du gaz circulant dans le circuit de traitement thermique, et ce après que ledit gaz a traversé le deuxième échangeur de chaleur. Le dispositif de séparation peut être utilisé en cas de reliquéfaction partielle du gaz circulant dans le circuit de traitement thermique afin de retenir la fraction de gaz ne s’étant pas reliquéfîé. Selon une caractéristique de l’invention, le dispositif de séparation comprend une sortie vapeur, le circuit de traitement thermique comprenant une première voie reliant la sortie vapeur du dispositif de séparation au circuit d’alimentation en un point situé entre la cuve et le premier échangeur de chaleur. La première voie permet de faire recirculer le gaz à l’état vapeur ne s’étant pas reliquéfié jusqu’au circuit d’alimentation afin d’être consommé par l’appareil consommateur de gaz ou d’entraîner une nouvelle tentative de reliquéfaction. According to one characteristic of the invention, the heat treatment circuit comprises a separation device, an inlet of which is arranged downstream of the second heat exchanger. Before joining the cooling circuit, the heat treatment circuit can in fact comprise such a separator making it possible to separate the gas phase from the liquid phase of the gas circulating in the heat treatment circuit, and this after said gas has passed through the second heat exchanger. The separation device can be used in the event of partial reliquefaction of the gas circulating in the heat treatment circuit in order to retain the fraction of gas which has not reliquefied. According to one characteristic of the invention, the separation device comprises a steam outlet, the heat treatment circuit comprising a first path connecting the steam outlet of the separation device to the supply circuit at a point located between the tank and the first exchanger heat. The first path makes it possible to recirculate the gas in the vapor state which has not reliquefied to the supply circuit in order to be consumed by the gas consuming device or to lead to a new attempt at reliquefaction.
Selon une caractéristique de l’invention, le dispositif de séparation comprend une sortie liquide, le circuit de traitement thermique comprenant une deuxième voie reliant la sortie liquide du dispositif de séparation au circuit de refroidissement. Le gaz reliquéfîé sort donc du dispositif de séparation à l’état liquide et circule dans la deuxième voie afin de retourner dans la cuve via le circuit de refroidissement. According to one characteristic of the invention, the separation device comprises a liquid outlet, the heat treatment circuit comprising a second path connecting the liquid outlet of the separation device to the cooling circuit. The reliquefied gas therefore leaves the separation device in the liquid state and circulates in the second channel in order to return to the tank via the cooling circuit.
L’invention couvre également un ouvrage flottant comprenant au moins une cuve, au moins un appareil consommateur de gaz et un système de gestion tel que décrit précédemment. The invention also covers a floating structure comprising at least one tank, at least one gas-consuming device and a management system as described above.
D’autres caractéristiques et avantages de l’invention apparaîtront encore au travers de la description qui suit d’une part, et de plusieurs exemples de réalisation donnés à titre indicatif et non limitatif en référence aux dessins schématiques annexés d’autre part, sur lesquels : Other characteristics and advantages of the invention will appear further through the description which follows on the one hand, and several examples of embodiment given for informational and non-limiting purposes with reference to the appended schematic drawings on the other hand, in which :
[Fig. 1] est une représentation d’un premier mode de réalisation d’un système de gestion selon l’invention, [Fig. 1] is a representation of a first embodiment of a management system according to the invention,
[Fig. 2] est une représentation d’un deuxième mode de réalisation du système de gestion selon l’invention, [Fig. 2] is a representation of a second embodiment of the management system according to the invention,
[Fig. 3] illustre une première variante du premier mode de réalisation du système de gestion, [Fig. 3] illustrates a first variant of the first embodiment of the management system,
[Fig. 4] illustre une première variante du deuxième mode de réalisation du système de gestion, [Fig. 5] illustre une deuxième variante du premier mode de réalisation du système de gestion, [Fig. 4] illustrates a first variant of the second embodiment of the management system, [Fig. 5] illustrates a second variant of the first embodiment of the management system,
[Fig. 6] illustre une deuxième variante du premier mode de réalisation du système de gestion, [Fig. 6] illustrates a second variant of the first embodiment of the management system,
[Fig. 7] illustre une troisième variante du premier mode de réalisation du système de gestion. [Fig. 7] illustrates a third variant of the first embodiment of the management system.
La figure 1 illustre un premier mode de réalisation d’un système de gestion 1 selon l’invention. Le système de gestion 1 peut être intégré au sein d’un ouvrage flottant, par exemple un navire de stockage et/ou de transport d’un gaz à l’état liquide contenu dans au moins une cuve 2 qui équipe l’ouvrage flottant. Le gaz à l’état liquide peut de manière naturelle s’évaporer partiellement au sein d’un ciel 3 de la cuve 2. Figure 1 illustrates a first embodiment of a management system 1 according to the invention. The management system 1 can be integrated within a floating structure, for example a vessel for storing and/or transporting a gas in the liquid state contained in at least one tank 2 which equips the floating structure. The gas in the liquid state can naturally partially evaporate within a sky 3 of the tank 2.
Afin de gérer la pression de la cuve 2 qui augmente du fait de la présence de gaz à l’état vapeur au sein du ciel 3, le système de gestion 1 peut traiter ce gaz afin que ce dernier alimente en carburant au moins un appareil consommateur de gaz. Sur la figure 1, le système de gestion 1 est configuré pour pouvoir alimenter un appareil consommateur de gaz à haute pression 4 et un appareil consommateur de gaz à basse pression 5. L’appareil consommateur de gaz à haute pression 4 peut par exemple être un moteur assurant la propulsion de l’ouvrage flottant. L’appareil consommateur de gaz à basse pression 5 peut quant à lui être un générateur alimentant l’ouvrage flottant en électricité. In order to manage the pressure of the tank 2 which increases due to the presence of gas in the vapor state within the sky 3, the management system 1 can treat this gas so that it supplies fuel to at least one consumer device gas. In Figure 1, the management system 1 is configured to be able to supply a high pressure gas consuming device 4 and a low pressure gas consuming device 5. The high pressure gas consuming device 4 can for example be a engine ensuring the propulsion of the floating structure. The low pressure gas consuming device 5 can for its part be a generator supplying the floating structure with electricity.
Afin d’assurer une alimentation des appareils consommateurs de gaz 4, 5, le système de gestion 1 comprend un circuit d’alimentation 6 s’étendant entre la cuve 2 et les appareils consommateurs de gaz 4, 5. Le circuit d’alimentation 6 comprend un dispositif de compression 7 permettant d’aspirer le gaz à l’état vapeur contenu dans le ciel 3 et la cuve 2 et de comprimer celui-ci jusqu’à une pression compatible avec les besoins de l’appareil consommateur de gaz à haute pression 4, par exemple au-delà de 250 bars, ou de l’appareil consommateur de gaz à basse pression 5, notamment entre 7 et 20 bars. In order to ensure a power supply to the gas-consuming devices 4, 5, the management system 1 comprises a power supply circuit 6 extending between the tank 2 and the gas-consuming devices 4, 5. The power supply circuit 6 comprises a compression device 7 making it possible to suck up the gas in the vapor state contained in the sky 3 and the tank 2 and to compress it up to a pressure compatible with the needs of the device consuming gas at high pressure 4, for example above 250 bars, or of the low pressure gas consuming device 5, in particular between 7 and 20 bars.
Sur la figure 1, le dispositif de compression 7 est illustré par une série de compresseurs, mais le dispositif de compression 7 peut également être un unique compresseur multi- étagé. Ainsi, le dispositif de compression 7 présente plusieurs étages de compression afin de comprimer le gaz à l’état vapeur à une pression plus ou moins élevée, un tel dispositif de compression 7 comprenant au moins trois sorties dont au moins deux sont disposées entre deux étages de compression. Plus le gaz à l’état vapeur traverse d’étages de compression, plus la pression de celui-ci est augmentée. In Figure 1, the compression device 7 is illustrated by a series of compressors, but the compression device 7 can also be a single multi-compressor. floor. Thus, the compression device 7 has several compression stages in order to compress the gas in the vapor state at a more or less high pressure, such a compression device 7 comprising at least three outlets, at least two of which are arranged between two stages compression. The more the gas in the vapor state passes through compression stages, the more its pressure is increased.
Le dispositif de compression 7 représenté sur la figure 1 comprend ainsi au moins un premier étage de compression 11, un deuxième étage de compression 12 et un troisième étage de compression 13. Le dispositif de compression 7 comprend aussi une première sortie 56 disposée entre le premier étage de compression 11 et le deuxième étage de compression 12, une deuxième sortie 57 disposée entre le deuxième étage de compression 12 et le troisième étage de compression 13 et une troisième sortie 58 après le troisième étage de compression 13. The compression device 7 shown in Figure 1 thus comprises at least a first compression stage 11, a second compression stage 12 and a third compression stage 13. The compression device 7 also comprises a first outlet 56 arranged between the first compression stage 11 and the second compression stage 12, a second outlet 57 arranged between the second compression stage 12 and the third compression stage 13 and a third outlet 58 after the third compression stage 13.
