WO2015139659A1 - 用于生产多种结构的复合纳米微米纤维离心纺丝设备 - Google Patents

用于生产多种结构的复合纳米微米纤维离心纺丝设备 Download PDF

Info

Publication number
WO2015139659A1
WO2015139659A1 PCT/CN2015/074708 CN2015074708W WO2015139659A1 WO 2015139659 A1 WO2015139659 A1 WO 2015139659A1 CN 2015074708 W CN2015074708 W CN 2015074708W WO 2015139659 A1 WO2015139659 A1 WO 2015139659A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge pipe
wall
pipe
inner discharge
liquid
Prior art date
Application number
PCT/CN2015/074708
Other languages
English (en)
French (fr)
Inventor
佘风华
谭龙
孔令学
Original Assignee
馨世工程教育有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410108921.XA external-priority patent/CN104928777B/zh
Priority claimed from CN201410108866.4A external-priority patent/CN104928775B/zh
Priority claimed from CN201410108862.6A external-priority patent/CN104928774B/zh
Application filed by 馨世工程教育有限公司 filed Critical 馨世工程教育有限公司
Publication of WO2015139659A1 publication Critical patent/WO2015139659A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus

Definitions

  • the invention belongs to the field of spinning technology, and particularly relates to a centrifugal spinning device for producing composite nanometer microfibers of various structures.
  • Nanofibers are fiber materials having a tube diameter of less than a few hundred nanometers.
  • Fibers can be divided into: one-component, two-component and multi-component fibers according to the cross-sectional structure; single-component fibers are fibers which are uniformly mixed with one material or several materials in cross section; bicomponent fibers It refers to a fiber whose cross-section is composed of two different components of a certain specific structural relationship; two-component and multi-component fibers belong to the category of composite fibers. Wherein each component may be a material or a mixture of several materials.
  • the bicomponent fibers can be divided into: bilateral (also known as conjugate) structural fibers, core-shell (also known as homo-core or coaxial) structural fibers, sea-island structural fibers, and tip-tip fibers. Segmented fibers and so on.
  • Nanofibers have an extremely high specific surface area and aspect ratio.
  • the fabric woven from nanofibers has a fine structure, extremely high porosity, excellent flexibility, adsorption, filterability, adhesion, heat preservation and mechanical strength.
  • These unique properties make nanofibers have novel properties not found in microfibers and have been widely used in many fields.
  • scientists have discovered that two-component or multi-component composite micro-nanofibers with a special cross-section structure can be combined. Two different properties of the material can produce a new micron nanofiber that is not available in single-component fibers or that is superior to single-component fibers.
  • Two-component or multi-component composite micron nanofibers as multifunctional nanofibers in many important high-end fields have greater application prospects.
  • the spinning device for producing composite nanofibers is mainly a needle-type electrospinning method.
  • the needle-type electrospinning technology has extremely low output, requires high voltage, high risk, and high cost, and it is difficult to mass produce composite nanofibers.
  • the technical problem to be solved by the present invention is to provide a centrifugal spinning device for producing composite nano-micrometer fibers of various structures; the device does not require the participation of a high-voltage electrostatic field, greatly reduces energy consumption costs, and has safety performance. High and high output.
  • the present invention provides a centrifugal spinning apparatus for producing composite nano-micrometer fibers of various structures, comprising: a liquid storage device; for storing at least two kinds of spinning materials, the liquid storage device
  • the method includes at least: a first rotating drum, a second rotating drum and a sealing plate; the second rotating sleeve is sleeved outside the first rotating drum; and the center of the first rotating drum and the second rotating drum
  • the vertical axes are all located on the same straight line L 1 ;
  • the first rotating drum and the second rotating drum are both coaxial hollow cylindrical structures or hollow conical structures; the first rotating drum and the second rotating body
  • the bottom of the rotating drum is fixedly connected to the upper surface of the sealing plate respectively; the straight line L 1 and the upper surface of the sealing plate are perpendicular to each other; the inner wall of the first rotating drum and the sealing plate form a first liquid storage chamber;
  • the outer wall of the first drum and the inner wall of the second drum form a second liquid storage chamber with the sealing plate; the
  • a plurality of the discharge hole groups are distributed on the first drum side wall, a plurality of the groups of the nozzles distributed on the same layer or a plurality of layers of the side wall of the first drum and the side wall of the second drum
  • the central axis of the group of the nozzles is at an angle ⁇ with the straight line L 1 ; wherein 0° ⁇ ⁇ ⁇ 180°.
  • the method further includes: a housing; the housing includes: a cover and a spacer; the spacer is fixed at a lower portion of the cover, and the cover is divided into an upper isolation layer by the spacer And a lower isolation layer; the liquid storage device is disposed in the upper isolation layer; and the driving device is disposed in the lower isolation layer.
  • each of the groups of nozzles includes at least: an inner discharge tube and an outer discharge tube; each of the The discharge hole group includes at least: an inner discharge hole and an outer discharge hole; the inner discharge pipe in the nozzle group is placed inside the outer discharge pipe; and one end of the inner discharge pipe is provided for the spinning a first liquid inlet into which the material flows, the other end of the inner discharge pipe being provided with a first liquid outlet for the spinning material to flow out; one end of the outer discharge pipe is provided with an inflow for the spinning material a second liquid inlet, the other end of the outer discharge pipe is provided with a second liquid outlet for discharging the spinning material; and the diameters of the inner discharge pipe and the outer discharge pipe respectively correspond to a direction from the first liquid inlet to the first liquid outlet, and a direction from the second liquid inlet to the second liquid outlet; the inner discharge pipe is disposed through the first liquid inlet The inner discharge hole on the
  • each of the nozzle groups includes at least: a first inner discharge pipe, a second inner discharge pipe, and An outer discharge pipe; each of the discharge hole groups includes at least: a first inner discharge hole, a second inner discharge hole and an outer discharge hole; the first inner discharge hole and the second inner discharge hole a side-by-side distribution; a diameter of the outer discharge hole is larger than a sum of diameters of the first inner discharge pipe and the second inner discharge pipe; one end of the first inner discharge pipe and the first inner discharge One end of the second inner discharge pipe communicates with the second inner discharge hole; one end of the outer discharge pipe communicates with the outer discharge hole; the other end of the first inner discharge pipe, the The other end of the second inner discharge pipe respectively passes through the outer discharge hole and is disposed inside the outer discharge pipe and is located on or outside the side wall of the second drum; a discharge hole, an inner wall of the first inner discharge pipe forms a first inner
  • each of the nozzle groups includes at least: a first inner discharge tube and a second inner discharge tube.
  • One end of the first inner discharge pipe communicates with the first inner discharge hole; one end of the second inner discharge pipe communicates with the second inner discharge hole; one end of the outer discharge pipe and the The outer discharge hole communicates with; the other end of the first inner discharge pipe and the other end of the second inner discharge pipe respectively pass through the outer discharge hole and are respectively disposed inside the outer discharge pipe and located at the a side wall of the two drum or an outer side of the side wall; the first inner discharge pipe and the second inner discharge pipe are arranged side by side with each other, and the pipe wall of the first inner discharge pipe and the second The pipe walls of the inner discharge pipe are
  • each of the nozzle groups includes at least: an inner discharge pipe and an outer discharge pipe; each of the discharges
  • the hole group includes at least: an inner discharge hole and an outer discharge hole; one end of the inner discharge pipe is provided with an inner liquid inlet for the inflow of the spinning material, and the other end of the inner discharge pipe is provided for the spinning An inner liquid outlet from which the material flows; one end of the outer discharge pipe is provided with an outer liquid inlet for the inflow of the spinning material, and the other end of the outer discharge pipe is provided with an outer liquid for flowing out the spinning material
  • the diameters of the inner discharge pipe and the outer discharge pipe respectively decrease in the direction from the inner liquid inlet to the inner liquid outlet, and the outer liquid inlet to the outer liquid outlet
  • the inner discharge pipe communicates with the inner discharge hole provided on the side wall of the first drum through the inner liquid inlet; the other end of the inner discharge pipe passes outward through the liquid storage mechanism a side wall of the
  • the inner discharge hole, the inner liquid inlet, the inner wall of the inner discharge pipe and the inner liquid outlet constitute an inner spray pipe;
  • the outer discharge hole, the outer liquid inlet, and the inner discharge constitute an outer liquid discharge pipe; and the inner discharge pipe and the outer discharge pipe are juxtaposed and adjacent to each other side by side;
  • the inner discharge pipe And the outer discharge pipe is fixedly connected by the respective pipe walls to isolate the inner spray pipe and the outer spray pipe from each other;
  • the inner discharge pipe wall is seamless with the side wall of the second drum Connect.
  • each of the discharge hole groups comprises: an inner discharge hole and a plurality of outer discharge holes; each of the The nozzle group includes: an inner discharge pipe and a plurality of outer discharge pipes; the inner discharge pipe has a passage with a plurality of tips at a section; the number of the outer discharge pipes in the nozzle group and the outer discharge holes of the discharge hole group The number of the discharge pipes is equal to the number of the tips of the inner discharge pipe section; the number of the inner discharge pipes in the nozzle group is equal to the number of the inner discharge holes in the discharge hole group; One end of the inner discharge pipe is provided with an inner liquid inlet for the inflow of the spinning material, and the other end of the inner discharge pipe is provided with an inner liquid outlet for the outflow of the spinning material; each of the outer One end of the discharge pipe is provided with an external liquid inlet for the inflow of the spinning material; the other end of each of the outer discharge pipes is provided with an outlet
  • the driving device comprises: a motor, a speed controller and a bearing connector; the motor is connected to the speed controller; the motor sequentially passes through the built-in bearing, the bearing connector and the seal
  • the lower surface of the board is coupled; the motor and/or the speed controller is connected to an external power output device, and or the liquid feeding device comprises: a first infusion set, a first infusion tube, a second infusion set and a second An infusion tube; the first infusion set is in communication with the first rotating tube through the first infusion tube; the second infusion device is in communication with the second rotating tube through the second infusion tube; and
  • the collecting device includes: a collecting plate distributed at a peripheral portion of the liquid discharging device and a supporting seat for supporting the collecting plate; the supporting seat is provided with a plurality of sliding grooves, and the collecting plate is installed by being different The relative distance between the collecting plate and the rotating drum and/or the discharge pipe is adjusted on the chute.
  • the invention provides a centrifugal spinning device for producing composite nanometer microfibers of various structures, on the one hand, by connecting a liquid feeding device with the liquid storage device; meanwhile, using a liquid discharging device of various structures And connecting the liquid spraying device to the liquid storage device; on the other hand, the driving device is coupled to the liquid storage device; the driving device is connected to the external power output device; the collecting device is disposed in the housing; In the drive, the drive is connected to the outside world.
  • the source output device is connected to drive the liquid storage device for rotation, and the spinning material conveyed by the liquid feeding device is poured into each of the liquid storage chambers, and sequentially passes through the discharge hole group, the nozzle group and the nozzle.
  • the other end of the group is ejected to achieve a composite nano-micrometer fiber having a shell-core structure, or a sea-island structure, or a segmented structure, or a bilateral structure, or a tip structure, collected by a collecting device.
