WO2024082476A1 - 二氧化碳捕集系统 - Google Patents

二氧化碳捕集系统 Download PDF

Info

Publication number
WO2024082476A1
WO2024082476A1 PCT/CN2023/072895 CN2023072895W WO2024082476A1 WO 2024082476 A1 WO2024082476 A1 WO 2024082476A1 CN 2023072895 W CN2023072895 W CN 2023072895W WO 2024082476 A1 WO2024082476 A1 WO 2024082476A1
Authority
WO
WIPO (PCT)
Prior art keywords
regeneration
outlet
washing
zone
tower
Prior art date
Application number
PCT/CN2023/072895
Other languages
English (en)
French (fr)
Inventor
张元雪
牛红伟
刘汉明
刘练波
郭东方
王焕君
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2024082476A1 publication Critical patent/WO2024082476A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact

Definitions

  • the present application relates to the technical field of carbon dioxide capture, and in particular to a carbon dioxide capture system.
  • the desulfurized flue gas is sprayed and cooled in a pre-wash tower, and then blown into the absorption tower by a booster fan.
  • the carbon dioxide in the flue gas is absorbed by the absorption solution, and the clean exhaust gas is discharged from the top of the tower.
  • a circulating water washing system for washing the exhaust flue gas is provided on the upper part of the absorption tower to prevent the absorption liquid vapor from being carried out by the flue gas, resulting in the loss of the absorption liquid.
  • the absorbent With the continuous circulation of the washing liquid, the absorbent will gradually be enriched in the washing zone, resulting in the exhaust flue gas still taking away part of the absorbent, affecting the recovery of the absorbent. In large-scale engineering applications, the loss of absorbent will lead to higher operating costs.
  • the present application aims to solve one of the technical problems in the related art at least to a certain extent. To this end, an embodiment of the present application proposes a carbon dioxide capture system.
  • the carbon dioxide capture system of the embodiment of the present application includes: an absorption unit, the absorption unit includes an absorption tower, the absorption tower has a flue gas inlet, a flue gas outlet, a lean liquid inlet, and a rich liquid outlet, and the absorption tower is provided with an absorption zone and multiple layers of washing zones in sequence in the flow direction of the flue gas; and a regeneration unit, the regeneration unit includes a regeneration tower and a regeneration gas condenser, the regeneration tower is connected to both the rich liquid outlet and the lean liquid inlet, the regeneration tower is used to regenerate the absorbent, the regeneration gas outlet of the regeneration tower is connected to the regeneration gas condenser, and the condensate outlet of the regeneration gas condenser is connected to the inlet of at least one layer of the washing zone to allow the regeneration gas condensate to be used as a washing liquid.
  • the absorption tower of the carbon dioxide capture system provided in the embodiment of the present application is provided with a multi-layer washing zone.
  • the flue gas is washed in the multi-layer washing zone, which can greatly reduce the loss of absorbent and reduce the operating cost in the carbon dioxide capture process.
  • the present application couples the absorption and desorption processes, and uses the regenerated gas condensate in the desorption process as a washing liquid, which is introduced into the washing zone of the absorption tower.
  • the content of the absorbent in the regenerated gas condensate is extremely low, so using the regenerated gas condensate as a washing liquid is very conducive to the dissolution of the absorbent, effectively avoiding the accumulation effect of the absorbent in the washing liquid, more fully dissolving the absorbent, and reducing the escape of the absorbent.
  • the outlet of the scrubbing zone using the regeneration gas condensate as the scrubbing liquid is connected to the regeneration tower, so that the regeneration gas condensate is returned to the regeneration tower for regeneration of the absorbent.
  • the condensate outlet of the regeneration gas condenser is connected to the inlets of several layers of the scrubbing zones.
  • the condensate outlet of the regeneration gas condenser is connected to the inlet of a portion of the multi-layer washing zones
  • the carbon dioxide capture system also includes a circulating washing device, which is connected to the inlet and outlet of the remaining washing zones, and the circulating washing device is used to circulate the circulating washing liquid in the washing zones.
  • the washing zone is two layers, including an upper washing zone and a lower washing zone, the condensate outlet of the regeneration gas condenser is connected to the inlet of the upper washing zone, and the circulating washing device is connected to the inlet and outlet of the lower washing zone.
  • the circulating washing liquid is demineralized water.
  • the flue gas inlet is located below the absorption zone
  • the flue gas outlet is located above the washing zone
  • the absorption zone and the multi-layer washing zone are arranged in sequence from bottom to top.
  • the rich liquid outlet is located at the bottom of the absorption tower, and the lean liquid inlet is located between the washing zone and the absorption zone in the up and down directions.
  • the carbon dioxide capture system includes a lean and rich liquid heat exchanger, the rich liquid outlet is connected to the cold end inlet of the lean and rich liquid heat exchanger, the cold end outlet of the lean and rich liquid heat exchanger is connected to the rich liquid inlet of the regeneration tower, the hot end inlet of the lean and rich liquid heat exchanger is connected to the lean liquid outlet of the regeneration tower, and the hot end outlet of the lean and rich liquid heat exchanger is connected to the lean liquid inlet.
  • the rich liquid inlet of the regeneration tower is located above the lean liquid outlet, and the rich liquid enters the regeneration tower and is sprayed from top to bottom.
  • FIG1 is a schematic diagram of the structure of a carbon dioxide capture system provided in an embodiment of the present application.
  • Carbon dioxide capture system 100 absorption tower 1, flue gas inlet 11, flue gas outlet 12, lean liquid inlet 13, rich liquid outlet 14, regeneration tower 2, rich liquid inlet 21, lean liquid outlet 22, regeneration gas condenser 3, condensate outlet 31, circulation washing device 4, lean and rich liquid heat exchanger 6, pre-wash tower 7, booster fan 8, reboiler 9.
  • the carbon dioxide capture system 100 provided in the embodiment of the present application is described below with reference to FIG. 1.
  • the carbon dioxide capture system 100 includes an absorption unit and a regeneration unit.
  • the absorption unit includes an absorption tower 1, which has a flue gas inlet 11, a flue gas outlet 12, a lean liquid inlet 13, and a rich liquid outlet 14.
  • the absorption tower 1 is provided with an absorption zone and a plurality of regeneration zones in sequence in the flue gas flow direction.
  • the flue gas enters the absorption tower 1 from the flue gas inlet 11 and flows upward into the absorption zone. In the absorption zone, the carbon dioxide in the flue gas is captured by the absorbent entering the absorption tower 1 from the lean liquid inlet 13.
  • the clean flue gas after capturing the carbon dioxide continues to flow upward, passing through multiple layers of washing zones in turn.
  • the absorbent vapor in the flue gas is washed and dissolved by the washing liquid and finally discharged from the absorption tower 1 from the flue gas outlet 12.
