WO2024082282A1 - 基于医疗检测的生产排程方法及装置、电子设备、介质 - Google Patents

基于医疗检测的生产排程方法及装置、电子设备、介质 Download PDF

Info

Publication number
WO2024082282A1
WO2024082282A1 PCT/CN2022/126782 CN2022126782W WO2024082282A1 WO 2024082282 A1 WO2024082282 A1 WO 2024082282A1 CN 2022126782 W CN2022126782 W CN 2022126782W WO 2024082282 A1 WO2024082282 A1 WO 2024082282A1
Authority
WO
WIPO (PCT)
Prior art keywords
production
scheduling
equipment
production equipment
tested
Prior art date
Application number
PCT/CN2022/126782
Other languages
English (en)
French (fr)
Inventor
付坤
樊清华
彭友雄
许海芬
单日强
刘健
Original Assignee
深圳华大智造科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳华大智造科技股份有限公司 filed Critical 深圳华大智造科技股份有限公司
Priority to PCT/CN2022/126782 priority Critical patent/WO2024082282A1/zh
Publication of WO2024082282A1 publication Critical patent/WO2024082282A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling

Definitions

  • the present disclosure relates to the field of biomedical testing technology, and in particular to a production scheduling method and device, electronic equipment, and medium based on medical testing.
  • the test scheduling method adopted by the medical biological testing industry often allows the test production line to provide a single product test, which cannot be adapted to the mixed test of multiple products; and it can only be scheduled according to the existing production line equipment conditions, and it is impossible to complete it within the specified time, and what equipment or materials need to be supplemented, and the production efficiency is poor; at the same time, the existing scheduling method can only calculate the production schedule according to a specific algorithm, and does not have the flexibility of manual adjustment, and cannot meet the temporary deployment needs of production priority. At the same time, it mainly reflects the production plan of the current actual laboratory throughput, does not support the simulation of laboratory throughput scheduling in advance, and is not convenient for predicting production bottlenecks.
  • the embodiments of the present disclosure provide a production scheduling method and device, electronic device, and medium based on medical testing, so as to at least solve the technical problem that the scheduling method of medical testing in the related art is less flexible and cannot meet the testing needs.
  • a production scheduling method based on medical testing comprising: using a specified task model to determine a set of production processes required for a sample plate, wherein the specified task model includes at least one production line, each of the production line supports N production equipment, each of the production equipment supports at least one production process, and the sample plate carries M samples to be tested, and N and M are both positive integers greater than or equal to 1; searching for all production equipment required for the production line corresponding to each production process in the production process set to obtain a production equipment set; generating a scheduling plan based on scheduling requirements and the remaining available time period of each production equipment in the production equipment set, wherein the scheduling requirements at least include: the sorting priority of the sample plate, and the scheduling plan at least includes: the start time, expected completion time and utilization rate of each production equipment, and the utilization rate is used to screen available production equipment and adjust the scheduling plan.
  • the production scheduling method based on medical testing also includes: creating multiple production lines, and configuring the production equipment supported by each of the production lines and the production process supported by each of the production equipment; configuring the working time period of each of the production equipment and the number of detection boards allowed to work in parallel, wherein the working time period includes the remaining available time period of the production equipment, and the number of detection boards is the total number of sample boards that can be detected; creating multiple detection process routes, and configuring multiple processes for each of the detection process routes, and setting the production process for each process; determining the correspondence between the production line and the supported detection process routes; configuring the association between multiple products to be tested and the detection process routes required for each of the products to be tested, wherein the products to be tested are products required to be tested for the samples to be tested in the sample plate; based on the multiple production lines, the working time period of each of the production equipment and the number of detection boards allowed to work in parallel, the detection process routes and the production process of each process, the correspondence between the production line and the supported detection process routes, and the association between between the
  • a specified task model is used to determine the set of production processes required for a sample plate, including: using the specified task model to extract product attributes of the product to be tested required for each sample to be tested in the sample plate, wherein the product attributes characterize the category to which the product to be tested belongs; based on the product attributes, determining the inspection process route required for each sample to be tested in the sample plate; and obtaining the production process of each process in the inspection process route to obtain the production process set.
  • all production equipment required for the production line corresponding to each production process in the production process set is searched to obtain a production equipment set, including: analyzing whether there is available production equipment for each production process in the production process set; if there is available production equipment for all the production processes in the production process set, the production equipment set is generated after deduplication processing of the equipment.
  • a scheduling plan is generated, including: finding the remaining available time period of each of the production equipment; arranging the earliest start time and expected completion time of each of the production equipment; based on the fact that the expected completion time is less than or equal to the scheduling required completion time, confirming that the scheduling requirements are met, locking the remaining available time period of the production equipment, generating a scheduling plan, and modifying the available time interval of the production equipment.
  • the equipment application instruction is set to apply for adding a new equipment of the same model as the target production equipment; after adding the new equipment, rearranging the scheduling plan.
  • the production equipment after locking the remaining available time period of the production equipment and generating a scheduling plan, it also includes: querying other sample plates that use the same production process as the production equipment based on the number of test plates allowed to work in parallel by the production equipment; and allocating the other sample plates obtained by query to the production equipment.
  • the sorting priority of the sample plate is determined based on any one of the following sorting strategies or multiple combined sorting strategies: first-in-first-out strategy, product sorting strategy, the allowed waiting time of the production process, and the scheduling allowed time period of the sample plate.
  • a production scheduling system based on medical testing including: a user end, providing a user interface, configured to perform production line maintenance and equipment configuration, and adjust the scheduling plan and monitor the progress; a production line control end, connected to a plurality of production equipment, and used to provide heartbeat status information to an application platform in real time, wherein the heartbeat status information includes at least: the working status and utilization rate of each production equipment; an application platform, connected to the user end and the production line control end, and executing any one of the above-mentioned production scheduling methods based on medical testing.
  • a production scheduling device based on medical testing, including: an analyzing unit, configured to use a specified task model to determine a set of production processes required for a sample plate, wherein the specified task model includes at least one production line, each of the production line supports N production equipment, each of the production equipment supports at least one production process, and the sample plate carries M samples to be tested, and N and M are both positive integers greater than or equal to 1; a searching unit, configured to search for all production equipment required for the production line corresponding to each of the production processes in the production process set to obtain a set of production equipment; a generating unit, configured to generate a scheduling plan based on scheduling requirements and a remaining available time period of each of the production equipment in the production equipment set, wherein the scheduling requirements at least include: a sorting priority of the sample plate, and the scheduling plan at least includes: a start time, an expected completion time, and a utilization rate of each of the production equipment, and the utilization rate is used to screen available production equipment
  • the production scheduling device based on medical testing also includes: a first creation unit, which is configured to create multiple production lines and configure the production equipment supported by each of the production lines and the production process supported by each of the production equipment; a first configuration unit, which is configured to configure the working time period of each of the production equipment and the number of detection boards allowed to work in parallel, wherein the working time period includes the remaining available time period of the production equipment, and the number of detection boards is the total number of sample plates that can be detected; a second creation unit, which is configured to create multiple detection process routes, configure multiple processes for each of the detection process routes, and set the production process for each process; determine the corresponding relationship between the production line and the supported detection process routes; a second configuration unit, which is configured to configure the association relationship between multiple products to be tested and the detection process routes required for each of the products to be tested, wherein the product to be tested is the sample The products that need to be tested for the samples to be tested in this board; the first generating unit is configured to generate the specified task model based on the multiple production lines
  • the production scheduling device based on medical testing also includes: an extraction unit, configured to extract the sample identification of the sample to be tested after receiving the sample to be tested before adopting a specified task model to determine the production process set required for the sample plate; and an induction unit, configured to classify the sample to be tested into a corresponding sample plate based on the sample identification.
  • the analysis unit includes: a first extraction module, configured to use the specified task model to extract product attributes of the product to be tested required for each of the sample to be tested in the sample plate, wherein the product attributes characterize the category to which the product to be tested belongs; a first determination module, configured to determine the detection process route required for each of the sample to be tested in the sample plate based on the product attributes; and a first acquisition module, configured to acquire the production process of each process in the detection process route to obtain the production process set.
  • a first extraction module configured to use the specified task model to extract product attributes of the product to be tested required for each of the sample to be tested in the sample plate, wherein the product attributes characterize the category to which the product to be tested belongs
  • a first determination module configured to determine the detection process route required for each of the sample to be tested in the sample plate based on the product attributes
  • a first acquisition module configured to acquire the production process of each process in the detection process route to obtain the production process set.
  • the search unit includes: a first analysis module, configured to analyze whether there is available production equipment for each production process in the production process set; and a first generation module, configured to generate the production equipment set after deduplication processing of equipment when there is available production equipment for all the production processes in the production process set.
  • the generation unit includes: a first search module, configured to search for the remaining available time period of each of the production equipment; a first arrangement module, configured to arrange the earliest start time and expected completion time of each of the production equipment; a third determination module, configured to confirm that the scheduling requirements are met based on the fact that the expected completion time is less than or equal to the scheduling required completion time, lock the remaining available time period of the production equipment, generate a scheduling plan, and modify the available time interval of the production equipment.
  • a first search module configured to search for the remaining available time period of each of the production equipment
  • a first arrangement module configured to arrange the earliest start time and expected completion time of each of the production equipment
  • a third determination module configured to confirm that the scheduling requirements are met based on the fact that the expected completion time is less than or equal to the scheduling required completion time, lock the remaining available time period of the production equipment, generate a scheduling plan, and modify the available time interval of the production equipment.
  • the production scheduling device based on medical testing also includes: a fourth determination module, configured to, after arranging the earliest start time and expected completion time of each of the production equipment, confirm that the scheduling requirements are not met based on the fact that the expected completion time is greater than the required completion time; a first calculation module, configured to calculate the target production equipment with the highest utilization rate that has been scheduled at the current time point based on the failure to meet the scheduling requirements, and issue an equipment application instruction based on the target production equipment, wherein the equipment application instruction is configured to apply for adding a new equipment of the same model as the target production equipment; a rescheduling module, configured to rearrange the scheduling plan after adding the new equipment.
