WO2024082966A1 - 静电纺丝设备 - Google Patents

静电纺丝设备 Download PDF

Info

Publication number
WO2024082966A1
WO2024082966A1 PCT/CN2023/123221 CN2023123221W WO2024082966A1 WO 2024082966 A1 WO2024082966 A1 WO 2024082966A1 CN 2023123221 W CN2023123221 W CN 2023123221W WO 2024082966 A1 WO2024082966 A1 WO 2024082966A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular
liquid supply
receiving device
spinning
electrospinning
Prior art date
Application number
PCT/CN2023/123221
Other languages
English (en)
French (fr)
Inventor
潘璐
董佳桓
张莹佳
Original Assignee
诺一迈尔(苏州)医学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺一迈尔(苏州)医学科技有限公司 filed Critical 诺一迈尔(苏州)医学科技有限公司
Publication of WO2024082966A1 publication Critical patent/WO2024082966A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/06Feeding liquid to the spinning head
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0069Electro-spinning characterised by the electro-spinning apparatus characterised by the spinning section, e.g. capillary tube, protrusion or pin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0076Electro-spinning characterised by the electro-spinning apparatus characterised by the collecting device, e.g. drum, wheel, endless belt, plate or grid
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • D01D5/0092Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets

Definitions

  • the invention relates to the field of electrostatic spinning, and in particular to an electrostatic spinning device.
  • Electrospun nanofibers have high porosity and specific surface area, and their structure is very similar to the natural extracellular matrix. Therefore, electrospun nanofibers are widely used in tissue engineering, drug delivery, filtration, electrochemistry, energy and other fields.
  • Traditional electrospinning equipment is composed of a single-needle spinneret, a liquid supply system, a receiving system and a high-voltage power supply.
  • This single-needle electrospinning equipment not only has a very low output of nanofibers, but also the single-needle spinneret is very easy to be blocked during the spinning process, affecting the continuous stability of the spinning process, resulting in a decrease in the morphology and performance of the nanofiber membrane.
  • the present invention provides an electrostatic spinning device, which can not only produce nanofibers in batches, but also avoid the blockage of a spinning component and the rapid volatilization of an organic solvent in a spinning solution during free liquid surface spinning.
  • a receiving device electrically connected to the negative electrode of the high voltage power supply
  • a rotary spinning generating device which is spaced apart from the receiving device and is electrically connected to the positive electrode of the high voltage power supply;
  • a liquid supply device which is in fluid communication with the rotary spinning device to supply spinning liquid to the rotary spinning device;
  • the rotary spinning device comprises:
  • liquid supply tank which is in fluid communication with the liquid supply device to receive and contain the spinning solution
  • a plurality of rotating bodies each of which is at least partially located in the liquid supply pool and is configured to revolve around a center while rotating, so that at least a portion of the surface of the rotating body is stained with the spinning liquid, and in the electrostatic field generated by the high-voltage power supply, the spinning liquid is stretched into a jet under the action of the electric field force, and the jet forms nanofibers as the solvent evaporates and is deposited on the receiving device.
  • the embodiment of the present invention performs the spinning operation by arranging multiple rotating bodies on the liquid supply pool and rotating them around a center. That is to say, the rotary spinning device of the present invention is a spinning structure that rotates and revolves. This new spinning structure can avoid the phenomenon of spinneret blockage and ensure continuous, stable and efficient preparation of nanofibers. In addition, the use of multiple rotating bodies can achieve mass production of nanofibers.
  • the liquid supply pool comprises an annular liquid supply pool
  • the plurality of rotating bodies are arranged to rotate around the center of the annular liquid supply pool while rotating on their own.
  • the receiving device comprises an annular receiving device, which is arranged around the outer circumference of the annular liquid supply pool.
  • the annular liquid supply pool comprises:
  • annular outer cover which is combined with the annular inner plate and can rotate relative to the annular inner plate, the annular outer cover and the annular inner plate define an annular cavity of the annular liquid supply pool for accommodating the spinning solution, and the outer peripheral surface of the annular outer cover has a plurality of holes connected to the annular cavity;
  • the multiple rotating bodies are respectively arranged in the multiple holes and at least partially exposed outside the holes, and the rotating bodies are suitable for rotating in the holes while revolving around the center of the annular liquid supply pool driven by the rotation of the annular outer cover.
  • the diameter of the rotating body is greater than the difference between the outer diameter and the inner diameter of the annular cavity.
  • the rotary spinning device further comprises a sealing gasket, which is disposed at the junction of the annular outer cover and the annular inner plate to prevent the spinning solution from overflowing.
  • the plurality of rotating bodies are equidistant from a surface of the annular receiving device that receives the nanofibers.
  • the center of the annular receiving device coincides with the center of the annular liquid supply pool.
  • the annular receiving device is configured to rotate in the same direction or in a counter direction as the annular outer cover.
  • the embodiment of the present invention adopts an annular receiving device to surround the rotary spinning device.
  • the annular receiving device expands the receiving area, can collect more nanofibers, can prepare nanofibers in batches, and improves the output.
  • the rotary spinning device of the present invention defines an annular cavity through an annular outer cover and an annular inner plate to receive the spinning solution, thereby creating a relatively closed liquid storage space for the spinning solution to maintain the spinning solution within the required viscosity and conductivity range.
  • the spinning operation is performed in a manner that the rotation of the annular outer cover drives the rotating body to rotate in the hole.
  • This new type of spinning component can avoid the phenomenon of spinneret blockage and ensure continuous, stable and efficient preparation of nanofiber membranes.
  • the annular outer cover and the annular inner plate can be a detachable structure, so that the spinning component is easy to disassemble, easy to clean, cost-saving, convenient and efficient.
  • the annular receiving device is configured to be able to rotate in the same direction or opposite direction as the annular outer cover, which can achieve the stretching and orientation arrangement of the fiber.
  • the liquid supply pool comprises an annular liquid supply pool, and the plurality of rotating bodies are arranged to rotate around the center of the annular liquid supply pool while rotating on their own.
  • the receiving device comprises a disc-shaped receiving device, which is arranged above the annular liquid supply pool.
  • the annular liquid supply pool comprises:
  • annular groove defining an annular cavity for receiving and containing the spinning solution
  • An annular cover plate which is used to close the groove opening of the annular groove and can rotate relative to the annular groove, and the annular cover plate has a plurality of holes;
  • the multiple rotating bodies are respectively arranged in the multiple holes and at least partially exposed outside the holes, and the rotating bodies are suitable for rotating in the holes while revolving around the center of the annular liquid supply pool driven by the rotation of the annular cover plate.
  • the center of the disc-shaped receiving device is coaxial with the center of the annular liquid supply tank.
  • the diameter of the disc-shaped receiving device is greater than or equal to the outer diameter of the annular cover plate.
  • the plurality of rotating bodies are equidistant from a surface of the disk-shaped receiving device that receives the nanofibers.
  • the disc-shaped receiving device is configured to be rotatable in the same direction or in the opposite direction as the annular cover plate.
  • the embodiment of the present invention can prepare nanofibers in batches by arranging a disc-shaped receiving device on the upper side of a rotary spinning device with multiple rotating bodies, thereby increasing the output.
  • the rotary spinning device of the present invention defines an annular cavity through an annular groove and an annular cover plate to receive the spinning solution, thereby creating a relatively closed liquid storage space for the spinning solution to maintain the spinning solution within the required viscosity and conductivity range.
  • the spinning operation is performed in a manner that the rotation of the annular cover plate drives the rotating body to rotate in the hole.
  • This new type of spinning component can avoid the phenomenon of spinneret blockage and ensure continuous, stable and efficient preparation of nanofiber membranes.
  • the annular groove and the annular cover plate can be detachable structures, so that the spinning component is easy to disassemble, easy to clean, cost-saving, convenient and efficient.
  • the disc-shaped receiving device is configured to be able to rotate in the same direction or opposite direction as the annular cover plate, which can achieve the stretching and orientation arrangement of the fibers.
  • the liquid supply pool includes a circular liquid supply pool;
  • the rotary spinning device further includes a circular cover plate, which is used to close the upper opening of the circular liquid supply pool and can rotate relative to the circular liquid supply pool, and the circular cover plate has a plurality of holes; the plurality of rotating bodies are respectively arranged in the plurality of holes and at least partially exposed outside the holes, and the rotating bodies are suitable for rotating in the holes while revolving around the center of the circular liquid supply pool driven by the rotation of the circular cover plate.
  • the receiving device comprises a disc-shaped receiving device, which is located above the circular liquid supply tank.
  • the center of the disc-shaped receiving device is coaxial with the center of the circular liquid supply tank.
  • the diameter of the disc-shaped receiving device is greater than or equal to the outer diameter of the circular cover plate.
  • the plurality of rotating bodies are equidistant from a surface of the disk-shaped receiving device that receives the nanofibers.
  • the disc-shaped receiving device is configured to be rotatable in the same direction or in the opposite direction as the circular cover plate.
  • the rotating body includes at least one of a conductive sphere, a conductive cylinder, and a conductive cylinder.
  • the liquid supply device includes a flow pump, and the flow pump is connected to the annular liquid supply tank through a connecting pipe.
  • the liquid supply device comprises:
  • a driving assembly connected to the screw feed rod
  • the driving component drives the spiral feeding rod to rotate so as to input the spinning solution into the annular liquid supply pool.
  • the embodiment of the present invention can prepare nanofibers in batches by arranging a disc-shaped receiving device on the upper side of a rotary hair-generating device with multiple rotating bodies, thereby increasing the output.
  • the rotary spinning generating device of the present invention defines a cylindrical (or barrel-shaped) cavity through a circular liquid supply tank and a circular cover plate to receive the spinning solution, thereby creating a relatively closed liquid storage space for the spinning solution to maintain the spinning solution within the required viscosity and conductivity range.
  • the spinning operation is performed in a manner that the rotation of the circular cover plate drives the rotating body to rotate in the hole.
  • This new type of spinning component can avoid the phenomenon of spinneret blockage and ensure continuous, stable and efficient preparation of nanofiber membranes.
  • the circular liquid supply tank and the circular cover plate can be a detachable structure, so that the spinning component is easy to disassemble, easy to clean, cost-saving, convenient and efficient.
  • the disc-shaped receiving device is configured to be able to rotate in the same direction or opposite direction as the circular cover plate, which can achieve the stretching and orientation arrangement of the fiber.
