WO2024082479A1 - 投影装置 - Google Patents

投影装置 Download PDF

Info

Publication number
WO2024082479A1
WO2024082479A1 PCT/CN2023/073120 CN2023073120W WO2024082479A1 WO 2024082479 A1 WO2024082479 A1 WO 2024082479A1 CN 2023073120 W CN2023073120 W CN 2023073120W WO 2024082479 A1 WO2024082479 A1 WO 2024082479A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
projection device
projection
display panel
Prior art date
Application number
PCT/CN2023/073120
Other languages
English (en)
French (fr)
Inventor
李熙
张伟
王光泉
王宇杰
王金刚
崔凤岩
韩天洋
刘小龙
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202222741835.5U external-priority patent/CN219799968U/zh
Priority claimed from CN202222854112.6U external-priority patent/CN221175228U/zh
Priority claimed from CN202222968071.3U external-priority patent/CN219676425U/zh
Priority claimed from CN202222994221.8U external-priority patent/CN219162529U/zh
Priority claimed from CN202211410052.7A external-priority patent/CN118050944A/zh
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Publication of WO2024082479A1 publication Critical patent/WO2024082479A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a projection device.
  • a projection device is a device that can project images or videos onto a screen. It can be connected to computers, game consoles, TVs and other devices through different interfaces to play the corresponding video signals. Projection devices are widely used in homes, offices, schools and entertainment venues.
  • the projection devices on the market mainly include CRT (Cathode Ray Tube) projection devices, LCD (Liquid Crystal Display) projection devices, and DLP (Digital Light Processing) projection devices.
  • LCD projection devices mainly include single LCD projection devices, triple LCD projection devices, etc.
  • Single LCD projection devices have simple structures and low costs, and are suitable for popularization to low- and middle-income groups, so they have considerable room for growth.
  • the present disclosure provides a projection device.
  • the present disclosure provides a projection device, which includes: a housing, a light source assembly, a projection lens, a first heat sink and a first fan, wherein the light source assembly includes a light emitting element,
  • the housing comprises a front surface and a rear surface opposite to each other, the front surface comprises a first opening and a second opening, the housing further comprises a third opening, at least a portion of the third opening is located on the rear surface; the light emitting element is located at the first opening; the projection lens is located at the second opening; the first heat sink is located at the third opening of the housing;
  • the light emitting element, the projection lens, the first heat sink and the housing together form a storage space; the first fan is located on a side of the light emitting component away from the storage space;
  • the light source assembly also includes a light emitting element base, and the light emitting element is located on the light emitting element base; the first fan includes a first air inlet arranged toward the light emitting element base, and a first gap is arranged between the first air inlet and the light emitting element base.
  • the first air inlet includes a first area covered by an orthographic projection of the light emitting element base on the first air inlet and a second area located on a side of the first area away from the projection lens.
  • the first air inlet further includes a third area located on a side of the first area away from the second area, wherein a width of the third area is smaller than a width of the second area.
  • the projection device includes a base plate
  • the bottom plate is arranged opposite to the shell; a first external air duct is formed between the shell and the bottom plate, and/or the bottom plate is arranged opposite to a part of the first radiator, and the part of the first radiator and the bottom plate form a first external air duct;
  • the first external air duct is used to allow air to enter the first fan after passing through the first external air duct when the projection device is working.
  • the first external air duct is arranged opposite to the second area.
  • the projection device includes a circuit board
  • the circuit board is arranged opposite to the housing, and a second external air duct is formed between the housing and the circuit board, and/or the circuit board is arranged opposite to a part of the first radiator, and the part of the first radiator and the circuit board form a second external air duct;
  • the second external air duct is used to allow air to enter the first fan after passing through the second external air duct when the projection device is working; the second external air duct is arranged opposite to the second area.
  • the first heat sink is generally arcuate in shape.
  • the first radiator includes a wrapping portion and a plurality of first heat dissipation fins located on the side of the wrapping portion away from the accommodating space, the wrapping portion covers the third opening, each of the plurality of first heat dissipation fins includes a first heat dissipation portion, and the first radiator is configured to allow air to pass between the plurality of first heat dissipation portions and then enter the first fan from the first air inlet.
  • the projection device includes at least one of a circuit board and a base plate;
  • the projection device includes a circuit board
  • at least a portion of the first heat dissipation portion is located between the wrapping portion and the circuit board, and/or,
  • the projection device When the projection device includes a bottom plate, at least a portion of the first heat dissipation portion is located in the wrapping portion and between the base plate.
  • the circuit board includes a second heat dissipation portion, the second heat dissipation portion is located on a side of the circuit board close to the housing, and/or the second heat dissipation portion is located on a side of the circuit board close to the first heat dissipation portion.
  • the wrapping portion includes a first sub-wrapping portion located on the side where the rear surface of the shell is located and a second sub-wrapping portion located on a different side from the side where the rear surface of the shell is located; the second sub-wrapping portion is continuously arranged with the first sub-wrapping portion; and the first heat dissipation portion is a heat dissipation fin on the side of the second sub-wrapping portion away from the accommodating space.
  • the projection lens when the projection device is in a working state, the projection lens is higher than the light source assembly; the shell also includes a bottom surface and a top surface, the bottom surface is lower than the top surface, and the front surface and the rear surface are respectively connected to the top surface and the bottom surface.
  • the projection device when the projection device is in a working state, the projection device is configured to form an air duct between the bottom surface and the placement surface of the projection device, the air entering the first air inlet includes air passing through the air duct, and the air entering the air duct carries heat dissipated from the first radiator.
  • the projection device further comprises:
  • a first polarizing element disposed on a light-emitting side of the light source assembly, for converting light emitted by the light source assembly into first polarized light having a first polarization direction;
  • a display panel is arranged on a side of the first polarizing element away from the light source assembly;
  • a first lens is disposed on a side of the display panel away from the light source assembly, or is disposed between the display panel and the first polarizing element;
  • a first reflector configured to reflect light emitted from the display panel into the projection lens
  • a second polarizing element which is disposed on a side of the display panel away from the first polarizing element and is used to emit one of polarized light in a first polarization direction and polarized light in a second polarization direction from the projection lens, wherein the first polarization direction is perpendicular to the second polarization direction;
  • the first reflector and the second polarizing element are the same element or different elements; and the display panel is a liquid crystal display panel.
  • the projection device further includes a light-transmitting portion
  • the light-transmitting portion When the first lens is disposed on a side of the display panel away from the light source assembly, the light-transmitting portion is located between the light source assembly and the display panel, and a second gap is provided between the light-transmitting portion and the display panel;
  • the light-transmitting portion is located between the light source assembly and the first lens, and a second gap is provided between the light-transmitting portion and the first lens;
  • the first polarizing element is attached to the light-transmitting portion.
  • the projection device includes a second fan located in the accommodation space, which is used to promote internal air circulation in the accommodation space, and the internal air exchanges heat through the first heat sink;
  • the second fan includes a second air inlet and a second air outlet, the second air outlet discharges internal air, and the second air inlet sucks internal air, so that the internal air circulates in the accommodating space; the flow path of the internal air includes the second gap.
  • the internal air flows through the second air outlet, the second air duct, the third air duct, the first air duct, and the second air inlet in sequence for internal circulation;
  • the second air duct includes the second gap; the third air duct includes the third gap; and at least a portion of the first heat sink constitutes a side wall of the first air duct.
  • the first heat sink includes second heat dissipation fins extending into the first air duct.
  • the projection device further includes a second reflector and a second lens; the second reflector is used to reflect the light emitted by the light emitting element into the second lens; the second lens is used to collimate the light;
  • the second fan is located at a side of the second reflector away from the light source assembly; a third gap is provided between the second fan and the first heat sink, and the first air duct includes the third gap.
  • the first fan is an axial flow fan.
  • the projection device further comprises a fixing frame, the display panel and the first lens are respectively embedded on opposite sides of the fixing frame; a third gap is provided between the first lens and the display panel;
  • the fixing frame includes two through sides that are oppositely arranged, and the through sides include a hollow portion.
  • the fixing frame includes two positioning sides arranged opposite to each other;
  • the two sides of the positioning side are respectively connected to the through side; the positioning side includes a positioning portion for cooperating with the shell to realize the positioning of the fixing frame.
  • the positioning portion includes a convex ridge; the convex ridge and the display panel extend in the same direction;
  • the fixing frame further comprises a U-shaped buckle; the display panel, the fixing frame and the first lens are all arranged between two ends of the U-shaped buckle, and the buckle clamps at least one side of the fixing frame;
  • the position where the U-shaped buckle clamps the side of the fixing frame includes a matching ridge, and the matching ridge is continuously arranged with the ridge of the positioning portion.
  • the inner surface of the housing includes a groove, and the convex ridge cooperates with the groove to achieve positioning of the fixing frame;
  • One of the two through sides is disposed toward the first heat sink.
  • the projection device includes a focusing assembly, and the focusing assembly is used to focus the projection lens;
  • the focusing assembly includes a sensing assembly and a driving assembly; the sensing assembly is configured to measure the projection distance between the projection lens and the projection image; the driving assembly is configured to drive the projection lens to adjust the focal length according to the measured projection distance;
  • the driving assembly includes a driving motor, an actuator, and a focus adjuster arranged on the projection lens; the driving motor drives the actuator to move, and the actuator is coupled to the focus adjuster.
  • the actuator includes a first gear
  • the focuser includes a transmission tooth disposed on the outer periphery of the projection lens, and the first gear and the transmission tooth are coupled by mutual meshing;
  • the focusing assembly includes a limiting assembly, and the limiting assembly is used to control the focusing range of the projection lens;
  • the limiting assembly includes an optical coupler and a baffle; the relative position of the baffle and the focuser is fixed;
  • the relative position of the optical coupler and the housing is fixed; the optical coupler is used to determine whether the baffle blocks or does not block the light and send a signal to provide instructions to the drive motor.
  • the focusing assembly includes a focusing ring, and the baffle and the transmission gear are both fixed around the focusing ring.
  • the projection device further comprises a second fan located in the accommodation space, for promoting internal air circulation in the accommodation space, and the internal air exchanges heat through the first radiator;
  • the second fan comprises a second air inlet and a second air outlet, the second air outlet discharges internal air, and the second air inlet sucks internal air, so that the internal air circulates in the accommodation space;
  • the second fan is a centrifugal fan; the second air inlet is arranged opposite to the first radiator.
  • FIG. 1A , 1D and 1E are schematic perspective views of a projection device according to some exemplary embodiments of the present disclosure in a cross-sectional manner, for the purpose of illustrating the internal structure of the projection device.
  • FIGS. 1B and 1C are schematic perspective views of a first heat sink of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 2 is a schematic perspective view of a projection device according to some other exemplary embodiments of the present disclosure, and is intended to illustrate the external structure of the projection device.
  • FIG. 3 schematically illustrates a circulation path of internal air within an accommodating space of a projection device and a circulation path of external air outside the accommodating space according to some exemplary embodiments of the present disclosure.
  • FIG. 4 schematically illustrates a focus adjuster and a baffle of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 5 is an enlarged schematic diagram of a first air inlet of a first fan of a projection device according to some exemplary embodiments of the present disclosure, emphasizing on various functional areas of the first air inlet.
  • FIGS. 6A and 6B schematically illustrate the positional relationship of a display panel, a first polarizing element, a second polarizing element, a light transmitting portion, a first lens, and a second lens along a light traveling direction of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 7 schematically illustrates in a simplified manner a light path diagram of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 8 schematically illustrates in an exploded view how to fix the display panel and the first or second lens to the fixing frame by snapping.
  • FIG. 9 schematically illustrates in a simplified manner the matching between a display panel of a projection device and a groove on an inner surface of a housing according to some exemplary embodiments of the present disclosure.
  • FIG. 10 schematically illustrates a circulation path of internal air within an accommodating space of a projection device and a circulation path of external air outside the accommodating space according to other exemplary embodiments of the present disclosure.
  • FIG. 11 is a perspective view of a second fan in the projection device of FIG. 10 .
  • FIG. 12 is a three-dimensional view of the second fan in the projection device of FIG. 10 from another angle.
  • FIG. 13 is a reference schematic diagram of a local position in the projection device shown in FIG. 10 .
  • FIG. 14 is a schematic diagram showing the positional relationship between a second reflector and a ventilation portion provided in some exemplary embodiments of the present disclosure.
  • FIG. 15 is a schematic diagram of optical elements in a projection device provided in some exemplary embodiments of the present disclosure.
  • FIG. 16 is a schematic diagram of the optical path when the display surface of the display panel is parallel to the plane where the second lens is located.
  • FIG. 17 is a schematic diagram of a projection device implementing an object-side telecentric optical path according to some exemplary embodiments of the present disclosure.
  • FIG. 18 is a schematic diagram of a display panel, a second lens, a first reflector, and a projection lens in the projection device shown in FIG. 15 .
  • FIG. 19 is a schematic diagram showing the principle of angled off-axis projection.
  • FIG. 20A is a schematic diagram showing the relationship between a projection device and a ground plane provided in some exemplary embodiments of the present disclosure.
  • FIG. 20B is a schematic diagram showing the relationship between the projection device and the ground plane provided in some other exemplary embodiments of the present disclosure.
  • FIG. 21A is a partial optical path diagram of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 21B is a front view of a light emitting element and a base thereof of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 22A is a three-view diagram of a condenser lens of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 22B is another three-view diagram of a condenser lens of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 23 is another outline diagram of a lens base of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 24A is a simulation diagram of an imaging light path of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 24B is a simulation diagram of illumination of a display area of a display panel of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 25 is a schematic diagram of a second reflector in a projection device according to some exemplary embodiments of the present disclosure.
  • FIG26 is a light path diagram of the second reflecting mirror shown in FIG25 .
  • FIG. 27 is a schematic diagram of a second reflector in a projection device according to some other exemplary embodiments of the present disclosure.
  • FIG28 is a light path diagram of the second reflecting mirror shown in FIG27 .
  • FIG. 29 is a schematic diagram of a second reflector in a projection device according to some further exemplary embodiments of the present disclosure. picture.
  • FIG30 is a light path diagram of the second reflecting mirror shown in FIG28.
  • FIG. 31 is a schematic diagram of a first reflector in a projection device according to some exemplary embodiments of the present disclosure.
  • the numerical range expressed in the form of [A, B] in the present disclosure indicates that the numerical range is from A to B, and includes A and B.
  • the numerical range expressed in the form of (A, B) in the present disclosure indicates that the numerical range is from A to B, and does not include A and B.
  • the numerical range expressed in the form of [A, B) in the present disclosure indicates that the numerical range is from A to B, and includes A, but does not include B.
  • the numerical range expressed in the form of (A, B) in the present disclosure indicates that the numerical range is from A to B, and includes B, but does not include A.
  • the numerical range expressed in the form of "A-B" or "A ⁇ B" indicates that the numerical range is from A to B, and includes A and B.
  • the "rectangle" mentioned in the present disclosure includes rectangles in the general sense and rounded rectangles.
  • the long side length (i.e., length) and short side length (i.e., width) of the rounded rectangle are respectively the long side length and short side length of the rounded rectangle after being restored to a general rectangle.
  • the upper base and the lower base of a trapezoid in the present disclosure are defined in terms of length relationship.
  • the length of the upper base is shorter than the length of the lower base.
  • the meaning of element A being located on the side of element B close to element C can be understood in one of the following ways according to the actual structure of the optical path: first, in the optical path, the main light passes through element A first and then element B during the process from element C to element B; second, in the optical path, the main light passes through element A first and then element C during the process from element B to element C.
  • the meaning of element A being located on the side of element B away from element C can be understood in one of the following ways according to the actual structure of the optical path: first, in the optical path, the main light passes through element B and then element A during the process from element C to element A; second, in the optical path, the main light passes through element B and then element C during the process from element A to element C.
  • the present disclosure uses the normal working position of the projection device as a reference, that is, the side of the projection device facing the projected image (such as a projection screen) is called the front side or the front; the rear side or the rear direction refers to the side of the projection device facing away from the projected image, and the left and right sides are the lateral directions perpendicular to the front-to-back direction.
  • the upper and lower sides are the directions perpendicular to both the front-to-back direction and the left-to-right direction.
  • the upper and lower sides are the directions perpendicular to both the front-to-back direction and the left-to-right direction.
  • the projection devices on the market mainly include CRT (Cathode Ray Tube) projection devices, LCD (Liquid Crystal Display) projection devices, and DLP (Digital Light Processing) projection devices.
  • LCD projection devices mainly include single LCD projection devices, triple LCD projection devices, etc.
  • Single LCD projection devices have simple structures and low costs, and are suitable for popularization to low- and middle-income groups, so they have considerable room for growth.
  • FIG. 1A, 1D and 1E are schematic stereograms of projection devices according to some exemplary embodiments of the present disclosure in a cross-sectional manner, and are intended to illustrate the internal structure of the projection device.
  • FIG. 1B and FIG. 1C are schematic stereograms of a first radiator of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. 2 is a schematic stereogram of a projection device according to some other exemplary embodiments of the present disclosure, and is intended to illustrate the external structure of the projection device.
  • the projection device includes: a housing 1, a light source assembly 2, a projection lens 3 and a first radiator 4.
  • the light source assembly 2 includes a light emitting element 21 and a focusing lens 23 located at the light emitting side of the light emitting element 21 .
  • the focusing lens 23 is configured to converge or shape the light emitted by the light emitting element 21.
  • the focusing lens 23 may be a plano-convex lens.
  • the light source assembly 2 further includes a light emitting element base 22, and the light emitting element 21 is located on the light emitting element base 22.
  • the housing 1 includes a front surface and a rear surface opposite to each other, the front surface includes a first opening P1 and a second opening P2.
  • the housing 1 also includes a third opening P3, at least part of which is located on the rear surface; the light emitting element 21 is located at the first opening P1; the projection lens 3 is located at the second opening P2; and the first heat sink 4 is located at the third opening P3 of the housing 1.
  • the light emitting element 21, the projection lens 3, the first heat sink 4 and the housing 1 together constitute a receiving space SP.
  • the first radiator 4 with a large heat dissipation area is arranged at the third opening P3 of the housing 1, the heat dissipation efficiency of the internal heat of the projection device is significantly improved.
  • the first radiator 4 and the housing 1 together form the accommodating space SP, and there is no large-area hollow exhaust hole on the housing 1, so there is no friction between the air and the housing 1 during exhaust, which significantly reduces the operating noise of the projection device.
  • the accommodation space SP is a closed accommodation space, so that dust can be prevented from entering the interior of the housing and the optical components can be kept clean.
  • the projection device may further include a first fan 5, and the first fan 5 is located on a side of the light emitting assembly 2 away from the accommodating space SP.
  • the first fan 5 is an axial flow fan, and the pumping direction of the first fan 5 is parallel to the axial direction of the first fan 5.
  • the first fan 5 includes a first air inlet 51 disposed toward the light emitting element base 22 and a first air outlet 52 opposite to the first air inlet 51.
  • the air that is heat-transferred by the first radiator 4 can be sucked, and the heat emitted from the first radiator 4 can be dissipated, further improving the heat dissipation efficiency.
  • the first air inlet 51 is arranged relative to the light-emitting element base 22, which can also play a role in heat dissipation of the light-emitting element.
  • a first gap is provided between the first air inlet 51 and the light-emitting element base 22, and the first gap is conducive to sufficient heat exchange between the light-emitting element base 22 and the air, thereby improving the heat dissipation efficiency of the light-emitting element base 22.
  • FIG. 3 schematically shows a storage space of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG5 is an enlarged schematic diagram of the first air inlet of the first fan of the projection device according to some exemplary embodiments of the present disclosure, emphasizing the various functional areas of the first air inlet.
  • the first air inlet 51 includes a first area Z1 covered by the orthographic projection of the light emitting element base 22 on the first air inlet 51 and a second area Z2 located on the side of the first area Z1 away from the projection lens 3.
  • the second area Z2 is located on the side of the first area Z1 away from the projection lens 3, so that the hot air passing through the first radiator 4 can enter the first fan 5 without hindrance, thereby increasing the heat dissipation efficiency of the first fan.
  • the first air inlet 51 further includes a third area Z3 located on a side of the first area Z1 away from the second area Z2, thereby increasing the space for air flow and improving heat dissipation efficiency.
  • the width W3 of the third area Z3 is smaller than the width W2 of the second area Z2, that is, the first area Z1 is set to a position closer to the projection lens 3 within the overall height range of the first air inlet 51, which can increase space for air flow below and improve heat dissipation efficiency.
  • the projection device further includes a bottom plate 10, which is disposed opposite to the housing 1; a first external air duct CH1 is formed between the housing 1 and the bottom plate 10; the first external air duct CH1 is used to allow air to enter the first fan 5 after passing through the first external air duct CH1 when the projection device is working.
  • the first external air duct CH1 is disposed opposite to the second zone Z2.
  • the bottom plate 10 is arranged opposite to a part of the first radiator 4, and a part of the first radiator 4 and the bottom plate 10 form a first external air duct CH1.
  • the first radiator 4 includes a first radiator first part 41, and the first radiator first part 41 is arranged opposite to the bottom plate 10. It can be understood that the first radiator first part 41 and the bottom plate 10 are arranged opposite to each other, including that the first radiator first part 41 and the bottom plate 10 are parallel to each other, and also include that the acute angle between the first radiator first part 41 and the bottom plate 10 is less than 45°. In this way, the heat emitted by the first radiator 4 can enter the first external air duct CH1 more effectively, thereby improving the heat dissipation efficiency.
  • the acute angle between the first radiator first part 41 and the bottom plate 10 is less than or equal to 20°; for example, the acute angle between the first radiator first part 41 and the bottom plate 10 can be in the range of [5°, 15°]; for example, the acute angle between the first radiator first part 41 and the bottom plate 10 can be in the range of [8°, 12°]; for example, it can be 10°.
  • the first heat sink first part 41 includes a wrapping portion wrapping the accommodation space SP and a heat dissipation fin located on a side of the wrapping portion away from the accommodation space SP
  • the first heat sink first part 41 includes a wrapping portion wrapping the accommodation space SP and a heat dissipation fin located on a side of the wrapping portion away from the accommodation space SP.
  • the acute angle between the portion 41 and the bottom plate 10 may be understood as the acute angle between the wrapped portion of the first portion 41 of the first heat sink and the bottom plate 10 .
  • first radiator 4 and the bottom plate 10 constitute the first external air duct CH1, which can be understood as the bottom plate 10 and the first radiator 4 include a gap, and the gap constitutes at least a portion of the first external air duct CH1.
  • first radiator 4 and the bottom plate 10 can also be in direct contact, and the first radiator 4 includes a path that allows air to flow, so that the ventilation channel formed by the first radiator 4 and the bottom plate 10 is at least a portion of the first external air duct.
  • the base plate 10 includes a base plate supporting surface 101 and a base plate supporting foot 102, wherein the base plate supporting foot 102 is closer to the surface on which the projection device is placed (for example, in direct contact with the surface on which the projection device is placed) relative to the base plate supporting surface 101; the base plate 10 may also include a base plate bearing structure 103, which is used to support the shell 1.
  • the projection device may further include a circuit board 8, which is arranged opposite to the shell 1, and a second external air duct CH2 is formed between the shell 1 and the circuit board 8; the second external air duct CH2 is used to allow air to enter the first fan 5 after passing through the second external air duct CH2 when the projection device is working; the second external air duct CH2 is arranged opposite to the second zone Z2.
  • the circuit board 8 may be a system board.
  • the circuit board 8 may be configured to drive at least one of a display panel, a light emitting element, a fan, and a focus adjustment component.
  • the circuit board 8 is arranged opposite to a part of the first heat sink 4, and a part of the first heat sink 4 and the circuit board 8 constitute a second external air duct CH2.
  • the first heat sink 4 includes a first heat sink first part 41, and the first heat sink first part 41 is arranged opposite to the circuit board 8. It can be understood that the first heat sink first part 41 is arranged opposite to the circuit board 8, including that the first heat sink first part 41 is parallel to the extension surface of the circuit board 8, and also includes that the acute angle between the first heat sink first part 41 and the extension surface of the circuit board 8 is less than 45°.
  • the acute angle between the first heat sink first part 41 and the bottom plate 10 is less than or equal to 20°.
  • the acute angle between the first heat sink first part 41 and the bottom plate 10 can be in the range of [5°, 15°]; for example, the acute angle between the first heat sink first part 41 and the bottom plate 10 can be in the range of [5°, 10°]; for example, it can be 10°.
  • the acute angle between the first part 41 of the first radiator and the base plate 10 can be understood as the acute angle between the wrapping portion of the first radiator 41 and the base plate 10.
  • first heat sink 4 and the circuit board 8 constitute the second external air duct CH2, which can be understood as the circuit board 8 and the first heat sink 4 include a gap, and the gap constitutes at least a portion of the second external air duct CH2.
  • the first heat sink 4 and the circuit board 8 can also be in direct contact, and the first heat sink 4 includes a path that allows air to flow, so that the ventilation channel formed by the first heat sink 4 and the circuit board 8 is at least a portion of the second external air duct CH2.
  • the projection device further comprises a support frame, which is closer to the surface on which the projection device is placed relative to the housing 1 during normal use, and is used to support the housing 1.
  • the support frame comprises a support surface 61 and a support foot 62, wherein, during normal use, the support foot 62 is closer to the surface on which the projection device is placed relative to the support surface 61 (e.g., directly in contact with the surface on which the projection device is placed), and is used to support the support surface 61; the support surface 61 is used to carry the housing 1.
  • the circuit board 8 is located on the side of the support surface 61 away from the housing 1; preferably, the support surface 61 comprises a through hollow portion, so that the heat of the circuit board 8 can be taken away in time through the second external air duct CH2 to avoid heat accumulation.
  • the first radiator 4 may be arched as a whole. In this way, the first radiator 4 fully wraps the main heat dissipation area inside the projection device at the rear side of the projection device, which can fully exchange heat and improve the heat dissipation efficiency.
  • the first heat sink 4 includes a wrapping portion 44 and a plurality of first heat dissipation fins 46 located on the side of the wrapping portion 44 away from the accommodation space SP, the wrapping portion 44 covers the third opening P3, each of the plurality of first heat dissipation fins 46 includes a first heat dissipation portion, and the first heat sink 4 is configured to allow air to pass between the plurality of first heat dissipation portions and then enter the first fan 5 from the first air inlet 51.
  • the number of the first heat dissipation fins may be 15-25
  • the protruding height may be 10-20 mm
  • the width may be 20-38 mm.
  • the first radiator 4 is a cast aluminum radiator.
  • the projection device may include at least one of a circuit board 8 and a base plate 6.
  • the projection device when the projection device includes a circuit board 8, at least a portion of the first heat dissipation portion is located between the wrapping portion 44 and the circuit board 8.
  • the projection device when the projection device includes a bottom plate 6, at least a portion of the first heat dissipation portion is located between the wrapping portion 44 and the bottom plate 6. In this way, the heat dissipation effect of the first heat dissipation fins 46 is effectively achieved.
  • the first heat dissipation portion is arranged along the airflow direction so as not to hinder the airflow.
  • the first heat dissipation portion is streamlined so as not to hinder the airflow. For example, when the first heat dissipation portion turns and extends, it can turn in a curve.
  • the wrapping portion 44 includes a first sub-wrapping portion located on the side where the rear surface of the shell 1 is located (as shown in FIG. 1D , it covers the third opening on the side where the rear surface is located, for example, in an arch shape) and a second sub-wrapping portion located on a side different from the side where the rear surface of the shell 1 is located (as shown in FIG. 1D , the second sub-wrapping portion is located on the lower side of the first sub-wrapping portion, and the extension direction is different from that of the first sub-wrapping portion, and the second sub-wrapping portion and the first sub-wrapping portion jointly cover the third opening); the second sub-wrapping portion is arranged continuously with the first sub-wrapping portion.
  • the transition between the first sub-wrapping portion and the second sub-wrapping portion is in the form of a corner, or the arc radius at the transition between the first sub-wrapping portion and the second sub-wrapping portion is smaller than the arc radius at the transition between the first heat dissipation portion corresponding to the first sub-wrapping portion and the first heat dissipation portion corresponding to the second sub-wrapping portion.
  • the angle (for example, the corner) between the portion of the first sub-wrapping portion close to the second sub-wrapping portion and the portion of the second sub-wrapping portion close to the first sub-wrapping portion is greater than 90° and less than 180°.
  • the angle between the portion of the first sub-package portion close to the second sub-package portion and the portion of the second sub-package portion close to the first sub-package portion is greater than 90° and less than 150°, so that the volume of the machine can be taken into account while ensuring the heat dissipation area.
  • the angle between the portion of the first sub-package portion close to the second sub-package portion and the portion of the second sub-package portion close to the first sub-package portion is greater than 90° and less than 150°.
  • the angle between the portion of the first sub-package portion close to the second sub-package portion and the portion of the second sub-package portion close to the first sub-package portion is in the range of [120°, 145°].
  • the first heat sink first portion 41 includes a second sub-wrapping portion and a first heat dissipating portion corresponding to the second sub-wrapping portion.
  • the circuit board 8 includes a second heat dissipation portion 81, which is located on the side of the circuit board 8 close to the housing 1.
  • the air passing through the first fan 5 can first pass through the second heat dissipation portion 81, thereby further improving the heat dissipation efficiency.
  • the second heat dissipation portion 81 may include a third heat dissipation fin; preferably, the third heat dissipation fin is along Extending in the direction of airflow.
  • the projection lens 3 when the projection device is in working state, the projection lens 3 is higher than the light source assembly 2; the housing 1 further includes a bottom surface and a top surface, the bottom surface is lower than the top surface, and the front surface and the rear surface are respectively connected to the top surface and the bottom surface.
  • the projection device when the projection device is in working state, the projection device is configured to form a first external air duct CH1 between the bottom surface and the placement surface GD of the projection device, and the air entering the first air inlet 51 includes air passing through the first external air duct CH1, and the air entering the air duct carries the heat emitted from the first radiator 4.
  • the projection device further includes a support structure 11 for supporting the housing 1.
  • FIGS. 6A and 6B schematically illustrate the positional relationship of the display panel, the first polarizing element, the second polarizing element, the light-transmitting portion, the first lens, and the second lens along the light traveling direction of the projection device according to some exemplary embodiments of the present disclosure
  • FIG7 schematically illustrates the light path diagram of the projection device according to some exemplary embodiments of the present disclosure in a simplified manner.
  • the projection device further includes: a first polarizing element POL1, a second polarizing element POL2, a display panel PNL, a first lens LNS1, and a second lens LNS2.
  • the display panel PNL acts as a light valve to control the transmittance of each pixel of the display panel PNL.
  • the display function of the display panel PNL is realized by projecting a picture.
  • the display panel PNL may be a liquid crystal display panel.
  • the specific type of the liquid crystal display panel is not limited in the disclosed embodiment.
  • it may be a vertical alignment (VA) type or a twisted nematic (TN) type display panel, in which case the common electrode is disposed on the second substrate; of course, it may also be an in-plane switching (IPS) type display panel or a fringe field switching (FFS) type display panel or an advanced super-dimensional field switching (ADS) type display panel, in which case the common electrode is disposed on the first substrate, as long as an electric field can be generated between the pixel electrode and the common electrode to drive the liquid crystal deflection.
  • VA vertical alignment
  • TN twisted nematic
  • IPS in-plane switching
  • FFS fringe field switching
  • ADS advanced super-dimensional field switching
  • the first polarizing element POL1 is disposed on the light-emitting side of the light source assembly 2 , and is used for converting the light emitted by the light source assembly 2 into first polarized light having a first polarization direction.
  • the display panel PNL is disposed on a side of the first polarizing element POL1 away from the light source assembly 2 .
  • the projection device changes the polarization state of light (first polarized light) entering the display panel PNL by controlling the liquid crystal deflection of the display panel PNL.
  • first polarized light the polarization state of light entering the display panel PNL
  • the display panel PNL cooperates with the second polarizing element POL2 located on the side of the display panel PNL away from the first polarizing element POL1, it can be used to generate a display image.
  • the first lens LNS1 is disposed on a side of the display panel PNL away from the light source assembly 2.
  • the first lens LNS1 may also be disposed between the display panel PNL and the first polarizing element POL1.
  • the second polarizing element POL2 is disposed on a side of the display panel PNL away from the first polarizing element POL1.
  • the second polarizing element POL2 may be configured to emit one of polarized light in a first polarization direction and polarized light in a second polarization direction from the projection lens, wherein the first polarization direction and the second polarization direction are perpendicular.