  • a fourth determination module configured to, after arranging the earliest start time and expected completion time of each of the production equipment, confirm that the scheduling requirements are not met based on the fact that the expected completion time is greater than the required completion time
  • a first calculation module configured to calculate the target production equipment with the highest utilization rate that has been scheduled at the current time point based on the failure
  • the production scheduling device based on medical testing also includes: a query module, which is configured to, after locking the remaining available time period of the production equipment and generating the scheduling plan, query other sample plates that use the same production process as the production equipment based on the number of test plates allowed to work in parallel by the production equipment; and an allocation module, which is configured to allocate the other queried sample plates to the production equipment.
  • a query module which is configured to, after locking the remaining available time period of the production equipment and generating the scheduling plan, query other sample plates that use the same production process as the production equipment based on the number of test plates allowed to work in parallel by the production equipment.
  • an allocation module which is configured to allocate the other queried sample plates to the production equipment.
  • the sorting priority of the sample plate is determined based on any one of the following sorting strategies or multiple combined sorting strategies: first-in-first-out strategy, product sorting strategy, the allowed waiting time of the production process, and the scheduling allowed time period of the sample plate.
  • an electronic device comprising: a processor; and a memory configured to store executable instructions of the processor; wherein the processor is configured to execute any one of the above-mentioned medical testing-based production scheduling methods by executing the executable instructions.
  • a computer-readable storage medium includes a stored computer program, wherein when the computer program is running, the device where the computer-readable storage medium is located is controlled to execute any one of the above-mentioned production scheduling methods based on medical testing.
  • the following steps can be adopted: using a specified task model to determine the set of production processes required for a sample board, wherein the specified task model includes at least one production line, each production line supports N production equipment, each production equipment supports at least one production process, and the sample board carries M samples to be tested, and N and M are both positive integers greater than or equal to 1; searching for all production equipment required for the production line corresponding to each production process in the production process set to obtain a set of production equipment; generating a scheduling plan based on scheduling requirements and the remaining available time period of each production equipment in the production equipment set, wherein the scheduling requirements at least include: the sorting priority of the sample board, and the scheduling plan at least includes: the start time, expected completion time and utilization rate of each production equipment, and the utilization rate is used to screen available production equipment and adjust the scheduling plan.
  • the required production process can be analyzed through the specified task model used in the production process of the automated testing line, and then the available time periods of the production equipment can be scheduled to calculate the most suitable production scheduling mode to improve production efficiency.
  • the scheduling process the sorting priority of each sample plate is taken into account, and the scheduling plan in the testing process can be flexibly adjusted, thereby solving the technical problem that the scheduling method of medical testing in related technologies is less flexible and cannot meet the testing needs.
  • the production scheduling method and device based on medical testing provided by the present disclosure combines the advanced scheduling plan APS with medical testing, provides mixed production scheduling that supports multiple products, and supports the calculation of the maximum throughput simulation and the resources required to achieve the throughput in advance. It can provide rigorous, feasible, optimized, and detailed scheduling plans for library construction, virus detection, gene sequencing, etc., so that production arrangements are orderly and production capacity and timely delivery rate are greatly improved.
  • the present invention can simultaneously realize mixed scheduling detection of multiple products and parallel scheduling detection of multiple products, perform refined scheduling of the production process, have high accuracy and small error, and provide a detailed production execution plan.
  • the present disclosure can support personalized sorting problems and provide a variety of combined sorting strategies according to scheduling priority requirements, such as first-in-first-out, product sorting, process waiting time, allowed time, etc.
  • FIG1 is a flow chart of an optional production scheduling method based on medical testing according to an embodiment of the present disclosure
  • FIG2 is a schematic diagram of an optional designated task model according to an embodiment of the present disclosure.
  • FIG3 is a schematic diagram of an optional scheduling plan according to an embodiment of the present disclosure.
  • FIG4 is a schematic diagram of another production scheduling method optionally based on medical testing according to an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of an optional production scheduling system based on medical testing according to an embodiment of the present disclosure
  • FIG6 is a schematic diagram of a production scheduling device optionally based on medical testing according to an embodiment of the present disclosure
  • FIG. 7 is a hardware structure block diagram of an electronic device (or mobile device) for a production scheduling method based on medical testing according to an embodiment of the present disclosure.
  • Whole Exome Sequencing, or WES for short, is a high-throughput sequencing technology that captures and collects DNA from the exon regions of the entire genome.
  • Whole Genome re-Sequencing is a method of performing whole genome sequencing on different individuals of a known reference genome and annotated species, and on this basis, performing differential analysis on individuals or groups to identify SNPs associated with a certain type of phenotype.
  • Non-invasive prenatal genetic testing Non-Envasive Prenatal Testing, abbreviated as NIPT.
  • Non-invasive genetic testing Non-Envasive Fetal Trisomy, abbreviated as NIFTY.
  • HPV Human papillomavirus, Human Papiloma Virus
  • Advanced Planning and Scheduling is an optimized scheduling solution for multiple processes and multiple resources.
  • the platforms/equipment used for different gene sequencing products may be different. It is necessary to schedule the platform/equipment with high utilization rate or the platform/equipment that is about to finish sequencing for sequencing.
  • sequencing data such as high-throughput sequencing data of the gene sequence to be tested, gene sequence parameters (such as human DNA content, average sequence read length, chromosome parameter value, etc.); for gene testing (including but not limited to: NIPT, NIFTY), it can schedule the extraction of gene parameters and/or gene variables; for virus testing (including but not limited to: HPV testing), it can predict the probability of virus generation and provide reasonable reports (including: test recommendations, test results and probability values, etc.).
  • gene sequence parameters such as human DNA content, average sequence read length, chromosome parameter value, etc.
  • for gene testing including but not limited to: NIPT, NIFTY
  • virus testing including but not limited to: HPV testing
  • it can predict the probability of virus generation and provide reasonable reports (including: test recommendations, test results and probability values, etc.).
  • the sample board (hereinafter referred to as the board) involved in the present disclosure can carry multiple types of samples to be tested. Before entering the production line for testing, the sample board can be called a waiting board or a testing board. The number of all sample boards that need to wait for testing or have not yet been tested is counted, which is the number of testing boards.
  • the sample board that is being tested is defined as an execution board or an execution sample board. The number of sample boards that are being tested is counted, which is the number of execution boards.
  • the present disclosure can be applied to various medical testing products/systems/software/platforms (these products/systems/software/platforms have pre-installed scheduling software or scheduling computer programs) to realize the detection of various viruses, genes, tumors, blood, and biological functions, for example, to realize WGS, WES, WGRS, NIPT, NIFTY, HPV or new coronavirus detection, and provide detailed scheduling plans for various medical testing products/production departments; in addition, the scheduling method in this embodiment can also be applied to mass spectrometry (a method of identifying compounds by preparing, separating, and detecting gas-phase ions), synthesis (including but not limited to: drug synthesis), drug screening (short for drug screening, a method of analyzing the biological activity, pharmacological properties and drug effects of substances that may be used as drugs), etc.
  • mass spectrometry a method of identifying compounds by preparing, separating, and detecting gas-phase ions
  • synthesis including but not limited to: drug synthesis
  • drug screening short for drug screening,
  • the production scheduling method based on medical testing provided by the present disclosure combines the advanced scheduling plan APS with medical testing, provides mixed production scheduling that supports multiple products, and supports the calculation of the maximum throughput simulation and the resources required to achieve the throughput in advance. It can provide rigorous, feasible, optimized, and detailed scheduling plans for library construction, virus detection, gene sequencing, etc., so that production arrangements are orderly and production capacity and timely delivery rate are greatly improved.
  • the present disclosure can simultaneously realize mixed scheduling detection of multiple products and parallel scheduling detection of multiple products.
  • the production scheduling method based on medical testing provides a scheduling plan that can accurately respond to production delivery dates, shorten delivery dates, accurately predict and evenly distribute production capacity loads; it also supports multi-plan, multi-objective simulation plan pre-scheduling, providing a basis for dynamically adding production line equipment; the present disclosure can perform refined scheduling of the production process with high accuracy and small errors, and provide a detailed production execution plan.
  • the present invention provides a variety of combined sorting strategies, such as first-in-first-out, product sorting, process waiting time, allowed time, etc., which can be implemented by combined dragging operations, and the corresponding scheduling plans can be adjusted and presented accordingly.
  • combined sorting strategies such as first-in-first-out, product sorting, process waiting time, allowed time, etc.
  • the present invention provides multiple combination input modes of products and sample quantities and a limited final completion time according to the time and resource problems required for flux reverse prediction, and calculates the resource bottleneck and the list of equipment that needs to be added as well as a detailed scheduling plan based on the situation of the existing production line.
  • an embodiment of a production scheduling method based on medical testing is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer executable instructions, and although a logical order is shown in the flowchart, in some cases, the steps shown or described can be executed in an order different from that shown here.
  • FIG. 1 is a flow chart of an optional production scheduling method based on medical testing according to an embodiment of the present disclosure. As shown in FIG. 1 , the method includes the following steps:
  • Step S102 using a specified task model to determine a set of production processes required for a sample board, wherein the specified task model includes at least one production line, each production line supports N production equipment, each production equipment supports at least one production process, and the sample board carries M samples to be tested, where N and M are both positive integers greater than or equal to 1;
  • Step S104 searching for all production equipment required for the production line corresponding to each production process in the production process set to obtain a production equipment set;
  • Step S106 generating a scheduling plan based on the scheduling requirements and the remaining available time period of each production equipment in the production equipment set, wherein the scheduling requirements include at least: the sorting priority of the sample board, and the scheduling plan includes at least: the start time, expected completion time and utilization rate of each production equipment, and the utilization rate is used to screen the available production equipment and adjust the scheduling plan.
  • the scheduling requirements include at least: the sorting priority of the sample board
  • the scheduling plan includes at least: the start time, expected completion time and utilization rate of each production equipment, and the utilization rate is used to screen the available production equipment and adjust the scheduling plan.