  • the electrospinning equipment provided according to each embodiment of the present invention can not only prepare nanofibers in batches, but also inhibit the volatilization of the organic solution in the spinning solution, and maintain the spinning solution within the required viscosity and conductivity range to ensure the morphology and performance of the prepared nanofibers.
  • FIG. 1 is a schematic structural diagram conceptually showing an electrospinning apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a top view schematically showing the rotary spinning device in FIG. 1 .
  • FIG. 3 is a cross-sectional view schematically showing the rotary spinning device and the liquid supply device in FIG. 1 .
  • FIG. 4 is a cross-sectional schematic diagram conceptually showing a rotary spinning device and a liquid supply device according to a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram conceptually showing an electrospinning apparatus according to a third embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view conceptually showing the structure of the electrospinning device shown in FIG. 5 .
  • FIG. 7 is a cross-sectional view schematically showing the engagement of the annular cover plate and the annular groove in FIG. 5 .
  • FIG. 8 is a top view schematically showing the rotary spinning device in FIG. 5 .
  • FIG. 9 conceptually shows a schematic structural diagram of an electrospinning device according to a fourth embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing the connection between the circular cover plate and the circular liquid supply tank in FIG. 9 .
  • FIG. 11 is a top view schematically showing the rotary spinning device in FIG. 5 .
  • the terms “substantially,” “about,” and similar terms are used as terms of approximation rather than as terms of degree, and are intended to take into account the inherent variation in measurements or calculations that one of ordinary skill in the art will recognize.
  • the use of “may” when describing embodiments of the present invention refers to “one or more embodiments of the present invention.”
  • the terms “use,” “using,” and “used” may be considered synonymous with the terms “utilize,” “utilizing,” and “utilized,” respectively.
  • an embodiment of the present invention provides an electrospinning device, which includes: a high-voltage power supply; a receiving device, which is electrically connected to the negative electrode of the high-voltage power supply; a rotary spinning generator, which is separated from the receiving device and electrically connected to the positive electrode of the high-voltage power supply; and a liquid supply device, which is fluidly connected to the rotary spinning generator to supply spinning liquid to the rotary spinning generator; wherein the rotary spinning generator includes: a liquid supply tank, which is fluidly connected to the liquid supply device to receive and hold the spinning liquid; and a plurality of rotating bodies, each of the plurality of rotating bodies is at least partially located in the liquid supply tank, and is configured to revolve around a center (for example, the center of the liquid supply tank) while rotating, so that at least a portion of the surface of the rotating body is stained with the spinning liquid, and in the electrostatic field generated by the high-voltage power supply, the spinning liquid
  • a plurality of rotating bodies are arranged on the liquid supply pool, and the rotating bodies are rotated around a center to perform the spinning operation.
  • This novel spinning component can avoid the phenomenon of spinneret blockage, and ensure continuous, stable and efficient preparation of nanofibers.
  • the use of a plurality of rotating bodies can realize the mass production of nanofibers.
  • Fig. 1 shows the schematic structure of the electrospinning device of the first embodiment of the present invention.
  • the electrospinning device comprises a liquid supply device, a rotary spinning device 1, a ring receiving device 9, and a high voltage power supply 10 arranged on a fixed iron frame 6.
  • the liquid supply device is arranged on the base of the fixed iron frame 6, and comprises: a flow pump 8, a driving assembly including a motor 7 and a channel 2 including a screw feed rod.
  • the flow pump 8 can be arranged away from the liquid supply device and be in fluid communication with the liquid supply device through a liquid infusion tube.
  • the rotary spinning device 1 is arranged above the liquid supply device and can be rotated by the drive of the driving assembly.
  • the rotary spinning device 1 is operatively connected to the motor 5 through the connecting assembly 3, the motor 5 is fixedly connected to the cross arm bracket of the fixed iron frame 6, and the connecting assembly 3 is connected to the rotor 4 of the motor 5.
  • the rotary spinning device 1 can be rotated under the drive of the motor 5.
  • the annular receiving device 9 surrounds or surrounds the rotary spinning device 1. Specifically, the annular receiving device 9 surrounds the rotary spinning device 1. In addition, the positive electrode of the high-voltage power supply 10 is electrically connected to the rotary spinning device 1, and the negative electrode is electrically connected to the annular receiving device 9.
  • the rotary spinning generating device 1 includes an annular outer cover 1-1, an annular inner plate 1-3, and a plurality of rotating bodies 1-2.
  • the plurality of rotating bodies 1-2 are electrically connected to the positive electrode of the high voltage power supply 10, and the negative electrode of the high voltage power supply 10 is electrically connected to the annular receiving device 9.
  • the annular outer cover 1-1 and the rotating body 1-2 are both formed of a conductive metal material, the annular outer cover 1-1 is electrically connected to the positive electrode of the high voltage power supply 10, and the rotating body 1-2 is in contact with the annular outer cover 1-1, so that the rotating body 1-2 is electrically connected to the positive electrode of the high voltage power supply 10.
  • the annular outer cover 1-1 and the annular inner plate 1-3 form an annular liquid supply pool. Specifically, the annular outer cover 1-1 is combined with the annular inner plate 1-3 and can rotate relative to the annular inner plate 1-3.
  • the annular outer cover 1-1 and the annular inner plate 1-3 define an annular cavity for receiving the spinning solution supplied by the liquid supply device.
  • the inner end of the annular outer cover 1-1 is provided with upper and lower circles of snap fasteners, which are correspondingly buckled on the upper and lower circles of the annular inner plate 1-3, and there are sealing gaskets at the connection of the snap fasteners to prevent the spinning solution from overflowing. Thereby creating a relatively closed liquid storage space for the spinning solution to maintain the spinning solution within the required viscosity and conductivity range.
  • the outer peripheral side of the annular outer cover 1-1 has a plurality of holes connected to the annular cavity, and a rotating body 1-2 is arranged in each of the holes.
  • the rotating body 1-2 is at least partially exposed outside the hole, and the rotating body 1-2 can rotate in the corresponding hole, but cannot escape from the hole.
  • the diameter of the rotating body 1-2 is greater than the difference between the outer diameter and the inner diameter of the annular cavity.
  • the annular outer cover 1-1 is connected to the rotor 4 of the motor 5 through the connecting assembly 3 and can rotate under the drive of the motor 5. The rotation of the annular outer cover 1-1 drives the rotating body 1-2 to rotate in the hole but cannot escape from the hole.
  • a plurality of through holes are formed on the wall of the annular inner plate 3, and the through holes are connected to the channel fluid containing the spiral feed rod 2.
  • the flow pump 8 continuously supplies spinning liquid to the channel 2 containing the spiral feed rod, and in the channel 2, the spiral feed rod rotates under the drive of the motor 7, thereby transporting the spinning liquid upward.
  • the spinning liquid reaches the top of the channel 2, it flows into the annular cavity through the through holes on the wall of the annular inner plate 1-3.
  • the rotating body 1-2 is driven by the annular outer cover 1-1 to rotate in the hole, the surface of the rotating body 1-2 will be covered with spinning liquid from the annular cavity.
  • at least a portion of the outer peripheral surface of the rotary spinning device is stained with spinning liquid.
  • the rotary spinning device of the embodiment of the present invention is a new type of spinneret component, which can avoid the phenomenon of spinneret blockage and ensure continuous, stable and efficient preparation of nanofiber membranes.
  • the annular outer cover 1-1 and the annular inner plate 1-3 can be a detachable structure, so as to facilitate the disassembly of the spinneret component, facilitate cleaning, save costs, and be convenient and efficient.
  • the rotating body 1-2 is a conductive metal sphere.
  • the present invention is not limited thereto, and the rotating body 1-2 may also be a sphere made of other conductive materials.
  • the rotating body may also be a conductive cylinder or a conductive cylindrical body.
  • FIG4 schematically shows an electrospinning device of a second embodiment of the present invention.
  • a conductive cylinder 1-4 is used to replace the rotating body 1-2 shown in FIG1 to FIG3, the structure of the electrospinning device of this embodiment is the same as the structure of the electrospinning device shown in FIG1 to FIG3.
  • a rotating shaft is arranged in the annular outer cover 1-1, and the conductive cylinder 1-4 can rotate freely around the rotating shaft, so that when the annular outer cover 1-1 rotates under the drive of the motor 5, the rotation drives the conductive cylinder 1-4 to rotate around the respective rotating shafts and cannot escape from the hole of the annular outer cover 1-1.
  • the surface of the conductive cylinder 1-4 will be covered with spinning liquid from the annular cavity.
  • the spinning liquid on the surface thereof is stretched into a jet together under the action of the electric field force, the solvent evaporates, and finally solidifies and deposits on the annular receiving device 9 to form nanofibers.
  • the conductive cylinder 1-4 can be replaced by a conductive cylinder.
  • the rotation axis is provided to allow the rotation of the conductive cylinder 1-4.
  • a structure known in the art can be used as long as the conductive cylinder 1-4 can rotate freely without being separated from the hole of the annular outer cover 1-1.
  • the plurality of rotating bodies are arranged around the annular housing at a first height of the outer circumference of the annular housing.
  • the plurality of rotating bodies are arranged around the annular housing at the same height of the outer circumference of the annular housing.
  • a part of the plurality of rotating bodies is arranged around the annular outer cover at a first height on the outer circumference of the annular outer cover, and a part of the plurality of rotating bodies is arranged around the annular outer cover at a second height on the outer circumference of the annular outer cover, and the first height is different from the second height.
  • the plurality of rotating bodies are arranged in at least two layers in the height direction of the outer circumference of the annular outer cover.
  • the rotating bodies at the first height and the rotating bodies at the second height are staggered with each other in the circumferential direction, that is, the rotating bodies of adjacent layers are staggered with each other. Thereby, the yield of nanofibers can be further improved.
  • the rotating bodies of adjacent layers can be aligned with each other to facilitate equipment manufacturing and improve the generation efficiency of the equipment.
  • the intervals between adjacent rotating bodies in the plurality of rotating bodies at the same height (or the same layer) on the outer circumference of the annular outer cover may be equal or unequal.
  • the plurality of rotating bodies are equally spaced in the circumferential direction of the annular outer cover, i.e., evenly arranged.
  • the plurality of rotating bodies are at equal distances from the surface of the annular receiving device receiving the nanofibers, so that the jets are stretched under the same conditions as much as possible, thereby improving the distribution uniformity of the diameter of the nanofibers and the uniformity of the morphology and structure.
  • the rotation center of the rotary spinning device coincides with the center of the annular receiving device, so that the jets are stretched under the same conditions as much as possible, thereby improving the distribution uniformity of the diameter and the uniformity of the morphology of the nanofibers.