  • the second polarizing element POL2 is a polarizing film material, and is attached to the light emitting surface of the display panel PNL.
  • the display panel PNL may adjust the polarization direction of the first polarized light to emit the second polarized light.
  • the polarization direction of the second polarized light is between the first polarization direction and the second polarization direction, and the first polarization direction is perpendicular to the second polarization direction.
  • the polarization direction of the second polarized light is between the first polarization direction and the second polarization direction, including the case where the polarization direction of the second polarized light is the same as the first polarization direction, and also including the case where the polarization direction of the second polarized light is the same as the second polarization direction.
  • the first polarizing element POL1 is a polarizing film material, and is disposed in contact with the light incident surface of the display panel PNL. In other exemplary embodiments, there is a gap between the first polarizing element POL1 and the display panel PNL, so that the heat generated by the first polarizing element POL during light filtering is difficult to be transferred to the display panel PNL, thereby preventing the display effect from being affected by the excessive temperature of the liquid crystal display panel.
  • the projection device further includes a light-transmitting portion GLS.
  • the first polarizing element POL is a polarizing film material and is bonded to the light-transmitting portion GLS.
  • the material of the light-transmitting portion GLS is, for example, glass; the material of the light-transmitting portion GLS can, for example, play a heat-insulating role.
  • the two side surfaces of the light-transmitting portion GLS are planes, and the light passes through the light-transmitting portion GLS. There will be no convergence or divergence front to back; it is understandable that the light-transmitting portion GLS will not act as an optical lens.
  • the first polarizing element POL1 is attached to the side of the transparent portion GLS away from the display panel PNL. In this way, the transparent portion GLS can be used to block the heat generated by the first polarizing element POL1 receiving light from being transferred to the display panel PNL, thereby avoiding affecting the display effect.
  • the first polarizing element POL1 may also be attached to a side of the light-transmitting portion GLS close to the display panel PNL.
  • the display panel PNL includes an array substrate and a color filter substrate, wherein the second polarizing element POL2 is located on a side of the array substrate away from the color filter substrate.
  • the second polarizing element POL2 is arranged in contact with the array substrate.
  • the second polarizing element POL2 is located on the light-emitting side of the display panel, and the projection light transmitted through the display panel PNL first passes through the color filter substrate and then passes through the array substrate to be emitted, so that the heat accumulated on the surface of the color filter substrate can be reduced, the surface temperature of the display panel can be reduced, and the display panel can be protected.
  • the first lens LNS1 is disposed on a side of the display panel PNL away from the light source assembly 2, the light-transmitting portion GLS is located between the light source assembly 2 and the display panel PNL, and a second gap d2 is provided between the light-transmitting portion GLS and the display panel PNL.
  • the first lens LNS1 is disposed between the display panel PNL and the first polarizing element POL1, the light-transmitting portion GLS is located between the light source assembly 2 and the first lens LNS1, and a second gap d2 is provided between the light-transmitting portion GLS and the first lens LNS1.
  • the second gap d2 may be a gap located at the light-exiting side of the light-transmitting portion GLS and disposed adjacent to the light-transmitting portion GLS; in other exemplary embodiments, the first polarizing element POL1 is attached to the light-exiting side of the light-transmitting portion GLS, and the second gap d2 is a gap located at the light-exiting side of the first polarizing element POL1 and disposed adjacent to the first polarizing element POL1. It should be noted that the two being adjacent may be understood as not including other elements between the two.
  • the first lens LNS1 is a convex lens.
  • the first lens LNS1 can be a Fresnel lens or an aspherical lens, preferably a Fresnel lens.
  • the display device further includes a first reflecting mirror MR1.
  • the first reflector MR1 is arranged to reflect the light emitted from the display panel PNL into the projection lens 3. Specifically, the first reflector MR1 is arranged on the side of the display panel PNL away from the light source assembly 2, and the first reflector MR1 is arranged on the side of the first lens LNS1 away from the light source assembly 2.
  • the second reflector MR2 may be a plane reflector.
  • the first element is located on the side of the second element away from the light source assembly 2, it can be understood that in terms of spatial position, the first element is farther away from the light source assembly 2 relative to the second element. It can also be understood that in the light path, the main light passes through the second element first and then the first element.
  • the second polarizing element POL2 may be the same element or different elements as the first reflector MR1.
  • the first reflector MR1 may be configured to emit one of the polarized light in the first polarization direction and the polarized light in the second polarization direction from the projection lens 3. In this way, the light emitting surface of the display panel PNL does not need to be attached with the second polarizing element POL2, which reduces the heat accumulation in the local position, and the projector can set a higher projection brightness screen.
  • the first reflector MR1 can include: an integrated multilayer optical film layer, which can be arranged on the side of the substrate (such as a glass substrate) facing the display panel PLN and inclined to the display panel PLN.
  • the refractive index of any two adjacent optical film layers is different, thereby forming an optical interface; each of the optical interfaces corresponds to a band, and different optical interfaces correspond to different bands, and each optical interface is used to transmit polarized light with a wavelength in the corresponding band and a polarization direction of the first polarization direction, and reflect polarized light with a wavelength in the corresponding band and a polarization direction of the second polarization direction.
  • the number of optical film layers 42 can be 3, 4, 5, and so on. For example, there are three optical interfaces between the multilayer optical film layers 42.
  • the first optical interface is used to transmit light in the red light band with a first polarization direction, and to reflect light in the red light band with a second polarization direction;
  • the second optical interface is used to transmit light in the green light band with a first polarization direction, and to reflect light in the green light band with a second polarization direction;
  • the third optical interface is used to transmit light in the blue light band with a first polarization direction, and to reflect light in the blue light band with a second polarization direction.
  • each optical film layer can also be adjusted so that each optical interface in the reflective component 40 is used to transmit polarized light with a wavelength in the corresponding band and a polarization direction in the second polarization direction, and reflect polarized light with a wavelength in the corresponding band and a polarization direction in the first polarization direction.
  • the projection device further includes a second fan 7 located in the accommodation space SP, which is used to promote the internal air circulation in the accommodation space SP, and the internal hot air exchanges heat with the external cold air through the first heat sink 4.
  • the second fan 7 is a centrifugal fan, which includes a second air inlet 71 and a second air outlet 72, the second air outlet 72 discharges the internal air, and the second air inlet 71 sucks the internal air, so that the internal air circulates in at least a part of the area in the accommodation space SP.
  • the second air inlet 71 is arranged opposite to the first radiator 4, so that the internal air cooled by the first radiator 4 directly enters the second air inlet 71 for the next air flow cycle, thereby achieving effective cooling inside the accommodation space SP.
  • the flow path of the internal air includes the second gap d2 , that is, the internal air is driven by the second fan 7 to flow through the second gap d2 to remove heat near the second gap d2 .
  • the flow path of the internal air includes the third gap d3, the third gap d3 is arranged side by side with the second gap d2, and the flow direction of the internal air in the second gap d2 is the same as or opposite to the flow direction of the internal air in the third gap d3.
  • the second gap d2 and the third gap d3 are respectively located on the light incident surface side and the light exit surface side of the display panel PNL, and the flow direction of the internal air on the light incident surface side is opposite to the flow direction of the internal air on the light exit surface side.
  • the third gap d3 and the second gap d2 are arranged side by side, which can be understood as the extension direction of the third gap d3 being the same or substantially the same as that of the second gap d2, for example, the angle between the extension direction of the third gap d3 and the second gap d2 is within 30°.
  • the internal air sequentially passes through the second air outlet 72, the second air duct including the second gap d2, the third air duct including the third gap d3, the first inner air duct CH', the second inlet
  • the air outlet 71 is used for internal circulation flow.
  • At least a part of the first radiator 4 constitutes a side wall of the first inner air duct CH'.
  • the first radiator 4 includes a wrapping portion, and at least a part of the wrapping portion constitutes a side wall of the first inner air duct CH'.
  • the first radiator 4 also includes a second heat dissipation fin 48 extending into the first inner air duct CH', so that the heat exchange efficiency between the first radiator 4 and the outside can be increased.
  • the number of second heat dissipation fins 48 may be 15-25
  • the protruding height may be in the range of [10mm, 20mm]
  • the width may be in the range of [20mm, 38mm].
  • the extension direction of the second heat dissipation fin 48 is consistent with the extension direction of the first inner air duct CH'.
  • the width of the first inner air duct CH' gradually widens, thereby increasing the area of heat exchange between the first inner air duct CH' and the outside air, and improving the heat dissipation efficiency.
  • the difference between the width of the widest part of the first inner air duct CH' and the width of the inlet position of the first inner air duct CH' is in the range of 10mm-20mm, wherein the inlet of the first inner air duct CH' is connected to the third air duct, and the width of the first inner air duct CH' represents the width of the first inner air duct CH' in the direction perpendicular to the plane where the second air inlet 71 is located.
  • the width of the widest part of the first inner air duct CH' is between 2 times and 3 times the width of the inlet position of the first inner air duct CH'.
  • the width of the widest part of the first inner air duct CH' is between 2 times and 3 times the width of the third gap d3.
  • the widest part of the first inner air duct CH' is arranged opposite to the second air inlet 71.
  • the first internal air duct CH' is directly connected to the second air inlet 71, so that the internal air cooled by the first radiator 4 directly enters the second air inlet 71 for the next air flow cycle, thereby achieving effective cooling inside the accommodation space SP.
  • the display device includes a second reflector MR2, and the second reflector MR2 is configured to reflect the light emitted by the light source assembly 2 into the display panel PLN.
  • the second reflector MR2 can be a plane reflector.
  • the display device includes a second lens LNS2, which is located between the second reflector MR2 and the display panel PLN and is used to collimate the light reflected by the second reflector MR2.
  • the light source assembly 2 is a collimated light source assembly.
  • the second lens LNS2 is located at a side of the light transmitting member GLS away from the display panel PLN.
  • the second lens LNS2 is located between the first lens LNS1 and the light source assembly 2 .
  • the second lens LNS2 is a convex lens.
  • the second lens LNS2 may be a Fresnel lens or an aspherical lens, preferably a Fresnel lens.
  • the second fan 7 is located on a side of the second reflector MR2 away from the light source assembly 2 ; a fourth gap d4 is defined between the second fan 7 and the first heat sink 4 , and the first inner air duct CH′ includes the fourth gap d4 .
  • FIG8 schematically illustrates how to fix the display panel and the first or second lens to the fixed frame by snapping in an exploded view
  • FIG9 schematically illustrates in a simplified manner the cooperation between the display panel of the projection device and the groove on the inner surface of the housing according to some exemplary embodiments of the present disclosure.
  • the projection device also includes a fixed frame 9, and the display panel PNL and the first lens LNS1 are respectively inlaid on opposite sides of the fixed frame 9. There is a third gap d3 between the first lens LNS1 and the display panel PNL.
  • the fixed frame 9 includes two through sides 91 arranged oppositely, and one of the two through sides 91 is arranged toward the first heat sink 4.
  • each through side includes a hollow portion 911, and the area of the hollow portion 91 accounts for more than 80% of the area of the through side 91.
  • the fixed frame 9 includes two positioning sides 92 arranged oppositely; the two positioning sides 92 are connected to the two through sides 91.
  • Each positioning side 92 includes a positioning portion for cooperating with the housing 1 to achieve the positioning of the fixed frame 9.
  • the positioning portion includes a convex rib 921, and the convex rib 921 extends in the same direction as the display panel PNL.
  • the fixed frame 9 also includes a U-shaped buckle 93; the display panel PNL, the fixed frame 9 and the first lens LNS1 are all arranged between the two ends of the U-shaped buckle 93, and the buckle 93 clamps at least one positioning side 92 of the fixed frame 9, that is, the U-shaped buckle defines the display panel PNL and the first lens LNS1 in the thickness direction.
  • the position where the U-shaped buckle 93 clamps the positioning side 92 of the fixed frame 9 includes a matching convex rib 931.
  • the matching convex rib 931 is arranged in succession with the convex rib 921 of the positioning portion to form a continuously distributed linear slide rail. For example, as shown in FIG.
  • the inner surface 10' of the housing 1 includes a groove 101', and the convex rib 921 cooperates with the groove 11 to achieve the positioning and sliding of the fixed frame 9.
  • the convex rib 921 is configured to be able to slide in the groove 101', so as to pull the display panel PNL out of the housing 1 or put it in.
  • the groove 101 ′ may be a part of the housing 1 , or may be a mechanical structure connected to the housing 1 .
  • the first heat sink 4 is detachable from the housing 1.
  • the fixing frame 9 can be put into the projection device or taken out from the projection device after the first heat sink 4 is detached from the housing 1, so that the maintenance of the projection device is convenient.
  • FIG4 schematically shows a focuser and a baffle of a projection device according to some exemplary embodiments of the present disclosure
  • the projection device includes a focusing assembly for focusing the projection lens 3, which includes a sensing assembly 13 and a driving assembly.
  • the sensing assembly 13 includes a distance sensor, and the distance sensor is configured to measure the projection distance between the projection lens 3 and the projected image (e.g., a projection screen).
  • the distance sensor can be a TOF (Time of Flight) sensor.
  • the driving assembly is configured to drive the projection lens 3 to adjust the focal length according to the measured projection distance.
  • the driving assembly includes a driving motor 11, an actuator 12, and a focus adjuster 14 disposed on the projection lens; the driving motor 11 drives the actuator 12 to move, and the actuator 12 is coupled to the focus adjuster 14 to focus the projection lens 3.
  • the rotating shaft of the driving motor 11 can be fixedly connected to the actuator 12.
  • the actuator 12 includes a first gear
  • the focus adjuster 14 includes a transmission tooth 141 disposed on the outer periphery of the projection lens 3, and the first gear and the transmission tooth 141 are coupled by mutual meshing.
  • the focus adjustment assembly further includes a limit assembly, and the limit assembly is used to control the focus range of the projection lens.
  • the limit assembly includes an optical coupler and a baffle 16, and the relative position of the baffle 16 and the focus adjuster 14 is fixed.
  • the optical coupler is used to determine whether the baffle 16 blocks or does not block the light and send a signal to provide an instruction to the drive motor 11.
  • the focus adjuster 14 is a focus ring, and the baffle 16 and the transmission gear 141 are both fixed around the focus ring.
  • the optical coupler includes a light emitter and a light receiver, and the baffle 16 is configured to block the light path between the light emitter and the light receiver.
  • the optocoupler is configured as follows: when the light path between the light emitter and the light receiver is blocked by the baffle 16, the optocoupler transmits a first control signal to the circuit board to control the motor 11 to rotate for automatic focusing; when the light path between the light emitter and the light receiver is not blocked by the baffle 16, the optocoupler transmits a second control signal to the control circuit board to brake the motor 11.
  • the transmission ratio of the first gear to the transmission tooth 141 is 1:3.5-4.5; the ratio of the root diameter of the first gear to the root diameter of the transmission tooth 141 is 1:5.0-6.0; the ratio of the addendum diameter of the first gear to the addendum diameter of the transmission tooth 141 is 1:3.2-4.2.
  • the first gear and the transmission tooth 141 can ensure high efficiency and smoothness of the drive while ensuring the accuracy of focusing.
  • the circuit board 8 is electrically connected to the display panel PNL to control the display panel PNL.
  • the circuit board 8 is electrically connected to the driving assembly to control the driving assembly.
  • the second reflecting mirror MR2 and the first reflecting mirror MR1 are detachably mounted on the housing 1 in the accommodation space SP.
  • an airtight sealing filler is provided between the second opening P2 and the projection lens 3 to improve the airtightness of the accommodating space SP.
  • an airtight sealing filler is provided between the first opening P1 and the plano-convex lens 23 to improve the airtightness of the accommodating space SP.
  • a gas-tight sealing filler is provided at a portion where the first heat sink 4 is joined to the third opening P3 of the housing 1 , so as to improve the airtightness of the accommodating space SP.
  • the airtight sealing filler is selected from at least one of a silicone filler or a rubber filler.
  • the projection device is configured as follows: within the airtight containing space SP, driven by the second fan 7, the internal air flow sequentially flows through: the second air outlet 72 of the second fan 7, the second gap d2, the third gap d3, the fourth gap d4, and the second air inlet 71 of the second fan 7 for heat circulation.
  • an elongated hole is opened at a position corresponding to the light-transmitting part GLS on at least one of the left and right sides of the shell 1, and the width of the hole is greater than or equal to the thickness of the light-transmitting part GLS, so that the light-transmitting part GLS can be directly pulled out or put into the accommodating space SP through the hole, which is convenient for replacement and maintenance of the light-transmitting part GLS.
  • the projection device further comprises a second heat sink HS located outside the housing 1 and in front of the light emitting assembly 2.
  • the second heat sink HS is connected to the light source through at least one heat pipe Cu.
  • the light emitting element base 22 of the assembly 2 is thermally coupled to promote heat dissipation near the light source assembly 2.
  • the second heat sink HS is larger in size than the light emitting element base 22 and is spaced a certain distance from the light emitting element base 22 to place the first fan 5.
  • the first fan 5 is arranged between the light emitting element base 22 and the second heat sink HS.
  • the material of at least one heat pipe Cu and the light emitting element base 22 includes copper.
  • the second heat sink HS includes a heat dissipation fin formed by stacking a plurality of aluminum sheets, and one end of each heat pipe Cu is connected to the light emitting element base 22, and the other end is inserted into it from the side of the second heat sink HS.
  • the connection method of the heat pipe Cu and the light emitting element base 22 is, for example, welding connection.
  • the projection device further comprises windshields 15 arranged on the left and right sides of the projector, so as to facilitate the first fan 5 to suck the hot air near the first radiator 4.
  • the windshields 15 are at least arranged on both sides of the first external air duct CH1.
  • the projection device is configured as follows: outside the airtight containing space SP, driven by the first fan 5, external air flows in sequence through: a plurality of first cooling fins of the first radiator 4, a first external air duct CH1 formed between the shell 1 and the base plate 6 (or a second external air duct CH2 formed between the shell 1 and the circuit board 8, or a third external air duct CH3 formed between the shell 1 and the placement surface GD), a first air inlet 51 of the first fan 5, and a first air outlet 52 of the first fan 5, so as to dissipate heat to the external environment.
  • the projection device according to the present disclosure also has the following beneficial effects.
  • the common single LCD projection devices currently on the market do not have the function of automatic focusing.
  • the projection screen or the projection device moves, the distance between the projection lens and the projection screen also changes, and it is necessary to manually adjust the focus again.
  • This manual focusing operation method is cumbersome and the focusing effect is not good.
  • the projection device provided by the present invention includes a distance sensor and a drive component that can measure the projection distance between the projection lens and the projection screen, and the drive component can drive the focuser based on the projection distance to perform automatic focusing.
  • the projection device disclosed in the present invention is simple to operate, more accurate in focusing, and more efficient.
  • the light path can be folded more effectively (that is, the path of light travel is shortened).
  • the size of the projection device can be further reduced, thereby improving the portability of the projection device.
  • the present invention clamps the first lens LNS1 and the display panel PNL together through a fixing frame and a U-shaped buckle, thereby providing an integrated and compact display unit with good overall sealing, stable structure, and easy and quick disassembly, convenient maintenance and replacement.
  • FIG10 schematically shows the circulation path of the internal air in the accommodation space of the projection device according to some other exemplary embodiments of the present disclosure and the circulation path of the external air outside the accommodation space.
  • the projection device shown in FIG10 also includes: a housing 1, a light source assembly 2 and a projection lens 3.
  • a housing space is formed inside the projection lens 3.
  • a second reflector MR2, a second fan 7 and a lens assembly LNSG are arranged in the housing space.
  • the second reflector MR2 is arranged on the light-emitting side of the light source assembly 2 to reflect the light emitted by the light source assembly 2 into the lens assembly LNSG.
  • the lens assembly LNSG is used to collimate the light.
  • the lens assembly LNSG may include: the above-mentioned light-transmitting portion GLS and the second lens LNS2.
  • the accommodating space includes an air flow space, and the air in the air flow space can flow.
  • the air flow space may include: a first subspace SP1 and a second subspace SP2, wherein the light source assembly 2, the second reflector MR2, the lens assembly LNSG and a portion of the housing 1 define the first subspace SP1, and the second subspace SP2 is located around the first subspace SP1.
  • the second subspace SP2 being located around the first subspace SP1 does not mean that the second subspace SP2 must be a continuous annular structure surrounding the first subspace SP1, and it may also be that the second subspace SP2 is located on one side of the first subspace SP1; or, a portion of the second subspace SP2 is located on one side of the first subspace SP1, and another portion is located on another side of the first subspace SP1.
  • the second fan 7 is used to promote the internal air circulation in the air flow space, so that the internal air circulates between the first subspace SP1 and the second subspace SP2.
  • the first subspace SP1 will accumulate a certain amount of heat due to the light emission of the light source assembly 2, and the second fan 7 in FIG. 10 can push the internal air between the first subspace SP1 and the second subspace.
  • the air circulates between the first subspace SP2, which is beneficial to heat dissipation of the first subspace SP1 and to improve the reliability of the projection device.
  • the second fan 7 promotes the air flow in the air flow space, which is beneficial to maintaining the temperature balance in the air flow space, thereby facilitating the overall heat dissipation and device operation of the projection device.
  • the second fan 7 can be a centrifugal fan.
  • Figure 11 is a stereoscopic view of the second fan in the projection device of Figure 10
  • Figure 12 is a stereoscopic view of the second fan in the projection device of Figure 10 from another angle.
  • the second fan 7 includes a fan housing 1 and a centrifugal fan located in the fan housing 1.
  • the fan housing 1 includes a functional area and a non-functional area, wherein the functional area includes an area overlapping with the centrifugal fan in the axial direction of the centrifugal fan and an area where the channel through which the air is output is located.
  • the functional area is provided with a second air inlet 71 and a second air outlet 72
  • the non-functional area is provided with a ventilation portion 73 that passes through the fan housing 1.
  • the second air inlet 71 faces the second subspace SP2, and the second air outlet 72 is used to discharge air toward the first subspace SP1 and the second subspace SP2 at the same time.
  • the air discharged from the second air outlet 72 into the first subspace SP1 passes through the ventilation portion 73, enters the second subspace SP2, and then enters the second air inlet 71; the air discharged from the second air outlet 72 into the second subspace SP2 flows in the second subspace SP2 and then enters the second air inlet 71. In this way, the air in the air flow space can be circulated.
  • the second subspace SP2 includes: a first inner air duct CH' located between the first radiator 4 and the second fan 7, and at least a portion of the first radiator 4 constitutes a side wall of the first inner air duct CH'.
  • the second air inlet 71 is arranged toward the first inner air duct CH'. The air discharged from the second air outlet 72 to the first subspace SP1 can pass through the ventilation portion 73 and the first inner air duct CH' in sequence, and then enter the second air inlet 71, so that the air carrying the heat of the first subspace SP1 can exchange heat with the first radiator 4, and the first radiator 4 dissipates the heat to the external environment.
  • FIG. 6A and FIG. 6B the positional relationship of the optical elements in the projection device along the direction of light travel can be seen in FIG. 6A and FIG. 6B .
  • a PNL and a first lens LNS1 are disposed on the side of the lens assembly LNSG away from the second reflector MR2
  • a second gap d2 is provided between the lens assembly LNSG and the PNL
  • a third gap d3 is provided between the first lens LNS1 and the PNL
  • the second gap d2 is closer to the first subspace SP1 than the third gap d3.
  • FIG. 6A and FIG. 6B a PNL and a first lens LNS1 are disposed on the side of the lens assembly LNSG away from the second reflector MR2
  • a second gap d2 is provided between the lens assembly LNSG and the PNL
  • a third gap d3 is provided between the first lens LNS1 and the PNL
  • the second gap d2 is closer to the first subspace SP1 than the third gap d3.
  • the display panel PNL is located on a side of the lens assembly LNSG away from the second reflector MR2, and the first lens LNS1 is located on a side of the display panel PNL away from the lens assembly LNSG.
  • the first lens LNS1 may also be disposed on a side of the lens assembly LNSG away from the second reflector MR2, and the display panel PNL is disposed on a side of the first lens LNS1 away from the lens assembly LNSG.
  • the second subspace SP2 further includes a U-shaped air duct, the U-shaped air duct includes a second air duct and a third air duct arranged side by side and connected to each other, the second air duct includes a second gap d2, and the third air duct includes a third gap d3.
  • the flow path of the air discharged into the second subspace SP2 from the second air outlet 72 includes the second air duct, the third air duct and the first inner air duct CH', that is, the internal air can flow through the second air duct, the third air duct and the first inner air duct CH', so that the display panel PNL can be fully cooled.
  • the U-shaped air duct further includes a fourth air duct CH4, which is connected to the second air duct and the third air duct.
  • a portion of the second air outlet 72 is arranged toward the second air duct, and the air discharged from the second air outlet 72 into the second subspace SP2 passes through the second air duct, the fourth air duct, the third air duct and the first inner air duct CH' in sequence before entering the second air inlet 71.
  • the housing 1 further includes a curved portion 1a corresponding to the fourth air duct CH4, and the inner wall of the curved portion 1a is a curved surface, which protrudes in a direction away from the second air duct and the third air duct, so that the airflow of the second air duct can enter the third channel along the curved surface.
  • the second air outlet 72 is divided into a first area and a second area, the second area being an area of the second air outlet 72 opposite to the second subspace SP2; the first area being the remaining area of the second air outlet 72 located on the side of the second area close to the first subspace SP1.
  • the area of the first area is defined as a first effective discharge area S1
  • the area of the second area is defined as a second effective discharge area S2.
  • there is no remaining area on the side of the second area away from the first subspace SP1 and the air discharged from the position of the second air outlet 72 away from the second area will not be blocked by the second reflector MR2.
  • the first area is the area of the second air outlet 72 other than the second area.
  • the side close to the display panel PNL and the second air outlet is defined as the first side edge
  • the reference line at the second air outlet 72 that is parallel to the first side edge and closest to the first side edge is used as the boundary between the first area and the second area.
  • the area of the second air outlet 72 corresponding to the area between the first side edge and the display panel PNL is used as For the second area.
  • the lens assembly LNSG includes a light-transmitting portion GLS and a second lens LNS2
  • no other structure is provided between the light-transmitting portion GLS and the second air outlet 72 (that is, no other structure will block the air outlet of the second air outlet 72)
  • the side edge close to the second air outlet 72 is used as the first side edge.
  • the lens assembly LNSG in addition to the light-transmitting portion GLS and the second lens LNS2, the lens assembly LNSG also includes a fixing member FS, and the fixing member FS includes a first fixing member FS1 for limiting the light-transmitting portion GLS, and the first fixing member FS1 is opposite to the second air outlet 72.
  • the side edge of the first fixing member FS1 close to the display panel PNL and the second air outlet 72 is used as the first side edge.
  • the side of the lens assembly LNSG close to the second reflector MR2 has a plurality of side edges, and among the plurality of side edges, the side edge close to the second air outlet 72 is defined as the second side edge.
  • the distance between the edge of the second reflector MR2 close to the second air outlet 72 and the second side edge in a direction perpendicular to the extension of the entire lens assembly LNSG is greater than or equal to half the height of the first region.
  • the distance between the first side edge and the extended surface of the display panel PNL close to the first side edge is greater than or equal to the height of the second area, so that the air discharged from the second air outlet 72 can smoothly enter the first subspace SP1 and the second subspace SP2.
  • the first area and the second area of the second air outlet 72 are both strip-shaped, the width of the first area and the second area is defined as the length of the corresponding strips, and the height of the first area and the second area is defined as the width of the corresponding strips. It can be understood that the length of the strip is greater than the width.
  • a second polarizing element POL2 is disposed on a side of the display panel PNL away from the second gap d2, and during the display process of the display panel PNL, the second polarizing element POL2 can transmit one of the polarized light in the first polarization direction and the polarized light in the second polarization direction, and absorb the other. Therefore, the second subspace SP2 generates more heat than the first subspace SP1.
  • the second effective discharge area S2 is set to a ventilation area larger than the first effective discharge area S1. For example, the second effective discharge area S2 is (1,3] times the first effective discharge area S1, thereby further maintaining the heat balance in the first subspace SP1 and the second subspace SP2.
  • the lens assembly LNSG is configured to divert the air discharged from the second air outlet 72, so that a portion of the air AF1 discharged from the second air outlet 72 enters the first subspace SP1, and a portion of the air AF2 discharged from the second air outlet 72 enters the second subspace SP2.
  • the above-mentioned "second effective discharge area S2 is (1, 3] times the first effective discharge area S1" means that, per unit time, the volume of the air AF2 discharged from the second air outlet 72 into the second subspace SP2 is greater than the volume of the air AF1 discharged from the second air outlet 72 into the first subspace SP1.
  • the effect that the volume of the air AF2 discharged from the second air outlet 72 into the second subspace SP2 is (1, 3] times the volume of the air AF1 discharged from the second air outlet 72 into the first subspace SP1 per unit time can be obtained or approached.
  • the second effective discharge area S2 is twice the first effective discharge area S1, so as to maintain the heat balance in the first subspace SP1 and the second subspace SP2 to the greatest extent.
  • the lens assembly LNSG includes the light-transmitting portion GLS and the second lens LNS2, there may be a gap between the light-transmitting portion GLS and the second lens LNS2.
  • the end of the gap away from the second air outlet 72 is blocked by a structural member, so that no airflow may be formed in the gap between the light-transmitting portion GLS and the second lens LNS2.
  • the second air outlet 72 includes a first opening portion 721 and a second opening portion 722, the first opening portion 721 and the second opening portion 722 are arranged side by side, wherein at least a portion of the first opening portion 721 is configured to discharge air toward the first subspace SP1, and at least a portion of the second opening portion 722 is configured to discharge air toward the second subspace SP2.
  • a portion of the first opening portion 721 discharges air toward the first subspace SP1; and the entire second opening portion 722 discharges air toward the second subspace SP2.
  • the width of the second opening 722 is greater than the width of the first opening 721, so as to facilitate the second effective discharge area S2 to be greater than the first effective discharge area S1.
  • the first opening 721 and the second opening 722 are both strip-shaped, and the definition of their width and height can be determined by referring to the definition of the width and height of the second air outlet 72.
  • the first opening 721 and the second opening 722 are both rectangular openings, and the two can be connected.
  • the first opening 721 and the second opening 722 are connected to each other, and the two together form a "convex"-shaped air outlet structure.
  • the lens assembly LNSG is located at the second air outlet 72
  • the first side edge of the lens assembly LNSG is disposed opposite to the first opening 721, that is, the boundary between the first area and the second area of the second air outlet 72 falls on the first opening 721.
  • the first side edge of the lens assembly LNSG may also be disposed opposite to the second opening 722; or, the first side edge of the lens assembly LNSG is opposite to the boundary between the first opening 721 and the second opening 722.
  • the lens assembly LNSG may further include a fixing member FS, the fixing member FS is arranged opposite to the second air outlet 72, and the edge of the light-transmitting portion GLS close to the second air outlet 72 and the edge of the second lens LNS2 close to the second air outlet 72 are fixed to the fixing member FS.
  • the fixing member FS is connected to the housing 1.
  • the edge of the lens assembly LNSG away from the second air outlet 72 can be directly or indirectly fixed to the housing 1 .
  • the edge of the lens assembly LNSG away from the second air outlet 72 includes: the edge of the light-transmitting portion GLS away from the second air outlet 72, and the edge of the second lens LNS2 away from the second air outlet 72.
  • the edge of the lens assembly LNSG away from the second air outlet 72 is the edge of the second lens LNS2 away from the second air outlet 72.
  • both the light-transmitting portion GLS and the second lens LNS2 can be polygonal structures, and both have multiple edges.
  • the edge of the light-transmitting portion GLS (or the second lens LNS2) close to the second air outlet 72 refers to the edge closest to the second air outlet 72 among the multiple edges of the light-transmitting portion GLS (or the second lens LNS2).
  • the edge of the light-transmitting portion GLS (or the second lens LNS2) away from the second air outlet 72 refers to the edge farthest from the second air outlet 72 among the multiple edges of the light-transmitting portion GLS (or the second lens LNS2).
  • the fixing member FS includes a first fixing portion FS1 and a second fixing portion FS2, the edge of the light-transmitting portion GLS close to the second air outlet 72 is fixed to the first fixing portion FS1, and the edge of the second lens LNS2 close to the second air outlet 72 is fixed to the second fixing portion FS2.
  • the fixing method can be clamping, supporting, etc.
  • the first fixing portion FS1 has a first fixing groove, and at least a portion of the edge of the light-transmitting portion GLS close to the second air outlet 72 is fixed in the first fixing groove;
  • the second fixing portion FS2 has a second fixing groove, and at least a portion of the edge of the second lens LNS2 close to the second air outlet 72 is fixed in the second fixing groove.
  • the first limiting groove and the second fixed groove are grooves with a certain length, width and depth.
  • the width direction of the first fixed groove is the thickness direction of the light-transmitting portion GLS; the length direction of the first fixed groove is the extension direction of the edge of the light-transmitting portion GLS close to the second air outlet 72.
  • the depth direction of the first fixed groove is perpendicular to the length and width directions of the first fixed groove.
  • the width direction of the second fixed groove is the thickness direction of the second lens LNS2; the length direction of the second fixed groove is the extension direction of the edge of the second lens LNS2 close to the second air outlet 72.
  • the depth direction of the second fixed groove is perpendicular to the length and width directions of the second fixed groove.
  • the length of the first fixing groove may be greater than or equal to the length of the edge of the light-transmitting portion GLS close to the second air outlet 72; the width of the first fixing groove may be equal to or approximately equal to the thickness of the light-transmitting portion GLS, so that the edge of the light-transmitting portion GLS close to the second air outlet 72 may be clamped as a whole.
  • the first fixing member FS1 may be made of a light-shielding material.
  • the length of the first fixing groove is greater than or equal to the length of the edge of the light-transmitting portion GLS close to the second air outlet 72, and the first fixing member FS1 is made of shading material, light that has not been polarized by the first polarizing element POL1 can be blocked to prevent it from entering the display panel PNL and affecting the display effect.
  • the length of the second fixing groove may be smaller than the length of the edge of the second lens LNS2 on the side close to the second air outlet 72, so as to clamp the edge of the second lens LNS2 on the side close to the second air outlet 72.