Ces trois sorties 56, 57, 58 assurent chacune une sortie du gaz à l’état vapeur hors du dispositif de compression 7. Le gaz à l’état vapeur traverse l’ensemble du dispositif de compression 7 et sort par la troisième sortie 58 pour atteindre la pression compatible à l’alimentation de l’appareil consommateur de gaz à haute pression 4. En sortie du troisième étage de compression 13 du dispositif de compression 7, le gaz à l’état vapeur peut atteindre une pression comprise entre 250 et 400 bars. These three outlets 56, 57, 58 each ensure an exit of the gas in the vapor state from the compression device 7. The gas in the vapor state passes through the entire compression device 7 and leaves via the third outlet 58 to reach the pressure compatible with the supply of the high pressure gas consuming device 4. At the outlet of the third compression stage 13 of the compression device 7, the gas in the vapor state can reach a pressure of between 250 and 400 bars.
Le gaz à l’état vapeur comprimé par le premier étage de compression 11 présente une pression comprise entre 7 et 20 bars tandis que le gaz à l’état vapeur comprimé par le deuxième étage de compression 12 présente une pression comprise entre 120 et 150 bars. Le premier étage de compression 11 permet par ailleurs d’élever la pression du gaz à l’état vapeur à une valeur compatible pour l’alimentation de l’appareil consommateur de gaz à basse pression 5. The gas in the vapor state compressed by the first compression stage 11 has a pressure of between 7 and 20 bars while the gas in the vapor state compressed by the second compression stage 12 has a pressure of between 120 and 150 bars . The first compression stage 11 also makes it possible to raise the pressure of the gas in the vapor state to a value compatible with supplying the low-pressure gas consuming device 5.
Le système de gestion 1 comprend également un circuit de traitement thermique 8. Le circuit de traitement thermique 8 est connecté au circuit d’alimentation 6, plus particulièrement au niveau du dispositif de compression 7. Selon le premier mode de réalisation du système de gestion 1 , le circuit de traitement thermique 8 comprend une première branche 9 et une deuxième branche 10, respectivement connectées à la première sortie 56 du dispositif de compression 7 disposée en aval du premier étage de compression 11 et en amont du deuxième étage de compression 12, et à la deuxième sortie 57 du dispositif de compression 7 disposée en aval du deuxième étage de compression 11 et en amont du troisième étage de compression 13. La première branche 9 et la deuxième branche 10 permettent de faire circuler le gaz à l’état vapeur au sein du circuit de traitement thermique 8 à deux niveaux de pression différents. The management system 1 also includes a heat treatment circuit 8. The heat treatment circuit 8 is connected to the power supply circuit 6, more particularly at the level of the compression device 7. According to the first embodiment of the management system 1 , the heat treatment circuit 8 comprises a first branch 9 and a second branch 10, respectively connected to the first outlet 56 of the compression device 7 disposed downstream of the first compression stage 11 and upstream of the second compression stage 12, and at the second outlet 57 of the compression device 7 disposed downstream of the second compression stage 11 and upstream of the third compression stage 13. The first branch 9 and the second branch 10 make it possible to circulate the gas in the vapor state within the heat treatment circuit 8 at two different pressure levels.
La première branche 9 et la deuxième branche 10 se rejoignent au niveau d’un point de jonction 53. D’une manière préférentielle, le gaz à l’état vapeur ne circule qu’au sein de l’une des deux branches 9, 10. Afin de contrôler la circulation au sein desdites branches 9, 10, la première branche 9 comprend une première valve 43 et la deuxième branche 10 comprend une deuxième valve 44. The first branch 9 and the second branch 10 join at a junction point 53. Preferably, the gas in the vapor state only circulates within one of the two branches 9, 10 In order to control the circulation within said branches 9, 10, the first branch 9 comprises a first valve 43 and the second branch 10 comprises a second valve 44.
L’un des objectifs du circuit de traitement thermique 8 est de participer à la reliquéfaction du gaz à l’état vapeur non utilisé pour l’alimentation des appareils consommateurs de gaz 4, 5. Pour ce faire, le système de gestion 1 comprend un premier échangeur de chaleur 14 configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur comprimé circulant dans le circuit de traitement thermique 8 et le gaz à l’état vapeur circulant dans le circuit d’alimentation 6 en amont du dispositif de compression 7. One of the objectives of the heat treatment circuit 8 is to participate in the reliquefaction of the gas in the vapor state not used for supplying the gas consuming devices 4, 5. To do this, the management system 1 includes a first heat exchanger 14 configured to carry out a heat exchange between the gas in the compressed vapor state circulating in the heat treatment circuit 8 and the gas in the vapor state circulating in the supply circuit 6 upstream of the heat treatment device compression 7.
Le premier échangeur de chaleur 14 permet ainsi de pré- refroidir le gaz à l’état vapeur circulant dans le circuit de traitement thermique 8 en utilisant le gaz à l’état vapeur en sortie de la cuve 2. Ce dernier est alors chauffé en captant les calories du gaz à l’état vapeur circulant dans le circuit de traitement thermique 8. The first heat exchanger 14 thus makes it possible to pre-cool the gas in the vapor state circulating in the heat treatment circuit 8 by using the gas in the vapor state leaving the tank 2. The latter is then heated by capturing the calories of the gas in the vapor state circulating in the heat treatment circuit 8.
Le gaz à l’état vapeur circulant dans le circuit de traitement thermique 8 est pré-refroidi au sein du premier échangeur de chaleur 14, et ce peu importe la branche 9 ou 10 utilisée. Ainsi, le point de jonction 53 est avantageusement disposé en amont du premier échangeur de chaleur 14 afin que l’ensemble du gaz à l’état vapeur circulant dans le circuit de traitement thermique 8 traverse le premier échangeur de chaleur 14 pour être pré-refroidi. Selon une telle configuration, le premier échangeur de chaleur 14 comprend deux passes dont l’une dans laquelle circule le gaz à l’état vapeur circulant dans le circuit d’alimentation 6 en amont du dispositif de compression 7 et l’autre où circule le gaz à l’état vapeur comprimé circulant dans le circuit de traitement thermique 8 après que la première branche 9 et la deuxième branche 10 se sont rejointes au niveau du point de jonction 53. The gas in vapor state circulating in the heat treatment circuit 8 is pre-cooled within the first heat exchanger 14, regardless of the branch 9 or 10 used. Thus, the junction point 53 is advantageously arranged upstream of the first heat exchanger 14 so that all of the gas in the vapor state circulating in the heat treatment circuit 8 passes through the first heat exchanger 14 to be pre-cooled . According to such a configuration, the first heat exchanger 14 comprises two passes, one of which circulates the gas in the circulating vapor state. in the supply circuit 6 upstream of the compression device 7 and the other where the gas circulates in the compressed vapor state circulating in the heat treatment circuit 8 after the first branch 9 and the second branch 10 have joined at junction point 53.
Le gaz à l’état vapeur pré-refroidi poursuit sa circulation en sortie du premier échangeur de chaleur 14. La particularité du système de gestion 1 selon l’invention est que le circuit de traitement thermique 8 comprend une première portion 51 et une deuxième portion 52, chacune étant adaptée à la circulation du gaz à l’état vapeur précédemment comprimé par le premier étage de compression 11 ou par le deuxième étage de compression 12. The gas in the pre-cooled vapor state continues its circulation at the outlet of the first heat exchanger 14. The particularity of the management system 1 according to the invention is that the heat treatment circuit 8 comprises a first portion 51 and a second portion 52, each being adapted to the circulation of gas in the vapor state previously compressed by the first compression stage 11 or by the second compression stage 12.
Sur la figure 1, on observe que la deuxième portion 52 comprend un organe de détente 15, tandis que la première portion 51 en est dépourvue. On comprend ainsi que la première portion 51 est spécifique à la circulation du gaz à l’état vapeur comprimé seulement par le premier étage de compression 11, tandis que la deuxième portion 52 est spécifique à la circulation du gaz à l’état vapeur comprimé par le deuxième étage de compression 12. La mise sous pression au deuxième étage de compression 12 nécessite en effet une détente ultérieure, laquelle étant assurée par l’organe de détente 15. In Figure 1, we observe that the second portion 52 includes a trigger member 15, while the first portion 51 does not. It is thus understood that the first portion 51 is specific to the circulation of gas in the vapor state compressed only by the first compression stage 11, while the second portion 52 is specific to the circulation of gas in the vapor state compressed by the second compression stage 12. Putting the pressure on the second compression stage 12 requires subsequent expansion, which is ensured by the expansion member 15.