  • the rotation speed of the rotary spinning device is adjustable.
  • the rotation speed of the annular outer cover 1-1 can be adjusted by adjusting the input current of the motor 5, thereby adjusting the stretching and orientation arrangement of the fibers.
  • a flow pump for supplying the spinning solution is connected to the annular cavity through a channel comprising a screw feed rod and is in fluid communication.
  • the liquid supply device includes a flow pump, and the flow pump is connected to the annular cavity through a connecting pipe, thereby directly supplying the spinning solution to the annular cavity.
  • the rotary spinning device is not necessarily arranged above the liquid supply device, and the rotary spinning device can be arranged on the base of the fixed iron frame 6.
  • the motor 5 can be arranged on the base of the fixed iron frame 6.
  • the liquid supply device can be arranged above the rotary spinning device, and the spinning solution can be supplied to the rotary spinning device without a spiral feed rod.
  • a flow pump can directly supply the spinning solution to the rotary spinning device through a connecting pipe.
  • the rotary spinning device of the present invention is a revolution and rotation device, wherein the annular outer cover drives each rotating body to revolve around the rotation center of the annular outer shell, while each rotating body rotates around its own center of circle, and the rotation causes the corresponding rotating body to be covered with spinning liquid from the annular cavity, and this revolution and rotation movement mode enables each rotating body to fully dip into the spinning liquid without clogging, and the spinning operation is realized through the surface of each rotating body, which can achieve the same effect as the free liquid surface spinning device, but will not cause the rapid volatilization of the organic solvent in the spinning liquid, avoiding the morphology and performance degradation of the nanofiber membrane. Therefore, the use of the rotary spinning device of the present invention can not only increase the output of nanofibers, but also improve the quality of nanofibers.
  • the annular receiving device is configured to rotate in the same direction or in the opposite direction as the rotary spinning device.
  • the outer periphery of the annular receiving device has teeth to serve as a worm gear, and the worm connected to the motor meshes with the teeth, thereby driving the annular receiving device to rotate forward or reversely by the motor.
  • the rotation speed of the annular receiving device can be adjusted by adjusting the current input to the motor. By adjusting the rotation direction and relative rotation speed of the annular receiving device and the rotary spinning device, the stretching and orientation arrangement of the fiber can be adjusted.
  • the stretching and orientation of the fibers can be achieved by utilizing the annular receiving device to rotate in the opposite direction to the rotary spinning device.
  • the present invention is not limited thereto, and even if the annular receiving device rotates in the same direction as the rotary spinning device, the stretching and orientation of the fibers can be adjusted by adjusting the relative rotation speed of the two.
  • the electrospinning device includes: a high-voltage power supply 510; a disc-shaped receiving device 520, which is electrically connected to the negative pole of the high-voltage power supply 510; a rotary spinning device 530, which is located below the disc-shaped receiving device 520 and is electrically connected to the positive pole of the high-voltage power supply 510; and a liquid supply device 540, such as a flow pump, which is fluidically connected to the rotary spinning device 530 to supply spinning solution to the rotary spinning device 530.
  • the rotary spinning device 530 is arranged on a base 550, and the disc-shaped receiving device 520 is supported above the rotary spinning device 530 via a supporting structure (not shown).
  • the rotary spinning device 530 includes: an annular liquid supply pool 531, which is fluidically connected to the liquid supply device 540 to receive and accommodate the spinning solution; a plurality of rotating bodies 532, each of which is at least partially located in the annular liquid supply pool 531 and is configured to rotate while moving along the annular liquid supply pool 531.
  • the annular liquid supply pool 531 includes: an annular groove 531-1, which defines an annular cavity for receiving and accommodating the spinning solution, and the upper part of the annular cavity is open; an annular cover plate 531-2, which is used to cover the upper opening of the annular groove and can rotate relative to the annular groove 531-1, and the annular cover plate 531-2 has a plurality of holes, wherein the plurality of rotating bodies 532 are respectively arranged in the plurality of holes and at least partially exposed outside the holes, and the rotating bodies are suitable for rotating in the holes driven by the rotation of the annular cover plate 531-2.
  • the figure shows a part of the annular liquid supply pool, wherein the side wall of the open end of the annular groove 531-1 is provided with a slot, and the annular cover plate 531-2 is stuck in the slot and can move along the slot.
  • the annular cover plate 531-2 can be driven to move by a drive assembly.
  • the drive assembly includes a motor 560 and a transmission mechanism 570.
  • the transmission mechanism 570 is connected to the output shaft 561 of the motor.
  • the transmission mechanism 570 includes a rotating shaft, one end of the rotating shaft is connected to the output shaft 561, and the other end is provided with a connecting piece connected to the annular cover plate 531-2.
  • the rotation of the motor 560 is transmitted to the annular cover plate 531-2 via the output shaft 561 and the transmission mechanism 570, so that the annular cover plate 531-2 moves (i.e. rotates) along the slot on the annular groove 531-1, thereby driving the rotating body 532 in each hole of the annular cover plate 531-2 to revolve around the center of the annular groove 531-1 (i.e. the center of the annular liquid supply pool 531), and the rotating body 532 will rotate in the corresponding hole.
  • the spinning liquid in the electrostatic field generated by the high-voltage power supply 510, the spinning liquid is stretched into a jet under the action of the electric field force, and the jet forms nanofibers with the evaporation of the solvent and is deposited on the disc-shaped receiving device 520.
  • the center of the disc-shaped receiving device 520 is coaxial with the center of the annular liquid supply pool 531.
  • the diameter of the disc-shaped receiving device 520 is greater than or equal to the outer diameter of the annular cover plate 531-2. In this way, it can be ensured that the receiving device can receive all the nanofibers.
  • the plurality of rotating bodies 532 are arranged in a circle on the annular cover plate 531-2.
  • the plurality of rotating bodies may be arranged in at least two circles on the annular cover plate.
  • the rotating bodies in one circle and the rotating bodies in another circle are staggered with each other.
  • the rotating bodies in one circle and the rotating bodies in another circle may be radially aligned.
  • the intervals between adjacent rotating bodies in the plurality of rotating bodies in the same circle may be equal.
  • the plurality of rotating bodies may be randomly distributed on the annular cover plate.
  • the plurality of rotating bodies 532 are at equal distances from the surface of the disc-shaped receiving device 520 receiving the nanofibers, so that the jets are stretched under the same conditions as much as possible, thereby improving the distribution uniformity of the diameter of the nanofibers and the uniformity of the morphology and structure.
  • the disc-shaped receiving device 520 is configured to rotate in the same direction or in the opposite direction as the annular cover plate 531 - 2. By adjusting the rotation direction and relative rotation speed of the disc-shaped receiving device and the annular cover plate, the stretching and orientation of the fibers can be adjusted.
  • the electrospinning device includes: a high-voltage power supply 910; a disc-shaped receiving device 920, which is electrically connected to the negative electrode of the high-voltage power supply 910; a rotary spinning device 930, which is located below the disc-shaped receiving device 920 and is electrically connected to the positive electrode of the high-voltage power supply 910; and a liquid supply device 940, which is fluidically connected to the rotary spinning device 930 to supply spinning liquid to the rotary spinning device 930.
  • the rotary spinning device 930 includes: a circular liquid supply tank 931-1, which is fluidically connected to the liquid supply device 940 to receive and contain the spinning liquid; a circular cover plate 931-2, which is used to close the upper opening of the circular liquid supply tank 931-1 and can rotate relative to the circular liquid supply tank 931-1, and the circular cover plate 931-2 has a plurality of holes; and a plurality of rotating bodies 932, which are respectively arranged in the plurality of holes and are at least partially exposed outside the holes, and the plurality of rotating bodies 932 rotate in the holes driven by the rotation of the circular cover plate 931-2.
  • the disc-shaped cover plate 931-2 is provided with an annular groove at the bottom, the open end of the circular liquid supply pool 931-1 is embedded in the annular groove, and the disc-shaped cover plate 931-2 can rotate relative to the circular liquid supply pool 931-1.
  • the disc-shaped cover plate 932-1 can be driven to rotate by a drive assembly.
  • the drive assembly may include a motor 960 and a transmission mechanism 970, and the transmission mechanism 970 may include a gear connected to an output shaft 961 of the motor 960.
  • the circumferential side of the circular cover plate 931-2 has teeth meshing with the gear, whereby the rotation of the motor 960 can be transmitted to the circular cover plate 931-2 via the output shaft 961 and the gear of the transmission mechanism 970, so that the circular cover plate 931-2 rotates along the circumference of the circular liquid supply pool 931-1.
  • the rotation of the circular cover plate 931-2 drives the rotating bodies 932 in the holes thereof to revolve around the center of the circular liquid supply pool 931-1, and the rotating bodies 932 rotate in the corresponding holes.
  • the surface of the rotating body is partially or completely stained with spinning liquid, and in the electrostatic field generated by the high-voltage power supply 910, the spinning liquid is stretched into a jet under the action of the electric field force, and the jet forms nanofibers with the evaporation of the solvent and is deposited on the disc-shaped receiving device 920.
  • the center of the disc-shaped receiving device 920 is coaxial with the center of the circular liquid supply pool 931-1.
  • the diameter of the disc-shaped receiving device 920 is greater than or equal to the outer diameter of the circular cover plate 931-2, thereby ensuring that the receiving device can receive the nanofibers.
  • the plurality of rotating bodies 932 are arranged in a circle on the circular cover plate 931-2.
  • the plurality of rotating bodies may be arranged in at least two circles on the circular cover plate.
  • the rotating bodies in one circle and the rotating bodies in another circle are staggered with each other.
  • the rotating bodies in one circle and the rotating bodies in another circle may be radially aligned.
  • the intervals between adjacent rotating bodies in the plurality of rotating bodies in the same circle may be equal.
  • the plurality of rotating bodies may be randomly distributed on the circular cover plate.
  • the plurality of rotating bodies 932 are at equal distances from the surface of the disc-shaped receiving device 920 receiving the nanofibers, so that the jets are stretched under the same conditions as much as possible, thereby improving the distribution uniformity of the diameter of the nanofibers and the uniformity of the morphology and structure.
  • the disc-shaped receiving device 920 is configured to rotate in the same direction or in the opposite direction as the circular cover plate 931 - 2. By adjusting the rotation direction and relative rotation speed of the disc-shaped receiving device and the annular cover plate, the stretching and orientation of the fibers can be adjusted.
  • the plurality of rotating bodies revolve around the center of the liquid supply tank while rotating.
  • the plurality of rotating bodies can revolve around the center of a holder holding the rotating bodies while rotating in the holder.
  • an annular outer cover, an annular cover plate, or a circular cover plate having holes for mounting the rotating bodies can be used as examples of the holder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