  • first fixing portion FS1 and the second fixing portion FS2 may be formed as an integral structure.
  • the fixing portion FS further includes a limiting portion FS3, which is used to limit the second reflector MR2 to ensure that the position of the second reflector MR2 in the housing remains stable.
  • the limiting portion FS3 and the first fixing portion FS1 and the second fixing portion FS2 may be an integral structure.
  • the limiting portion FS3 has a limiting groove, and a portion of the edge of the second reflector MR2 on the side close to the second air outlet 72 is located in the limiting groove.
  • the edge of the second reflector MR2 on the side close to the second air outlet 72 is defined as a reference edge, and a limiting portion FS3 is provided at one end of the reference edge along its length direction, thereby limiting one end of the reference edge; or, limiting portions FS3 are provided at both ends of the reference edge along its length direction, thereby limiting both ends of the reference edge; or the limiting portions FS3 are continuously distributed along the length direction of the reference edge.
  • the limiting portion FS3 can also limit the second reflector MR2 in other forms.
  • the gap between the edge of the lens assembly LNSG on the side close to the second air outlet 72 and the second air outlet 72 is between [3mm, 5mm].
  • the gap between the edge of the lens assembly LNSG on the side close to the second air outlet 72 and the second air outlet 72 is 3mm, or 4mm, or 5mm.
  • the ventilation area of the second air inlet 71 is M times the sum of the first effective discharge area S1 and the second effective discharge area S2, and M is in the range of [1, 1.2].
  • M the wind pressure of the second fan 7 can be stabilized.
  • M is set in the range of (1, 1.2].
  • negative wind pressure can be formed in the second fan 7, which is conducive to drawing the air discharged from the second air outlet 72 into the second air inlet 71.
  • M is in the range of (1, 1.1], or M is in the range of [1.05, 1.15], or M is in the range of [1.1, 1.2].
  • the second fan 7 includes a fan housing 7a and a centrifugal fan arranged in the fan housing 7a.
  • the second air inlet 71 is an air inlet opening arranged on the fan housing 7a.
  • the ventilation area of the second air inlet 7a is the area of the air inlet opening.
  • the ventilation area of the ventilation portion 73 is K times the first effective discharge area S1, where K is in the range [1, 1.3] range, thereby facilitating the air discharged from the second air outlet 72 into the first subspace SP1 and drawn into the second air inlet 71.
  • K is in the range of (1, 1.1], or K is in the range of [1.05, 1.15].
  • K is in the range of [1.1, 1.3], thereby maximizing the ventilation area of the ventilation portion 73 within a limited area on the fan housing 7a, so that the air discharged from the second air outlet 72 into the first subspace SP1 can be more smoothly drawn into the second air inlet 71.
  • K 1.2.
  • the ventilation area of the ventilation portion 73 refers to the cross-sectional area of the air flow that can flow through the ventilation portion 73.
  • the ventilation portion 73 includes one or more ventilation holes 731 that penetrate the fan housing 7a1, and the ventilation holes 731 are cylindrical, then the ventilation area of the ventilation portion 73 is the sum of the ventilation areas of all ventilation holes 731, and the ventilation area of each ventilation hole 731 is the cross-sectional area of the ventilation hole 731 perpendicular to its axial direction.
  • the ventilation portion 73 includes a plurality of ventilation holes 731, and the ventilation holes 731 include an opening toward the first subspace SP1 and an opening toward the second subspace SP2, and the two openings in the same ventilation hole 731 have the same area and shape.
  • the opening shape of the ventilation hole 731 is not limited, and can be a rectangle, a circle, a triangle, a trapezoid or other irregular shapes.
  • the shape of the second air inlet 71 can be a circle or other shapes.
  • the plurality of ventilation holes 731 of the ventilation portion 73 can be divided into two groups, respectively located on both sides of the centrifugal fan. For example, each group of ventilation holes 731 can be distributed along the arc contour of the centrifugal fan, and the two groups of ventilation holes 731 are distributed in a state of half-wrapping the centrifugal fan.
  • the accommodating space in the housing 1 further includes a third subspace SP3.
  • the first lens LNS1 is located on a side of the display panel PNL away from the second reflector MR2, at least part of the housing 1, the first reflector MR1, the projection lens 3 and the first lens LNS1 define the third subspace SP3.
  • the display panel PNL is located on a side of the first lens LNS1 away from the second reflector MR2, at least part of the housing 1, the first reflector MR1, the projection lens 3 and the display panel PNL define the third subspace SP3.
  • the air in the third subspace SP3 may not flow.
  • Figure 14 is a schematic diagram of the positional relationship between the second reflector and the ventilation portion provided in some exemplary embodiments of the present disclosure. As shown in Figure 14, along the direction perpendicular to the reflecting surface of the second reflector MR2, the projection of the second reflector MR2 on the fan housing 7a does not overlap with at least part of the ventilation portion 73, so as to ensure that the air in the first subspace SP1 can be blown to the first inner air duct CH' through the ventilation portion 73.
  • the projection of the second reflector MR2 on the fan housing 7a does not overlap with a portion of the ventilation portion 73, but overlaps with another portion of the ventilation portion 73.
  • the ventilation area of the ventilation portion 73 is the cross-sectional area of the air that can flow through the portion of the ventilation portion 73 that is not blocked by the second reflector MR2.
  • the projection of the second reflective mirror MR2 on the fan housing 7a does not overlap with the ventilation portion 73 at all, so as to ensure that the air in the first subspace SP1 can smoothly enter the first inner air duct CH'.
  • the width of the reflective surface of the second reflector MR2 on the side close to the lens assembly LNSG is greater than the width of the reflective surface away from the lens assembly LNSG.
  • the width of the reflective surface of the second reflector MR2 tends to gradually decrease as the distance from the lens assembly LNSG increases.
  • the width of the reflective surface of the second reflector MR2 decreases as the distance from the lens assembly LNSG increases. In this way, space can be reserved for the ventilation portion 73.
  • the reflecting surface of the second reflecting mirror MR2 is a trapezoid
  • the trapezoid has a first bottom side MR21 and a second bottom side MR22 which are parallel to each other, and a waist MR23 connected between the first bottom side MR21 and the second bottom side MR22
  • the length of the first bottom side MR21 is greater than the length of the second bottom side MR22
  • the first bottom side MR21 is located in the first subspace SP1 close to the lens assembly LNSG
  • the second bottom side MR22 is located in the second subspace SP2 far from the lens assembly LNSG.
  • the projection of the waist MR23 of the trapezoid on the fan housing 7a is in contact with or adjacent to the ventilation portion 73.
  • the reflective surface of the second reflector MR2 enables the light emitted by the light source assembly 2 to enter the display area of the display panel PNL.
  • the reflective surface of the second reflector MR2 is set to be a trapezoid, which can avoid the ventilation portion 73 without affecting the display effect.
  • the ventilation portion 73 is distributed on the two waist sides of the second reflector MR2, and the ventilation portion 73 includes a plurality of ventilation holes 731, and each waist side of the second reflector MR2 is provided with a plurality of ventilation holes 731, so that the air in the first subspace flows more evenly into the first inner air duct CH'.
  • the ventilation area of the ventilation portion 73 is the sum of the ventilation areas of all ventilation holes 731 on both sides.
  • the number of ventilation holes 731 provided on the two waist sides of the second reflector MR2 is the same, and the ventilation holes 731 on the two waist sides are the same.
  • the ventilation areas of the holes 731 are the same.
  • each waist side of the second reflector MR2 is provided with four ventilation holes 731, and the total ventilation area of the four ventilation holes 731 on each side is equal to a preset value.
  • the remaining structures in the projection device can refer to the projection device in FIG1A above, and will not be repeated here.
  • the optical axis of the projection lens of the projection device coincides with the center of the projected image, so that part of the image is easily blocked and cannot be projected onto the projection screen.
  • the position of the optical element in the projection device is adjusted to achieve off-axis projection, thereby adjusting the position of the projected image.
  • FIG15 is a schematic diagram of various optical elements in a projection device provided in some exemplary embodiments of the present disclosure, and the optical elements in the projection device in the above-mentioned embodiments can be arranged according to the positions in FIG15.
  • there is a first intersection point J between the optical axis L1 or the equivalent optical axis L3 of the projection lens 3 and the display area of the display panel PNL and there is a non-zero spacing d between the first intersection point J and the center of the display area of the display panel PNL, thereby realizing off-axis projection in an "off-axis" manner, hereinafter referred to as "off-axis off-axis projection".
  • a reflective element may not be provided between the display panel PNL and the projection lens 3, so that the light emitted from the display panel PNL is emitted toward the projection lens 3 without being reflected (or, without being bent).
  • the positional relationship between the projection lens 3 and the display panel PNL satisfies: there is a first intersection J between the optical axis L1 of the projection lens 3 and the display area of the display panel PNL, and there is a non-zero spacing d between the first intersection J and the center of the display area of the display panel PNL.
  • a reflective element for example, a first reflector MR1 as shown in FIG.
  • the positional relationship between the projection lens 3 and the display panel PNL satisfies: there is a first intersection J between the equivalent optical axis L3 of the projection lens 3 and the display area of the display panel PNL, and the first intersection J There is a non-zero spacing d between the center of the display area of the display panel PNL.
  • optical axis L3 refers to the mirror extension line of the optical axis of the lens 3, which can be understood as the axis of the optical axis L1 of the projection lens 3 after the mirror reflection of the first reflector MR1; in other words, the optical axis L1 of the projection lens 3 and the equivalent optical axis L3 intersect at the reflective surface of the first reflector MR1, and are symmetrical about the normal line L2 of the first reflector MR1.
  • the angle A1 between the optical axis L1 of the projection lens 3 and the normal line L2 of the first reflector MR1 is equal to the angle A2 between the equivalent optical axis L3 of the projection lens 3 and the normal line L2 of the first reflector MR1;
  • the normal line L2 of the first reflector MR1 refers to a straight line that passes through the intersection M of the optical axis L1 of the projection lens 3 and the first reflector MR1 and is perpendicular to the reflective surface of the first reflector MR1.
  • the outer contour of the display area of the display panel PNL is a rectangle; refer to FIG15 to establish a coordinate system based on the display area of the display panel PNL, and take the center O of the display area as the origin of the coordinate system.
  • the Z axis of the coordinate system is the center normal of the display area, that is, a straight line passing through the center O and perpendicular to the display area;
  • the Y axis of the coordinate system points from the center O of the display area to the first side of the outer contour of the display area and is perpendicular to the first side;
  • the X axis of the coordinate system passes through the center O and is perpendicular to the Y axis and the Z axis, that is, the X axis of the coordinate system points from the center O of the display area to the second side of the outer contour of the display area and is perpendicular to the second side.
  • the outer contour rectangle of the display area includes a rectangular long side and a rectangular short side.
  • the first side is
  • the Y axis and the optical axis L1 of the projection lens 3 are located in the same plane.
  • the optical axis L1 of the projection lens 3 and the straight line where the short side of the rectangle is located are located in the same plane, so that the projection lens can project a horizontal (longer than high) image.
  • the display panel PNL further includes a non-display area disposed around the display area.
  • the display panel PNL further includes a binding area, and the binding area is located in the non-display area on one side of the long side of the outer contour rectangle of the display area.
  • the binding area is located on the side of the display area of the display panel PNL away from the projection lens 3 , or the binding area is located on the side of the display area of the display panel PNL close to the projection lens 3 , so as to facilitate the arrangement of the display panel PNL driving circuit.
  • the binding area is located on a side of the display area of the display panel PNL away from the projection lens 3, so as to facilitate installation of the driving circuit of the display panel PNL.
  • the diagonal length of the display area is 4.45 inches, and the aspect ratio of the display area is 16:9.
  • the equivalent optical axis L3 of the projection lens 3 is parallel to the central normal line of the display area.
  • the equivalent optical axis L3 of the projection lens 3 is parallel to the Z axis.
  • the center of the image projected by the projection lens 3 onto the projection screen will deviate from the optical axis L1 or equivalent optical axis L3 of the projection lens 3, thereby realizing off-axis projection.
  • the size of the non-zero spacing d can be adjusted as needed so that the projection image is completely projected onto the projection screen, thereby improving the viewing experience.
  • the distance d between the first intersection J and the center of the display area of the display panel PNL does not exceed 25 mm to ensure the display effect.
  • d is in the range of [11 mm, 16.5 mm].
  • d is 11 mm, or 13 mm, or 14 mm, or 16 mm, or 16.5 mm. In this way, an off-axis ratio of 50% can be achieved or approached.
  • the eccentricity is defined as follows: In the projection system, the center of the picture can be set as point A, and the intersection of the normal line of the screen (or the plane where the screen is located) passing through the optical center of the lens and the screen (or the intersection with the plane where the screen is located) is point B. When points AB coincide, it is a non-eccentric projection (the eccentricity is 0%). When points AB do not coincide, it is an eccentric projection. The distance between AB is called the "eccentricity amount". In practice, the focus is generally on the eccentric projection in the height direction, and the "eccentricity rate" can be defined as the ratio of the "eccentricity amount" to the half-height of the picture.
  • the projection device includes: a first lens LNS1 and a second lens LNS2, wherein the first lens LNS1 may be a convex lens.
  • the first lens LNS1 may be a Fresnel lens or an aspherical lens, preferably a Fresnel lens.
  • the second lens LNS2 may be a convex lens.
  • the second lens LNS2 may be a Fresnel lens or an aspherical lens, preferably a Fresnel lens. Niel lens.
  • FIG16 is a schematic diagram of the optical path when the display surface of the display panel is parallel to the plane where the second lens is located.
  • the light irradiated to the projection lens 3 cannot be converged at the center of the aperture stop, that is, the center of the projection lens 3, resulting in a small luminous flux, thereby causing a vignetting problem and poor display uniformity.
  • the extended surface of the display panel PNL intersects with the plane where the second lens LNS2 is located at a second intersection point P, and there is a first angle A8 between the extended surface of the display panel PNL and the plane where the second lens LNS2 is located.
  • the extended surface of the display panel PNL refers to an extended surface of the display surface of the display panel PNL.
  • the plane where the second lens LNS2 is located can be understood as a plane passing through the optical center of the second lens and perpendicular to the optical axis of the second lens.
  • the plane where the second lens LNS2 is located is parallel to the extension plane of the second lens LNS2.
  • the first angle A8 is in the range of (0, 10°], so that a better lighting effect can be achieved.
  • FIG17 is a schematic diagram of a projection device provided in some exemplary embodiments of the present disclosure to realize an object-side telecentric optical path.
  • the first angle A8 mentioned above exists between the extended surface of the display panel PNL and the plane where the second lens LNS2 is located, it is equivalent to that the light is no longer incident vertically into the display panel PNL, but is incident obliquely, so that the light irradiated to the projection lens 3 can be close to or even pass through the center of the projection lens 3, thereby realizing an object-side telecentric optical path.
  • the first angle A8 is in the range of (0, 7°]. Further preferably, referring to FIG. 15 and FIG. 17 , the first angle A8 may be 5°, so that the light can converge at the center of the projection lens 3, thereby maximizing the luminous flux of the projection lens 3 and improving display uniformity.
  • FIG. 18 is a diagram of a display panel, a second lens, a first reflector and a projection device in the projection device shown in FIG. 15.
  • a distance D1 between the display panel PNL on one side of the first intersection J and the plane where the second lens LNS2 is located is greater than a distance D2 between the display panel PNL on the side away from the first intersection J relative to the center of the display area of the display panel PNL and the plane where the second lens LNS2 is located, so that the light is obliquely incident on the display panel PNL, so that the convergence point of the light irradiated to the projection lens 3 is located at or closer to the center of the projection lens 3.
  • the projection device includes a first reflector MR1, and the first reflector MR1 is used to reflect the light emitted from the display panel PNL into the projection lens 3.
  • the first reflector MR1 may be a plane reflector.
  • the optical axis L1 of the projection lens 3 and the equivalent optical axis L3 intersect at a point on the reflective surface of the first reflector MR1, and the normal line L2 of the first reflector MR1 passes through the intersection point.
  • the optical axis L1 and the equivalent optical axis L3 of the projection lens 3 are axially symmetrically distributed about the normal line L2 of the first reflector MR1.
  • the angle between the optical axis L1 of the projection lens 3 and the normal line L2 of the first reflector MR1 is denoted as A1
  • the optical axis L1 of the projection lens 3 is parallel to the reference plane n.
  • the equivalent optical axis L3 of the projection lens 3 is parallel to the central normal of the display area of the display panel PNL, which can achieve better visual effects.
  • the reference plane n can be understood as the placement plane or suspension plane when the projection device is working normally. It is understandable that the placement method of the projection device during normal operation can be clearly indicated on the projection device or the product manual. For example, the user can easily find the most recommended placement method from the product, which is the placement method during normal operation; for example, a support surface and/or a foot pad is provided on one side of the projection device to guide the user to place the projection device on the reference plane; for example, a suspension member is provided on one side of the projection device to guide the user to suspend and fix the projection device on the reference plane (for example, the ceiling).
  • the reference plane n is parallel to the ground plane GND; in this case, preferably, the projection screen is arranged perpendicular to the ground plane GND to achieve a better display effect.
  • FIG. 19 is a schematic diagram of the principle of the rotated off-axis projection.
  • the rotated off-axis projection can be understood as the projection lens 3
  • the optical axis of the projection lens 3 is no longer perpendicular to the imaging surface (or the plane where the projection screen is located), as shown in FIG19 , the optical axis of the projection lens 3 extends along the dotted line L9' in the initial state, and the optical axis of the projection lens 3 extends along L9 by rotation. This method can also adjust the position of the projection screen.
  • only the rotation angle may be used to achieve the off-axis effect.
  • off-axis projection and angled off-axis projection may be used simultaneously to achieve a greater off-axis ratio.
  • the optical axis L1 of the projection lens 3 has an elevation angle A9 relative to the reference plane n in the projection light beam emission direction.
  • the fact that the optical axis L1 of the projection lens 3 has an elevation angle relative to the reference plane n in the projection light beam direction can be understood as, when the projection device is placed on the reference plane n, the light emitted along the optical axis L1 of the projection lens 3 is emitted obliquely upward relative to the reference plane.
  • the elevation angle A9 can be determined according to the actual required off-axis effect. When the elevation angle A9 is larger, the off-axis rate is higher. In some embodiments, the elevation angle A9 is in the range of (0, 15°] to achieve good image quality.
  • the equivalent optical axis L3 of the projection lens 3 is parallel to the central normal of the display area of the display panel PNL, so that a better imaging effect can be obtained.
  • the elevation angle A9 is in the range of (0, 10°] to achieve better image quality.
  • the elevation angle A9 is 5°, or 6°, or 7°, or 8°, or 9°, or 10°.
  • the projection device can be placed on the ground plane GND, so that the light emitted along the optical axis L1 of the projection lens 3 is irradiated obliquely upward to the projection screen relative to the ground plane GND.
  • the projection device can also be hung upside down (relative to the case of being placed on the ground plane GND) on a carrier (or ceiling), so that the light emitted along the optical axis L1 of the projection lens 3 is irradiated obliquely downward to the projection screen relative to the reference plane.
  • the projection screen is arranged perpendicular to the ground plane GND.
  • the rotation angle can be offset.
  • the image distances of points A and B are similar, approximately L2'; the image distance of point C is L1'; the image distance of point D is L3'; therefore, the lateral magnification of the actual image points is different, and there will be trapezoidal distortion.
  • optical trapezoidal correction is required.
  • trapezoidal correction is to make the lateral magnification of each point on the display panel Similarly, when the image distances of different points are different, the ratio of the image distance to the object distance of each point can be made constant by changing the object distance.
  • its object plane is the virtual image of the display panel PNL presented to the first lens LNS1, which is a virtual object for the projection lens 3.
  • the virtual image of the display panel PNL can be rotated, that is, the virtual object of the projection lens 3 is rotated, so that the ratio of the image distance to the object distance of each point on the display panel can be adjusted, and then the problem of keystone distortion can be improved.
  • the plane where the first lens LNS1 is located can be understood as a plane passing through the optical center of the first lens LNS1 and perpendicular to the optical axis of the first lens LNS1.
  • the plane where the first lens LNS1 is located is parallel to the extension plane of the first lens LNS1.
  • A3 can be set within the range of [80°, 90°) to further improve the keystone distortion problem.
  • A3 90°-A9, so that the keystone distortion problem can be improved to a greater extent.
  • the extension surface of the display panel PNL is parallel to the reference plane n.
  • the value range of the second angle A7 is in the range of (0, 30°].
  • the height of the end of the display panel PNL close to the projection lens 3 relative to the reference plane n is higher than the height of the end of the display panel PNL away from the projection lens 3 relative to the reference plane n, so that the arrangement of the optical elements in the projection device can be made more compact, which is conducive to reducing the volume of the projection device.
  • the angle between the equivalent optical axis L3 of the projection lens 3 and the normal line of the first reflector MR1 is in the range of [30°, 60°].
  • the angle between the equivalent optical axis L3 of the projection lens 3 and the normal line of the first reflector MR1 is in the range of [35°, 50°], which is conducive to reducing the volume of the projection device.
  • A0 is a positive value; it is defined that when the projection lens 3 is in a downward state relative to the reference plane n in the projection beam exit direction (i.e., the left end of the projection lens 3 in FIG.
  • A7 can be set to a larger value, and in this case, the value of A0 is smaller.
  • the Y axis and the optical axis L1 of the projection lens 3 are located in the same plane.
  • the second angle A7 can be set to a larger value not exceeding 30°, and when the inclination of the optical axis L1 of the projection lens 3 relative to the reference plane n is greater than the inclination of the extended surface of the display panel PNL relative to the reference plane n, the third angle A0 is defined as a positive value and is set in the range of (0, 30°]; when the inclination of the optical axis L1 of the projection lens 3 relative to the reference plane n is less than the inclination of the extended surface of the display panel PNL relative to the reference plane n, the third angle A0 is defined as a negative value and is set in the range of [-30°, 0). Accordingly, the values of A1 and A2 are both within the range of [30°, 60°], which is conducive to optimizing the component layout in the projection device and reducing the volume of the projection device.
  • the second angle A7 can be set to a larger value within a range of no more than 30°, for example, the second angle A7 is set in the range of (0, 20°].
  • the third angle A0 is set in the range of (0, 10°); accordingly, the values of A1 and A2 are both in the range of (45°, 50°).
  • the third angle A0 is set in the range of (0, 10°); accordingly, the values of A1 and A2 are both in the range of (45°, 50°).
  • the third angle A0 is set in the range of [-20, 0), and accordingly, the values of A1 and A2 are both in the range of [35°, 45°).
  • the elevation angle of the projection lens 3 is set to 5°, thereby reducing the problem of image abnormality caused by excessive off-axis ratio of the rotation angle.
  • A0+A7
  • A7 18°
  • the light source assembly 2 includes a condenser lens 23, which is disposed on the light-emitting side of the light-emitting element 21 to converge the light emitted by the light-emitting element 21.
  • the condenser lens 23 is, for example, a plano-convex lens.
  • the optical axis of the condenser lens 23 is coaxial or nearly coaxial with the central axis L6 of the light emitting element 21.
  • the optical axis of the condenser lens 23 is parallel to the central axis L6 of the light emitting element 21, and the distance between the two is between [0, 2] mm.
  • the central axis L6 of the light emitting element 21 refers to a straight line passing through the center of the light emitting surface of the light emitting element 21 and perpendicular to the light emitting surface.
  • the projection device includes a second reflector MR2, and the second reflector MR2 is used to reflect the light emitted by the light emitting element 21 into the display panel PNL.
  • the light emitted by the light emitting element 21 is first converged by the condenser lens 23 and then emitted to the second reflector MR2, reflected by the second reflector MR2 and irradiated to the second lens LNS2, and then emitted to the display panel PNL after being collimated by the second lens LNS2.
  • the equivalent optical axis of the light emitting element 21 can be defined as follows: the central axis of the light emitting element 21 and the equivalent optical axis of the light emitting element 21 intersect at one point on the reflection surface of the second reflector MR2, the normal of the second reflector MR2 passes through the intersection, and the central axis of the light emitting element 21 and the equivalent optical axis of the light emitting element 21 are symmetrically distributed about the normal of the second reflector MR2.
  • There is an angle A50 between the central axis of the light emitting element and the normal of the second reflector MR2; there is an angle A60 between the equivalent optical axis of the light emitting element 21 and the normal of the second reflector MR2; A50 A60.
  • A50 is set within the range of [35°, 55°], which is beneficial to reducing the overall volume of the projection device.
  • A50 is set within the range of [35°, 55°].
  • the central axis of the light emitting element 21 is arranged perpendicular to the plane where the second lens LNS2 is located, which is beneficial to reducing the overall volume of the projection device and reducing the generation of stray light.
  • the equivalent optical axis of the light emitting element 21 passes through the center of the display area of the display panel PNL, or is close to the center of the display area of the display panel PNL. Specifically, the distance between the equivalent optical axis of the light emitting element 21 and the center of the display area of the display panel PNL is between [0, 5] mm, so that the center brightness of the display panel PNL is the highest, thereby improving the display effect.
  • the light source assembly 2 includes a condenser lens 23, as shown in FIG15 , and the equivalent optical axis L4 of the condenser lens 23 can be defined in the following manner: the optical axis L6 of the condenser lens 23 and the equivalent optical axis L4 of the condenser lens 23 intersect at a point on the reflection surface of the second reflector MR2, the normal line L4 of the second reflector MR2 passes through the intersection, and the optical axis L6 of the condenser lens 23 and the equivalent optical axis L4 of the condenser lens 23 are symmetrically distributed about the normal line L4 of the second reflector MR2.
  • A5 is set within the range of [35°, 55°], which is beneficial to reducing the overall volume of the projection device.
  • A5 is set within the range of [35°, 55°].
  • the optical axis L6 of the focusing lens 23 intersects with the second reflecting mirror MR2 at point N;
  • the normal of the second reflecting mirror MR2 is a straight line passing through point N and perpendicular to the reflecting surface of the second reflecting mirror MR2;
  • the equivalent optical axis of the focusing lens 23 is a straight line symmetrical about L6 about the L5 axis.
  • A6' is set within the range of [35°, 55°] is beneficial to reducing the overall volume of the projection device and reducing the generation of stray light.
  • A6' is set within the range of [35°, 45°]
  • A6' is set to 35°, or 40°, or 41°, or 45°.
  • the equivalent optical axis L4 of the condenser lens 23 passes through the center of the display area of the display panel PNL, or is close to the center of the display area of the display panel PNL. Specifically, the distance between the equivalent optical axis L4 of the condenser lens 23 and the center of the display area of the display panel PNL is between [0, 5] mm, so that the center brightness of the display panel PNL is the highest, thereby improving the display effect.
  • L1, L3, L4, L6 and the Y axis are all in the same plane, so that a satisfactory display effect can be achieved.
  • the second lens LNS2 is located on a side of the light-transmitting portion GLS away from the display panel PNL, and the second lens LNS2 is located on a side of the first polarizing element away from the display panel PNL.
  • the shape of the light-transmitting portion GLS and the shape of the second lens LNS2 may be the same as the shape of the display panel PNL, for example, both may be rectangular.
  • the size of the light-transmitting portion may be the same as the size of the second lens LNS2.
  • the optical axis of the second lens LNS2 passes through the center of the light-transmitting portion, or the distance from the center of the light-transmitting portion is sufficiently small. Specifically, the distance between the optical axis of the second lens LNS2 and the center of the light-transmitting portion GLS is between [0, 10] mm.
  • the reference plane n is parallel to the ground plane GND, and at this time the projection device is a vertical projection device.
  • the reference plane n and the ground plane GND are perpendicular to each other, and the projection device is a horizontal projection device. It can be understood that when the projection device is transformed from a vertical projection device to a horizontal projection device, the relative position relationship between the optical elements is not changed, so the horizontal projection device based on the concept of the present disclosure is also within the protection scope of the present disclosure.
  • FIG. 21A is a partial optical path diagram of a projection device according to some exemplary embodiments of the present disclosure
  • FIG. 21B is a front view of a light-emitting element and a base of a projection device according to some exemplary embodiments of the present disclosure.
  • the light source assembly 2 includes a light-emitting element 21 and a condenser lens 23, and the light-emitting element 21 includes a light-emitting area 211, which refers to the effective light-emitting area of the light-emitting element.
  • the light-emitting element 21 includes a light-emitting area 211.
  • the light-emitting element 21 includes only one light-emitting chip, and the light-emitting chip has a light-emitting boundary, and this light-emitting boundary defines the light-emitting area 211.
  • the light-emitting element 21 includes a plurality of light-emitting chips, and the light-emitting boundaries of the plurality of light-emitting chips have a common outer contour, and this outer contour defines the light-emitting area 211.
  • the light-emitting element 21 includes a plurality of light-emitting chips arranged in an array, and the plurality of light-emitting chips are arranged in a rectangular array, so the light-emitting area of the light-emitting element 21 is a rectangular outline formed by the light-emitting boundaries of the plurality of light-emitting chips.
  • the focusing lens 23 is arranged on the light-emitting side of the light-emitting element 21 and is located on the light-emitting side of the display panel PLN away from the light-emitting side thereof, and is used to converge or shape the light emitted by the light-emitting element 21. After being converged or shaped by the focusing lens 23, the light emitted by the light-emitting element 21 enters the projection lens 3 through the display panel and is emitted from the projection lens.
  • the light source assembly 2 may further include a light-emitting element base 22, on which the light-emitting element 21 is located.
  • the light-emitting area 211 includes a first extension direction (for example, the Z' direction in FIG. 21B ) and a second extension direction (for example, the Y' direction in FIG. 21B ) that are perpendicular to each other, and the ratio of the maximum length L_7 of the light-emitting area 211 in the first extension direction to the maximum width L_8 in the second extension direction is a first aspect ratio, and the first aspect ratio is greater than or equal to the aspect ratio of the display area of the display panel.
  • the above-mentioned first aspect ratio is the maximum outline size of the light-emitting area 211 in two perpendicular directions (i.e., the first extension direction and the second extension direction).
  • the aspect ratio of the display area of the display panel is the outline size of the display area in two perpendicular directions (for example, the width and height of the image generated by the display area, the width divided by the height is equal to the aspect ratio).
  • the first aspect ratio greater than or equal to the aspect ratio of the display area of the display panel, it is beneficial to improve the utilization rate of light energy.
  • the light emitted by the light-emitting element 21 is converged or shaped by combining the condenser lens, so that the light irradiated to the display area of the display panel can be more collimated and uniform, thereby improving the uniformity of imaging.
  • the ratio of the first aspect ratio to the aspect ratio of the display panel display area is greater than 1 and less than 1.2. By adopting this ratio range, the light energy utilization rate can be improved. Further preferably, the ratio of the first aspect ratio to the aspect ratio of the display panel display area is greater than 1 and less than 1.15. This ratio range has the best effect of improving the light energy utilization rate.
  • the display area of the display panel PLN is a rectangle, and correspondingly, the aspect ratio of the display area of the display panel is the ratio of the length of the long side of the rectangle to the length of the short side.
  • the outline of the light-emitting area 211 can be a rectangle, for example, as shown in FIG. 21B, the length of the long side of the rectangle is the maximum length L_7 in the first extension direction; the length of the short side of the rectangle is the maximum width L_8 in the second extension direction, that is, the first aspect ratio is the ratio of the length of the long side of the rectangle to the length of the short side.
  • the four corners of the rectangular outline of the light-emitting area 211 are rounded, and the arc corresponding to each rounded corner smoothly transitions between the corresponding long side and short side.
  • the outline of the light-emitting area 211 can also be an ellipse, the length of the major axis of the ellipse is the maximum length in the first extension direction; the length of the minor axis of the ellipse is the maximum width in the second extension direction, that is, the first aspect ratio is the ratio of the length of the major axis of the ellipse to the length of the minor axis.
  • the outline of the light-emitting area can also be a circle, that is, the first aspect ratio is 1.
  • the extension direction of the long side of the display panel is the same or substantially the same as the first extension direction, so that the image uniformity of the display panel along the long side can be ensured to be good. Substantially the same can be understood as a deviation of less than 10° between the two extension directions.
  • the outline of the light-emitting area 211 is a rectangle, the long side length of the rectangle is in the range of 10mm-15mm, preferably 13.6mm ⁇ 0.2mm, and the short side length is in the range of 6mm-12mm, preferably 8.9mm ⁇ 0.2mm; or, the outline of the light-emitting area is an ellipse, the long axis length of the ellipse is in the range of 10mm-15mm, and the short axis length is in the range of 6mm-12mm.
  • FIG. 22A is a three-view diagram of a condenser lens of a projection device according to some exemplary embodiments of the present disclosure
  • FIG. 22B is another three-view diagram of a condenser lens of a projection device according to some exemplary embodiments of the present disclosure.
  • FIG. in some optional embodiments please refer to Figures 22A and 22B together.
  • the above-mentioned focusing lens 23 includes a plano-convex lens, which has a lens plane 231 and a lens convex surface 232 that are opposite to each other; the lens plane 231 is opposite to the light-emitting side of the light-emitting element 21 and is arranged at intervals; and the lens plane 231 includes a third extension direction (for example, the Z' direction in Figures 22A and 22B) and a fourth extension direction (for example, the Y' direction in Figures 22A and 22B) that are perpendicular to each other; the third extension direction is parallel to the above-mentioned first extension direction (for example, the Z' direction in Figure 21B), and the fourth extension direction is parallel to the above-mentioned second extension direction (for example, the Y' direction in Figure 21B); the ratio of the maximum length L_1 of the lens plane 231 in the third extension direction to the maximum length of the light-emitting area in the first extension direction is in the range of 2.5-3.5, and the ratio of
  • the plano-convex lens has a profile size in two mutually perpendicular directions (i.e., the third extension direction and the fourth extension direction) of the lens plane 231 that is larger than the profile size in the corresponding direction of the light-emitting area, and at the same time, a relatively ideal lens surface shape can be obtained, which can not only improve the collimation of the light irradiated to the display area of the display panel, but also further improve the light energy utilization rate and imaging uniformity.
  • the ratio of the maximum length L_1 of the lens plane 231 in the third extension direction to the maximum length of the light-emitting area in the first extension direction is 3.3, and the ratio of the maximum width L_3 of the lens plane 231 in the fourth extension direction to the maximum width of the light-emitting area in the second extension direction is 3.8; in another preferred embodiment, the ratio of the maximum length in the first extension direction is 2.7, and the ratio of the maximum width L_3 of the lens plane 231 in the fourth extension direction to the maximum width of the light-emitting area in the second extension direction is 3.2; in this way, a more optimized display effect can be achieved.