  • the present invention does not require a high-voltage electrostatic field, and only uses the centrifugal force generated by the rotation of the drum as the power for the formation of nanofibers, which not only greatly increases the production yield, but also greatly reduces the energy consumption cost.
  • the safety of the production operation is improved, and the demand for large-scale production of composite nano-micron fibers of various structures is satisfied.
  • FIG. 1 is a schematic structural view of a first embodiment of the present invention
  • FIG. 2 is still another schematic structural diagram of Embodiment 1 of the present invention.
  • Figure 3 is a partial enlarged view of Figure 2;
  • Embodiment 2 of the present invention is a schematic structural diagram of Embodiment 2 of the present invention.
  • Figure 5 is a partial enlarged view of Figure 4.
  • FIG. 6 is still another schematic structural diagram of Embodiment 2 of the present invention.
  • Figure 7 is a partial enlarged view of Figure 6;
  • FIG. 8 is a schematic structural diagram of Embodiment 3 of the present invention.
  • Figure 9 is a partial enlarged view of Figure 8.
  • FIG. 10 is still another schematic structural diagram of Embodiment 3 of the present invention.
  • Figure 11 is a partial enlarged view of Figure 10;
  • FIG. 12 is a schematic structural diagram of Embodiment 4 of the present invention.
  • Figure 13 is a partial enlarged view of Figure 12;
  • FIG. 14 is still another schematic structural diagram of Embodiment 5 of the present invention.
  • FIG. 15 is a schematic structural diagram of Embodiment 6 of the present invention.
  • Figure 16 is a partial enlarged view of Figure 15;
  • Figure 17 is a schematic structural view of a seventh embodiment of the present invention.
  • Figure 18 is a partial enlarged view of Figure 17;
  • FIG. 19 is a schematic structural diagram of Embodiment 8 of the present invention.
  • Figure 20 is a partial enlarged view of Figure 19;
  • Figure 21 is a schematic structural view of a ninth embodiment of the present invention.
  • Fig. 22 is a partial enlarged view of Fig. 21;
  • a composite nano-micrometer fiber centrifugal spinning device for producing a sea-island structure, comprising: a casing; a liquid storage device; a liquid feeding device; a liquid discharging device; a driving device; And a collecting device.
  • the liquid storage device is configured to store the spinning material
  • the liquid storage space in the liquid storage device is composed of a sealing plate and at least two rotating tubes in a coaxial nesting manner (one rotating sleeve is set in another turn)
  • the liquid storage device may include: a first liquid storage chamber 201a formed by the sealing plate and the first rotating cylinder 201, a second liquid storage chamber 202a formed by the sealing plate and the second rotating cylinder 202; and 2 turns
  • the central vertical axes of the cylinders are all located on the same straight line L 1 (the two rotating drums share a central vertical axis); the liquid storage devices are placed in the housing, and each of the liquid storage chambers is used for storing a certain component of the spinning material, and Each liquid storage chamber is independent (isolated) from each other;
  • the liquid feeding device is configured to transport the spinning materials of different components to the corresponding liquid storage chamber, and the liquid feeding device is connected with each liquid storage chamber in the liquid storage device; the liquid discharging device Connected to the
  • the collecting device is disposed at a peripheral portion (around) of the liquid discharging device; during actual operation, the driving device drives each of the rotating liquid storage devices to rotate by connecting with the external power output device, and the different components of the liquid feeding device are transported.
  • the spinning material is correspondingly poured into the corresponding liquid storage chamber of the liquid storage device (a liquid storage chamber stores a component of the spinning material), and is spun into the liquid storage chamber under the action of centrifugal force.
  • the silk material passes through the discharge hole group and the nozzle group in turn, and is integrated into the other end (end) of the nozzle group, and is stretched and solidified to form a nanometer microfilament, and finally the collection of the island structure by the collecting device is realized.
  • Composite nano-micron fiber
  • the first inner passage and the second inner passage may be referred to as an "island" passage of the centrifugal spinning device, and the outer passage may be referred to as a "sea" passage of the centrifugal spinning device.
  • the number of inner channels is the same as the number of "islands" of the island fibers.
  • the number of the discharge hole group and the nozzle group in the liquid discharge device may be one or more, and the number of the discharge hole group and the nozzle group in the liquid discharge device is large.
  • a plurality of discharge hole groups may be distributed on the same layer circumference of the first reel 201 and the second reel 202 side wall, and at this time, several nozzle groups are also respectively distributed in the first reel 201.
  • the same layer of the sidewall of the second rotating drum 202; at the same time, a plurality of discharge hole groups may be distributed on the circumference of the plurality of layers (several layers) of the first rotating cylinder 201 and the second rotating cylinder 202.
  • a plurality of nozzle groups are also respectively distributed on the circumferences of the plurality of layers (several layers) of the side walls of the first drum 201 and the second drum 202.
  • the housing comprises: a cover 1 and a spacer 2; wherein the spacer 2 is fixed at a middle and lower portion of the cover 1, and the cover 1 is divided into an upper isolation layer and a lower isolation layer by the isolation plate 2.
  • the liquid storage device is placed in the upper insulation layer; the drive device is placed in the lower insulation layer. Same When the driving device is connected to the bottom of the liquid storage device through the coupling device 6, the external liquid power output device is further driven to drive the liquid storage device to rotate.
  • the other end of the first inner discharge pipe 203 and the other end of the second inner discharge pipe 204 respectively pass through the outer discharge hole 205 and are located outside the side wall of the second drum; the first inner passage and the outer passage are first inside The pipe walls of the discharge pipe are separated from each other by the interface; the second inner passage and the outer passage are separated from each other by the pipe wall of the second inner discharge pipe.
  • the outer passage encloses the ends of the first inner passage and the second inner passage; during the actual operation, the first inner discharge hole, the second inner discharge hole and the outer discharge hole may be circular, semi-circular or square, etc.
  • first inner discharge pipe 203, the second inner discharge pipe 204, and the outer discharge pipe 205 are respectively different from the first inner discharge hole, the second inner discharge hole, and the outer discharge hole aperture.
  • the shape is adapted; in other words, the cross-sectional shape, size, proportional relationship or relative positional relationship of the first inner passage, the second inner passage and the outer passage shell passage can be changed separately or simultaneously according to actual production requirements to produce different cross sections.
  • the diameter of the first inner discharge pipe 203 gradually decreases along the first inner discharge hole to the end of the first inner discharge pipe; the second inner discharge pipe 204 is along the second inner discharge hole to The pipe diameter gradually decreases in the direction of the end of the second inner discharge pipe; the diameter of the outer discharge pipe 205 gradually decreases along the outer discharge hole to the end of the outer discharge pipe.
  • the composite nano-nano fiber of the sea-island structure produced in the first embodiment is deposited and collected in the above-mentioned yarn collecting device, and at the same time, the nano-nano fiber filament can be drawn by a barbed or vacuum, and is wound by a paired roller. Into the yarn.
  • the central axis of the first inner discharge pipe 203 is on the straight line L 2 ; the central axis of the second inner discharge pipe 204 is on the straight line L 3 ; the first inner discharge hole and the first inner discharge pipe 203 a first inner passage formed by the inner wall, a second inner passage formed by the second inner discharge hole, the inner wall of the second inner discharge pipe 204, and an outer discharge hole, an outer wall of the first inner discharge pipe 203, and a second inner portion
  • the outer wall formed by the outer wall of the discharge pipe 204 and the inner wall of the outer discharge pipe 205 may be at an angle or perpendicular to the side wall of the first drum 201 or the side wall of the second drum 202; that is, the straight line L 2
  • the straight line L 3 is respectively distributed at an angle ⁇ with the straight line L 1 ; wherein 0° ⁇ ⁇ ⁇ 180°.
  • the driving device may include: a (high speed) motor 4, a speed controller 5 and a bearing connector 6; wherein the motor 4 is connected to the speed controller 5; the motor 4 sequentially passes through the built-in bearing and the bearing connector thereof. 6 is coupled to the sealing plate 206; optionally, a supporting plate may be further disposed on the top of the first rotating drum 201 and the second rotating cylinder 202, and the motor 4 and the rotational speed controller 5 are disposed on the added supporting plate, that is, The motor 4 and the speed controller 5 are located above the first drum 201 and the second drum 202; finally, the motor 4 or the speed controller 5 and the external power source output are provided.
  • the speed controller 5 adjusts the speed of the motor 4, and the first liquid storage chamber 201a and the second liquid storage chamber 202a rotate at a high speed under the driving of the motor 4.
  • the liquid feeding device may include: a first infusion set 301, a first infusion tube 303, a second infusion set 302, and a second infusion tube 304; wherein the first infusion set 301 passes through the first infusion tube 303 and The first liquid storage chamber 201a communicates; the second infusion set 302 communicates with the second liquid storage chamber 202a through the second infusion tube 304.
  • the collecting device may include: a collecting plate 7 distributed at a peripheral portion of the liquid ejecting device and a supporting base 8 for supporting the collecting plate 7; preferably, the collecting plate 7 may be formed into a cylindrical shape;
  • the support base 8 is provided with a plurality of sliding grooves, and the cylindrical collecting plate 7 is adjusted on the different sliding grooves to adjust the relative distance between the cylindrical collecting plate 7 and the end of the second rotating tube 202 or the outer discharge tube 205.
  • the cylindrical collecting plate 7 is sleeved on the outside of the second rotating drum 202 and the outer discharge pipe 205); the cylindrical collecting plate 7 and the separating plate 2 are perpendicular to each other.
  • the relative distance between the plate surface of the cylindrical collecting plate 7 and the end of the outer discharge pipe 205 is greater than 10 mm.
  • the collecting device can also be a plurality of strips arranged perpendicularly to the separating plate 2, and can be arranged in each of the plurality of chutes of the supporting seat, thereby adjusting the ends of the receiving plate and the outer discharge pipe 205. relative distance.
  • first rotating cylinder 201 and the second rotating cylinder 202 may each have a hollow cylindrical structure; or they may all have a hollow conical structure.
  • a heating device can be added at the bottom of the sealing plate 206, and a heat-resistant high-temperature resistant drum and a discharge pipe can be used to produce a composite nano-micrometer fiber of a molten polymer and a metal island structure.
  • the first embodiment can be arranged in rows, columns and arrays for large-scale production of composite nano-micron fibers of island structures; and has wide applicability.
  • Another embodiment of the present invention provides a composite nano-micrometer fiber centrifugal spinning device for producing a sea-island structure. Compared with the first embodiment, please refer to FIG. 4-7:
  • FIG. 4 is another example of a composite nano-micrometer fiber centrifugal spinning device for producing a two-island, circular-shaped island structure; the other end (end) of the first inner discharge pipe 203 and the second inner discharge pipe
  • the other end (end) of the 204 is located on the side wall of the second drum 202; that is, the first inner passage formed by the first inner discharge hole and the inner wall of the first inner discharge pipe 203 and the second inner discharge hole and
  • the second inner passage formed by the inner wall of the second inner discharge pipe 204 is located between the inner wall of the first drum 201 and the outer wall of the second drum 202;
  • the outer discharge pipe 205 is located in the outer discharge hole (ie, the outside is discharged)
  • the hole itself is used as the outer discharge pipe 205 to convey the spinning material).
