WO2024082646A1 - 多用户设备空分复用方法、设备及计算机可读存储介质 - Google Patents

多用户设备空分复用方法、设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2024082646A1
WO2024082646A1 PCT/CN2023/098606 CN2023098606W WO2024082646A1 WO 2024082646 A1 WO2024082646 A1 WO 2024082646A1 CN 2023098606 W CN2023098606 W CN 2023098606W WO 2024082646 A1 WO2024082646 A1 WO 2024082646A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
user equipment
spatial division
beam scheme
scheme
Prior art date
Application number
PCT/CN2023/098606
Other languages
English (en)
French (fr)
Inventor
张元博
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024082646A1 publication Critical patent/WO2024082646A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation

Definitions

  • the present application relates to the field of communication technology, and in particular to a multi-user equipment space division multiplexing method, equipment and computer-readable storage medium.
  • the transmission capacity and transmission distance of the communication system have been greatly improved.
  • the maturity of 5G and its accelerating commercialization process the number of users has continued to increase, the traffic usage has increased significantly, and the load of the stock market has increased.
  • the most commonly used method is space division multiplexing.
  • the spatial distance between user devices participating in space division multiplexing may be relatively close, which will cause great interference between user devices participating in space division multiplexing. Beamforming can effectively reduce the interference between user devices. Therefore, the space division multiplexing method based on beamforming has been developed.
  • the main purpose of the present application is to provide a multi-user device space division multiplexing method, device and storage medium.
  • the present application provides a multi-user device space division multiplexing method, the multi-user device space division multiplexing method comprising: based on the target user device channel and the target user device distribution information of the target area, determining the target space division beam scheme corresponding to the target area in the space division beam scheme database; based on the target space division beam scheme, switching the current space division beam scheme of the target area, and switching the target user device channel to the target area;
  • the user equipment sending signal in the target area is precoded to generate a preprocessed sending signal; based on the preprocessed sending signal and the target beam scheme, the user equipment receiving signal in the target area is beamformed to realize space division multiplexing of multiple user equipment.
  • the present application also provides a multi-user device spatial division multiplexing device, which includes a processor, a memory, and a multi-user device spatial division multiplexing program stored on the memory and executable by the processor, wherein when the multi-user device spatial division multiplexing program is executed by the processor, the steps of the multi-user device spatial division multiplexing method as described above are implemented.
  • the present application also provides a computer-readable storage medium, on which a multi-user device spatial division multiplexing program is stored, wherein when the multi-user device spatial division multiplexing program is executed by a processor, the steps of the multi-user device spatial division multiplexing method as described above are implemented.
  • FIG1 is a schematic diagram of the hardware structure of a multi-user equipment space division multiplexing device involved in an embodiment of the present application
  • FIG2 is a schematic diagram of a flow chart of a first embodiment of a multi-user equipment space division multiplexing method of the present application
  • FIG3 is a schematic diagram of a space division beam pattern of a multi-user equipment space division multiplexing method of the present application
  • FIG4 is a schematic diagram of a flow chart of a second embodiment of a multi-user equipment space division multiplexing method of the present application.
  • FIG5 is a schematic diagram of a flow chart of a third embodiment of a method for spatial division multiplexing of multi-user equipment of the present application.
  • FIG6 is a schematic diagram of a flow chart of a fourth embodiment of a method for spatial division multiplexing of multi-user equipment of the present application.
  • FIG. 7 is a schematic diagram of functional modules of the first embodiment of the multi-user equipment space division multiplexing device of the present application.
  • the multi-user device space division multiplexing method involved in the embodiment of the present application is mainly applied to a multi-user device space division multiplexing device, which can be a PC, a portable computer, a mobile terminal, or other device with display and processing functions.
  • FIG. 1 is a schematic diagram of the hardware structure of a multi-user device space division multiplexing device involved in an embodiment of the present application.
  • the multi-user device space division multiplexing device may include a processor The processor 1001 (for example, a CPU), a communication bus 1002, a user interface 1003, a network interface 1004, and a memory 1005.
  • the communication bus 1002 is configured to realize the connection and communication between these components;
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard);
  • the network interface 1004 may include a standard wired interface, a wireless interface (such as a WI-FI interface);
  • the memory 1005 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a disk memory, and the memory 1005 may also be a storage device independent of the aforementioned processor 1001.
  • FIG. 1 does not constitute a limitation on the multi-user equipment space division multiplexing device, and may include more or fewer components than shown in the figure, or a combination of certain components, or a different arrangement of components.
  • the memory 1005 as a computer-readable storage medium in FIG. 1 may include an operating system, a network communication module, and a multi-user device space division multiplexing program.
  • the network communication module is mainly configured to connect to the server and communicate data with the server; and the processor 1001 can call the multi-user device spatial division multiplexing program stored in the memory 1005 and execute the multi-user device spatial division multiplexing method provided in the embodiment of the present application.
  • An embodiment of the present application provides a multi-user equipment space division multiplexing method.
  • FIG. 2 is a flowchart of a first embodiment of a multi-user equipment space division multiplexing method of the present application.
  • the multi-user equipment space division multiplexing method includes the following steps:
  • Step S10 determining a target space division beam scheme corresponding to the target area in a space division beam scheme database based on target user equipment channels and target user equipment distribution information of the target area;
  • the beam scheme database is searched according to the SRS (Sounding reference signal) measurement results of all UE (User Equipment) in the cell to match the best spatial division beam scheme.
  • SRS Sounding reference signal
  • Selecting a suitable spatial division beam can improve the efficiency of spatial allocation, and the matching criterion is the best match between the user's spatial position distribution and the spatial division beam.
  • the specific implementation can be achieved in many ways, for example, based on the UE's SRS measurement results and the beam weights, a vector projection calculation is performed, and the best beam weights are found through the matching degree of the projection.
  • the method before step S10, the method further includes:
  • the base station engineering parameter data and the user equipment distribution information of each area are collected, and the spatial division beam scheme database is generated based on the base station engineering parameter data and the user equipment distribution information.
  • a spatial weight database is generated based on the thermal imaging of UE distribution in the existing network MR (Measurement report) data and the engineering parameter data of the base station.
  • the beam scheme of the corresponding cell is generated based on information such as user distribution/station height/antenna direction/number of antenna row and column channels/number of single-channel oscillators in each cell, including the number of beams and the antenna weights corresponding to each beam.
  • the data of the entire network is processed to generate a beam scheme database corresponding to different antenna types and different user distributions.
  • each space division beam scheme corresponds to a user distribution scenario.
  • a beam scheme includes multiple beams, which together form the basic coverage of a cell. Different numbers of space division beams are generated for different numbers of antennas and vibrator arrangements. The beams in each scheme are orthogonal to each other, that is, the mutual interference is less than a specified threshold, and user devices under different beam coverage are spatially multiplexed.
  • each set of beam solutions for 16T/32T antennas can include 4 or more spatial division beams, and each set of beam solutions for 64T antennas can include 8 or more beams.
  • Step S20 based on the target spatial division beam scheme, switching the current spatial division beam scheme of the target area, and precoding the user equipment transmit signal of the target area to generate a preprocessed transmit signal;
  • the current spatial division beam scheme of the target area is switched to the target spatial division beam scheme, or when there is no spatial division beam scheme in the target area, the target spatial division beam scheme is directly configured for the target area, the switching duration is obtained according to the timer, and a switching duration report is generated. After the switching duration does not time out, the scheme continues to be waited for, and after the target spatial division beam scheme is successfully switched, the precoding input parameters are obtained based on the beam weights in the target spatial division beam scheme, the transmit signal of the user equipment is precoded, and a preprocessed transmit signal is generated.
  • precoding technology is the physical layer architecture of the MIMO-OFDM (Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing) system used in TD-LTE (Time Division Long Term Evolution) downlink transmission. It can effectively improve the peak transmission rate by transmitting multiple (up to 4) data streams in parallel through up to 4 transmitting antennas.
  • LTE Long Term Evolution
  • precoding is its core functional module, and several main transmission modes of the physical downlink shared channel are realized through precoding.