  • a specified task model can be used to determine the set of production processes required for the sample board, wherein the specified task model includes at least one production line, each production line supports N production equipment, each production equipment supports at least one production process, and the sample board carries M samples to be tested, where N and M are both positive integers greater than or equal to 1; all production equipment required for the production line corresponding to each production process in the production process set is searched to obtain a production equipment set; a scheduling plan is generated based on the scheduling requirements and the remaining available time period of each production equipment in the production equipment set, wherein the scheduling requirements at least include: the sorting priority of the sample board, and the scheduling plan at least includes: the start time, estimated completion time and utilization rate of each production equipment, and the utilization rate is used to screen available production equipment and adjust the scheduling plan.
  • the required production process can be analyzed through the specified task model used in the production process of the automated testing line, and then the available time periods of the production equipment can be scheduled to calculate the most suitable production scheduling mode to improve production efficiency.
  • the scheduling process the sorting priority of each sample plate is taken into account, and the scheduling plan in the testing process can be flexibly adjusted, thereby solving the technical problem that the scheduling method of medical testing in related technologies is less flexible and cannot meet the testing needs.
  • a specified task model when building a specified task model, it includes: creating multiple production lines, and configuring the production equipment supported by each production line and the production process supported by each production equipment; configuring the working time period of each production equipment and the number of detection boards allowed to work in parallel, wherein the working time period includes the remaining available time period of the production equipment, and the number of detection boards is the total number of sample boards that can be detected; creating multiple detection process routes, and configuring multiple processes for each detection process route, and setting the production process for each process; determining the correspondence between the production line and the supported detection process routes; configuring the association between multiple products to be tested and the detection process routes required for each product to be tested, wherein the product to be tested is the product required to be tested by the samples to be tested in the sample board; based on the multiple production lines, the working time period of each of the production equipment and the number of detection boards allowed to work in parallel, the detection process route and the production process of each process, the correspondence between
  • the production equipment described in the present disclosure can be arranged and combined through the existing production equipment in the medical and biological field.
  • examples include gene sequencing systems, sequencers, one-stop technology platforms for large population genomics, laboratory automation systems, sample preparation equipment, packaging equipment, library production equipment, pipetting equipment, magnetic bead detection equipment, nucleic acid purification equipment, etc.
  • the number of production lines, production processes and production equipment involved in the specified task model there is no specific limitation on the number of production lines, production processes and production equipment involved in the specified task model.
  • the number is based on each actual production line, sequencing line, detection line and the model of the equipment installed in the production line and the supportable production process.
  • FIG2 is a schematic diagram of an optional designated task model according to an embodiment of the present disclosure. As shown in FIG2 , it illustrates the creation of at least one production line, which supports N devices (only one production line is illustrated in FIG2 , and the production equipment included therein includes device A, device B-1, device B-2, device C and device D, but the number and type of the devices are not limited in practice), and the production process supported by each device is configured, and its production time and the number of test boards allowed to be produced simultaneously are set.
  • N devices only one production line is illustrated in FIG2 , and the production equipment included therein includes device A, device B-1, device B-2, device C and device D, but the number and type of the devices are not limited in practice
  • multiple technical routes are created, and the technical routes are divided into several processes, and the default production process is set for each process (two technical routes are illustrated in FIG2 , and the detection route of the first technical route is production process 2 to production process 4 to production process 3 to production process 4 to production process 6...; the second detection route is production process 1 to production process 2 to production process 3 to production process 4 to production process 5...), so that the corresponding relationship between the production line and the supported production technical route can be automatically calculated. Finally, the relationship between the product and the technical route is set. After the entire specified task model is built, the product attributes attached to the sample when it enters the production line can be automatically mapped to the specific production line and which equipment can perform the corresponding production process. At the same time, the model supports mixed configurations of multiple products, multiple production lines, and multiple equipment, fully considering existing business and future expansion issues.
  • the "production process" disclosed in the present invention can be arranged and combined through the existing production processes in the field of medical biology.
  • exemplary ones are: including reagent configuration, sample packaging, nucleic acid extraction, qPCR system configuration, qPCR, RT-PCR, enrichment, film sealing, film tearing, quantification, centrifugation, nucleic acid product quantification, pipetting, homogenization, sampling homogenization, fragment selection, fragment inspection after fragment selection, quantification after fragment selection, homogenization after fragment selection, final repair and A_linker connection, connection purification, Oligogreen quantitative detection, Post_PCR, Post_PCR quantification, mRNA purification, adding PCRMix, PCR reaction, PCR purification, post-PCR quantification, library Pooling, post-PCR homogenization, single-strand separation, circularization, digestion, purification, Pooling after circularization, library quantification, ssDNA normalization, Make DNB, DNB quantification, DNB Pooling and other process methods.
  • the production information can be split into information such as technical route, production process, production line, equipment, production time period, number of boards mounted, etc. by specifying the task model.
  • the specified task model before adopting the specified task model to determine the production process set required for the sample plate, it also includes: after receiving the sample to be tested, extracting the sample identification of the sample to be tested; based on the sample identification, classifying the sample to be tested into the corresponding sample plate.
  • samples to be tested mentioned in this embodiment correspond to a variety of products, which are not specifically limited in this embodiment, for example, samples obtained from the detection of new coronavirus throat swabs/nasal swabs (the samples are generally in test tubes), gene samples to be sequenced, blood samples, etc.
  • samples to be tested may be ordered or disordered before entering the production line. They may be placed in test tubes or sealed tubes. Therefore, the samples need to be sorted and placed in the sample plate where the corresponding products are located.
  • sample plate mentioned in this embodiment may be a sample plate required for testing, for example, a hard plate including 96 grids/holes, capable of carrying a fixed number of samples to be tested.
  • the size and type of the sample plate are adapted to the production equipment and production line.
  • the sample When the sample enters the production line, it can be automatically arranged.
  • Step S102 using a specified task model to determine a set of production processes required for a sample board.
  • a specified task model is used to determine the set of production processes required for the sample plate, including: using the specified task model to extract product attributes of the product to be tested required for each sample to be tested in the sample plate, wherein the product attributes characterize the category to which the product to be tested belongs; based on the product attributes, determining the inspection process route required for each sample to be tested in the sample plate; obtaining the production process of each process in the inspection process route to obtain a production process set.
  • the sample plate After the sample plate enters the production line, it needs to be split into detailed processes through the specified task model to determine the product attributes of the product to be tested (such as the NIPT indicator product in Figure 2, whose product attribute is genetic testing; and the product attribute of the WGS indicator is base sequencing), and then index the corresponding detection process route (corresponding to the technical route in Figure 2) through the product attributes, determine all the production processes on the detection process route, and obtain the process set.
  • the product attributes of the product to be tested such as the NIPT indicator product in Figure 2, whose product attribute is genetic testing; and the product attribute of the WGS indicator is base sequencing
  • production process 4 is used twice.
  • the production processes used for each product to be tested may be the same or completely different, depending on the detection process route required for each product to be tested.
  • the interruption process that can be used includes but is not limited to: physical interruption, enzyme interruption.
  • each production process corresponds to unique equipment.
  • scheduling the detection process it is necessary to pay attention to the number of samples to be tested in each sample plate and the number of production processes and production equipment required to perform efficient scheduling.
  • Step S104 searching for all production equipment required for the production line corresponding to each production process in the production process set to obtain a production equipment set.
  • this embodiment needs to group and sort the production processes of all sample plates, find all the production equipment that need to be used in the production line corresponding to the production process to be scheduled, calculate the available time period for the specific production equipment, and then perform corresponding grouping and sorting according to the combined sorting priority of the scheduling setting (refer to various sorting strategies, product priority, first-in-first-out, process waiting time, allowed time, the sorting strategy can be selected by the scheduling business personnel), and then schedule each group of production processes in turn.
  • the sample board is sorted according to the scheduling requirements and the earliest start time of the sample board (the earliest start time depends on the completion time of step N-1), and the first sample board in the front sequence is selected to analyze whether the production process of the board can find available production equipment.
  • search for all production equipment required for the production line corresponding to each production process in the production process set to obtain a production equipment set including: analyzing whether there is available production equipment for each production process in the production process set; if there is no available production equipment for a production process in the production process set, confirming that the sample board cannot be scheduled, and deleting the sample board; if there is available production equipment for all production processes in the production process set, perform equipment deduplication processing to generate a production equipment set.
  • the supported equipment list is not found or there is no available production equipment, it means that there is no executable equipment at the moment, and the sample board cannot be scheduled, that is, the scheduling plan cannot be executed. Then all the data to be scheduled for the current and subsequent steps of the board will be deleted, and only the production scheduling of the previous part of the process can be performed.
  • Step S106 generating a scheduling plan based on the scheduling requirements and the remaining available time period of each production equipment in the production equipment set, wherein the scheduling requirements include at least: the sorting priority of the sample board, and the scheduling plan includes at least: the start time, expected completion time and utilization rate of each production equipment, and the utilization rate is used to screen the available production equipment and adjust the scheduling plan.
  • the scheduling requirements include at least: the sorting priority of the sample board
  • the scheduling plan includes at least: the start time, expected completion time and utilization rate of each production equipment, and the utilization rate is used to screen the available production equipment and adjust the scheduling plan.
  • the utilization rate can be the utilization rate of the equipment in a fixed time period. For example, the utilization rate of the production equipment in a certain day can be determined. Through this utilization rate, the usage time and number of times of the equipment can be adjusted to maximize the utilization of the production equipment to perform work.
  • a scheduling plan can be generated through a pre-built specified task model of the automated testing line production process.
  • the scheduling plan provides an efficient and accurate medical testing scheduling plan with the optimization goals of shortest production time and maximum production equipment utilization.
  • a scheduling plan is generated based on the scheduling requirements and the remaining available time period of each production equipment in the production equipment set, including: finding the remaining available time period of each production equipment; arranging the earliest start time and expected completion time of each production equipment; based on the expected completion time being less than or equal to the scheduling required completion time, confirming that the scheduling requirements are met, locking the remaining available time period of the production equipment, generating a scheduling plan, and modifying the available time interval of the production equipment.
  • the idle time period of each equipment can be met, and arrange the earliest allocation time (estimated start time) and the expected completion time. If the expected completion time is less than or equal to the required completion time, it means that the scheduling requirements are met, the equipment available time is locked, and the corresponding production equipment has a smaller time interval for the next selection.
  • the equipment application instruction is set to apply to add a new equipment of the same model as the target production equipment; after adding the new equipment, rearranging the scheduling plan.