  • the regeneration unit includes a regeneration tower 2 and a regeneration gas condenser 3.
  • the regeneration tower 2 is connected to each of the rich liquid outlet 14 and the lean liquid inlet 13 of the absorption tower 1.
  • the rich liquid flowing out of the rich liquid outlet 14 enters the regeneration tower 2.
  • the regeneration tower 2 is used to desorb and regenerate the rich liquid.
  • the carbon dioxide concentration in the regenerated absorbent is reduced and regenerated into lean liquid.
  • the lean liquid returns to the absorption tower 1 through the lean liquid inlet 13 for recycling.
  • Regeneration gas is generated during the regeneration process of the regeneration tower 2.
  • the regeneration gas outlet of the regeneration tower 2 is connected to the regeneration gas condenser 3.
  • the main components of the regeneration gas are carbon dioxide and water.
  • the water in the regeneration gas is condensed in the regeneration gas condenser 3, and carbon dioxide is discharged from the carbon dioxide outlet of the regeneration gas condenser 3.
  • the condensate outlet of the regeneration gas condenser 3 is connected to the inlet of at least one layer of the scrubbing zone so that the regeneration gas condensate (water) is used as the scrubbing liquid of the scrubbing zone to scrub the flue gas passing through the scrubbing zone and dissolve the absorbent vapor that may be contained in the flue gas to reduce the loss of the absorbent.
  • the absorption tower of the carbon dioxide capture system provided in the embodiment of the present application is provided with a multi-layer washing zone.
  • the flue gas is washed in the multi-layer washing zone, which can greatly reduce the loss of absorbent and reduce the operating cost in the carbon dioxide capture process.
  • the present application couples the absorption and desorption processes, and uses the regenerated gas condensate in the desorption process as a washing liquid, which is introduced into the washing zone of the absorption tower.
  • the content of the absorbent in the regenerated gas condensate is extremely low, so using the regenerated gas condensate as a washing liquid is very conducive to the dissolution of the absorbent, effectively avoiding the accumulation effect of the absorbent in the washing liquid, more fully dissolving the absorbent, and reducing the escape of the absorbent.
  • the outlet of the washing zone using the regenerated gas condensate as the washing liquid is connected to the regeneration tower 2 so that the regenerated gas condensate returns to the regeneration tower 2 for the extraction and regeneration of the absorbent. That is, the washing liquid outlet of the washing zone connected to the condensate outlet 31 of the regeneration gas condenser 3 is connected to the regeneration tower 2, and the washing liquid after washing returns to the regeneration tower 2. A small amount of absorbent is dissolved in the washing liquid after washing in the washing zone, and it enters the regeneration tower for regeneration. Due to the difference in boiling points, water evaporates into water vapor and enters the regeneration gas condenser 3 from the regeneration gas outlet of the regeneration tower 2 for condensation.
  • the condensed regeneration gas condensate returns to the washing zone for continued cyclic washing.
  • the absorbent does not reach the boiling point, flows down the regeneration tower 2, merges into the regeneration lean liquid, and enters the absorption tower 1 from the lean liquid inlet 13 for continued cyclic absorption.
  • the carbon dioxide capture system 100 realizes the regeneration and recycling of the washing liquid and the absorbent.
  • the condensate outlet of the regeneration gas condenser 3 is connected to the inlet of several layers of scrubbing zones.
  • the condensate outlet of the regeneration gas condenser 3 is connected to the inlet of each of the multiple scrubbing zones, and the regeneration gas condensate is provided to the scrubbing zones as scrubbing liquid.
  • the condensate outlet 31 of the regeneration gas condenser 3 is connected to the inlet of a part of the multi-layer scrubbing zone, and the scrubbing liquid of the other part of the scrubbing zone is provided by other devices.
  • the carbon dioxide capture system 100 further includes a circulating scrubbing device 5, which is connected to the inlet and outlet of the remaining scrubbing zones. The circulating scrubbing device 5 is used to To circulate the circulating washing liquid in the washing zone.
  • the washing liquid in the washing zone in the absorption tower 1 can have different sources, wherein the washing liquid in the washing zone connected to the condensate outlet 31 of the regeneration gas condenser 3 comes from the regeneration gas condensate in the regeneration gas condenser 3, and the washing liquid in the washing zone connected to the circulating washing device 5 comes from the circulating washing liquid circulating in the circulating washing device 5.
  • the circulating washing liquid is driven by the circulating washing device 5 and circulates into or out of the corresponding washing zone to complete the washing of the absorbent vapor in the flue gas.
  • the carbon dioxide capture system 100 Compared with the technical solution in the related art that only uses the circulating washing device 5 to provide washing liquid, the carbon dioxide capture system 100 provided in the embodiment of the present application crosses the connection between the absorption unit and the regeneration unit, makes full use of the absorbent content gradient, and achieves a better washing effect without adding additional circulating washing liquid.
  • the circulating washing liquid is deionized water.
  • the washing zone connected to the condensate outlet 31 of the regeneration gas condenser 3 can be located downstream of the washing zone connected to the circulating washing device 5, that is, the former can be located above the latter.
  • the flue gas flowing from bottom to top in the absorption tower 1 it first passes through the washing zone connected to the circulating washing device 5, and most of the absorbent in the flue gas can be dissolved by the circulating washing liquid.
  • the remaining flue gas flows upward and is washed by the regeneration gas condensate to continue to dissolve the absorbent. After multiple washings, the absorbent content in the clean flue gas discharged from the flue gas outlet 12 is greatly reduced.
  • the washing zone connected to the condensate outlet 31 of the regeneration gas condenser 3 can be located upstream of the washing zone connected to the circulating washing device 5, that is, the former can be located below the latter.
  • the former In the process of the flue gas flowing from bottom to top in the absorption tower 1, it is first washed with the regeneration gas condensate, and then washed with the circulating washing liquid.
  • the absorbent content in the clean flue gas discharged from the flue gas outlet 12 can be greatly reduced.
  • the carbon dioxide capture system 100 includes an absorption unit, a regeneration unit, and a circulating washing device 4.
  • the absorption unit includes an absorption tower 1, a pre-washing tower 7, a booster fan 8, etc.
  • the absorption zone and the multi-layer washing zone in the absorption tower 1 are arranged in sequence from bottom to top.
  • the washing zone is two-layer, including an upper washing zone and a lower washing zone.
  • the upper washing zone is located above the lower washing zone, the flue gas inlet 11 of the absorption tower 1 is located below the absorption zone, the flue gas outlet 12 is located above the upper washing zone, the rich liquid outlet 14 is located at the bottom of the absorption tower 1, and the lean liquid inlet 13 is located between the lower washing zone and the absorption zone in the up and down direction.