  • the beam weights in the target spatial division beam scheme are used as precoding input parameters to precode the signals sent by the user equipment.
  • the precoding technology can pre-process the data to be sent at the baseband so that the sent data can be more directional.
  • Step S30 Based on the preprocessed transmission signal and the target beam scheme, beamforming is performed on the user equipment receiving signal in the target area to achieve space division multiplexing of multiple user equipment.
  • the beam weights in the target space division beam scheme selected from the space division beam scheme database are used to perform beamforming for the UE signal and perform space division multiplexing resource scheduling processing. That is, the UE resource scheduling in different beams is independent of each other, and the UE resources in the same beam are shared and scheduled uniformly.
  • user equipment between each spatial division beam can spatially multiplex physical resources, and resources are independently scheduled on each beam. User equipment on the same beam does not use spatial division and is scheduled uniformly.
  • beamforming also known as beamforming and spatial filtering
  • Beamforming technology is a signal processing technology that uses a sensor array to send and receive signals in a directional manner. Beamforming technology adjusts the parameters of the basic unit of the phase array so that signals at certain angles obtain constructive interference, while signals at other angles obtain destructive interference. Beamforming can be used for both signal transmission and signal reception.
  • the above embodiment provides a method for spatial division multiplexing of multiple user devices.
  • the method determines the target spatial division beam scheme corresponding to the target area in the spatial division beam scheme database based on the target user device channel and the target user device distribution information of the target area; based on the target spatial division beam scheme, the current spatial division beam scheme of the target area is switched, and the user device transmission signal of the target area is precoded to generate a preprocessed transmission signal; based on the preprocessed transmission signal and the target beam scheme, the user device receiving signal of the target area is beamformed to realize spatial division multiplexing of multiple user devices.
  • the present application searches for the target spatial division beam scheme database that best matches the user device distribution information in the area according to the target user device channel, switches the spatial division scheme of the target area, and improves the generation efficiency of the spatial division beam scheme; uses the precoding technology to preprocess the transmission signal of the user device, and improves the efficiency of beamforming; by beamforming the received signal of the user device, the mutual interference between signals is eliminated, the efficiency of spatial division multiplexing is improved, and the technical problem of low efficiency of spatial division multiplexing of existing multi-user devices is solved.
  • FIG. 4 is a flowchart of a second embodiment of a multi-user equipment space division multiplexing method of the present application.
  • step S10 includes:
  • Step S11 based on the measurement result of the target user equipment channel, obtaining a target projection vector of the target user equipment channel on each space division beam scheme;
  • the horizontal and vertical weights of the beam are both unit vectors.
  • the projections of the UE SRS channel vector on other beams in the spatial division scheme are calculated one by one, and are set to P1, P2, ..., P4 respectively.
  • the largest projection is selected as the target projection vector of the target user equipment channel on each spatial division beam scheme.
  • each spatial division beam scheme has more than one spatial division beam and its beam weight, and there is more than one target user equipment channel in each area. Therefore, each user equipment channel will have a maximum projection vector, namely the target projection vector, in each spatial division beam scheme.
  • Step S12 obtaining a set of matching degrees between each spatial division beam scheme and the target user equipment distribution information based on the target projection vector;
  • all user equipment channels in the target area calculate the target projection vector of the SRS on the spatial division beam scheme according to the above method, and then average to obtain the matching degree of the spatial division beam scheme.
  • the higher the matching degree the more suitable the spatial division scheme is for the user distribution in the current area.
  • R average (P UE1 , P UE2 , ..., P UEN ), where N is the total number of user equipment. Then scan other spatial division beam schemes one by one to obtain the matching degree of the user equipment on each spatial division beam scheme, and generate a matching degree set.
  • Step S13 Based on the matching degree set, a space division beam scheme with the highest matching degree is obtained as the target space division beam scheme.
  • the highest matching degree is obtained in the matching degree set, and the spatial division beam scheme corresponding to the highest matching degree is obtained as the optimal scheme for beamforming the target area.
  • the matching degree is R
  • R opt max(R 1 , R 2 , ...R M )
  • M is the total number of spatial division beam schemes in the database.
  • the above embodiment provides a multi-user equipment space division multiplexing method, the method is based on the target
  • the measurement result of the target user equipment channel is used to obtain the target projection vector of the target user equipment channel on each spatial division beam scheme; based on the target projection vector, a matching degree set of each spatial division beam scheme and the target user equipment distribution information is obtained; based on the matching degree set, the spatial division beam scheme with the highest matching degree is obtained as the target spatial division beam scheme.
  • the present application obtains a matching degree set through the measurement result of the target user equipment channel, determines the target spatial division beam scheme according to the matching degree set, improves the accuracy of the spatial division beam scheme, improves the efficiency of beamforming, and thus improves the efficiency of spatial division multiplexing of multiple user equipment.
  • FIG. 5 is a flowchart of a third embodiment of a multi-user equipment space division multiplexing method of the present application.
  • step S11 includes:
  • Step S110 obtaining a row vector of the target user equipment channel and a column vector of the target user equipment channel based on the measurement result;
  • Step S111 obtaining a set of projection vectors of the target user equipment channel on each space division beam in the space division beam scheme based on a preset beam weight, the row vector and the column vector;
  • the CSI-RS single port channel maps 4 channels horizontally and 4 channels vertically
  • a spatial beam weight can be expressed as the Kronecker product of a row vector and a column vector.
  • the beam weight corresponding to the row and column weights is Right now:
  • Step S112 Based on the projection vector set, a maximum projection vector of the target user equipment channel on each spatial beam is obtained as the target projection vector.
  • the projection vector set includes projection vectors of the target user equipment channel on all space division beams in the current space division beam scheme, and the largest projection vector is extracted as the target projection vector.
  • the step S111 includes:
  • a preset beam horizontal unit vector and the row vector Based on a preset beam row weight, a preset beam horizontal unit vector and the row vector, generating a horizontal projection vector of the row vector on each spatial beam;
  • a preset beam vertical unit vector and the column vector Based on a preset beam column weight, a preset beam vertical unit vector and the column vector, generating a vertical projection vector of the column vector on each spatial beam;
  • the projection of a vector on another vector is equal to the modulus of the vector multiplied by the cosine value of the angle between the two vectors, and if the other vector is a unit vector, it is numerically equal to the dot product of the two vectors.
  • the projection vectors of the target user equipment on all spatial beams are aggregated to generate a projection vector set.
  • the above embodiment provides a method for spatial division multiplexing of multi-user equipment, the method obtaining the row vector of the target user equipment channel and the column vector of the target user equipment channel based on the measurement result; obtaining the projection vector set of the target user equipment channel on each spatial division beam in the spatial division beam scheme based on the preset beam weight, the row vector and the column vector; obtaining the maximum projection vector of the target user equipment channel on each spatial division beam based on the projection vector set as the target projection vector.
  • the present application obtains the row and column vectors of the target user equipment channel through the measurement result of the target user equipment channel, generates a projection vector set on each spatial division beam according to the row and column vectors, finds the maximum projection vector in the projection vector set, improves the accuracy of the spatial division beam scheme, improves the efficiency of beamforming, and thus improves the efficiency of spatial division multiplexing of multi-user equipment.
  • FIG. 6 is a flowchart of a fourth embodiment of a multi-user equipment space division multiplexing method of the present application.
  • step S20 includes:
  • Step S21 based on the target spatial division beam scheme, switching the current spatial division beam scheme to the target spatial division beam scheme, and obtaining a switching duration report of the target spatial division beam scheme based on a timer, wherein the switching duration report includes whether the switching duration has not timed out and whether the switching duration has timed out;
  • the switching attempt timer is set according to the beam scheme to obtain the switching duration.
  • the switching duration is within the specified time, it indicates that the switching has not timed out. If the switching duration exceeds the specified time, it indicates that the switching has timed out, and a switching duration report of the beam scheme is generated; or, when there is no spatial division beam scheme in the target area, it is directly configured according to the target spatial division beam scheme, the configuration duration is obtained, and compared with the specified time as a switching duration report.