  • the estimated completion time exceeds the required completion time, it is determined that the existing resources do not meet the scheduling requirements and additional equipment is needed. At this time, it is necessary to calculate the equipment with the highest utilization rate currently scheduled, add a new device to reduce the utilization rate, and then reschedule everything.
  • after locking the remaining available time period of the production equipment and generating a scheduling plan it also includes: querying other sample boards that use the same production process as the production equipment based on the number of inspection boards that the production equipment allows to work in parallel; and allocating the other queried sample boards to the production equipment.
  • the waiting plates of the same production process are found in this group of production processes in turn and allocated to the production equipment at the same time.
  • the earliest start time of the next step (N+1) is updated to be equal to the next adjacent time point of the estimated completion time of the current step (N).
  • the current sample plate is expected to execute the second step (such as completing the pre-processing library preparation step in the WGS task) and is expected to be completed at 10:00, then it is necessary to mark the third step (such as completing the pre-processing sample pipetting step in the WGS task) and the earliest start time will be set after 10:00.
  • the second step such as completing the pre-processing library preparation step in the WGS task
  • the third step such as completing the pre-processing sample pipetting step in the WGS task
  • the production equipment after locking the remaining available time period of the production equipment and generating a scheduling plan, it also includes: extracting the expected completion time of the production equipment; obtaining the next production process of the associated production equipment in the production process set and the corresponding next production equipment; and modifying the earliest start time of the next production equipment to the next time point adjacent to the expected completion time of the production equipment.
  • Figure 3 is a schematic diagram of an optional scheduling plan according to an embodiment of the present disclosure.
  • a certain inspection process route includes multiple production processes (the production process corresponds to the above-mentioned production process, and Figure 3 includes production process 1-production process 12), and each production process corresponds to a unique production equipment ( Figure 3 includes three equipment: equipment A, equipment B and equipment C), among which production process 1 corresponds to production equipment A, production process 2, production process 6, production process 7, and production process 10 all correspond to equipment B, and the remaining inspection methods all correspond to equipment C.
  • the time required for each production process in Figure 3 is different.
  • production process 1 needs to use equipment A for 40 minutes
  • production process 2 needs to use equipment B for 110 minutes
  • production process 3 needs to use equipment C for 40 minutes
  • production process 4 needs to use equipment C for 25 minutes
  • production process 5 needs to use equipment C for 40 minutes
  • production process 6 needs to use equipment B for 230 minutes
  • production process 7 needs to use equipment B for 110 minutes
  • production process 8 needs to use equipment C for 40 minutes
  • production process 9 needs to use equipment C for 25 minutes
  • production process 10 needs to use equipment B for 45 minutes
  • production process 11 needs to use equipment C for 40 minutes
  • production process 12 needs to use equipment C for 40 minutes.
  • the optimal scheduling plan is calculated for the different processes supported by each device and the number of boards executed simultaneously (device A in Figure 3 can support 1 board at the same time, device B can support 2 boards at the same time, and device C can support 1 board at the same time), and the equipment operating time period and the estimated production time of each board are understood.
  • Another optional group of scheduling strategies used when determining the sorting priority of the sample board include: first-in-first-out strategy, product sorting strategy, allowed waiting time of the production process, and allowed time period for scheduling of the sample board.
  • this embodiment can determine the sorting priority of the sample board based on any one sorting strategy or a combination of multiple sorting strategies.
  • the combined sorting priority can be changed dynamically to obtain different scheduling plans.
  • the optimal solution can be arranged according to the estimated completion time.
  • a variety of scheduling requirements and scheduling results are available for users to choose freely.
  • For example, for sorting priority consider whether the current scheduling priority is the first choice of first-in-first-out sorting. In order to ensure that the first-arrived sample board has priority in production/testing, only one match is considered for each scheduling, and then the next group of scheduling is continued. The first-in-first-out rule is guaranteed by the cycle. If it is not a first-in-first-out requirement, all the boards to be scheduled in this group will be matched with the corresponding equipment in turn, and the matching will be cyclically matched in turn. When all the production processes are scheduled, jump to the next group of production processes for scheduling, and so on, until all the boards to be scheduled are fully scheduled, and a complete scheduling plan can be obtained.
  • a mathematical model of the physical production line is first constructed, and multiple production lines can be created.
  • Each production line supports N devices.
  • the production process supported by each device is configured, and its production time and the number of test boards allowed to be produced simultaneously are set.
  • multiple technical routes can be created, and the routes are divided into several processes.
  • the default production process for each process is set, so that the correspondence between the production line and the supported production technical route can be automatically calculated.
  • the relationship between the product and the technical route is set, so that the mathematical model of the entire production line is completed.
  • the product attributes attached when the sample enters the production line can be automatically mapped to the specific production line and which equipment can execute the corresponding production process.
  • the model supports a hybrid configuration of multiple products, multiple production lines, and multiple devices, fully considering existing businesses and future expansion issues.
  • FIG4 is a schematic diagram of another production scheduling method optionally based on medical testing according to an embodiment of the present disclosure. As shown in FIG4 , the method includes:
  • the samples are automatically arranged when entering the production line (including multiple samples, which may be ordered or unordered and need to be arranged), and are split into detailed process production process dimensions based on the established production line mathematical model, and then grouped and sorted according to the production process.
  • sorting strategies include but are not limited to product priority, first-in-first-out, process waiting time, allowed time, and selection by production business personnel), and then each group of production processes is scheduled in turn.
  • the estimated completion time is less than or equal to the scheduled completion time, it means that the scheduling requirements are met.
  • the available time of the equipment is locked, and the corresponding equipment's next selectable time interval becomes smaller. If the estimated completion time exceeds the scheduled completion time, the existing resources do not meet the scheduling requirements and additional equipment is required. At this time, it is necessary to calculate the equipment with the highest utilization rate that has been scheduled, add a new device to reduce the utilization rate, and then reschedule everything.
  • the waiting boards i.e., sample boards waiting for testing
  • the waiting boards are found in this group of production processes in turn according to the maximum number of boards supported by the equipment, and are simultaneously assigned to the equipment (updated during the equipment busy time period);
  • first-in-first-out sorting In order to ensure that the first-in boards are produced first, only one match is considered for each scheduling, and then the next group of scheduling is continued. The first-in-first-out rule is guaranteed by the cycle. If it is not a first-in-first-out requirement, all the boards to be scheduled in this group will be matched with the corresponding equipment in turn, and the matching will be cycled in turn. When all the production processes are scheduled, jump to the next group of production processes for scheduling, and so on, until all the boards to be scheduled are fully scheduled, and a complete scheduling plan can be obtained.
  • the combination sorting priority in order to obtain the optimal solution, can be dynamically changed to obtain different scheduling plans.
  • the optimal solution can be arranged according to the expected end time, and a variety of scheduling requirements and scheduling results are provided for users to choose freely.
  • the business logic and rule constraints of the production process based on automated library construction and gene sequencing can be summarized and integrated, and a mathematical model of the automated detection line production process can be constructed; at the same time, the shortest production time and the maximum production equipment utilization are used as optimization goals, and the objective function of the scheduling is constructed, so as to accurately evaluate and predict the production time and required resources, thereby improving production efficiency.
  • a production scheduling system based on medical testing including: a user end, which provides a user interface and is configured to perform production line maintenance and equipment configuration, and to adjust the scheduling plan and monitor the progress; a production line control end, which is connected to a plurality of production equipment and is used to provide heartbeat status information to an application platform in real time, wherein the heartbeat status information includes at least: the working status and utilization rate of each production equipment; an application platform, which is connected to the user end and the production line control end and executes any one of the above-mentioned production scheduling methods based on medical testing.
  • Figure 5 is a schematic diagram of an optional production scheduling system based on medical testing according to an embodiment of the present disclosure. As shown in Figure 5, the production scheduling system includes: a user interface, an application platform, production line equipment,
  • the user interface is arranged by the user, who can be the production line business personnel, who can use the user interface to implement production line maintenance (production line and equipment configuration) and equipment configuration (equipment and process configuration). After configuring the equipment or maintaining the production line, the new process route needs to be updated to the application platform;
  • the production line equipment contains at least one device, and the serial number, model and other device information of each device in the production line equipment is registered in the application platform. At the same time, the heartbeat information of the device status is updated in real time;
  • the application platform can realize equipment maintenance, generate scheduling plans, and execute scheduling plans.
  • the scheduling rules edited by the user through the user interface are referred to (the scheduling rules include scheduling strategies and the sorting priority obtained after combining scheduling strategies.
  • Scheduling strategies include various types, such as first-in-first-out, product sorting, process waiting time, allowed time, etc.), and the scheduling algorithm is determined. Then, after each sample board is put into the warehouse, the calculation is automatically triggered to generate a scheduling plan, and the generated scheduling plan is sent to the user interface. The user interface displays the scheduling plan.
  • the user may directly confirm it or adjust the scheduling plan; and send the adjusted or confirmed scheduling plan to the application platform; the application platform only needs to schedule the plan and push the execution progress to the user interface for display; the user interface will display the execution status of the scheduling plan in real time; during the execution of the scheduling plan, the application platform will give priority to using relatively idle equipment and dispatch different equipment to execute the scheduling plan.
  • the above-mentioned production scheduling system illustrates the interaction mode between humans, machines and production line equipment. Users can write scheduling rules, adjust scheduling plans, and monitor the execution of scheduling plans through the user interface; the application platform calculates and updates the scheduling plan, and the production line equipment updates the heartbeat status information of the equipment in real time, and effectively interacts with the application platform.
  • the present disclosure also provides a production scheduling display method based on medical testing, which is applied to a user end and includes:
  • each production line supports N production equipment, and each production equipment supports at least one production process.
  • the scheduling plan and the production line operation status and equipment working status updated by the scheduling plan are displayed on the designated user interface.
  • the production line operation status and the equipment working status of each production equipment on each production line can be displayed to the staff in real time on the user-side interface, so that the staff can know the utilization of each equipment in real time, adjust the input sample board in time, improve the implementation completion of the scheduling plan, and improve the scheduling efficiency.
  • This embodiment provides a production scheduling device based on medical testing.
  • the various implementation units included in the production scheduling device correspond to the various implementation steps of the above-mentioned embodiment 1.