  • the focusing lens 23 is not limited to being a plano-convex lens, and other lens structures may also be used.
  • the lens plane 231 is a rectangle, the long side of the rectangle is the maximum length L_1 in the third extension direction, and the short side of the rectangle is the maximum length L_2 in the fourth extension direction.
  • the lens plane 231 may also be an ellipse, the major axis length of the ellipse being the maximum length L_1 in the third extending direction; and the minor axis length of the ellipse being the maximum width L_3 in the fourth extending direction.
  • the maximum length L_1 of the lens plane 231 in the third extension direction is in the range of 36mm-45mm
  • the maximum width L_3 of the lens plane 231 in the fourth extension direction is in the range of 28mm-35mm
  • the maximum thickness L_5 of the plano-convex lens is in the range of 15mm-20mm.
  • the maximum length L_1 of the lens plane 231 in the third extension direction is in the range of 43mm-44mm
  • the maximum width L_3 of the lens plane 231 in the fourth extension direction is in the range of 33mm-34mm
  • the maximum thickness L_5 of the plano-convex lens is in the range of 17mm-19mm.
  • the maximum length L_1 of the lens plane 231 in the third extension direction is in the range of 36.5mm-38mm
  • the maximum width L_3 of the lens plane 231 in the fourth extension direction is in the range of 28.5mm-30mm
  • the maximum thickness L_5 of the plano-convex lens is in the range of 15mm-16mm.
  • the above-mentioned lens plane 231 can not only improve the collimation of the light irradiated to the display area of the display panel, but also further improve the light energy utilization rate and imaging uniformity.
  • the distance D_1 between the light-emitting area and the lens plane 231 is in the range of 1.5 mm to 4 mm.
  • the distance D_1 between the light-emitting area and the lens plane 231 should not be too large, otherwise it will lead to low light energy utilization, which will eventually affect the brightness of the image, and the distance should not be too small, otherwise it will cause light spots to appear on the display area of the display panel, and the corners of the display area will be dark, which will eventually affect the uniformity of the image and even cause the problem of dark corners. Based on this, by setting the distance D_1 between the light-emitting area and the lens plane 231 in the above numerical range, the above defects can be avoided.
  • the focusing lens 23 also includes a lens base 233 located on the side of the plano-convex lens close to the light-emitting element 21.
  • the lens base 233 is arranged in contact with the plano-convex lens to achieve the installation and fixation of the plano-convex lens, and the spacing between the light-emitting area and the lens base 233 is in the range of 1.5 mm-4 mm. In this way, the light utilization efficiency and display brightness uniformity are better.
  • the surface of the lens base 233 facing away from the light-emitting area is flush with the lens plane to facilitate processing and make the assembly more stable.
  • the orthographic projection of the plano-convex lens on the extension surface of the lens base 233 is located at the lens Inside the base 233.
  • the maximum length L_2 of the lens base 233 in the third extension direction is within the range of 45 mm to 50 mm; the maximum width L_4 of the lens base 233 in the fourth extension direction is within the range of 34 mm to 38 mm; and the thickness L_6 of the lens base 233 is within the range of 1.2 mm to 3 mm.
  • the maximum length L_2 of the lens base 233 in the third extension direction is within the range of 47 mm to 49 mm; the maximum width L_4 of the lens base 233 in the fourth extension direction is within the range of 35 mm to 37 mm; and the thickness L_6 of the lens base 233 is within the range of 1.6 mm to 2.2 mm.
  • the outer contour of the lens base 233 is expanded by 0.5 mm to 3 mm compared to the outer contour of the orthographic projection of the plano-convex lens on the lens base 233, which facilitates the demolding and preparation of the plano-convex lens.
  • the outer contour of the lens base 233 is expanded by 1 mm to 2 mm compared to the outer contour of the orthographic projection of the plano-convex lens on the lens base 233, which reduces the processing difficulty, makes the assembly more stable, and reduces the volume occupied by the lens base 233.
  • the outline of the lens base 233 is a rectangle, and the four corners of the rectangle include one or more arc segments, and the arc radius R of the arc segment is in the range of 4mm-18mm, so as to facilitate processing and make the assembly more stable.
  • Figure 23 is another outline diagram of the lens base of the projection device according to some exemplary embodiments of the present disclosure.
  • a first transition fillet (corresponding to the arc radius R1) and a second transition fillet (corresponding to the arc radius R2) are arranged between the rounded corner (corresponding to the arc radius R) of the rectangular outline of the above-mentioned lens base 233 and the two adjacent sides, and the arc radius R1 of the first transition fillet is smaller than the arc radius R2 of the second transition fillet; wherein, the first transition fillet is adjacent to the long side, and the second transition fillet is adjacent to the short side; the arc radius R of the fillet is 10.5mm ⁇ 1mm; the arc radius R1 of the first transition fillet is 22.5mm ⁇ 1mm; the arc radius R2 of the second transition fillet is 28.5mm ⁇ 1mm.
  • the three-view diagram of the plano-convex lens is shown in FIG. 22A and FIG. 22B .
  • the arc radii R of the four rounded corners of the rectangular outline of the lens base 233 are all 12.5 mm ⁇ 1 mm.
  • the maximum length L_1 of the lens plane 231 in the third extension direction is in the range of 43.6 mm to 44.4 mm
  • the maximum width L_3 of the lens plane 231 in the fourth extension direction is in the range of 33.6 mm to 34.4 mm
  • the maximum thickness L_5 of the plano-convex lens is in the range of 18.6 mm to 19.4 mm. In this way, the projection image can obtain better brightness and uniformity.
  • the maximum length L_1 of the lens plane 231 in the third extension direction is 44 mm
  • the maximum width L_3 of the lens plane 231 in the fourth extension direction is 34 mm
  • the maximum thickness L_5 of the plano-convex lens is 19 mm; the values of L_1, L_3, and L_5 can be proportionally reduced or enlarged within 10%, and the resulting plano-convex lens can also meet the design requirements.
  • the maximum length of the plano-convex lens plane in the third extension direction, the maximum width of the lens plane in the fourth extension direction, and the maximum thickness of the plano-convex lens are respectively 44 mm, 34 mm, and 19 mm, which are proportionally enlarged by X times; wherein X is in the range of 0.9-1.1.
  • X times is collectively referred to as "enlargement”. In fact, if it is less than 1 times, it is reduced, if it is equal to 1 times, it is unchanged; if it is greater than 1 times, it is enlarged.
  • the maximum length L_1 of the lens plane 231 in the third extension direction is 44 mm
  • the maximum length of the light-emitting area in the first extension direction is 13.6 mm
  • the maximum thickness L_5 of the plano-convex lens is 19 mm
  • the ratio of the maximum length L_1 of the lens plane 231 in the third extension direction to the maximum length of the light-emitting area in the first extension direction is 3.3 (44 mm/13.6 mm)
  • the maximum width L_3 of the lens plane 231 in the fourth extension direction is 34 mm
  • the maximum width of the light-emitting area in the second extension direction is 9 mm
  • the ratio of the maximum width L_3 of the lens plane 231 in the fourth extension direction to the maximum width of the light-emitting area in the second extension direction is 3.8 (34 mm/9 mm).
  • the values of L_1, L_3, and L_5 can be proportionally reduced or enlarged within 10%, and the resulting plano-convex lens can also meet the design requirements.
  • the distance D_1 between the light-emitting area and the lens plane 231 is in the range of 1.5mm-4mm; preferably, D_1 is in the range of 2mm-2.5mm; further preferably, D_1 is 2mm.
  • the maximum length L_2 of the corresponding lens base 233 in the third extension direction is 48mm; the maximum width L_4 of the lens base 233 in the fourth extension direction is 36mm; the thickness L_6 of the lens base 233 is 2mm.
  • the arc radii R of the four rounded corners of the rectangular outline of the above-mentioned lens base 233 are all 12.5mm ⁇ 1mm.
  • the maximum length L_1 of the lens plane 231 in the third extension direction is in the range of 36.5 mm to 37.3 mm
  • the maximum width L_3 of the lens plane 231 in the fourth extension direction is in the range of 28.5 mm to 29.3 mm
  • the maximum thickness L_5 of the plano-convex lens is in the range of 14.9 mm to 15.7 mm. In this way, the projection image can obtain better brightness and uniformity.
  • the maximum length L_1 of the lens plane 231 in the third extension direction is 36.9 mm
  • the maximum width L_3 of the lens plane 231 in the fourth extension direction is 28.9 mm
  • the maximum thickness L_5 of the plano-convex lens is 15.3 mm; the values of L_1, L_3, and L_5 can be proportionally reduced or enlarged within 10%, and the resulting plano-convex lens can also meet the design requirements.
  • the maximum length of the plano-convex lens plane in the third extension direction, the maximum width of the lens plane in the fourth extension direction, and the maximum thickness of the plano-convex lens are respectively 36.9 mm, 28.9 mm, and 15.3 mm, which are proportionally enlarged by X times; wherein X is in the range of 0.9-1.1.
  • X times is collectively referred to as "enlargement”. In fact, if it is less than 1 times, it is reduced, if it is equal to 1 times, it is unchanged; if it is greater than 1 times, it is enlarged.
  • the maximum length L_1 of the lens plane 231 in the third extension direction is 36.9 mm; the maximum width L_3 of the lens plane 231 in the fourth extension direction is 28.9 mm; the maximum thickness L_5 of the plano-convex lens is 15.3 mm; and the ratio of the maximum length L_1 of the lens plane 231 in the third extension direction to the maximum length of the light-emitting area in the first extension direction is 2.7 (36.9 mm/13.6 mm); the maximum width L_3 of the lens plane 231 in the fourth extension direction is 28.9 mm, the maximum width of the light-emitting area in the second extension direction is 9 mm, and the ratio of the maximum width L_3 of the lens plane 231 in the fourth extension direction to the maximum width of the light-emitting area in the second extension direction is 3.2 (28.9 mm/9 mm).
  • the values of L_1, L_3, and L_5 can be proportionally reduced or enlarged within 10%, and the resulting plano-convex lens can also meet the design requirements.
  • the distance D_1 between the light emitting area and the lens plane 231 is in the range of 1.5 mm-4 mm; preferably, D_1 is in the range of 2 mm-2.5 mm; further preferably, D_1 is 2.5 mm.
  • the maximum length L_2 of the lens base 233 in the third extension direction is 48 mm; The maximum width L_4 in the four extension directions is 35.7 mm; the thickness L_6 of the lens base 233 is 1.7 mm.
  • the arc radius R of the four rounded corners of the rectangular outline of the lens base 233 is 12.5 mm ⁇ 1 mm.
  • the projection device further includes a second lens LNS2, which is disposed on a side of the display panel (such as the display panel PNL in FIG. 24A ) away from its light-emitting side, specifically between the condenser lens 23 and the display panel PNL, for collimating the received light.
  • the second lens LNS2 is located between the light-emitting element 21 and the display panel PNL, which can be understood as that when the projection device is projecting, the light of the light-emitting element 21 first passes through the second lens LNS2 and then passes through the display panel PNL.
  • the optical path (S1+S2) from the center of the lens convex surface 232 of the plano-convex lens to the center of the light-emitting surface of the second lens LNS2 is in the range of 50 mm to 70 mm.
  • the optical path is not easy to be too large, otherwise it will cause the volume of the projection device to be too large, resulting in the portability and space occupied not meeting the requirements; the optical path is also not easy to be too small, otherwise it will cause the corresponding components on the optical path to affect each other and cause interference. Based on this, by setting the above optical path within this numerical range, the above defects can be avoided.
  • the second lens LNS2 is a Fresnel lens, and its textured surface is located on the light emitting surface.
  • the outer contour of the second lens LNS2 is a rectangle.
  • the length of the second lens LNS2 is greater than the length of the display area of the display panel, and the difference between the length of the second lens LNS2 and the length of the display area of the display panel does not exceed 20 mm, preferably in the range of 5 mm-20 mm;
  • the width of the second lens LNS2 is greater than the width of the display area of the display panel PNL, and the difference between the width of the second lens LNS2 and the width of the display area of the display panel PNL does not exceed 20 mm, preferably in the range of 5 mm-20 mm. In this way, the lens LNS2 can be easily fixed while ensuring the optical effect.
  • the maximum length of the second lens LNS2 is in the range of 98mm to 112mm; the maximum width of the second lens LNS2 is in the range of 55mm to 66mm.
  • the above-mentioned outline dimensions of the second lens LNS2 can match the outline dimensions of the display area, and are particularly suitable for the display panel PNL display area with a diagonal of 4.45 inches, and are also suitable for the display panel display area with a diagonal of 4.0 inches to 4.45 inches; for example, the second lens LNS2 is rectangular, and the display panel display area.
  • the focal length of the second lens LNS2 is in the range of 80mm-110mm, so that the uniformity and brightness of the projection picture can be taken into account.
  • the focal length of the second lens LNS2 is in the range of 88 mm-102 mm, for example, 90 mm, 95 mm, 100 mm.
  • the length direction of the second lens LNS2 is parallel to the length direction of the display area of the display panel, and the width direction of the second lens LNS2 is parallel to the width direction of the display area of the display panel. In some optional embodiments, the length direction of the second lens LNS2 is parallel to the length direction of the display area of the display panel, and the width direction of the second lens LNS2 has a certain angle with the width direction of the display area of the display panel, for example, an angle not exceeding 10°, for example, 5°.
  • the width direction of the second lens LNS2 is parallel to the width direction of the display area of the display panel, and the length direction of the second lens LNS2 and the length direction of the display area of the display panel have a certain angle, for example, an angle not exceeding 10°, for example, 5°.
  • the projection device further includes a second reflector MR2, which is disposed between the condenser lens 23 and the second lens LNS2, and the light incident surface of the second reflector LNS2 has an angle with the lens plane 231.
  • the second reflector is used to reflect the light emitted by the light emitting element 21 into the display panel PNL. Specifically, the light emitted by the light emitting element 21 is first converged by the condenser lens 23 and then emitted to the second reflector MR2, reflected by the second reflector MR2 and irradiated to the second lens LNS2, and then emitted to the display panel PNL after being collimated by the second lens LNS2.
  • the angle O1 between the light incident surface of the second reflector LNS2 and the plane perpendicular to the lens plane 231 can be 49°.
  • the angle O2 between the light incident surface of the second reflector MR2 and the light incident surface of the second lens LNS2 can be 41°.
  • the projection device further includes a light-transmitting portion GLS, which is disposed between the display panel PNL and the second lens LNS2. There is a gap between the light-transmitting portion GLS and the display panel PNL.
  • the material of the light-transmitting portion GLS is, for example, glass; the material of the light-transmitting portion GLS can, for example, play a role of heat insulation.
  • the two side surfaces of the light-transmitting portion GLS are planes, and the light will not converge or diverge before and after passing through the light-transmitting portion GLS; it can be understood that the light-transmitting portion GLS will not play the role of an optical lens.
  • a first polarizing element POL1 is attached to one side of the light-transmitting portion GLS, and the first polarizing element POL1 can be a polarizer, such as an absorption-type polarizer.
  • the first polarizing element POL1 can also be an APF polarizer.
  • the first polarizing element POL1 is attached to the light-incident portion GLS.
  • the display panel PNL further includes a second polarizing element POL2 on one side away from the first polarizing element POL1, and the absorption axis of the first polarizing element POL1 and the absorption axis of the second polarizing element POL2 are at an angle of 90°.
  • the outer contour of the light-transmitting portion GLS is a rectangle; the length of the light-transmitting portion GLS is greater than the length of the display panel display area, and the difference between the length of the light-transmitting portion GLS and the length of the display panel display area does not exceed 20 mm, preferably within the range of 5 mm-20 mm; the width of the light-transmitting portion GLS is greater than the width of the display panel display area, and the difference between the width of the light-transmitting portion GLS and the width of the display panel display area does not exceed 20 mm, preferably within the range of 5 mm-20 mm. In this way, the light-transmitting portion GLS can be easily fixed without affecting the optical effect.
  • the maximum length of the light-transmitting portion GLS is in the range of 98 mm to 112 mm; the maximum width of the light-transmitting portion GLS is in the range of 55 mm to 66 mm.
  • the above outline dimensions of the light-transmitting portion GLS can match the outline dimensions of the display area, and are particularly suitable for the display area of the display panel PNL with a diagonal of 4.45 inches, and are also suitable for the display area of the display panel with a diagonal of 4.0 inches to 4.45 inches; for example, the second lens LNS2 is rectangular, and the display area of the display panel.
  • the length direction of the light-transmitting portion GLS is parallel to the length direction of the display area of the display panel, and the width direction of the light-transmitting portion GLS is parallel to the width direction of the display area of the display panel. In some optional embodiments, the length direction of the light-transmitting portion GLS is parallel to the length direction of the display area of the display panel, and the width direction of the light-transmitting portion GLS has a certain angle with the width direction of the display area of the display panel, for example, an angle not exceeding 10°, for example, 5°.
  • the width direction of the light-transmitting portion GLS is parallel to the width direction of the display area of the display panel, and the length direction of the light-transmitting portion GLS and the length direction of the display area of the display panel have a certain angle, for example, an angle not exceeding 10°, for example, 5°.
  • the light-transmitting portion GLS is disposed in parallel with the second lens LNS2.
  • the shape of the light-transmitting portion GLS and the shape of the second lens LNS2 may be the same as that of the display panel PNL, for example, both are rectangular.
  • the size of the light-transmitting portion GLS may be the same as that of the second lens LNS2.
  • the imaging optical path of the projection device provided by the embodiment of the present disclosure is simulated below, and the following can be obtained: 24A shows a schematic diagram of light path simulation, and FIG24B shows a simulation diagram of illumination of the display area of the display panel.
  • the illumination data obtained by simulation is shown in Table 1 below, and the brightness and its uniformity are shown in Table 2 below.
  • Table 1 shows the brightness sampling values of each position in the 60-inch projection screen, and the positions in the table correspond to the positions of each area of the projection screen.
  • the four values at both ends of the first and last rows in Table 1 correspond to the illumination of the four corners of the 60-inch projection screen (four positions A, B, C, and D, respectively), and the remaining data are the illumination of the center position of each rectangle after the 60-inch screen is evenly divided into 3 ⁇ 3 rectangles of equal area. It can be seen from the above Table 1 that the illumination of the four corners of the display area of the display panel is roughly equivalent, and the illumination uniformity at different positions in the middle area of the display area of the display panel is better. It can be seen from the above Table 2 that the brightness uniformity of the display area of the display panel reaches 62.65%.
  • the 9 values in the middle area of the display area of the display panel in the above Table 1 are P1 to P3, P4 to P6, and P7 to P9 in order from left to right and from top to bottom.
  • the brightness uniformity of the display area of the display panel is equal to the average value of P1, P3, P7, and P9 divided by the percentage of P5.
  • the brightness uniformity of the four corners of the display area of the display panel (four positions A, B, C, and D, respectively) is roughly equivalent.
  • the illumination The collimation of the light to the display area of the display panel can be within ⁇ 8°.
  • the projection device provided in this embodiment is conducive to improving the utilization rate of light energy by making the first aspect ratio greater than or equal to the aspect ratio of the display area of the display panel.
  • the light emitted by the light-emitting element 21 is converged or shaped by combining the use of a condenser lens, so that the light irradiated to the display area of the display panel can be more collimated and uniform, thereby improving the uniformity of imaging.
  • the process requirements of the focusing lens 23 include, but are not limited to: the roughness is better than Ra0.8; the lens plane 231 and the lens convex surface 232 of the focusing lens 23 are coated with an anti-reflection film, and the thickness of the anti-reflection film is greater than or equal to 420nm and less than or equal to 680nm; the dimensional tolerance of the focusing lens 23 is ⁇ 0.3mm.
  • the material of the focusing lens 23 includes high borosilicate glass (such as H-PZ33) or a material with a refractive index of approximately 1.47.
  • the molding process of the focusing lens 23 includes molding, polishing, coating, polishing and other processes.
  • the specific outline dimensions of the plano-convex lens provided in the embodiments of the present disclosure are not limited to the outline dimensions in the above embodiments.
  • the outline dimensions of the plano-convex lens can be scaled proportionally (90% to 110%) according to specific needs, and have the same optical effect.
  • FIG25 is a schematic diagram of the second reflector in the projection device of some exemplary embodiments of the present disclosure.
  • the second reflector includes a mirror reflection area set on the entire surface.
  • the edge area the circled area in the figure
  • the second reflector MR2 close to the light source assembly 2
  • its light path diagram is shown in FIG26.
  • the light After the light is reflected back to the focusing lens by the mirror, it converges to a small area (the area circled by the small circle in FIG26). In the small area where the light converges, high temperature is easily generated to burn other devices in the area.
  • the second reflector MR2 can be narrowed, and its structure is shown in Figure 27. It has the same shape as shown in Figure 25, but is narrowed at one end close to the light source assembly 2. In this way, the light source reflector MR2 will not reflect this part of the light, and its light path diagram is shown in Figure 28. However, the light will directly irradiate the narrowed area, such as the housing 1 and/or the second fan 7. It is necessary to prevent the temperature of the irradiated part from rising, which is very easy to age and affect the service life. For this reason, a heat-conducting structure, such as a metal film or a heat sink fin, can be set in at least part of the irradiated area to quickly conduct the heat to prevent heat Quantity gathering.
  • a heat-conducting structure such as a metal film or a heat sink fin
  • the embodiment of the present disclosure provides a light path diagram of the second reflector MR2 in a projection device, which can be referred to in FIG29.
  • the light emitted by the light-emitting element 21 passes through the focusing lens, the second reflector MR2, the display panel MR2 and the projection lens 3 in sequence.
  • the second reflector MR2 includes: a mirror reflection area A and a non-mirror reflection area B; the non-mirror reflection area B is configured to prevent the light emitted by the focusing lens from generating reflected light in the non-mirror area A that can enter the focusing lens again.
  • the light emitted by the light source assembly 2 can be mirror-reflected in the mirror reflection area A, and the reflected light can directly enter the display panel PNL for display; the light emitted by the light source assembly 2 cannot be mirror-reflected in the non-mirror reflection area B, and it is difficult to be reflected back to the focusing lens to form light convergence, thereby solving the problem of device burns.
  • the size of the mirror reflection area A is designed so that the light emitted from the condenser lens will not be reflected by a mirror and enter the condenser lens again after passing through the mirror reflection area A.
  • the size of the mirror reflection area A is designed so that the light emitted from the condenser lens will not be converged after passing through the mirror reflection area A and entering the condenser lens, or the influence of the light convergence on the reliability of the projection device is acceptable.
  • the mirror reflection area A can be understood as an area that can achieve a mirror reflection function, including a reflective film, such as a high-reflective film.
  • the present disclosure does not limit the material of the reflective film, as long as it can achieve the reflective function, for example, it can be a metal reflective film or a full dielectric reflective film, or a metal dielectric reflective film.
  • the reflective film can be an aluminum film or a silver film, for example, the aluminum film or the silver film can be prepared on the glass by a metal plating process.
  • the non-mirror area B includes a light absorption area, and the light emitted by the light source 2 is at least partially absorbed in the non-mirror reflection area B, and it is difficult to reflect back to the focusing lens to form light convergence.
  • the light absorption area can form black ink on the mirror surface of the second reflector MR2 to absorb light.
  • the light absorption area can include a thermal conductive material, such as copper, aluminum and other metals; for example, the light absorption area can be made in the form of a heat dissipation fin, so that heat can be quickly transferred; for example, the side of the light absorption area facing the light emitting element 21 can be matte, so that the unabsorbed light can not form a mirror reflection.
  • the non-mirror area B includes a diffuse reflection area.
  • the light emitted by the light source 2 can be diffusely reflected in the diffuse reflection area.
  • the reflection angle of this part of the light is uncertain.
  • the diffusely reflected light has an influence on the The impact on the display effect can be ignored; on the other hand, the light that has been diffusely reflected will not be converged again by the focusing lens; on the other hand, the diffuse reflection area will not produce obvious heat focus due to light irradiation, which solves the reliability problem caused by the aging of local irradiation devices.
  • the diffuse reflection area can diffusely reflect all the irradiated light or diffusely reflect part of the light irradiated to the diffuse reflection area.
  • the diffuse reflection area diffusely reflects part of the light irradiated to the diffuse reflection area, part of the light can be absorbed by the diffuse reflection area, so that the influence of the irradiated light can be reduced to an allowable range, thereby ensuring the reliability of the projection device.
  • the non-mirror reflection area B of the second reflector MR2 can diffusely reflect the invalid light, so as to prevent the invalid light from directly irradiating the housing 1 and/or the second fan 7, and avoid aging caused by excessive temperature due to direct light.
  • the light diffusely reflected by the non-mirror area B will not converge again to generate high temperature and burn the converged area. Therefore, the performance of the projection device can be improved and the service life can be increased.
  • the mirror reflection area includes a reflective film and a smooth substrate.
  • the reflective film is closer to the focusing lens than the smooth substrate.
  • the reflective film can be covered on the smooth substrate, and the light forms a mirror reflection on the reflective film.
  • the reflective film can be made of a metal film.
  • the reflective film can be an aluminum film or a silver film, etc., and can be prepared on a smooth substrate using a metal coating process.
  • the smooth substrate is, for example, smooth glass.
  • the smooth substrate is transparent.
  • the diffuse reflection region includes a reflective film and a rough substrate.
  • the rough substrate is frosted glass.
  • the rough substrate is transparent.
  • the reflective film is closer to the focusing lens than the rough substrate.
  • the rough surface of the rough substrate is arranged opposite to the reflective film, and the reflective film is tightly combined with the rough substrate. Therefore, the surface of the reflective film facing the focusing lens also has a rough morphology, which can produce diffuse reflection of light.
  • the reflective film can be an aluminum film or a silver film, etc., and can be prepared on the rough substrate by a metal plating process.
  • the rough substrate can be roughened on a smooth substrate (for example, a frosting or sandblasting process), and then the reflective film is simultaneously covered on the smooth substrate and the rough substrate by a single process (for example, a coating process).
  • the second reflector MR2 includes a substrate and a reflective film located on a side of the substrate close to the focusing lens, wherein the reflective film covers a portion of the substrate area, wherein the area covered by the reflective film is a mirror reflection area A; and the area not covered by the reflective film includes a non-mirror reflection area B.
  • the reflective film can be bonded to the reflector MR2.
  • the side of the substrate close to the reflective film is a smooth surface, which is conducive to the bonding of the reflective film.
  • the side of the substrate facing away from the reflective film includes a rough surface.
  • the area with a rough surface and not covered by the reflective film forms a diffuse reflection area.
  • the entire surface of the substrate facing away from the reflective film is a rough surface, which can simplify the process.
  • the substrate is a transparent substrate.
  • the rough surface can be arranged on the side of the substrate facing the focusing lens.
  • the rough surface and the reflective film are both located on the same side of the substrate, so that the area covered by the reflective film is the mirror reflection area A, and the substrate area not covered by the reflective film and having the rough surface is the non-mirror reflection area B.
  • the reflective film can be arranged in contact with the surface of the side of the substrate facing the focusing lens; for example, the contacted areas are all smooth surfaces.
  • the rough surface can be provided on the side of the substrate facing the focusing lens, on which part of the area is a rough surface and part of the area is a smooth surface.
  • the reflective film is provided on the side of the substrate away from the focusing lens.
  • the reflective film can be made of a metal film.
  • the reflective film can be an aluminum film or a silver film, etc., and can be prepared by a metal coating process.
  • the side of the substrate away from the focusing lens is a smooth surface, so that on the side of the substrate facing the focusing lens, the area corresponding to the rough surface is a diffuse reflection area, and the area corresponding to the smooth surface is a mirror reflection area A.
  • the center of the non-mirror reflection area B is closer to the light emitting element than the center of the mirror reflection area A.
  • the mirror reflection area A and the non-mirror reflection area B divide the second reflector MR2 into two areas, "one side and the other side" (as shown in Figure 29, the upper side and the lower side).
  • the non-mirror reflection area B is closer to the light emitting element than the mirror reflection area A, so that the light passing through the non-mirror reflection area B is difficult to be reflected back to the focusing lens to form light convergence, which solves the problem of device burning.
  • the outline of the non-mirror region B may be a strip.
  • the outline of the non-mirror region B may be a trapezoid.
  • the outline of the non-mirror region B may be an isosceles trapezoid.
  • the outline of the non-mirror region B may be a long strip trapezoid.
  • the width P1 of the non-mirror reflection area B is in the range of 13-18 mm.
  • the width P1 of the non-mirror reflection area B is in the range of 14.5-15.5 mm. In this way, the non-mirror reflection area B can be ensured to have a larger area, effectively eliminating the influence of the condenser lens on the re-convergence of the reflected light on the reliability of the projection device, while satisfying the compact layout of the components in the projection device.
  • the focusing lens includes a plano-convex lens 23, and the plano-convex lens 23 has a lens plane and a lens convex surface that are opposite to each other; the lens plane is opposite to the light-emitting side of the light-emitting element 21 and is arranged at intervals.
  • the lens plane can be arranged opposite to the light-emitting side of the light-emitting element 21, so that the light emitted by the light-emitting element 21 can be converged, the light can be converged or shaped, the utilization rate of the light emitted by the light-emitting element 21 can be ensured, and energy consumption can be saved.
  • the plano-convex lens 23 is the focusing lens.
  • the focusing lens also includes a lens base located on the side of the plano-convex lens close to the light-emitting element 21, and the lens base is arranged in contact with the plano-convex lens to achieve the installation and fixation of the plano-convex lens.
  • the outer contour of the second reflector MR2 is a trapezoid, and the upper base of the trapezoid is closer to the light emitting element 21 than the upper base of the trapezoid; for example, the non-mirror reflection area B is located on one side of the upper base of the trapezoid.
  • the second reflector MR2 can further reduce its volume while effectively reflecting the imaging light, thereby improving the compactness of the projection device design.
  • the outline of the mirror reflection area A of the second reflector MR2 can also be a trapezoid; for example, the non-mirror reflection area B is located on the side where the upper base of the mirror reflection area is away from the lower base of the mirror reflection area A.
  • the shape of the non-mirror reflection area B can be a trapezoid or a rectangle.
  • the shape of the mirror reflection area A may be an isosceles trapezoid.
  • the angle between the extension plane of the second lens LNS2 and the reflection surface of the second reflector MR2 is in the range of 34 to 48 degrees, so that the projection device is more compact.
  • the plane where the second lens LNS2 is located can be understood as a plane passing through the optical center of the second lens and perpendicular to the optical axis of the second lens.
  • the second lens LNS2 is a Fresnel lens
  • the plane where the second lens LNS2 is located is parallel to the extension plane of the second lens LNS2.
  • the ratio of the lower base length P3 to the upper base length P2 of the mirror reflection area A is in the range of 1.4 to 1.8; the angle ⁇ 1 between the upper base and a waist of the mirror reflection area A is in the range of 98° to 113°, so that the projection device is more compact.
  • the bottom length P3 of the mirror reflection area A is in the range of 105 to 115 mm
  • the top length P2 is in the range of 61.8 to 78.6 mm
  • the height P4 is in the range of 59.8 to 75.3 mm. In this way, the projection device is more compact. It should be noted that
  • the angle between the extension plane of the second lens LNS2 and the reflection surface of the second reflector MR2 is 41°
  • the mirror reflection area A of the second reflector MR2 is an isosceles trapezoid
  • the ratio of the lower base length P3 to the upper base length P2 of the mirror reflection area A of the second reflector MR2 is in the range of 1.4-1.8
  • the angle ⁇ 1 between the upper base and a waist of the mirror reflection area A of the second reflector MR2 is in the range of 105° to 111°.
  • the lower base length P3 of the mirror reflection area A of the second reflector MR2 is in the range of 110.8 ⁇ 3mm
  • the upper base length P2 is in the range of 67.8 ⁇ 3mm
  • the height P4 is in the range of 63.8 ⁇ 3mm
  • the lower base length P3 of the mirror reflection area A of the second reflector MR2 is in the range of 110.8 ⁇ 0.3mm
  • the upper base length P2 is in the range of 67.8 ⁇ 0.3mm
  • the height P4 is in the range of 63.8 ⁇ 0.3mm.
  • the width P1 of the non-mirror-reflection region A is in the range of 13-18 mm, for example, the width P1 of the non-mirror-reflection region B is in the range of 14.5-15.5 mm. In this way, the projection device is more compact.
  • the display device further includes a first reflector MR1, which is configured to reflect light emitted from the display panel PNL into the projection lens 3.
  • the first reflector MR1 is disposed on a side of the display panel PNL away from the light source assembly 2, and the first reflector MR1 is disposed on a side of the first lens LNS1 away from the light source assembly 2.
  • the first reflector MR1 may be a plane reflector. The first reflector MR1 may reflect the light emitted from the display panel PNL back into the projection lens 3.
  • FIG31 is a schematic diagram of a first reflector in a projection device according to some exemplary embodiments of the present disclosure.
  • the first reflector MR1 has a smaller width in an area closer to the display panel PNL and a larger width in an area farther from the display panel PNL.
  • the outer contour of the first reflector MR1 is a trapezoid.
  • the first reflector MR1 includes an imaging mirror reflection area C
  • the contour of the imaging mirror reflection area C can be a trapezoid.
  • the contour of the imaging mirror reflection area C is the same as the contour of the second reflector MR2.
  • the contour of the imaging mirror reflection area C can be an isosceles trapezoid.
  • the angle between the extending plane of the display panel PNL and the reflecting surface of the first reflector MR1 is 45°; the first reflector MR1 is an isosceles trapezoid.
  • the angle ⁇ 2 between the upper base and a waist is in the range of 98° to 100°.
  • the lower base length P6 of the first reflector MR1 is in the range of 110.8 ⁇ 3mm
  • the upper base length P5 is in the range of 81.0 ⁇ 3mm
  • the height P7 is in the range of 99.0 ⁇ 3mm.
  • the lower base length P6 of the first reflector MR1 is in the range of 110.8 ⁇ 0.3mm
  • the upper base length P5 is in the range of 81.0 ⁇ 0.3mm
  • the height P7 is in the range of 99.0 ⁇ 0.3mm. In this way, the projection device is more compact.
  • a reference to "A and/or B" may, in one embodiment, refer to only A (optionally including elements other than B); In another embodiment, only B is referred to (optionally including elements other than A); in yet another embodiment, both A and B are referred to (optionally including other elements), and so on.
  • the term “substantially” herein (such as in “substantially all light” or in “substantially consisting of").
  • the term “substantially” may also include embodiments with “entirely”, “completely”, “all”, etc. Therefore, in embodiments, the adjective substantially is also removable.
  • the term “substantially” may also relate to 90% or higher, such as 95% or higher, in particular 99% or higher, even more particularly 99.5% or higher, including 100%.
  • the term “comprising” also includes embodiments in which the term “comprising” means “consisting of"
  • the term “and/or” particularly relates to one or more of the items mentioned before and after "and/or”.
  • the phrase “item 1 and/or item 2" and similar phrases may relate to one or more of item 1 and item 2.
  • the term “comprising” may refer to “consisting of" in one embodiment, but may also refer to "including at least the defined species and optionally including one or more other species” in another embodiment.
  • the present disclosure can be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer.
  • a device claim enumerating several means several of these means may be embodied by one and the same item of hardware.
  • the mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
  • the present disclosure further applies to the characterizing features described in the specification and/or shown in the drawings.
  • the present disclosure further relates to a method or process comprising one or more of the characterizing features described in the present specification and/or shown in the accompanying drawings.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影装置,包括:壳体(1)、光源组件(2)和投影镜头(3),投影装置内部形成有容纳空间(SP),投影装置还包括位于容纳空间(SP)内的:第二反光镜(MR2)、第二风机(7)和透镜组件(LNSG);第二反光镜(MR2)设置在光源组件(2)的出光侧,用于反射光源组件(2)发出的光进入透镜组件(LNSG),透镜组件(LNSG)用于对光进行准直;容纳空间(SP)包括空气流动空间,空气流动空间包括第一子空间(SP1)和第二子空间(SP2),光源组件(2)、第二反光镜(MR2)、透镜组件(LNSG)和壳体(1)的一部分限定出第一子空间(SP1),第二子空间(SP2)位于第一子空间(SP1)的周围;第二风机(7)用于推动空气流动空间内的内部空气循环,使内部空气在第一子空间(SP1)与第二子空间(SP2)之间循环流动。