  • Step S22 corresponding to the switching duration not being timed out, continuing the switching of the target spatial division beam scheme, and obtaining a precoding input parameter based on the target spatial division beam scheme, precoding a transmit signal of the user equipment, and generating a preprocessed transmit signal;
  • the user equipment continues to wait until the switching is completed or the switching times out. After the switching is completed, the spatial division beams included in the target spatial division beam scheme and the weights of each spatial division beam are obtained, and the weights of the spatial division beams are used as input parameters for precoding to precode the transmission signal of the user equipment and obtain the preprocessed transmission signal.
  • Step S23 corresponding to the switching duration having timed out, reacquire the space division beam scheme as the target space division beam scheme.
  • the spatial division beam scheme database is returned to reacquire the target spatial division beam scheme.
  • step S21 includes:
  • each spatial division beam in the target spatial division beam scheme is acquired, and based on the current system identifier, a current system type is acquired, wherein the current system type includes a long term evolution system and a new air interface system;
  • the space division beam in the target space division scheme is mapped to the spatial domain filter of the new air interface system, and based on the timer, a mapping duration report is generated as the switching duration report.
  • the duration for configuring a spatial division beam in each physical area is used as the switching duration, or when a spatial division beam scheme exists in the physical area, the duration for switching the spatial division beam scheme to the target spatial division beam scheme is used as the switching duration.
  • the system gets rid of the burden of the long-transmitted signal CRS, and the selected beam only needs to be mapped to the spatial filter of NR, such as the CSI-RS (Channel state information reference signal) beam under NR, and there will be no interference from the demodulation reference signal.
  • NR New Radio
  • the UE performs beam measurement and selection according to the provisions of the NR protocol, and the base station uses the selected beam to beamform the UE to send data.
  • the mapping duration of the beam is used as the switching duration.
  • step S30 the method further includes:
  • the capacity comparison result includes capacity improvement and capacity non-improvement
  • a space division beam scheme is re-acquired as the target space division beam scheme.
  • the KPI Key Performance Indicator
  • the evaluation can be conducted from multiple dimensions, including whether the number of cell users has increased, whether the cell traffic has increased, and Whether the average perceived rate of users has improved, etc. If the KPI deteriorates after changing the beam scheme, roll back the beam scheme, reacquire the target space division beam scheme, and use the reacquired target space division beam scheme to perform space division multiplexing for the target area. If the KPI does not deteriorate, use the current target space division beam scheme to perform space division multiplexing for the target area.
  • the above embodiment provides a method for spatial division multiplexing of multi-user devices, which switches the current spatial division beam scheme to the target spatial division beam scheme based on the target spatial division beam scheme, and obtains a switching duration report of the target spatial division beam scheme based on a timer, wherein the switching duration report includes the switching duration not being timed out and the switching duration being timed out; corresponding to the switching duration not being timed out, the switching of the target spatial division beam scheme is continued, and based on the target spatial division beam scheme, the precoding input parameters are obtained, the transmission signal of the user device is precoded, and a preprocessed transmission signal is generated; corresponding to the switching duration being timed out, the spatial division beam scheme is reacquired as the target spatial division beam scheme.
  • the present application uses precoding technology to preprocess the transmission signal of the user device, thereby improving the efficiency of beamforming; by beamforming the received signal of the user device, mutual interference between signals is eliminated, the efficiency of spatial division multiplexing is improved, and the technical problem of low efficiency of spatial division multiplexing of existing multi-user devices is solved.
  • an embodiment of the present application also provides a multi-user equipment space division multiplexing device.
  • FIG. 7 is a schematic diagram of functional modules of a first embodiment of a multi-user equipment space division multiplexing apparatus of the present application.
  • the multi-user equipment space division multiplexing device includes:
  • the target spatial division beam scheme determination module 10 is configured to determine the target spatial division beam scheme corresponding to the target area in the spatial division beam scheme database based on the target user equipment channel and the target user equipment distribution information of the target area;
  • the pre-processed transmission signal generating module 20 is configured to switch the current space division beam scheme of the target area based on the target space division beam scheme, and precode the user equipment transmission signal of the target area to generate a pre-processed transmission signal;
  • the space division multiplexing implementation module 30 is configured to perform beamforming on the user equipment receiving signal in the target area based on the preprocessed transmission signal and the target beam scheme to implement space division multiplexing of multiple user equipment.
  • the multi-user equipment space division multiplexing apparatus further includes:
  • the space division beam scheme database generation module is configured to collect base station working parameter data and user equipment distribution information in each area, and generate the space division beam scheme database based on the base station working parameter data and the user equipment distribution information.
  • the target space division beam scheme determination module 10 includes:
  • a target projection vector obtaining unit is configured to obtain a target projection vector of the target user equipment channel on each space division beam scheme based on a measurement result of the target user equipment channel;
  • a matching degree set generating unit is configured to obtain a matching degree set between each spatial beam scheme and the target user equipment distribution information based on the target projection vector;
  • the target space division beam scheme determining unit is configured to obtain the space division beam scheme with the highest matching degree based on the matching degree set as the target space division beam scheme.
  • the target projection vector obtaining unit includes:
  • a channel row and column vector obtaining subunit configured to obtain a row vector of the target user equipment channel and a column vector of the target user equipment channel based on the measurement result
  • a projection vector set obtaining subunit is configured to obtain a projection vector set of the target user equipment channel on each space division beam in the space division beam scheme based on a preset beam weight, the row vector and the column vector;
  • the target projection vector determination subunit is configured to obtain, based on the projection vector set, a maximum projection vector of the target user equipment channel on each spatial division beam as the target projection vector.
  • the projection vector set obtaining subunit includes:
  • a horizontal projection vector obtaining component is configured to generate a horizontal projection vector of the row vector on each spatial beam based on a preset beam row weight, a preset beam horizontal unit vector and the row vector;
  • a vertical projection vector obtaining component is configured to generate a vertical projection vector of the column vector on each spatial beam based on a preset beam column weight, a preset beam vertical unit vector and the column vector;
  • the projection vector set generating component is configured to obtain a projection vector set of the target user equipment channel on each spatial division beam based on the horizontal projection vector and the vertical projection vector.
  • the pre-processing transmission signal generating module 20 includes:
  • a duration report generating unit is configured to switch the current spatial division beam scheme to the target spatial division beam scheme based on the target spatial division beam scheme, and obtain a switching duration report of the target spatial division beam scheme based on a timer, wherein the switching duration report includes a switching duration that has not timed out and a switching duration that has timed out;
  • a preprocessed transmission signal generating unit is configured to continue the switching of the target space division beam scheme corresponding to the switching duration not being timed out, and obtain a precoding input parameter based on the target space division beam scheme, precode the transmission signal of the user equipment, and generate a preprocessed transmission signal;
  • the beam scheme reacquisition unit is configured to reacquire the spatial division beam scheme as the target spatial division beam scheme in response to the switching duration having timed out.
  • the duration report generating unit includes:
  • a system type determination subunit is configured to obtain each space division beam in the target space division beam scheme based on the target space division beam scheme, and obtain a current system type based on a current system identifier, wherein the current system type includes a long term evolution system and a new air interface system;
  • a configuration duration report generating unit is configured to divide the physical area corresponding to the long term evolution system, configure the corresponding spatial division beam for the target physical area, and generate a configuration duration report based on the timer as the switching duration report;
  • the mapping duration report generation unit is configured to correspond to the new air interface system, map the spatial division beam in the target spatial division scheme to the spatial domain filter of the new air interface system, and generate a mapping duration report based on the timer as the switching duration report.
  • the multi-user equipment space division multiplexing apparatus further includes a physical area capacity comparison module, and the physical area capacity comparison module includes:
  • a capacity comparison result generating unit is configured to obtain the physical area capacity after completing the multi-user equipment space division multiplexing, and compare it with the historical physical area capacity to generate a capacity comparison result, wherein the capacity comparison result includes capacity improvement and capacity non-improvement;
  • a continuous using unit configured to continue using the target space division beam scheme after the capacity is increased
  • the scheme acquisition unit is configured to re-acquire the spatial division beam scheme as the target spatial division beam scheme based on the measurement result of the target user equipment channel collected in real time, corresponding to the failure of capacity improvement.