Il peut être avantageux en termes d’optimisation de reliquéfaction d’effectuer une compression puis une détente du gaz à l’état vapeur. Un tel choix est dépendant d’une pluralité de paramètres, par exemple la quantité de gaz à l’état vapeur généré dans le ciel 3 de cuve 2, ou la durée du trajet à effectuer par l’ouvrage flottant transportant le gaz à l’état liquide. Le système de gestion 1 selon l’invention permet d’optimiser la reliquéfaction du gaz à l’état vapeur en économisant un maximum d’énergie et en maintenant la température de la cargaison de gaz à l’état en-dessous d’un seuil déterminé. Cette optimisation est obtenue en favorisant l’utilisation de la première branche 9 combinée à l’utilisation de la première portion 51, par rapport à l’utilisation de la deuxième branche 10 combinée à l’utilisation de la deuxième portion 52. It can be advantageous in terms of reliquefaction optimization to compress and then expand the gas into the vapor state. Such a choice is dependent on a plurality of parameters, for example the quantity of gas in the vapor state generated in the sky 3 of tank 2, or the duration of the journey to be made by the floating structure transporting the gas to the liquid state. The management system 1 according to the invention makes it possible to optimize the reliquefaction of the gas in the vapor state by saving a maximum of energy and by maintaining the temperature of the gas cargo in the state below a threshold. determined. This optimization is obtained by favoring the use of the first branch 9 combined with the use of the first portion 51, compared to the use of the second branch 10 combined with the use of the second portion 52.
Le circuit de traitement thermique 8 illustré sur les figures 1 , 3 et 5 comprend un point de divergence 54 et un point de convergence 55, respectivement où débutent et se terminent la première portion 51 et la deuxième portion 52. Ces dernières comprennent par ailleurs respectivement une première vanne 41 et une deuxième vanne 42 qui contrôlent la circulation de gaz au sein des portions respectives. The heat treatment circuit 8 illustrated in Figures 1, 3 and 5 comprises a point of divergence 54 and a point of convergence 55, respectively where start and end terminate the first portion 51 and the second portion 52. The latter also respectively comprise a first valve 41 and a second valve 42 which control the circulation of gas within the respective portions.
Après avoir circulé au sein de la première portion 51 ou de la deuxième portion 52, le gaz à l’état vapeur traverse ensuite un deuxième échangeur de chaleur 16 dans le but d’être au moins partiellement reliquéfié. Le point de convergence 55 est disposé en amont du deuxième échangeur de chaleur 16. Ainsi, tout comme pour le premier échangeur de chaleur 14, le deuxième échangeur de chaleur 16 comprend deux passes.After circulating within the first portion 51 or the second portion 52, the gas in vapor state then passes through a second heat exchanger 16 with the aim of being at least partially reliquefied. The point of convergence 55 is arranged upstream of the second heat exchanger 16. Thus, just as for the first heat exchanger 14, the second heat exchanger 16 comprises two passes.
Afin d’opérer une reliquéfaction efficace, le système de gestion 1 comprend un circuit de refroidissement 17 au sein duquel circule du gaz à l’état liquide prélevé dans la cuve 2. Le circuit de refroidissement 17 comprend une pompe 18, avantageusement immergée au fond de la cuve 2 et qui met en circulation du gaz à l’état liquide au sein du circuit de refroidissement 17. Parmi les différentes fonctions du circuit de refroidissement 17, l’une d’entre elles est de participer à la reliquéfaction du gaz à l’état vapeur circulant dans le circuit de traitement thermique 8. Le gaz à l’état liquide circulant dans le circuit de refroidissement 17 peut ainsi traverser le deuxième échangeur de chaleur 16 au sein duquel s’opère l’échange de chaleur avec le gaz à l’état vapeur circulant dans le circuit de traitement thermique 8. Le gaz à l’état vapeur est alors reliquéfîé. In order to carry out effective reliquefaction, the management system 1 comprises a cooling circuit 17 within which circulates gas in the liquid state taken from the tank 2. The cooling circuit 17 comprises a pump 18, advantageously immersed at the bottom of the tank 2 and which circulates gas in the liquid state within the cooling circuit 17. Among the different functions of the cooling circuit 17, one of them is to participate in the reliquefaction of the gas to be the vapor state circulating in the heat treatment circuit 8. The gas in the liquid state circulating in the cooling circuit 17 can thus pass through the second heat exchanger 16 within which the heat exchange with the gas takes place in the vapor state circulating in the heat treatment circuit 8. The gas in the vapor state is then reliquefied.
Afin d’optimiser la reliquéfaction du gaz à l’état vapeur circulant dans le deuxième échangeur de chaleur 16, le système de gestion 1 comprend un troisième échangeur de chaleur 19, que le gaz à l’état liquide circulant dans le circuit de refroidissement 17 peut traverser ou contourner. In order to optimize the reliquefaction of the gas in the vapor state circulating in the second heat exchanger 16, the management system 1 comprises a third heat exchanger 19, that the gas in the liquid state circulating in the cooling circuit 17 can cross or go around.
Le troisième échangeur de chaleur 19 permet de sous- refroidir le gaz à l’état liquide afin de compenser les calories captées par le gaz à l’état liquide lors de l’échange de chaleur se produisant au sein du deuxième échangeur de chaleur 16. Afin de sous- refroidir le gaz à l’état liquide, le système 1 selon l’invention peut comprendre une boucle de refroidissement 20 qui traverse le troisième échangeur de chaleur 19, une telle boucle de refroidissement 20 étant parcourue par un fluide réfrigérant assurant le sous- refroidissement du gaz à l’état liquide. Ceci est avantageux en ce sens qu’on utilise les frigories contenues dans le gaz à l’état liquide contenu dans la cuve pour opérer la reliquéfaction. Le fluide réfrigérant circulant dans la boucle de refroidissement 20 peut par exemple être de l’azote. The third heat exchanger 19 makes it possible to sub-cool the gas in the liquid state in order to compensate for the calories captured by the gas in the liquid state during the heat exchange occurring within the second heat exchanger 16. In order to sub-cool the gas in the liquid state, the system 1 according to the invention can comprise a cooling loop 20 which passes through the third heat exchanger 19, such a cooling loop 20 being traversed by a refrigerant fluid ensuring the sub-cooling of the gas to the liquid state. This is advantageous in the sense that we use the frigories contained in the gas in the liquid state contained in the tank to carry out the reliquefaction. The refrigerant fluid circulating in the cooling loop 20 can for example be nitrogen.
Le choix de sous- refroidir le gaz à l’état liquide via le troisième échangeur de chaleur 19 ou non est également dépendant de la quantité de gaz à l’état vapeur généré dans la cuve 2 et/ou de la durée du trajet de l’ouvrage flottant, tout comme pour le choix du niveau de pression appliqué sur le gaz à l’état vapeur destiné à être reliquéfié. Un tel choix permet de déterminer s’il est nécessaire d’utiliser ou non le troisième échangeur de chaleur 19 et la boucle de refroidissement 20 pour assurer la reliquéfaction du gaz à l’état vapeur circulant dans le circuit de traitement thermique 8. On évite ainsi d’utiliser cette boucle de refroidissement 20 de manière superflue lorsque cela n’est pas indispensable pour la reliquéfaction du gaz à l’état vapeur, ce qui limite la consommation d’énergie.The choice of sub-cooling the gas in the liquid state via the third heat exchanger 19 or not is also dependent on the quantity of gas in the vapor state generated in the tank 2 and/or the duration of the journey of the floating work, just as for the choice of the level of pressure applied to the gas in the vapor state intended to be reliquefied. Such a choice makes it possible to determine whether or not it is necessary to use the third heat exchanger 19 and the cooling loop 20 to ensure the reliquefaction of the gas in the vapor state circulating in the heat treatment circuit 8. This avoids thus to use this cooling loop 20 in a superfluous manner when this is not essential for the reliquefaction of the gas in the vapor state, which limits energy consumption.
En sortie du deuxième échangeur de chaleur 16, le gaz reliquéfié rejoint le circuit de refroidissement 17, également en sortie du deuxième échangeur de chaleur 16. Le circuit de refroidissement 17 s’étend jusqu’à la cuve 2 afin que le retour du gaz à l’état liquide puisse se faire au sein de celle-ci. Le circuit de refroidissement 17 comprend à ce titre au moins une terminaison 29 pouvant être un orifice 30 agencée au fond de la cuve 2.At the outlet of the second heat exchanger 16, the reliquefied gas joins the cooling circuit 17, also at the outlet of the second heat exchanger 16. The cooling circuit 17 extends to the tank 2 so that the return of the gas to the liquid state can take place within it. The cooling circuit 17 therefore comprises at least one termination 29 which may be an orifice 30 arranged at the bottom of the tank 2.