Description

投影装置 技术领域
本公开涉及显示技术领域,具体涉及一种投影装置。
背景技术
投影装置是一种可以将图像或视频投射到幕布上的设备,可以通过不同的接口与计算机、游戏机、电视等设备连接,从而播放相应的视频信号。投影装置广泛应用于家庭、办公室、学校和娱乐场所。
目前,市面上的投影装置主要包括CRT(Cathode Ray Tube)投影装置、LCD(Liquid Crystal Display)投影装置、DLP(Digital Light Processing)投影装置。LCD投影装置主要包括单LCD投影装置,三LCD投影装置等。单LCD投影装置结构简单,成本低廉,适合普及到中低消费群体,因此具有可观的增长空间。
发明内容
本公开提出了一种投影装置。
本公开提供一种投影装置,其包括:壳体、光源组件、投影镜头、第一散热器和第一风机,所述光源组件包括发光元件,
所述壳体包括相对的前表面和后表面,所述前表面包括第一开口和第二开口,所述壳体还包括第三开口,所述第三开口的至少部分位于所述后表面;所述发光元件位于所述第一开口处;所述投影镜头位于所述第二开口处;所述第一散热器位于所述壳体的第三开口处;
其中,所述发光元件、所述投影镜头、所述第一散热器和所述壳体共同构成容纳空间;所述第一风机位于所述发光组件远离所述容纳空间的一侧;
所述光源组件还包括发光元件基座,所述发光元件位于所述发光元件基座上;所述第一风机包括朝向所述发光元件基座设置的第一入风口,所述第一入风口与所述发光元件基座之间设置有第一间隙。
在一些实施例中,所述第一入风口包括被发光元件基座在所述第一入风口上的正投影覆盖的第一区域以及位于所述第一区域远离所述投影镜头一侧的第二区域。
在一些实施例中,所述第一入风口还包括位于所述第一区域远离所述第二区域一侧的第三区域,其中,所述第三区域的宽度小于所述第二区域的宽度。
在一些实施例中,所述投影装置包括底板;
所述底板与所述壳体相对设置;所述壳体与所述底板之间构成第一外风道,和/或,所述底板与所述第一散热器的一部分相对设置,所述一部分第一散热器与所述底板构成第一外风道;
所述第一外风道用于在所述投影装置工作时,使空气经过所述第一外风道后进入所述第一风机。
在一些实施例中,所述第一外风道与所述第二区域相对设置。
在一些实施例中,所述投影装置包括电路板;
所述电路板与所述壳体相对设置,所述壳体与所述电路板之间构成第二外风道,和/或,所述电路板与所述第一散热器的一部分相对设置,所述一部分第一散热器与所述电路板构成第二外风道;
所述第二外风道用于在所述投影装置工作时,使空气经过所述第二外风道后进入所述第一风机;所述第二外风道与所述第二区域相对设置。
在一些实施例中,所述第一散热器整体上呈弓形。
在一些实施例中,所述第一散热器包括包裹部以及位于所述包裹部远离所述容纳空间侧的多个第一散热鳍片,所述包裹部覆盖所述第三开口,所述多个第一散热鳍片的每一个都包括第一散热部,所述第一散热器配置为使空气在多个所述第一散热部之间通过后,从所述第一入风口进入所述第一风机。
在一些实施例中,所述投影装置包括电路板和底板的至少之一;
当所述投影装置包括电路板时,所述第一散热部的至少部分位于所述包裹部与所述电路板之间,和/或,
当所述投影装置包括底板时,所述第一散热部的至少部分位于所述包裹部 与所述底板之间。
在一些实施例中,所述电路板包括第二散热部,所述第二散热部位于所述电路板靠近所述壳体的一侧,和/或,所述第二散热部位于所述电路板靠近所述第一散热部的一侧。
在一些实施例中,所述包裹部包括位于所述壳体后表面所在侧的第一子包裹部以及位于与所述壳体后表面所在侧不同侧的第二子包裹部;所述第二子包裹部与所述第一子包裹部连续设置;所述第一散热部为所述第二子包裹部远离所述容纳空间侧的散热鳍片。
在一些实施例中,在所述投影装置工作状态下,所述投影镜头高于所述光源组件;所述壳体还包括底表面和顶表面,所述底表面低于所述顶表面,所述前表面和后表面分别连接所述顶表面和所述底表面。
在一些实施例中,在所述投影装置工作状态下,所述投影装置被配置为在所述底表面与所述投影装置的放置面之间形成风道,进入所述第一入风口中的空气包括经过所述风道的空气,并且,进入所述风道的空气携带从所述第一散热器散发的热量。
在一些实施例中,所述投影装置还包括:
第一偏光元件,设置在所述光源组件的出光侧,用于将所述光源组件所发射的光转换为具有第一偏振方向的第一偏振光;
显示面板,设置在所述第一偏光元件远离所述光源组件的一侧;
第一透镜,设置在所述显示面板远离所述光源组件的一侧,或者设置在所述显示面板与所述第一偏光元件之间;
第一反光镜,设置为将从所述显示面板出射的光反射进入所述投影镜头;
第二偏光元件,所述第二偏光元件设置在所述显示面板远离所述第一偏光元件的一侧,用于将第一偏振方向的偏振光与第二偏振方向的偏振光中的其中一者从所述投影镜头射出,所述第一偏振方向与所述第二偏振方向垂直;
其中,所述第一反光镜和所述第二偏光元件为同一元件或不同元件;所述显示面板为液晶显示面板。
在一些实施例中,所述投影装置还包括透光部;
当所述第一透镜设置在所述显示面板远离所述光源组件的一侧时,所述透光部位于所述光源组件与所述显示面板之间,所述透光部与所述显示面板之间具有第二间隙;
当所述第一透镜在设置在所述显示面板与所述第一偏光元件之间时,所述透光部位于所述光源组件与所述第一透镜之间,所述透光部与所述第一透镜之间具有第二间隙;
所述第一偏光元件贴附于所述透光部。
在一些实施例中,所述投影装置包括位于所述容纳空间内的第二风机,用于推动容纳空间内的内部空气循环,所述内部空气通过所述第一散热器进行热量交换;
所述第二风机包括第二入风口和第二出风口,所述第二出风口排出内部空气,所述第二入风口吸入内部空气,使所述内部空气在所述容纳空间内循环流动;所述内部空气的流动路径包括所述第二间隙。
在一些实施例中,所述第一透镜与所述显示面板之间具有第三间隙;所述内部空气的流动路径包括所述第三间隙;所述第三间隙与所述第二间隙并排设置,所述内部空气在所述第二间隙中的流动方向与所述内部空气在所述第三间隙中的流动方向相同或相反。
在一些实施例中,所述内部空气依次经过第二出风口、第二风道、第三风道、第一风道、第二入风口进行内循环流动;
所述第二风道包括所述第二间隙;所述第三风道包括所述第三间隙;所述第一散热器的至少部分构成所述第一风道的一侧侧壁。
在一些实施例中,所述第一散热器包括延伸进入所述第一风道的第二散热鳍片。
在一些实施例中,所述投影装置还包括第二反光镜和第二透镜;所述第二反光镜用于反射所述发光元件发出的光进入所述第二透镜;所述第二透镜用于对光进行准直;
所述第二风机位于所述第二反光镜背离所述光源组件的一侧;所述第二风机与所述第一散热器之间具有第三间隙,所述第一风道包括所述第三间隙。
在一些实施例中,所述第一风机为轴流风机。
在一些实施例中,所述投影装置还包括固定框,所述显示面板与所述第一透镜分别镶嵌在所述固定框的相对两侧;所述第一透镜与所述显示面板之间具有第三间隙;
所述固定框包括两个相对设置的两个贯通侧,所述贯通侧包括镂空部。
在一些实施例中,所述固定框包括相对设置的两个定位侧;
所述定位侧的两边分别与所述贯通侧连接;所述定位侧包括定位部,用于与所述壳体配合以实现固定框的定位。
在一些实施例中,所述定位部包括凸棱;所述凸棱与所述显示面板的延伸方向相同;
所述固定框还包括U形卡扣;所述显示面板、所述固定框以及所述第一透镜都设置在所述U形卡扣的两端之间,并且,卡扣夹持所述固定框的至少一个侧边;
所述U形卡扣夹持所述固定框侧边的位置包括配合凸棱,所述配合凸棱与所述定位部的凸棱接续设置。
在一些实施例中,所述壳体的内表面包括凹槽,所述凸棱与所述凹槽相配合以实现所述固定框的定位;
所述两个贯通侧中的一个朝向所述第一散热器设置。
在一些实施例中,所述投影装置包括调焦组件,所述调焦组件用于对投影镜头进行调焦;
所述调焦组件包括传感组件和驱动组件;所述传感组件配置为测量所述投影透镜与投影图像之间的投影距离;所述驱动组件配置为根据测量得到的所述投影距离驱动所述投影镜头进行焦距调节;
所述驱动组件包括驱动电机、致动器以及设置在所述投影镜头上的调焦器;所述驱动电机驱动所述致动器运动,所述致动器与所述调焦器耦接。
在一些实施例中,所述致动器包括第一齿轮,所述调焦器包括设置在所述投影透镜外周缘的传动齿,所述第一齿轮与所述传动齿通过相互啮合耦接;
所述调焦组件包括限位组件,所述限位组件用于控制所述投影镜头的调焦范围;
所述限位组件包括光耦合器和挡板;所述挡板与所述调焦器的相对位置固定;
所述光耦合器与所述壳体的相对位置固定;所述光耦合器用于判断所述挡板遮挡或未遮挡光线并发出信号,用于提供指令给所述驱动电机。
在一些实施例中,所述调焦组件包括调焦环,所述挡板和所述传动齿都围绕固定于所述调焦环上。
在一些实施例中,所述投影装置还包括位于所述容纳空间内的第二风机,用于推动容纳空间内的内部空气循环,所述内部空气通过所述第一散热器进行热量交换;
所述第二风机包括第二入风口和第二出风口,所述第二出风口排出内部空气,所述第二入风口吸入内部空气,使所述内部空气在所述容纳空间内循环流动;
其中,所述第二风机为离心风机;所述第二入风口与所述第一散热器相对设置。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1A、1D和1E以剖视方式示出了根据本公开的一些示范性实施例的投影装置的示意性立体图,旨在示出该投影装置的内部结构。
图1B和图1C为根据本公开的一些示范性实施例的投影装置的第一散热器的示意性立体图。
图2为根据本公开的另一些示范性实施例的投影装置的示意性立体图,旨在示出该投影装置的外部结构。
图3示意性地示出了根据本公开的一些示范性实施例的投影装置的容纳空间内的内部空气的循环路径和所述容纳空间外的外部空气的循环路径。
图4示意性地示出了根据本公开的一些示范性实施例的投影装置的调焦器和挡板。
图5为根据本公开的一些示范性实施例的投影装置的第一风机的第一入风口的放大示意图,着重示出第一入风口的各个功能区域。
图6A和图6B示意性地示出了根据本公开的一些示范性实施例的投影装置的显示面板、第一偏光元件、第二偏光元件、透光部、第一透镜和第二透镜沿着光行进方向的位置关系。
图7以简化方式示意性地示出了根据本公开的一些示范性实施例的投影装置的光路图。
图8以爆炸图的方式示意性地示出了如何通过卡扣将显示面板与第一或第二透镜固定到固定框。
图9以简化方式示意性地示出了根据本公开的一些示范性实施例的投影装置的显示面板与壳体内表面的凹槽的配合情况。
图10示意性地示出了根据本公开的另一些示范性实施例的投影装置的容纳空间内的内部空气的循环路径和所述容纳空间外的外部空气的循环路径。
图11为图10的投影装置中第二风机的立体图。
图12为图10的投影装置中第二风机的另一角度的立体图。
图13为图10中所示的投影装置中局部位置的参考示意图。
图14为本公开的一些示范性实施例中提供的第二反射镜与通风部的位置关系示意图。
图15为本公开的一些示范性实施例中提供的投影装置中各光学元件的示意图。
图16为当显示面板的显示面与第二透镜所在平面平行时的光路示意图。
图17为本公开的一些示范性实施例中提供的投影装置实现物方远心光路的示意图。
图18为图15所示的投影装置中的显示面板、第二透镜、第一反光镜和投影镜头的示意图。
图19为转角度偏轴投影的原理示意图。
图20A为本公开的一些示范性实施例中提供的投影装置和地平面的关系示意图。
图20B为本公开的另一些示范性实施例中提供的投影装置和地平面的关系示意图。
图21A为根据本公开的一些示范性实施例的投影装置的局部光路图。
图21B为根据本公开的一些示范性实施例的投影装置的发光元件及其基座的正视图。
图22A为根据本公开的一些示范性实施例的投影装置的聚光透镜的一种三视图。
图22B为根据本公开的一些示范性实施例的投影装置的聚光透镜的另一种三视图。
图23为根据本公开的一些示范性实施例的投影装置的透镜底座的另一种轮廓图。
图24A为根据本公开的一些示范性实施例的投影装置的成像光路模拟图。
图24B为根据本公开的一些示范性实施例的投影装置的显示面板显示区的照度模拟图。
图25为本公开的一些示范性实施例的投影装置中的第二反光镜的示意图。
图26为图25所示的第二反光镜的光路图。
图27为本公开的另一些示范性实施例的投影装置中的第二反光镜的示意图。
图28为图27所示的第二反光镜的光路图。
图29为本公开的再一些示范性实施例的投影装置中的第二反光镜的示意 图。
图30为图28所示的第二反光镜的光路图。
图31为本公开的一些示范性实施例的投影装置中的第一反光镜的示意图。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于阐明本公开,而非对本公开保护范围的限制。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
需要说明的是,本公开中的方位措辞“上、下、前、后(背)、横、竖”,除非另有说明,皆为相对概念,并非绝对概念,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
需要说明的是,本公开中采用[A,B]形式表示的数值范围,表示数值范围为A数值到B数值,且包括A数值和B数值。本公开中采用(A,B)形式表示的数值范围,表示数值范围为A数值到B数值,且不包括A数值和B数值。本公开中采用[A,B)形式表示的数值范围,表示数值范围为A数值到B数值,且包括A数值,不包括B数值。本公开中采用(A,B]形式表示的数值范围,表示数值范围为A数值到B数值,且包括B数值,不包括A数值。另外,采用“A-B”形式或“A~B”表示的数值范围,表示数值范围为A数值到B数值,且包括A数值和B数值。
除非另外定义,本公开提到的“矩形”包括一般意义上的矩形,也包括圆角矩形,圆角矩形的长边长度(即:长)和短边长度(即:宽)分别为将圆角矩形还原为一般矩形后的长边长度和短边长度。
除非另外定义,本公开中梯形的上底与下底是以长度关系定义的,在本公开的所述梯形中,上底的长度小于下底的长度。
对于本公开中的光学元件,在描述位置关系时,元件A位于元件B靠近元件C的一侧的含义,根据光路的实际构造,可以按以下理解方式之一理解:其一,在光路中,主要光线从元件C到元件B的过程中,先经过元件A再经过元件B;其二,在光路中,主要光线从元件B到元件C的过程中,先经过元件A再经过元件C。
对于本公开中的光学元件,在描述位置关系时,元件A位于元件B远离元件C的一侧的含义,根据光路的实际构造,可以按以下理解方式之一理解:其一,在光路中,主要光线从元件C到元件A的过程中,先经过元件B再经过元件A;其二,在光路中,主要光线从元件A到元件C的过程中,先经过元件B再经过元件C。
为了叙述方便和简洁起见,本公开以投影装置通常的工作位置为参考基准,也即,将投影装置朝向投影图像(例如投影幕布)的侧称为前侧或前方;后侧或后向是指投影装置的背对投影图像的一侧,左右两侧即与前后方向垂直的侧向。上下两侧即与前后方向和左右方向均垂直的方向。上下两侧即与前后方向和左右方向均垂直的方向。
目前,市面上的投影装置主要包括CRT(Cathode Ray Tube)投影装置、LCD(Liquid Crystal Display)投影装置、DLP(Digital Light Processing)投影装置。LCD投影装置主要包括单LCD投影装置,三LCD投影装置等。单LCD投影装置结构简单,成本低廉,适合普及到中低消费群体,因此具有可观的增长空间。
图1A、1D和1E以剖视方式示出了根据本公开的一些示范性实施例的投影装置的示意性立体图,旨在示出该投影装置的内部结构。图1B和图1C为根据本公开的一些示范性实施例的投影装置的第一散热器的示意性立体图。图2为根据本公开的另一些示范性实施例的投影装置的示意性立体图,旨在示出该投影装置的外部结构。如图1A至图2所示,投影装置包括:壳体1、光源组件2、投影镜头3和第一散热器4。
光源组件2包括:发光元件21以及位于发光元件21出光侧的聚光透镜23。 聚光透镜23配置成对发光元件21发出的光进行收束或整形。其中,聚光透镜23可以采用平凸透镜。在一些实施例中,光源组件2还包括发光元件基座22,发光元件21位于发光元件基座22上。
壳体1包括相对的前表面和后表面,所述前表面包括第一开口P1和第二开口P2。壳体1还包括第三开口P3,第三开口P3的至少部分位于所述后表面;发光元件21位于第一开口P1处;投影镜头3位于第二开口P2处;第一散热器4位于壳体1的第三开口P3处。其中,发光元件21、投影镜头3、第一散热器4和壳体1共同构成容纳空间SP。
在本公开的投影装置中,由于在壳体1的第三开口P3处设置具有大散热面积的第一散热器4,显著提高了投影装置内部热量的散热效率。另一方面,第一散热器4和壳体1共同构成容纳空间SP,且壳体1上不存在大面积的镂空的排气孔,因此不存在排气时空气与壳体1的摩擦,显著降低了投影装置的运行噪音。
优选地,容纳空间SP为封闭容纳空间,如此,可以避免灰尘进入壳体内部,保持光学部件的洁净。
在一些实施例中,如图1A、图1D和图1E所示,投影装置还可以包括第一风机5,第一风机5位于发光组件2远离容纳空间SP的一侧。在一些实施例中,第一风机5为轴流风机,第一风机5的泵送方向平行于第一风机5的轴向。第一风机5包括朝向发光元件基座22设置的第一入风口51和与第一入风口51相对的第一出风口52。
通过第一风机5的抽吸作用,可抽吸被第一散热器4传导热量的空气,从第一散热器4散发的热量耗散出去,进一步提高了散热效率。不仅如此,第一入风口51与发光元件基座22相对设置,可以同时起到对发光元件散热的作用。优选地,第一入风口51与发光元件基座22之间设置有第一间隙之间设置有第一间隙,第一间隙有利于发光元件基座22与空气进行充分的热交换,提高发光元件基座22的散热效率。
图3示意性地示出了根据本公开的一些示范性实施例的投影装置的容纳空 间内的内部空气的循环路径和所述容纳空间外的外部空气的循环路径;图5为根据本公开的一些示范性实施例的投影装置的第一风机的第一入风口的放大示意图,着重示出第一入风口的各个功能区域。请参见图1A至图1D、图3和图5,第一入风口51包括被发光元件基座22在第一入风口51上的正投影覆盖的第一区域Z1以及位于第一区域Z1远离投影镜头3一侧的第二区域Z2。第二区域Z2位于第一区域Z1远离投影镜头3的一侧,可以使经过第一散热器4的热空气不受阻碍的进入第一风机5,增加第一风机的散热效率。
优选地,第一入风口51还包括位于第一区域Z1远离第二区域Z2一侧的第三区域Z3,如此,增加了空气流动的空间,提升散热效率。
进一步优选地,第三区域Z3的宽度W3小于第二区域Z2的宽度W2,也即第一区域Z1被设置为第一入风口51的整体高度范围内更靠近投影镜头3的位置,可以给下方空气流动增加空间,提高散热效率。
在一些实施例中,如图1A所示,投影装置还包括底板10,底板10与壳体1相对设置;壳体1与底板10之间构成第一外风道CH1;第一外风道CH1用于在所述投影装置工作时,使空气经过第一外风道CH1后进入第一风机5。优选地,第一外风道CH1与第二区域Z2相对设置。
可选地,底板10与第一散热器4的一部分相对设置,一部分第一散热器4与底板10构成第一外风道CH1。参考图1A,第一散热器4包括第一散热器第一部分41,第一散热器第一部分41与底板10相对设置。可以理解的是,第一散热器第一部分41与底板10相对设置包括第一散热器第一部分41与底板10平行,也包括第一散热器第一部分41与底板10所呈锐角夹角小于45°。如此,第一散热器4散发的热量可以更有效地进入第一外风道CH1,提高散热效率。优选地,第一散热器第一部分41与底板10的锐角夹角小于或等于20°;例如,第一散热器第一部分41与底板10的锐角夹角可以在[5°,15°]范围内;例如,第一散热器第一部分41与底板10的锐角夹角可以在[8°,12°]范围内;例如,可以为10°。需要说明的是,当第一散热器第一部分41包括包裹容纳空间SP的包裹部和位于包裹部远离容纳空间SP一侧的散热鳍片时,第一散热器第一 部分41与底板10的锐角夹角可以理解为第一散热器第一部分41的的包裹部与底板10的锐角夹角。
具体地,一部分第一散热器4与底板10构成第一外风道CH1可以理解为,底板10与第一散热器4包括间隙,所述间隙构成第一外风道CH1的至少部分。在一些实施例中,第一散热器4与底板10也可以直接接触,第一散热器4包括可以允许空气流动的路径,如此,第一散热器4与底板10形成的通风通道为第一外风道的至少部分。
在一些实施例中,底板10包括底板支撑面101以及底板支撑脚102,底板支撑脚102相对于底板支撑面101更靠近投影装置放置的表面(例如与投影装置放置的表面直接接触);底板10还可以包括底板承载结构103,底板承载结构103用于支撑壳体1。
在一些实施例中,如图1D和图3所示,所述投影装置还可包括电路板8,电路板8与壳体1相对设置,壳体1与电路板8之间构成第二外风道CH2;第二外风道CH2用于在所述投影装置工作时,使空气经过第二外风道CH2后进入第一风机5;第二外风道CH2与第二区域Z2相对设置。
例如,电路板8可以为系统板。电路板8可以配置为驱动显示面板、发光元件、风机、调焦组件中的至少一个。
可选地,电路板8与第一散热器4的一部分相对设置,一部分第一散热器4与电路板8构成第二外风道CH2。参考图1B和1C,第一散热器4包括第一散热器第一部分41,第一散热器第一部分41与电路板8相对设置。可以理解的是,第一散热器第一部分41与电路板8相对设置包括第一散热器第一部分41与电路板8的延伸面平行,也包括第一散热器第一部分41与电路板8的延伸面所呈锐角夹角小于45°。如此,第一散热器4散发的热量可以更有效地进入第一外风道CH1,提高散热效率。优选地,第一散热器第一部分41与底板10的锐角夹角小于或等于20°。例如,第一散热器第一部分41与底板10的锐角夹角可以在[5°,15°]范围内;例如,第一散热器第一部分41与底板10的锐角夹角可以在[5°,10°]范围内;例如,可以为10°。需要说明的是,当 第一散热器第一部分41包括包裹容纳空间SP的包裹部和位于包裹部远离容纳空间SP一侧的散热鳍片时,第一散热器第一部分41与底板10的锐角夹角可以理解为第一散热器第一部分41的的包裹部与底板10的锐角夹角。
具体地,一部分第一散热器4与电路板8构成第二外风道CH2可以理解为,电路板8与第一散热器4包括间隙,所述间隙构成第二外风道CH2的至少部分。在一些实施例中,第一散热器4与电路板8也可以直接接触,第一散热器4包括可以允许空气流动的路径,如此,第一散热器4与电路板8形成的通风通道为第二外风道CH2的至少部分。
在一些实施例中,投影装置还包括支撑架,在正常使用时,所述支撑架相对壳体1更靠近投影装置放置的表面,用于对壳体1进行支撑。例如,支撑架包括支撑面61以及支撑脚62,其中,在正常使用时,支撑脚62相对于支撑面61更靠近投影装置放置的表面(例如与投影装置放置的表面直接接触),用于对支撑面61进行支撑;支撑面61用于承载壳体1。在一些实施例中,电路板8位于支撑面61远离壳体1的一侧;优选地,支撑面61包括贯穿的中空部分,如此,电路板8的热量可以通过第二外风道CH2被及时带走,避免发生热量聚集。
请参见图1D和图3,第一散热器4整体上可呈弓形。如此,第一散热器4在投影装置的后侧对投影装置内部的主要散热区域较为充分地包裹,可以充分进行热量交换,有利于提高散热效率。
在一些实施例中,请参见图1A至1E、以及图3,第一散热器4包括包裹部44以及位于所述包裹部44远离容纳空间SP侧的多个第一散热鳍片46,包裹部44覆盖第三开口P3,多个第一散热鳍片46的每一个都包括第一散热部,所述第一散热器4配置为使空气在多个所述第一散热部之间通过后,从第一入风口51进入第一风机5。举例而言,第一散热鳍片的数量可为15-25个,突伸高度可为10-20mm,宽度可为20-38mm。
例如,第一散热器4为铸铝散热器。
作为选择,所述投影装置可包括电路板8和底板6的至少之一。在一些实 施例中,当所述投影装置包括电路板8时,所述第一散热部的至少部分位于包裹部44与电路板8之间。在一些实施例中,当所述投影装置包括底板6时,所述第一散热部的至少部分位于包裹部44与底板6之间。这样有效达到了对第一散热鳍片46的散热效果。在实际应用中,优选地将第一散热部设置为沿着气流方向设置,以不阻碍气流。优选地,第一散热部呈流线型,以不阻碍气流。例如,在第一散热部转弯延伸时,可以呈曲线转弯。
包裹部44包括位于壳体1后表面所在侧的第一子包裹部(如图1D所示,其在后表面所在侧包覆第三开口,例如为拱形)以及位于与壳体1后表面所在侧不同侧的第二子包裹部(如图1D所示,第二子包裹部位于第一子包裹部的下侧,且与第一子包裹部的延伸方向不同,第二子包裹部与第一子包裹部共同包覆第三开口);所述第二子包裹部与所述第一子包裹部连续设置。第一子包裹部与第二子包裹部之间的过渡采用拐角形式,或者,第一子包裹部与第二子包裹部之间的过渡处的圆弧半径小于第一子包裹部对应的第一散热部与第二子包裹部对应的第一散热部过渡处的圆弧半径。第一子包裹部靠近第二子包裹部的部分与第二子包裹部靠近第一子包裹部的部分所呈角度(例如,所述拐角)大于90°且小于180°。可选的,第一子包裹部靠近第二子包裹部的部分与第二子包裹部靠近第一子包裹部的部分所呈角度(例如,所述拐角)大于90°且小于150°,如此,在保证散热面积的同时,可以兼顾机器的体积。例如,第一子包裹部靠近第二子包裹部的部分与第二子包裹部靠近第一子包裹部的部分所呈角度大于90°且小于150°。优选地,第一子包裹部靠近第二子包裹部的部分与第二子包裹部靠近第一子包裹部的部分所呈角度在[120°,145°]范围内。
例如,第一散热器第一部分41包括第二子包裹部以及第二子包裹部对应的第一散热部。
电路板8包括第二散热部81,所述第二散热部81位于电路板8靠近壳体1的一侧,经过第一风机5的空气可以先经过第二散热部81,从而进一步提高散热效率。第二散热部81可以包括第三散热鳍片;优选地,第三散热鳍片沿 着气流方向延伸。
在一些实施例中,如图1E所示,在所述投影装置工作状态下,投影镜头3高于光源组件2;壳体1还包括底表面和顶表面,所述底表面低于所述顶表面,所述前表面和后表面分别连接所述顶表面和所述底表面。在所述投影装置工作状态下,所述投影装置被配置为在所述底表面与所述投影装置的放置面GD之间形成第一外风道CH1,进入第一入风口51中的空气包括经过所述第一外风道CH1的空气,并且,进入所述风道的空气携带从第一散热器4散发的热量。在一些实施例中,所述投影装置还包括支撑结构11,用于对壳体1进行支撑。
图6A和图6B示意性地示出了根据本公开的一些示范性实施例的投影装置的显示面板、第一偏光元件、第二偏光元件、透光部、第一透镜和第二透镜沿着光行进方向的位置关系;图7以简化方式示意性地示出了根据本公开的一些示范性实施例的投影装置的光路图。请一并结合图6A至图7,所述投影装置还包括:第一偏光元件POL1,第二偏光元件POL2,显示面板PNL,第一透镜LNS1,第二透镜LNS2。
可以理解的是,显示面板PNL作为光阀,用于控制经过显示面板PNL各像素的透过率。显示面板PNL的显示功能通过投影画面实现。
显示面板PNL可以为液晶显示面板。本公开实施例中对液晶显示面板的具体类型不做限定,例如,其可以是垂直取向型(Vertical Alignment,VA)型或扭曲向列型(Twisted Nematic,TN)型显示面板,此时公共电极设置在第二衬底基板上;当然,也可以是共面开关型(In Plane Switching,IPS)显示面板或边缘场开关型(Fringe Field Switching,FFS)显示面板或高级超维场开关型(Advanced Super Dimension Switch,ADS)显示面板,此时,公共电极设置在第一衬底基板上,只要能够使像素电极和公共电极之间产生电场来驱动液晶偏转即可。
其中,第一偏光元件POL1设置在光源组件2的出光侧,用于将光源组件2所发射的光转换为具有第一偏振方向的第一偏振光。
显示面板PNL设置在第一偏光元件POL1远离光源组件2的一侧。
在一些实施例中,投影装置通过控制显示面板PNL的液晶偏转改变进入显示面板PNL的光(第一偏振光)偏振状态。当显示面板PNL与位于显示面板PNL远离第一偏光元件POL1一侧的第二偏光元件POL2配合时,可以用于生成显示画面。
第一透镜LNS1设置在显示面板PNL远离光源组件2的一侧。作为选择,第一透镜LNS1也可以设置在显示面板PNL与第一偏光元件POL1之间。
第二偏光元件POL2设置在显示面板PNL远离第一偏光元件POL1的一侧。第二偏光元件POL2可以被配置为将第一偏振方向的偏振光与第二偏振方向的偏振光中的其中一者从所述投影镜头射出,其中,第一偏振方向和第二偏振方向垂直。在一些示范性实施例中,第二偏光元件POL2为偏光膜材,与显示面板PNL的出光面贴附合设置。
在一些示范性实施例中,显示面板PNL可以对第一偏振光的偏振方向进行调节,以射出第二偏振光。例如,第二偏振光的偏振方向介于所述第一偏振方向与第二偏振方向之间,第一偏振方向与所述第二偏振方向垂直。需要说明的是,第二偏振光的偏振方向介于所述第一偏振方向与第二偏振方向之间,包括第二偏振光的偏振方向与第一偏振方向相同的情况,也包括第二偏振光的偏振方向与第二偏振方向相同的情况。
在一些示范性实施例中,第一偏光元件POL1为偏光膜材,与显示面板PNL的入光面贴合设置。在另一些示范性实施例中,第一偏光元件POL1与显示面板PNL之间存在间隔,如此,第一偏光元件POL在滤光时产生的热量难以传导到显示面板PNL上,避免因为液晶显示面板温度过高影响显示效果。
在一些实施例中,投影装置还包括透光部GLS。例如,第一偏光元件POL为偏光膜材,并与透光部GLS贴合设置。其中透光部GLS与显示面板PNL之间存在间隔,如此,第一偏光元件POL1与显示面板PNL之间存在间隔,避免第一偏光元件POL1在滤光时产生的热量对显示面板PNL的工作产生影响。透光部GLS的材料例如为玻璃;透光部GLS的材料例如可以起到隔热作用。
在一些实施例中,透光部GLS的两侧表面为平面,光线经过透光部GLS 前后不会产生会聚或发散;可以理解的是,透光部GLS不会起到光学透镜的效果。
在一些实施例中,第一偏光元件POL1贴附于透光部GLS远离显示面板PNL的一侧,如此,可以利用透光部GLS的阻隔避免或减少第一偏光元件POL1接收光照产生的热量传递给显示面板PNL,避免对显示效果产生影响。
在一些实施例中,第一偏光元件POL1也可以贴附于透光部GLS靠近显示面板PNL的一侧。
在一些实施例中,显示面板PNL包括阵列基板和彩膜基板,其中,第二偏光元件POL2位于阵列基板远离彩膜基板的一侧。例如,第二偏光元件POL2与阵列基板贴合设置。例如,第二偏光元件POL2位于显示面板的出光侧,透射经过显示面板PNL的投影光线先经过彩膜基板再经过阵列基板出射,如此,可以减少聚集在彩膜基板表面的热量,降低显示面板的表面温度,保护显示面板。
在一些实施例中,如图6A所示,第一透镜LNS1设置在显示面板PNL远离光源组件2的一侧,透光部GLS位于光源组件2与显示面板PNL之间,透光部GLS与显示面板PNL之间具有第二间隙d2。在另一些实施例中,如图6B所示,第一透镜LNS1设置在显示面板PNL与第一偏光元件POL1之间,透光部GLS位于光源组件2与第一透镜LNS1之间,透光部GLS与第一透镜LNS1之间具有第二间隙d2。
在一些示范性实施例中,如图6A和图6B所示,第二间隙d2可以为位于透光部GLS的出光侧且紧邻透光部GLS设置的间隙;在另一些示范性实施例中,第一偏光元件POL1贴附于透光部GLS的出光侧,第二间隙d2为位于第一偏光元件POL1的出光侧且紧邻第一偏光元件POL1设置的间隙。需要说明的是,两者紧邻可以理解为两者之间不包括其他元件。
具体地,第一透镜LNS1为凸透镜。在一些实施例中,第一透镜LNS1可以为菲涅尔透镜或者非球面镜,优选为菲涅尔透镜。
在一些实施例中,显示装置还包括第一反光镜MR1,第一反光镜MR1设 置为将从显示面板PNL出射的光反射进入投影镜头3。具体地,第一反光镜MR1设置在显示面板PNL远离光源组件2的一侧,并且第一反光镜MR1设置在第一透镜LNS1远离光源组件2的一侧。第二反射镜MR2可以为平面反射镜。
需要说明的是,当表述第一个元件位于第二个元件远离光源组件2的一侧时,可以理解为空间位置上,第一个元件相对于第二个元件距离光源组件2更远,也可以理解为在光路中,主要光线先经过第二个元件后再经过第一个元件。
在一些示范性实施例中,第二偏光元件POL2可以与第一反光镜MR1为同一元件或不同元件。具体地,当第二偏光元件POL2可以与第一反光镜MR1为同一元件时,第一反光镜MR1可以被配置为将第一偏振方向的偏振光与第二偏振方向的偏振光中的其中一者从投影镜头3射出。如此,显示面板PNL的出光面不必贴附第二偏光元件POL2,减少了局部位置的热量聚集,投影仪可以设置更高投射亮度画面。
在一些实施例中,当第二偏光元件POL2可以与第一反光镜MR1为同一元件时,第一反光镜MR1可以包括:集成在一起的多层光学膜层,多层光学膜层可以设置在基板(如玻璃基板)朝向显示面板PLN的一侧,且倾斜于显示面板PLN。任意相邻两层光学膜层的折射率不同,从而形成光学界面;每个所述光学界面对应一个波段,不同的光学界面对应不同的波段,每个光学界面用于对波长处于相应波段内、且偏振方向为第一偏振方向的偏振光进行透射,并对波长处于相应波段内、且偏振方向为第二偏振方向的偏振光进行反射。其中,光学膜层42的数量可以为3层、4层、5层等等。例如,多层光学膜层42之间具有3个光学界面,第一个光学界面用于对处于红光波段内、且偏振方向为第一偏振方向的光进行透射,对处于红光波段内、且偏振方向为第二偏振方向的光进行反射;第二个光学界面用于对处于绿光波段内、且偏振方向为第一偏振方向的光进行透射,对处于绿光波段内、且偏振方向为第二偏振方向的光进行反射;第三个光学界面用于对处于蓝光波段内、且偏振方向为第一偏振方向的光进行透射,对处于蓝光波段内、且偏振方向为第二偏振方向的光进行反射。
通过多层光学膜层之间的界面,可以透过自然光中的第一偏振方向的偏振光,并反射自然光中的第二偏振方向的偏振光。当然,也可以调节各光学膜层的折射率,使得反光组件40中的每个光学界面用于对波长处于相应波段内、且偏振方向为所述第二偏振方向的偏振光进行透射,并对波长处于相应波段内、且偏振方向为所述第一偏振方向的偏振光进行反射。
请一并参阅图1D和图3,所述投影装置还包括位于容纳空间SP内的第二风机7,用于推动容纳空间SP内的内部空气循环,所述内部热空气通过第一散热器4与外界冷空气进行热量交换。在一些示范性实施例中,第二风机7为离心风机,其包括第二入风口71和第二出风口72,第二出风口72排出内部空气,第二入风口71吸入内部空气,使内部空气在容纳空间SP内的至少部分区域循环流动。
在一些实施例中,第二入风口71与所述第一散热器4相对设置,如此,经过第一散热器4降温的内部空气直接进入第二入风口71进行下一个空气流动循环,可以实现容纳空间SP内部的有效降温。
在一些实施例中,内部空气的流动路径包括第二间隙d2,也即,内部空气被第二风机7驱动从第二间隙d2流过,以带走第二间隙d2附近的热量。
在一些实施例中,参考图6A和图6B,第一透镜LNS1与显示面板PNL之间具有第三间隙d3,内部空气的流动路径包括第三间隙d3,第三间隙d3与第二间隙d2并排设置,所述内部空气在第二间隙d2中的流动方向与所述内部空气在第三间隙d3中的流动方向相同或相反。在一些示范性实施例中,参考图6A,第二间隙d2以及第三间隙d3分别位于显示面板PNL的入光面一侧以及出光面一侧,并且,在入光面一侧的内部空气流动方向与在出光面一侧的内部空气流动方向相反。具体地,第三间隙d3与第二间隙d2并排设置可以理解为第三间隙d3与第二间隙d2的延伸方向相同或大致相同,例如第三间隙d3与第二间隙d2的延伸方向夹角在30°以内。
在一些示范性实施例中,所述内部空气依次经过第二出风口72、包含第二间隙d2的第二风道、包含第三间隙d3的第三风道、第一内风道CH'、第二入 风口71而进行内循环流动。第一散热器4的至少部分构成第一内风道CH'的一侧侧壁。具体来说,如图3所示,第一散热器4包括包裹部,包裹部的至少部分构成第一内风道CH'的一侧侧壁。优选地,参考图1B和1C,第一散热器4还包括延伸进入第一内风道CH'的第二散热鳍片48,如此,可以增加第一散热器4与外部的热量交换效率。举例而言,第二散热鳍片48的数量可为15-25个,突伸高度可在[10mm,20mm]范围内,宽度可在[20mm,38mm]范围内。第二散热鳍片48的延伸方向与第一内风道CH'的延伸方向一致。
在一些实施例中,如图3所示,沿着空气在第一内风道CH'的流动方向延伸的至少部分区域,第一内风道CH'的宽度逐渐变宽,如此,增加了第一内风道CH'与外界空气热交换的面积,提升散热效率。优选地,第一内风道CH’最宽处的宽度与第一内风道CH’入口位置的宽度之差在10mm-20mm范围内,其中,第一内风道CH’入口与第三风道连接,第一内风道CH’的宽度表示垂直于第二入风口71所在平面方向上第一内风道CH’的宽度。例如,第一内风道CH’最宽处的宽度为第一内风道CH’入口位置的宽度的2倍-3倍之间。例如,第一内风道CH’最宽处的宽度为第三间隙d3宽度的2倍-3倍之间。例如,第一内风道CH’最宽处与第二入风口71相对设置。
在一些实施例中,第一内风道CH'与第二入风口71直接连接,如此,经过第一散热器4降温的内部空气直接进入第二入风口71进行下一个空气流动循环,可以实现容纳空间SP内部的有效降温。
在一些实施例中,显示装置包括第二反射镜MR2,第二反射镜MR2被配置为反射光源组件2发出的光进入显示面板PLN。第二反射镜MR2可以为平面反射镜。
在一些实施例中,显示装置包括第二透镜LNS2,第二透镜LNS2位于第二反射镜MR2与显示面板PLN之间,用于对第二反射镜MR2反射的光进行准直,如此,光源组件2为准直光源组件。
在一些示范性实施例中,第二透镜LNS2位于透光部件GLS远离显示面板PLN的一侧。
在一些示范性实施例中,第二透镜LNS2位于第一透镜LNS1与光源组件2之间。
具体地,第二透镜LNS2为凸透镜。在一些示范性实施例中,第二透镜LNS2可以为菲涅尔透镜或者非球面镜,优选为菲涅尔透镜。
在一些实施例中,如图3所示,第二风机7位于第二反光镜MR2背离光源组件2的一侧;第二风机7与第一散热器4之间具有第四间隙d4,第一内风道CH'包括第四间隙d4。
图8以爆炸图的方式示意性地示出了如何通过卡扣将显示面板与第一或第二透镜固定到固定框,图9以简化方式示意性地示出了根据本公开的一些示范性实施例的投影装置的显示面板与壳体内表面的凹槽的配合情况。请结合参阅附图8和9,所述投影装置还包括固定框9,显示面板PNL与第一透镜LNS1分别镶嵌在固定框9的相对两侧。第一透镜LNS1与显示面板PNL之间具有第三间隙d3。固定框9包括两个相对设置的两个贯通侧91,两个贯通侧91中的一个朝向第一散热器4设置。优选地,每个贯通侧包括镂空部911,镂空部911的面积占该贯通侧91面积的80%以上。具体地,固定框9包括相对设置的两个定位侧92;两个定位侧92与两个贯通侧91连接。每个定位侧92包括定位部,用于与壳体1配合以实现固定框9的定位。例如,所述定位部包括凸棱921,凸棱921与显示面板PNL的延伸方向相同。例如,固定框9还包括U形卡扣93;显示面板PNL、固定框9以及第一透镜LNS1都设置在U形卡扣93的两端之间,并且,卡扣93夹持固定框9的至少一个定位侧92,也即U形卡扣在厚度方向上限定显示面板PNL与第一透镜LNS1。U形卡扣93夹持固定框9的定位侧92的位置包括配合凸棱931。优选地,配合凸棱931与定位部的凸棱921接续设置,以形成连续分布的直线形滑轨。例如,如图9所示,壳体1的内表面10'包括凹槽101',凸棱921与凹槽11相配合以实现固定框9的定位和滑动。凸棱921配置成能够在凹槽101'内滑动,从而将显示面板PNL从外壳1中拉出或放入。需要说明的是,凹槽101'可以是壳体1的一部分,也可以是与壳体1连接的机械结构。
在一些示范性实施例中,第一散热器4是可从外壳1上拆卸的。固定框9可在第一散热器4在外壳1上拆卸后放入投影装置或从投影装置内部取出,如此,便于投影装置的维修。
图4示意性地示出了根据本公开的一些示范性实施例的投影装置的调焦器和挡板,请一并参阅图2和图4,所述投影装置包括用于对投影镜头3进行调焦的调焦组件,其包括传感组件13和驱动组件。传感组件13包括距离传感器,距离传感器配置为测量投影透镜3与投影图像(例如投影幕布)之间的投影距离。例如,距离传感器可以为TOF(TimeofFlight)传感器。驱动组件配置为根据测量得到的所述投影距离驱动投影镜头3进行焦距调节。
在一些示范性实施例中,驱动组件包括驱动电机11、致动器12以及设置在所述投影镜头上的调焦器14;驱动电机11驱动致动器12运动,致动器12与调焦器14耦接,以对投影镜头3进行调焦。例如,驱动电机11的转轴可以与致动器12固定连接。在一些示范性实施例中,致动器12包括第一齿轮,调焦器14包括设置在投影透镜3外周缘的传动齿141,第一齿轮与传动齿141通过相互啮合耦接。
在一些示范性实施例中,调焦组件还包括限位组件,所述限位组件用于控制所述投影镜头的调焦范围。所述限位组件包括光耦合器和挡板16,挡板16与调焦器14的相对位置固定。光耦合器用于判断挡板16遮挡或未遮挡光线并发出信号,用于提供指令给驱动电机11。
在一些示范性实施例中,如图4所示,调焦器14为调焦环,挡板16和传动齿141都围绕固定于所述调焦环上。所述光耦合器包括发光器和受光器,该挡板16配置成能够阻挡该发光器和受光器之间的光路。
在一些示范性实施例中,光耦合器配置成:当该发光器和受光器之间的光路被挡板16阻挡时,所述光耦合器传输第一控制信号给所述电路板,以控制电动机11进行转动来进行自动调焦;当该发光器和受光器之间的光路未被挡板16阻挡时,所述光耦合器传输第二控制信号给所述控制电路板,以对电动机11进行制动。
第一齿轮与传动齿141的传动比为1:3.5-4.5;第一齿轮的齿根圆直径与传动齿141的齿根圆直径之比为1:5.0-6.0;第一齿轮的齿顶圆直径与传动齿141的齿顶圆直径之比为1:3.2-4.2。如此,在最大程度减小投影装置整体体积的前提下,第一齿轮与传动齿141,能够保证驱动的高效率和顺畅性同时保证调焦的准确性。