  • the outer discharge pipe 205 includes both the pipe wall of the first inner discharge pipe 203 and the pipe wall of the second inner discharge pipe 204 Inside. 5 is a partial enlarged view of the liquid discharge device of FIG. 4, that is, the ends of the outer discharge pipe 205, the first inner discharge pipe 203, and the second inner discharge pipe 204.
  • Fig. 6 is a liquid storage device and a liquid ejecting device in a composite nano-micro fiber centrifugal spinning device of a four-island, circular-shaped island structure.
  • Figure 7 is a partial enlarged view of the liquid discharge device of Figure 6.
  • Embodiment 3 of the present invention provides a composite nano-micron fiber centrifugal spinning device for producing a shell-core structure, see Figure 8-11:
  • FIG. 8 is an example of a composite nano-micrometer fiber centrifugal spinning device for producing a shell-core structure; the discharge hole group includes only one first inner discharge hole and one first outer discharge hole, and the discharge pipe group only A first inner discharge pipe 203 and an outer discharge pipe 205 are included.
  • the outer discharge pipe 205 contains the pipe wall of the first inner discharge pipe 203.
  • the other end (end) of the first inner discharge pipe 203 and the first outer discharge pipe 205 are located outside the side wall of the second drum 202;
  • FIG. 9 is a partial enlarged view of the liquid discharge device of FIG.
  • FIG. 11 is a partial enlarged view of the liquid discharge device of FIG. 10.
  • the structure, position, and connection relationship of the other components in the third embodiment are the same as those in the first embodiment and the second embodiment, and are not described herein.
  • Embodiment 4 of the present invention provides a composite nano-micrometer fiber centrifugal spinning device for producing a sectional structure, see Figure 12-13:
  • FIG. 12 is an example of a centrifugal spinning apparatus for producing a composite nanometer microfiber of a sectional structure; the first inner discharge hole and the second inner discharge hole are arranged side by side; the first inner discharge pipe 203 One end is in communication with the first inner discharge hole; one end of the second inner discharge pipe 204 is in communication with the second inner discharge hole; and one end of the outer discharge pipe 205 is in communication with the outer discharge hole; the other end of the first inner discharge pipe 203 is second The other end of the inner discharge pipe 204 passes through the outer discharge hole and is located outside the side wall of the second drum 202; the first inner discharge pipe 203 and the second inner discharge pipe 204 are juxtaposed with each other, and the first inner discharge The tube wall of the tube 203 and the tube wall of the second inner discharge tube 204 are not in contact with each other; the inner wall of the outer discharge tube 205 encloses the tube wall of the first inner discharge tube 203 and the tube wall of the second inner discharge tube 204; The
  • Embodiment 5 of the present invention provides another composite nano-micrometer fiber centrifugal spinning device for producing a sectional structure. Compared with the fourth embodiment, please refer to FIG. 14:
  • the other end (end) of the first inner discharge pipe 203 and the other end (end) of the second inner discharge pipe 204 respectively pass through the outer discharge hole and are located on the side wall of the second drum 202, that is, by the first inner
  • a first inner passage formed by the discharge hole and the inner wall of the first inner discharge pipe 203 and a second inner passage formed by the inner wall of the second inner discharge hole and the second inner discharge pipe 204 are located on the inner wall of the first drum 201
  • the outer discharge pipe 205 is located in the outer discharge hole (ie, the outer discharge hole itself is used as the outer discharge pipe 205 to convey the spinning material).
  • the structure, position, and connection relationship of other components in the fifth embodiment are the same as those in the fourth embodiment, and are not described herein.
  • Embodiment 6 of the present invention provides a composite nano-micrometer fiber centrifugal spinning device for producing a sub-packaged tip structure, as shown in FIG. 15-16.
  • FIG. 15 is an example of a composite nano-micrometer fiber centrifugal spinning device for producing a sub-package tip structure; each discharge hole group includes an inner discharge hole and a plurality of outer discharge holes, and each outer discharge pipe The group includes a first inner discharge pipe 203 and a plurality of outer discharge pipes 205.
  • the first inner discharge pipe 203 is a passage having a plurality of tips in a cross section (in this example, a cross shape having four tips, but is not limited thereto); the number of the outer discharge pipes 205 and the discharge hole group The number of the middle and outer discharge holes is equal to the number of the tips of the inner discharge pipe section;
  • the inner spray pipe is composed of the inner discharge hole, the inner liquid inlet, the inner wall of the first inner discharge pipe 203, and the inner liquid outlet;
  • the outer spray pipe is composed of an outer discharge hole, a corresponding external liquid inlet port, an outer wall of the first inner discharge pipe 203, an inner wall of an outer discharge pipe 205, and an outer liquid outlet;
  • each of the outer discharge pipes 205 is fixedly connected by the respective pipe walls to isolate the inner spray pipe and each outer spray pipe from each other, and the first inner discharge pipe 203 and the outer discharge pipe 205 are shoulder-to-shoulder The manners are arranged side by side; and each outer discharge pipe 205 is
  • Embodiment 7 of the present invention provides another composite nano-micrometer fiber centrifugal spinning device for producing a sub-package tip structure. Compared with the sixth embodiment, please refer to FIG. 17-18.
  • FIG. 17 is another example of a composite nano-micrometer fiber centrifugal spinning device for producing a sub-package tip structure; the inner liquid outlet and all (four) outlet ports are located on the side of the second drum 202 a wall, that is, an inner spray pipe composed of an inner discharge hole, an inner liquid inlet, an inner wall of the first inner discharge pipe 203, and an inner liquid discharge port, and each of the outer discharge holes and each of the outer discharge holes
  • the inlet port, the outer wall of the first inner discharge pipe 203, the inner wall of each outer discharge pipe 205, and the outer liquid discharge pipe formed by each of the outer liquid outlets are located on the inner wall of the first drum 201 and the second drum 202.
  • Figure 18 is a partial enlarged view of the liquid discharge device of Figure 17;
  • the structure, position, and connection relationship of other components in the seventh embodiment are the same as those in the sixth embodiment, and are not described herein.
  • Embodiment 8 of the present invention provides a composite nano-micrometer fiber centrifugal spinning device for producing a bilateral structure, see FIGS. 19-20.
  • FIG. 19 is an example of a composite nano-micrometer fiber centrifugal spinning apparatus for producing a bilateral structure; one end of the first inner discharge pipe 203 is provided with an inner liquid inlet for inflow of a certain component spinning material.
  • the other end of the first inner discharge pipe 203 is provided with an inner liquid outlet for the outflow of the component spinning material; one end of the outer discharge pipe 205 is provided with an outer liquid inlet for the inflow of the other component spinning material, The other end of the discharge pipe 205 is provided with an outlet port for the outflow of the component spinning material; and in order to facilitate the inflow and outflow of the corresponding component spinning material, the diameters of the first inner discharge pipe 203 and the outer discharge pipe 205 are respectively Corresponding to the direction from the inner liquid inlet port to the inner liquid outlet port and the outer liquid inlet port to the outer liquid outlet port; the first inner discharge pipe 203 passes through the inner liquid inlet port and is disposed on the side wall of the first drum 201
  • the discharge holes communicate with each other; the outer discharge pipe 205 communicates with the outer discharge hole provided on the side wall of the second rotary drum 202 through the outer liquid inlet port; and the pipe wall of the first inner discharge pipe 203 and the side wall of the second rotary drum 202 have no Seam
  • the inner liquid outlet and the outer liquid outlet are located outside the side wall of the second rotating drum 202; during the actual operation, the inner discharge hole, the inner liquid inlet, the inner wall of the first inner discharge pipe 203, and The inner liquid outlet constitutes an inner spray pipe; the other end of the first inner discharge pipe 203 passes outwardly through the second drum 202; the pipe wall of the first inner discharge pipe 203 is seamlessly connected to the side wall of the second drum 202
  • the outer discharge hole, the outer liquid inlet, the outer wall of the first inner discharge pipe 203, the inner wall of the outer discharge pipe 205, and the outer liquid outlet constitute an outer spray pipe.
  • the first inner discharge pipe 203 and the outer discharge pipe 205 are juxtaposed and adjacent to each other side by side; the first inner discharge pipe 203 and the outer discharge pipe 205 are fixedly connected by the respective pipe walls to spray the inner spray pipe and the outer spray pipe.
  • the liquid pipes are isolated from each other.
  • the inner discharge hole and the outer discharge hole may be circular, semicircular or square, etc., but are not limited to a specific shape.
  • the shape of the external liquid inlet of the first inner discharge pipe 203 and the outer liquid discharge pipe 205 are respectively adapted to the shape of the corresponding discharge pipe; that is, the internal discharge can be changed separately or simultaneously according to the actual production demand.
  • the inner spray pipe formed by the hole, the inner liquid inlet, the inner wall of the first inner discharge pipe 203, and the inner liquid outlet, and the outer discharge hole, the outer liquid inlet, the outer wall of the first inner discharge pipe 203, and the outer discharge pipe The cross-sectional shape, size, proportional relationship or conjugate relationship of the outer spray pipe formed by the inner wall of the pipe 205 and the outlet port to produce bilateral sides having different bilateral cross-sectional shapes, different component ratios, and different conjugate relationships Yoke) structure of composite nano-micron fibers.
  • Figure 18 is a partial enlarged view of the liquid discharge device of Figure 17;
  • the structure, position, and connection relationship of other components in the eighth embodiment are the same as those in the first embodiment, and are not described herein.
  • Embodiment 9 of the present invention provides another composite nano-micrometer fiber centrifugal spinning device for producing a bilateral structure. Compared with the eighth embodiment, please refer to FIG. 21-22.
  • FIG. 21 is another example of a composite nano-micrometer fiber centrifugal spinning device for producing a bilateral structure; the inner liquid outlet and the outer liquid outlet are both located on the side wall of the second drum 202; An inner discharge hole, an inner liquid inlet, an inner wall of the first inner discharge pipe 203, and an inner liquid discharge pipe formed by the inner liquid discharge port, and an outer discharge hole, an outer liquid inlet, an outer wall of the first inner discharge pipe 203, The outer wall of the outer discharge pipe 205 and the outer liquid discharge pipe are located between the inner wall of the first drum 201 and the outer wall of the second drum 202; the inner liquid outlet and the outer liquid outlet are located in the second drum On the outer wall of 202.
  • Figure 22 is a partial enlarged view of the liquid discharge device of Figure 21; The structure, position, and connection relationship of other components in the ninth embodiment are the same as those in the eighth embodiment, and are not described herein.
  • the two-component nano-micron fiber centrifugal spinning device is taken as an example, and the first infusion set 301, the second infusion set 302, the first infusion tube 303, and the second infusion tube are passed through.
  • the outer passage is combined at the ends of the first inner discharge pipe 203, the second inner discharge pipe 204, and the outer discharge pipe 205, and then stretched, and finally Simultaneously ejected, as the solvent evaporates, the spinning material solidifies and forms a fiber filament, which is deposited on the yarn collecting device to generate a large number of composite nano-microfilament filaments having various structures; meanwhile, if the drum and the corresponding spray are added.
  • the number of liquid channels the present invention can also be used to produce multi-component composite micron nanofibers (such as "sea-sea-island", shell-shell-core structure); micron nanofiber filaments can be picked up by barb or vacuum, by pairing The roller is wound into a yarn.
  • the present invention does not require a high-voltage electrostatic field, and only uses the centrifugal force generated by the rotation of the drum as the power for the formation of nanofibers, which not only greatly increases the production yield, but also greatly reduces the energy consumption cost. Moreover, the safety of the production operation is improved, and the demand for large-scale production of composite nano-micron fibers of island structure or sectional structure is satisfied.