一种静电纺丝设备,包括:高压电源(10);接收装置(9),其与高压电源(10)的负极电连接;回转式纺丝发生装置(1),其与高压电源(10)的正极电连接;以及供液装置,其向回转式纺丝发生装置(1)供给纺丝液;其中,所述回转式纺丝发生装置(1)包括:供液池,其接收并容纳纺丝液;以及多个旋转体(1-2),每一个旋转体(1-2)至少部分位于供液池中,并且设置成围绕一中心公转的同时自转,以使其表面的至少一部分沾上纺丝液,在高压电源10)产生的静电场中,所述纺丝液在电场力的作用下被拉伸成形成纳米纤维并沉积到所述接收装置(9)上。采用该静电纺丝设备,不仅可以批量生产纳米纤维,还能够避免喷丝部件堵塞和自由液面纺纺丝液内有机溶剂的快速挥发。

Description

静电纺丝设备
相关申请的交叉引用
[根据细则91更正 08.03.2024]
本申请要求于2022年10月19日提交的申请号为202211278267.8、名称为“静电纺丝设备”的中国发明专利申请的权益和优先权,该中国专利申请的全部内容通过引用并入本文。
技术领域
本发明涉及静电纺丝领域,具体涉及一种静电纺丝设备。
背景技术
静电纺纳米纤维具有较高的孔隙率和比表面积,并且其结构与天然细胞外基质十分相似,故静电纺纳米纤维被广泛用于组织工程、载药缓释、过滤、电化学和能源等领域。
传统的静电纺丝设备是由单针喷丝头、供液系统、接收系统和高压电源组成。这种单针静电纺丝设备不仅纳米纤维的产量极低,而且在纺丝过程中,单针喷丝头极易被堵塞,影响纺丝过程的连续稳定性,导致纳米纤维膜的形貌及性能下降。
基于单针静电纺丝装置的这些缺点,自由液面纺丝装置被开发出来,然而由于自由液面纺丝装置喷丝部件的开放性,使得纺丝液内有机溶剂的快速挥发,纺丝液粘度和电导率都受到极大影响,最终导致纳米纤维膜的形貌和性能下降。
发明内容
本发明提供了一种静电纺丝设备,不仅可以批量生产纳米纤维,还能够避免喷丝部件堵塞和自由液面纺纺丝液内有机溶剂的快速挥发。
根据本发明实施方式的一种静电纺丝设备包括:
高压电源;
接收装置,其与所述高压电源的负极电连接;
回转式纺丝发生装置,其与所述接收装置间隔开,并与所述高压电源的正极电连接;以及
供液装置,其与所述回转式纺丝发生装置流体连通,以向所述回转式纺丝发生装置供给纺丝液;
其中,所述回转式纺丝发生装置包括:
供液池,其与所述供液装置流体连通,以接收并容纳所述纺丝液;以及
多个旋转体,所述多个旋转体中的每一个至少部分位于所述供液池中,并且设置成围绕一中心公转的同时自转,以使所述旋转体的表面的至少一部分沾上所述纺丝液,在所述高压电源产生的静电场中,所述纺丝液在电场力的作用下被拉伸成射流,所述射流伴随溶剂挥发而形成纳米纤维并沉积到所述接收装置上。
由上述可知,本发明实施方式通过在供液池上设置多个旋转体,并使围绕一中心公转的同时自转来进行喷丝操作,也就是说,本发明的回转式纺丝发生装置是一种公转自转喷丝结构,这种新型的喷丝结构可避免喷丝头堵塞的现象,保证连续稳定高效地制备纳米纤维。并且,利用多个旋转体可以实现纳米纤维的批量生产。
在本发明的一种实施方式中,所述供液池包括环形供液池,所述多个旋转体设置成围绕所述环形供液池的圆心转动的同时自转。所述接收装置包括环形接收装置,其围绕所述环形供液池的外周侧设置。
在一些实施方式中,所述环形供液池包括:
环形内板;
环形外罩,其与所述环形内板结合且能够相对所述环形内板转动,所述环形外罩与所述环形内板界定出所述环形供液池的容纳纺丝液的环形空腔,并且所述环形外罩的外周面具有与所述环形空腔连通的多个孔洞;
其中,所述多个旋转体分别设置在所述多个孔洞中且至少部分暴露在所述孔洞外,并且所述旋转体适于在所述环形外罩的转动的带动下围绕所述环形供液池的圆心公转的同时在所述孔洞中自转。
在一些实施方式中,所述旋转体的直径大于所述环形空腔的外径与内径之差。
在一些实施方式中,所述回转式纺丝发生装置还包括密封垫圈,所述密封垫圈设置在所述环形外罩与所述环形内板的结合处以防止纺丝液溢出。
在一些实施方式中,所述多个旋转体离所述环形接收装置的接收所述纳米纤维的表面的距离相等。
在一些实施方式中,所述环形接收装置的圆心与所述环形供液池的圆心重合。
在一些实施方式中,所述环形接收装置构造成能够与所述环形外罩同向或反向旋转。
由上述可知,本发明实施方式采用环形接收装置包围回转式纺丝发生装置的布置,所述环形接收装置扩大了接收面积,能够收集到更多的纳米纤维,可批量化制备纳米纤维,提高了产量。并且,本发明的回转式纺丝发生装置通过环形外罩和环形内板界定出环形空腔来接收纺丝液,从而给纺丝液创造出一个相对密闭的储液空间,以将纺丝液维持在所需的粘度和电导率范围内。同时,通过在环形外罩上开设多个孔洞,并在孔洞内安装旋转体,以环形外罩的转动带动旋转体在孔洞内转动的方式进行喷丝操作,这种新型的喷丝部件可避免喷丝头堵塞的现象,保证连续稳定高效地制备纳米纤维膜。此外,环形外罩和环形内板可以为可拆卸的结构,从而便于拆卸喷丝部件,便于清洗,节约成本,方便高效。此外,所述环形接收装置构造成能够与所述环形外罩同向或反向旋转,可实现对纤维的拉伸以及取向排列。
在本发明的另一种实施方式中,所述供液池包括环形供液池,所述多个旋转体设置成围绕所述环形供液池的圆心转动的同时自转。所述接收装置包括圆盘形接收装置,其设置在所述环形供液池的上方。
在一些实施方式中,所述环形供液池包括:
环形槽,其界定出用于接收并容纳纺丝液的环形空腔;
环形盖板,其用于封闭所述环形槽的槽开口并且能够相对所述环形槽转动,所述环形盖板具有多个孔洞;
其中,所述多个旋转体分别设置在所述多个孔洞中且至少部分暴露在所述孔洞外,并且所述旋转体适于在所述环形盖板的转动的带动下围绕所述环形供液池的圆心公转的同时在所述孔洞中自转。
在一些实施方式中,所述圆盘形接收装置的圆心与所述环形供液池的圆心同轴。
在一些实施方式中,所述圆盘形接收装置的直径大于或等于所述环形盖板的外径。
在一些实施方式中,所述多个旋转体离所述圆盘形接收装置的接收所述纳米纤维的表面的距离相等。
在一些实施方式中,所述圆盘形接收装置构造成能够与所述环形盖板同向或反向旋转。
由上述可知,本发明实施方式通过在具有多个旋转体的回转式发丝发生装置的上侧布置圆盘形接收装置,可批量化制备纳米纤维,提高了产量。并且,本发明的回转式纺丝发生装置通过环形槽和环形盖板界定出环形空腔来接收纺丝液,从而给纺丝液创造出一个相对密闭的储液空间,以将纺丝液维持在所需的粘度和电导率范围内。同时,通过在环形盖板上开设多个孔洞,并在孔洞内安装旋转体,以环形盖板的转动带动旋转体在孔洞内转动的方式进行喷丝操作,这种新型的喷丝部件可避免喷丝头堵塞的现象,保证连续稳定高效地制备纳米纤维膜。此外,环形槽和环形盖板可以为可拆卸的结构,从而便于拆卸喷丝部件,便于清洗,节约成本,方便高效。此外,所述圆盘形接收装置构造成能够与所述环形盖板同向或反向旋转,可实现对纤维的拉伸以及取向排列。
在本发明的又一种实施方式中,所述供液池包括圆形供液池;所述回转式纺丝发生装置进一步包括圆形盖板,其用于封闭所述圆形供液池的上部开口,并且能够相对于所述圆形供液池转动,所述圆形盖板上具有多个孔洞;所述多个旋转体分别设置在所述多个孔洞中且至少部分暴露在所述孔洞外,并且所述旋转体适于在所述圆形盖板的转动的带动下围绕所述圆形供液池的圆心公转的同时在所述孔洞中自转。
在一些实施方式中,所述接收装置包括圆盘形接收装置,其位于所述圆形供液池的上方。
在一些实施方式中,所述圆盘形接收装置的圆心与所述圆形供液池的圆心同轴。
在一些实施方式中,所述圆盘形接收装置的直径大于或等于所述圆形盖板的外径。
在一些实施方式中,所述多个旋转体离所述圆盘形接收装置的接收所述纳米纤维的表面的距离相等。
在一些实施方式中,所述圆盘形接收装置构造成能够与所述圆形盖板同向或反向旋转。