  • FIG6 is a schematic diagram of a production scheduling device optionally based on medical testing according to an embodiment of the present disclosure.
  • the production scheduling device may include: an analysis unit 61, a search unit 63, and a generation unit 65, wherein:
  • the analysis unit 61 is configured to determine a set of production processes required for the sample board using a specified task model, wherein the specified task model includes at least one production line, each production line supports N production equipment, each production equipment supports at least one production process, and the sample board carries M samples to be tested, where N and M are both positive integers greater than or equal to 1;
  • a search unit 63 is configured to search for all production equipment required for a production line corresponding to each production process in the production process set to obtain a production equipment set;
  • the generation unit 65 is configured to generate a scheduling plan based on the scheduling requirements and the remaining available time period of each production equipment in the production equipment set, wherein the scheduling requirements at least include: the sorting priority of the sample board, and the scheduling plan at least includes: the start time, expected completion time and utilization rate of each production equipment, and the utilization rate is used to screen the available production equipment and adjust the scheduling plan.
  • the above-mentioned production scheduling device based on medical testing can determine the production process set required for the sample plate by using the specified task model through the analysis unit 61, wherein the specified task model includes at least one production line, each production line supports N production equipment, each production equipment supports at least one production process, and the sample board carries M samples to be tested, and N and M are both positive integers greater than or equal to 1; all production equipment required for the production line corresponding to each production process in the production process set is searched by the search unit 63 to obtain a production equipment set; a scheduling plan is generated by the generation unit 65 based on the scheduling requirements and the remaining available time period of each production equipment in the production equipment set, wherein the scheduling requirements at least include: the sorting priority of the sample plate, and the scheduling plan at least includes: the start time, expected completion time and utilization rate of each production equipment, and the utilization rate is used to screen available production equipment and adjust the scheduling plan.
  • the specified task model includes at least one production line, each production line supports N production equipment, each production equipment supports at least one production process
  • the required production process can be analyzed through the specified task model used in the production process of the automated testing line, and then the available time periods of the production equipment can be scheduled to calculate the most suitable production scheduling mode to improve production efficiency.
  • the scheduling process the sorting priority of each sample plate is taken into account, and the scheduling plan in the testing process can be flexibly adjusted, thereby solving the technical problem that the scheduling method of medical testing in related technologies is less flexible and cannot meet the testing needs.
  • the production scheduling device based on medical testing also includes: a first creation unit, which is configured to create multiple production lines and configure the production equipment supported by each production line and the production process supported by each production equipment; a first configuration unit, which is configured to configure the working time period of each production equipment and the number of detection boards allowed to work in parallel, wherein the working time period includes the remaining available time period of the production equipment, and the number of detection boards is the total number of sample boards that can be detected; a second creation unit, which is configured to create multiple detection process routes, configure multiple processes of each detection process route, and set the production process of each process; determine the correspondence between the production line and the supported detection process routes; a second configuration unit, which is configured to configure the association relationship between multiple products to be tested and the detection process route required for each product to be tested, wherein the product to be tested is the product required to be tested by the sample to be tested in the sample plate; a first generation unit, which is configured to generate the specified task model based on the multiple production lines, the working time period of each of the production equipment and
  • the analysis unit includes: a first extraction module, configured to use a specified task model to extract product attributes of the product to be tested required for each sample to be tested in the sample plate, wherein the product attributes characterize the category to which the product to be tested belongs; a first determination module, configured to determine the detection process route required for each sample to be tested in the sample plate based on the product attributes; and a first acquisition module, configured to acquire the production process of each process in the detection process route to obtain a production process set.
  • a first extraction module configured to use a specified task model to extract product attributes of the product to be tested required for each sample to be tested in the sample plate, wherein the product attributes characterize the category to which the product to be tested belongs
  • a first determination module configured to determine the detection process route required for each sample to be tested in the sample plate based on the product attributes
  • a first acquisition module configured to acquire the production process of each process in the detection process route to obtain a production process set.
  • the search unit includes: a first analysis module, configured to analyze whether there is available production equipment for each production process in the production process set; and a first generation module, configured to generate a production equipment set after deduplication processing of the equipment when there is available production equipment for all production processes in the production process set.
  • the generation unit includes: a first search module, configured to search for the remaining available time period of each production equipment; a first arrangement module, configured to arrange the earliest start time and expected completion time of each production equipment; a third determination module, configured to confirm that the scheduling requirements are met based on the expected completion time being less than or equal to the scheduling required completion time, lock the remaining available time period of the production equipment, generate a scheduling plan, and modify the available time interval of the production equipment.
  • a first search module configured to search for the remaining available time period of each production equipment
  • a first arrangement module configured to arrange the earliest start time and expected completion time of each production equipment
  • a third determination module configured to confirm that the scheduling requirements are met based on the expected completion time being less than or equal to the scheduling required completion time, lock the remaining available time period of the production equipment, generate a scheduling plan, and modify the available time interval of the production equipment.
  • the production scheduling device based on medical testing also includes: a fourth determination module, configured to, after arranging the earliest start time and expected completion time of each production equipment, confirm that the scheduling requirements are not met based on the fact that the expected completion time is greater than the required completion time; a first calculation module, configured to calculate the target production equipment with the highest utilization rate that has been scheduled at the current time point based on the failure to meet the scheduling requirements, and issue an equipment application instruction based on the target production equipment, wherein the equipment application instruction is configured to apply for adding new equipment of the same model as the target production equipment; a rescheduling module, configured to rearrange the scheduling plan after adding the new equipment.
  • a fourth determination module configured to, after arranging the earliest start time and expected completion time of each production equipment, confirm that the scheduling requirements are not met based on the fact that the expected completion time is greater than the required completion time
  • a first calculation module configured to calculate the target production equipment with the highest utilization rate that has been scheduled at the current time point based on the failure to meet the scheduling requirements,
  • the production scheduling device based on medical testing also includes: a query module, which is configured to, after locking the remaining available time period of the production equipment and generating a scheduling plan, query other sample plates that use the same production process as the production equipment based on the number of test plates allowed to work in parallel by the production equipment; and an allocation module, which is configured to allocate the other queried sample plates to the production equipment.
  • a query module which is configured to, after locking the remaining available time period of the production equipment and generating a scheduling plan, query other sample plates that use the same production process as the production equipment based on the number of test plates allowed to work in parallel by the production equipment.
  • an allocation module which is configured to allocate the other queried sample plates to the production equipment.
  • the production scheduling device based on medical testing also includes: a second extraction module, configured to extract the estimated completion time of the production equipment after locking the remaining available time period of the production equipment and generating a scheduling plan; a second acquisition module, configured to obtain the next production process of the associated production equipment in the production process set and the corresponding next production equipment; a modification module, configured to modify the earliest start time of the next production equipment to the next time point adjacent to the estimated completion time of the production equipment.
  • a second extraction module configured to extract the estimated completion time of the production equipment after locking the remaining available time period of the production equipment and generating a scheduling plan
  • a second acquisition module configured to obtain the next production process of the associated production equipment in the production process set and the corresponding next production equipment
  • a modification module configured to modify the earliest start time of the next production equipment to the next time point adjacent to the estimated completion time of the production equipment.
  • the sorting priority of the sample plate is determined based on any one of the following sorting strategies or multiple combined sorting strategies: first-in-first-out strategy, product sorting strategy, allowed waiting time of the production process, and allowed time period for sample plate scheduling.
  • the above-mentioned production scheduling device based on medical testing may also include a processor and a memory.
  • the above-mentioned analysis unit 61, search unit 63, generation unit 65, etc. are all stored in the memory as program units, and the processor executes the above-mentioned program units stored in the memory to realize corresponding functions.
  • the processor includes a kernel, which retrieves the corresponding program unit from the memory.
  • the kernel can be set to one or more kernels, and generates a scheduling plan based on the scheduling requirements and the remaining available time period of each production device in the production device set by adjusting kernel parameters.
  • the above-mentioned memory may include non-permanent memory in a computer-readable medium, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash RAM, and the memory includes at least one memory chip.
  • RAM random access memory
  • ROM read-only memory
  • flash RAM flash random access memory
  • an electronic device comprising: a processor; and a memory configured to store executable instructions of the processor; wherein the processor is configured to execute any one of the above-mentioned medical testing-based production scheduling methods by executing the executable instructions.
  • FIG. 7 is a hardware structure block diagram of an electronic device (or mobile device) according to a production scheduling method based on medical detection according to an embodiment of the present disclosure.
  • the electronic device may include one or more (shown in the figure using 702a, 702b, ..., 702n) processors 702 (the processor 702 may include but is not limited to a processing device such as a microprocessor MCU or a programmable logic device FPGA), and a memory 704 configured to store data.
  • a processing device such as a microprocessor MCU or a programmable logic device FPGA
  • a display may also include: a display, an input/output interface (I/O interface), a universal serial bus (USB) port (which may be included as one of the ports of the I/O interface), a network interface, a keyboard, a power supply and/or a camera.
  • I/O interface input/output interface
  • USB universal serial bus
  • FIG. 7 is only for illustration, and it does not limit the structure of the above-mentioned electronic device.
  • the electronic device may also include more or fewer components than those shown in FIG. 7 , or have a configuration different from that shown in FIG. 7 .
  • a computer-readable storage medium including a stored computer program, wherein when the computer program is running, the device where the computer-readable storage medium is located is controlled to execute any one of the above-mentioned production scheduling methods based on medical testing.
  • the present application also provides a computer program product, which, when executed on a data processing device, is suitable for executing a program that is initialized with the following method steps: using a specified task model to determine a set of production processes required for a sample board, wherein the specified task model includes at least one production line, each production line supports N production equipment, each production equipment supports at least one production process, and the sample board carries M samples to be tested, and N and M are both positive integers greater than or equal to 1; searching for all production equipment required for the production line corresponding to each production process in the production process set to obtain a set of production equipment; generating a scheduling plan based on scheduling requirements and the remaining available time period of each production equipment in the production equipment set, wherein the scheduling requirements at least include: the sorting priority of the sample board, and the scheduling plan at least includes: the start time, expected completion time and utilization rate of each production equipment, and the utilization rate is used to screen available production equipment and adjust the scheduling plan.