Il est par ailleurs possible d’abaisser la température du gaz à l’état liquide contenu dans la cuve 2 grâce au troisième échangeur de chaleur 19 évoqué précédemment. Le gaz à l’état liquide est ainsi prélevé dans la cuve 2, puis sous-refroidi en traversant le troisième échangeur de chaleur 19, et retourne sous-refroidi dans la cuve 2 via une autre terminaison 29 agencée dans le ciel 3 de la cuve 2, laquelle pouvant être un organe de pulvérisation 31. Ce dernier permet de pulvériser du gaz à l’état liquide sous-refroidi dans le ciel 3 de la cuve 2 afin de condenser le gaz à l’état vapeur présent dans le ciel 3 et ainsi d’abaisser la pression de la cuve 2. It is also possible to lower the temperature of the gas in the liquid state contained in the tank 2 thanks to the third heat exchanger 19 mentioned previously. The gas in the liquid state is thus taken from the tank 2, then sub-cooled by passing through the third heat exchanger 19, and returns sub-cooled to the tank 2 via another termination 29 arranged in the sky 3 of the tank 2, which can be a spraying member 31. The latter makes it possible to spray gas in the sub-cooled liquid state in the sky 3 of the tank 2 in order to condense the gas in the vapor state present in the sky 3 and thus lowering the pressure of tank 2.
Lorsque la génération de gaz à l’état vapeur dans le ciel 3 de la cuve 2 n’est pas suffisante pour satisfaire la consommation de l’appareil consommateur de gaz à haute pression 4, le système de gestion 1 peut être configuré pour fournir le gaz à ce dernier. Ainsi, le système de gestion 1 peut comprendre un circuit d’alimentation supplémentaire 33. Le circuit d’alimentation supplémentaire 33 comprend une pompe additionnelle 35, une pompe haute pression 36 et un évaporateur haute pression 37. La pompe additionnelleWhen the generation of gas in the vapor state in the sky 3 of the tank 2 is not sufficient to satisfy the consumption of the high pressure gas consumer device 4, the management system 1 can be configured to provide the gas to the latter. Thus, the management system 1 can include an additional power supply circuit 33. The additional supply circuit 33 comprises an additional pump 35, a high pressure pump 36 and a high pressure evaporator 37. The additional pump
35 permet de prélever le gaz à l’état liquide dans la cuve 2, puis la pompe haute pression35 allows the gas to be taken in the liquid state in tank 2, then the high pressure pump
36 pompe le gaz à l’état liquide jusqu’à une pression compatible avec la pression requise par l’appareil consommateur de gaz à haute pression 4. L’évaporateur haute pression 37 permet d’évaporer le gaz à l’état liquide mis sous haute pression afin que le gaz passe à l’état vapeur et puisse être consommé par l’appareil consommateur de gaz à haute pression 4. 36 pumps the gas in the liquid state up to a pressure compatible with the pressure required by the high pressure gas consuming device 4. The high pressure evaporator 37 makes it possible to evaporate the gas in the liquid state placed under pressure. high pressure so that the gas passes into the vapor state and can be consumed by the high pressure gas consuming device 4.
Comme illustré sur les figures, la pompe additionnelle 35 et la pompe 18 du circuit de refroidissement 17 sont des pompes séparées et distinctes. Selon une alternative, le système est dépourvu d’un pompe additionnelle dédiée au circuit d’alimentation supplémentaire 33. Dans un tel cas, le circuit d’alimentation supplémentaire 33 est raccordé au circuit de refroidissement 17, entre une sortie de la pompe 18 et une entrée du deuxième échangeur de chaleur 16 et c’est la pompe 18 qui, en plus de sa fonction initiale, prélève du gaz à l’état liquide dans la cuve 2 pour le fournir à la pompe haute pression 36. As illustrated in the figures, the additional pump 35 and the pump 18 of the cooling circuit 17 are separate and distinct pumps. According to an alternative, the system does not have an additional pump dedicated to the additional power circuit 33. In such a case, the additional power circuit 33 is connected to the cooling circuit 17, between an outlet of the pump 18 and an inlet of the second heat exchanger 16 and it is the pump 18 which, in addition to its initial function, takes gas in the liquid state from the tank 2 to supply it to the high pressure pump 36.
La figure 2 représente un deuxième mode de réalisation du système de gestion 1 selon l’invention. Le deuxième mode de réalisation se distingue du premier mode de réalisation en ce que la première portion 51 et la deuxième portion 52 s’étendent sur l’intégralité ou sensiblement l’intégralité du circuit de traitement thermique 8. Contrairement au premier mode de réalisation, le deuxième mode de réalisation du système de gestion 1 illustré sur la figure 2 n’inclut donc pas la première branche, la deuxième branche, le point de jonction et le point de divergence. Figure 2 represents a second embodiment of the management system 1 according to the invention. The second embodiment differs from the first embodiment in that the first portion 51 and the second portion 52 extend over the entirety or substantially the entirety of the heat treatment circuit 8. Unlike the first embodiment, the second embodiment of the management system 1 illustrated in Figure 2 therefore does not include the first branch, the second branch, the junction point and the divergence point.
Ce sont donc la première portion 51 et la deuxième portion 52 qui sont directement connectées au dispositif de compression 7, respectivement à la première sortie 56, au niveau du premier étage de compression 11, et à la deuxième sortie 57, entre le deuxième étage de compression 12 et le troisième étage de compression 13. La première vanne 41 et la deuxième vanne 42 sont toujours présentes afin de contrôler la circulation du gaz à l’état vapeur au sein de la première portion 51 et de la deuxième portion 52. Sur les figures 1 à 4, on constate que le circuit de traitement thermique 8 comprend un organe de régulation de débit 40 disposé en aval du point de convergence 55 entre la première portion 51 et la deuxième portion 52. Cette organe de régulation de débit 40 adapte la pression et le débit au sein du circuit de traitement thermique 8 de sorte à rapprocher cette pression de la pression qui règne au sein de la cuve 2. It is therefore the first portion 51 and the second portion 52 which are directly connected to the compression device 7, respectively to the first outlet 56, at the level of the first compression stage 11, and to the second outlet 57, between the second stage of compression 12 and the third compression stage 13. The first valve 41 and the second valve 42 are always present in order to control the circulation of the gas in the vapor state within the first portion 51 and the second portion 52. In Figures 1 to 4, we see that the heat treatment circuit 8 comprises a flow regulating member 40 disposed downstream of the point of convergence 55 between the first portion 51 and the second portion 52. This flow regulating member 40 adapts the pressure and the flow rate within the heat treatment circuit 8 so as to bring this pressure closer to the pressure which reigns within the tank 2.
Cette organe de régulation de débit 40 est disposé en aval de la branche du circuit de traitement thermique 8 qui traverse le deuxième échangeur de chaleur 16, et amont d’un point de mélange 39 entre le circuit de traitement thermique 8 et le circuit de refroidissement 17. This flow regulation member 40 is arranged downstream of the branch of the heat treatment circuit 8 which passes through the second heat exchanger 16, and upstream of a mixing point 39 between the heat treatment circuit 8 and the cooling circuit 17.
La première portion 51 et la deuxième portion 52 s’étendent ainsi en parallèle l’une de l’autre, y compris au sein du premier échangeur de chaleur 14 et du deuxième échangeur de chaleur 16. Les échangeurs de chaleur 14, 16 sont ainsi composés de trois passes, à raison d’une passe par portion du circuit de traitement thermique 8, d’une passe où circule le gaz à l’état vapeur circulant dans le circuit d’alimentation 6 en amont du dispositif de compression 7 pour le premier échangeur de chaleur 14, et d’une passe où circule le gaz à l’état liquide circulant dans le circuit de refroidissement 17 pour le deuxième échangeur de chaleur 16. The first portion 51 and the second portion 52 thus extend in parallel to each other, including within the first heat exchanger 14 and the second heat exchanger 16. The heat exchangers 14, 16 are thus composed of three passes, at the rate of one pass per portion of the heat treatment circuit 8, of a pass where the gas circulates in the vapor state circulating in the supply circuit 6 upstream of the compression device 7 for the first heat exchanger 14, and a pass where the gas in the liquid state circulates circulating in the cooling circuit 17 for the second heat exchanger 16.