  • the flue gas after desulfurization first enters the pre-wash tower 7, where it is sprayed to cool down and the moisture and trace gypsum carried by the flue gas are removed at the same time.
  • the booster fan 8 allows the flue gas in the pre-wash tower 7 to enter the absorption tower 1 from the flue gas inlet 11.
  • the flue gas passes through the absorption zone from bottom to top, and the regenerated absorbent enters the absorption tower 1 from the lean liquid inlet 13, and sprays the flue gas in the absorption zone from top to bottom.
  • the carbon dioxide in the flue gas is absorbed by the absorbent, and the absorbent (rich liquid) with carbon dioxide flows out of the absorption tower 1 from the rich liquid outlet 14 at the bottom of the absorption tower 1.
  • the cleaned tail gas passes through the lower washing zone and the upper washing zone in turn and is discharged from the flue gas outlet 12 at the top of the tower. Washing in the lower washing zone and the upper washing zone can reduce the loss of absorption liquid caused by the absorbent vapor being carried out with the flue gas.
  • the regeneration unit includes a regeneration tower 2, a regeneration gas condenser 3 and a reboiler 9.
  • the rich liquid inlet 21 of the regeneration tower 2 is connected to the absorption
  • the rich liquid outlet 14 of tower 1 is connected, and the lean liquid outlet 22 of regeneration tower 2 is connected to the lean liquid inlet 13 of absorption tower 1.
  • the rich liquid inlet 21 of regeneration tower 2 is located above the lean liquid outlet 22, and the rich liquid enters the regeneration tower 2 from the rich liquid inlet 21 and is sprayed from top to bottom.
  • the carbon dioxide capture system 100 includes a lean-rich liquid heat exchanger 6, which is disposed between the absorption unit and the regeneration unit and is used for heat exchange between the lean and rich liquids.
  • the rich liquid outlet 14 of the absorption tower 1 is connected to the cold end inlet of the lean-rich liquid heat exchanger 6, the cold end outlet of the lean-rich liquid heat exchanger 6 is connected to the rich liquid inlet 21 of the regeneration tower, the hot end inlet of the lean-rich liquid heat exchanger 6 is connected to the lean liquid outlet 22 of the regeneration tower 2, and the hot end outlet of the lean-rich liquid heat exchanger 6 is connected to the lean liquid inlet 13 of the absorption tower 1.
  • the rich liquid after absorbing carbon dioxide is pumped from the rich liquid outlet 14 at the bottom of the absorption tower 1 to the cold side of the lean-rich liquid heat exchanger 6, and exchanges heat with the lean liquid on the hot side. After the rich liquid recovers the heat of the lean liquid, it enters the rich liquid inlet 21 of the regeneration tower 2 for upper spraying. In the regeneration tower 2, part of the carbon dioxide in the rich liquid is desorbed by steam stripping, and the semi-lean liquid after steam stripping desorption enters the reboiler 9 to further desorb the carbon dioxide therein.
  • the lean liquid after desorbing carbon dioxide returns to the regeneration tower 2 again and flows out from the lean liquid outlet 22 at the bottom of the regeneration tower 2, flows through the hot side of the lean-rich liquid heat exchanger 6, and enters the absorption tower 1 for recycling after cooling.
  • the round-trip circulation of the absorbent constitutes a process of continuous absorption and desorption of carbon dioxide.
  • Regeneration gas is generated during the desorption process of the regeneration tower 2.
  • the regeneration gas mainly consists of carbon dioxide and water.
  • the regeneration gas enters the regeneration gas condenser 3 from the regeneration gas outlet at the top of the regeneration tower 2.
  • the regeneration gas condenser 3 has a condensate outlet 31 at the bottom and a carbon dioxide outlet at the top. Condensation is performed in the regeneration gas condenser 3, and the regeneration gas condensate flows out from the condensate outlet 31.
  • the condensate outlet 31 of the regeneration gas condenser 3 is connected to the inlet of the upper scrubbing zone.
  • the circulating washing device 5 is connected to the inlet and outlet of the lower washing zone.
  • the circulating washing device 5 circulates conventional washing liquid (such as desalted water) so that most of the absorbent in the flue gas is dissolved by the lower washing zone.
  • conventional washing liquid such as desalted water
  • the remaining flue gas is discharged upward, it passes through the upper washing zone and is washed by the regenerated gas condensate to continue to dissolve the organic solvent, thereby reducing solvent loss.
  • the flue gas after the second washing can greatly reduce the absorbent loss and reduce the operating cost of the carbon dioxide capture process.
  • the regenerated gas condensate contains a very small amount of absorbent, it has a stronger washing force than conventional circulating washing liquid, thereby ensuring that most or even all of the remaining absorbent in the flue gas after washing with the conventional circulating washing liquid is dissolved, which is the key to the excellent washing effect of the embodiments of the present application.
  • both the upper washing zone and the lower washing zone may use the regeneration gas condensate as the washing liquid for washing, which may also achieve excellent washing effects.
  • the regenerated gas condensate can be used as the washing liquid of the lower washing zone, and the conventional washing liquid can be used as the washing liquid of the upper washing zone.
  • the conventional washing liquid may gradually weaken its own washing strength due to the dissolution of more absorbents, resulting in the absorbent in the exhaust flue gas not being completely washed.
  • the carbon dioxide capture system provided in the embodiment of the present application still has a significantly excellent washing effect.
  • the carbon dioxide capture system 100 provided in this embodiment adopts a double-layer water washing structure to reduce the loss of absorbent.
  • the regenerated gas condensate serves as the upper washing liquid.
  • the condensate contains almost no absorbent, which can reduce the loss of absorbent and make full use of the absorbent content gradient to achieve a better washing effect without adding additional desalted water.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of this application, the meaning of "plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection, an electrical connection, or communication with each other; it can be a direct connection, or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “above” or “below” a second feature may mean that the first and second features are in direct contact, or that the first and second features are in indirect contact through an intermediate medium.
  • a first feature being “above”, “above” or “above” a second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • a first feature being “below”, “below” or “below” a second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • the terms “one embodiment”, “some embodiments”, “example”, “specific example”, or “some examples” etc. mean that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present application.
  • the schematic representations of the above terms do not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner.
  • those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, without contradiction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