Abstract

一种用于生产多种结构的复合纳米微米纤维的离心纺丝设备,包括:储液装置;喷液装置;送液装置;驱动装置及集丝装置;送液装置与储液装置相连通;喷液装置由若干个喷道组及若干个排放孔组组成;每一喷道组中包含若干个内排放管及若干个外排放管且由它们构成各种结构的喷液装置;集丝装置设置在喷液装置外围;驱动装置带动储液装置旋转;该设备满足了大规模生产多种结构的复合纳米微米纤维的要求,且不需要高压静电场的参与,安全性能高,极大降低了能耗及制造成本,且具有生产产量高、适应性广的特点。

Description

用于生产多种结构的复合纳米微米纤维离心纺丝设备 技术领域
本发明属于纺丝技术领域,特别涉及用于生产多种结构的复合纳米微米纤维的离心纺丝设备。
背景技术
纳米纤维是具有管径低于几百个纳米以下的纤维材料。
纤维可按截面结构分为:单组分、双组分及多组分纤维;单组分纤维是指在其截面上是由一种材料或几种材料均匀混合构成的纤维;双组分纤维是指在其截面上是由两种不同组分的材料构成一定特殊区域结构关系的纤维;双组分和多组分纤维属于复合纤维的范畴。其中,每一组分可以是一种材料或几种材料的混合。按照两组分的结构关系,双组分纤维可分为:双边(也称为共轭)结构纤维、核-壳(也称同芯或同轴)结构纤维、海岛结构纤维、包尖纤维及分节纤维等等。
纳米纤维具有极高的比表面积、横纵比。如由纳米纤维织造的织物结构精细、有极高的孔隙度,优秀的柔韧性、吸附性、过滤性、粘合性、保温性及机械强度。这些独一无二的特性使纳米纤维有着微米纤维不具有的新颖性能,已被广泛地应用于多种领域.近年来,科学家们发现,具有特殊截面结构的双组分或多组分复合微米纳米纤维结合两种不同性能的材料可以生产出许多单组分纤维不具备的全新的或比单组分纤维性能更加优良的微米纳米纤维。双组分或多组分复合微米纳米纤维作为多功能纳米纤维在许多重要高端领域,如,防护服,生物医学制品(组织支架结构,人造人体器官、敷伤材料,药物释放等),膜材料、过滤介质、催化剂、高敏传感器,电子产品、能源储藏,复合增强材料等领域具有更大的应用前景。
传统纺织设备可以生产复合微米纤维,但无法生产复合纳米纤维。目前,生产复合纳米纤维的纺丝装置主要是针头式静电纺丝法。然而,针头式静电纺丝技术产量极低,要求高电压,危险性高,成本高,难以大批量生产复合纳米纤维。
发明内容
本发明所要解决的技术问题是提供一种用于生产多种结构的复合纳米微米纤维的离心纺丝设备;该设备不需要高压静电场的参与,极大降低了能耗成本,且具有安全性能高、产量高的特点。
为解决上述技术问题,本发明提供了一种用于生产多种结构的复合纳米微米纤维的离心纺丝设备,包括:储液装置;用于储存至少两种纺丝材料,所述储液装置至少包括:第一转筒、第二转筒及密封板;所述第二转筒套设在所述第一转筒的外部;且所述第一转筒与所述第二转筒的中心竖轴均位于同一条直线L1上;所述第一转筒及所述第二转筒均呈同轴空心圆筒状结构或空心圆锥状结构;所述第一转筒及所述第二转筒的底部分别与所述密封板的上表面固定连接;所述直线L1与所述密封板的上表面相互垂直;所述第一转筒的内壁与密封板形成第一储液室;所述第一转筒的外壁和所述第二转筒的内壁与密封板形成第二储液室;所述第一储液室及所述第二储液室相互隔离;若干个纤维组分的纺丝材料分别对应存储在所述若干个储液室中;所述转筒的数量与所述纤维组分的数量相适配;送液装置;所述送液装置与所述储液装置相连通,用于输送所述纺丝材料到所述储液装置;喷液装置;所述喷液装置与所述储液装置相连接,用于喷出所述纺丝材料,所述喷液装置由若干个喷道组及与喷道组个数相等的若干个排放孔组组成;每一所述喷道组中至少包含:若干个内排放管;及若干个外排放管;每一所述排放孔组中包含若干个内排放孔及若干个外排放孔;所有所述内排放孔均设置在所述第一转筒的侧壁上;所有所述外排放孔设置在所述第二转筒的侧壁上;每个所述内排放管的一端与相对应的所述内排放孔相通;所述外排放管的一端与所述外排放孔相通;所有所述内排放管的另一端穿过所述第二转筒的侧壁,且与所述外排放管的另一端置于所述第二转筒的侧壁外或侧壁上;每个所述内排放孔、与对应的一个所述内排放管的内壁形成用于输送所述第一储液室中纺丝材料的一个内通道;所述外排放孔、所有所述内排放管的部分或全部外壁、及所述外排放管的内壁形成用于输送所述第二储液室中纺丝材料的一个或多个外通道;驱动装置;用于驱动所述储液装置进行旋转,所述驱动装置与所述储液装置联接;集丝装置;用于收集具有多种结构的纳米微米纤维,所述集丝装置设置在所述喷液装置外围部位;其中,所述驱动装置通过与外界电源输出设备连接驱动所述储液装置及所述喷液装置进行旋转,所述送液装置将所述纺丝材料灌入所述储液装置中的每一个所述储液室内,所述纺丝材料在因旋转产生的离心力的作用下,依次经过所述排放孔组、所述喷道组且由所述喷道 组的另一端喷出,最终实现由所述集丝装置收集具有壳-核结构,和/或海岛结构,和/或分节结构,和/或双边结构,和/或包尖结构的复合纳米微米纤维。
可选的,当所述喷液装置中所述排放孔组及所述喷道组的数量均是若干个时;若干个所述排放孔组分布在所述第一转筒侧壁、所述第二转筒侧壁的同一层圆周或多层圆周上,若干个所述喷道组分布在所述第一转筒侧壁、所述第二转筒侧壁的同一层或多层圆周上;所述喷道组中心轴与所述直线L1呈夹角α分布;其中,0°<α<180°。
可选的,还包括:壳体;所述壳体包括:外罩及隔离板;所述隔离板固定在所述外罩中下层部位处,且通过所述隔离板将所述外罩分为上隔离层及下隔离层;所述储液装置置于所述上隔离层中;所述驱动装置置于所述下隔离层中。
可选的当由所述集丝装置收集的纳米微米纤维是呈核-壳结构的复合纳米微米纤维时,每一个所述喷道组至少包括:内排放管及外排放管;每一个所述排放孔组至少包括:内排放孔及外排放孔;所述喷道组中的所述内排放管置于所述外排放管的内部;所述内排放管的一端设置有用于所述纺丝材料流入的第一进液口,所述内排放管的另一端设置有用于所述纺丝材料流出的第一出液口;所述外排放管的一端设置有用于所述纺丝材料流入的第二进液口,所述外排放管的另一端设置有用于所述纺丝材料流出的第二出液口;且所述内排放管及所述外排放管的管径分别对应沿所述第一进液口至所述第一出液口方向、所述第二进液口至所述第二出液口方向减小;所述内排放管通过所述第一进液口与设置在所述内转筒侧壁上的所述内排放孔相通;所述外排放管通过所述第二进液口与设置在所述外转筒侧壁上的所述外排放孔相通;所述第一出液口及所述第二出液口均位于所述外转筒的侧壁上或侧壁外部;所述内排放孔、所述第一进液口、所述内排放管的内壁及所述第一出液口构成核通道;所述外排放孔、所述第二进液口、所述内排放管的外壁、所述外排放管的内壁及所述第二出液口构成壳通道;且所述外排放管将所述内排放管包围在内,所述核通道、所述壳通道以所述内排放管的管壁为分界面相互隔离。
可选的,当由所述集丝装置收集的纳米微米纤维是呈海岛结构的复合纳米微米纤维时,每一个所述喷道组中至少包含:第一内排放管、第二内排放管及外排放管;每一个所述排放孔组中至少包含:第一内排放孔、第二内排放孔及外排放孔;所述第一内排放孔与所述第二内排放孔 呈并列式分布;所述外排放孔的孔径大于所述第一内排放管及所述第二内排放管的管径的总和;所述第一内排放管的一端与所述第一内排放孔相通;所述第二内排放管的一端与所述第二内排放孔相通;所述外排放管的一端与所述外排放孔相通;所述第一内排放管的另一端、所述第二内排放管的另一端分别穿过所述外排放孔且均置于所述外排放管的内部,并位于所述第二转筒的侧壁上或侧壁外部;所述第一内排放孔、所述第一内排放管的内壁形成用于输送纺丝材料的第一内通道;所述第二内排放孔、所述第二内排放管的内壁形成用于输送纺丝材料的第二内通道;所述第一内排放管与所述第二内排放管之间相互成并列排列,且所述第一内排放管的管壁与所述第二内排放管的管壁相互不接触;所述外排放管将所有所述内排放管的管壁包含在内;所述外排放孔、所述第一内排放管的外壁、所述第二内排放管的外壁及所述外排放管的内壁形成用于输送纺丝材料的外通道;所述第一内通道、所述外通道以所述第一内排放管的管壁为分界面相互隔离;所述第二内通道、所述外通道以所述第二内排放管的管壁为分界面相互隔离;所述第一内排放管与所述第二内排放管之间相互成并列排列,且所述第一内排放管壁与所述第二内排放管壁相互不接触;所述外排放管将所述第一内排放管、所述第二内排放管的管壁包含在内。
可选的:当由所述集丝装置收集的纳米微米纤维是呈分节结构的复合纳米微米纤维时,每一个所述喷道组中至少包含:第一内排放管、第二内排放管及外排放管;每一个所述排放孔组中至少包含:第一内排放孔、第二内排放孔及外排放孔;所述第一内排放孔与所述第二内排放孔呈并列式分布;所述第一内排放管的一端与所述第一内排放孔相通;所述第二内排放管的一端与所述第二内排放孔相通;所述外排放管的一端与所述外排放孔相通;所述第一内排放管的另一端、所述第二内排放管的另一端分别穿过所述外排放孔且均置于所述外排放管的内部并位于所述第二转筒的侧壁上或侧壁外部;所述第一内排放管与所述第二内排放管之间相互成并列排列,且所述第一内排放管的管壁与所述第二内排放管的管壁相互不接触;所述外排放管的内壁将所述第一内排放管的管壁及所述第二内排放管的管壁包围在内;且所述外排放管的内壁将所述第一内排放管的管壁的头部及所述第二内排放管的管壁的头部密封;所述第一内排放孔、所述第一内排放管的内壁形成用于输送纺丝材料的第一内通道;所述第二内排放孔、所述第二内排放管的内壁形成用于输送纺丝材料的第二内通道;所述外排放孔、所述第一内排放管的外壁、所述 第二内排放管的外壁及所述外排放管的内壁形成用于输送纺丝材料的外通道;所述第一内通道、所述外通道以所述第一内排放管的管壁为分界面相互隔离;所述第二内通道、所述外通道以所述第二内排放管的管壁为分界面相互隔离;所述外通道被所述第一内排放管的管壁与所述第二内排放管的管壁分成若干个子通道;所述外排放管的内壁与所述第一内排放管的侧壁及所述第二内排放管的侧壁之间的空间形成所述外通道的多个子通道;所述第一内通道、所述第二内通道与所述外通道的多个子通道之间呈相间排列,呈节状结构;所述第一内排放管与所述第二内排放管的个数之和至少为2。
可选的:当由所述集丝装置收集的纳米微米纤维是呈双边结构的复合纳米微米纤维时,每一个所述喷道组至少包括:内排放管及外排放管;每一个所述排放孔组至少包括:内排放孔及外排放孔;所述内排放管的一端设置有用于所述纺丝材料流入的内进液口,所述内排放管的另一端设置有用于所述纺丝材料流出的内出液口;所述外排放管的一端设置有用于所述纺丝材料流入的外进液口,所述外排放管的另一端设置有用于所述纺丝材料流出的外出液口;且所述内排放管及所述外排放管的管径分别对应沿所述内进液口至所述内出液口方向、所述外进液口至所述外出液口方向减小;所述内排放管通过所述内进液口与设置在所述第一转筒侧壁上的所述内排放孔相通;所述内排放管的另一端向外穿过所述储液机构中的所述第二转筒的侧壁;所述外排放管通过所述外进液口与设置在所述第二转筒侧壁上的所述外排放孔相通;所述内出液口及所述外出液口均位于所述第二转筒的外侧壁上或侧壁外部;
所述内排放孔、所述内进液口、所述内排放管的内壁及所述内出液口构成内喷液管道;所述外排放孔、所述外进液口、所述内排放管的外壁、所述外排放管的内壁及所述外出液口构成外喷液管道;且所述内排放管及所述外排放管呈肩并肩的方式并列排列且紧邻;所述内排放管及所述外排放管通过二者各自管壁固定连接以将所述内喷液管道、所述外喷液管道相互隔离;所述内排放管壁与所述第二转筒的侧壁无缝衔接。