  • the disclosed technical content can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units can be a logical function division. There may be other division methods in actual implementation.
  • multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of units or modules, which can be electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the present embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium, including several instructions for a computer device (which can be a personal computer, server or network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present disclosure.
  • the aforementioned storage medium includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于医疗检测的生产排程方法及装置、电子设备、介质,涉及生物医疗检测技术领域,其中,该方法包括:采用指定任务模型确定样本板所需的生产工艺集合,其中,指定任务模型包含有至少一条产线,每条产线支持N台生产设备;查找生产工艺集合中每个生产工艺对应的产线所需的所有生产设备,得到生产设备集合;基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生产排程计划,其中,排程要求中至少包括:样本板的排序优先级,排程计划至少包括:每台生产设备的启动时间、预计完成时间和利用率。该方法解决了相关技术中医疗检测的排程方式,灵活性较差,无法满足检测需求的技术问题。

Description

基于医疗检测的生产排程方法及装置、电子设备、介质 技术领域
本公开涉及生物医疗检测技术领域,具体而言,涉及一种基于医疗检测的生产排程方法及装置、电子设备、介质。
背景技术
当前,在生物医疗行业,尤其是医疗检测行业,需要对获取到的海量试管或者样本板上中的样本进行检测,例如,需要对人体咽拭子得到的样本进行病毒感染检测、对抽血后的人体血常规、凝血功能、肝功能等进行检测、对人体的基因测序或者基因检测等。这些检测产品往往涉及到海量的检测样本,此时需要高效的排程方式,为用户提供检测结果,而相关技术中,医疗生物检测行业采用的检测排程方式,往往会让检测产线提供单一产品的检测,无法适应于多产品的混合检测;且只能根据现有产线设备情况进行排程,无法做到如需要在规定时间内完成,需要补充哪些设备或物料,生产效率较差;同时,现有的排程方式,只能根据特定算法计算生产排程,不具备手工调整的灵活性,无法满足生产优先顺序临时调配需求,同时主要反映当前实际实验室通量的生产计划,不支持模拟实验室通量提前排程,不方便预测生产瓶颈。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本公开实施例提供了一种基于医疗检测的生产排程方法及装置、电子设备、介质,以至少解决相关技术中医疗检测的排程方式,灵活性较差,无法满足检测需求的技术问题。
根据本公开实施例的一个方面,提供了一种基于医疗检测的生产排程方法,包括:采用指定任务模型确定样本板所需的生产工艺集合,其中,所述指定任务模型包含有至少一条产线,每条所述产线支持N台生产设备,每台所述生产设备支持至少一个生产工艺,所述样本板上承载有M个待测样本,N与M均为大于等于1的正整数;查找所述生产工艺集合中每个所述生产工艺对应的产线所需的所有生产设备,得到生产设备集合;基于排程要求以及所述生产设备集合中每台所述生产设备的剩余可用时间段,生成排程计划,其中,所述排程要求中至少包括:所述样本板的排序优先级,所述排 程计划至少包括:每台所述生产设备的启动时间、预计完成时间和利用率,所述利用率用于筛选可用生产设备,调整所述排程计划。
可选地,基于医疗检测的生产排程方法还包括:创建多条产线,并配置每条所述产线支持的生产设备以及每台所述生产设备支持的所述生产工艺;配置每台所述生产设备的工作时间段以及允许并列工作的检测板数,其中,所述工作时间段包括所述生产设备的剩余可用时间段,所述检测板数为可检测所述样本板的总数量;创建多条检测流程路线,并配置每条所述检测流程路线的多道工序,设置每道工序的生产工艺;确定所述产线与支持的所述检测流程路线的对应关系;配置多个待测产品与每个所述待测产品所需的所述检测流程路线的关联关系,其中,所述待测产品为所述样本板中待测样本所需检测的产品;基于所述多条产线、所述每台所述生产设备的工作时间段以及允许并列工作的检测板数、所述检测流程路线和所述每道工序的生产工艺、所述产线与支持的所述检测流程路线的对应关系、多个待测产品与每个所述待测产品所需的所述检测流程路线的关联关系,生成所述指定任务模型。
可选地,采用指定任务模型确定样本板所需的生产工艺集合,包括:采用所述指定任务模型提取样本板中每个所述待测样本所需的待测产品的产品属性,其中,所述产品属性表征所述待测产品的所属类别;基于所述产品属性,确定所述样本板中每个所述待测样本所需的检测流程路线;获取所述检测流程路线中每道工序的生产工艺,得到所述生产工艺集合。
可选地,查找所述生产工艺集合中每个所述生产工艺对应的产线所需的所有生产设备,得到生产设备集合,包括:分析所述生产工艺集合中每个所述生产工艺是否存在可用的所述生产设备;若所述生产工艺集合中所有所述生产工艺都存在可用的所述生产设备,进行设备去重处理后,生成所述生产设备集合。
可选地,基于排程要求以及所述生产设备集合中每台所述生产设备的剩余可用时间段,生成排程计划,包括:查找每台所述生产设备的剩余可用时间段;排列出每台所述生产设备的最早启动时间和预计完成时长;基于所述预计完成时长小于或者等于排期要求完成时长的情况下,确认满足所述排程要求,锁定所述生产设备的剩余可用时间段,生成排程计划,并修改所述生产设备的可用时间区间。
可选地,在排列出每台所述生产设备的最早启动时间和预计完成时长之后,还包括:基于所述预计完成时长大于排期要求完成时长的情况下,确认不满足所述排程要求;基于所述不满足所述排程要求,计算当前时间点已排程的利用率最高的目标生产设备,并基于所述目标生产设备发出设备申请指令,其中,所述设备申请指令设置为申请增加与所述目标生产设备相同型号的新设备;在增加所述新设备后,重新安排所 述排程计划。
可选地,在锁定所述生产设备的剩余可用时间段,生成排程计划之后,还包括:依据所述生产设备允许并列工作的检测板数,查询与所述生产设备使用相同生产工艺的其他样本板;将查询到的所述其他样本板分配至所述生产设备。
可选地,在确定所述样本板的排序优先级时,在确定所述样本板的排序优先级时,基于下述任意一项排序策略或者多项组合排序策略,确定所述样本板的排序优先级:先进先出策略、产品排序策略、所述生产工艺的允许等待时长、所述样本板的排程允许时间段。
根据本公开实施例的另一方面,还提供了一种基于医疗检测的生产排程系统,包括:用户端,提供用户界面,设置为进行产线维护和设备配置,并进行排程计划的调整以及进度监控;产线控制端,与多个生产设备连接,用于实时向应用平台提供心跳状态信息,其中,所述心跳状态信息至少包括:每个生产设备的工作状态和使用率;应用平台,与所述用户端和所述产线控制端连接,执行上述任意一项的基于医疗检测的生产排程方法。
根据本公开实施例的另一方面,还提供了一种基于医疗检测的生产排程装置,包括:分析单元,设置为采用指定任务模型确定样本板所需的生产工艺集合,其中,所述指定任务模型包含有至少一条产线,每条所述产线支持N台生产设备,每台所述生产设备支持至少一个生产工艺,所述样本板上承载有M个待测样本,N与M均为大于等于1的正整数;查找单元,设置为查找所述生产工艺集合中每个所述生产工艺对应的产线所需的所有生产设备,得到生产设备集合;生成单元,设置为基于排程要求以及所述生产设备集合中每台所述生产设备的剩余可用时间段,生成排程计划,其中,所述排程要求中至少包括:所述样本板的排序优先级,所述排程计划至少包括:每台所述生产设备的启动时间、预计完成时间和利用率,所述利用率用于筛选可用生产设备,调整所述排程计划。
可选地,基于医疗检测的生产排程装置还包括:第一创建单元,设置为创建多条产线,并配置每条所述产线支持的生产设备以及每台所述生产设备支持的所述生产工艺;第一配置单元,设置为配置每台所述生产设备的工作时间段以及允许并列工作的检测板数,其中,所述工作时间段包括所述生产设备的剩余可用时间段,所述检测板数为可检测所述样本板的总数量;第二创建单元,设置为创建多条检测流程路线,并配置每条所述检测流程路线的多道工序,设置每道工序的生产工艺;确定所述产线与支持的所述检测流程路线的对应关系;第二配置单元,设置为配置多个待测产品与每个所述待测产品所需的所述检测流程路线的关联关系,其中,所述待测产品为所述样 本板中待测样本所需检测的产品;第一生成单元,设置为基于所述多条产线、所述每台所述生产设备的工作时间段以及允许并列工作的检测板数、所述检测流程路线和所述每道工序的生产工艺、所述产线与支持的所述检测流程路线的对应关系、多个待测产品与每个所述待测产品所需的所述检测流程路线的关联关系,生成所述指定任务模型。
可选地,基于医疗检测的生产排程装置还包括:提取单元,设置为在采用指定任务模型确定样本板所需的生产工艺集合之前,在接收到待测样本后,提取所述待测样本的样本标识;归纳单元,设置为基于所述样本标识,将所述待测样本归纳入对应的样本板中。
可选地,所述分析单元包括:第一提取模块,设置为采用所述指定任务模型提取样本板中每个所述待测样本所需的待测产品的产品属性,其中,所述产品属性表征所述待测产品的所属类别;第一确定模块,设置为基于所述产品属性,确定所述样本板中每个所述待测样本所需的检测流程路线;第一获取模块,设置为获取所述检测流程路线中每道工序的生产工艺,得到所述生产工艺集合。