在一些实施方式中,所述旋转体包括导电球体、导电圆柱体、以及导电圆筒体中的至少一种。
在一些实施方式中,所述供液装置包括流量泵,所述流量泵通过连接管与所述环形供液池相连。
在一些实施方式中,所述供液装置包括:
流量泵;
通道,其将所述流量泵与所述环形供液池连通;
螺旋进料杆,其设置在所述通道内;以及
驱动组件,其与所述螺旋进料杆连接;
其中,当所述流量泵向所述通道供给纺丝液时,所述驱动组件驱动所述螺旋进料杆转动以将所述纺丝液输入到所述环形供液池内。
由上述可知,本发明实施方式通过在具有多个旋转体的回转式发丝发生装置的上侧布置圆盘形接收装置,可批量化制备纳米纤维,提高了产量。并且,本发明的回转式纺丝发生装置通过圆形供液池和圆形盖板界定出圆筒形(或圆桶形)空腔来接收纺丝液,从而给纺丝液创造出一个相对密闭的储液空间,以将纺丝液维持在所需的粘度和电导率范围内。同时,通过在圆形盖板上开设多个孔洞,并在孔洞内安装旋转体,以圆形盖板的转动带动旋转体在孔洞内转动的方式进行喷丝操作,这种新型的喷丝部件可避免喷丝头堵塞的现象,保证连续稳定高效地制备纳米纤维膜。此外,圆形供液池和圆形盖板可以为可拆卸的结构,从而便于拆卸喷丝部件,便于清洗,节约成本,方便高效。此外,所述圆盘形接收装置构造成能够与所述圆形盖板同向或反向旋转,可实现对纤维的拉伸以及取向排列。
综上所述,根据本发明各实施方式提供的静电纺丝设备,其不仅可以批量化制备纳米纤维,还能够抑制纺丝液中有机溶液的挥发,将纺丝液维持在所需的粘度和电导率范围内,以确保制备的纳米纤维的形貌和性能。
本发明实施方式的各个方面、特征、优点等将在下文结合附图进行具体描述。根据以下结合附图的具体描述,本发明的上述方面、特征、优点等将会变得更加清楚。
附图说明
图1是概念性示出根据本发明的第一实施方式的静电纺丝设备的结构示意图。
图2是示意性示出图1中的回转式纺丝发生装置的俯视图。
图3是示意性示出图1中的回转式纺丝发生装置与供液装置的剖视示意图。
图4是概念性示出根据本发明的第二实施方式的回转式纺丝发生装置与供液装置的剖视示意图。
图5是概念性示出根据本发明的第三实施方式的静电纺丝设备的结构示意图。
图6是概念性示出图5所示的静电纺丝设备的结构的剖视示意图。
图7是示意性示出图5中环形盖板与环形槽接合的截面示意图。
图8是示意性示出图5中的回转式纺丝发生装置的俯视图。
图9概念性示出根据本发明的第四实施方式的静电纺丝设备的结构示意图。
图10是示意性示出图9中圆形盖板与圆形供液池接合的截面示意图。
图11是示意性示出图5中的回转式纺丝发生装置的俯视图。
具体实施方式
在下文中,将参考附图更详细地描述示例性实施方式。然而,本发明可以以各种不同形式体现,并且不应被解释为仅限于本说明书所示的实施方式。相反,这些实施方式作为示例来提供以便本说明书的公开将是透彻而全面的,并且将向本领域技术人员充分传达本发明的各方面和特征。因此,可能不会描述本领域普通技术人员充分理解本发明的各方面和特征所不必要的过程、元件和技术。除非另有说明,否则在整个附图和文字描述中,类似的附图标记表示类似的元件,因此,可能不会重复其描述。此外,每个示例性实施方式内的特征或方面通常应被视为可用于其他示例性实施方式中的其他类似特征或方面。
以下描述中可使用某些术语以仅供参考,因此这些术语并非旨在进行限制。例如,术语诸如“顶部”、“底部”、“上部”、“下部”、“在…上方”和“在…下方”可用于指代作为参考的附图中的方向。术语诸如“正面”、“背面”、“后面”、“侧面”、“外侧”和“内侧”可用于描述部件的各部分在一致但任意的参照系内的取向和/或位置,通过参考描述所讨论的部件的文字和相关联的附图可以清楚地了解所述取向和/或位置。此类术语可包括上文具体提及的词语、它们的衍生词语以及类似含义的词语。类似地,除非上下文明确指出,否则术语“第一”、“第二”以及其他此类指代结构的数字术语并不意味着次序或顺序。
应当理解,当元件或特征被称为“在另一元件或层上”、“连接到”或“联接到”另一元件或层时,其可直接在另一元件或特征上、连接到或联接到另一元件或特征,或可存在一个或多个中间元件或特征。另外,还应当理解,当元件或特征被称为在两个元件或特征“之间”时,其可为这两个元件或特征之间的唯一元件或特征,或也可存在一个或多个中间元件或特征。
本文使用的术语是为了描述特定实施方式的目的,而非旨在限制本发明。如本文所用,单数形式“一个”和“一种”旨在也包括复数形式,除非上下文另外明确指明。还应当理解,术语“包含”、“包括”和“具有”在本说明书中使用时指定所陈述的特征、整体、步骤、操作、元件和/或部件的存在,但不排除一个或多个其他特征、整体、步骤、操作、元件、部件和/或它们的集合的存在或添加。如本文所用,术语“和/或”包括相关联的所列项目中的一个或多个的任何和所有组合。诸如“…中的至少一个”之类的表达在要素列表之前时修饰整个要素列表,而不是修饰该列表的单独要素。
如本文所用,术语“基本上”、“约”和类似术语用作近似术语而不是用作程度术语,并且旨在考虑本领域普通技术人员将认识到的测量值或计算值的固有变化。此外,在描述本发明的实施方式时“可”的使用是指“本发明的一个或多个实施方式”。如本文所用,术语“使用”、“正使用”和“被使用”可被视为分别与术语“利用”、“正利用”和“被利用”同义。
除非另有定义,否则本文使用的所有术语(包括技术和科学术语)具有本发明所属领域的普通技术人员通常理解的相同含义。还应当理解,除非在本文中明确地如此定义,否则术语(诸如在常用词典中定义的那些术语)应被解释为具有与它们在相关领域和/或本说明书的上下文中的含义一致的含义,并且不应以理想化或过于正式的意义来解释。
针对传统的单针静电纺丝装置产量低的问题,本发明实施方式提供了一种静电纺丝设备,其包括:高压电源;接收装置,其与所述高压电源的负极电连接;回转式纺丝发生装置,其与所述接收装置间隔开,并与所述高压电源的正极电连接;以及供液装置,其与所述回转式纺丝发生装置流体连通,以向所述回转式纺丝发生装置供给纺丝液;其中,所述回转式纺丝发生装置包括:供液池,其与所述供液装置流体连通,以接收并容纳所述纺丝液;以及多个旋转体,所述多个旋转体中的每一个至少部分位于所述供液池中,并且设置成围绕一中心(例如,供液池的圆心)公转的同时自转,以使所述旋转体的表面的至少一部分沾上所述纺丝液,在所述高压电源产生的静电场中,所述纺丝液在电场力的作用下被拉伸成射流,所述射流伴随溶剂挥发而形成纳米纤维并沉积到所述接收装置上。本发明实施方式通过在供液池上设置多个旋转体,并使围绕一中心公转的同时自转来进行喷丝操作,这种新型的喷丝部件可避免喷丝头堵塞的现象,保证连续稳定高效地制备纳米纤维。并且,利用多个旋转体可以实现纳米纤维的批量生产。
【第一实施方式】
图1示出了本发明第一实施方式的静电纺丝设备的概要结构。在本发明的一种实施方式中,所述静电纺丝设备包括设置在固定铁架台6上的供液装置、回转式纺丝发生装置1、环形接收装置9、以及高压电源10。
所述供液装置设置在所述固定铁架台6的底座上,其包括:流量泵8、包含电动机7的驱动组件和包含螺旋进料杆的通道2。在可选的实施方式中,所述流量泵8可以远离所述供液装置设置,并通过输液管与所述供液装置流体连通。
所述回转式纺丝发生装置1设置在所述供液装置的上方,并且可通过驱动组件的驱动而进行旋转。在一些实施方式中,所述回转式纺丝发生装置1通过连接组件3与电动机5操作性接合,所述电动机5与所述固定铁架台6的横臂支架固定连接,所述连接组件3与该电动机5的转子4连接。从而,在所述电动机5的驱动下能够使所述回转式纺丝发生装置1转动。
所述环形接收装置9包围或围绕所述回转式纺丝发生装置1设置,具体地,所述环形接收装置9围绕所述回转式纺丝发生装置1设置。并且,所述高压电源10的正极与所述回转式纺丝发生装置1电连接,负极与所述环形接收装置9电连接。