可选的:当由所述集丝装置收集的纳米微米纤维是呈包尖结构的复合纳米微米纤维时,每一个所述排放孔组包括:内排放孔及若干个外排放孔;每一个所述喷道组包括:内排放管及若干个外排放管;所述内排放管呈截面带若干个尖部的通道;所述喷道组中外排放管的数量及所述排放孔组中外排放孔的数量与所述内排放管截面的尖部个数三者相等;所述喷道组中内排放管的数量与所述排放孔组中内排放孔的数量相等; 所述内排放管的一端设置有用于所述纺丝材料流入的内进液口,所述内排放管的另一端设置有用于所述纺丝材料流出的内出液口;每个所述外排放管的一端设置有用于所述纺丝材料流入的外进液口;每个所述外排放管的另一端设置有用于所述纺丝材料流出的外出液口;且所述内排放管及所述外排放管的管径分别对应沿所述内进液口至所述内出液口方向、所述外进液口至所述外出液口方向减小;所述内排放管通过所述内进液口与设置在所述第一转筒侧壁上的所述内排放孔相通;所述内排放管的另一端分别向外穿过所述储液机构中的所述第二转筒的侧壁;每个所述外排放管通过对应设置的一个所述外进液口与设置在所述第二转筒侧壁上的一个所述外排放孔相通;所述内出液口及每个所述外出液口均位于所述第二转筒的外侧壁上或外侧壁外部;所述内排放孔、所述内进液口、所述内排放管的内壁及所述内出液口构成内喷液管道;每个所述外排放孔、与其对应的一个所述外进液口、所述内排放管的外壁、所述外排放管的内壁及所述外出液口构成一个外喷液管道;且所述内排放管及每个所述外排放管呈肩并肩的方式并列排列;所述内排放管及每个所述外排放管通过二者各自管壁固定连接以将所述内喷液管道、每个所述外喷液管道相互隔离;所述内排放管壁与所述第二转筒的侧壁无缝衔接;每个所述外喷液管道设置在所述内喷液管道的一个尖部周围;且,任意两所述外喷液管道之间相互隔离并呈并列排列。
可选的:所述驱动装置包括:电机、转速控制器及轴承连接器;所述电机与所述转速控制器连接;所述电机依次通过其内设轴承、所述轴承连接器与所述密封板下表面联接;所述电机和/或所述转速控制器与外界电源输出设备连接,和或,所述送液装置包括:第一输液器、第一输液管、第二输液器及第二输液管;所述第一输液器通过所述第一输液管与所述第一转筒相通;所述第二输液器通过所述第二输液管与所述第二转筒相连通;和或,所述集丝装置包括:分布在喷液装置外围部位的收集板及用于支撑所述收集板的支撑座;所述支撑座上设置有若干条滑槽,所述收集板通过安装在不同的所述滑槽上实现调节所述收集板与所述转筒和/或所述排放管的相对距离。
本发明提供的一种用于生产多种结构的复合纳米微米纤维的离心纺丝设备,一方面,通过将送液装置与所述储液装置相连通;同时,采用多种结构的喷液装置并将所述喷液装置与所述储液装置连接;另一方面,通过驱动装置与储液装置联接;驱动装置与外界电源输出设备连接;集丝装置设置在壳体内;使得在实际作业过程中,驱动装置通过与外界电 源输出设备连接驱动储液装置进行旋转,同时送液装置输送的纺丝材料被灌入储液装置中的每一个所述储液室内,并依次经过排放孔组、喷道组且由喷道组的另一端喷出,实现由集丝装置收集具有壳-核结构,或和海岛结构,或和分节结构,或和双边结构,或和包尖结构的复合纳米微米纤维。相比于传统的纺丝技术而言,本发明不需要高压静电场,仅利用转筒旋转产生的离心力作为纳米纤维成丝的动力,不仅大大提高了生产产量,极大降低了能耗成本,而且提高了生产操作的安全性,满足了大规模生产多种结构的复合纳米微米纤维的需求。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一提供的一结构示意图;
图2为本发明实施例一提供的又一结构示意图;
图3为图2的局部放大图;
图4为本发明实施例二提供的一结构示意图;
图5为图4的局部放大图;
图6为本发明实施例二提供的又一结构示意图;
图7为图6的局部放大图;
图8为本发明实施例三提供的一结构示意图;
图9为图8的局部放大图;
图10为本发明实施例三提供的又一结构示意图;
图11为图10的局部放大图;
图12为本发明实施例四提供的一结构示意图;
图13为图12的局部放大图;
图14为本发明实施例五提供的又一结构示意图;
图15为本发明实施例六提供的一结构示意图;
图16为图15的局部放大图;
图17为本发明实施例七提供的一结构示意图;
图18为图17的局部放大图;
图19为本发明实施例八提供的一结构示意图;
图20为图19的局部放大图;
图21为本发明实施例九提供的一结构示意图;
图22为图21的局部放大图。
其中,1-外罩,2-隔离板,4-电机,5-转速控制器,6-轴承连接器,7-收集板,8-支撑座,201-第一转筒,201a-第一储液室,202-第二转筒,202a-第二储液室,203-第一内排放管,204-第二内排放管,205-外排放管,206-密封板,301-第一输液器,302-第二输液器,303-第一输液管,304-第二输液管。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例及不同尺寸、比例的实例图,都属于本发明保护的范围。
实施例一
参见图1-3,本发明实施例一提供的一种用于生产海岛结构的复合纳米微米纤维离心纺丝设备,包括:壳体;储液装置;送液装置;喷液装置;驱动装置;以及集丝装置。
具体而言,储液装置用于存储纺丝材料,且储液装置中的储液空间由密封板与至少两个转筒以同轴嵌套式的方式组成(一个转筒套在另一个转筒的外部);即储液装置可包括:密封板与第一转筒201构成的第一储液室201a、密封板与第二转筒202构成的第二储液室202a;且2个转筒的中心竖轴均位于同一条直线L1上(2个转筒共用一个中心竖轴);储液装置置于壳体内,每一个储液室用于储存某一组分纺丝材料,且各个储液室之间相互独立(隔离);送液装置用于输送不同组分的纺丝材料至对应的储液室内,送液装置与储液装置中每一个储液室连通;喷液装置与储液装置连接,用于喷出纺丝材料,该喷液装置由若干个喷道组及若干个排放孔组组成;且喷道组中至少包含:第一内排放管203、第二内排放管204及外排放管205;排放孔组中至少包含:第一内排放孔、第二内排放孔及外排放孔;喷道组中第一内排放管203的数量与排放孔组中第一内排放孔的数量、喷道组中第二内排放管204的数量与排放孔组中第二内排放孔的数量及喷道组中外排放管205的数量与排放孔组中外排放孔的数量一一对应相等;第一内排放孔及第二内排放孔设置在第一转筒201的侧壁上;外排放孔设置在第二转筒202的侧壁上;第一内 排放管203的一端与第一内排放孔相通;第二内排放管204的一端与第二内排放孔相通;外排放管205的一端与外排放孔相通;第一内排放管203的另一端、第二内排放管204的另一端分别穿过外排放孔且均置于外排放管204的内部;第一内排放孔、第一内排放管203的内壁形成用于输送第一储液室201a中纺丝材料的第一内通道;第二内排放孔、第二内排放管204的内壁形成用于输送第一储液室201a纺丝材料的第二内通道;第一内排放管203与第二内排放管204之间相互成并列排列,且第一内排放管203的管壁与第二内排放管204的管壁相互不接触;外排放孔、第一内排放管203的外壁、第二内排放管204的外壁及外排放管205的内壁形成用于输送第二储液室202a中纺丝材料的外通道;且外通道将第一内通道及第二内通道均包围在内;驱动装置用于驱动储液装置及喷液装置进行旋转,且驱动装置与储液装置的底部联接;驱动装置与外界电源输出设备连接;集丝装置用于收集具有海岛结构的复合纳米微米纤维,集丝装置设置在喷液装置外围部位(周围);实际作业过程中,驱动装置通过与外界电源输出设备连接驱动储液装置中的每一个转筒进行旋转,同时送液装置输送的不同组分纺丝材料被对应灌入储液装置中相应的储液室内(一个储液室存储一个组分的纺丝材料),在离心力的作用下,被灌入储液室内的纺丝材料依次经过排放孔组、喷道组,在喷道组的另一端(末端)结合成一体,并被拉伸、固化形成纳米微米丝,最终实现由所述集丝装置收集具有海岛结构的复合纳米微米纤维。
需要说明的是,本实施例一中,第一内通道、第二内通道可称之为离心纺丝设备的“岛”通道,外通道可称之为离心纺丝设备的“海”通道,同时,内通道的个数与海岛纤维的“岛”的个数一致。
本实施例一中,喷液装置中的排放孔组及喷道组的数量可以均为1个,也可以均为多个,当喷液装置中排放孔组及喷道组的数量均为多个(若干个)时;若干个排放孔组可以分布在第一转筒201、第二转筒202侧壁的同一层圆周上,此时若干个喷道组也分别对应分布在第一转筒201、第二转筒202侧壁的同一层圆周上;同时,若干个排放孔组还可以分布在第一转筒201、第二转筒202侧壁的多层(若干层)圆周上,此时若干个喷道组也分别对应分布在第一转筒201、第二转筒202侧壁的多层(若干层)圆周上。
本实施例一中,壳体包括:外罩1及隔离板2;其中,隔离板2固定在外罩1的中下层部位处,且外罩1通过隔离板2将其分为上隔离层及下隔离层;储液装置置于上隔离层中;驱动装置置于下隔离层中。同 时,驱动装置通过连轴器6与储液装置的底部相连,并通过外接电源输出设备进而实现驱动储液装置进行旋转。
第一内排放管203的另一端、第二内排放管204的另一端分别穿过外排放孔205且位于所述第二转筒的侧壁外部;第一内通道、外通道以第一内排放管的管壁为分界面相互隔离;第二内通道、外通道以第二内排放管的管壁为分界面相互隔离。外通道将第一内通道及第二内通道的末端包围在内;实际作业过程中,第一内排放孔、第二内排放孔及外排放孔可以是圆形、半圆形或者方形等,但并不局限于某一特定形状,且第一内排放管203、第二内排放管204及外排放管205的端口形状分别与第一内排放孔、第二内排放孔及外排放孔孔径形状相适配;换言之,可根据实际生产需求,分别或同时改变第一内通道、第二内通道及外通道壳通道的截面形状、尺寸、比例关系或相对位置关系,来生产具有不同的截面形状、不同组分比例与不同相对位置关系的海岛结构的复合纳米微米纤维。同时,为便于纺丝材料流通顺畅,第一内排放管203沿第一内排放孔至第一内排放管末端方向上管径逐渐减小;第二内排放管204沿第二内排放孔至第二内排放管末端方向上管径逐渐减小;外排放管205沿外排放孔至外排放管末端方向上管径逐渐减小。
需要指出的是,本实施例一所生产的海岛结构的复合纳米微米纤维,沉积、收集上述集丝装置中,同时,纳米微米纤维丝可通过倒勾或真空吸取,由配对的罗拉,卷绕成纱。
本实施例一中,第一内排放管203的中心轴在直线L2上;第二内排放管204的中心轴在直线L3上;由第一内排放孔、第一内排放管203的内壁所构成的第一内通道,由第二内排放孔、第二内排放管204的内壁所构成的第二内通道,以及由外排放孔、第一内排放管203的外壁、第二内排放管204的外壁、及外排放管205的内壁所构成的外通道,与第一转筒201的侧壁或者第二转筒202的侧壁可以呈一定角度或相互垂直;即,直线L2、直线L3分别与直线L1呈夹角α分布;其中,0°<α<180°。
本实施例一中,驱动装置可以包括:(高速)电机4、转速控制器5及轴承连接器6;其中,电机4与转速控制器5连接;电机4依次通过其内设轴承、轴承连接器6与密封板206联接;可选的,还可在第一转筒201、第二转筒202的顶部加设支撑板,将电机4与转速控制器5设置在加设的支撑板上,即电机4与转速控制器5位于第一转筒201、第二转筒202的上方;最终,电机4或者转速控制器5与外界电源输出设 备连接,转速控制器5通过适当调节电机4的速度,在电机4的带动下,第一储液室201a、第二储液室202a高速旋转;
本实施例一中,送液装置可以包括:第一输液器301、第一输液管303、第二输液器302及第二输液管304;其中,第一输液器301通过第一输液管303与第一储液室201a相通;第二输液器302通过第二输液管304与第二储液室202a相通。
本实施例一中,集丝装置可以包括:分布在喷液装置外围部位的收集板7及用于支撑所述收集板7的支撑座8;优选的,收集板7可成圆筒状;其中,支撑座8上设置有若干条滑槽,圆筒状收集板7通过安装在不同的滑槽上实现调节该圆筒状收集板7与第二转筒202或者外排放管205末端的相对距离(圆筒状收集板7套设在第二转筒202、外排放管205的外部);圆筒状收集板7与隔离板2相互垂直。优选的,圆筒状收集板7的板面与外排放管205末端的相对距离大于10mm。同时,集丝装置还可以是多个与隔离板2垂直排列的条板,可以通过将每个条板置于支撑座的若干条滑槽内,进而实现调节接收板与外排放管205末端的相对距离。