在一些示范性实施例中,电路板8电连接到显示面板PNL,以对显示面板PNL进行控制。
在一些示范性实施例中,电路板8电连接到驱动组件,以对驱动组件进行控制。
可选地,第二反射镜MR2和第一反光镜MR1在容纳空间SP内且可拆卸地安装在壳体1上。
可选地,第二开口P2和投影透镜3之间设置有气密性密封填料;以使容纳空间SP的密闭性更好。
可选地,第一开口P1和平凸透镜23之间设置有气密性密封填料,以使容纳空间SP的密闭性更好。
可选地,第一散热器4与壳体1的第三开口P3相接合的部位设置有气密性密封填料,以使容纳空间SP的密闭性更好。
可选地,上述气密性密封填料选自硅胶填料或橡胶填料中的至少一者。
可选地,参见图3,所述投影装置配置成:在气密性容纳空间SP内,在第二风机7的驱动下,内部气流依次流经:所第二风机7的第二出风口72、第二间隙d2、第三间隙d3、第四间隙d4、第二风机7的第二入风口71进行热循环。
可选地,外壳1左右两侧中的至少一侧上与透光部GLS相对应的位置处开设一细长的孔隙,该孔隙的宽度大于或等于透光部GLS的厚度,以能够将透光部GLS经由所述孔隙直接从容纳空间SP中拉出或放入,便于更换和维护透光部GLS。
可选地,参见图1D,所述投影装置还包括位于壳体1外部的、且位于发光组件2前方的第二散热器HS。第二散热器HS通过至少一根热管Cu与光源 组件2的发光元件基座22热耦合,以促进光源组件2附近的热量耗散。第二散热器HS的尺寸大于发光元件基座22且与发光元件基座22间隔开一定距离,以放置第一风机5,换言之,第一风机5设置在发光元件基座22与第二散热器HS之间。至少一根热管Cu和发光元件基座22的材料包括铜。在一些示范性实施例中,第二散热器HS包括由多个铝片叠置而成的散热鳍片,且每个热管Cu的一端连接在发光元件基座22上,另一端从第二散热器HS的侧面插入其内。热管Cu与发光元件基座22的连接方式例如为焊接连接。
可选地,参见图2,所述投影装置还包括设置在投影仪左右两侧的挡风罩15,从而有利于第一风机5的对第一散热器4附近的热空气进行抽吸。具体地,挡风罩15至少设置在第一外风道CH1的两侧。
可选地,参见图3,所述投影装置配置成:在气密性容纳空间SP外,在第一风机5的驱动下,外部空气依次流经:第一散热器4的多个第一散热鳍片、壳体1与底板6之间构成第一外风道CH1(或者壳体1与电路板8之间构成第二外风道CH2,或者壳体1与放置面GD之间构成第三外风道CH3)、第一风机5的第一入风口51、第一风机5的第一出风口52,以将热量向外界环境耗散。
除了具体实施方式部分前几段所述的技术效果外,根据本公开的投影装置还具有以下有益效果。
一方面,目前市面上常见的单LCD投影装置是不具备自动调焦的功能的。使用这种不具备自动调焦的功能的投影装置时,需要根据投影透镜与投影幕布的距离,事先人工地调焦。当投影幕布或投影装置移动时,投影透镜与投影幕布的距离也随之改变,就需要重新人工地调焦。这种人工调焦的操作方法繁琐且调焦效果不佳。相反,由于本公开提供的投影装置包括能够测量所述投影透镜与所述投影幕布之间的投影距离的距离传感器和驱动组件,并且驱动组件能够基于所述投影距离来驱动调焦器以进行自动调焦。相对于人工调焦的传统投影装置,本公开的投影装置操作简单、调焦更准确、效率更高。
另一方面,通过在光源组件2的出光侧中简单地设置1个第二反射镜MR2, 来取代传统的包含多个复杂光学元件的光准直系统,可以更有效地对光路进行折叠(即使得光行进的路径变短),在保证光的行进方向的前提下,进一步缩小投影装置的体积,提升投影装置的的便携性。
再一方面,考虑到显示模组PNL及第一透镜LNS1在使用中容易出现不良,且常规产品每次更换这两个器件都很费力,所以本公开通过固定框以及U形卡扣将第一透镜LNS1与显示面板PNL夹持在一起,提供了一种整体式、紧凑的显示单元,整体的密封性好,结构稳定,且便于快速拆卸,方便维修更换。
图10示意性地示出了根据本公开的另一些示范性实施例的投影装置的容纳空间内的内部空气的循环路径和所述容纳空间外的外部空气的循环路径,与图3所示的投影装置相同的是,图10中所示的投影装置同样包括:壳体1、光源组件2和投影镜头3,投影镜头3内部形成有容纳空间,容纳空间内设置有第二反光镜MR2、第二风机7和透镜组件LNSG,第二反光镜MR2设置在光源组件2的出光侧,用于反射光源组件2发出的光进入透镜组件LNSG,透镜组件LNSG用于对光进行准直。例如,透镜组件LNSG可以包括:上述透光部GLS和第二透镜LNS2。
在图10示的投影装置中,容纳空间包括空气流动空间,该空气流动空间内的空气可以流动。具体地,空气流动空间可以包括:第一子空间SP1和第二子空间SP2,其中,光源组件2、第二反光镜MR2、透镜组件LNSG和壳体1的一部分限定出第一子空间SP1,第二子空间SP2位于第一子空间SP1的周围。需要说明的是,第二子空间SP2位于第一子空间SP1的周围并不意味着,第二子空间SP2一定是环绕第一子空间SP1的连续环形结构,也可以是,第二子空间SP2位于第一子空间SP1的一侧;或者,第二子空间SP2的一部分位于第一子空间SP1的一侧,另一部分位于第一子空间SP1的又一侧。
其中,第二风机7用于推动空气流动空间内的内部空气循环,使所述内部空气在第一子空间SP1与第二子空间SP2之间循环流动。
在投影装置中,第一子空间SP1会由于光源组件2的发光而积累一定的热量,而图10中的第二风机7可以推动内部空气在第一子空间SP1与第二子空 间SP2之间循环流动,从而有利于对第一子空间SP1进行散热,有利于提升投影装置的信赖性。并且,通过第二风机7推动空气流动空间内的空气流动,有利于空气流动空间内的温度保持平衡,从而有利于投影装置的整体散热和器件运行。
其中,第二风机7可以采用离心风机。图11为图10的投影装置中第二风机的立体图,图12为图10的投影装置中第二风机的另一角度的立体图。如图11和图12所示,第二风机7包括风机壳体1以及位于风机壳体1中的离心风扇。风机壳体1包括功能区和非功能区,其中,功能区包括在离心风扇轴向上与离心风扇重叠的区域以及空气被输出的通道所在的区域。功能区设置有第二入风口71和第二出风口72,非功能区设置有贯穿风扇壳体1的通风部73。
请一并参考图10至图12,第二入风口71朝向第二子空间SP2,第二出风口72用于同时朝向第一子空间SP1和第二子空间SP2排入空气。第二出风口72排入至第一子空间SP1的空气经过通风部73,进入第二子空间SP2,再进入第二入风口71;第二出风口72排入至第二子空间SP2的空气在第二子空间SP2内流动后进入第二入风口71。如此,可以使空气流动空间内的空气循环流动。
在一些实施例中,如图10所示,第二子空间SP2包括:位于第一散热器4与第二风机7之间的第一内风道CH',第一散热器4的至少部分构成第一内风道CH'的一侧侧壁。其中,第二入风口71朝向第一内风道CH'设置。第二出风口72向第一子空间SP1排入的空气能够依次经过通风部73和第一内风道CH',再进入第二入风口71,从而使携带有第一子空间SP1热量的空气可以与第一散热器4进行热量交换,第一散热器4将热量散发至外界环境。
在图10所示的投影装置中,投影装置中的光学元件沿着光行进方向的位置关系可以参见图6A和图6B,如图6A和图6B,透镜组件LNSG远离第二反光镜MR2的一侧设置有PNL、第一透镜LNS1,透镜组件LNSG与PNL之间具有第二间隙d2,第一透镜LNS1与PNL之间具有第三间隙d3,且相对于第三间隙d3而言,第二间隙d2更靠近第一子空间SP1。在一些实施例中,如图 6A所示,显示面板PNL位于透镜组件LNSG远离第二反光镜MR2的一侧,第一透镜LNS1位于显示面板PNL远离透镜组件LNSG的一侧。当然,在另一些实施例中,如图6B所示,第一透镜LNS1也可以设置在透镜组件LNSG远离第二反光镜MR2的一侧,而显示面板PNL设置在第一透镜LNS1远离透镜组件LNSG的一侧。
第二子空间SP2还包括U型风道,U型风道包括并排设置且互相连通的第二风道和第三风道,第二风道包括第二间隙d2,第三风道包括第三间隙d3。第二出风口72排入第二子空间SP2的空气的流动路径包括所述第二风道、所述第三风道和所述第一内风道CH',即,内部空气可以从第二风道、第三风道、第一内风道CH'流过,从而可以对显示面板PNL充分散热。
如图10所示,U型风道还包括第四风道CH4,第四风道CH4与第二风道、第三风道连通。第二出风口72的部分区域朝向第二风道设置,第二出风口72排入第二子空间SP2的空气依次经过第二风道、第四风道、第三风道和第一内风道CH'后,进入第二入风口71。壳体1还包括与第四风道CH4对应的弯曲部1a,弯曲部1a的内壁为弧面,所述弧面朝远离所述第二风道和所述第三风道的方向凸出,以使所述第二风道的气流可以沿着弧面进入所述第三通道。
在下文实施例中,将第二出风口72划分为第一区域和第二区域,第二区域为第二出风口72中与第二子空间SP2相对的区域;第一区域为第二出风口72中位于第二区域靠近第一子空间SP1一侧的其余区域。第一区域的面积定义为第一有效排入面积S1,第二区域的面积定义为第二有效排入面积S2。在一些实施例中,第二区域远离第一子空间SP1一侧不存在其余区域,且第二出风口72中,远离第二区域的位置所排出的空气不会被第二反光镜MR2遮挡,在此情况下,第一区域为第二出风口72中除第二区域以外的区域。
例如,透镜组件LNSG中,同时靠近显示面板PNL和第二出风口的侧边定义为第一侧棱,第二出风口72处与第一侧棱平行、且距离第一侧棱最近的参考线作为第一区域和第二区域之间的分界线。
例如,第二出风口72中对应于第一侧棱与显示面板PNL之间的区域,作 为第二区域。
需要说明的是,当透镜组件LNSG包括透光部GLS和第二透镜LNS2,且透光部GLS与第二出风口72之间不设置其他结构(即,没有其他结构会遮挡第二出风口72出风时),则透光部GLS靠近显示面板PNL的表面的各侧棱中,靠近第二出风口72一侧的侧棱作为上述第一侧棱。而在一些实施例中,透镜组件LNSG除了包括透光部GLS和第二透镜LNS2之外,还包括固定件FS,固定件FS包括用于对透光部GLS进行限位的第一固定件FS1,第一固定件FS1与第二出风口72相对,这种情况下,第一固定件FS1靠近靠近显示面板PNL和第二出风口72一侧的侧棱作为上述第一侧棱。
例如,透镜组件LNSG靠近第二反光镜MR2的一侧具有多个侧棱,该多个侧棱中,靠近第二出风口72一侧的侧棱定义为第二侧棱。在一些实施例中,第二反光镜MR2靠近第二出风口72的边缘与上述第二侧棱在垂直于透镜组件LNSG整体的延伸方向上的距离大于或等于上述第一区域的高度的一半。
例如,第一侧棱与显示面板PNL靠近第一侧楞一侧的延伸面之间的距离大于或等于上述第二区域的高度,以使第二出风口72所排出的空气能够顺利进入第一子空间SP1和第二子空间SP2中。
其中,第二出风口72的第一区域和第二区域均为条状,第一区域和第二区域的宽度定义为各自对应的条状的长度,第一区域和第二区域的高度定义为各自对应的条状的宽度,可以理解的是,所述条状的长度大于所述宽度。
如图6A和图6B中所示,显示面板PNL远离第二间隙d2的一侧设置有第二偏光元件POL2,而在显示面板PNL的显示过程中,第二偏光元件POL2可以透过第一偏振方向的偏振光与第二偏振方向的偏振光中的其中一者,而将另一者吸收。因此,第二子空间SP2相较于第一子空间SP1而言,会产生较多热量。为了保持第一子空间SP1和第二子空间SP2内的热量平衡,在一些实施例中,将第二有效排入面积S2设置为大于第一有效排入面积S1的通风面积。例如,第二有效排入面积S2为第一有效排入面积S1的(1,3]倍,从而进一步保持第一子空间SP1和第二子空间SP2内的热量平衡。
在一些实施例中,参考图13,透镜组件LNSG配置为将第二出风口72所排出的空气分流,使得一部分第二出风口72排出的空气AF1进入第一子空间SP1,使得一部分第二出风口72排出的空气AF2进入第二子空间SP2。上述“第二有效排入面积S2为第一有效排入面积S1的(1,3]倍”,如此,单位时间内,第二出风口72向第二子空间SP2排入的空气AF2的体积大于第二出风口72向第一子空间SP1排入的空气AF1的体积,进一步地,可以获得或接近于单位时间内,第二出风口72向第二子空间SP2排入的空气AF2的体积是第二出风口72向第一子空间SP1排入的空气AF1的体积的(1,3]倍的效果。优选地,第二有效排入面积S2为第一有效排入面积S1的2倍,从而最大程度的保持第一子空间SP1和第二子空间SP2内的热量平衡。
可以理解的是,当透镜组件LNSG包括透光部GLS和第二透镜LNS2时,透光部GLS与第二透镜LNS2之间可以具有间隙。例如,该间隙远离第二出风口72的一端被结构件封堵,因此,透光部GLS与第二透镜LNS2之间的间隙中可以不形成气流。
在一些实施例中,请一并结合图10和图13,第二出风口72包括第一开口部721和第二开口部722,第一开口部721和第二开口部722并排设置,其中,第一开口部721的至少部分配置为朝向第一子空间SP1排入空气,第二开口部722的至少部分配置为朝向第二子空间SP2排入空气。例如,第一开口部721的一部分朝向第一子空间SP1排入空气;第二开口部722整体均朝向第二子空间SP2排入空气。
在一个示例中,第二开口部722的宽度大于第一开口部721的宽度,从而有利于实现第二有效排入面积S2大于第一有效排入面积S1。第一开口部721和第二开口部722都为条状,它们的宽度和高度的定义可以参考第二出风口72的宽度和高度定义确定。
在一个示例中,第一开口部721和第二开口部722均为矩形开口,且二者可以连通。例如,参考图11和图13,第一开口部721和第二开口部722相互贯通,二者共同形成“凸”字形出风结构。透镜组件LNSG位于第二出风口72 的出风侧,在一个示例中,透镜组件LNSG的上述第一侧棱与第一开口部721相对设置,即,第二出风口72的第一区域和第二区域之间的分界线落在第一开口部721上。当然,在另一些示例中,透镜组件LNSG的第一侧棱也可以与第二开口部722相对设置;或者,透镜组件LNSG的第一侧棱与第一开口部721和第二开口部722之间的交界线相对。
在一些实施例中,为了提高透镜组件LNSG的设置稳定性,如图13所示,透镜组件LNSG还可以包括固定件FS,固定件FS与第二出风口72相对设置,透光部GLS靠近第二出风口72一侧的边缘、第二透镜LNS2靠近第二出风口72一侧的边缘均固定在固定件FS上。例如,固定件FS与壳体1连接设置。
例如,透镜组件LNSG远离第二出风口72一侧的边缘可以直接或间接固定在壳体1上。
需要说明的是,当透镜组件LNSG包括透光部GLS和第二透镜LNS2时,透镜组件LNSG远离第二出风口72一侧的边缘包括:透光部GLS远离第二出风口72一侧的边缘、以及第二透镜LNS2远离第二出风口72一侧的边缘。当透镜组件LNSG只包括第二透镜LNS2,而不包括透光部GLS时,透镜组件LNSG远离第二出风口72一侧的边缘即为,第二透镜LNS2远离第二出风口72一侧的边缘。
进一步需要说明的是,透光部GLS和第二透镜LNS2均可以为多边形结构,二者均具有多个边缘。透光部GLS(或第二透镜LNS2)靠近第二出风口72一侧的边缘是指,透光部GLS(或第二透镜LNS2)的多个边缘中,距离第二出风口72最近的边缘。透光部GLS(或第二透镜LNS2)远离第二出风口72一侧的边缘是指,透光部GLS(或第二透镜LNS2)的多个边缘中,距离第二出风口72最远的边缘。
例如,固定件FS包括第一固定部FS1和第二固定部FS2,透光部GLS靠近第二出风口72一侧的边缘固定在第一固定部FS1上,第二透镜LNS2靠近第二出风口72一侧的边缘固定在第二固定部FS2上。
其中,本公开实施例对第一固定部FS1和第二固定部FS2的固定方式不作 限定,例如,固定方式可以为夹持、托持等方式。例如,第一固定部FS1具有第一固定槽,透光部GLS靠近第二出风口72一侧的边缘的至少部分固定在第一固定槽中;例如,第二固定部FS2具有第二固定槽,第二透镜LNS2靠近第二出风口72一侧的边缘的至少部分固定在第二固定槽中。
例如,第一限定槽、第二固定槽均为具有一定长度、宽度和深度的槽,第一固定槽的宽度方向即为:透光部GLS的厚度方向;第一固定槽的长度方向即为,透光部GLS靠近第二出风口72一侧的边缘的延伸方向。例如,第一固定槽的深度方向垂直于第一固定槽的长度和宽度方向。同理,第二固定槽的宽度方向即为:第二透镜LNS2的厚度方向;第二固定槽的长度方向即为,第二透镜LNS2靠近第二出风口72一侧的边缘的延伸方向。例如,第二固定槽的深度方向垂直于第二固定槽的长度和宽度方向。
例如,第一固定槽的长度可以大于或等于透光部GLS靠近第二出风口72一侧的边缘的长度;第一固定槽的宽度可以等于或近似等于透光部GLS的厚度,从而可以对透光部GLS靠近第二出风口72一侧的边缘整体进行夹持。其中,第一固定件FS1可以采用遮光材料。
当第一固定槽的长度大于或等于透光部GLS靠近第二出风口72一侧的边缘的长度,且第一固定件FS1采用遮光材料时,可以对那些未经过第一偏光元件POL1偏光作用的光线进行遮挡,防止其射到显示面板PNL中而影响显示效果。
例如,第二固定槽的长度可以小于第二透镜LNS2靠近第二出风口72一侧的边缘的长度,从而对第二透镜LNS2靠近第二出风口72一侧的边缘的部分进行夹持。例如,第二固定部FS2的数量为两个,两个第二固定部FS2间隔设置,并分别对第二透镜LNS2靠近第二出风口72一侧的边缘的两端进行固定。
由于投影装置在工作时,第二透镜LNS2在越靠近自身中部的位置,会产生越高的热量,将第二固定部FS2设置在第二透镜LNS2靠近第二出风口72一侧的边缘的两端,可以防止第二固定部FS2因第二透镜LNS2的热量而发生变形。
例如,第一固定部FS1和第二固定部FS2可以形成为一体结构。
在一些实施例中,如图13所示,固定部FS还包括限位部FS3,限位部FS3用于对第二反光镜MR2进行限位,以保证第二反光镜MR2在壳体内的位置保持稳定。其中,限位部FS3与第一固定部FS1、第二固定部FS2可以为一体结构。
例如,限位部FS3具有限位槽,第二反光镜MR2靠近第二出风口72一侧的边缘的一部分位于限位槽中。例如,第二反光镜MR2靠近第二出风口72一侧的边缘定义为参考边缘,参考边缘沿其长度方向的一端设置有限位部FS3,从而对参考边缘的一端进行限位;或者,参考边缘沿其长度方向的两端均设置有限位部FS3,从而对参考边缘的两端进行限位;或者限位部FS3沿着参考边缘的长度方向连续分布。需要说明的是,限位部FS3也可以通过其他形式对第二反光镜MR2进行限位。
在一些实施例中,透镜组件LNSG靠近第二出风口72一侧的边缘与第二出风口72之间可以具有一定的间隙,以便于透镜组件LNSG的安装。例如,透镜组件LNSG靠近第二出风口72一侧的边缘与第二出风口72之间的间隙在[3mm,5mm]之间。例如,透镜组件LNSG靠近第二出风口72一侧的边缘与第二出风口72之间的间隙为3mm,或4mm,或5mm。
在一些实施例中,第二入风口71的通风面积为第一有效排入面积S1与第二有效排入面积S2之和的M倍,M在[1,1.2]范围内。当M=1时,可以使得第二风机7的风压稳定。优选地,将M设置在(1,1.2]范围内,此时,可以在第二风机7内形成负风压,有利于将第二出风口72排成的空气抽到第二入风口71内。例如,M在(1,1.1]范围内,或者,M在[1.05,1.15]范围内,或者,M在[1.1,1.2]范围内。
其中,第二风机7包括风机壳体7a和设置在风机壳体7a中的离心风扇,第二入风口71为设置在风机壳体7a上的进风开孔,第二入风口7a的通风面积即为所述进风开孔的面积。
其中,通风部73的通风面积为第一有效排入面积S1的K倍,K在[1,1.3] 范围内,从而有利于将第二出风口72排入第一子空间SP1抽到第二入风口71内。例如,K在(1,1.1]范围内,或者,K在[1.05,1.15]范围内。优选地,K在[1.1,1.3]范围内,从而在风机壳体7a上有限的区域内尽量增大通风部73的通风面积,使第二出风口72排入第一子空间SP1的空气能够更顺畅地被抽至第二入风口71。例如,K=1.2。
需要说明的是,通风部73的通风面积是指,通风部73能够流过的空气流的横截面积。在一个示例中,通风部73包括一个或多个贯穿风机壳体7a1的通风孔731,通风孔731为柱形,则通风部73的通风面积为所有通风孔731的通风面积之和,每个通风孔731的通风面积即为该通风孔731垂直于其轴向的截面面积。
在一些优选实现方式中,通风部73包括多个通风孔731,通风孔731包括朝向第一子空间SP1的开口和朝向第二子空间SP2的开口,同一个通风孔731中的两个开口面积、形状均相同。通风孔731的开口形状不作限定,可以为矩形、圆形、三角形、梯形或其他不规则形状。第二入风口71的形状可以为圆形、或其他形状。其中,通风部73的多个通风孔731可以划分为两组,分别位于离心风扇的两侧。例如,每一组通风孔731可以沿着离心风扇的弧形轮廓分布,两组通风孔731呈半包裹离心风扇的分布状态。
在一些实施例中,如图10所示,壳体1内的容纳空间还包括第三子空间SP3,当第一透镜LNS1位于显示面板PNL远离第二反光镜MR2的一侧时,壳体1的至少部分、第一反光镜MR1、投影镜头3和第一透镜LNS1限定出第三子空间SP3;当显示面板PNL位于第一透镜LNS1远离第二反光镜MR2的一侧时,壳体1的至少部分、第一反光镜MR1、投影镜头3和显示面板PNL限定出第三子空间SP3。第三子空间SP3中的空气可以不发生流动。
图14为本公开的一些示范性实施例中提供的第二反射镜与通风部的位置关系示意图,如图14所示,沿着垂直于第二反光镜MR2的反光面方向,第二反光镜MR2在风机壳体7a上的投影与至少部分通风部73无交叠,以保证第一子空间SP1内的空气能够经过通风部73吹至第一内风道CH'。
在一个示例中,第二反光镜MR2在风机壳体7a上的投影与通风部73的一部分无交叠,而与通风部73的另一部分存在交叠。应当注意的是,这种情况下,通风部73的通风面积则为,未被第二反光镜MR2遮挡的那部分通风部73所能够流过空气的截面积。
在另一个示例中,第二反光镜MR2在风机壳体7a上的投影与通风部73的完全不交叠,以保证第一子空间SP1内的空气可以顺利进入第一内风道CH'中。
例如,第二反光镜MR2的反光面在靠近透镜组件LNSG一侧的宽度大于远离反光面远离透镜组件LNSG一侧的宽度。例如,第二反光镜MR2的反光面的宽度随着与透镜组件LNSG距离的增加有逐渐减小的趋势。例如,第二反光镜MR2的反光面的宽度随着与透镜组件LNSG距离的增加而减小。如此,可以为通风部73留出设置空间。
例如,第二反光镜MR2的反光面呈梯形,该梯形具有互相平行的第一底边MR21和第二底边MR22,以及连接在第一底边MR21与第二底边MR22之间的腰MR23,第一底边MR21的长度大于第二底边MR22的长度,第一底边MR21位于第一子空间SP1靠近透镜组件LNSG的位置,第二底边MR22位于第二子空间SP2远离透镜组件LNSG的位置。沿着垂直于第二反光镜MR2的反光面方向,梯形的腰MR23在风机壳体7a上的投影与通风部73接触或相邻。
其中,第二反光镜MR2的反射面使光源组件2发出的光线能够被进入显示面板PNL的显示区,将第二反光镜MR2的反射面设置为梯形,可以在不影响显示效果的同时,避让通风部73。
在一些实施例中,通风部73分布在第二反光镜MR2的两个腰侧,通风部73包括多个通风孔731,且第二反光镜MR2的每个腰侧均设置有多个通风孔731,从而使得第一子空间内的空气更加均匀地流向第一内风道CH'中。应当理解的是,当第二反光镜MR2的每个腰侧均设置有多个通风孔731时,通风部73的通风面积为两侧的所有通风孔731的通风面积之和。在一个示例中,第二反光镜MR2的两个腰侧所设置的通风孔731的数量相同,且两个腰侧的通风 孔731的通风面积相同。例如,第二反光镜MR2的每个腰侧均设置有4个通风孔731,每侧的4个通风孔731的总通风面积均等于预设值。
需要说明的是,在图10所示的投影装置中,除了上述第二风机7、第二反光镜MR2的结构,以及空气流动空间内的空气流向之外,投影装置中的其余结构均可以参照上述图1A中的投影装置,这里不再赘述。
在相关技术中,投影装置的投影镜头的光轴与投影画面的中心重合,这样画面的一部分容易被遮挡,而无法投影到投影幕布上。例如,将投影装置放置在承载台上时,画面的下半部分可能会投影到承载台上,而并非投影到投影幕布上,从而影响观看体验。针对这一问题,在本公开的一些实施例中,对投影装置中的光学元件的位置进行调整,以实现偏轴投影,从而对投影画面的位置进行调节。在投影装置水平放置使用时,相比相关技术,投影画面的位置抬升,可以获得更好的观看体验。
图15为本公开的一些示范性实施例中提供的投影装置中各光学元件的示意图,上述各实施例中的投影装置中的光学元件均可以根据图15中的位置进行布置。如图15所示,在本公开的一些实施例中,投影镜头3的光轴L1或等效光轴L3与显示面板PNL的显示区存在第一交点J,第一交点J与所述显示面板PNL显示区中心之间存在非零的间距d,从而通过“离轴”的方式实现偏轴投影,下文简称“离轴偏轴投影”。
需要说明的是,在一个示例中,显示面板PNL与投影镜头3之间可以不设置反光元件,从而使显示面板PNL出射的光线不经过反射(或者,不经过弯折)射向投影镜头3。这种情况下,投影镜头3与显示面板PNL的位置关系满足:投影镜头3的光轴L1与显示面板PNL的显示区存在第一交点J,第一交点J与显示面板PNL的显示区中心之间存在非零的间距d。在另一个示例中,显示面板PNL与投影镜头3之间设置有反光元件(例如如图15所示,第一反光镜MR1),显示面板PNL出射的光经过第一反光镜MR1的反射后,进入投影镜头3。这种情况下,投影镜头3与显示面板PNL的位置关系满足:投影镜头3的等效光轴L3与显示面板PNL的显示区之间存在第一交点J,该第一交点J 与显示面板PNL显示区的中心之间存在非零的间距d。所谓的“等效光轴L3”是指,透镜镜头3的光轴的镜像延伸线,可以理解为投影镜头3的光轴L1经过第一反光镜MR1镜面反射后的轴线;换言之,投影镜头3的光轴L1和等效光轴L3在第一反光镜MR1的反光面相交,且关于第一反光镜MR1的法线L2轴对称。因此,投影镜头3的光轴L1与第一反光镜MR1的法线L2之间的夹角A1等于投影镜头3的等效光轴L3与第一反光镜MR1的法线L2之间的夹角A2;第一反光镜MR1的法线L2是指,经过投影镜头3的光轴L1与第一反光镜MR1的交点M、且与第一反光镜MR1的反光面垂直的直线。
在一个示例中,显示面板PNL显示区的外轮廓为矩形;参考图15以显示面板PNL显示区为基准来建立坐标系,将显示区中心O作为坐标系的原点,坐标系的Z轴为显示区的中心法线,即,经过中心O且垂直于显示区的直线;坐标系的Y轴从显示区中心O指向显示区外轮廓的第一边且与第一边垂直;坐标系的X轴经过中心O且垂直于Y轴和Z轴,也即,坐标系的X轴从显示区中心O指向显示区外轮廓的第二边且与第二边垂直。例如,显示区外轮廓矩形包括矩形长边和矩形短边。例如,第一边为所述矩形的一个长边,第二边为所述矩形的一个短边。
例如,参考图15在存在第一反光镜MR1的情况下,Y轴与投影镜头3的光轴L1位于同一平面内。
例如,参考图15在存在第一反光镜MR1的情况下,投影镜头3的光轴L1与所述矩形短边所在直线位于同一平面内,如此,投影镜头可以投出横屏(长大于高)的图像。
例如,显示面板PNL还包括围绕显示区设置的非显示区。
例如,显示面板PNL还包括绑定区,所述绑定区位于显示区外轮廓矩形长边一侧的非显示区。
例如,参考图15在存在第一反光镜MR1的情况下,绑定区位于显示面板PNL的显示区远离投影镜头3一侧,或者,绑定区位于显示面板PNL的显示区靠近投影镜头3一侧,如此,便于显示面板PNL驱动电路布置。
优选地,在存在第一反光镜MR1的情况下,绑定区位于显示面板PNL的显示区远离投影镜头3一侧,如此,便于显示面板PNL驱动电路的安装。
在一个示例中,显示区的对角线长度为4.45英寸,显示区的长宽比为16:9。
在一个示例中,在设置第一反光镜MR1的情况下,投影镜头3的等效光轴L3平行于显示区的中心法线。
在一个示例中,在设置第一反光镜MR1的情况下,投影镜头3的等效光轴L3平行于Z轴。
在本公开的一些实施例中,当投影镜头3的光轴L1或等效光轴L3与显示面板PNL的显示区之间存在第一交点J,且第一交点J与显示面板PNL显示区的中心之间存在非零间距d时,投影镜头3所投射到投影幕布上的画面的中心将偏离投影镜头3的光轴L1或等效光轴L3,实现偏轴投影。在实际应用中,可以根据需要调整非零间距d的大小,使得投影画面完全投射在投影幕布上,从而改善观看体验。
在一个示例中,第一交点J与显示面板PNL显示区中心之间的间距d不超过25mm,以保证显示效果。
优选地,d在[11mm,16.5mm]范围内。例如,d为11mm,或13mm,或14mm,或16mm,或16.5mm。如此,可以达到或接近50%的偏轴率。
具体来说,偏轴率通过如下方式定义:在投影系统中,可以设画面中心为A点,过镜头光心的幕布(或幕布所在平面)法线与幕布的交点(或与幕布所在平面的交点)为B点,当AB两点重合时即为非偏轴投影(偏轴率为0%)。当AB两点不重合时即为偏轴投影。AB之间的距离称为“偏轴量”。一般在实用中重点关注在高度方向上的偏轴投影,则“偏轴率”可以定义为“偏轴量”与画面半高之比。
在一个示例中,如上文所述,投影装置包括:第一透镜LNS1和第二透镜LNS2,第一透镜LNS1可以为凸透镜。在一些实施例中,第一透镜LNS1可以为菲涅尔透镜或者非球面镜,优选为菲涅尔透镜。第二透镜LNS2为凸透镜。在一些实施例中,第二透镜LNS2可以为菲涅尔透镜或者非球面镜,优选为菲 涅尔透镜。
图16为当显示面板的显示面与第二透镜所在平面平行时的光路示意图,如图16所示,在实现离轴偏轴投影时,若显示面板PNL的延伸面与第二透镜LNS2所在平面平行,则照射至投影镜头3的光不能汇聚于孔径光阑的中心,也即投影镜头3中心,导致光通量较小,从而出现减晕问题,显示均一性较差。为了解决这一问题,在本公开实施例中,如图15所示,显示面板PNL延伸面与第二透镜LNS2所在平面相交于第二交点P,显示面板PNL延伸面与第二透镜LNS2所在平面之间存在第一夹角A8。
需要说明的是,显示面板PNL延伸面是指,显示面板PNL显示面的延伸面。
需要说明的是,第二透镜LNS2所在平面可以理解为经过第二透镜的光心且与第二透镜的光轴垂直的平面。当第二透镜LNS2为菲涅尔透镜时,第二透镜LNS2所在平面与第二透镜LNS2的延伸平面平行。
其中,第一夹角A8在(0,10°]范围内,如此,可以达到较好的照明效果。优选地,投影镜头3的等效光轴L3与显示面板PNL的显示面上垂直,A8=A4-90°,其中,A4为第二透镜LNS2远离第二交点P的部分与投影镜头3的等效光轴L3之间所呈的角度。
图17为本公开的示范性一些实施例中提供的投影装置实现物方远心光路的示意图,如图17所示,当显示面板PNL延伸面与第二透镜LNS2所在平面之间存在上述第一夹角A8时,相当于光线不再垂直射入显示面板PNL,而是倾斜射入的,从而可以使照射至投影镜头3的光线靠近甚至经过投影镜头3的中心,实现物方远心光路。
优选地,第一夹角A8在(0,7°]范围内。进一步优选地,参考图15和图17,第一夹角A8可以为5°,以使光线能够会聚于投影镜头3的中心,从而使投影镜头3的光通量最大,显示均一性提高。
图18为图15所示的投影装置中的显示面板、第二透镜、第一反光镜和投 影镜头的示意图,结合图15和图18所示,在一些实施例中,第一交点J一侧的显示面板PNL与第二透镜LNS2所在平面之间的距离D1,大于相对于显示面板PNL显示区中心远离所述第一交点J一侧的显示面板PNL与第二透镜LNS2所在平面的距离D2,以使光线倾斜射入显示面板PNL,从而使照射至投影镜头3的光线的会聚点位于或者更靠近投影镜头3的中心。
在一些实施例中,如图15所示,投影装置包括第一反光镜MR1,第一反光镜MR1用于将显示面板PNL出射的光反射进入投影镜头3。第一反光镜MR1可以为平面反光镜。投影镜头3的光轴L1与等效光轴L3在第一反光镜MR1的反光面上交于一点,第一反光镜MR1的法线L2经过所述交点,投影镜头3的光轴L1和等效光轴L3关于第一反光镜MR1的法线L2轴对称分布。将投影镜头3的光轴L1与第一反光镜MR1的法线L2之间的夹角记作A1,投影镜头3的等效光轴L3与第一反光镜MR1的法线L2之间的夹角记作A2,则A1=A2。
在一些实施例中,参考图15,投影镜头3的光轴L1与参考平面n平行。优选地,投影镜头3的等效光轴L3与显示面板PNL显示区的中心法线平行,可以获得更好的成效效果。
需要说明的是,参考平面n可以理解为投影装置正常工作时的放置平面或悬挂平面。可以理解的是,投影装置的正常工作时的放置方式可以在投影装置或者产品说明书上明显地被提示,例如使用者可以轻易地从产品上发现最推荐的摆放方式,即为正常工作时的放置方式;例如,在投影装置的一侧设置有支撑面和/或脚垫,可以引导使用者将投影装置放置在参考平面上;例如,在投影装置的一侧设置有悬挂件可以引导使用者将投影装置悬挂固定在参考平面(例如,天花板)上。在一些实施例中,参考图6A,参考平面n与地平面GND平行;如此情况下,优选地,投影幕布与地平面GND垂直设置,可以达到较好的显示效果。
在一些实施例中,投影装置的光轴L1与参考平面n之间存在一定的夹角,从而可以通过转角度的方式实现偏轴投影,下文简称“转角度偏轴投影”。图19为转角度偏轴投影的原理示意图,转角度偏轴投影可以理解为,投影镜头3 的光轴与成像面(或说投影幕布所在平面)不再垂直,如图19所示,投影镜头3的光轴在初始状态下沿虚线L9’延伸,通过旋转,使投影镜头3的光轴沿L9延伸。这种方式也可以调整投影画面的位置。
在本公开的一些实施例中,可以仅采用转角度偏轴以实现偏轴效果。
在本公开的一些实施例中,可以同时采用离轴偏轴投影和转角度偏轴投影,可以实现更大的偏轴率。
在一些实施例中,如图15所示,投影镜头3的光轴L1在投影光束出射方向上相比于参考平面n具有仰角A9。投影镜头3的光轴L1在投影光束方向上相比于参考平面n具有仰角可以理解为,将投影装置放置在参考平面n上时,沿投影镜头3的光轴L1出射的光线相对于参考平面而言,是斜向上出射的。仰角A9可以根据实际所需要的偏轴效果来确定,当仰角A9越大时,偏轴率越高。在一些实施例中,仰角A9在(0,15°]范围内,以达到良好的画质。优选地,投影镜头3的等效光轴L3与显示面板PNL显示区的中心法线平行,如此,可以获得更好的成像效果。
优选地,仰角A9在(0,10°]范围内,以达到更好的画质。例如,仰角A9为5°,或6°,或7°,或8°,或9°,或10°。
在实际应用中,可以将投影装置放置在地平面GND上,从而使得沿投影镜头3的光轴L1出射的光线相对于地平面GND而言,斜向上照射至投影幕布。又例如,也可以将投影装置倒置(相对于放置在地平面GND的情况而言)悬挂在承载架(或天花板)上,从而使得沿投影镜头3的光轴L1出射的光线相对于参考平面而言,斜向下照射至投影幕布。例如,投影幕布垂直于地平面GND设置。
虽然,当投影镜头3的光轴L1与参考平面n之间呈夹角时,可以实现转角度偏轴。但是,如图19所示,当实现转角度偏轴时,在投影幕布上,A、B点的像距相近,大致为L2’;C点像距为L1’;D点像距为L3’;因此,实际像点的横向放大率不同,会存在梯形畸变。为了保证投影画面的显示效果,需要进行光学梯形校正。梯形校正的目的时使得显示面板上各点的横向放大倍率 相同,当不同点的像距不同时,可以通过改变物距,使各点的像距与物距之比恒定。对于投影镜头3而言,其物面是显示面板PNL关于第一透镜LNS1所呈的虚像,对投影镜头3而言为一个虚物。通过旋转第一透镜LNS1,可以使显示面板PNL的虚像旋转,即,投影镜头3的虚物发生旋转,如此可以调节显示面板上各点的像距与物距之比,进而可以改善梯形畸变的问题。
为了实现梯形校正,结合图15和图18所示,在本公开的一些实施例中,投影镜头3的等效光轴L3与第一透镜LNS1所在平面之间存在夹角A3,其中A3可以在[75°,90°)范围内,第一透镜LNS1靠近投影镜头3的一端与显示面板PNL之间的距离D3大于第一透镜LNS1所在平面远离投影镜头3的一端与显示面板PNL之间的距离D4。这种情况相当于使第一透镜LNS1发生旋转,从而使显示面板PNL的虚像旋转,进而改善梯形畸变的问题。
需要说明的是,第一透镜LNS1所在平面可以理解为经过第一透镜LNS1的光心且与第一透镜LNS1的光轴垂直的平面。当第一透镜LNS1为菲涅尔透镜时,第一透镜LNS1所在平面与第一透镜LNS1的延伸平面平行。
在一个示例中,A3可以设置在[80°,90°)范围内,从而进一步改善梯形畸变的问题。
优选地,A3=90°-A9,如此,可以更大程度地改善梯形畸变的问题。例如,A9=A0+A7=5°,A3=85°。
在一些实施例中,显示面板PNL的延伸面与参考平面n平行。
在一些实施例中,显示面板PNL的延伸面与参考平面n之间存在第二夹角A7,第二夹角A7的取值范围在(0,30°]范围内。优选地,显示面板PNL靠近投影镜头3的一端相对参考平面n的高度,高于显示面板PNL远离投影镜头3的一端相对参考平面n的高度,如此,可以使投影装置中各光学元件的布置更加紧凑,有利于减小投影装置的体积。
在一些实施例中,投影镜头3的等效光轴L3与第一反光镜MR1的法线的夹角在[30°,60°]范围内。优选地,投影镜头3的等效光轴L3与第一反光镜MR1的法线的夹角在[35°,50°]范围内,如此,有利于减小投影装置的体积。
将投影镜头3的光轴L1与第一反光镜MR1的法线之间的夹角记作A1,投影镜头3的等效光轴L3与第一反光镜MR1的法线之间的夹角记作A2,则A1=A2;投影镜头3的光轴L1与显示面板PNL的延伸面之间的夹角记作第三夹角A0。定义投影镜头3在投影光束出射方向上相对显示面板PNL的延伸面处于上仰状态(即图15所示的状态)时,也即投影镜头3的光轴相比参考平面n的倾斜程度大于显示面PNL的延伸面相比参考平面的倾斜程度时,A0为正值;定义投影镜头3在投影光束出射方向上相对参考平面n处于下俯状态(即,将图15中的投影镜头3的左端调整为低于右端的状态)时,也即投影镜头3的光轴相比参考平面n的倾斜程度小于显示面PNL的延伸面相比参考平面n的倾斜程度时,A0为负值;则上述仰角A9=A0+A7。当根据需要确定好仰角A9后,可以将A7设置为较大值,此时,A0的值较小。由于A1+A2=A0+90°,因此,A0值较小时,A1、A2值也较小(此时相当于将第一透镜LNS1、光源组件2以及二者之间的各元件整体上绕M点顺时针旋转),这样有利于减小投影装置的体积。
在一个示例中,Y轴与投影镜头3的光轴L1位于同一平面内。
在一些实施例中,当仰角A9确定后,可以将第二夹角A7设置为不超过30°的较大值,并且,当投影镜头3的光轴L1相比参考平面n的倾斜程度大于显示面板PNL的延伸面相比参考平面n的倾斜程度时,第三夹角A0定义为正值,并设置在(0,30°]范围内;当投影镜头3的光轴L1相比参考平面n的倾斜程度小于显示面板PNL的延伸面相比参考平面n的倾斜程度时,第三夹角A0定义为负值,并设置在[-30°,0)范围内。相应地,A1、A2的取值均在[30°,60°]范围内,从而有利于优化投影装置中的元件布局,减小投影装置的体积。
优选地,可以将第二夹角A7设置为不超过30°范围内的较大值,例如,将第二夹角A7设置在(0,20°]范围内。当投影镜头3的光轴L1相比参考平面n的倾斜程度大于显示面板PNL的延伸面相比参考平面n的倾斜程度时,第三夹角A0设置在(0,10°]范围内;相应地,A1、A2的取值均在(45°,50°]范围内。当投影镜头3的光轴L1相比参考平面n的倾斜程度小于显示面板PNL 的延伸面相比参考平面n的倾斜程度时,第三夹角A0设置在[-20,0)范围内,相应地,A1、A2的取值均在[35°,45°)范围内。
在一个示例中,将投影镜头3的仰角设置为5°,从而减小因转角度偏轴的偏轴率过大而导致画面异常的问题。此时,A0+A7=5°,而为了减小投影装置的体积,将A7设置为18°,A0设置为-13°,此时,A1=A2=38.5°。
在一些实施例中,如图15所示,光源组件2包括聚光透镜23,聚光透镜23设置在发光元件21的出光侧,以起到对发光元件21发出的光的会聚作用。聚光透镜23例如为平凸透镜。
在一些实施例中,聚光透镜23的光轴与发光元件21的中心轴线L6共轴或接近共轴。具体地,聚光透镜23的光轴与发光元件21的中心轴线L6平行,而二者之间的距离在[0,2]mm之间。其中,发光元件21的中心轴线L6是指,经过发光元件21的发光面的中心,且与发光面垂直的直线。
在一些实施例中,如图15所示,投影装置包括第二反光镜MR2,第二反光镜MR2用于将发光元件21出射的光反射进入显示面板PNL。具体地,发光元件21出射的光首先经过聚光透镜23会聚后射向第二反光镜MR2,被第二反光镜MR2反射而照射至第二透镜LNS2,经过第二透镜LNS2的准直作用后,射向显示面板PNL。
在一些实施例中,发光元件21的等效光轴可以通过如下方式定义:发光元件21的中心轴线和发光元件21的等效光轴在第二反光镜MR2的反射面上交于一点,第二反光镜MR2的法线经过该交点,发光元件21的中心轴线和发光元件21的等效光轴关于第二反光镜MR2的法线轴对称分布。发光元件的中心轴线与第二反光镜MR2的法线之间存在夹角A50;发光元件21的等效光轴与第二反光镜MR2的法线之间存在夹角A60;A50=A60。
在一些实施例中,A50设置在[35°,55°]范围内,有利于减小投影装置整体的体积。优选地,A50设置在[35°,55°]范围内。
在一些实施例中,发光元件21的中心轴线垂直于第二透镜LNS2所在平面设置,有利于减小投影装置整体的体积,同时可以减少杂散光的产生。
在一些实施例中,发光元件21的等效光轴经过显示面板PNL显示区的中心,或接近显示面板PNL显示区的中心。具体地,发光元件21的等效光轴与所述显示面板PNL显示区中心之间的距离在[0,5]mm之间,以使得显示面板PNL的中心亮度最高,提高显示效果。