  • each module in the above-mentioned multi-user equipment space division multiplexing device corresponds to each step in the above-mentioned multi-user equipment space division multiplexing method embodiment, and its function and implementation process will not be repeated here one by one.
  • an embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium of the present application stores a multi-user device space division multiplexing program, wherein when the multi-user device space division multiplexing program is executed by a processor, the steps of the multi-user device space division multiplexing method as described above are implemented.
  • the present application provides a method for spatial division multiplexing of multi-user devices.
  • the method determines the target spatial division beam scheme corresponding to the target area in the spatial division beam scheme database based on the target user equipment channel and the target user equipment distribution information of the target area; based on the target spatial division beam scheme, the current spatial division beam scheme of the target area is switched, and the user equipment transmission signal of the target area is precoded to generate a preprocessed transmission signal; based on the preprocessed transmission signal and the target beam scheme, the user equipment receiving signal of the target area is beamformed to realize spatial division multiplexing of multi-user devices.
  • the present application searches for the target spatial division beam scheme that best matches the user equipment distribution information in the region in the spatial division beam scheme database according to the target user equipment channel, switches the spatial division scheme of the target area, and improves the generation efficiency of the spatial division beam scheme; uses the precoding technology to preprocess the transmission signal of the user equipment, and improves the efficiency of beamforming; by beamforming the received signal of the user equipment, the mutual interference between signals is eliminated, the efficiency of spatial division multiplexing is improved, and the technical problem of low efficiency of spatial division multiplexing of existing multi-user devices is solved.
  • the method implemented when the multi-user equipment space division multiplexing program is executed can refer to the various embodiments of the multi-user equipment space division multiplexing method of the present application, and will not be repeated here.
  • the present application can be used in many general or special computer system environments or configurations. For example: personal computers, server computers, handheld or portable devices, tablet devices, multiprocessor systems, microprocessor-based systems, set-top boxes, programmable consumer electronic devices, network PCs, minicomputers, mainframe computers, distributed computing environments including any of the above systems or devices, etc.
  • the present application can be described in the general context of computer-executable instructions executed by a computer, such as a program Program modules.
  • program modules include routines, programs, objects, components, data structures, etc. that perform specific tasks or implement specific abstract data types.
  • the present application can also be practiced in distributed computing environments, in which tasks are performed by remote processing devices connected through a communication network.
  • program modules can be located in local and remote computer storage media including storage devices.
  • the technical solution of the present application is essentially or the part that contributes to the prior art can be embodied in the form of a software product, which is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk) as described above, and includes a number of instructions for a terminal device (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, magnetic disk, optical disk
  • a terminal device which can be a mobile phone, computer, server, air conditioner, or network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,本申请提供一种多用户设备空分复用方法、设备及计算机可读存储介质,所述方法基于目标区域的目标用户设备信道以及目标用户设备分布信息,在空分波束方案数据库中确定所述目标区域对应的目标空分波束方案(S10);基于所述目标空分波束方案,对所述目标区域的当前空分波束方案进行切换,并对所述目标区域的用户设备发送信号进行预编码,生成预处理发送信号(S20);基于所述预处理发送信号以及所述目标波束方案,对所述目标区域的用户设备接收信号进行波束赋形,实现多用户设备的空分复用(S30)。