本实施例一中,第一转筒201及第二转筒202可以是均呈空心圆筒状结构;还可以是均呈空心圆锥状结构。
需要进一步说明的是,本实施例一还可在密封板206的底部增加加热设备,以及采用导热耐高温转筒及排放管,进而用于生产熔融型高分子及金属海岛结构的复合纳米微米纤维。同时,本实施例一除可用于实验室之外,还可排列成行、列、阵列形式用于大规模生产海岛结构的复合纳米微米纤维;具有适用性广的特点。
实施例二
本发明实施例二提供了另一种用于生产海岛结构的复合纳米微米纤维离心纺丝设备,与实施例一相比,请参阅图4-7:
本实施例二中,图4为生产2岛屿、形状圆形的海岛结构的复合纳米微米纤维离心纺丝设备另一实例;第一内排放管203的另一端(末端)及第二内排放管204的另一端(末端)位于第二转筒202的侧壁上;即,由第一内排放孔与第一内排放管203的内壁所构成的第一内通道及由第二内排放孔与第二内排放管204的内壁所构成的第二内通道均位于第一转筒201的内壁与第二转筒202的外壁之间;外排放管205位于外排放孔内(即:将外排放孔本身作为外排放管205输送纺丝材料)。外排放管205将第一内排放管203的管壁及第二内排放管204的管壁均包含 在内。图5为图4中喷液装置的局部放大图,即:外排放管205、第一内排放管203及第二内排放管204的末端。
图6即为一个4岛屿、形状圆形的海岛结构的复合纳米微米纤维离心纺丝设备中的储液装置及喷液装置。图7即为图6中喷液装置的局部放大图。
本实施例二中其他部件结构、位置及连接关系与本实施例一相同,此处不在赘述。
实施例三
本发明实施例三提供了一种用于生产壳-核结构的复合纳米微米纤维离心纺丝设备,请参阅图8-11:
本实施例三中,图8为生产壳-核结构的复合纳米微米纤维离心纺丝设备的一个实例;排放孔组仅包含一个第一内排放孔及一个第一外排放孔,排放管组仅包含一个第一内排放管203及一个外排放管205。外排放管205将第一内排放管203的管壁包含在内。第一内排放管203的另一端(末端)及第一外排放管205位于第二转筒202的侧壁外;图9为图8中喷液装置的局部放大图;图10为生产壳-核结构的复合纳米微米纤维离心纺丝设备的另一个实例;与图8相比,第一内排放管203的另一端(末端)及第一外排放管205位于第二转筒202的侧壁上;图11为图10中的喷液装置的局部放大图。本实施例三中其他部件结构、位置及连接关系与本实施例一及本实例二相同,此处不在赘述。
实施例四
本发明实施例四提供了一种用于生产分节结构的复合纳米微米纤维离心纺丝设备,请参阅图12-13:
本发明实施例四,图12为生产分节结构的复合纳米微米纤维的离心纺丝设备的一实例;第一内排放孔与第二内排放孔呈并列式分布;第一内排放管203的一端与第一内排放孔相通;第二内排放管204的一端与第二内排放孔相通;且外排放管205的一端与外排放孔相通;第一内排放管203的另一端、第二内排放管204的另一端分别穿过外排放孔且位于第二转筒202的侧壁外部;第一内排放管203与第二内排放管204之间相互成并列排列,且第一内排放管203的管壁与第二内排放管204的管壁相互不接触;外排放管205的内壁将第一内排放管203的管壁及第二内排放管204的管壁包围在内;且外排放管205的内壁将第一内排放管203的管壁的头部及第二内排放管204的管壁的头部密封;第一内通道、外通道以第一内排放管203的管壁为分界面相互隔离;第二内通 道、外通道以第二内排放管204的管壁为分界面相互隔离;外通道被第一内排放管203的管壁与第二内排放管204的管壁分成若干个子通道;外排放管205的内壁与第一内排放管203的侧壁及第二内排放管204的侧壁之间的空间形成外通道的多个子通道,第一内通道、第二内通道与外通道的子通道之间呈相间排列;所述第一内排放管203与所述第二内排放管204的个数之和至少为2。图13为图12中喷液装置的局部放大图。本实施例四中其他部件结构、位置及连接关系与本实施例一相同,此处不在赘述。
实施例五
本发明实施例五提供了另一种用于生产分节结构的复合纳米微米纤维离心纺丝设备,与实施例四相比,请参阅图14:
第一内排放管203的另一端(末端)、第二内排放管204的另一端(末端)分别穿过外排放孔且位于第二转筒202的的侧壁上,即,由第一内排放孔与第一内排放管203的内壁所构成的第一内通道及由第二内排放孔与第二内排放管204的内壁所构成的第二内通道均位于第一转筒201的内壁与第二转筒202的外壁之间;外排放管205位于外排放孔内(即:将外排放孔本身作为外排放管205输送纺丝材料)。本实施例五中其他部件结构、位置及连接关系与本实施例四相同,此处不在赘述。
实施例六
本发明实施例六提供了一种用于生产分包尖结构的复合纳米微米纤维离心纺丝设备,请参阅图15-16,
在本发明实施例六中,图15为生产分包尖结构的复合纳米微米纤维离心纺丝设备的一实例;每个排放孔组包括内排放孔及若干个外排放孔,每个外排放管组包括第一内排放管203及若干外排放管205。第一内排放管203呈截面上为若干个尖部的通道(在此例中,为一十字架形,有四个尖部,但不局限于此);外排放管205的数量及排放孔组中外排放孔的数量与内排放管截面的尖部个数三者相等;内喷液管道由内排放孔、内进液口、第一内排放管203的内壁及内出液口所构成;每个外喷液管道是由一外排放孔、与其对应的外进液口、第一内排放管203的外壁、一外排放管205的内壁及一个外出液口所构成;第一内排放管203及每个外排放管205通过二者各自管壁固定连接以将所述内喷液管道、每个外喷液管道相互隔离,且第一内排放管203与每个外排放管205呈肩并肩的方式并列排列;且每个外排放管205设置在第一内排放管203的一个尖部周围;任意两外外排放管205之间相互隔离并呈并列排列;第一 内排放管壁穿过所述第二转筒202,并与所述第二转筒202的侧壁无缝衔接;且,内出液口及所有外出液口位于第二转筒202的侧壁外部。本实施例六中其他部件结构、位置及连接关系与本实施例一相同,此处不在赘述。
实施例七
本发明实施例七提供了另一种用于生产分包尖结构的复合纳米微米纤维离心纺丝设备,与实施例六相比,请参阅图17-18,
本发明实施例七中,图17为生产分包尖结构的复合纳米微米纤维离心纺丝设备另一实例;内出液口及所有(四个)外出液口均位于第二转筒202的侧壁上,即,由内排放孔、内进液口、第一内排放管203的内壁及内出液口所构成的内喷液管道,以及每个由外排放孔、与其对应的每个外进液口、第一内排放管203的外壁、每个外排放管205的内壁及每个外出液口所构成的外喷液管道,均位于第一转筒201的内壁与第二转筒202的外壁之间;内出液口及所有外出液口均位于第二转筒202的外壁上。图18为图17中喷液装置的局部放大图。本实施例七中其他部件结构、位置及连接关系与本实施例六相同,此处不在赘述。
实施例八
本发明实施例八提供了一种用于生产双边结构的复合纳米微米纤维离心纺丝设备,请参阅图19-20,
本发明实施例八中,图19为生产双边结构的复合纳米微米纤维离心纺丝设备的一个实例;第一内排放管203的一端设置有用于某一组分纺丝材料流入的内进液口,第一内排放管203的另一端设置有用于该组分纺丝材料流出的内出液口;外排放管205的一端设置有用于另一组分纺丝材料流入的外进液口,外排放管205的另一端设置有用于该组分纺丝材料流出的外出液口;且为便于对应组分纺丝材料的流入及流出,第一内排放管203及外排放管205的管径分别对应沿内进液口至内出液口方向、外进液口至外出液口方向逐渐减小;第一内排放管203通过内进液口与设置在第一转筒201侧壁上的内排放孔相通;外排放管205通过外进液口与设置在第二转筒202侧壁上的外排放孔相通;且第一内排放管203的管壁与第二转筒202的侧壁无缝衔接。
本发明实施例八中,内出液口及外出液口均位于第二转筒202的侧壁外部;实际作业过程中,内排放孔、内进液口、第一内排放管203的内壁及内出液口构成内喷液管道;第一内排放管203的另一端向外穿过第二转筒202;第一内排放管203的管壁与第二转筒202的侧壁无缝衔 接;外排放孔、外进液口、第一内排放管203的外壁、外排放管205的内壁及外出液口构成外喷液管道。且第一内排放管203及外排放管205呈肩并肩的方式并列排列且紧邻;第一内排放管203及外排放管205通过二者各自管壁固定连接以将内喷液管道、外喷液管道相互隔离。内排放孔、外排放孔可以是圆形、半圆形或者方形等,但并不局限于某一特定形状。同时,第一内排放管203的内进液口、外排放管205的外进液口形状分别于对应排放管的形状相适配;即,可根据实际生产需求,分别或同时改变由内排放孔、内进液口、第一内排放管203的内壁及内出液口所构成的内喷液管道,以及由外排放孔、外进液口、第一内排放管203的外壁、外排放管205的内壁及外出液口所构成的外喷液管道的截面形状、尺寸、比例关系或共轭关系,来生产具有不同的双边截面形状、不同组分比例与不同共轭关系的双边(共轭)结构的复合纳米微米纤维。图18为图17中喷液装置局部放大图。本实施例八中其他部件结构、位置及连接关系与本实施例一相同,此处不在赘述。
实施例九
本发明实施例九提供了另一种用于生产双边结构的复合纳米微米纤维离心纺丝设备,与实施例八相比,请参阅图21-22,
本发明实施例九中,图21为生产双边结构的复合纳米微米纤维离心纺丝设备的另一实例;内出液口及外出液口均位于第二转筒202的侧壁上;即,由内排放孔、内进液口、第一内排放管203的内壁及内出液口所构成的内喷液管道,以及由外排放孔、外进液口、第一内排放管203的外壁、外排放管205的内壁及外出液口所构成的外喷液管道,位于第一转筒201的内壁与第二转筒202的外壁之间;内出液口及外出液口位于第二转筒202的外壁上。图22为图21中喷液装置的局部放大图。本实施例九中其他部件结构、位置及连接关系与本实施例八相同,此处不在赘述。
本发明实施例一至九,在实际作业过程中,以双组份纳米微米纤维离心纺丝设备为例,通过第一输液器301、第二输液器302、第一输液管303及第二输液管304分别对应向第一转筒201、第二转筒202中灌注不同类型或不同性能的纺丝材料;并通过驱动装置接通电源,适当调节电机4的速度,在电机4的带动下,第一转筒201、第二转筒202进行高速旋转;灌入第一转筒201、第二转筒202内的纺丝材料在离心力的作用下,分别进入第一内通道、第二内通道及外通道,并在第一内排放管203、第二内排放管204及外排放管205的末端结合,随之被拉伸,最终 被同时喷出,随着溶剂的挥发,纺丝材料固化并形成纤维丝,沉积在集丝装置上,生成大量的具有各种结构的复合纳米微米纤维丝;同时,如果增加转筒及相应喷液通道的数量,本发明也可用于生产多组分复合微米纳米纤维(如”海-海-岛”,壳-壳-核结构);微米纳米纤维丝可通过倒勾或真空吸取,由配对的罗拉,卷绕成纱。相比于传统的纺丝技术而言,本发明不需要高压静电场,仅利用转筒旋转产生的离心力作为纳米纤维成丝的动力,不仅大大提高了生产产量,极大降低了能耗成本,而且提高了生产操作的安全性,满足了大规模生产海岛结构或者分节结构的复合纳米微米纤维的需求。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者组合或等同替换或采用不同尺寸及比例大小,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。还有,这些复合微米纳米纤维可以有不同的名称,只要结构实质符合本发明的技术方案描述,其均应涵盖在本发明的权利要求范围当中。