在一些实施例中,光源组件2包括聚光透镜23,如图15所示,聚光透镜23的等效光轴L4可以通过如下方式定义:聚光透镜23的光轴L6和聚光透镜23的等效光轴L4在第二反光镜MR2的反射面上交于一点,第二反光镜MR2的法线L4经过所述交点,聚光透镜23的光轴L6和聚光透镜23的等效光轴L4关于第二反光镜MR2的法线L4轴对称分布。聚光透镜23的光轴L6与第二反光镜MR2的法线L5之间存在夹角A5;聚光透镜23的等效光轴L4与第二反光镜MR2的法线L5之间存在夹角A6;A5=A6。
在一些实施例中,A5设置在[35°,55°]范围内,有利于减小投影装置整体的体积。优选地,A5设置在[35°,55°]范围内。
在本公开的一个具体示例中,投影镜头3的光轴L1、显示面板PNL的延伸面均与参考平面n平行;A8=5°;A1、A2均设置为45°;A3设置为90°;A50=A60=41°;L3垂直于显示面板PNL的显示面;d=13.85mm,如此,可以达到令人满意的显示效果。
参考图15,聚光透镜23的光轴L6与第二反光镜MR2相交于N点;第二反光镜MR2的法线为,经过N点、且垂直于第二反光镜MR2反射面的直线;聚光透镜23的等效光轴为L6关于L5轴对称的直线。
在一些实施例中,第二反光镜MR2的反射面与第二透镜LNS2所在平面之间存在夹角A6’。优选地,A5=A6=A6’,如此,聚光透镜23的等效光轴垂直于第二透镜LNS2所在平面设置,有利于减小投影装置整体的体积,同时可以减少杂散光的产生。
例如,将A6’设置在[35°,55°]范围内,从而有利于减小投影装置整体的体积,同时可以减少杂散光的产生。优选地,A6’设置在[35°,45°]范围 内。例如,A6’设置为35°,或40°或41°或45°。
在一些示例中,聚光透镜23的光轴与第二反光镜MR2的反射面之间存在夹角A5’,A5’=90°-A5,如此,A5’与上述A6’之和为90°。
在一些实施例中,聚光透镜23的等效光轴L4经过显示面板PNL显示区的中心,或接近显示面板PNL显示区的中心。具体地,聚光透镜23的等效光轴L4与所述显示面板PNL显示区中心之间的距离在[0,5]mm之间,以使得显示面板PNL的中心亮度最高,提高显示效果。
在本公开的一个具体示例中,投影镜头3的光轴L1、显示面板PNL的延伸面均与参考平面n平行;A8=5°;A1、A2均设置为45°;A3设置为90°;A5=A6=41°;L3垂直于显示面板PNL的显示面;d=13.85mm,如此,可以达到令人满意的显示效果。
在一些实施例中,L1、L3、L4、L6与Y轴均在同一平面,如此,可以达到令人满意的显示效果。
在一些实施例中,如图15所示,第二透镜LNS2位于透光部GLS远离显示面板PNL的一侧,且第二透镜LNS2位于第一偏光元件远离显示面板PNL的一侧。
在一些实施例中,透光部GLS的形状、第二透镜LNS2的形状可以均与显示面板PNL的形状相同,例如均为矩形。透光部的大小可以与第二透镜LNS2的大小相同。其中,第二透镜LNS2的光轴通过透光部的中心,或者与透光部的中心的间距足够小,具体地,第二透镜LNS2的光轴与透光部GLS的中心之间的距离在[0,10]mm之间。
需要说明的是,根据上述公开可以确定光学元件之间的相对位置关系(包括相对距离、夹角)的,光学元件之间的相对位置关系也在本公开公开的保护范围之内。
参考图20A,参考平面n与地平面GND平行,此时投影装置为立式投影装置。
在一些实施例中,参考平面n与地平面GND之间也可以存在夹角。参考 图20B,参考平面n与地平面GND相互垂直,此时投影装置为卧式投影装置。可以理解的是,将投影装置由立式投影装置变换为卧式投影装置时,不改变光学元件之间的相对位置关系,因此基于本公开构思的卧式投影装置,也在本公开的保护范围内。
图21A为根据本公开的一些示范性实施例的投影装置的局部光路图,图21B为根据本公开的一些示范性实施例的投影装置的发光元件及其基座的正视图。请参阅图21A、图21B,光源组件2包括发光元件21和聚光透镜23,发光元件21包括发光区211,该发光区211是指发光元件有效出光区域。参考图21B,发光元件21包括包括发光区211。例如,发光元件21只包括一个发光芯片,所述发光芯片存在发光边界,这个发光边界划定了发光区211。例如,发光元件21包括多个发光芯片,所述多个发光芯片的发光边界共同具有一个外轮廓,这个外轮廓划定了发光区211。例如,发光元件21包括阵列排布的多个发光芯片,所述多个发光芯片排布为矩形阵列,因此发光元件21的发光区为多个发光芯片的发光边界共同组成的矩形轮廓。
聚光透镜23设置于发光元件21的出光侧,且位于显示面板PLN背离其出光侧,用于对发光元件21发出的光进行收束或整形。发光元件21发出的光在经过聚光透镜23收束或整形之后,通过显示面板进入投影镜头3,并从投影镜头射出。另外,如图21B所示,光源组件2还可以包括发光元件基座22,发光元件21位于发光元件基座22上。
例如,如图21B所示,发光区211包括相互垂直的第一延伸方向(例如,图21B中的Z’方向)和第二延伸方向(例如,图21B中的Y’方向),该发光区211在第一延伸方向上的最大长度L_7与在第二延伸方向上的最大宽度L_8的比值为第一长宽比,该第一长宽比大于或等于显示面板显示区的长宽比。需要说明的是,上述第一长宽比是发光区211在两个相互垂直的方向(即,第一延伸方向和第二延伸方向)上的最大轮廓尺寸。显示面板显示区的长宽比是显示区在两个相互垂直的方向(例如该显示区生成图像的宽度和高度,该宽度除以高度等于长宽比)上的轮廓尺寸。
本实施例通过使第一长宽比大于或等于显示面板显示区的长宽比,有利于提高光能利用率。在此基础上,结合使用聚光透镜对发光元件21发出的光进行收束或整形,可以使照射至显示面板显示区的光线较为准直和均匀,从而可以提高成像均一性。
在一些可选的实施例中,上述第一长宽比与显示面板显示区的长宽比的比值大于1,且小于1.2。通过采用该比值范围,可以提高光能利用率。进一步优选的,第一长宽比与显示面板显示区的长宽比的比值大于1,且小于1.15。该比值范围提高光能利用率的效果最佳。
在一些可选的实施例中,显示面板PLN显示区为矩形,对应的,显示面板显示区的长宽比即为矩形的长边长度与短边长度的比值。发光区211的轮廓可以为矩形,例如如图21B所示,该矩形的长边长度为在第一延伸方向上的最大长度L_7;矩形的短边长度为在第二延伸方向上的最大宽度L_8,即上述第一长宽比为该矩形的长边长度与短边长度的比值。可选的,发光区211的矩形轮廓的四角均为圆角,每个圆角对应的弧线在对应的长边和短边之间圆滑过渡。在另一个可选的实施例中,上述发光区211的轮廓还可以为椭圆形,椭圆形的长轴长度为在第一延伸方向上的最大长度;椭圆形的短轴长度为在第二延伸方向上的最大宽度,即,上述第一长宽比为该椭圆形的长轴长度与短轴长度的比值。当然,在实际应用中,上述发光区的轮廓还可以为圆形,即,上述第一长宽比为1。
在一些可选实施例中,显示面板的长边的延伸方向与第一延伸方向相同或大致相同,如此,可以保证显示面板的沿长边方向上画面均匀性较好。大致相同可以理解为两个延伸方向之间存在10°以内的偏差。
在一些可选的实施例中,发光区211的轮廓为矩形,该矩形的长边长度在10mm-15mm的范围内,优选为13.6mm±0.2mm,短边长度在6mm-12mm的范围内,优选为8.9mm±0.2mm;或者,发光区的轮廓为椭圆形,该椭圆形的长轴长度在10mm-15mm的范围内,短轴长度在6mm-12mm的范围内。通过根据发光区的轮廓形状,相应的采用发光区上述轮廓尺寸范围,可以获得较佳的 光能利用率和成像均一性。
图22A为根据本公开的一些示范性实施例的投影装置的聚光透镜的一种三视图,图22B为根据本公开的一些示范性实施例的投影装置的聚光透镜的另一种三视图。在一些可选的实施例中,请一并参阅图22A和图22B,上述聚光透镜23包括平凸透镜,该平凸透镜具有相互背离的透镜平面231和透镜凸面232;透镜平面231与发光元件21的出光侧相对,且间隔设置;并且,透镜平面231包括相互垂直的第三延伸方向(例如图22A和图22B中的Z’方向)和第四延伸方向(例如图22A和图22B中的Y’方向);第三延伸方向与上述第一延伸方向(例如,图21B中的Z’方向)相平行,第四延伸方向与上述第二延伸方向(例如,图21B中的Y’方向)相平行;透镜平面231在第三延伸方向上的最大长度L_1与发光区在第一延伸方向上的最大长度的比值在2.5-3.5的范围内,透镜平面231在第四延伸方向上的最大宽度L_3与发光区在第二延伸方向上的最大宽度的比值在3-4的范围内。平凸透镜作为光线传播路径上的中间介质,其在透镜平面231的两个相互垂直的方向(即,第三延伸方向和第四延伸方向)上的轮廓尺寸应大于发光区对应方向上的轮廓尺寸,同时又能够获得较为理想的透镜面型,这样不仅可以提高照射至显示面板显示区的光线的准直度,而且还可以起到进一步提高光能利用率和成像均一性的效果。在一个优选实施例中,透镜平面231在第三延伸方向上的最大长度L_1与发光区在第一延伸方向上的最大长度的比值为3.3,透镜平面231在第四延伸方向上的最大宽度L_3与发光区在第二延伸方向上的最大宽度的比值为3.8;在另外一个优选实施例中,第一延伸方向上的最大长度的比值为2.7,透镜平面231在第四延伸方向上的最大宽度L_3与发光区在第二延伸方向上的最大宽度的比值为3.2;如此,可以达到更加优化的显示效果。
需要说明的是,在实际应用中,聚光透镜23并不局限于采用平凸透镜,也可以采用其他透镜结构。
在一些可选的实施例中,请参阅图22A,上述透镜平面231为矩形,该矩形的长边长度为在第三延伸方向上的最大长度L_1;矩形的短边长度为在第四 延伸方向上的最大宽度L_3。或者,请参阅图22B,上述透镜平面231还可以为椭圆形,该椭圆形的长轴长度为在第三延伸方向上的最大长度L_1;椭圆形的短轴长度为在第四延伸方向上的最大宽度L_3。
在一些可选的实施例中,上述透镜平面231在第三延伸方向上的最大长度L_1在36mm-45mm的范围内,透镜平面231在第四延伸方向上的最大宽度L3在28mm-35mm的范围内;平凸透镜的最大厚度L_5在15mm-20mm的范围内。优选的,上述透镜平面231在第三延伸方向上的最大长度L_1在43mm-44mm的范围内,透镜平面231在第四延伸方向上的最大宽度L_3在33mm-34mm的范围内;平凸透镜的最大厚度L_5在17mm-19mm的范围内。或者,上述透镜平面231在第三延伸方向上的最大长度L_1在36.5mm-38mm的范围内,透镜平面231在第四延伸方向上的最大宽度L_3在28.5mm-30mm的范围内;平凸透镜的最大厚度L_5在15mm-16mm的范围内。
上述透镜平面231通过采用上述轮廓尺寸,不仅可以提高照射至显示面板显示区的光线的准直度,而且还可以起到进一步提高光能利用率和成像均一性的效果。
在一些可选的实施例中,如图21A所示,发光区与透镜平面231的间距D_1在1.5mm-4mm的范围内。发光区与透镜平面231的间距D_1不易过大,否则会导致光能利用率较低,最终影响成像的亮度,而该间距也不易过小,否则会导致显示面板显示区上出现光斑,且显示区角落发暗,最终影响成像均一性,甚至会有暗角的问题。基于此,通过将发光区与透镜平面231的间距D_1设定在上述数值范围,可以避免出现上述缺陷。
在另一些可选的实施例中,如图22A和图22B所示,聚光透镜23还包括位于平凸透镜靠近发光元件21一侧的透镜底座233,该透镜底座233与平凸透镜接触设置,以实现对平凸透镜的安装和固定,并且发光区与透镜底座233之间的间距在1.5mm-4mm的范围内,如此,光利用效率和显示亮度均匀性较好。可选的,透镜底座233的背离发光区的表面与透镜平面相平齐,以方便加工和使组装更稳固。可选地,平凸透镜在透镜底座233延伸面上的正投影位于透镜 底座233内部。
在一些可选的实施例中,考虑到平凸透镜的轮廓尺寸、加工可行性以及投影装置的结构设计需求等因素,透镜底座233在上述第三延伸方向上的最大长度L_2在45mm~50mm的范围内;透镜底座233在上述第四延伸方向上的最大宽度L_4在34mm~38mm的范围内;透镜底座233的厚度L_6在1.2mm-3mm的范围内。优选的,透镜底座233在上述第三延伸方向上的最大长度L_2在47mm~49mm的范围内;透镜底座233在上述第四延伸方向上的最大宽度L_4在35mm~37mm的范围内;透镜底座233的厚度L_6在1.6mm-2.2mm的范围内。
在一个可选实施例中,透镜底座233的外轮廓相比平凸透镜在透镜底座233上的正投影的外轮廓外扩宽度在0.5mm-3mm范围内,便于平凸透镜拔模制备。优选地,透镜底座233的外轮廓相比平凸透镜在透镜底座233上的正投影的外轮廓外扩宽度在1mm-2mm范围内,在降低加工难度、使组装更加稳固的同时,减小透镜底座233所占的体积。
在一些可选的实施例中,考虑到平凸透镜的轮廓尺寸、加工可行性以及投影装置的结构设计需求等因素,透镜底座233的轮廓为矩形,且矩形的四角均包括一个或多个弧线段,弧形段的圆弧半径R在4mm-18mm的范围内,以方便加工和使组装更稳固。
图23为根据本公开的一些示范性实施例的投影装置的透镜底座的另一种轮廓图,在一些可选的实施例中,如图23所示,上述透镜底座233的矩形轮廓的圆角(对应圆弧半径R)和与之相邻的两个边之间设置有第一过渡圆角(对应圆弧半径R1)和第二过渡圆角(对应圆弧半径R2),且第一过渡圆角的圆弧半径R1小于第二过渡圆角的圆弧半径R2;其中,第一过渡圆角与长边相邻,第二过渡圆角与短边相邻;圆角的圆弧半径R为10.5mm±1mm;第一过渡圆角的圆弧半径R1为22.5mm±1mm;第二过渡圆角的圆弧半径R2为28.5mm±1mm。
在另一些可选的实施例中,平凸透镜的三视图如图22A和图22B所示,上 述透镜底座233的矩形轮廓的四个圆角的圆弧半径R均为12.5mm±1mm。
在一个具体实施例中,如图22A所示,透镜平面231在第三延伸方向上的最大长度L_1在43.6mm-44.4mm范围内,透镜平面231在第四延伸方向上的最大宽度L_3在33.6mm-34.4mm范围内,平凸透镜的最大厚度L_5在18.6mm-19.4mm范围内,如此,投影画面可以获得较好的亮度以及均一性。
在一个具体实施例中,如图22A所示,透镜平面231在第三延伸方向上的最大长度L_1为44mm,透镜平面231在第四延伸方向上的最大宽度L_3为34mm,平凸透镜的最大厚度L_5为19mm;L_1、L_3、L_5的值可以等比例缩小或放大10%以内,所得的平凸透镜也可以满足设计需要。可选的,所述平凸透镜平面在所述第三延伸方向上的最大长度、所述透镜平面在所述第四延伸方向上的最大宽度为、所述平凸透镜的最大厚度分别为44mm、34mm、19mm等比放大X倍;其中X在0.9-1.1范围内。这里,X倍统称为“放大”,实际上,若小于1倍,则为缩小,若等于1倍,则不变;若大于1倍,则为放大。
在一个具体实施例中,如图22A所示,透镜平面231在第三延伸方向上的最大长度L_1为44mm,发光区在第一延伸方向上的最大长度为13.6mm,平凸透镜的最大厚度L_5为19mm;且透镜平面231在第三延伸方向上的最大长度L_1与发光区在第一延伸方向上的最大长度的比值为3.3(44mm/13.6mm);透镜平面231在第四延伸方向上的最大宽度L_3为34mm,发光区在第二延伸方向上的最大宽度为9mm,且透镜平面231在第四延伸方向上的最大宽度L_3与发光区在第二延伸方向上的最大宽度的比值为3.8(34mm/9mm)。在本实施例中,L_1、L_3、L_5的值可以等比例缩小或放大10%以内,所得的平凸透镜也可以满足设计需要。在本实施例中,可选地,发光区与透镜平面231的间距D_1在1.5mm-4mm的范围内;优选地,D_1在2mm-2.5mm范围内;进一步优选地,D_1为2mm。在本实施例中,可选地,对应透镜底座233在第三延伸方向上的最大长度L_2为48mm;透镜底座233在第四延伸方向上的最大宽度L_4为36mm;透镜底座233的厚度L_6为2mm。上述透镜底座233的矩形轮廓的四个圆角的圆弧半径R均为12.5mm±1mm。通过采用上述尺寸数据,可以在 照射至显示面板显示区的光线的准直度、光能利用率和成像均一性等多个方面均获得较佳的效果。
在另一个具体实施例中,如图22B所示,透镜平面231在第三延伸方向上的最大长度L_1在36.5mm-37.3mm范围内,透镜平面231在第四延伸方向上的最大宽度L_3在28.5mm-29.3mm范围内,平凸透镜的最大厚度L_5在14.9mm-15.7mm范围内,如此,投影画面可以获得较好的亮度以及均一性。
在另一个具体实施例中,如图22B所示,透镜平面231在第三延伸方向上的最大长度L_1为36.9mm,透镜平面231在第四延伸方向上的最大宽度L_3为28.9mm,平凸透镜的最大厚度L_5为15.3mm;L_1、L_3、L_5的值可以等比例缩小或放大10%以内,所得的平凸透镜也可以满足设计需要。可选的,所述平凸透镜平面在所述第三延伸方向上的最大长度、所述透镜平面在所述第四延伸方向上的最大宽度为、所述平凸透镜的最大厚度分别为36.9mm、28.9mm、15.3mm等比放大X倍;其中X在0.9-1.1范围内。这里,X倍统称为“放大”,实际上,若小于1倍,则为缩小,若等于1倍,则不变;若大于1倍,则为放大。
在另一个具体的实施例中,如图22B所示,透镜平面231在第三延伸方向上的最大长度L_1为36.9mm;透镜平面231在第四延伸方向上的最大宽度L_3为28.9mm;平凸透镜的最大厚度L_5为15.3mm;且透镜平面231在第三延伸方向上的最大长度L_1与发光区在第一延伸方向上的最大长度的比值为2.7(36.9mm/13.6mm);透镜平面231在第四延伸方向上的最大宽度L_3为28.9mm,发光区在第二延伸方向上的最大宽度为9mm,且透镜平面231在第四延伸方向上的最大宽度L_3与发光区在第二延伸方向上的最大宽度的比值为3.2(28.9mm/9mm)。在本实施例中,L_1、L_3、L_5的值可以等比例缩小或放大10%以内,所得的平凸透镜也可以满足设计需要。在本实施例中,可选地,发光区与透镜平面231的间距D_1在1.5mm-4mm的范围内;优选地,D_1在2mm-2.5mm范围内;进一步优选地,D_1为2.5mm。在本实施例中,可选地,透镜底座233在第三延伸方向上的最大长度L_2为48mm;透镜底座233在第 四延伸方向上的最大宽度L_4为35.7mm;透镜底座233的厚度L_6为1.7mm。上述透镜底座233的矩形轮廓的四个圆角的圆弧半径R均为12.5mm±1mm。通过采用上述尺寸数据,可以在照射至显示面板显示区的光线的准直度、光能利用率和成像均一性等多个方面均获得较佳的效果。
在一些可选的实施例中,如图21A所示,投影装置还包括第二透镜LNS2,该第二透镜LNS2设置于显示面板(如图24A中的显示面板PNL)背离其出光侧的一侧,具体位于聚光透镜23与显示面板PNL之间,用于对接收到的光进行准直。第二透镜LNS2位于发光元件21与显示面板PNL之间可以理解为,透影装置在进行投影时,发光元件21的光线先通过第二透镜LNS2再通过显示面板PNL。平凸透镜的透镜凸面232的中心到第二透镜LNS2的出光面中心的光程(S1+S2)在50mm~70mm的范围内。该光程不易过大,否则会导致投影装置的体积过大,导致轻便性、占用空间不满足需求;该光程也不易过小,否则会导致光程路径上相应部件之间会相互影响,产生干涉,基于此,通过将上述光程设定在该数值范围内,可以避免出现上述缺陷。例如,第二透镜LNS2为菲涅尔透镜,其纹理面位于出光面。
在一些可选的实施例中,第二透镜LNS2的外轮廓为矩形。可选地,第二透镜LNS2的长度大于显示面板显示区的长度,且第二透镜LNS2的长度与显示面板显示区的长度之差不超过20mm,优选在5mm-20mm范围内;第二透镜LNS2的宽度大于显示面板PNL显示区的宽度,且第二透镜LNS2的宽度与显示面板PNL显示区的宽度之差不超过20mm,优选在5mm-20mm范围内。如此可以保证透镜LNS2光学效果的情况下便于固定。
在一些可选的实施例中,第二透镜LNS2的最大长度在98mm~112mm的范围内;第二透镜LNS2的最大宽度在55mm~66mm的范围内。第二透镜LNS2的上述轮廓尺寸可以与显示显示区的轮廓尺寸相匹配,尤其适用于对角线为4.45寸的显示面板PNL显示区,也适用于对角线为4.0寸-4.45寸的显示面板显示区;例如,第二透镜LNS2为矩形,显示面板显示区。例如,第二透镜LNS2的焦距在80mm-110mm范围内,如此,可以兼顾投影画面的均一性和亮度。优 选底,第二透镜LNS2的焦距在88mm-102mm范围内,例如为90mm,95mm,100mm。
在一些可选的实施例中,第二透镜LNS2的长度方向与显示面板显示区的长度方向相平行,第二透镜LNS2的宽度方向与显示面板显示区的宽度方向相平行。在一些可选的实施例中,第二透镜LNS2的长度方向与显示面板显示区的长度方向相平行,第二透镜LNS2的宽度方向与显示面板显示区的宽度方向存在一定的夹角,例如不超过10°的夹角,例如为5°。
在另一些可选的实施例中,第二透镜LNS2的宽度方向与显示面板显示区的宽度方向相互平行,第二透镜LNS2的长度方向与显示面板显示区的长度方向存在一定夹角例如不超过10°的夹角,例如为5°。
在一些可选的实施例中,如图21A所示,投影装置还包括第二反光镜MR2,该第二反光镜MR2设置于聚光透镜23与第二透镜LNS2之间,且第二反光镜LNS2的入光面与透镜平面231具有夹角。第二反光镜用于将发光元件21出射的光反射进入显示面板PNL。具体地,发光元件21出射的光首先经过聚光透镜23会聚后射向第二反光镜MR2,被第二反光镜MR2反射而照射至第二透镜LNS2,经过第二透镜LNS2的准直作用后,射向显示面板PNL。可选的,第二反光镜LNS2的入光面与垂直于透镜平面231的平面之间的夹角O1可以为49°。进一步可选的,第二反光镜MR2的入光面与第二透镜LNS2的入光面之间的夹角O2可以为41°。
在一些可选的实施例中,如图21A所示,投影装置还包括透光部GLS,该透光部GLS设置于显示面板PNL与第二透镜LNS2之间,透光部GLS与显示面板PNL之间存在间隔,透光部GLS的材料例如为玻璃;透光部GLS的材料例如可以起到隔热作用。可选的,透光部GLS的两侧表面为平面,光线经过透光部GLS前后不会产生会聚或发散;可以理解的是,透光部GLS不会起到光学透镜的效果。例如,透光部GLS的一侧贴附有第一偏振元件POL1,第一偏振元件POL1可以为偏光片,例如是吸收型偏光片。第一偏振元件POL1还可以是APF偏光片,如此情况下,第一偏振元件POL1贴附在透光部GLS入光 面的一侧;例如,显示面板PNL远离第一偏振元件POL1一侧还包括第二偏振元件POL2,第一偏振元件POL1的吸收轴与第二偏振元件POL2的吸收轴夹角呈90°。
在一些可选的实施例中,透光部GLS的外轮廓为矩形;透光部GLS的长度大于显示面板显示区的长度,且透光部GLS的长度与显示面板显示区的长度之差不超过20mm,优选在5mm-20mm范围内;透光部GLS的宽度大于显示面板显示区的宽度,且透光部GLS的宽度与显示面板显示区的宽度之差不超过20mm,优选在5mm-20mm范围内。如此可以保证透光部GLS不影响光学效果的情况下便于固定。
在一些可选的实施例中,透光部GLS的最大长度在98mm~112mm的范围内;透光部GLS的最大宽度在55mm~66mm的范围内。透光部GLS的上述轮廓尺寸可以与显示显示区的轮廓尺寸相匹配,尤其适用于对角线为4.45寸的显示面板PNL显示区,也适用于对角线为4.0寸-4.45寸的显示面板显示区;例如,第二透镜LNS2为矩形,显示面板显示区。
在一些可选的实施例中,透光部GLS的长度方向与显示面板显示区的长度方向相平行,透光部GLS的宽度方向与显示面板显示区的宽度方向相平行。在一些可选的实施例中,透光部GLS的长度方向与显示面板显示区的长度方向相平行,透光部GLS的宽度方向与显示面板显示区的宽度方向存在一定的夹角,例如不超过10°的夹角,例如为5°。
在另一些可选的实施例中,透光部GLS的宽度方向与显示面板显示区的宽度方向相互平行,透光部GLS的长度方向与显示面板显示区的长度方向存在一定夹角例如不超过10°的夹角,例如为5°。
在一些可选的实施例中,透光部GLS与第二透镜LNS2平行设置。
在一些可选的实施例中,透光部GLS的形状、第二透镜LNS2的形状可以均与显示面板PNL的形状相同,例如均为矩形。透光部GLS的大小可以与第二透镜LNS2的大小相同。
下面对本公开实施例提供的投影装置的成像光路进行模拟,可以获得如图 24A所示的光路模拟示意图,以及如图24B所示的显示面板显示区的照度模拟图。通过模拟获得的照度数据如下述表1所示,亮度及其均一性如下述表2所示。其中表1表示60inch投影画面中各位置的亮度采样值,表格中的位置与投影画面的各区域位置具有对应关系。
表1、显示面板显示区不同位置的照度数据表
表2、显示面板显示区不同位置的亮度和均一性数据表
表1中第一行和最后一行两端的四个数值分别对应60inch投影画面的四角(分别为四个位置A、B、C、D)的照度,其余数据为将60inch画面平均分成3×3个面积相等的矩形,每个所述矩形中心位置的照度。由上述表1可知,显示面板显示区的四角的照度大致相当,显示面板显示区的中间区域不同位置处的照度均一性较好。由上述表2可知,显示面板显示区的亮度均一性达到62.65%。具体地,上述表1中显示面板显示区的中间区域的9个数值按从左到右、从上到下的顺序依次为P1至P3、P4至P6、P7至P9,显示面板显示区的亮度均一性等于P1、P3、P7、P9的平均值除以P5的百分比。显示面板显示区的四角(分别为四个位置A、B、C、D)的亮度均一性大致相当。另外,照射 至显示面板显示区的光线的准直度可以达到±8°以内。由此,本实施例提供的投影装置,通过使第一长宽比大于或等于显示面板显示区的长宽比,有利于提高光能利用率。在此基础上,结合使用聚光透镜对发光元件21发出的光进行收束或整形,可以使照射至显示面板显示区的光线较为准直和均匀,从而可以提高成像均一性。
需要说明的是,在实际应用中,聚光透镜23的工艺要求例如包括但不限于:粗糙度优于Ra0.8;聚光透镜23的透镜平面231和透镜凸面232均镀有增透膜,该增透膜的厚度大于等于420nm,且小于等于680nm;聚光透镜23的尺寸公差为±0.3mm。聚光透镜23的材质包括高硼硅玻璃(如H-PZ33)或者折射率近似1.47的材料。聚光透镜23的成型工艺包括模压法、抛光、镀膜、抛光等的工序。
需要说明的是,本公开实施例提供的平凸透镜具体轮廓尺寸并不局限于上述实施例中的轮廓尺寸,在实际应用中,可以根据具体需要对平凸透镜的轮廓尺寸进行等比例缩放(90%~110%),也具有同等的光学效果。
图25为本公开的一些示范性实施例的投影装置中的第二反光镜的示意图,如图25所示,第二反光镜包括整面设置的镜面反射区域,光线照射至第二反光镜MR2靠近光源组件2的边缘区域(图中圈出的区域)时,其光路图如图26所示,光线被镜面反射回聚焦透镜后汇聚到一个小区域(图26中小圈所圈出的区域)。在光线会聚的小的区域内,极易产生高温灼伤该区域中的其他器件。
为了避免光线被光源在此反射回平凸透镜23中造成光线会聚而灼伤汇聚区域,在一些实施例中,可以将第二反光镜MR2减窄,其结构如图27所示,其与图25所示的形状相同,只是靠近光源组件2的一端减窄。这样,光源反光镜MR2不会对该部分的光线进行反射,其光路图如图28所示。但是,光线会直接照射至被减窄的区域,例如壳体1和/或第二风机7上,需要防范被照射的部分温度升高,极易老化,影响使用寿命。为此可以在被照射的区域中的至少部分设置导热结构,例如金属膜或者散热鳍片,将热量迅速导走,以防止热 量聚集。
本公开实施例提供了一种投影装置中的第二反光镜MR2的光路图可以参考图29,发光元件21发出的光依次经过聚光透镜、第二反光镜MR2、显示面板MR2以及投影镜头3出射。第二反光镜MR2包括:镜面反射区域A以及非镜面反射区域B;非镜面反射区域B被配置为使聚光透镜出射的光无法在非镜面区域A产生能够再次进入聚光透镜的反射光。参考图30,光源组件2发出的光线可以在镜面反射区域A发生镜面反射,所反射的光线可以直接进入显示面板PNL中用于显示;光源组件2发出的光线在非镜面反射区域B无法形成镜面反射,难以反射回聚光透镜形成光线会聚,解决了器件灼伤问题。
例如,镜面反射区域A的大小设计为使聚光透镜出射的光经过镜面反射区域A后不会镜面反射再次进入聚光透镜。例如,镜面反射区域A的大小设计为使聚光透镜出射的光经过镜面反射区域A后进入聚光透镜后不会产生光线会聚或者产生光线会聚带来的影响对投影装置的信赖性影响可以接受。
镜面反射区域A可以理解为能够实现镜面反射功能的区域,包括反射膜,例如为高反射膜。
本公开对反射膜的材料不加以限定,只要能实现反射功能即可,例如可以是金属反射膜或者全电介质反射膜,或者是金属电介质反射膜。具体地,反射膜可以为铝薄膜或者银薄膜等,例如可以采用金属镀膜工艺将铝薄膜或者银薄膜制备到玻璃上。
在一些实施例中,非镜面区域B包括光吸收区,光源2发出的光线在非镜面反射区域B被至少部分吸收,难以反射回聚光透镜形成光线汇聚。例如,光吸收区可以在第二反光镜MR2的镜面表面形成黑色油墨以对光进行吸收。例如,光吸收区可以包括导热材料,例如铜、铝等金属;例如光吸收区可以制作为散热鳍片的形式,如此,可以迅速转移热量;例如,光吸收区朝向发光元件21的一侧可以是哑光的,如此,可以使未被吸收的光线不至于形成镜面反射。
在一些实施例中,非镜面区域B包括漫反射区,光源2发出的光线可以在漫反射区发生漫反射,该部分光线的反射角度不确定,一方面,漫反射光线对 显示效果产生影响可以忽略;另一方面,经过漫反射的光线也不会被聚光透镜再次会聚;又一方面,漫反射区不会因为光线照射而产生明显热量聚焦,解决了局域照射器件老化而产生的信赖性问题。
需要说明的是,漫反射区可以是将全部的照射光线漫反射,也可以是将部分照射到漫反射区的光线漫反射。在漫反射区将部分照射到漫反射区的光线漫反射的情况下,部分光线可以被漫反射区吸收,如此,可以将照射光线的影响减小到允许范围内,保证投影装置的信赖性。
具体来说,第二反光镜MR2的非镜面反射区域B可以对无效光线进行漫反射,避免无效光线直接照射至壳体1和/或第二风机7上,避免了光线直射而造成温度过高发生老化。同时,经过非镜面区域B漫反射的光线不会再次会聚而产生高温,灼伤所会聚的区域。因此,可以提升投影装置的性能,提高使用寿命。
在一些实施例中,镜面反射区域A的反射面与非镜面反射区域B靠近聚光透镜的一侧表面不存在段差。
在一些实施例中,镜面反射区包括反射膜和光滑衬底。例如,反射膜相比于光滑衬底更靠近聚光透镜。例如反射膜可以覆盖在光滑衬底上,光线在反射膜上形成产生镜面反射。例如,反射膜可以采用金属薄膜制成。例如,反射膜可以为铝薄膜或者银薄膜等,例如可以采用金属镀膜工艺制备到光滑衬底上。光滑衬底例如为光滑玻璃。例如,光滑衬底是透明的。
在一些实施例中,漫反射区包括反射膜和粗糙衬底。例如,粗糙衬底为磨砂玻璃。例如,粗糙衬底是透明的。
例如,反射膜相比于粗糙衬底更靠近聚光透镜。例如,粗糙衬底的粗糙面于反射膜相对设置,反射膜与粗糙衬底紧密结合,反射膜朝向聚光透镜一侧表面因此也具有粗糙形貌,可以对光线产生漫反射。例如,反射膜可以为铝薄膜或者银薄膜等,例如可以采用金属镀膜工艺制备到粗糙衬底上。在工艺上,粗糙衬底可以是在光滑衬底上进行粗糙化处理(例如磨砂或喷砂工艺),然后通过一次工艺(例如使用镀膜工艺)将反射膜同时覆盖到光滑衬底和粗糙衬底上。
在一些实施例中,第二反光镜MR2包括衬底以及位于衬底靠近聚光透镜一侧的反射膜,反射膜覆盖部分衬底区域,其中,被反射膜覆盖的区域为镜面反射区域A;未被反射膜覆盖的区域包括非镜面反射区B。例如,反射膜可以与反射镜MR2贴合设置。例如,衬底靠近反射膜一侧为光滑表面,如此,有利于反射膜贴合。例如,衬底背离反射膜一侧包括粗糙表面。具有粗糙表面且未被反射膜覆盖的区域形成漫反射区。例如,衬底背离反射膜一侧的整面都为粗糙表面,如此可以简化工艺。例如,所述衬底为透明衬底。
例如,粗糙表面可以设置在衬底朝向聚光透镜的一侧。例如,粗糙表面与反射膜都位于衬底的同一侧,如此,被反射膜覆盖的区域为镜面反射区域A,未被反射膜覆盖且具有粗糙表面的衬底区域为非镜面反射区B。例如,反射膜可以与衬底朝向聚光透镜的一侧表面贴合设置;例如,贴合的区域均是光滑表面。
在一些实施例中,粗糙表面可以设置在衬底朝向聚光透镜的一侧,在该侧,部分区域为粗糙表面,部分区域为光滑表面。反射膜设置在衬底背离聚光透镜一侧。例如,反射膜可以采用金属薄膜制成。例如,反射膜可以为铝薄膜或者银薄膜等,例如可以采用金属镀膜工艺制备到上。例如,衬底背离聚光透镜一侧均为光滑表面,如此,在衬底朝向聚光透镜的一侧,粗糙表面对应的区域为漫反射区,光滑表面对应的区域为镜面反射区A。
在一些实施例中,参考图29和图30,非镜面反射区域B的中心相比镜面反射区域A的中心更靠近所述发光元件。例如,镜面反射区域A和非镜面反射区域B将第二反光镜MR2切分为“一侧与另一侧”(如图29,示意为上侧与下侧)两个区域,整体来说,非镜面反射区域B相比于镜面反射区域A更靠近所述发光元件,如此经过非镜面反射区B的光线难以反射回聚光透镜形成光线汇聚,解决了器件灼伤问题。
在一些实施例中,参考图29,非镜面区域B的轮廓可以为条形。例如,非镜面区域B的轮廓可以为梯形。在实际应用中,可以将非镜面区域B的轮廓设置为等腰梯形。例如,非镜面区域B的轮廓可以为长条状梯形。
在一些实施例中,参考图29,非镜面反射区域B的宽度P1在13-18mm范围内。例如,非镜面反射区域B的宽度P1范围在14.5~15.5mm范围内。如此,可以保证非镜面反射区域B具有较大的面积,有效消除聚光透镜对反射光线再次会聚对投影装置信赖性产生的影响,同时满足了投影装置内组件的紧凑布局。
在一些实施例中,聚光透镜包括平凸透镜23,平凸透镜23具有相互背离的透镜平面和透镜凸面;透镜平面与发光元件21的出光侧相对,且间隔设置。透镜平面可以对与发光元件21的出光侧相对设置,这样可以对发光元件21发出的光线进行会聚,实现光线的收束或整形,保证发光元件21发出的光线的利用率,节约能耗。例如,平凸透镜23即为所述聚光透镜。例如,聚光透镜还包括位于平凸透镜靠近发光元件21一侧的透镜底座,该透镜底座与平凸透镜接触设置,以实现对平凸透镜的安装和固定。
在一些实施例中,如图29所示,第二反光镜MR2的外轮廓为梯形,梯形的上底相比梯形的上底更靠近发光元件21;例如,非镜面反射区域B位于梯形上底的一侧。如此,第二反光镜MR2可以在有效地将成像光线反射的同时,体积进一步缩小,可以提高投影装置设计的紧凑程度。
参考上述设计思路,也可以将第二反光镜MR2的镜面反射区域A的轮廓为梯形;例如,非镜面反射区域B位于所述镜面反射区的上底远离镜面反射区A的下底的一侧。非镜面反射区域B形状可以为梯形或矩形中的一种。
在实际应用中,镜面反射区域A的形状可以为等腰梯形。
在一些实施例中,第二透镜LNS2延伸平面与第二反光镜MR2的反射面之间的夹角在34~48°范围内,如此,投影装置的紧凑性较好。其中,第二透镜LNS2所在平面可以理解为经过第二透镜的光心且与第二透镜的光轴垂直的平面。当第二透镜LNS2为菲涅尔透镜时,第二透镜LNS2所在平面与第二透镜LNS2的延伸平面平行。
在一些实施例中,镜面反射区域A的下底长度P3与上底长度P2的比值在1.4~1.8范围内;镜面反射区域A的上底与一个腰之间的夹角ξ1在98°~113°范围内,如此,投影装置的紧凑性较好。
在一些实施例中,镜面反射区域A的下底长度P3在105~115mm范围内,上底长度P2在61.8~78.6mm范围内,高P4在59.8~75.3mm范围内,如此,投影装置的紧凑性较好。需要说明的是,
在一个具体实施例中,第二透镜LNS2延伸平面与第二反光镜MR2的反射面之间的夹角为41°,第二反光镜MR2的镜面反射区域A为等腰梯形,第二反光镜MR2的镜面反射区域A下底长度P3与上底长度P2的比值在1.4-1.8范围内,第二反光镜MR2的镜面反射区域A上底与一个腰之间的夹角ξ1在105°~111°范围内。例如,第二反光镜MR2的镜面反射区域A下底长度P3在110.8±3mm范围内,上底长度P2在67.8±3mm范围内,高P4在63.8±3mm范围内;优选地,第二反光镜MR2的镜面反射区域A下底长度P3在110.8±0.3mm范围内,上底长度P2在67.8±0.3mm范围内,高P4在63.8±0.3mm范围内。
非镜面反射区域A的宽度P1在13-18mm范围内,例如,非镜面反射区域B的宽度P1范围在14.5~15.5mm范围内。如此,投影装置的紧凑性较好。
在一些实施例中,显示装置还包括第一反光镜MR1,第一反光镜MR1设置为将从显示面板PNL出射的光反射进入投影镜头3。具体地,第一反光镜MR1设置在显示面板PNL远离光源组件2的一侧,并且第一反光镜MR1设置在第一透镜LNS1远离光源组件2的一侧。第一反光镜MR1可以为平面反射镜。第一反光镜MR1可以将显示面板PNL出射的光线反进入投影镜头3。
图31为本公开的一些示范性实施例的投影装置中的第一反光镜的示意图。参考图31,第一反光镜MR1越靠近显示面板PNL的区域其宽度越小,越远离显示面板PNL的区域其宽度越大。例如,第一反光镜MR1的外轮廓为梯形。
例如,第一反光镜MR1包括成像镜面反射区域C,成像镜面反射区域C的轮廓可以为梯形。例如,成像镜面反射区域C的轮廓与第二反光镜MR2的轮廓相同。例如,成像镜面反射区域C的轮廓可以为等腰梯形。
在一个具体实施实施例中,显示面板PNL延伸平面与第一反光镜MR1的反射面之间的夹角为45°;第一反光镜MR1为等腰梯形,第一反光镜MR1 的上底与一个腰之间的夹角ξ2在98°~100°范围内。例如,第一反光镜MR1的下底长度P6在110.8±3mm范围内,上底长度P5在81.0±3mm范围内,高P7在99.0±3mm范围内。例如,第一反光镜MR1的下底长度P6在110.8±0.3mm范围内,上底长度P5在81.0±0.3mm范围内,高P7在99.0±0.3mm范围内。如此,投影装置的紧凑性较好。
应当理解,尽管本文已经描述和示出了本公开的一些示范性实施例,但是本领域普通技术人员将容易地想到用于执行本文描述的功能和/或获得本文描述的结果和/或一个或多个优点的各种其他装置和/或结构,并且这些变化和/或修改中的每一个被认为在本公开的实施例的范围内。更一般地,本领域技术人员将容易理解,本文所述的所有参数、尺寸、材料和配置都是意为示例性的,并且实际参数、尺寸、材料和/或配置将取决于使用本公开教导的一个或多个特定应用。本领域技术人员将认识到或能够使用不超过常规实验来查明本文描述的具体实用新型实施例的许多等同物。因此,应当理解,前述实施例仅通过示例的方式呈现,并且在所附权利要求及其等同物的范围内,实用新型实施例可以以不同于具体描述和要求保护的方式实施。本实用新型实施例针对本文所述的每个个别的特征、系统、物品、材料、套件和/或方法。此外,如果这种特征、系统、物品、材料、套件和/或方法不是相互不一致的,则两个或多个这种特征、系统、物品、材料、套件和/或方法的任何组合都包括在本实用新型范围内。
除非另有限定,用在本公开中的所有技术和科学术语具有与本公开所属的领域中熟练的技术人员所通常理解的意义相同的意义。
如本文在说明书和权利要求中使用的短语“和/或”应当理解为意指如此结合的元件中的“任一个或两个”,即在一些情况下结合存在并且在其他情况下不结合存在的元件。用“和/或”列出的若干元件应该以相同的方式解释,即,如此结合的元件中的“一个或多个”。除了由“和/或”子句具体标识的元件之外,可以可选地存在其他元件,无论与具体标识的那些元件相关还是不相关。因此,作为非限制性示例,当结合诸如“包括”之类的开放式语言使用时,对“A和/或B”的提及可以在一个实施例中仅指A(可选地包括除B之外的元件); 在另一个实施例中,仅指B(可选地包括除A之外的元件);在又一实施例中,指A和B两者(可选地包括其它元件)等等。
本领域技术人员将理解本文中(诸如在“基本上所有光”中或在“基本上由……组成”中)的术语“基本上”。术语“基本上”还可包括具有“整个地”、“完全地”、“所有”等的实施例。因此,在实施例中,形容词基本上也是可移除的。在适用的情况下,术语“基本上”还可涉及90%或更高、诸如95%或更高、特别地99%或更高、甚至更特别地99.5%或更高、包括100%。术语“包括”还包括其中术语“包括”意味着“由……组成”的实施例。术语“和/或”特别地涉及“和/或”之前和之后所提及项目中的一个或多个。比如,短语“项目1和/或项目2”和类似短语可涉及项目1和项目2中的一个或多个。术语“包括”可在一个实施例中是指“由……组成”,但可在另一个实施例中也指“包含至少所限定种类并且可选地包含一个或多个其他种类”。
此外,本说明书中和权利要求中的术语第一、第二、第三等用于在类似元件之间进行区分,并不表示任何顺序、数量或者重要性。应理解,如此使用的术语在适当情形下是可互换的,并且本文所描述的本公开的实施例能够按与本文所描述或示出不同的顺序进行操作。
应注意,以上提及的实施例说明而不是限制本公开,并且本领域技术人员将能够在不背离所附权利要求的范围的情况下设计许多替代实施例。在权利要求中,放置在括号之间的任何参考标记不应被解释为限制权利要求。动词“包括”及其词形变化的使用并不排除存在与权利要求中所陈述的那些不同的元件或步骤。本公开权利要求书中的措辞“一”或“一个”不排除复数,其仅仅旨在叙述的方便,不应当理解为对本公开保护范围的限缩。
本公开可借助于包括若干不同元件的硬件、以及借助于适当编程的计算机来实现。在枚举若干器件的装置权利要求中,这些装置中的若干个可由同一个硬件项体现。在相互不同的从属权利要求中叙述某些措施的纯粹事实并不指示不能有利地使用这些措施的组合。
本公开进一步适用于包括本说明书中所描述和/或附图中所示出的表征特 征中的一个或多个的装置。本公开进一步涉及包括本说明书中所描述和/或附图中所示出的表征特征中的一个或多个的方法或过程。
本公开中所论述的各种方面可组合起来,以便提供另外的优点。另外,本领域技术人员将理解实施例可组合起来,并且多于两个实施例也可组合起来。
此外,一些特征可形成一个或多个分案申请的基础。