Description

多用户设备空分复用方法、设备及计算机可读存储介质
相关申请的交叉引用
本申请基于申请号为202211281388.8、申请日为2022年10月19日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,尤其涉及一种多用户设备空分复用方法、设备及计算机可读存储介质。
背景技术
目前通信系统的传输容量和传输距离已大幅提升,但随着通信技术的发展,5G的成熟及其正在加速的商用进程,用户数量不断增加,流量使用大幅增多,存量市场负荷增大,为了更充分、更好地利用无线频谱资源,目前最常用的方式就是空分复用。但在实际的应用中,参与空分复用的用户设备之间的空间距离可能会比较近,这样会导致参与空分复用的用户设备之间的干扰很大,波束赋形可以有效接触用户设备之间的干扰,因此基于波束赋形的空分复用方法得到发展,但在多用户设备系统中,使用传统的波束赋形方法往往较为复杂,导致效率低下,进而导致多用户设备空分复用的效率降低。因此,如何提升波束赋形的效率,进而提升多用户设备空分复用的效率是目前亟待解决的技术问题。
发明内容
本申请的主要目的在于提供一种多用户设备空分复用方法、设备及存储介质。
本申请提供一种多用户设备空分复用方法,所述多用户设备空分复用方法包括:基于目标区域的目标用户设备信道以及目标用户设备分布信息,在空分波束方案数据库中确定所述目标区域对应的目标空分波束方案;基于所述目标空分波束方案,对所述目标区域的当前空分波束方案进行切换,并对 所述目标区域的用户设备发送信号进行预编码,生成预处理发送信号;基于所述预处理发送信号以及所述目标波束方案,对所述目标区域的用户设备接收信号进行波束赋形,实现多用户设备的空分复用。
此外,本申请还提供一种多用户设备空分复用设备,所述多用户设备空分复用设备包括处理器、存储器、以及存储在所述存储器上并可被所述处理器执行的多用户设备空分复用程序,其中所述多用户设备空分复用程序被所述处理器执行时,实现如上述的多用户设备空分复用方法的步骤。
此外,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有多用户设备空分复用程序,其中所述多用户设备空分复用程序被处理器执行时,实现如上述的多用户设备空分复用方法的步骤。
附图说明
图1为本申请实施例方案中涉及的多用户设备空分复用设备的硬件结构示意图;
图2为本申请多用户设备空分复用方法第一实施例的流程示意图;
图3为本申请多用户设备空分复用方法空分波束图样示意图;
图4为本申请多用户设备空分复用方法第二实施例的流程示意图;
图5为本申请多用户设备空分复用方法第三实施例的流程示意图;
图6为本申请多用户设备空分复用方法第四实施例的流程示意图;
图7为本申请多用户设备空分复用装置第一实施例的功能模块示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做说明。
具体实施方式
应当理解,此处所描述的实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例涉及的多用户设备空分复用方法主要应用于多用户设备空分复用设备,该多用户设备空分复用设备可以是PC、便携计算机、移动终端等具有显示和处理功能的设备。
参照图1,图1为本申请实施例方案中涉及的多用户设备空分复用设备的硬件结构示意图。本申请实施例中,多用户设备空分复用设备可以包括处理 器1001(例如CPU),通信总线1002,用户接口1003,网络接口1004,存储器1005。其中,通信总线1002被配置为实现这些组件之间的连接通信;用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard);网络接口1004可以包括标准的有线接口、无线接口(如WI-FI接口);存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器,存储器1005还可以是独立于前述处理器1001的存储装置。
本领域技术人员可以理解,图1中示出的硬件结构并不构成对多用户设备空分复用设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
继续参照图1,图1中作为一种计算机可读存储介质的存储器1005可以包括操作系统、网络通信模块以及多用户设备空分复用程序。
在图1中,网络通信模块主要被配置为连接服务器,与服务器进行数据通信;而处理器1001可以调用存储器1005中存储的多用户设备空分复用程序,并执行本申请实施例提供的多用户设备空分复用方法。
本申请实施例提供了一种多用户设备空分复用方法。
参照图2,图2为本申请多用户设备空分复用方法第一实施例的流程示意图。
本实施例中,所述多用户设备空分复用方法包括以下步骤:
步骤S10,基于目标区域的目标用户设备信道以及目标用户设备分布信息,在空分波束方案数据库中确定所述目标区域对应的目标空分波束方案;
本实施例中,根据小区所有UE(User Equipment,用户设备)的SRS(Souding reference signal,探测参考信号)测量结果搜索波束方案数据库,匹配最佳空分波束方案。选择合适的空分波束能够提升空分配对的效率,匹配的准则即用户空间位置分布和空分波束的最佳匹配。具体的实现可以通过多种方式,例如,根据UE的SRS测量结果与波束权值做向量投影计算,通过投影的匹配度寻找最佳的波束权值。
在一些实施例中,所述步骤S10之前,还包括:
采集各区域的基站工参数据以及用户设备分布信息,并基于所述基站工参数据以及所述用户设备分布信息,生成所述空分波束方案数据库。
本实施例中,根据现网MR(Measurement report,测量上报)数据中UE分布的热成像图,以及基站的工参数据生成空分权值数据库。在一些实施例中,根据各小区用户分布/站高/天线方向/天线行列通道数/单通道振子数等信息生成对应小区的波束方案,包括波束个数以及各个波束对应的天线权值。对全网的数据进行处理,生成不同天线类型以及不同用户分布对应的波束方案数据库。
在一些实施例中,每一空分波束方案对应一种用户分布场景。一个波束方案包含多个波束,共同形成小区的基本覆盖。针对不同的天线数目和振子排列生成不同数目的空分波束。每套方案中的各波束相互正交,即相互间的干扰小于指定的门限,处于不同波束覆盖下的用户设备进行空分复用。
例如,如图3所示,在水平方向均匀分布的场景,对应使用第一种水平4波束或者第二种水平3波束的权值;在垂直方向分布不均匀的场景,对应使用第三种水平2+垂直2波束的权值;应对楼宇覆盖的如最后一个水平3波束加垂直2波束等等。另外,随着天线数目增多空分波束可以增多,16T/32T天线每套波束方案可以包含4个或更多空分波束,64T天线每套波束方案可以包含8个或更多的波束。
步骤S20,基于所述目标空分波束方案,对所述目标区域的当前空分波束方案进行切换,并对所述目标区域的用户设备发送信号进行预编码,生成预处理发送信号;
本实施例中,获得目标空分波束方案后,将目标区域的当前空分波束方案切换为所述目标空分波束方案,或当目标区域无空分波束方案时,则直接为目标区域配置目标空分波束方案,根据定时器获得切换时长,生成切换时长报告。在切换时长未超时之后,继续等待方案切换,目标空分波束方案切换成功后,基于目标空分波束方案中的波束权值,获得预编码的输入参数,对用户设备的发送信号进行预编码,生成预处理发送信号。
其中,预编码技术是TD-LTE(Time Division Long Term Evolution,分时长期演进)下行传输采用了MIMO-OFDM(Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing,多进多出正交频分复用技术)系统的物理层构架,通过最多4个发射天线并行传输多个(最多4个)数据流,能够有效地提高峰值传输速率。LTE(Long Term Evolution,长期演进)系统 的物理层处理过程中,预编码是其核心功能模块,物理下行共享信道的几种主要传输模式都是通过预编码实现的。
在一些实施例中,使用目标空分波束方案中的波束权值作为预编码的输入参数,对用户设备发送的信号进行预编码,预编码技术可以在基带对待发送的数据进行预先处理,使得发送的数据可以更有指向性。
步骤S30,基于所述预处理发送信号以及所述目标波束方案,对所述目标区域的用户设备接收信号进行波束赋形,实现多用户设备的空分复用。
本实施例中,使用空分波束方案数据库中挑选出来的目标空分波束方案中的波束权值为UE信号做波束赋形,并做空分复用的资源调度处理。即在不同波束中的UE资源调度相互独立,相同波束中的UE资源共享,统一调度。
在一些实施例中,下行发送时使用目标空分波束方案中的波束权值进行波束赋形的同时,各个空分波束间的用户设备可以对物理资源空分复用,各个波束上独立调度资源,同一波束上的用户设备不采用空分,统一进行调度。
其中,波束赋形又叫波束成型、空域滤波,是一种使用传感器阵列定向发送和接收信号的信号处理技术。波束赋形技术通过调整相位阵列的基本单元的参数,使得某些角度的信号获得相长干涉,而另一些角度的信号获得相消干涉。波束赋形既可以用于信号发射端,又可以用于信号接收端。
上述实施例提供了一种多用户设备空分复用方法,所述方法基于目标区域的目标用户设备信道以及目标用户设备分布信息,在空分波束方案数据库中确定所述目标区域对应的目标空分波束方案;基于所述目标空分波束方案,对所述目标区域的当前空分波束方案进行切换,并对所述目标区域的用户设备发送信号进行预编码,生成预处理发送信号;基于所述预处理发送信号以及所述目标波束方案,对所述目标区域的用户设备接收信号进行波束赋形,实现多用户设备的空分复用。通过上述方式,本申请根据目标用户设备信道,在空分波束方案数据库中搜索与区域内用户设备分布信息最为匹配的目标空分波束方案,对目标区域的空分方案进行切换,提升了空分波束方案的生成效率;使用预编码技术对用户设备的发送信号进行预处理,提升了波束赋形的效率;通过对所述用户设备的接收信号进行波束赋形,解除了信号间的相互干扰,提升了空分复用的效率,解决了现有多用户设备空分复用效率低下的技术问题。