Claims (9)

  1. 一种用于生产多种结构的复合纳米微米纤维离心纺丝设备,其特征在于,包括:
    储液装置;用于储存至少两种纺丝材料,所述储液装置至少包括:第一转筒、第二转筒及密封板;所述第二转筒套设在所述第一转筒的外部;且所述第一转筒与所述第二转筒的中心竖轴均位于同一条直线L1上;所述第一转筒及所述第二转筒均呈同轴空心圆筒状结构或空心圆锥状结构;所述第一转筒及所述第二转筒的底部分别与所述密封板的上表面固定连接;所述直线L1与所述密封板的上表面相互垂直;所述第一转筒的内壁与密封板形成第一储液室;所述第一转筒的外壁和所述第二转筒的内壁与密封板形成第二储液室;所述第一储液室及所述第二储液室相互隔离;若干个纤维组分的纺丝材料分别对应存储在所述若干个储液室中;所述转筒的数量与所述纤维组分的数量相适配;
    送液装置;所述送液装置与所述储液装置相连通,用于输送所述纺丝材料到所述储液装置;
    喷液装置;所述喷液装置与所述储液装置相连接,用于喷出所述纺丝材料,所述喷液装置由若干个喷道组及与喷道组个数相等的若干个排放孔组组成;每一所述喷道组中至少包含:若干个内排放管;及若干个外排放管;每一所述排放孔组中包含若干个内排放孔及若干个外排放孔;所有所述内排放孔均设置在所述第一转筒的侧壁上;所有所述外排放孔设置在所述第二转筒的侧壁上;每个所述内排放管的一端与相对应的所述内排放孔相通;所述外排放管的一端与所述外排放孔相通;所有所述内排放管的另一端穿过所述第二转筒的侧壁,且与所述外排放管的另一端置于所述第二转筒的侧壁外或侧壁上;每个所述内排放孔、与对应的一个所述内排放管的内壁形成用于输送所述第一储液室中纺丝材料的一个内通道;所述外排放孔、所有所述内排放管的部分或全部外壁、及所述外排放管的内壁形成用于输送所述第二储液室中纺丝材料的一个或多个外通道;
    驱动装置;用于驱动所述储液装置进行旋转,所述驱动装置与所述储液装置联接;
    集丝装置;用于收集具有多种结构的纳米微米纤维,所述集丝装置设置在所述喷液装置外围部位;其中,
    所述驱动装置通过与外界电源输出设备连接驱动所述储液装置及所述喷液装置进行旋转,所述送液装置将所述纺丝材料灌入所述储液装置中的每一个所述储液室内,所述纺丝材料在因旋转产生的离心力的作用下,依次经过所述排放孔组、所述喷道组且由所述喷道组的另一端喷出,最终实现由所述集丝装置收集具有壳-核结构,和/或海岛结构,和/或分节结构,和/或双边结构,和/或包尖结构的复合纳米微米纤维。
  2. 根据权利要求1所述的设备,其特征在于:
    当所述喷液装置中所述排放孔组及所述喷道组的数量均是若干个时;若干个所述排放孔组分布在所述第一转筒侧壁、所述第二转筒侧壁的同一层圆周或多层圆周上,若干个所述喷道组分布在所述第一转筒侧壁、所述第二转筒侧壁的同一层或多层圆周上;所述喷道组中心轴与所述直线L1呈夹角α分布;其中,0°<α<180°。
  3. 根据权利要求1所述的设备,其特征在于:还包括:
    壳体;
    所述壳体包括:外罩及隔离板;
    所述隔离板固定在所述外罩中下层部位处,且通过所述隔离板将所述外罩分为上隔离层及下隔离层;所述储液装置置于所述上隔离层中;所述驱动装置置于所述下隔离层中。
  4. 根据权利要求2所述的设备,其特征在于:
    当由所述集丝装置收集的纳米微米纤维是呈核-壳结构的复合纳米微米纤维时,
    每一个所述喷道组至少包括:内排放管及外排放管;每一个所述排放孔组至少包括:内排放孔及外排放孔;所述喷道组中的所述内排放管置于所述外排放管的内部;所述内排放管的一端设置有用于所述纺丝材料流入的第一进液口,所述内排放管的另一端设置有用于所述纺丝材料流出的第一出液口;所述外排放管的一端设置有用于所述纺丝材料流入的第二进液口,所述外排放管的另一端设置有用于所述纺丝材料流出的第二出液口;且所述内排放管及所述外排放管的管径分别对应沿所述第一进液口至所述第一出液口方向、所述第二进液口至所述第二出液口方向减小;所述内排放管通过所述第一进液口与设置在所述内转筒侧壁上的所述内排放孔相通;所述外排放管通过所述第二进液口与设置在所述外转筒侧壁上的所述外排放孔相通;所述第一出液口及所述第二出液口均位于所述外转筒的侧壁上或侧壁外部;
    所述内排放孔、所述第一进液口、所述内排放管的内壁及所述第一出液口构成核通道;所述外排放孔、所述第二进液口、所述内排放管的外壁、所述外排放管的内壁及所述第二出液口构成壳通道;且所述外排放管将所述内排放管包围在内,所述核通道、所述壳通道以所述内排放管的管壁为分界面相互隔离。
  5. 根据权利要求2所述的设备,其特征在于:
    当由所述集丝装置收集的纳米微米纤维是呈海岛结构的复合纳米微米纤维时,
    每一个所述喷道组中至少包含:第一内排放管、第二内排放管及外排放管;每一个所述排放孔组中至少包含:第一内排放孔、第二内排放孔及外排放孔;所述第一内排放孔与所述第二内排放孔呈并列式分布;所述外排放孔的孔径大于所述第一内排放管及所述第二内排放管的管径的总和;
    所述第一内排放管的一端与所述第一内排放孔相通;所述第二内排放管的一端与所述第二内排放孔相通;所述外排放管的一端与所述外排放孔相通;所述第一内排放管的另一端、所述第二内排放管的另一端分别穿过所述外排放孔且均置于所述外排放管的内部,并位于所述第二转筒的侧壁上或侧壁外部;所述第一内排放孔、所述第一内排放管的内壁形成用于输送纺丝材料的第一内通道;所述第二内排放孔、所述第二内排放管的内壁形成用于输送纺丝材料的第二内通道;所述第一内排放管与所述第二内排放管之间相互成并列排列,且所述第一内排放管的管壁与所述第二内排放管的管壁相互不接触;所述外排放管将所有所述内排放管的管壁包含在内;所述外排放孔、所述第一内排放管的外壁、所述第二内排放管的外壁及所述外排放管的内壁形成用于输送纺丝材料的外通道;
    所述第一内通道、所述外通道以所述第一内排放管的管壁为分界面相互隔离;所述第二内通道、所述外通道以所述第二内排放管的管壁为分界面相互隔离;所述第一内排放管与所述第二内排放管之间相互成并列排列,且所述第一内排放管壁与所述第二内排放管壁相互不接触;所述外排放管将所述第一内排放管、所述第二内排放管的管壁包含在内。
  6. 根据权利要求2所述的设备,其特征在于:
    当由所述集丝装置收集的纳米微米纤维是呈分节结构的复合纳米微米纤维时,
    每一个所述喷道组中至少包含:第一内排放管、第二内排放管及外排放管;每一个所述排放孔组中至少包含:第一内排放孔、第二内排放孔及外排放孔;所述第一内排放孔与所述第二内排放孔呈并列式分布;
    所述第一内排放管的一端与所述第一内排放孔相通;所述第二内排放管的一端与所述第二内排放孔相通;所述外排放管的一端与所述外排放孔相通;所述第一内排放管的另一端、所述第二内排放管的另一端分别穿过所述外排放孔且均置于所述外排放管的内部并位于所述第二转筒的侧壁上或侧壁外部;
    所述第一内排放管与所述第二内排放管之间相互成并列排列,且所述第一内排放管的管壁与所述第二内排放管的管壁相互不接触;所述外排放管的内壁将所述第一内排放管的管壁及所述第二内排放管的管壁包围在内;且所述外排放管的内壁将所述第一内排放管的管壁的头部及所述第二内排放管的管壁的头部密封;
    所述第一内排放孔、所述第一内排放管的内壁形成用于输送纺丝材料的第一内通道;所述第二内排放孔、所述第二内排放管的内壁形成用于输送纺丝材料的第二内通道;所述外排放孔、所述第一内排放管的外壁、所述第二内排放管的外壁及所述外排放管的内壁形成用于输送纺丝材料的外通道;
    所述第一内通道、所述外通道以所述第一内排放管的管壁为分界面相互隔离;所述第二内通道、所述外通道以所述第二内排放管的管壁为分界面相互隔离;所述外通道被所述第一内排放管的管壁与所述第二内排放管的管壁分成若干个子通道;所述外排放管的内壁与所述第一内排放管的侧壁及所述第二内排放管的侧壁之间的空间形成所述外通道的多个子通道;所述第一内通道、所述第二内通道与所述外通道的多个子通道之间呈相间排列,呈节状结构;所述第一内排放管与所述第二内排放管的个数之和至少为2。
  7. 根据权利要求2所述的设备,其特征在于:
    当由所述集丝装置收集的纳米微米纤维是呈双边结构的复合纳米微米纤维时,
    每一个所述喷道组至少包括:内排放管及外排放管;每一个所述排放孔组至少包括:内排放孔及外排放孔;所述内排放管的一端设置有用于所述纺丝材料流入的内进液口,所述内排放管的另一端设置有用于所述纺丝材料流出的内出液口;所述外排放管的一端设置有用于所述纺丝材料流入的外进液口,所述外排放管的另一端设置有用于所述纺丝材料 流出的外出液口;且所述内排放管及所述外排放管的管径分别对应沿所述内进液口至所述内出液口方向、所述外进液口至所述外出液口方向减小;所述内排放管通过所述内进液口与设置在所述第一转筒侧壁上的所述内排放孔相通;所述内排放管的另一端向外穿过所述储液机构中的所述第二转筒的侧壁;所述外排放管通过所述外进液口与设置在所述第二转筒侧壁上的所述外排放孔相通;所述内出液口及所述外出液口均位于所述第二转筒的外侧壁上或侧壁外部;
    所述内排放孔、所述内进液口、所述内排放管的内壁及所述内出液口构成内喷液管道;所述外排放孔、所述外进液口、所述内排放管的外壁、所述外排放管的内壁及所述外出液口构成外喷液管道;且所述内排放管及所述外排放管呈肩并肩的方式并列排列且紧邻;所述内排放管及所述外排放管通过二者各自管壁固定连接以将所述内喷液管道、所述外喷液管道相互隔离;所述内排放管壁与所述第二转筒的侧壁无缝衔接。
  8. 根据权利要求2所述的设备,其特征在于:
    当由所述集丝装置收集的纳米微米纤维是呈包尖结构的复合纳米微米纤维时,
    每一个所述排放孔组包括:内排放孔及若干个外排放孔;每一个所述喷道组包括:内排放管及若干个外排放管;所述内排放管呈截面带若干个尖部的通道;所述喷道组中外排放管的数量及所述排放孔组中外排放孔的数量与所述内排放管截面的尖部个数三者相等;所述喷道组中内排放管的数量与所述排放孔组中内排放孔的数量相等;所述内排放管的一端设置有用于所述纺丝材料流入的内进液口,所述内排放管的另一端设置有用于所述纺丝材料流出的内出液口;每个所述外排放管的一端设置有用于所述纺丝材料流入的外进液口;每个所述外排放管的另一端设置有用于所述纺丝材料流出的外出液口;且所述内排放管及所述外排放管的管径分别对应沿所述内进液口至所述内出液口方向、所述外进液口至所述外出液口方向减小;所述内排放管通过所述内进液口与设置在所述第一转筒侧壁上的所述内排放孔相通;所述内排放管的另一端分别向外穿过所述储液机构中的所述第二转筒的侧壁;每个所述外排放管通过对应设置的一个所述外进液口与设置在所述第二转筒侧壁上的一个所述外排放孔相通;所述内出液口及每个所述外出液口均位于所述第二转筒的外侧壁上或外侧壁外部;
    所述内排放孔、所述内进液口、所述内排放管的内壁及所述内出液口构成内喷液管道;每个所述外排放孔、与其对应的一个所述外进液口、 所述内排放管的外壁、所述外排放管的内壁及所述外出液口构成一个外喷液管道;且所述内排放管及每个所述外排放管呈肩并肩的方式并列排列;所述内排放管及每个所述外排放管通过二者各自管壁固定连接以将所述内喷液管道、每个所述外喷液管道相互隔离;所述内排放管壁与所述第二转筒的侧壁无缝衔接;每个所述外喷液管道设置在所述内喷液管道的一个尖部周围;且,任意两所述外喷液管道之间相互隔离并呈并列排列。
  9. 根据权利要求2-8任一项所述的设备,其特征在于:
    所述驱动装置包括:电机、转速控制器及轴承连接器;所述电机与所述转速控制器连接;所述电机依次通过其内设轴承、所述轴承连接器与所述密封板下表面联接;所述电机和/或所述转速控制器与外界电源输出设备连接;
    和/或,
    所述送液装置包括:第一输液器、第一输液管、第二输液器及第二输液管;所述第一输液器通过所述第一输液管与所述第一转筒相通;所述第二输液器通过所述第二输液管与所述第二转筒相连通;
    和/或,
    所述集丝装置包括:分布在喷液装置外围部位的收集板及用于支撑所述收集板的支撑座;所述支撑座上设置有若干条滑槽,所述收集板通过安装在不同的所述滑槽上实现调节所述收集板与所述转筒和/或所述排放管的相对距离。
PCT/CN2015/074708 2014-03-21 2015-03-20 用于生产多种结构的复合纳米微米纤维离心纺丝设备 WO2015139659A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201410108921.XA CN104928777B (zh) 2014-03-21 2014-03-21 用于生产若干种结构的复合纳米微米纤维离心纺丝设备
CN201410108866.4A CN104928775B (zh) 2014-03-21 2014-03-21 一种用于生产复合纳米微米纤维的离心纺丝装置
CN201410108921.X 2014-03-21
CN201410108866.4 2014-03-21
CN201410108862.6A CN104928774B (zh) 2014-03-21 2014-03-21 用于生产核-壳结构的复合纳米微米纤维离心纺丝设备
CN201410108862.6 2014-03-21