Tel que cela est illustré sur la figure 2, le point de convergence 55 entre la première portion 51 et la deuxième portion 52 est disposé en aval du deuxième échangeur de chaleur 16. Le circuit de traitement thermique 8 rejoint par la suite le circuit de refroidissement 17. As illustrated in Figure 2, the point of convergence 55 between the first portion 51 and the second portion 52 is arranged downstream of the second heat exchanger 16. The heat treatment circuit 8 subsequently joins the cooling circuit 17.
D’une manière générale, le positionnement du point de convergence 55, mais aussi celui du point de jonction 53 et du point de divergence 54 illustrés sur la figure 1, peuvent différer de manière non exhaustive à ce qui est illustré sur les figures 1 et 2. En fonction du positionnement de ces points, le premier échangeur de chaleur 14 et le deuxième échangeur de chaleur 16 peuvent comprendre deux ou trois passes. Generally speaking, the positioning of the point of convergence 55, but also that of the junction point 53 and the point of divergence 54 illustrated in Figure 1, may differ in a non-exhaustive manner from what is illustrated in Figures 1 and 2. Depending on the positioning of these points, the first heat exchanger 14 and the second heat exchanger 16 may comprise two or three passes.
L’organe de détente 15 est toujours positionné au niveau de la deuxième portion 52 et assure la détente du gaz comprimé par le deuxième étage de compression 12. Tout comme ce qui a été décrit précédemment, le niveau de compression du gaz par le dispositif de compression 7 ainsi que l’utilisation du troisième échangeur de chaleur 19 et de la boucle de refroidissement 20 sont dépendants par exemple de la durée du trajet de l’ouvrage flottant et la quantité de gaz à l’état vapeur généré dans le ciel 3 de cuve 2.The expansion member 15 is always positioned at the level of the second portion 52 and ensures the expansion of the gas compressed by the second compression stage 12. Just like what was described previously, the level of compression of the gas by the compression device 7 as well as the use of the third heat exchanger 19 and the cooling loop 20 are dependent for example on the duration of the journey of the floating structure and the quantity of gas in the vapor state generated in the sky 3 of tank 2.
L’ensemble des autres caractéristiques structurelles et fonctionnelles du deuxième mode de réalisation du système de gestion 1 étant identiques à celles du premier mode de réalisation, on se référera à la description de la figure 1 concernant la description des caractéristiques communes aux deux modes de réalisation. All the other structural and functional characteristics of the second embodiment of the management system 1 being identical to those of the first embodiment, we will refer to the description of Figure 1 concerning the description of the characteristics common to the two embodiments .
Les figures 3 à 6 représentent une variante du premier mode de réalisation ou une variante du deuxième mode de réalisation du système de gestion 1 selon l’invention. Seules les différences structurelles et fonctionnelles par rapport à ce qui a été évoquées précédemment seront décrites au sujet de ces variantes. On se référera donc à la description de la figure 1 et/ ou de la figure 2 pour toutes les caractéristiques non détaillées ci-dessous concernant ces variantes. Figures 3 to 6 represent a variant of the first embodiment or a variant of the second embodiment of the management system 1 according to the invention. Only the structural and functional differences compared to what has been mentioned previously will be described about these variants. We will therefore refer to the description of Figure 1 and/or Figure 2 for all the characteristics not detailed below concerning these variants.
Les figures 3 et 4 représentent ainsi respectivement une première variante du premier mode de réalisation et une première variante du deuxième mode de réalisation. Cette première variante se distingue de ce qui a été décrit précédemment notamment par l’absence du troisième échangeur de chaleur permettant de sous-refroidir le gaz à l’état liquide circulant dans le circuit de refroidissement 17. Figures 3 and 4 thus respectively represent a first variant of the first embodiment and a first variant of the second embodiment. This first variant differs from what has been described previously in particular by the absence of the third heat exchanger making it possible to sub-cool the gas in the liquid state circulating in the cooling circuit 17.
A la place, selon une telle variante du système de gestion 1 selon l’invention, celle-ci comprend une branche additionnelle 48 connectée à la première sortie 56 du dispositif de compression 7, en parallèle de la première branche 9 ou de la première portion 51 selon le mode de réalisation, et qui s’étend jusqu’à la cuve 2. Cette branche additionnelle 48 conduit le gaz à l’état vapeur à travers un échangeur thermique 49, qui est configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur et un fluide réfrigérant circulant dans une boucle de reliquéfaction 50. En sortie de l’échangeur thermique 49, le gaz reliquéfié circule dans la branche additionnelle 48 jusqu’à retourner dans la cuve 2.Instead, according to such a variant of the management system 1 according to the invention, this comprises an additional branch 48 connected to the first output 56 of the compression device 7, in parallel with the first branch 9 or the first portion 51 according to the embodiment, and which extends to the tank 2. This additional branch 48 conducts the gas in the vapor state through a heat exchanger 49, which is configured to carry out a heat exchange between the gas in the vapor state and a refrigerant fluid circulating in a reliquefaction loop 50. At the outlet of the heat exchanger 49, the reliquefied gas circulates in the additional branch 48 until returning to the tank 2.
La branche additionnelle 48 et l’échangeur thermique 49 peuvent ainsi être utilisés lorsque qu’il n’est pas possible de sous-refroidir le gaz à l’état liquide au sein du circuit de refroidissement 17, ce qui peut conduire à une mauvaise reliquéfaction du gaz à l’état vapeur traversant le deuxième échangeur de chaleur 16, par exemple dans un cas où on souhaite limiter le réchauffement de la cargaison ou en cas de gaz à l’état vapeur en trop grande quantité. Tout comme ce qui a été décrit précédemment, le fonctionnement du système de gestion 1 peut également dépendre de la durée du trajet de l’ouvrage flottant.The additional branch 48 and the heat exchanger 49 can thus be used when it is not possible to sub-cool the gas in the liquid state within the cooling circuit 17, which can lead to poor reliquefaction. gas in the state steam passing through the second heat exchanger 16, for example in a case where it is desired to limit the heating of the cargo or in the case of gas in the vapor state in too large a quantity. Just like what was described previously, the operation of the management system 1 can also depend on the duration of the journey of the floating structure.
Dans une telle situation, il peut être judicieux de répartir le gaz à l’état vapeur comprimé entre le circuit de traitement thermique 8 et la branche additionnelle 48 afin que l’ensemble dudit gaz à l’état vapeur soit reliquéfié, tout en réduisant au maximum l’ utilisation de la boucle de reliquéfaction 50. In such a situation, it may be wise to distribute the gas in the compressed vapor state between the heat treatment circuit 8 and the additional branch 48 so that all of said gas in the vapor state is reliquefied, while reducing to maximum use of the reliquefaction loop 50.
Une autre différence par rapport à ce qui a été décrit est la présence d’un élément de compression 32, agencé au moins partiellement en parallèle du dispositif de compression 7, notamment au moins du premier étage de compression 11. Cet élément de compression 32 assure une redondance au moins partielle avec le dispositif de compression 7. Cet élément de compression 32 est facultatif. Another difference compared to what has been described is the presence of a compression element 32, arranged at least partially in parallel with the compression device 7, in particular at least with the first compression stage 11. This compression element 32 ensures at least partial redundancy with the compression device 7. This compression element 32 is optional.
Sur les figures 3 et 4, l’élément de compression 32 est configuré pour comprimer le gaz à l’état vapeur jusqu’au une pression identique ou similaire à celle délivrée par le premier étage de compression 11 du dispositif de compression 7. Une admission de l’élément de compression 32 est raccordée au circuit d’alimentation 6 en un point situé entre la sortie du premier échangeur de chaleur 14 et une entrée du dispositif de compression 7. L’élément de compression 32 est aussi apte à alimenter l’appareil consommateur de gaz basse pression 5 en gaz à l’état vapeur, le circuit d’alimentation 6 comprenant alors une ligne reliant une sortie de l’élément de compression 32 avec une entrée l’appareil consommateur de gaz basse pression 5. In Figures 3 and 4, the compression element 32 is configured to compress the gas in the vapor state to a pressure identical or similar to that delivered by the first compression stage 11 of the compression device 7. An admission of the compression element 32 is connected to the supply circuit 6 at a point located between the outlet of the first heat exchanger 14 and an inlet of the compression device 7. The compression element 32 is also capable of supplying the device consuming low pressure gas 5 in gas in the vapor state, the supply circuit 6 then comprising a line connecting an outlet of the compression element 32 with an inlet of the device consuming low pressure gas 5.