参照图4,图4为本申请多用户设备空分复用方法第二实施例的流程示意图。
基于上述图2所示实施例,本实施例中,所述步骤S10包括:
步骤S11,基于所述目标用户设备信道的测量结果,获得所述目标用户设备信道在各空分波束方案上的目标投影向量;
本实施例中,采集目标区域内所有UE SRS测量结果,对最佳空分波束方案进行搜索匹配。例如,设行权值为r={r1,r2,r3,r4},列权值为c={c1,c2,c3,c4},设SRS测到信道行向量为h={h1,h2,h3,h4},列向量为v={v1,v2,v3,v4},设波束水平和垂直权值均为单位向量,则在水平方向投影Ph和垂直方向的投影Pv分别为:Ph=r*h和Pv=c*v。综合两个方向的因素,在整个波束上的投影为P=Ph*Pv,然后再逐次计算该UE SRS信道向量在该空分方案内其他波束上的投影,设分别为P1,P2,...,P4,最后选择最大的投影为目标用户设备信道在各空分波束方案上的目标投影向量。
在一些实施例中,空分数据库中有不止一个空分波束方案,每个空分波束方案中有不止一个空分波束及其波束权值,各区域内的目标用户设备信道也不止一个,因此,每个用户设备信道在每个空分波束方案中都会有一个最大投影向量即目标投影向量。
步骤S12,基于所述目标投影向量,获得各空分波束方案与所述目标用户设备分布信息的匹配度集合;
本实施例中,目标区域中所有用户设备信道均按照上述方法计算SRS在该空分波束方案上的目标投影向量,再求平均得到该空分波束方案的匹配度,匹配度越高说明该空分方案越适合当前区域的用户分布。令匹配度为R,则R=average(PUE1,PUE2,...,PUEN),N为用户设备总数。进而逐次扫描其他空分波束方案,获得用户设备在各空分波束方案上的匹配度,生成匹配度集合。
步骤S13,基于所述匹配度集合,获取匹配度最高的空分波束方案,作为所述目标空分波束方案。
本实施例中,在匹配度集合中获取最高匹配度,并获得最高匹配度对应的空分波束方案,作为对目标区域进行波束赋形的最优方案。设匹配度为R,Ropt=max(R1,R2,...RM),M为数据库中空分波束方案的总数。
上述实施例提供了一种多用户设备空分复用方法,所述方法基于所述目 标用户设备信道的测量结果,获得所述目标用户设备信道在各空分波束方案上的目标投影向量;基于所述目标投影向量,获得各空分波束方案与所述目标用户设备分布信息的匹配度集合;基于所述匹配度集合,获取匹配度最高的空分波束方案,作为所述目标空分波束方案。通过上述方式,本申请通过目标用户设备信道的测量结果,获得匹配度集合,根据匹配度集合确定目标空分波束方案,提高了空分波束方案的准确度,提升了波束赋形的效率,进而提升了多用户设备空分复用的效率。
参照图5,图5为本申请多用户设备空分复用方法第三实施例的流程示意图。
基于上述图4所示实施例,本实施例中,所述步骤S11包括:
步骤S110,基于所述测量结果,获得所述目标用户设备信道的行向量以及所述目标用户设备信道的列向量;
本实施例中,设SRS测到信道行向量为h={h1,h2,h3,h4},列向量为v={v1,v2,v3,v4}。
步骤S111,基于预设波束权值、所述行向量以及所述列向量,获得所述目标用户设备信道在空分波束方案中各空分波束上的投影向量集合;
本实施例中,一个向量在另外一个向量的投影等于该向量的模乘以两向量的夹角的余弦值,如果另外一个向量为单位向量,则数值上等于两个向量的点乘积。设波束水平和垂直权值均为单位向量,则在水平方向投影Ph和垂直方向的投影Pv分别为:Ph=r*h和Pv=c*v。
在一些实施例中,CSI-RS单端口道映射水平4通道,垂直4通道,则一个空分波束权值可以表示为行向量和列向量的克罗内克积,设行权值为r={r1,r2,r3,r4},列权值为c={c1,c2,c3,c4},则该行列权值对应的波束权值即:
然后,综合两个方向的因素,在整个波束上的投影为:P=Ph*Pv,然后再逐次计算该UE SRS信道向量在该空分方案内其他波束上的投影,设分别为P1,P2,...,P4,生成投影向量合集。
步骤S112,基于所述投影向量集合,获取所述目标用户设备信道在各空分波束上的最大投影向量,作为所述目标投影向量。
本实施例中,投影向量集合中包括了目标用户设备信道在当前空分波束方案中的所有空分波束上的投影向量,提取出其中最大的投影向量,作为目标投影向量。
在一些实施例中,所述步骤S111包括:
基于预设波束行权值、预设波束水平单位向量以及所述行向量,生成所述行向量在各空分波束上的水平投影向量;
基于预设波束列权值、预设波束垂直单位向量以及所述列向量,生成所述列向量在各空分波束上的垂直投影向量;
基于所述水平投影向量以及所述垂直投影向量,获得所述目标用户设备信道在各空分波束上的投影向量集合。
本实施例中,设行权值为r={r1,r2,r3,r4},列权值为c={c1,c2,c3,c4},设SRS测到信道行向量为h={h1,h2,h3,h4},列向量为v={v1,v2,v3,v4},一个向量在另外向量的投影等于该向量的模乘以两向量的夹角的余弦值,如果另外一个向量为单位向量,则数值上等于两个向量的点乘积。设波束水平和垂直的权值向量均为单位向量,则在水平方向投影Ph和垂直方向的投影Pv分别为:Ph=r*h和Pv=c*v,综合水平和垂直两个方向,在整个波束上的投影为:P=Ph*Pv。将目标用户设备在所有空分波束上的投影向量集合起来生成投影向量集合。
上述实施例提供了一种多用户设备空分复用方法,所述方法基于所述测量结果,获得所述目标用户设备信道的行向量以及所述目标用户设备信道的列向量;基于预设波束权值、所述行向量以及所述列向量,获得所述目标用户设备信道在空分波束方案中各空分波束上的投影向量集合;基于所述投影向量集合,获取所述目标用户设备信道在各空分波束上的最大投影向量,作为所述目标投影向量。通过上述方式,本申请通过目标用户设备信道的测量结果,获得目标用户设备信道的行、列向量,根据行、列向量生成各空分波束上的投影向量集合,在投影向量集合中找出最大投影向量,提高了空分波束方案的准确度,提升了波束赋形的效率,进而提升了多用户设备空分复用的效率。
参照图6,图6为本申请多用户设备空分复用方法第四实施例的流程示意图。
基于上述图2所示实施例,本实施例中,所述步骤S20包括:
步骤S21,基于所述目标空分波束方案,将所述当前空分波束方案切换为所述目标空分波束方案,并基于定时器,获得所述目标空分波束方案的切换时长报告,其中,所述切换时长报告包括切换时长未超时以及切换时长已超时;
本实施例中,基于确定的目标空分波束方案,替换目标区域的当前空分波束方案,并根据波束方案切换尝试定时器,获取切换时长,当切换时长在规定时间内则表示切换未超时,若切换时长超过规定时间则表示切换已超时,生成波束方案的切换时长报告;或者,当目标区域没有空分波束方案时,直接根据目标空分波束方案进行配置,获得配置时长,并与规定时间进行比较,作为切换时长报告。
步骤S22,与所述切换时长未超时相应的,继续所述目标空分波束方案的切换,并基于所述目标空分波束方案,获得预编码的输入参数,对用户设备的发送信号进行预编码,生成预处理发送信号;
本实施例中,切换时长没有超时则继续等待,直至切换完成或切换超时。切换完成后,获取目标空分波束方案中包含的空分波束以及各个空分波束的权值,以空分波束的权值作为预编码的输入参数,对用户设备的发送信号进行预编码,获得预处理发送信号。
步骤S23,与所述切换时长已超时相应的,则重新获取空分波束方案,作为所述目标空分波束方案。
本实施例中,若切换已超时,则返回空分波束方案数据库重新获取目标空分波束方案。
在一些实施例中,所述步骤S21包括:
基于所述目标空分波束方案,获取所述目标空分波束方案中的各空分波束,并基于当前系统标识,获得当前系统类型,其中,所述当前系统类型包括长期演进系统以及新空口系统;
与所述长期演进系统相应的,划分物理区域,并为目标物理区域配置对应的空分波束,并基于所述定时器,生成配置时长报告,作为所述切换时长报告;
与所述新空口系统相应的,将所述目标空分方案中的空分波束映射至新空口系统的空域滤波器,并基于所述定时器,生成映射时长报告,作为所述切换时长报告。
本实施例中,在LTE(Long Term Evolution,长期演进)系统中,为了使PDSCH(Physical Downlink Shared CHannel,物理下行共享信道)和C-RS(Cell Reference Signal,小区参考信号)的信道一致,需要为每个波束配置一个独立的PCI(Physical CELL identity,物理小区标识),最大限度的降低干扰。
在一些实施例中,在LTE系统中将各个物理区域配置空分波束的时长作为切换时长,或当物理区域存在空分波束方案时,则将空分波束方案切换为目标空分波束方案的时长作为切换时长。
本实施例中,在NR(New Radio,新空口)系统下,系统摆脱了长发信号CRS的包袱,选定的波束只需要映射到NR的空域滤波器,如NR下的CSI-RS(Channel state information reference signal,通道状态信息参考信号)波束即可,不会存在解调参考信号的干扰。UE按照NR协议的规定进行波束测量和选择,基站使用选定的波束对UE发送数据进行波束赋形。
在一些实施例中,在NR系统中,由于只需将目标空分波束方案中的波束映射到空域滤波器中即可,因此将波束的映射时长作为切换时长。
在一些实施例中,所述步骤S30之后,还包括:
在完成多用户设备空分复用之后,获取物理区域容量,并与历史物理区域容量进行对比,生成容量对比结果,其中,所述容量对比结果包括容量提升以及容量未提升;
在所述容量提升之后,继续使用所述目标空分波束方案;
与所述容量未提升相应的,基于实时采集的目标用户设备信道的测量结果,重新获取空分波束方案,作为所述目标空分波束方案。