可选地,所述查找单元包括:第一分析模块,设置为分析所述生产工艺集合中每个所述生产工艺是否存在可用的所述生产设备;第一生成模块,设置为在所述生产工艺集合中所有所述生产工艺都存在可用的所述生产设备时,进行设备去重处理后,生成所述生产设备集合。
可选地,所述生成单元包括:第一查找模块,设置为查找每台所述生产设备的剩余可用时间段;第一排列模块,设置为排列出每台所述生产设备的最早启动时间和预计完成时长;第三确定模块,设置为基于所述预计完成时长小于或者等于排期要求完成时长的情况下,确认满足所述排程要求,锁定所述生产设备的剩余可用时间段,生成排程计划,并修改所述生产设备的可用时间区间。
可选地,基于医疗检测的生产排程装置还包括:第四确定模块,设置为在排列出每台所述生产设备的最早启动时间和预计完成时长之后,基于所述预计完成时长大于排期要求完成时长的情况下,确认不满足所述排程要求;第一计算模块,设置为基于所述不满足所述排程要求,计算当前时间点已排程的利用率最高的目标生产设备,并基于所述目标生产设备发出设备申请指令,其中,所述设备申请指令设置为申请增加与所述目标生产设备相同型号的新设备;重新排程模块,设置为在增加所述新设备后,重新安排所述排程计划。
可选地,基于医疗检测的生产排程装置还包括:查询模块,设置为在锁定所述生 产设备的剩余可用时间段,生成所述排程计划之后,依据所述生产设备允许并列工作的检测板数,查询与所述生产设备使用相同生产工艺的其他样本板;分配模块,设置为将查询到的其他样本板分配至所述生产设备。
可选地,在确定所述样本板的排序优先级时,在确定所述样本板的排序优先级时,基于下述任意一项排序策略或者多项组合排序策略,确定所述样本板的排序优先级:先进先出策略、产品排序策略、所述生产工艺的允许等待时长、所述样本板的排程允许时间段。
根据本公开实施例的另一方面,还提供了一种电子设备,包括:处理器;以及存储器,设置为存储所述处理器的可执行指令;其中,所述处理器配置为经由执行所述可执行指令来执行上述任意一项的基于医疗检测的生产排程方法。
根据本公开实施例的另一方面,还提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行上述任意一项的基于医疗检测的生产排程方法。
本公开中,可以采用以下步骤:采用指定任务模型确定样本板所需的生产工艺集合,其中,指定任务模型包含有至少一条产线,每条产线支持N台生产设备,每台生产设备支持至少一个生产工艺,样本板上承载有M个待测样本,N与M均为大于等于1的正整数;查找生产工艺集合中每个生产工艺对应的产线所需的所有生产设备,得到生产设备集合;基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生成排程计划,其中,排程要求中至少包括:样本板的排序优先级,排程计划至少包括:每台生产设备的启动时间、预计完成时间和利用率,利用率用于筛选可用生产设备,调整排程计划。
在本公开中,可以通过自动化检测线生产过程中使用的指定任务模型分析所需的生产工艺,然后对生产设备的可用时间段进行排程,从而计算出最适合的生产排程模式,提高提高生产效率,在排程过程中,兼顾了各样本板的排序优先顺序,能够对检测过程中的排程计划进行灵活调整,从而解决相关技术中医疗检测的排程方式,灵活性较差,无法满足检测需求的技术问题。
本公开提供的基于医疗检测的生产排程方法及装置,将高级排程计划APS与医疗检测进行结合,提供支持多产品的混合生产排程,且支持模拟最大通量的计算和预达到该通量所需的资源。可以为建库、病毒检测、基因测序等提供严谨的、可行的、优化的、详细的排程计划,使生产安排有序,大幅提升产能和及时交付率。
本公开能够同时实现多产品混合排程检测、多产品的并列排程检测,对生产过程 进行精细化排程,准确性高误差小,提供详细的生产执行计划。
本公开能够支持个性化排序问题,针对排程优先级需求,提供多种组合排序策略,如先进先出、产品排序、工序等待时间、允许时间等。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明设置为解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的一种可选的基于医疗检测的生产排程方法的流程图;
图2是根据本公开实施例的一种可选的指定任务模型的示意图;
图3是根据本公开实施例的一种可选的排程计划的示意图;
图4是根据本公开实施例的另一种可选地基于医疗检测的生产排程方法的示意图;
图5是根据本公开实施例的一种可选的基于医疗检测的生产排程系统的示意图;
图6是根据本公开实施例的一种可选地基于医疗检测的生产排程装置的示意图;
图7是根据本公开实施例的一种基于医疗检测的生产排程方法的电子设备(或移动设备)的硬件结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本公开方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为便于本领域技术人员理解本公开,下面对本公开各实施例中涉及的部分术语或者名词做出解释:
全基因组测序,Whole Genome Sequencing,简称WGS,是一种快速、低成本确定生物体的完整基因组序列的方式。
全外显子组测序,Whole Exome Sequencing,简称WES,是一种利益序列捕获技术将全基因组的外显子区域DNA捕获收集后的高通量测序;
全基因组重测序,Whole Genome re-Sequencing,简称WGRS,是一种对已知参考基因组和注释的物种进行不同个体间的全基因组测序,并在此基础上对个体或者群体进行差异性分析,鉴定出与某类表型相关的SNP的方式。
无创产前基因检测,Non-Envasive Prenatal Testing,简称NIPT。
非侵入式基因检测,Non-Envasive Fetal Trisomy,简称NIFTY。
人乳头瘤病毒,Human Papiloma Virus,简称HPV。
高级计划与排程,Advanced Planning and Scheduling,简称APS,是为解决多工序、多资源的优化调度方案,例如,对基因测序(包括但不限于:WGS、WGRS、WES)产品进行检测排程,对不同的基因测序产品所使用的平台/设备可能是不相同,需要调度当前利用率较高或即将结束测序的平台/设备进行测序,包含的测序数据有多种,如待测基因序列的高通量测序数据、基因序列参数(如人体DNA含量、序列读长平均值、染色体参数值等);对于基因检测(包括但不限于:NIPT、NIFTY)能够排程提取基因参数和/或基因变量;对于病毒检测(包括但不限于:HPV检测),能够预测病毒产生概率,提供合理的报告(包括:检测推荐、检测结果和概率值等)。
需要说明的是,本公开涉及到的样本板(下述可以简称为板)中可以承载多类型待测样本,该样本板在尚未进入产线进行检测时,可以称为等待板或者检测板,统计所有需要等待检测或者尚未检测的样本板的数量,即为检测板数,而正在进行检测的样本板定义为执行板或者执行样本板,统计正在进行检测的样本板,即为执行板数。
本公开可以应用于各种医疗检测产品/系统/软件/平台中(这些产品/系统/软件/平台已预先安装排程软件或者排程计算机程序),实现各种病毒、基因、肿瘤、血液、生物体功能的检测,例如,实现WGS、WES、WGRS、NIPT、NIFTY、HPV或者新冠病毒检测,为各种医疗检测的产品/生产部门提供详细的排程计划;另外本实施例中的排程方法还可以适用于质谱(通过制备、分离、检测气相离子的鉴定化合物的方式)、合成(包括但不限于:药物合成)、药筛(药物筛选的简称,对可能作为药物的物质进行生物活 性、药理性质和药物作用进行分析的方式)等。
本公开提供的基于医疗检测的生产排程方法,将高级排程计划APS与医疗检测进行结合,提供支持多产品的混合生产排程,且支持模拟最大通量的计算和预达到该通量所需的资源。可以为建库、病毒检测、基因测序等提供严谨的、可行的、优化的、详细的排程计划,使生产安排有序,大幅提升产能和及时交付率。
同时,本公开能够同时实现多产品混合排程检测、多产品的并列排程检测。
本公开提供的基于医疗检测的生产排程方法,所提供的排程计划,能够对外确切答复生产交期,缩短交期,精确预测与均衡分配产能负荷;同时支持多计划、多目标的模拟方案预排,为动态增加产线设备提供依据;本公开可以对生产过程进行精细化排程,准确性高误差小,提供详细的生产执行计划。
本公开为支持个性化排序问题,针对排程优先级需求,提供多种组合排序策略,如先进先出、产品排序、工序等待时间、允许时间等,实现组合式拖动操作即可,对应的排程计划相应可以进行调整和呈现。
本公开为解决模拟计算问题,根据通量反向预测需要的时间和资源问题,提供产品和样本量的多组合输入模式,以及限定的最后完成时间,依据现有产线的情况计算出资源瓶颈和需要增加的设备清单以及详细的排程计划。
下面结合各个实施例来详细说明本公开。
实施例一
根据本公开实施例,提供了一种基于医疗检测的生产排程方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本公开实施例的一种可选的基于医疗检测的生产排程方法的流程图,如图1所示,该方法包括如下步骤:
步骤S102,采用指定任务模型确定样本板所需的生产工艺集合,其中,指定任务模型包含有至少一条产线,每条产线支持N台生产设备,每台生产设备支持至少一个生产工艺,样本板上承载有M个待测样本,N与M均为大于等于1的正整数;
步骤S104,查找生产工艺集合中每个生产工艺对应的产线所需的所有生产设备,得到生产设备集合;
步骤S106,基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生成排程计划,其中,排程要求中至少包括:样本板的排序优先级,排程计划至少包括:每台生产设备的启动时间、预计完成时间和利用率,利用率用于筛选可用生产设备,调整排程计划。
通过上述步骤,可以采用指定任务模型确定样本板所需的生产工艺集合,其中,指定任务模型包含有至少一条产线,每条产线支持N台生产设备,每台生产设备支持至少一个生产工艺,样本板上承载有M个待测样本,N与M均为大于等于1的正整数;查找生产工艺集合中每个生产工艺对应的产线所需的所有生产设备,得到生产设备集合;基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生成排程计划,其中,排程要求中至少包括:样本板的排序优先级,排程计划至少包括:每台生产设备的启动时间、预计完成时间和利用率,利用率用于筛选可用生产设备,调整排程计划。在该实施例中,可以通过自动化检测线生产过程中使用的指定任务模型分析所需的生产工艺,然后对生产设备的可用时间段进行排程,从而计算出最适合的生产排程模式,提高提高生产效率,在排程过程中,兼顾了各样本板的排序优先顺序,能够对检测过程中的排程计划进行灵活调整,从而解决相关技术中医疗检测的排程方式,灵活性较差,无法满足检测需求的技术问题。