Le gaz à l’état vapeur comprimé par l’élément de compression 32 peut aussi circuler dans la première branche 9 ou directement dans la première portion 51 en fonction du mode de réalisation du système de gestion 1. Enfin, le gaz à l’état vapeur comprimé par l’élément de compression 32 peut aussi rejoindre le dispositif de compression 7 et être davantage comprimé par ce dernier au moyen du deuxième étage de compression 12, pour circuler dans la deuxième branche 10 ou la deuxième portion 52, ou être davantage comprimé par le troisième étage de compression 13 pour alimenter l’appareil consommateur de gaz haute pression 4. The gas in the vapor state compressed by the compression element 32 can also circulate in the first branch 9 or directly in the first portion 51 depending on the embodiment of the management system 1. Finally, the gas in the vapor state vapor compressed by the compression element 32 can also join the compression device 7 and be further compressed by the latter by means of the second compression stage 12, to circulate in the second branch 10 or the second portion 52, or be more compressed by the third compression stage 13 to supply the high pressure gas consuming device 4.
L’élément de compression 32 est représenté sur les figures 3 et 4, mais peut également être intégré aux modes de réalisation illustrés sur les figures 1 et 2, ainsi qu’aux variantes décrites ci-dessous. The compression element 32 is shown in Figures 3 and 4, but can also be integrated into the embodiments illustrated in Figures 1 and 2, as well as the variants described below.
Les figures 5 et 6 représentent respectivement une deuxième variante du premier mode de réalisation et une deuxième variante du deuxième mode de réalisation. Cette deuxième variante se distingue de ce qui est illustré sur les figures 1 et 2 en ce que le circuit de traitement thermique 8 comprend au moins un dispositif de séparation 21 agencé en aval du deuxième échangeur de chaleur 16. Un tel dispositif de séparation 21 présente l’avantage d’éviter qu’une fraction de gaz à l’état vapeur ne circule jusqu’à la cuve 2. Figures 5 and 6 respectively represent a second variant of the first embodiment and a second variant of the second embodiment. This second variant differs from what is illustrated in Figures 1 and 2 in that the heat treatment circuit 8 comprises at least one separation device 21 arranged downstream of the second heat exchanger 16. Such a separation device 21 has the advantage of preventing a fraction of gas in the vapor state from circulating to tank 2.
En sortie du deuxième échangeur de chaleur 16, le gaz majoritairement reliquéfié ou totalement reliquéfié peut circuler jusqu’au dispositif de séparation 21. Celui-ci comprend une entrée 22 par laquelle entre ce gaz dans un volume du dispositif de séparation 21. Ce dernier permet de séparer une fraction liquide d’une fraction vapeur du gaz si ce dernier n’est pas entièrement reliquéfié. Le dispositif de séparation 21 comprend une sortie vapeur 23 autorisant la sortie de la fraction vapeur hors du dispositif de séparation 21 et une sortie liquide 24 autorisant la sortie de la fraction liquide hors du dispositif de séparation 21. At the outlet of the second heat exchanger 16, the mainly reliquefied or completely reliquefied gas can circulate to the separation device 21. This includes an inlet 22 through which this gas enters a volume of the separation device 21. The latter allows to separate a liquid fraction from a vapor fraction of the gas if the latter is not entirely reliquefied. The separation device 21 comprises a vapor outlet 23 authorizing the exit of the vapor fraction out of the separation device 21 and a liquid outlet 24 authorizing the exit of the liquid fraction out of the separation device 21.
La fraction vapeur, si elle est présente dans le dispositif de séparation 21, peut sortir via la sortie vapeur 23 et circuler au sein d’une première voie 25. La première voie 25 est reliée au circuit d’alimentation 6 et permet la recirculation du gaz à l’état vapeur non reliquéfîé au sein dudit circuit d’alimentation 6 afin que ledit gaz soit consommé ou reliquéfîé. The steam fraction, if it is present in the separation device 21, can exit via the steam outlet 23 and circulate within a first channel 25. The first channel 25 is connected to the supply circuit 6 and allows the recirculation of the gas in the non-reliquefied vapor state within said supply circuit 6 so that said gas is consumed or reliquefied.
La fraction liquide présente dans le dispositif de séparation 21 peut quant à elle sortir par la sortie liquide 24 et circuler au sein d’une deuxième voie 26 qui relie le dispositif de séparation 21 au circuit de refroidissement 17. Après avoir rejoint ce dernier, le gaz reliquéfîé circule alors jusqu’à la cuve 2 via l’orifice 30. Sur les figures 5 et 6, le dispositif de séparation 21 et les deux voies 25, 26 sont illustrés au sein d’un système de gestion équipé du troisième échangeur de chaleur 19. Il est néanmoins tout à fait possible de combiner la première variante et la deuxième variante du système de gestion 1 illustrées sur les figures 3 à 6, et ainsi de mettre en oeuvre un système de gestion 1 avec le dispositif de séparation 21, les deux voies 25, 26, ainsi que la branche additionnelle 48 et l’échangeur thermique 49, et ce quel que soit le mode de réalisation dudit système de gestion 1. The liquid fraction present in the separation device 21 can for its part exit through the liquid outlet 24 and circulate within a second path 26 which connects the separation device 21 to the cooling circuit 17. After joining the latter, the reliquefied gas then circulates to tank 2 via orifice 30. In Figures 5 and 6, the separation device 21 and the two channels 25, 26 are illustrated within a management system equipped with the third heat exchanger 19. It is nevertheless entirely possible to combine the first variant and the second variant of the management system 1 illustrated in Figures 3 to 6, and thus to implement a management system 1 with the separation device 21, the two channels 25, 26, as well as the additional branch 48 and the heat exchanger 49, whatever the embodiment of said management system 1.
La figure 7 représente un système de gestion analogue à la figure 1 et comportant en plus un orifice calibré 60. Le système de gestion 1 comprend le deuxième échangeur de chaleur 16 relié à la cuve 2 par une branche de retour comprenant une terminaison 29 débouchant dans la cuve et un orifice 30 disposé sur une portion de la branche de retour présente dans la cuve. De préférence, l’orifice 30 est disposé à l’extrémité de la branche de retour présente dans la cuve. Figure 7 represents a management system similar to Figure 1 and additionally comprising a calibrated orifice 60. The management system 1 comprises the second heat exchanger 16 connected to the tank 2 by a return branch comprising a termination 29 opening into the tank and an orifice 30 disposed on a portion of the return branch present in the tank. Preferably, the orifice 30 is arranged at the end of the return branch present in the tank.
Dans le mode de réalisation de la figure 7, l’orifice 30 est un orifice calibré 60. A titre d’exemple, pour un débit de liquide cryogénique renvoyé vers la cuve 2 de 60 m3/h et avec un orifice calibré 60 d’un diamètre de 11 millimètres, la diminution de la pression sera de 2 bars. Pour un débit de 30 m3/h et avec un orifice calibré 60 d’un diamètre de 8,5 millimètres, la diminution de la pression sera de 2,2 bars. Pour un débit de 20 m3/h et avec un orifice calibré 60 d’un diamètre de 7,5 millimètres, la diminution de la pression sera de 2,1 bars, In the embodiment of Figure 7, the orifice 30 is a calibrated orifice 60. As an example, for a flow rate of cryogenic liquid returned to the tank 2 of 60 m 3 /h and with an orifice calibrated 60 d 'a diameter of 11 millimeters, the reduction in pressure will be 2 bars. For a flow rate of 30 m 3 /h and with a calibrated orifice 60 with a diameter of 8.5 millimeters, the reduction in pressure will be 2.2 bars. For a flow rate of 20 m 3 /h and with a calibrated orifice 60 with a diameter of 7.5 millimeters, the reduction in pressure will be 2.1 bars,
L’orifice calibré 60 est illustré uniquement sur la figure 7 mais il est néanmoins tout à fait possible de combiner la présence de l’orifice calibré 60 avec les variantes du premier mode et le second mode ainsi que sa première variante du système de gestion 1 illustrées sur les figures 1 à 5. The calibrated orifice 60 is illustrated only in Figure 7 but it is nevertheless entirely possible to combine the presence of the calibrated orifice 60 with the variants of the first mode and the second mode as well as its first variant of the management system 1 illustrated in Figures 1 to 5.
Bien sûr, l’invention n’est pas limitée aux exemples qui viennent d’être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l’invention. Of course, the invention is not limited to the examples which have just been described and numerous adjustments can be made to these examples without departing from the scope of the invention.