本实施例中,每次更换空分波束方案后,需要对kpi(Key Performance Indicator,关键绩效指标)进行评估,确保新的波束方案更优。可以从多个维度进行评价,重要的包括小区用户数是否增加、小区业务量是否增加,以及 用户的平均感知速率是否有提升等。如果更换波束方案后,kpi恶化,则回退波束方案,重新获取目标空分波束方案,并使用重新获取的目标空分波束方案为目标区域做空分复用。如果kpi未恶化,则使用当前目标空分波束方案对目标区域进行空分复用。
上述实施例提供了一种多用户设备空分复用方法,所述方法基于所述目标空分波束方案,将所述当前空分波束方案切换为所述目标空分波束方案,并基于定时器,获得所述目标空分波束方案的切换时长报告,其中,所述切换时长报告包括切换时长未超时以及切换时长已超时;与所述切换时长未超时相应的,继续所述目标空分波束方案的切换,并基于所述目标空分波束方案,获得预编码的输入参数,对用户设备的发送信号进行预编码,生成预处理发送信号;与所述切换时长已超时相应的,则重新获取空分波束方案,作为所述目标空分波束方案。通过上述方式,本申请使用预编码技术对用户设备的发送信号进行预处理,提升了波束赋形的效率;通过对所述用户设备的接收信号进行波束赋形,解除了信号间的相互干扰,提升了空分复用的效率,解决了现有多用户设备空分复用效率低下的技术问题。
此外,本申请实施例还提供一种多用户设备空分复用装置。
参照图7,图7为本申请多用户设备空分复用装置第一实施例的功能模块示意图。
本实施例中,所述多用户设备空分复用装置包括:
目标空分波束方案确定模块10,被配置为基于目标区域的目标用户设备信道以及目标用户设备分布信息,在空分波束方案数据库中确定所述目标区域对应的目标空分波束方案;
预处理发送信号生成模块20,被配置为基于所述目标空分波束方案,对所述目标区域的当前空分波束方案进行切换,并对所述目标区域的用户设备发送信号进行预编码,生成预处理发送信号;
空分复用实现模块30,被配置为基于所述预处理发送信号以及所述目标波束方案,对所述目标区域的用户设备接收信号进行波束赋形,实现多用户设备的空分复用。
在一些实施例中,所述多用户设备空分复用装置还包括:
空分波束方案数据库生成模块,被配置为采集各区域的基站工参数据以及用户设备分布信息,并基于所述基站工参数据以及所述用户设备分布信息,生成所述空分波束方案数据库。
在一些实施例中,所述目标空分波束方案确定模块10包括:
目标投影向量获得单元,被配置为基于所述目标用户设备信道的测量结果,获得所述目标用户设备信道在各空分波束方案上的目标投影向量;
匹配度集合生成单元,被配置为基于所述目标投影向量,获得各空分波束方案与所述目标用户设备分布信息的匹配度集合;
目标空分波束方案确定单元,被配置为基于所述匹配度集合,获取匹配度最高的空分波束方案,作为所述目标空分波束方案。
在一些实施例中,所述目标投影向量获得单元包括:
信道行列向量获得子单元,被配置为基于所述测量结果,获得所述目标用户设备信道的行向量以及所述目标用户设备信道的列向量;
投影向量集合获得子单元,被配置为基于预设波束权值、所述行向量以及所述列向量,获得所述目标用户设备信道在空分波束方案中各空分波束上的投影向量集合;
目标投影向量确定子单元,被配置为基于所述投影向量集合,获取所述目标用户设备信道在各空分波束上的最大投影向量,作为所述目标投影向量。
在一些实施例中,所述投影向量集合获得子单元包括:
水平投影向量获得组件,被配置为基于预设波束行权值、预设波束水平单位向量以及所述行向量,生成所述行向量在各空分波束上的水平投影向量;
垂直投影向量获得组件,被配置为基于预设波束列权值、预设波束垂直单位向量以及所述列向量,生成所述列向量在各空分波束上的垂直投影向量;
投影向量集合生成组件,被配置为基于所述水平投影向量以及所述垂直投影向量,获得所述目标用户设备信道在各空分波束上的投影向量集合。
在一些实施例中,所述预处理发送信号生成模块20包括:
时长报告生成单元,被配置为基于所述目标空分波束方案,将所述当前空分波束方案切换为所述目标空分波束方案,并基于定时器,获得所述目标空分波束方案的切换时长报告,其中,所述切换时长报告包括切换时长未超时以及切换时长已超时;
预处理发送信号生成单元,被配置为与所述切换时长未超时相应的,继续所述目标空分波束方案的切换,并基于所述目标空分波束方案,获得预编码的输入参数,对用户设备的发送信号进行预编码,生成预处理发送信号;
波束方案重新获取单元,被配置为与所述切换时长已超时相应的,则重新获取空分波束方案,作为所述目标空分波束方案。
在一些实施例中,时长报告生成单元包括:
系统类型确定子单元,被配置为基于所述目标空分波束方案,获取所述目标空分波束方案中的各空分波束,并基于当前系统标识,获得当前系统类型,其中,所述当前系统类型包括长期演进系统以及新空口系统;
配置时长报告生成字单元,被配置为与所述长期演进系统相应的,划分物理区域,并为目标物理区域配置对应的空分波束,并基于所述定时器,生成配置时长报告,作为所述切换时长报告;
映射时长报告生成字单元,被配置为与所述新空口系统相应的,将所述目标空分方案中的空分波束映射至新空口系统的空域滤波器,并基于所述定时器,生成映射时长报告,作为所述切换时长报告。
在一些实施例中,所述多用户设备空分复用装置还包括物理区域容量对比模块,所述物理区域容量对比模块包括:
容量对比结果生成单元,被配置为在完成多用户设备空分复用之后,获取物理区域容量,并与历史物理区域容量进行对比,生成容量对比结果,其中,所述容量对比结果包括容量提升以及容量未提升;
持续使用单元,被配置为在所述容量提升之后,继续使用所述目标空分波束方案;
方案获取单元,被配置为与所述容量未提升相应的,基于实时采集的目标用户设备信道的测量结果,重新获取空分波束方案,作为所述目标空分波束方案。
其中,上述多用户设备空分复用装置中各个模块与上述多用户设备空分复用方法实施例中各步骤相对应,其功能和实现过程在此处不再一一赘述。
此外,本申请实施例还提供一种计算机可读存储介质。
本申请计算机可读存储介质上存储有多用户设备空分复用程序,其中所述多用户设备空分复用程序被处理器执行时,实现如上述的多用户设备空分复用方法的步骤。
本申请提供一种多用户设备空分复用方法,所述方法基于目标区域的目标用户设备信道以及目标用户设备分布信息,在空分波束方案数据库中确定所述目标区域对应的目标空分波束方案;基于所述目标空分波束方案,对所述目标区域的当前空分波束方案进行切换,并对所述目标区域的用户设备发送信号进行预编码,生成预处理发送信号;基于所述预处理发送信号以及所述目标波束方案,对所述目标区域的用户设备接收信号进行波束赋形,实现多用户设备的空分复用。通过上述方式,本申请根据目标用户设备信道,在空分波束方案数据库中搜索与区域内用户设备分布信息最为匹配的目标空分波束方案,对目标区域的空分方案进行切换,提升了空分波束方案的生成效率;使用预编码技术对用户设备的发送信号进行预处理,提升了波束赋形的效率;通过对所述用户设备的接收信号进行波束赋形,解除了信号间的相互干扰,提升了空分复用的效率,解决了现有多用户设备空分复用效率低下的技术问题。
其中,多用户设备空分复用程序被执行时所实现的方法可参照本申请多用户设备空分复用方法的各个实施例,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
本申请可用于众多通用或专用的计算机系统环境或配置中。例如:个人计算机、服务器计算机、手持设备或便携式设备、平板型设备、多处理器系统、基于微处理器的系统、置顶盒、可编程的消费电子设备、网络PC、小型计算机、大型计算机、包括以上任何系统或设备的分布式计算环境等等。本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程 序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的部分实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种多用户设备空分复用方法,包括:
    基于目标区域的目标用户设备信道以及目标用户设备分布信息,在空分波束方案数据库中确定所述目标区域对应的目标空分波束方案;
    基于所述目标空分波束方案,对所述目标区域的当前空分波束方案进行切换,并对所述目标区域的用户设备发送信号进行预编码,生成预处理发送信号;
    基于所述预处理发送信号以及所述目标波束方案,对所述目标区域的用户设备接收信号进行波束赋形,实现多用户设备的空分复用。
  2. 如权利要求1所述的多用户设备空分复用方法,其中,所述基于目标区域的目标用户设备信道以及目标用户设备分布信息,在空分波束方案数据库中确定所述目标区域对应的目标空分波束方案之前,还包括:
    采集各区域的基站工参数据以及用户设备分布信息,并基于所述基站工参数据以及所述用户设备分布信息,生成所述空分波束方案数据库。
  3. 如权利要求1所述的多用户设备空分复用方法,其中,所述基于目标区域的目标用户设备信道以及目标用户设备分布信息,在空分波束方案数据库中确定所述目标区域对应的目标空分波束方案,包括:
    基于所述目标用户设备信道的测量结果,获得所述目标用户设备信道在各空分波束方案上的目标投影向量;
    基于所述目标投影向量,获得各空分波束方案与所述目标用户设备分布信息的匹配度集合;
    基于所述匹配度集合,获取匹配度最高的空分波束方案,作为所述目标空分波束方案。
  4. 如权利要求3所述的多用户设备空分复用方法,其中,所述基于所述目标用户设备信道的测量结果,获得所述目标用户设备信道在各空分波束方案上的目标投影向量,包括:
    基于所述测量结果,获得所述目标用户设备信道的行向量以及所述目标用户设备信道的列向量;
    基于预设波束权值、所述行向量以及所述列向量,获得所述目标用户设备信道在空分波束方案中各空分波束上的投影向量集合;
    基于所述投影向量集合,获取所述目标用户设备信道在各空分波束上的最大投影向量,作为所述目标投影向量。
  5. 如权利要求4所述的多用户设备空分复用方法,其中,所述基于预设波束权值、所述行向量以及所述列向量,获得所述目标用户设备信道在各空分波束上的投影向量集合,包括:
    基于预设波束行权值、预设波束水平单位向量以及所述行向量,生成所述行向量在各空分波束上的水平投影向量;
    基于预设波束列权值、预设波束垂直单位向量以及所述列向量,生成所述列向量在各空分波束上的垂直投影向量;
    基于所述水平投影向量以及所述垂直投影向量,获得所述目标用户设备信道在各空分波束上的投影向量集合。
  6. 如权利要求1所述的多用户设备空分复用方法,其中,所述基于所述目标空分波束方案,对所述目标区域的当前空分波束方案进行切换,并对所述目标区域的用户设备发送信号进行预编码,生成预处理发送信号,包括:
    基于所述目标空分波束方案,将所述当前空分波束方案切换为所述目标空分波束方案,并基于定时器,获得所述目标空分波束方案的切换时长报告,其中,所述切换时长报告包括切换时长未超时以及切换时长已超时;
    与所述切换时长未超时相应的,继续所述目标空分波束方案的切换,并基于所述目标空分波束方案,获得预编码的输入参数,对用户设备的发送信号进行预编码,生成预处理发送信号;
    与所述切换时长已超时相应的,则重新获取空分波束方案,作为所述目标空分波束方案。
  7. 如权利要求6所述的多用户设备空分复用方法,其中,所述基于所述目标空分波束方案,将所述当前空分波束方案切换为所述目标空分波束方案,并基于定时器,获得所述目标空分波束方案的切换时长报告,包括:
    基于所述目标空分波束方案,获取所述目标空分波束方案中的各空分波束,并基于当前系统标识,获得当前系统类型,其中,所述当前系统类型包括长期演进系统以及新空口系统;
    与所述长期演进系统相应的,划分物理区域,并为目标物理区域配置对应的空分波束,并基于所述定时器,生成配置时长报告,作为所述切换时长 报告;
    与所述新空口系统相应的,将所述目标空分方案中的空分波束映射至新空口系统的空域滤波器,并基于所述定时器,生成映射时长报告,作为所述切换时长报告。
  8. 如权利要求1-7中任一项所述的多用户设备空分复用方法,其中,所述基于所述预处理发送信号以及所述目标波束方案,对所述目标区域的用户设备接收信号进行波束赋形,实现多用户设备的空分复用之后,还包括:
    在完成多用户设备空分复用之后,获取物理区域容量,并与历史物理区域容量进行对比,生成容量对比结果,其中,所述容量对比结果包括容量提升以及容量未提升;
    在所述容量提升之后,继续使用所述目标空分波束方案;
    与所述容量未提升相应的,基于实时采集的目标用户设备信道的测量结果,重新获取空分波束方案,作为所述目标空分波束方案。
  9. 一种多用户设备空分复用设备,包括处理器、存储器、以及存储在所述存储器上并可被所述处理器执行的多用户设备空分复用程序,其中所述多用户设备空分复用程序被所述处理器执行时,实现如权利要求1至8中任一项所述的多用户设备空分复用方法的步骤。
  10. 一种计算机可读存储介质,存储有多用户设备空分复用程序,其中所述多用户设备空分复用程序被处理器执行时,实现如权利要求1至8中任一项所述的多用户设备空分复用方法的步骤。
PCT/CN2023/098606 2022-10-19 2023-06-06 多用户设备空分复用方法、设备及计算机可读存储介质 WO2024082646A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211281388.8 2022-10-19
CN202211281388.8A CN117955533A (zh) 2022-10-19 2022-10-19 多用户设备空分复用方法、设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2024082646A1 true WO2024082646A1 (zh) 2024-04-25

Family

ID=90736771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/098606 WO2024082646A1 (zh) 2022-10-19 2023-06-06 多用户设备空分复用方法、设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN117955533A (zh)
WO (1) WO2024082646A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100533A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 一种信道测量方法、小区切换方法、相关装置及系统
EP2930966A1 (en) * 2014-04-09 2015-10-14 Alcatel Lucent Selecting beam-forming weighting vectors for antennae
CN109391310A (zh) * 2017-08-08 2019-02-26 珠海市魅族科技有限公司 波束配置方法和波束配置装置
CN111756414A (zh) * 2020-07-22 2020-10-09 北京紫光展锐通信技术有限公司 波束切换方法及相关设备
US20210160706A1 (en) * 2019-11-27 2021-05-27 Qualcomm Incorporated Dynamic beam sweep procedure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100533A1 (zh) * 2013-12-30 2015-07-09 华为技术有限公司 一种信道测量方法、小区切换方法、相关装置及系统
EP2930966A1 (en) * 2014-04-09 2015-10-14 Alcatel Lucent Selecting beam-forming weighting vectors for antennae
CN109391310A (zh) * 2017-08-08 2019-02-26 珠海市魅族科技有限公司 波束配置方法和波束配置装置
US20210160706A1 (en) * 2019-11-27 2021-05-27 Qualcomm Incorporated Dynamic beam sweep procedure
CN111756414A (zh) * 2020-07-22 2020-10-09 北京紫光展锐通信技术有限公司 波束切换方法及相关设备

Also Published As

Publication number Publication date
CN117955533A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
US10826582B2 (en) Wireless communication device and wireless communication method
CN111278120B (zh) 上行信道的配置方法、传输方法、网络侧设备及终端
CN109495879B (zh) 一种资源配置方法、基站和终端
KR102332980B1 (ko) 통신 방법, 통신 장치 및 시스템
US11196501B2 (en) Codebook feedback method and apparatus
US20220174719A1 (en) Antenna panel status indication method and apparatus
WO2018171604A1 (zh) 信息的传输方法和设备
CN109120313A (zh) 一种秩指示上报方法和装置、指示方法和装置
US11956037B2 (en) Spatial reuse for wireless network
JP2019509686A (ja) チャネル状態情報のフィードバック方法および装置
CN111713054A (zh) 通信方法、通信装置和系统
US11646770B2 (en) Method and apparatus for millimeter-wave MIMO mode selection
US11159346B2 (en) Co-polarized feedback for frequency domain compression
US20230239028A1 (en) Channel measurement method and communication apparatus
WO2024082646A1 (zh) 多用户设备空分复用方法、设备及计算机可读存储介质
WO2019078864A1 (en) MAPPING OF SPECIFIC EU BEAMS WITH REFERENCE WEIGHT VECTORS
US11784853B2 (en) Channel measurement method and communication apparatus
CN108282201B (zh) 一种用户终端调度方法及装置、通信系统
CN114598365B (zh) 传输方法、装置、设备及可读存储介质
CN105846870A (zh) 用于多输入多输出无线通信系统的装置和方法
CN113541750B (zh) 协作波束赋形方法、通信装置、通信系统及存储介质
CN109714780A (zh) 通信方法、终端和接入网设备
JP2023503674A (ja) スケジューリング方法及び装置
CN107453855B (zh) 一种控制信道发送方法及装置
WO2018192167A1 (zh) 一种基于无线路由设备混合的负载均衡方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878644

Country of ref document: EP

Kind code of ref document: A1