参阅图2,所述回转式纺丝发生装置1包括环形外罩1-1、环形内板1-3以及多个旋转体1-2。所述多个旋转体1-2与所述高压电源10的正极电连接,所述高压电源10的负极与所述环形接收装置9电连接。在一些实施方式中,所述环形外罩1-1和旋转体1-2均由导电金属材料形成,将所述环形外罩1-1与所述高压电源10的正极电连接,所述旋转体1-2与所述环形外罩1-1接触,从而所述旋转体1-2与所述高压电源10的正极电连接。
所述环形外罩1-1与环形内板1-3构成环形供液池,具体地,所述环形外罩1-1与所述环形内板1-3结合且能够相对所述环形内板1-3转动,所述环形外罩1-1与所述环形内板1-3界定出用于接收所述供液装置供给的纺丝液的环形空腔。在一些实施方式中,参阅图3,所述环形外罩1-1里端设有上下两圈活扣,对应扣在所述环形内板1-3的上下两圈活扣上,并且活扣连接处有密封垫圈,防止纺丝液溢出。从而给纺丝液创造出一个相对密闭的储液空间,以将纺丝液维持在所需的粘度和电导率范围内。
参阅图2和图3,所述环形外罩1-1的外周侧面具有与所述环形空腔连通的多个孔洞,在每一个所述孔洞中设置有旋转体1-2,所述旋转体1-2至少部分暴露在所述孔洞外,并且所述旋转体1-2在相应的孔洞中能够转动,但不能从所述孔洞脱离出去。在本发明的一些实施方式中,所述旋转体1-2的直径大于所述环形空腔的外径与内径之差。所述环形外罩1-1通过连接组件3与电动机5的转子4连接并在所述电动机5的驱动下能够转动,所述环形外罩1-1的转动带动所述旋转体1-2在所述孔洞中转动但无法脱离所述孔洞。
参阅图2和图3,所述环形内板3的壁上形成有多个通孔,所述通孔与包含螺旋进料杆2的通道流体连通。从而,当所述供液装置运行时,流量泵8向包含螺旋进料杆的通道2持续供给纺丝液,在所述通道2内,所述螺旋进料杆在电动机7的带动下转动,从而将纺丝液向上输送。所述纺丝液到达通道2顶端后经由所述环形内板1-3壁上的通孔流入到所述环形空腔内。当所述旋转体1-2被所述环形外罩1-1带动而在所述孔洞中转动时,所述旋转体1-2的表面会从所述环形空腔沾满纺丝液。从而,所述回转式纺丝发生装置的外周表面的至少一部分沾上了纺丝液。
在所述高压电源10产生的静电场中,所有暴露在所述环形外罩1-1表面的旋转体1-2,其表面沾上的纺丝液在电场力的作用下,一起被拉伸成射流,溶剂挥发,最后固化沉积到所述环形接收装置9上,形成纳米纤维。本发明实施方式的回转式纺丝发生装置作为新型的喷丝部件,可避免喷丝头堵塞的现象,保证连续稳定高效地制备纳米纤维膜。此外,环形外罩1-1和环形内板1-3可以为可拆卸的结构,从而便于拆卸喷丝部件,便于清洗,节约成本,方便高效。
在图1至图3所示的示例性实施方式中,所述旋转体1-2为导电金属球体。本发明不限于此,所述旋转体1-2也可以是由其他导电材料制成的球体。在可选的实施方式中,所述旋转体还可以为导电圆柱体或导电圆筒体。
【第二实施方式】
图4示意性示出了本发明第二实施方式的静电纺丝设备。参阅图4,除了使用导电圆柱体1-4替换图1至图3所示的旋转体1-2外,本实施方式的静电纺丝设备的结构与图1至图3所示的静电纺丝设备的结构相同。在图4所示的静电纺丝设备中,在环形外罩1-1内设置转轴,并使所述导电圆柱体1-4能够围绕所述转轴自由转动,从而,当所述环形外罩1-1在电动机5的驱动下转动时,所述转动带动所述导电圆柱体1-4围绕各自的转轴转动且无法脱离所述环形外罩1-1的孔洞。当所述导电圆柱体1-4被所述环形外罩1-1带动而在所述孔洞中转动时,所述导电圆柱体1-4的表面会从所述环形空腔沾满纺丝液。在高压电源10产生的静电场中,所有暴露在所述环形外罩1-1表面的旋转体1-2,其表面沾上的纺丝液在电场力的作用下,一起被拉伸成射流,溶剂挥发,最后固化沉积到环形接收装置9上,形成纳米纤维。在可选的实施方式中,可以采用导电圆筒体替换所述导电圆柱体1-4。
在图4所示的实施方式中,通过设置转轴来允许。在可选的实施方式中,当然也可以采用本领域已知的结构,只要能够实现导电圆柱体1-4自由转动的同时不会脱离所述环形外罩1-1的孔洞即可。
在以上示例性实施方式中,多个旋转体在所述环形外罩的外周面的第一高度环绕所述环形外罩布置。换句话说,多个旋转体在所述环形外罩的外周面的同一高度环绕所述环形外罩布置。
在可选的实施方式中,所述多个旋转体中有一部分在所述环形外罩的外周面的第一高度环绕所述环形外罩布置,还有一部分在所述环形外罩的外周面的第二高度环绕所述环形外罩布置,所述第一高度与所述第二高度不同。换句话说,所述多个旋转体在所述环形外罩的外周面的高度方向设置为至少两层。在一些实施方式中,位于所述第一高度的旋转体与位于所述第二高度的旋转体在圆周方向上彼此错位设置,也就是说,相邻层的旋转体彼此错开设置。从而,可以进一步提高纳米纤维的产量。当然,在其他实施方式中,相邻层的旋转体可以彼此对齐,便于设备制造,提高设备的生成效率。
在本发明的一些实施方式中,位于所述环形外罩的外周面上的同一高度(或同一层)的多个旋转体中相邻旋转体之间的间隔可以相等,也可以不相等。例如,在图1至图4所示的实施方式中,多个旋转体在环形外罩的周向上间隔相等,即均匀布置。
在本发明的一些实施方式中,所述多个旋转体离所述环形接收装置的接收纳米纤维的表面的距离相等。从而,使得射流尽可能受到相同条件的牵伸,从而提高纳米纤维的直径的分布均匀性和形貌结构均一性。
在本发明的一些实施方式中,所述回转式纺丝发生装置的旋转中心与所述环形接收装置的圆心重合。这样也可以使得射流尽可能受到相同条件的牵伸,从而提高纳米纤维的直径的分布均匀性和形貌结构均一性。
在一些实施方式中,所述回转式纺丝发生装置的转速可调,例如,通过调节电动机5的输入电流来调节环形外罩1-1的转速,由此可以调节纤维的拉伸和取向排列。
在本发明的示例性实施方式中,供给纺丝液的流量泵通过包含螺旋进料杆的通道与所述环形空腔连接并流体连通。在可选的实施方式中,所述供液装置包括流量泵,所述流量泵通过连接管与所述环形空腔相连,从而直接向所述环形空腔供给纺丝液。
此外,在可选的实施方式中,不是必须将所述回转式纺丝发生装置设置在供液装置的上方,可以将所述回转式纺丝发生装置设置在固定铁架台6的底座上,例如,可以将电动机5设置在固定铁架台6的底座上,此时,供液装置可以设置所述回转式纺丝发生装置的上方,并且无需螺旋进料杆即可向所述回转式纺丝发生装置供给纺丝液。可选地,流量泵可通过连接管直接向所述回转式纺丝发生装置供给纺丝液。
根据本发明第一、第二实施方式可知,本发明的回转式纺丝发生装置为一种公转自转装置,其环形外罩带动各旋转体围绕环形外壳的旋转中心公转的同时各旋转体围绕自己的圆心发生自转,所述自转使得相应的旋转体从环形空腔内沾满纺丝液,这种公转自转的运动方式使得各旋转体能够充分蘸取纺丝液的同时不会发生堵塞,并且,通过各个旋转体表面来实现喷丝操作,可以达到自由液面纺丝装置相同的效果,但不会导致纺丝液内有机溶剂的快速挥发,避免出现纳米纤维膜的形貌和性能下降。因此,采用本发明的回转式纺丝发生装置不仅能够提高纳米纤维的产量,还能提高纳米纤维的质量。
此外,在本发明的可选实施方式中,所述环形接收装置构造成能够与所述回转式纺丝发生装置同向或反向旋转。例如,所述环形接收装置的外周具有齿以用作蜗轮,与电动机连接的蜗杆与所述齿啮合,由此通过电动机驱动所述环形接收装置正转或反转。并且,可以通过调节输入电动机的电流对所述环形接收装置的转速进行调节。通过调节所述环形接收装置与所述回转式纺丝发生装置的转动方向以及相对转速,可以调节纤维的拉伸和取向排列。
在示例性实施方式中,可通过利用所述环形接收装置与所述回转式纺丝发生装置反向转动来达到纤维的拉伸以及取向排列。本发明不限于此,即使所述环形接收装置与所述回转式纺丝发生装置同向转动,也可以通过调节二者的相对转速来调节纤维的拉伸和取向排列。
【第三实施方式】