L’invention, telle qu’elle vient d’être décrite, atteint bien le but qu’elle s’était fixée, et propose un système de gestion d’un gaz contenu dans un ouvrage flottant pouvant optimiser la consommation nécessaire pour liquéfier le gaz non consommé par l’appareil consommateur de l’ouvrage flottant, en fonction de conditions liées à la durée d’un trajet de l’ouvrage flottant et/ou à une quantité de gaz à l’état vapeur présente dans le ciel de cuve. Des variantes non décrites ici pourraient être mises en oeuvre sans sortir du contexte de l’invention, dès lors que, conformément à l’invention, elles comprennent un système de gestion conforme à l’invention. The invention, as it has just been described, achieves the goal it set for itself, and proposes a system for managing a gas contained in a floating structure that can optimize the consumption necessary to liquefy the gas not consumed by the consuming device of the floating structure, according to conditions linked to the duration of a journey of the floating structure and/or to a quantity of gas in the state steam present in the tank head. Variants not described here could be implemented without departing from the context of the invention, since, in accordance with the invention, they include a management system according to the invention.

Claims

REVENDICATIONS
1- Système de gestion (1) d’un gaz contenu dans au moins une cuve (2) d’un ouvrage flottant qui comporte au moins un appareil consommateur de gaz (4, 5), le système de gestion (1) comprenant : au moins un circuit d’alimentation (6) en gaz de l’appareil consommateur de gaz (4, 5), le circuit d’alimentation (6) comprenant au moins un dispositif de compression (7) comportant au moins un premier étage de compression (11), un deuxième étage de compression (12) et un troisième étage de compression (13) et configuré pour comprimer du gaz prélevé à l’état vapeur dans la cuve (2), le dispositif de compression (7) délivrant le gaz à l’état vapeur à trois niveaux de pression différents, au moins un circuit de traitement thermique (8) du gaz à l’état vapeur comprimé par au moins l’un des étages de compression (11, 12) du dispositif de compression (7), au moins un premier échangeur de chaleur (14) configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur circulant dans le circuit d’alimentation (6) entre la cuve (2) et le dispositif de compression (7) et le gaz à l’état vapeur circulant dans le circuit de traitement thermique (8), au moins un circuit de refroidissement (17) comprenant au moins une pompe (18) configurée pour prélever le gaz à l’état liquide dans la cuve (2), au moins un deuxième échangeur de chaleur (16) configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur circulant dans le circuit de traitement thermique (8) en aval du premier échangeur de chaleur (14) et le gaz circulant dans le circuit de refroidissement (17), caractérisé en ce que le circuit de traitement thermique (8) comprend au moins une première portion (51) configurée pour faire circuler du gaz comprimé par le premier étage de compression (11) du dispositif de compression (7) et une deuxième portion (52) configurée pour faire circuler du gaz comprimé par le deuxième étage de compression (12) du dispositif de compression (7), le deuxième étage de compression (12) étant disposé en aval du premier étage de compression (11), la première portion (51) et la deuxième portion (52) s’étendant au moins partiellement entre le dispositif de compression (7) et le deuxième échangeur de chaleur (16), la deuxième portion (52) étant pourvue d’un organe de détente (15). 1- Management system (1) of a gas contained in at least one tank (2) of a floating structure which comprises at least one gas consuming device (4, 5), the management system (1) comprising: at least one gas supply circuit (6) of the gas consuming device (4, 5), the supply circuit (6) comprising at least one compression device (7) comprising at least a first stage of compression (11), a second compression stage (12) and a third compression stage (13) and configured to compress gas taken in the vapor state from the tank (2), the compression device (7) delivering the gas in the vapor state at three different pressure levels, at least one heat treatment circuit (8) of the gas in the vapor state compressed by at least one of the compression stages (11, 12) of the compression device (7), at least one first heat exchanger (14) configured to carry out a heat exchange between the gas in vapor state circulating in the supply circuit (6) between the tank (2) and the compression device (7) and the gas in the vapor state circulating in the heat treatment circuit (8), at least one cooling circuit (17) comprising at least one pump (18) configured to take the gas in the liquid state in the tank (2), at least a second heat exchanger (16) configured to carry out a heat exchange between the gas in vapor state circulating in the heat treatment circuit (8) downstream of the first heat exchanger (14 ) and the gas circulating in the cooling circuit (17), characterized in that the heat treatment circuit (8) comprises at least a first portion (51) configured to circulate gas compressed by the first compression stage (11 ) of the compression device (7) and a second portion (52) configured to circulate compressed gas through the second compression stage (12) of the compression device (7), the second compression stage (12) being arranged in downstream of the first compression stage (11), the first portion (51) and the second portion (52) extending at least partially between the compression device (7) and the second heat exchanger (16), the second portion (52) being provided with an expansion member (15 ).
2- Système de gestion (1) selon la revendication 1, dans lequel la première portion (51) comprend une première vanne (41) et la deuxième portion (52) comprend une deuxième vanne (42), la première vanne (41) et la deuxième vanne (42) étant configurées pour contrôler la circulation du gaz au sein desdites portions. 2- Management system (1) according to claim 1, in which the first portion (51) comprises a first valve (41) and the second portion (52) comprises a second valve (42), the first valve (41) and the second valve (42) being configured to control the circulation of gas within said portions.
3- Système de gestion (1) selon l’une quelconque des revendications 1 ou 2, dans lequel le circuit de traitement thermique (8) comprend un point de divergence (54) à partir duquel débutent la première portion (51) et la deuxième portion (52), le point de divergence (54) étant disposé entre le premier échangeur de chaleur (14) et le deuxième échangeur de chaleur (16). 3- Management system (1) according to any one of claims 1 or 2, in which the heat treatment circuit (8) comprises a point of divergence (54) from which the first portion (51) and the second begin portion (52), the divergence point (54) being arranged between the first heat exchanger (14) and the second heat exchanger (16).
4- Système de gestion (1) selon l’une quelconque des revendications 1 à 3, dans lequel la première portion (51) et la deuxième portion (52) débutent respectivement au premier étage de compression (11) et au deuxième étage de compression (12) du dispositif de compression (7). 4- Management system (1) according to any one of claims 1 to 3, in which the first portion (51) and the second portion (52) begin respectively at the first compression stage (11) and at the second compression stage (12) of the compression device (7).
5- Système de gestion (1) selon l’une quelconque des revendications 1 à 4, dans lequel la première portion (51) et la deuxième portion (52) se rejoignent en un point de convergence (55). 5- Management system (1) according to any one of claims 1 to 4, in which the first portion (51) and the second portion (52) meet at a point of convergence (55).
6- Système de gestion (1) selon la revendication 5, dans lequel le point de convergence (55) est disposé entre le premier échangeur de chaleur (14) et le deuxième échangeur de chaleur (16). 6- Management system (1) according to claim 5, wherein the point of convergence (55) is arranged between the first heat exchanger (14) and the second heat exchanger (16).
7- Système de gestion (1) selon la revendication 5, dans lequel le point de convergence (55) est disposé en aval du deuxième échangeur de chaleur (16). 7- Management system (1) according to claim 5, wherein the convergence point (55) is arranged downstream of the second heat exchanger (16).
8- Système de gestion (1) selon l’une quelconque des revendications 5 à 7, en combinaison avec la revendication 3, dans lequel le circuit de traitement thermique (8) comprend au moins une première branche (9) raccordée au premier étage de compression (11) du dispositif de compression (7) et une deuxième branche (10) Tl raccordée au deuxième étage de compression (12) du dispositif de compression (7), la première branche (9) et la deuxième branche (10) se rejoignant en un point de jonction (53) du circuit de traitement thermique (8) disposé entre le dispositif de compression (7) et le point de divergence (54). 8- Management system (1) according to any one of claims 5 to 7, in combination with claim 3, in which the heat treatment circuit (8) comprises at least a first branch (9) connected to the first stage of compression (11) of the compression device (7) and a second branch (10) Tl connected to the second compression stage (12) of the compression device (7), the first branch (9) and the second branch (10) joining at a junction point (53) of the heat treatment circuit (8) arranged between the compression device (7) and the divergence point (54).
9- Système de gestion (1) selon la revendication 8, dans lequel la première branche (9) comprend une première valve (43) et la deuxième branche (10) comprend une deuxième valve (44), la première valve (43) et la deuxième valve (44) étant configurées pour contrôler la circulation du gaz au sein desdites branches. 9- Management system (1) according to claim 8, in which the first branch (9) comprises a first valve (43) and the second branch (10) comprises a second valve (44), the first valve (43) and the second valve (44) being configured to control the circulation of gas within said branches.
10- Système de gestion (1) selon l’une quelconque des revendications 1 à 9, dans lequel la première portion (51) et la deuxième portion (52) du circuit de traitement thermique (8) comprennent chacune une passe du premier échangeur de chaleur (14) et/ou du deuxième échangeur de chaleur (16). 10- Management system (1) according to any one of claims 1 to 9, in which the first portion (51) and the second portion (52) of the heat treatment circuit (8) each comprise a pass of the first heat exchanger heat (14) and/or the second heat exchanger (16).