Claims (29)

  1. 一种投影装置,包括壳体、光源组件、投影镜头、第一散热器和第一风机,所述光源组件包括发光元件,其特征在于,
    所述壳体包括相对的前表面和后表面,所述前表面包括第一开口和第二开口,所述壳体还包括第三开口,所述第三开口的至少部分位于所述后表面;所述发光元件位于所述第一开口处;所述投影镜头位于所述第二开口处;所述第一散热器位于所述壳体的第三开口处;
    其中,所述发光元件、所述投影镜头、所述第一散热器和所述壳体共同构成容纳空间;所述第一风机位于所述发光组件远离所述容纳空间的一侧;
    所述光源组件还包括发光元件基座,所述发光元件位于所述发光元件基座上;所述第一风机包括朝向所述发光元件基座设置的第一入风口,所述第一入风口与所述发光元件基座之间设置有第一间隙。
  2. 根据权利要求1所述的投影装置,其中,所述第一入风口包括被发光元件基座在所述第一入风口上的正投影覆盖的第一区域以及位于所述第一区域远离所述投影镜头一侧的第二区域。
  3. 根据权利要求2所述的投影装置,其中,所述第一入风口还包括位于所述第一区域远离所述第二区域一侧的第三区域,其中,所述第三区域的宽度小于所述第二区域的宽度。
  4. 根据权利要求2所述的投影装置,其中,所述投影装置包括底板;
    所述底板与所述壳体相对设置;所述壳体与所述底板之间构成第一外风道,和/或,所述底板与所述第一散热器的一部分相对设置,所述一部分第一散热器与所述底板构成第一外风道;
    所述第一外风道用于在所述投影装置工作时,使空气经过所述第一外风道后进入所述第一风机。
  5. 根据权利要求4所述的投影装置,其中,所述第一外风道与所述第二区 域相对设置。
  6. 根据权利要求2所述的投影装置,其中,所述投影装置包括电路板;所述电路板与所述壳体相对设置,所述壳体与所述电路板之间构成第二外风道,和/或,所述电路板与所述第一散热器的一部分相对设置,所述一部分第一散热器与所述电路板构成第二外风道;
    所述第二外风道用于在所述投影装置工作时,使空气经过所述第二外风道后进入所述第一风机;所述第二外风道与所述第二区域相对设置。
  7. 根据权利要求1所述的投影装置,其中,所述第一散热器整体上呈弓形。
  8. 根据权利要求1所述的投影装置,其中,所述第一散热器包括包裹部以及位于所述包裹部远离所述容纳空间侧的多个第一散热鳍片,所述包裹部覆盖所述第三开口,所述多个第一散热鳍片的每一个都包括第一散热部,所述第一散热器配置为使空气在多个所述第一散热部之间通过后,从所述第一入风口进入所述第一风机。
  9. 根据权利要求8所述的投影装置,其中,所述投影装置包括电路板和底板的至少之一;
    当所述投影装置包括电路板时,所述第一散热部的至少部分位于所述包裹部与所述电路板之间,和/或,
    当所述投影装置包括底板时,所述第一散热部的至少部分位于所述包裹部与所述底板之间。
  10. 根据权要求9所述的投影装置,其中,所述电路板包括第二散热部,所述第二散热部位于所述电路板靠近所述壳体的一侧,和/或,所述第二散热部位于所述电路板靠近所述第一散热部的一侧。
  11. 根据权利要求8所述的投影装置,其中,所述包裹部包括位于所述壳体后表面所在侧的第一子包裹部以及位于与所述壳体后表面所在侧不同侧的第二子包裹部;所述第二子包裹部与所述第一子包裹部连续设置;所述第一散热部为所述第二子包裹部远离所述容纳空间侧的散热鳍片。
  12. 根据权利要求1所述的投影装置,其中,在所述投影装置工作状态下,所述投影镜头高于所述光源组件;所述壳体还包括底表面和顶表面,所述底表面低于所述顶表面,所述前表面和后表面分别连接所述顶表面和所述底表面。
  13. 根据权利要求12所述的投影装置,其中,在所述投影装置工作状态下,所述投影装置被配置为在所述底表面与所述投影装置的放置面之间形成风道,进入所述第一入风口中的空气包括经过所述风道的空气,并且,进入所述风道的空气携带从所述第一散热器散发的热量。
  14. 根据权利要求1所述的投影装置,其中,所述投影装置还包括:
    第一偏光元件,设置在所述光源组件的出光侧,用于将所述光源组件所发射的光转换为具有第一偏振方向的第一偏振光;
    显示面板,设置在所述第一偏光元件远离所述光源组件的一侧;
    第一透镜,设置在所述显示面板远离所述光源组件的一侧,或者设置在所述显示面板与所述第一偏光元件之间;
    第一反光镜,设置为将从所述显示面板出射的光反射进入所述投影镜头;
    第二偏光元件,所述第二偏光元件设置在所述显示面板远离所述第一偏光元件的一侧,用于将第一偏振方向的偏振光与第二偏振方向的偏振光中的其中一者从所述投影镜头射出,所述第一偏振方向与所述第二偏振方向垂直;
    其中,所述第一反光镜和所述第二偏光元件为同一元件或不同元件;所述显示面板为液晶显示面板。
  15. 根据权利要求14所述的投影装置,其中,所述投影装置还包括透光部;
    当所述第一透镜设置在所述显示面板远离所述光源组件的一侧时,所述透光部位于所述光源组件与所述显示面板之间,所述透光部与所述显示面板之间具有第二间隙;
    当所述第一透镜在设置在所述显示面板与所述第一偏光元件之间时,所述透光部位于所述光源组件与所述第一透镜之间,所述透光部与所述第一透镜之间具有第二间隙;
    所述第一偏光元件贴附于所述透光部。
  16. 根据权利要求15所述的投影装置,其中,所述投影装置包括位于所述容纳空间内的第二风机,用于推动容纳空间内的内部空气循环,所述内部空气通过所述第一散热器进行热量交换;
    所述第二风机包括第二入风口和第二出风口,所述第二出风口排出内部空气,所述第二入风口吸入内部空气,使所述内部空气在所述容纳空间内循环流动;所述内部空气的流动路径包括所述第二间隙。
  17. 根据权利要求16所述的投影装置,其中,所述第一透镜与所述显示面板之间具有第三间隙;所述内部空气的流动路径包括所述第三间隙;所述第三间隙与所述第二间隙并排设置,所述内部空气在所述第二间隙中的流动方向与所述内部空气在所述第三间隙中的流动方向相同或相反。
  18. 根据权利要求17所述的投影装置,其中,所述内部空气依次经过第二出风口、第二风道、第三风道、第一风道、第二入风口进行内循环流动;
    所述第二风道包括所述第二间隙;所述第三风道包括所述第三间隙;所述第一散热器的至少部分构成所述第一风道的一侧侧壁。
  19. 根据权利要求18所述的投影装置,其中,所述第一散热器包括延伸进入所述第一风道的第二散热鳍片。
  20. 根据权利要求18所述的投影装置,还包括第二反光镜和第二透镜;所述第二反光镜用于反射所述发光元件发出的光进入所述第二透镜;所述第二透镜用于对光进行准直;
    所述第二风机位于所述第二反光镜背离所述光源组件的一侧;所述第二风机与所述第一散热器之间具有第三间隙,所述第一风道包括所述第三间隙。
  21. 根据权利要求1所述的投影装置,其中,所述第一风机为轴流风机。
  22. 根据权利要求14所述的投影装置,其中,所述投影装置还包括固定框,所述显示面板与所述第一透镜分别镶嵌在所述固定框的相对两侧;所述第一透镜与所述显示面板之间具有第三间隙;
    所述固定框包括两个相对设置的两个贯通侧,所述贯通侧包括镂空部。
  23. 根据权利要求22所述的投影装置,其中,所述固定框包括相对设置的 两个定位侧;
    所述定位侧的两边分别与所述贯通侧连接;所述定位侧包括定位部,用于与所述壳体配合以实现固定框的定位。
  24. 根据权利要求23所述的投影装置,其中,所述定位部包括凸棱;所述凸棱与所述显示面板的延伸方向相同;
    所述固定框还包括U形卡扣;所述显示面板、所述固定框以及所述第一透镜都设置在所述U形卡扣的两端之间,并且,卡扣夹持所述固定框的至少一个侧边;
    所述U形卡扣夹持所述固定框侧边的位置包括配合凸棱,所述配合凸棱与所述定位部的凸棱接续设置。
  25. 根据权利要求24所述的投影装置,其中,所述壳体的内表面包括凹槽,所述凸棱与所述凹槽相配合以实现所述固定框的定位;
    所述两个贯通侧中的一个朝向所述第一散热器设置。
  26. 根据权利要求1所述的投影装置,其中,所述投影装置包括调焦组件,所述调焦组件用于对投影镜头进行调焦;
    所述调焦组件包括传感组件和驱动组件;所述传感组件配置为测量所述投影透镜与投影图像之间的投影距离;所述驱动组件配置为根据测量得到的所述投影距离驱动所述投影镜头进行焦距调节;
    所述驱动组件包括驱动电机、致动器以及设置在所述投影镜头上的调焦器;所述驱动电机驱动所述致动器运动,所述致动器与所述调焦器耦接。
  27. 根据权利要求26所述的投影装置,其中,所述致动器包括第一齿轮,所述调焦器包括设置在所述投影透镜外周缘的传动齿,所述第一齿轮与所述传动齿通过相互啮合耦接;
    所述调焦组件包括限位组件,所述限位组件用于控制所述投影镜头的调焦范围;
    所述限位组件包括光耦合器和挡板;所述挡板与所述调焦器的相对位置固定;
    所述光耦合器与所述壳体的相对位置固定;所述光耦合器用于判断所述挡板遮挡或未遮挡光线并发出信号,用于提供指令给所述驱动电机。
  28. 根据权利要求27所述的投影装置,其中,所述调焦组件包括调焦环,所述挡板和所述传动齿都围绕固定于所述调焦环上。
  29. 根据权利要求1所述的投影装置,还包括位于所述容纳空间内的第二风机,用于推动容纳空间内的内部空气循环,所述内部空气通过所述第一散热器进行热量交换;
    所述第二风机包括第二入风口和第二出风口,所述第二出风口排出内部空气,所述第二入风口吸入内部空气,使所述内部空气在所述容纳空间内循环流动;
    其中,所述第二风机为离心风机;所述第二入风口与所述第一散热器相对设置。
PCT/CN2023/073120 2022-10-18 2023-01-19 投影装置 WO2024082479A1 (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
CN202222741835.5 2022-10-18
CN202222741835.5U CN219799968U (zh) 2022-10-18 2022-10-18 投影装置
CN202222854112.6 2022-10-27
CN202222854112.6U CN221175228U (zh) 2022-10-27 2022-10-27 投影装置
CN202222968071.3 2022-11-08
CN202222968071.3U CN219676425U (zh) 2022-11-08 2022-11-08 投影装置
CN202222994221.8 2022-11-10
CN202222994221.8U CN219162529U (zh) 2022-11-10 2022-11-10 投影装置
CN202211410052.7 2022-11-10
CN202211410052.7A CN118050944A (zh) 2022-11-10 2022-11-10 投影装置

Publications (1)

Publication Number Publication Date
WO2024082479A1 true WO2024082479A1 (zh) 2024-04-25

Family

ID=90736716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073120 WO2024082479A1 (zh) 2022-10-18 2023-01-19 投影装置

Country Status (1)

Country Link
WO (1) WO2024082479A1 (zh)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142783A (ja) * 2012-01-11 2013-07-22 Canon Inc 投射型表示装置
CN109643047A (zh) * 2016-08-31 2019-04-16 索尼公司 图像投影装置
CN113687567A (zh) * 2021-09-26 2021-11-23 峰米(重庆)创新科技有限公司 一种微型投影机
CN114019754A (zh) * 2021-10-29 2022-02-08 峰米(重庆)创新科技有限公司 一种投影设备
CN216351743U (zh) * 2021-12-10 2022-04-19 峰米(重庆)创新科技有限公司 一种光机散热结构及投影仪
CN216561377U (zh) * 2021-12-30 2022-05-17 长沙创荣电子科技有限公司 一种新型投影仪
CN216927351U (zh) * 2022-01-27 2022-07-08 峰米(重庆)创新科技有限公司 一种投影装置
CN114721208A (zh) * 2022-02-24 2022-07-08 长沙创荣电子科技有限公司 一种投影仪壳体
CN114911118A (zh) * 2022-06-17 2022-08-16 长沙创荣电子科技有限公司 一种模块化投影仪
CN217404599U (zh) * 2022-04-20 2022-09-09 耿艳 一种方便组装的高精度镜头
CN217443717U (zh) * 2022-04-18 2022-09-16 峰米(重庆)创新科技有限公司 投影机
CN217484682U (zh) * 2022-05-23 2022-09-23 深圳市巨扬达科技有限公司 一种光路系统具有框架结构的投影仪
CN217506355U (zh) * 2022-05-27 2022-09-27 长沙创荣电子科技有限公司 散热片、具有此散热片的散热结构及具有此散热结构的投影仪
CN115128889A (zh) * 2022-08-12 2022-09-30 湖南创科光电有限责任公司 一种高亮全密封光机及投影仪

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013142783A (ja) * 2012-01-11 2013-07-22 Canon Inc 投射型表示装置
CN109643047A (zh) * 2016-08-31 2019-04-16 索尼公司 图像投影装置
CN113687567A (zh) * 2021-09-26 2021-11-23 峰米(重庆)创新科技有限公司 一种微型投影机
CN114019754A (zh) * 2021-10-29 2022-02-08 峰米(重庆)创新科技有限公司 一种投影设备
CN216351743U (zh) * 2021-12-10 2022-04-19 峰米(重庆)创新科技有限公司 一种光机散热结构及投影仪
CN216561377U (zh) * 2021-12-30 2022-05-17 长沙创荣电子科技有限公司 一种新型投影仪
CN216927351U (zh) * 2022-01-27 2022-07-08 峰米(重庆)创新科技有限公司 一种投影装置
CN114721208A (zh) * 2022-02-24 2022-07-08 长沙创荣电子科技有限公司 一种投影仪壳体
CN217443717U (zh) * 2022-04-18 2022-09-16 峰米(重庆)创新科技有限公司 投影机
CN217404599U (zh) * 2022-04-20 2022-09-09 耿艳 一种方便组装的高精度镜头
CN217484682U (zh) * 2022-05-23 2022-09-23 深圳市巨扬达科技有限公司 一种光路系统具有框架结构的投影仪
CN217506355U (zh) * 2022-05-27 2022-09-27 长沙创荣电子科技有限公司 散热片、具有此散热片的散热结构及具有此散热结构的投影仪
CN114911118A (zh) * 2022-06-17 2022-08-16 长沙创荣电子科技有限公司 一种模块化投影仪
CN115128889A (zh) * 2022-08-12 2022-09-30 湖南创科光电有限责任公司 一种高亮全密封光机及投影仪

Similar Documents

Publication Publication Date Title
JP3864051B2 (ja) 一体型反射投影システム
JP4059251B2 (ja) 光源装置、およびプロジェクタ
US6530664B2 (en) Integrated front projection system with enhanced dry erase screen configuration
EP2590414B1 (en) Image projection apparatus
TW200535454A (en) Light source device and a projection device having the light source
US8523365B2 (en) Light source device and projector
JP4966783B2 (ja) プロジェクタ装置
US6906840B1 (en) Optical modulator, optical device having the optical modulator and projector having the same
CN104280991A (zh) 图像投影装置
JP2013097123A (ja) 画像表示装置
WO2024082479A1 (zh) 投影装置
US20130329198A1 (en) Projection optical apparatus and image projection apparatus
CN214228367U (zh) 一种单片式全封闭lcd投影散热系统
CN219676425U (zh) 投影装置
JP3705138B2 (ja) 液晶プロジェクション装置
CN118050944A (zh) 投影装置
CN219162529U (zh) 投影装置
CN219799968U (zh) 投影装置
CN220121133U (zh) 单片式lcd投影系统
WO2023159545A1 (zh) 投影装置
CN216979554U (zh) 一种边缘光线利用率高的高清投影仪
CN219349338U (zh) 投影仪光机散热结构
CN114217498B (zh) 一种lcd投影机照明系统以及lcd投影机
CN219590663U (zh) 一种激光投影系统
JP2002122865A (ja) 光源装置およびこれを用いた投射型ディスプレイ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878485

Country of ref document: EP

Kind code of ref document: A1