图5示出了根据本发明的第三实施方式的静电纺丝设备的概要结构。在本实施方式中,所述静电纺丝设备包括:高压电源510;圆盘形接收装置520,其与所述高压电源510的负极电连接;回转式纺丝发生装置530,其位于圆盘形接收装置520的下方,并与所述高压电源510的正极电连接;以及供液装置540,例如流量泵,其与所述回转式纺丝发生装置530流体连通,以向所述回转式纺丝发生装置530供给纺丝液。在本实施方式中,所述回转式纺丝发生装置530设置在底座550上,所述圆盘形接收装置520经由支撑结构(未示出)支撑在所述回转式纺丝发生装置530的上方。
在本实施方式中,所述回转式纺丝发生装置530包括:环形供液池531,其与所述供液装置540流体连通,以接收并容纳所述纺丝液;多个旋转体532,所述多个旋转体532中的每一个至少部分位于所述环形供液池531中,并且设置成可沿着所述环形供液池531移动的同时自转。在一些实施方式中,如图6所示,所述环形供液池531包括:环形槽531-1,其界定出用于接收并容纳纺丝液的环形空腔,所述环形空腔的上部开口;环形盖板531-2,其用于盖住所述环形槽的上部开口并且能够相对所述环形槽531-1转动,所述环形盖板531-2具有多个孔洞,其中,所述多个旋转体532分别设置在所述多个孔洞中且至少部分暴露在所述孔洞外,并且所述旋转体适于在所述环形盖板531-2的转动的带动下在所述孔洞中转动。如图7所示,该图示出了环形供液池的一部分,其中所述环形槽531-1的开口端的侧壁设有卡槽,所述环形盖板531-2卡在所述卡槽中,并且能够沿着所述卡凹槽移动。例如,可以通过驱动组件来驱动所述环形盖板531-2移动。返回参阅图6,在示例性实施方式中,所述驱动组件包括电动机560和传动机构570。所述传动机构570与所述电动机的输出轴561连接,例如,所述传动机构570包括旋转轴,所述旋转轴的一端连接输出轴561,另一端设有与环形盖板531-2连接的连接件。从而,电动机560的转动经由输出轴561和传动机构570传递给所述环形盖板531-2,使得所述环形盖板531-2沿着环形槽531-1上的卡槽移动(即转动),进而带动环形盖板531-2的各孔洞中的旋转体532围绕所述环形槽531-1的圆心(即环形供液池531的圆心)公转,同时所述旋转体532在相应的孔洞中会自转。这样,所述旋转体的表面部分或全部会沾上纺丝液,在所述高压电源510产生的静电场中,所述纺丝液在电场力的作用下被拉伸成射流,所述射流伴随溶剂挥发而形成纳米纤维并沉积到所述圆盘形接收装置520上。
在一些实施方式中,所述圆盘形接收装置520的圆心与所述环形供液池531的圆心同轴。可选的,所述圆盘形接收装置520的直径大于或等于所述环形盖板531-2的外径。这样,可以确保所述接收装置能够接收所有的纳米纤维。
在一些实施方式中,如图8所示,所述多个旋转体532在所述环形盖板531-2上排列成一圈。在其他实施方式中,所述多个旋转体在所述环形盖板上可排列成至少两圈。并且,在一些实施方式中,位于一圈的旋转体与位于另一圈的旋转体彼此错位设置。可选的,位于一圈的旋转体与位于另一圈的旋转体可径向对齐设置。在一些实施方式中,在所述环形盖板上,位于同一圈的多个旋转体中相邻旋转体之间的间隔可相等。在一些实施方式中,所述多个旋转体可以在所述环形盖板上随机分布。
在一些实施方式中,所述多个旋转体532离所述圆盘形接收装置520的接收所述纳米纤维的表面的距离相等。从而,使得射流尽可能受到相同条件的牵伸,从而提高纳米纤维的直径的分布均匀性和形貌结构均一性。
在一些实施方式中,所述圆盘形接收装置520构造成能够与所述环形盖板531-2同向或反向旋转。通过调节所述圆盘形接收装置与所述环形盖板的转动方向以及相对转速,可以调节纤维的拉伸和取向排列。
【第四实施方式】
图9示出了根据本发明的第四实施方式的静电纺丝设备的概要结构。在本实施方式中,所述静电纺丝设备包括:高压电源910;圆盘形接收装置920,其与所述高压电源910的负极电连接;回转式纺丝发生装置930,其位于圆盘形接收装置920的下方,并与所述高压电源910的正极电连接;以及供液装置940,其与所述回转式纺丝发生装置930流体连通,以向所述回转式纺丝发生装置930供给纺丝液。其中,所述回转式纺丝发生装置930包括:圆形供液池931-1,其与所述供液装置940流体连通,以接收并容纳所述纺丝液;圆形盖板931-2,其用于封闭所述圆形供液池931-1的上部开口,并且能够相对于所述圆形供液池931-1转动,所述圆形盖板931-2上具有多个孔洞;以及多个旋转体932,其分别设置在所述多个孔洞中且至少部分暴露在所述孔洞外,并且所述多个旋转体932在所述圆形盖板931-2的转动带动下在所述孔洞中转动。
在一些实施方式中,如图10所示,所述圆盘形盖板931-2底部设有环形卡槽,所述圆形供液池931-1的开口端嵌入所述环形卡槽中,并且所述圆盘形盖板931-2能够相对于所述圆形供液池931-1转动。例如,可以通过驱动组件来驱动所述圆盘形盖板932-1转动。在一些实施方式中,所述驱动组件可以包括电动机960和传动机构970,所述传动机构970可以包括与电动机960的输出轴961连接的齿轮。所述圆形盖板931-2的周侧具有与所述齿轮啮合的齿,由此,所述电动机960的转动可以经由输出轴961和传动机构970的齿轮传递至所述圆形盖板931-2,使得圆形盖板931-2沿着圆形供液池931-1的圆周转动。所述圆形盖板931-2的转动带动其各孔洞中的旋转体932围绕所述圆形供液池931-1的圆心公转,同时所述旋转体932在相应的孔洞中会自转。这样,所述旋转体的表面部分或全部会沾上纺丝液,在所述高压电源910产生的静电场中,所述纺丝液在电场力的作用下被拉伸成射流,所述射流伴随溶剂挥发而形成纳米纤维并沉积到所述圆盘形接收装置920上。
在一些实施方式中,所述圆盘形接收装置920的圆心与所述圆形供液池931-1的圆心同轴。并且,所述圆盘形接收装置920的直径大于或等于所述圆形盖板931-2的外径。从而,确保所述接收装置对纳米纤维的接收。
在一些实施方式中,如图11所示,所述多个旋转体932在所述圆形盖板931-2上排列成一圈。在其他实施方式中,所述多个旋转体在所述圆形盖板上可排列成至少两圈。并且,在一些实施方式中,位于一圈的旋转体与位于另一圈的旋转体彼此错位设置。可选的,位于一圈的旋转体与位于另一圈的旋转体可径向对齐设置。在一些实施方式中,在所述环形盖板上,位于同一圈的多个旋转体中相邻旋转体之间的间隔可相等。在一些实施方式中,所述多个旋转体可以在所述圆形盖板上随机分布。
在一些实施方式中,所述多个旋转体932离所述圆盘形接收装置920的接收所述纳米纤维的表面的距离相等。从而,使得射流尽可能受到相同条件的牵伸,从而提高纳米纤维的直径的分布均匀性和形貌结构均一性。
在一些实施方式中,所述圆盘形接收装置920构造成能够与所述圆形盖板931-2同向或反向旋转。通过调节所述圆盘形接收装置与所述环形盖板的转动方向以及相对转速,可以调节纤维的拉伸和取向排列。
在本发明的上述第一至第三实施方式中,所述多个旋转体围绕所述供液池的圆心公转的同时自转。在其他实施方式中,所述多个旋转体可以围绕保持旋转体的保持件的圆心公转的同时在所述保持件中自转,例如,在上述实施方式中,具有安装旋转体的孔洞的环形外罩、环形盖板、圆形盖板可以作为所述保持件的例子。
本领技术人员应当理解,以上所公开的仅为本发明的实施方式而已,当然不能以此来限定本发明请求专利保护的权利范围,依本发明实施方式所作的等同变化,仍属本发明之权利要求所涵盖的范围。例如,在本发明的第三、第四实施方式中,虽然以导电球体作为旋转体对本发明进行了说明,但是,应当理解,类似于第二实施方式,所述旋转体还可以实施为导电圆柱体或导电圆筒体,或所述旋转体可以由导电球体、导电圆柱体、以及导电圆筒体中的至少两种的组合来实施。