一种二氧化碳捕集系统(100),包括吸收单元和再生单元,吸收单元包括吸收塔(1),吸收塔(1)内部在烟气的流通方向上依次设置有吸收区和多层洗涤区;再生单元包括再生塔(2)和再生气冷凝器(3),再生塔(2)用于对吸收剂进行再生,再生塔(2)的再生气出口与再生气冷凝器(3)连通,再生气冷凝器(3)的冷凝液出口(31)与至少一层洗涤区的进口连通以使再生气冷凝液作为洗涤液。二氧化碳捕集系统(100)的吸收塔(1)设有多层洗涤区,烟气经过多层洗涤区洗涤,可大幅缩减吸收剂的损失。该系统将吸收与解吸过程耦合,利用解吸过程再生气冷凝液充当洗涤液,有效避免洗涤液中吸收剂的积累效应,更充分溶解吸收剂,减少吸收剂的逃逸。

Description

二氧化碳捕集系统
相关申请的交叉引用
本申请要求在2022年10月21日提交中国专利局、申请号为202211293641.1、发明名称为“二氧化碳捕集系统”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请涉及二氧化碳捕集技术领域,尤其是涉及一种二氧化碳捕集系统。
背景技术
目前烟气二氧化碳捕集的基本工艺中,脱硫烟气经过预洗塔喷淋降温后,被增压风机鼓入吸收塔,在吸收塔中,烟气中的二氧化碳被吸收溶液吸收后干净的尾气由塔顶排放。并且,吸收塔上部设置有用于对排出烟气进行洗涤的循环水洗系统,以避免吸收液蒸汽被烟气带出,造成吸收液损失。相关技术中吸收塔上段通常只有一层洗涤区,随着洗涤液的不断循环,吸收剂会在洗涤区逐步富集,导致排出的烟气仍会带走部分吸收剂,影响吸收剂的回收,而在大规模工程应用时,吸收剂的损失将会导致较高的运行成本。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本申请的实施例提出一种二氧化碳捕集系统。
本申请实施例的二氧化碳捕集系统包括:吸收单元,所述吸收单元包括吸收塔,所述吸收塔具有烟气进口、烟气出口、贫液进口、富液出口,所述吸收塔内部在烟气的流通方向上依次设置有吸收区和多层洗涤区;和再生单元,所述再生单元包括再生塔和再生气冷凝器,所述再生塔与所述富液出口和所述贫液进口均连通,所述再生塔用于对吸收剂进行再生,所述再生塔的再生气出口与所述再生气冷凝器连通,所述再生气冷凝器的冷凝液出口与至少一层洗涤区的进口连通以使再生气冷凝液作为洗涤液。
本申请实施例提供的二氧化碳捕集系统的吸收塔设有多层洗涤区,烟气经过多层洗涤区洗涤,可大幅缩减吸收剂的损失,减少二氧化碳捕集过程中的运营成本。此外,本申请将吸收与解吸过程耦合,利用解吸过程再生气冷凝液充当洗涤液,引入吸收塔洗涤区。再生气冷凝液中吸收剂的含量极低,因此利用再生气冷凝液充当洗涤液,非常有利于吸收剂的溶解,有效避免洗涤液中吸收剂的积累效应,更充分溶解吸收剂,减少吸收剂的逃逸。
在一些实施例中,使用再生气冷凝液作为洗涤液的洗涤区的出口与所述再生塔连通,以使完成再生气冷凝液回到所述再生塔进行吸收剂的再生。
在一些实施例中,所述再生气冷凝器的冷凝液出口与若干层所述洗涤区的进口连通。
在一些实施例中,所述再生气冷凝器的冷凝液出口与所述多层洗涤区中的一部分的进口连通,所述二氧化碳捕集系统还包括循环洗涤装置,所述循环洗涤装置与其余所述洗涤区的进口和出口连通,所述循环洗涤装置用于使循环洗涤液在所述洗涤区内循环。
在一些实施例中,所述洗涤区为两层,包括上层洗涤区和下层洗涤区,所述再生气冷凝器的冷凝液出口与所述上层洗涤区的进口连通,所述循环洗涤装置与所述下层洗涤区的进口和出口连通。
在一些实施例中,所述循环洗涤液为除盐水。
在一些实施例中,所述烟气进口位于所述吸收区的下方,所述烟气出口位于所述洗涤区的上方,所述吸收区、所述多层洗涤区至下而上依次设置。
在一些实施例中,所述富液出口位于所述吸收塔的底部,所述贫液进口在上下方向上位于所述洗涤区和所述吸收区之间。
在一些实施例中,二氧化碳捕集系统包括贫富液换热器,所述富液出口与所述贫富液换热器的冷端进口连通,所述贫富液换热器的冷端出口与所述再生塔的富液进口连通,所述贫富液换热器的热端进口与所述再生塔的贫液出口连通,所述贫富液换热器的热端出口与所述贫液进口连通。
在一些实施例中,所述再生塔的富液进口位于所述贫液出口的上方,富液进入所述再生塔从上至下喷淋。
附图说明
图1是本申请实施例提供的二氧化碳捕集系统的结构示意图。
附图标记:
二氧化碳捕集系统100、吸收塔1、烟气进口11、烟气出口12、贫液进口13、富液出口14、再生塔2、富液进口21、贫液出口22、再生气冷凝器3、冷凝液出口31、循环洗涤装置4、贫富液换热器6、预洗塔7、增压风机8、再沸器9。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面根据图1描述本申请实施例提供的二氧化碳捕集系统100,二氧化碳捕集系统100包括吸收单元和再生单元。吸收单元包括吸收塔1,吸收塔1具有烟气进口11、烟气出口12、贫液进口13、富液出口14。吸收塔1内部在烟气的流通方向上依次设置有吸收区和多 层洗涤区。烟气从烟气进口11进入吸收塔1内并向上流通进入吸收区,在吸收区中,烟气中的二氧化碳被从贫液进口13进入吸收塔1内的吸收剂捕集,捕集二氧化碳后的干净烟气继续向上流动,依次经过多层洗涤区,烟气内的吸收剂蒸汽被洗涤液洗涤溶解,最终从烟气出口12排出吸收塔1内。
再生单元包括再生塔2和再生气冷凝器3,再生塔2与吸收塔1的富液出口14和贫液进口13中的每一者连通,富液出口14流出的富液进入再生塔2中,再生塔2用于对富液进行解吸再生,再生后的吸收剂中的二氧化碳浓度降低,再生为贫液,贫液通过贫液进口13回到吸收塔1中进行循环使用。在再生塔2的再生过程中产生有再生气,再生塔2的再生气出口与再生气冷凝器3连通。再生气的主要成分为二氧化碳和水,再生气中的水在再生气冷凝器3中进行冷凝,二氧化碳从再生气冷凝器3中的二氧化碳出口排出。再生气冷凝器3的冷凝液出口与至少一层洗涤区的进口连通以使再生气冷凝液(水)作为洗涤区的洗涤液,对经过洗涤区的烟气进行洗涤,将烟气中可能含有的吸收剂蒸汽进行溶解,以减少吸收剂的损失。
本申请实施例提供的二氧化碳捕集系统的吸收塔设有多层洗涤区,烟气经过多层洗涤区洗涤,可大幅缩减吸收剂的损失,减少二氧化碳捕集过程中的运营成本。此外,本申请将吸收与解吸过程耦合,利用解吸过程再生气冷凝液充当洗涤液,引入吸收塔洗涤区。再生气冷凝液中吸收剂的含量极低,因此利用再生气冷凝液充当洗涤液,非常有利于吸收剂的溶解,有效避免洗涤液中吸收剂的积累效应,更充分溶解吸收剂,减少吸收剂的逃逸。
在一些实施例中,如图1所示,使用再生气冷凝液作为洗涤液的洗涤区的出口与再生塔2连通,以使完成再生气冷凝液回到再生塔2进行吸收剂的提取和再生。也就是说,与再生气冷凝器3的冷凝液出口31连通的洗涤区的洗涤液出口与再生塔2连通,完成洗涤后的洗涤液回到再生塔2中。在洗涤区内经过洗涤后的洗涤液中溶有少量的吸收剂,进入再生塔中经过再生,由于沸点的差异,水蒸发为水蒸气从再生塔2的再生气出口进入再生气冷凝器3中进行冷凝,冷凝后的再生气冷凝液回到洗涤区内继续进行循环洗涤。吸收剂未达沸点,顺着再生塔2流下,汇入再生贫液中从贫液进口13进入吸收塔1中继续进行循环吸收,由此,二氧化碳捕集系统100实现了洗涤液和吸收剂的再生循环利用。
在一些实施例中,再生气冷凝器3的冷凝液出口与若干层洗涤区的进口连通。例如,再生气冷凝器3的冷凝液出口与多层洗涤区中的每一者的进口均连通,向洗涤区提供再生气冷凝液作为洗涤液。
在另一些实施例中,再生气冷凝器3的冷凝液出口31与多层洗涤区中的一部分的进口连通,另一部分洗涤区由其他装置提供洗涤液。如图1所示,二氧化碳捕集系统100还包括循环洗涤装置5,循环洗涤装置5与其余洗涤区的进口和出口连通,循环洗涤装置5用 于使循环洗涤液在洗涤区内循环。也就是说,在这些实施例中,吸收塔1内的洗涤区的洗涤液可以具有不同的来源,其中与再生气冷凝器3的冷凝液出口31连通的洗涤区的洗涤液来自于再生气冷凝器3中的再生气冷凝液,与循环洗涤装置5连通的洗涤区的洗涤液来自于循环洗涤装置5中循环流通的循环洗涤液,循环洗涤液在循环洗涤装置5的驱动下,循环进入或流出相对应的洗涤区,以完成对烟气中吸收剂蒸汽的洗涤。与相关技术中只采用循环洗涤装置5提供洗涤液的技术方案相比,本申请实施例提供的二氧化碳捕集系统100跨越了吸收单元与再生单元之前的接线,充分利用了吸收剂含梯度,在不额外增加循环洗涤液的条件下,达到了更好的洗涤效果。可选地,循环洗涤液为除盐水。
进一步地,在一些可选实施例中,与再生气冷凝器3的冷凝液出口31连通的洗涤区可以位于与循环洗涤装置5连通的洗涤区的下游,即前者可以位于后者的上方,烟气从下至上在吸收塔1内流通的过程中,首先经过与循环洗涤装置5连通的洗涤区,烟气中大部分吸收剂能够被循环洗涤液溶解,剩余烟气向上流动经过再生气冷凝液的洗涤,继续溶解吸收剂,经过多次洗涤后从烟气出口12排出的净烟气中的吸收剂含量大幅减小。
当然,在其他可替换实施例中,与再生气冷凝器3的冷凝液出口31连通的洗涤区可以位于与循环洗涤装置5连通的洗涤区的上游,即前者可以位于后者的下方,烟气从下至上在吸收塔1内流通的过程中,首先经过与再生气冷凝液的洗涤,在经过循环洗涤液的洗涤,同样地可以使从烟气出口12排出的净烟气中的吸收剂含量大幅减小。