11- Système de gestion (1) selon l’une quelconque des revendications 1 à 10, comprenant un troisième échangeur de chaleur (19) configuré pour opérer un échange de chaleur entre le gaz à l’état liquide circulant dans le circuit de refroidissement (17) et un fluide réfrigérant circulant dans une boucle de refroidissement (20). 11- Management system (1) according to any one of claims 1 to 10, comprising a third heat exchanger (19) configured to carry out a heat exchange between the gas in the liquid state circulating in the cooling circuit ( 17) and a refrigerant fluid circulating in a cooling loop (20).
12- Système de gestion (1) selon l’une quelconque des revendications 1 à 10, comprenant une branche additionnelle (48) reliant le premier étage de compression (11) du dispositif de compression (7) à la cuve (2), le système de gestion (1) comprenant en outre un échangeur thermique (49) configuré pour opérer un échange de chaleur entre le gaz à l’état vapeur circulant dans la branche additionnelle (48) et un fluide réfrigérant circulant dans une boucle de reliquéfaction (50). 12- Management system (1) according to any one of claims 1 to 10, comprising an additional branch (48) connecting the first compression stage (11) of the compression device (7) to the tank (2), the management system (1) further comprising a heat exchanger (49) configured to carry out a heat exchange between the gas in vapor state circulating in the additional branch (48) and a refrigerant fluid circulating in a reliquefaction loop (50 ).
13- Système de gestion (1) selon l’une quelconque des revendications 1 à 12, dans lequel le circuit d’alimentation (6) comprend au moins un élément de compression (32) agencé au moins partiellement en parallèle du dispositif de compression (7). 13- Management system (1) according to any one of claims 1 to 12, in which the supply circuit (6) comprises at least one compression element (32) arranged at least partially in parallel with the compression device ( 7).
14- Système de gestion (1) selon la revendication 13, dans lequel l’élément de compression (32) est raccordé au premier étage de compression (11) du dispositif de compression (7). 15- Système de gestion (1) selon l’une quelconque des revendications 1 à 14, dans lequel le circuit de traitement thermique (8) rejoint le circuit de refroidissement (17) en aval du deuxième échangeur de chaleur (16). 14- Management system (1) according to claim 13, wherein the compression element (32) is connected to the first compression stage (11) of the compression device (7). 15- Management system (1) according to any one of claims 1 to 14, in which the heat treatment circuit (8) joins the cooling circuit (17) downstream of the second heat exchanger (16).
16- Système de gestion (1) selon l’une quelconque des revendications 1 à 15, dans lequel le circuit de traitement thermique (8) comprend un dispositif de séparation (21) dont une entrée (22) est disposée en aval du deuxième échangeur de chaleur (16).16- Management system (1) according to any one of claims 1 to 15, in which the heat treatment circuit (8) comprises a separation device (21) of which an inlet (22) is arranged downstream of the second exchanger heat (16).
17- Système de gestion (1) selon l’une quelconque des revendications 1 à 16, dans lequel le deuxième échangeur de chaleur (16) est relié à la cuve (2) par une branche de retour comprenant une terminaison (29) débouchant dans la cuve et un orifice (30) disposé sur une portion de la branche de retour présente dans la cuve. 17- Management system (1) according to any one of claims 1 to 16, in which the second heat exchanger (16) is connected to the tank (2) by a return branch comprising a termination (29) opening into the tank and an orifice (30) disposed on a portion of the return branch present in the tank.
18- Système de gestion (1) selon la revendication 17, dans lequel l’orifice (30) est un orifice calibré (60). 18- Management system (1) according to claim 17, in which the orifice (30) is a calibrated orifice (60).
19- Système de gestion (1) selon la revendication 16, dans lequel le dispositif de séparation (21) comprend une sortie vapeur (23), le circuit de traitement thermique (8) comprenant une première voie (25) reliant la sortie vapeur (23) du dispositif de séparation (21) au circuit d’alimentation (6) en un point situé entre la cuve (2) et le premier échangeur de chaleur (14). 19- Management system (1) according to claim 16, in which the separation device (21) comprises a steam outlet (23), the heat treatment circuit (8) comprising a first path (25) connecting the steam outlet ( 23) from the separation device (21) to the supply circuit (6) at a point located between the tank (2) and the first heat exchanger (14).
20- Système de gestion (1) selon la revendication 19, dans lequel le dispositif de séparation (21) comprend une sortie liquide (24), le circuit de traitement thermique (8) comprenant une deuxième voie (26) reliant la sortie liquide (24) du dispositif de séparation (21) au circuit de refroidissement (17). 20- Management system (1) according to claim 19, in which the separation device (21) comprises a liquid outlet (24), the heat treatment circuit (8) comprising a second path (26) connecting the liquid outlet ( 24) from the separation device (21) to the cooling circuit (17).
21- Ouvrage flottant comprenant au moins une cuve (2), au moins un appareil consommateur de gaz et un système de gestion (1) selon l’une quelconque des revendications 1 à 20. 21- Floating structure comprising at least one tank (2), at least one gas consuming device and a management system (1) according to any one of claims 1 to 20.
PCT/FR2023/051508 2022-10-20 2023-09-29 System for managing a gas contained in a tank WO2024084147A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FRFR2210837 2022-10-20
FR2210837A FR3141229A1 (en) 2022-10-20 2022-10-20 System for managing gas contained in a tank
FR2304096 2023-04-24
FRFR2304096 2023-04-24

Publications (1)

Publication Number Publication Date
WO2024084147A1 true WO2024084147A1 (en) 2024-04-25

Family

ID=90737034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051508 WO2024084147A1 (en) 2022-10-20 2023-09-29 System for managing a gas contained in a tank

Country Status (1)

Country Link
WO (1) WO2024084147A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200067728A (en) * 2018-12-04 2020-06-12 한국조선해양 주식회사 liquefaction system of boil-off gas and ship having the same
WO2022129755A1 (en) * 2020-12-18 2022-06-23 Gaztransport Et Technigaz Power supply and cooling system for a floating structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200067728A (en) * 2018-12-04 2020-06-12 한국조선해양 주식회사 liquefaction system of boil-off gas and ship having the same
WO2022129755A1 (en) * 2020-12-18 2022-06-23 Gaztransport Et Technigaz Power supply and cooling system for a floating structure

Similar Documents

Publication Publication Date Title
EP3433557B1 (en) System for treating a gas produced by the evaporation of a cryogenic liquid and for supplying a gas engine with pressurised gas
WO2019145342A1 (en) Method and system for processing gas in a gas storage facility for a gas tanker
FR3118103A1 (en) Supply and cooling system for floating structure
EP3344936A1 (en) System and method for treating gas resulting from the evaporation of a cryogenic liquid
FR3077867A1 (en) METHOD AND SYSTEM FOR TREATING GAS FROM A GAS STORAGE FACILITY FOR A GAS TRANSPORT SHIP
WO2023247852A1 (en) Supply and cooling system for a floating structure
WO2024084147A1 (en) System for managing a gas contained in a tank
FR3141229A1 (en) System for managing gas contained in a tank
FR3121504A1 (en) Method for cooling a heat exchanger of a gas supply system of a gas-consuming device of a ship
WO2024003484A1 (en) System for managing a gas contained in a floating structure
EP4281718A1 (en) Gas supply system for high- and low-pressure gas consuming appliances
EP4018119A1 (en) System for treating gas contained within a tank for storing and/or transporting gas in the liquid state and the gaseous state, the system being fitted on a ship
WO2020188199A1 (en) System for controlling pressure in a liquefied natural gas vessel
WO2021099726A1 (en) System for supplying gas to at least one gas-consuming appliance equipping a ship
WO2024084154A1 (en) Method for managing a fluid in liquid form contained in a vessel
WO2020109607A1 (en) Device for generating gas in gaseous form from liquefied gas
WO2023194670A1 (en) Gas supply system for high- and low-pressure gas-consuming devices and method for controlling such a system
WO2023194669A1 (en) Gas supply system for high- and low-pressure gas-consuming devices and method for controlling such a system
WO2021064319A1 (en) System for treating a gas contained in a tank for storing and/or transporting gas in the liquid and gaseous state
EP4182599A1 (en) System for loading liquid natural gas
FR3124830A1 (en) Gas supply system for appliances using high and low pressure gas
WO2022069833A1 (en) Gas supply system for high- and low-pressure gas consuming appliances
FR3114797A1 (en) Gas supply system for appliances using high and low pressure gas
FR3116507A1 (en) Gas supply system for at least one gas-consuming appliance equipping a ship
FR3123717A1 (en) Fluid reliquefaction and consumer supply circuit.