Claims (24)

  1. 一种静电纺丝设备,其特征在于,包括:
    高压电源;
    接收装置,其与所述高压电源的负极电连接;
    回转式纺丝发生装置,其与所述接收装置间隔开,并与所述高压电源的正极电连接;以及
    供液装置,其与所述回转式纺丝发生装置流体连通,以向所述回转式纺丝发生装置供给纺丝液;
    其中,所述回转式纺丝发生装置包括:
    供液池,其与所述供液装置流体连通,以接收并容纳所述纺丝液;以及
    多个旋转体,所述多个旋转体中的每一个至少部分位于所述供液池中,并且设置成围绕一中心公转的同时自转,以使所述旋转体的表面的至少一部分沾上所述纺丝液,在所述高压电源产生的静电场中,所述纺丝液在电场力的作用下被拉伸成射流,所述射流伴随溶剂挥发而形成纳米纤维并沉积到所述接收装置上。
  2. 根据权利要求1所述的静电纺丝设备,其特征在于,所述供液池包括环形供液池,所述多个旋转体设置成围绕所述环形供液池的圆心转动的同时自转。
  3. 根据权利要求2所述的静电纺丝设备,其特征在于,所述接收装置包括环形接收装置,其围绕所述环形供液池的外周侧设置。
  4. 根据权利要求3所述的静电纺丝设备,其特征在于,所述环形供液池包括:
    环形内板;
    环形外罩,其与所述环形内板结合且能够相对所述环形内板转动,所述环形外罩与所述环形内板界定出所述环形供液池的容纳纺丝液的环形空腔,并且所述环形外罩的外周面具有与所述环形空腔连通的多个孔洞;
    其中,所述多个旋转体分别设置在所述多个孔洞中且至少部分暴露在所述孔洞外,并且所述旋转体适于在所述环形外罩的转动的带动下围绕所述环形供液池的圆心公转的同时在所述孔洞中自转。
  5. 根据权利要求4所述的静电纺丝设备,其特征在于,所述旋转体的直径大于所述环形空腔的外径与内径之差。
  6. 根据权利要求4所述的静电纺丝设备,其特征在于,所述回转式纺丝发生装置还包括密封垫圈,所述密封垫圈设置在所述环形外罩与所述环形内板的结合处以防止纺丝液溢出。
  7. 根据权利要求4所述的静电纺丝设备,其特征在于,所述多个旋转体离所述环形接收装置的接收所述纳米纤维的表面的距离相等。
  8. 根据权利要求4所述的静电纺丝设备,其特征在于,所述环形接收装置的圆心与所述环形供液池的圆心重合。
  9. 根据权利要求4所述的静电纺丝设备,其特征在于,所述环形接收装置构造成能够与所述环形外罩同向或反向旋转。
  10. 根据权利要求2所述的静电纺丝设备,其特征在于,所述接收装置包括圆盘形接收装置,其设置在所述环形供液池的上方。
  11. 根据权利要求10所述的静电纺丝设备,其特征在于,所述环形供液池包括:
    环形槽,其界定出用于接收并容纳纺丝液的环形空腔;
    环形盖板,其用于封闭所述环形槽的槽开口并且能够相对所述环形槽转动,所述环形盖板具有多个孔洞;
    其中,所述多个旋转体分别设置在所述多个孔洞中且至少部分暴露在所述孔洞外,并且所述旋转体适于在所述环形盖板的转动的带动下围绕所述环形供液池的圆心公转的同时在所述孔洞中自转。
  12. 根据权利要求11所述的静电纺丝设备,其特征在于,所述圆盘形接收装置的圆心与所述环形供液池的圆心同轴。
  13. 根据权利要求12所述的静电纺丝设备,其特征在于,所述圆盘形接收装置的直径大于或等于所述环形盖板的外径。
  14. 根据权利要求11所述的静电纺丝设备,其特征在于,所述多个旋转体离所述圆盘形接收装置的接收所述纳米纤维的表面的距离相等。
  15. 根据权利要求11所述的静电纺丝设备,其特征在于,所述圆盘形接收装置构造成能够与所述环形盖板同向或反向旋转。
  16. 根据权利要求1所述的静电纺丝设备,其特征在于,所述供液池包括圆形供液池;
    所述回转式纺丝发生装置进一步包括圆形盖板,其用于封闭所述圆形供液池的上部开口,并且能够相对于所述圆形供液池转动,所述圆形盖板上具有多个孔洞;
    所述多个旋转体分别设置在所述多个孔洞中且至少部分暴露在所述孔洞外,并且所述旋转体适于在所述圆形盖板的转动的带动下围绕所述圆形供液池的圆心公转的同时在所述孔洞中自转。
  17. 根据权利要求16所述的静电纺丝设备,其特征在于,所述接收装置包括圆盘形接收装置,其位于所述圆形供液池的上方。
  18. 根据权利要求17所述的静电纺丝设备,其特征在于,所述圆盘形接收装置的圆心与所述圆形供液池的圆心同轴。
  19. 根据权利要求18所述的静电纺丝设备,其特征在于,所述圆盘形接收装置的直径大于或等于所述圆形盖板的外径。
  20. 根据权利要求17所述的静电纺丝设备,其特征在于,所述多个旋转体离所述圆盘形接收装置的接收所述纳米纤维的表面的距离相等。
  21. 根据权利要求17所述的静电纺丝设备,其特征在于,所述圆盘形接收装置构造成能够与所述圆形盖板同向或反向旋转。
  22. 根据权利要求1所述的静电纺丝设备,其特征在于,所述旋转体包括导电球体、导电圆柱体、以及导电圆筒体中的至少一种。
  23. 根据权利要求1所述的静电纺丝设备,其特征在于,所述供液装置包括流量泵,所述流量泵通过连接管与所述供液池相连。
  24. 根据权利要求1所述的静电纺丝设备,其特征在于,所述供液装置包括:
    流量泵;
    通道,其将所述流量泵与所述供液池连通;
    螺旋进料杆,其设置在所述通道内;以及
    驱动组件,其与所述螺旋进料杆连接;
    其中,当所述流量泵向所述通道供给纺丝液时,所述驱动组件驱动所述螺旋进料杆转动以将所述纺丝液输入到所述供液池内。
PCT/CN2023/123221 2022-10-19 2023-10-07 静电纺丝设备 WO2024082966A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211278267.8A CN117947533A (zh) 2022-10-19 2022-10-19 静电纺丝设备
CN202211278267.8 2022-10-19

Publications (1)

Publication Number Publication Date
WO2024082966A1 true WO2024082966A1 (zh) 2024-04-25

Family

ID=90736854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/123221 WO2024082966A1 (zh) 2022-10-19 2023-10-07 静电纺丝设备

Country Status (2)

Country Link
CN (1) CN117947533A (zh)
WO (1) WO2024082966A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100077913A (ko) * 2008-12-29 2010-07-08 (주)엔티시 원심전기방사장치
CN203583028U (zh) * 2013-12-05 2014-05-07 厦门大学 一种纳米纤维制备装置
CN104294383A (zh) * 2014-10-31 2015-01-21 苏州大学 一种应用于制备纳米纤维的气流转盘纺丝装置
WO2015139659A1 (zh) * 2014-03-21 2015-09-24 馨世工程教育有限公司 用于生产多种结构的复合纳米微米纤维离心纺丝设备
CN106591967A (zh) * 2016-12-20 2017-04-26 广东开放大学(广东理工职业学院) 一种圆柱面螺旋阵列的静电纺丝装置及静电纺丝方法
CN109097849A (zh) * 2018-09-28 2018-12-28 上海云同纳米材料科技有限公司 纳米纤维发生装置
KR101979881B1 (ko) * 2018-02-01 2019-05-17 코오롱머티리얼(주) 방열형 원심전기방사 장치
JP2019189985A (ja) * 2018-04-27 2019-10-31 国立大学法人京都工芸繊維大学 機能性ファイバ製造方法、機能性ファイバ製造装置および機能性ファイバ
CN115110159A (zh) * 2021-12-30 2022-09-27 青岛大学 一种滑轮电极静电纺丝方法与装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100077913A (ko) * 2008-12-29 2010-07-08 (주)엔티시 원심전기방사장치
CN203583028U (zh) * 2013-12-05 2014-05-07 厦门大学 一种纳米纤维制备装置
WO2015139659A1 (zh) * 2014-03-21 2015-09-24 馨世工程教育有限公司 用于生产多种结构的复合纳米微米纤维离心纺丝设备
CN104294383A (zh) * 2014-10-31 2015-01-21 苏州大学 一种应用于制备纳米纤维的气流转盘纺丝装置
CN106591967A (zh) * 2016-12-20 2017-04-26 广东开放大学(广东理工职业学院) 一种圆柱面螺旋阵列的静电纺丝装置及静电纺丝方法
KR101979881B1 (ko) * 2018-02-01 2019-05-17 코오롱머티리얼(주) 방열형 원심전기방사 장치
JP2019189985A (ja) * 2018-04-27 2019-10-31 国立大学法人京都工芸繊維大学 機能性ファイバ製造方法、機能性ファイバ製造装置および機能性ファイバ
CN109097849A (zh) * 2018-09-28 2018-12-28 上海云同纳米材料科技有限公司 纳米纤维发生装置
CN115110159A (zh) * 2021-12-30 2022-09-27 青岛大学 一种滑轮电极静电纺丝方法与装置

Also Published As

Publication number Publication date
CN117947533A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
CN105624808B (zh) 一种环形薄片状电极静电纺丝装置
KR101172266B1 (ko) 다수개의 토출홀들이 형성된 방사 튜브를 포함하는 전기방사장치
CN103590121B (zh) 一种线性射流无喷头式静电纺丝装置
CN202809021U (zh) 静电纺丝设备
CN103215666A (zh) 一种新型离心熔体静电纺丝装置
CN108532001B (zh) 一种静电纺丝设备
KR101291592B1 (ko) 내부에 단면이 다각형인 중공부를 갖는 원추형 방사 튜브를 포함하는 전기방사장치
CN101787573A (zh) 一种制备纳米纤维的量产装置
JP3184886U (ja) スクリューファイバー生成器及び静電ロッド紡糸設備
CN105568406A (zh) 一种机械搅拌供液静电纺丝装置
WO2024082966A1 (zh) 静电纺丝设备
CN108330550A (zh) 无喷头式静电纺丝装置及其使用方法
CN108950509A (zh) 一种行星式三级齿轮传动刀片夹具装置
CN103451750A (zh) 静电纺丝设备及制备中空纳米纤维的方法
JP2008231623A (ja) 不織布製造装置
KR20040052685A (ko) 감압회전형 방사체를 이용한 정전방사 장치
CN110344125A (zh) 一种批量电纺装置及其制备纳米纤维膜的方法
CN105970310A (zh) 一种具有尖端结构盘状电极静电纺丝装置
CN210945869U (zh) 摩擦式离心力纺丝机构
JP5385981B2 (ja) ナノファイバ製造装置およびナノファイバ製造方法
CN208632638U (zh) 一种行星式三级齿轮传动刀片夹具装置
CN115110159B (zh) 一种滑轮电极静电纺丝方法与装置
WO2022205638A1 (zh) 用于制取芯-壳结构纳米纤维的静电纺丝装置
CN103343393B (zh) 一种三维纳米纤维组合体的静电纺丝装置以及方法
CN214655385U (zh) 用于制取芯-壳结构纳米纤维的静电纺丝装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878958

Country of ref document: EP

Kind code of ref document: A1