下面根据图1详细描述本申请一个具体实施例中的二氧化碳捕集系统100。
如图1所示,二氧化碳捕集系统100包括吸收单元、再生单元、循环洗涤装置4。吸收单元包括吸收塔1、预洗塔7、增压风机8等。吸收塔1中吸收区、多层洗涤区至下而上依次设置。在本实施例中,洗涤区为两层,包括上层洗涤区和下层洗涤区。上层洗涤区位于下层洗涤区的上方,吸收塔1的烟气进口11位于吸收区的下方,烟气出口12位于上层洗涤区的上方,富液出口14位于吸收塔1的底部,贫液进口13在上下方向上位于下层洗涤区和吸收区之间。
脱硫后的烟气首先进入预洗塔7,喷淋降温同时除去烟气携带的水分和微量石膏。增压风机8使预洗塔7中的烟气从烟气进口11进入吸收塔1。在吸收塔中,烟气从下至上依次经过吸收区,再生后的吸收剂从贫液进口13进入吸收塔1内,并从上至下对吸收区中的烟气进行喷淋,烟气中的二氧化碳被吸收剂吸收,吸收有二氧化碳的吸收剂(富液)从吸收塔1底部的富液出口14流出吸收塔1,处理干净的尾气依次经过下层洗涤区和上层洗涤区由塔顶的烟气出口12排放。经过下层洗涤区和上层洗涤区的洗涤,以减少吸收剂蒸汽随烟气带出造成的吸收液损失。
再生单元包括再生塔2、再生气冷凝器3和再沸器9。再生塔2的富液进口21与吸收 塔1的富液出口14连通,再生塔2的贫液出口22与吸收塔1的贫液进口13连通。再生塔2的富液进口21位于贫液出口22的上方,富液从富液进口21进入再生塔2后从上至下喷淋。
进一步地,二氧化碳捕集系统100包括贫富液换热器6,贫富液换热器6设在吸收单元与再生单元之间,用于贫富液之间的换热。吸收塔1的富液出口14与贫富液换热器6的冷端进口连通,贫富液换热器6的冷端出口与再生塔的富液进口21连通,贫富液换热器6的热端进口与再生塔2的贫液出口22连通,贫富液换热器6的热端出口与吸收塔1的贫液进口13连通。
吸收二氧化碳后的富液由吸收塔1塔底的富液出口14经泵送入贫富液换热器6的冷侧,与热侧的贫液进行换热,富液回收贫液热量后,进入再生塔2的富液进口21进行上部喷淋。在再生塔2中,通过汽提解吸富液中的部分二氧化碳,经汽提解吸后的半贫液进入再沸器9中,使其中的二氧化碳进一步解吸。解吸二氧化碳后的贫液再次回到再生塔2并由再生塔2底部的贫液出口22流出,流经贫富液换热器6的热侧,降温后进入吸收塔1中循环使用。吸收剂的往返循环构成连续吸收和解吸二氧化碳的工艺过程。
再生塔2的解吸过程中产生再生气,再生气主要由二氧化碳和水组成,再生气从再生塔2顶部的再生气出口进入再生气冷凝器3,再生气冷凝器3底部具有冷凝液出口31,顶部具有二氧化碳出口。在再生气冷凝器3中进行冷凝,再生气冷凝液从冷凝液出口31流出。再生气冷凝器3的冷凝液出口31与上层洗涤区的进口连通。
如图5所示,循环洗涤装置5与下层洗涤区的进口和出口连通。循环洗涤装置5将常规洗涤液(例如除盐水)进行循环,使烟气中大部分吸收剂由下层洗涤区溶解,剩余烟气向上排出时再经过上层洗涤区,被再生气冷凝液洗涤继续溶解有机溶剂,减少溶剂损失。经二次洗涤后的烟气可大幅缩减吸收剂损失,减少二氧化碳捕集过程的运营成本。需要说明的是,由于再生气冷凝液中含有极微量的吸收剂,因此其具有比常规循环洗涤液更强的洗涤力度,从而能够确保被常规循环洗涤液洗涤后的烟气中剩余的绝大部分甚至全部吸收剂被溶解,这是本申请实施例具有优异的洗涤效果的关键。
在其他可替代实施例中,上层洗涤区和下层洗涤区均可以采用再生气冷凝液作为洗涤液进行洗涤,也可以实现优异的洗涤效果。
在一些实施例中,再生气冷凝液可以作为下层洗涤区的洗涤液,常规洗涤液可以作为上层洗涤区的洗涤液。但是常规洗涤液在长时间循环之后可能会由于溶解有较多的吸收剂导致其本身洗涤力度逐渐减弱,导致排出的烟气中的吸收剂可能未能完全被洗涤。但是与相关技术中采用单层常规洗涤液相比,本申请实施例提供的二氧化碳捕集系统仍然具有明显的优异的洗涤效果。
本实施例提供的二氧化碳捕集系统100采用双层水洗结构,减少吸收剂的损失,再生气冷凝液充当上层洗涤液,利用冷凝液几乎不含吸收剂,可减少吸收剂的损失,充分利用吸收剂含量梯度,在不额外增加除盐水的条件下,达到更好的洗涤效果。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本申请中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例 进行变化、修改、替换和变型。