Publications (1)

Publication Number Publication Date
WO2015139659A1 true WO2015139659A1 (zh) 2015-09-24

Family

ID=54143767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/074708 WO2015139659A1 (zh) 2014-03-21 2015-03-20 用于生产多种结构的复合纳米微米纤维离心纺丝设备

Country Status (1)

Country Link
WO (1) WO2015139659A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437694A (zh) * 2021-06-16 2021-09-24 淮南万泰电气有限公司 一种封闭式充气环网柜散热结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174542A (zh) * 1994-12-23 1998-02-25 欧文斯科尔宁格公司 使无机材料和有机材料一起纤维化的方法
CN101542025A (zh) * 2006-11-24 2009-09-23 松下电器产业株式会社 纳米纤维和高分子网状物的制造方法和装置
CN102084043A (zh) * 2008-10-02 2011-06-01 松下电器产业株式会社 纳米纤维制造方法及制造装置
CN102844475A (zh) * 2010-03-25 2012-12-26 科德宝两合公司 通过旋转纺纱法制造的多组分纤维
WO2014015843A1 (en) * 2012-07-27 2014-01-30 Contipro Biotech S.R.O. Spinning nozzle for producing nanofibrous and microfibrous materials composed of fibres having a coaxial structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1174542A (zh) * 1994-12-23 1998-02-25 欧文斯科尔宁格公司 使无机材料和有机材料一起纤维化的方法
CN101542025A (zh) * 2006-11-24 2009-09-23 松下电器产业株式会社 纳米纤维和高分子网状物的制造方法和装置
CN102084043A (zh) * 2008-10-02 2011-06-01 松下电器产业株式会社 纳米纤维制造方法及制造装置
CN102844475A (zh) * 2010-03-25 2012-12-26 科德宝两合公司 通过旋转纺纱法制造的多组分纤维
WO2014015843A1 (en) * 2012-07-27 2014-01-30 Contipro Biotech S.R.O. Spinning nozzle for producing nanofibrous and microfibrous materials composed of fibres having a coaxial structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437694A (zh) * 2021-06-16 2021-09-24 淮南万泰电气有限公司 一种封闭式充气环网柜散热结构

Similar Documents

Publication Publication Date Title
CN104928774B (zh) 用于生产核-壳结构的复合纳米微米纤维离心纺丝设备
CN104928777B (zh) 用于生产若干种结构的复合纳米微米纤维离心纺丝设备
CN104389037B (zh) 一种嵌套式纺丝体
CN104928775A (zh) 一种用于生产复合纳米微米纤维的离心纺丝装置
CN109208090B (zh) 一种新型无针静电纺丝装置及其纺丝方法
US20110180951A1 (en) Fiber structures and process for their preparation
US20140353882A1 (en) Electrospinning apparatuses & processes
CN100577897C (zh) 多流体复合静电纺丝装置
KR20110059541A (ko) 방사 장치, 부직포 제조 장치, 부직포의 제조 방법 및 부직포
KR20160116236A (ko) 원심력을 이용한 다성분 나노섬유 방사기구 및 이를 이용한 다성분 나노섬유의 제조방법
CN208717479U (zh) 基于自由表面同轴离心的静电纺丝喷丝头
EP2877617B1 (en) Spinning nozzle for producing nanofibrous and microfibrous materials composed of fibres having a coaxial structure
CN102586903B (zh) 一种电纺机
CN104928767B (zh) 一种静电离心式多功能纺丝设备
WO2015139659A1 (zh) 用于生产多种结构的复合纳米微米纤维离心纺丝设备
CN106435773B (zh) 一种用于静电纺丝的涡流式接收器及制备纳米纤维的方法
CN103103642A (zh) 一种取向静电纺纳米纤维涡流纺成纱装置及方法
US10156027B2 (en) Method of manufacturing a bundle of electrospun yarn and manufacturing equipment for the same
WO2015139658A1 (zh) 一种多功能纺丝设备
Patel et al. A review and analysis on recent advancements in bubble electrospinning technology for nanofiber production
WO2018084396A1 (ko) 사이드 바이 사이드형 2성분 복합 나노섬유 제조용 방사장치 및 이를 이용한 2성분 복합 나노섬유의 제조방법
CN104928776B (zh) 一种多功能离心纺丝设备
CN103484956A (zh) 电纺纳米纤维气浮传输收集装置
CN206127490U (zh) 一种用于静电纺丝的涡流式接收器
CN110318102B (zh) 一种生成多纤维的离心纺丝喷头系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764228

Country of ref document: EP

Kind code of ref document: A1