Claims (10)

  1. 一种二氧化碳捕集系统,其特征在于,包括:
    吸收单元,所述吸收单元包括吸收塔,所述吸收塔具有烟气进口、烟气出口、贫液进口、富液出口,所述吸收塔内部在烟气的流通方向上依次设置有吸收区和多层洗涤区;和
    再生单元,所述再生单元包括再生塔和再生气冷凝器,所述再生塔与所述富液出口和所述贫液进口均连通,所述再生塔用于对吸收剂进行再生,所述再生塔的再生气出口与所述再生气冷凝器连通,所述再生气冷凝器的冷凝液出口与至少一层洗涤区的进口连通以使再生气冷凝液作为洗涤液。
  2. 根据权利要求1所述的二氧化碳捕集系统,其特征在于,使用再生气冷凝液作为洗涤液的洗涤区的出口与所述再生塔连通,以使完成再生气冷凝液回到所述再生塔进行吸收剂的再生。
  3. 根据权利要求1或2所述的二氧化碳捕集系统,其特征在于,所述再生气冷凝器的冷凝液出口与若干层所述洗涤区的进口连通。
  4. 根据权利要求1或2所述的二氧化碳捕集系统,其特征在于,所述再生气冷凝器的冷凝液出口与所述多层洗涤区中的一部分的进口连通,所述二氧化碳捕集系统还包括循环洗涤装置,所述循环洗涤装置与其余所述洗涤区的进口和出口连通,所述循环洗涤装置用于使循环洗涤液在所述洗涤区内循环。
  5. 根据权利要求4所述的二氧化碳捕集系统,其特征在于,所述洗涤区为两层,包括上层洗涤区和下层洗涤区,所述再生气冷凝器的冷凝液出口与所述上层洗涤区的进口连通,所述循环洗涤装置与所述下层洗涤区的进口和出口连通。
  6. 根据权利要求4所述的二氧化碳捕集系统,其特征在于,所述循环洗涤液为除盐水。
  7. 根据权利要求1所述的二氧化碳捕集系统,其特征在于,所述烟气进口位于所述吸收区的下方,所述烟气出口位于所述洗涤区的上方,所述吸收区、所述多层洗涤区至下而上依次设置。
  8. 根据权利要求7所述的二氧化碳捕集系统,其特征在于,所述富液出口位于所述吸收塔的底部,所述贫液进口在上下方向上位于所述洗涤区和所述吸收区之间。
  9. 根据权利要求1或8所述的二氧化碳捕集系统,其特征在于,包括贫富液换热器,所述富液出口与所述贫富液换热器的冷端进口连通,所述贫富液换热器的冷端出口与所述再生塔的富液进口连通,所述贫富液换热器的热端进口与所述再生塔的贫液出口连通,所述贫富液换热器的热端出口与所述贫液进口连通。
  10. 根据权利要求9所述的二氧化碳捕集系统,其特征在于,所述再生塔的富液进口位于所述贫液出口的上方,富液进入所述再生塔从上至下喷淋。
PCT/CN2023/072895 2022-10-21 2023-01-18 二氧化碳捕集系统 WO2024082476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211293641.1A CN115779637A (zh) 2022-10-21 2022-10-21 二氧化碳捕集系统
CN202211293641.1 2022-10-21

Publications (1)

Publication Number Publication Date
WO2024082476A1 true WO2024082476A1 (zh) 2024-04-25

Family

ID=85433412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072895 WO2024082476A1 (zh) 2022-10-21 2023-01-18 二氧化碳捕集系统

Country Status (2)

Country Link
CN (1) CN115779637A (zh)
WO (1) WO2024082476A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350177A (zh) * 2011-09-07 2012-02-15 航天环境工程有限公司 一种烟气二氧化碳气动捕集系统及工艺
KR20140141776A (ko) * 2013-05-30 2014-12-11 재단법인 포항산업과학연구원 막 여과를 이용하여 세정수를 재사용하는 이산화탄소 포집장치
CN206529297U (zh) * 2017-02-06 2017-09-29 青海云天化国际化肥有限公司 二氧化碳回收系统
CN110115910A (zh) * 2019-06-20 2019-08-13 中国华能集团清洁能源技术研究院有限公司 一种节能型二氧化碳捕集系统及方法
CN216778404U (zh) * 2021-10-29 2022-06-21 中石化南京化工研究院有限公司 湿法捕集二氧化碳的系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102350177A (zh) * 2011-09-07 2012-02-15 航天环境工程有限公司 一种烟气二氧化碳气动捕集系统及工艺
KR20140141776A (ko) * 2013-05-30 2014-12-11 재단법인 포항산업과학연구원 막 여과를 이용하여 세정수를 재사용하는 이산화탄소 포집장치
CN206529297U (zh) * 2017-02-06 2017-09-29 青海云天化国际化肥有限公司 二氧化碳回收系统
CN110115910A (zh) * 2019-06-20 2019-08-13 中国华能集团清洁能源技术研究院有限公司 一种节能型二氧化碳捕集系统及方法
CN216778404U (zh) * 2021-10-29 2022-06-21 中石化南京化工研究院有限公司 湿法捕集二氧化碳的系统

Also Published As

Publication number Publication date
CN115779637A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
CN110115910A (zh) 一种节能型二氧化碳捕集系统及方法
CN216935390U (zh) 一种用于余热回收的高温热风炉烟气二氧化碳捕集系统
WO2022033539A1 (zh) 低温戊烷洗烟气同时脱硫脱碳系统及工艺
CN212327453U (zh) 低温戊烷洗烟气同时脱硫脱碳系统
CN114917726B (zh) 一种co2捕集装置
WO2022033597A1 (zh) 低温戊烷洗二氧化碳捕集系统和方法
CN110013740A (zh) 胺法吸收捕集二氧化碳的装置
JP2015000360A (ja) 排ガス処理装置及び排ガス処理方法
WO2024082476A1 (zh) 二氧化碳捕集系统
CN113101786B (zh) 一种基于有机溶剂吸收-萃取再生循环的烟气二氧化碳捕集系统及方法
CN206911075U (zh) 一种化工废气尾气净化装置
JP6581768B2 (ja) Co2回収装置およびco2回収方法
KR20140042536A (ko) 이산화 탄소 처리장치
CN109432935A (zh) 一种深度消除湿法脱硫烟气白烟的系统
CN217829547U (zh) 一种低成本的有机胺法烟气二氧化碳捕集系统
CN209317364U (zh) 一种废气预处理及浓缩冷凝回收治理系统
CN114272735B (zh) 一种烟气余热利用与碳捕集一体化系统
CN208493731U (zh) 有机胺负压循环脱硫系统
CN211562407U (zh) 一种VOCs吸附处理系统
CN210021644U (zh) 胺法吸收捕集二氧化碳的装置
JP2019022894A (ja) Co2回収装置およびco2回収方法
CN109442452A (zh) 用于烟气余热和水分回收的烟气处理系统
CN107998825A (zh) 一种HCl尾气的净化装置及净化工艺
JP4783854B2 (ja) 排気ガスの余熱を利用するアンモニア吸収式冷凍装置
CN208465513U (zh) 一种焖烧炉废气处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23878482

Country of ref document: EP

Kind code of ref document: A1