下面结合上述各实施步骤来详细说明本公开实施例。
在生成排程计划之前,需要构建并训练好产线数学模型,可选的,在构建指定任务模型时,包括:创建多条产线,并配置每条产线支持的生产设备以及每台生产设备支持的生产工艺;配置每台生产设备的工作时间段以及允许并列工作的检测板数,其中,工作时间段包括生产设备的剩余可用时间段,检测板数为可检测所述样本板的总数量;创建多条检测流程路线,并配置每条检测流程路线的多道工序,设置每道工序的生产工艺;确定产线与支持的检测流程路线的对应关系;配置多个待测产品与每个待测产品所需的检测流程路线的关联关系,其中,待测产品为样本板中待测样本所需检测的产品;基于所述多条产线、所述每台所述生产设备的工作时间段以及允许并列工作的检测板数、所述检测流程路线和所述每道工序的生产工艺、所述产线与支持的所述检测流程路线的对应关系、多个待测产品与每个所述待测产品所需的所述检测流程路线的关联关系,生成所述指定任务模型。
本公开所述的生产设备,可通过现有医疗生物领域的生产设备进行排列组合,例如在基因测序领域,示例性为基因测序系统、测序仪、大人群基因组学一站式技术平台、实验室自动化系统、样本制备设备、分装设备、文库生产设备、移液设备、磁珠检测设备、核酸纯化设备等。
本实施例中对于指定任务模型中所涉及到产线的数量、生产工艺的数量和生产设备的数量并不做具体限定,以每一个实际生产线、测序产线、检测产线以及产线中安装的设备的型号和可支持的生产工艺为准。
图2是根据本公开实施例的一种可选的指定任务模型的示意图,如图2所示,示意出创建了至少一条产线,产线支持N台设备(图2中仅示意一条产线,其包含的生产设备包含有设备A、设备B-1、设备B-2、设备C和设备D,但是实际中并不限定该设备数量和设备类型),针对每台设备配置其支持的生产工艺,同时设置其生产时间和允许同时生产的检测板数。图2中创建多条技术路线,技术路线划分为若干道工序,设置每道工序默认的生产工艺(图2中示意了两条技术路线,第一条技术路线的检测路线为生产工艺2至生产工艺4至生产工艺3至生产工艺4至生产工艺6...;第二条检测路线为生产工艺1至生产工艺2至生产工艺3至生产工艺4至生产工艺5...),如此便能自动计算出产线与支持生产技术路线的对应关系。最后再设置产品与技术路线的关系,如此整个指定任务模型构建完成,样本进入产线时附带的产品属性,即可自动对应到具体产线以及哪些设备可以执行对应的生产工艺。同时该模型支持多产品、多产线、多设备的混合型配置,充分考虑现存业务以及未来的扩展问题。
本公开所记载的“生产工艺”,可通过现有医疗生物领域的生产工艺进行排列组合,例如在基因测序领域,示例性的为:包括试剂配置、样本分装、核酸提取、qPCR体系配置、qPCR、RT-PCR、富集、封膜、撕膜、定量、离心、核酸产物定量、移液、均一化、取样均一化、片断选择、片选后片检、片选后定量、片选后均一化、末修加A_接头连接、连接纯化、Oligogreen定量检测、Post_PCR、Post_PCR定量、mRNA纯化、加PCRMix、PCR反应、PCR纯化、PCR后定量、文库Pooling、PCR后均一化、单链分离、环化、消化、纯化、环化后Pooling、文库定量、ssDNA均一化、Make DNB、DNB定量、DNB Pooling等工艺方法的多种排列组合。
本实施例中,通过指定任务模型可以将生产信息拆分成技术路线、生产工艺、产线、设备、生产时间段、上板数等信息。
可选的,在采用指定任务模型确定样本板所需的生产工艺集合之前,还包括:在接收到待测样本后,提取待测样本的样本标识;基于样本标识,将待测样本归纳入对应的样本板中。
需要说明的是,本实施例提及的待测样本,对应的产品多样化,本实施例不作具体限定,例如,新冠病毒咽拭子/鼻拭子检测得到的样本(该样本一般会试管中)、待测序的基因样本、血液样本等。这些待测样本在进入产线之前可能是有序的,也可能是无序,其可能放在试管中,也可能放置在密封管中,因此,需要对样本进行排序, 使其放入对应产品所处的样本板中。
在此说明,本实施例提及的样本板可以是进行检测所需的样本板,例如,包含有96个格子/孔洞的硬板,能够承载固定数量的待测样本。样本板与大小、类型与生产设备、产线适配。
在样本进入产线时,可以自动进行排板,在排板时,既可以通过样本上的序号索引其所属产品,然后确定待测产线,自动归纳入该待测产线上的空闲样本板中。当然,在排板时,还可以通过机器人或者人工等进行排板。
步骤S102,采用指定任务模型确定样本板所需的生产工艺集合。
可选的,采用指定任务模型确定样本板所需的生产工艺集合,包括:采用指定任务模型提取样本板中每个待测样本所需的待测产品的产品属性,其中,产品属性表征所述待测产品的所属类别;基于产品属性,确定样本板中每个待测样本所需的检测流程路线;获取检测流程路线中每道工序的生产工艺,得到生产工艺集合。
如在图2示意的内容中,样本板进入产线后,需要通过指定任务模型将其拆分到详细的工序,确定其所属的待测产品的产品属性(如图2中的NIPT指示产品,其产品属性为基因检测;而WGS指示的产品属性为基测序),进而通过该产品属性索引其对应的检测流程路线(对应于图2中技术路线),确定检测流程路线上所有的生产工艺,得到工艺集合。
需要说明的是,本实施例提及的检测流程路线中所使用的生产工艺的顺序和次数并不做限定,如在图2中,生产工艺4就使用了两次。同时,需要说明,每个待测产品所使用的生产工艺可能存在相同,也可能完全不相同,以每个待测产品需要的检测流程路线确定,例如,在基因序列检测中,若要打断DNA链条,可以采用打断工艺包括但不限于:物理法打断、酶切法打断。
进一步地,本实施例中每种生产工艺所对应的设备唯一,在进行检测工序的排程时,需要注意每个样本板中待测样本数量和所需使用的生产工艺数量、生产设备数量,进行高效排程。
步骤S104,查找生产工艺集合中每个生产工艺对应的产线所需的所有生产设备,得到生产设备集合。
本实施例在得到工艺集合后,需要对所有样本板的生产工艺进行分组并排序,查找待排程的生产工艺对应的产线里所有需要使用的生产设备,针对具体生产设备计算出可用时间段,然后根据排程设置的组合排序优先级进行对应的组和排序(参考各个 排序策略,产品优先级、先进先出、工艺等待时间、允许时间,该排序策略可以是排程业务人员选择),接下来针对每一组生产工艺进行依次排程。
在排程时,如果某一生产工艺组里没有待排程的样本,则说明该组已经全部排完,进行下一步循环,否则,根据排程要求和样本板的最早启动时间(最早启动时间依赖于N-1步的完成时间)进行排序,选择出排在前序第一的样本板,分析该板的生产工艺是否能够查找到可用的生产设备。
可选的,查找生产工艺集合中每个生产工艺对应的产线所需的所有生产设备,得到生产设备集合,包括:分析生产工艺集合中每个生产工艺是否存在可用的生产设备;若生产工艺集合中的生产工艺不存在可用的生产设备,则确认无法对样本板进行排程,并删除样本板;若生产工艺集合中所有生产工艺都存在可用的生产设备,进行设备去重处理后,生成生产设备集合。
本实施例中,如果未找到支持的设备列表或者无可用的生产设备,表示暂无可执行的设备,该样本板无法排程即无法执行排程计划,则删除该板当前及后续步骤的所有待排数据,只能进行前面部分工序的生产排程。
步骤S106,基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生成排程计划,其中,排程要求中至少包括:样本板的排序优先级,排程计划至少包括:每台生产设备的启动时间、预计完成时间和利用率,利用率用于筛选可用生产设备,调整排程计划。
上述利用率可以设备在某一固定时间段的利用率,例如,确定生产设备在某一天内的利用率,通过该利用率,可以调整设备的使用时长和使用次数,最大化利用生产设备执行工作。
本实施例,可通过预先构建的自动化检测线生产过程的指定任务模型,生成排程计划,该排程计划以最短生产时间和最大化生产设备利用率的优化目标,提供高效的、精准的医疗检测排程计划。
可选的,基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生成排程计划,包括:查找每台生产设备的剩余可用时间段;排列出每台生产设备的最早启动时间和预计完成时长;基于预计完成时长小于或者等于排期要求完成时长的情况下,确认满足排程要求,锁定生产设备的剩余可用时间段,生成排程计划,并修改生产设备的可用时间区间。
如有可选的设备列表,则根据可选择的多个设备,以及执行该生产工艺的时间段,判断各设备空闲时间段是否可满足,且排列出最早的分配时间(预计启动时间)和预 计完成时间,若预计完成时间小于或等于排期要求完成时间说明满足排程要求,锁定设备可用时间,对应的生产设备给下一次可选择的时间区间变小。
可选的,在排列出每台生产设备的最早启动时间和预计完成时长之后,还包括:基于预计完成时长大于排期要求完成时长的情况下,确认不满足排程要求;基于不满足排程要求,计算当前时间点已排程的利用率最高的目标生产设备,并基于目标生产设备发出设备申请指令,其中,设备申请指令设置为申请增加与目标生产设备相同型号的新设备;在增加新设备后,重新安排排程计划。
若预计完成时间超过排期要求完成时间,确定现有资源不满足排程要求,需要增加设备,此时需要计算出目前已排程的利用率最高的设备,将该设备新增一台以降低利用率,然后全部重新排程。
作为本实施例另一种可选的实施例,在锁定生产设备的剩余可用时间段,生成排程计划之后,还包括:依据生产设备允许并列工作的检测板数,查询与生产设备使用相同生产工艺的其他样本板;将查询到的其他样本板分配至生产设备。
为最大化利用设备性能,当分配到对应的生产设备后,依据该设备支持的最大上板数(即允许并列工作的检测板数),在此组生产工艺里依次找到相同生产工艺的等待板同时分配到该生产设备,同时更新下一步(N+1)的最早启动时间等于当前步(N)的预计完成时间的下一相邻时间点,例如:当前样本板要执行第二步(例如完成WGS任务中预处理的文库制备步骤)预计在10:00完成,则需要标记第三步(例如完成WGS任务中预处理的样本移液步骤)最早启动时间会设置在10:00之后。
可选的,在锁定生产设备的剩余可用时间段,生成排程计划之后,还包括:提取生产设备的预计完成时间;获取生产工艺集合中关联生产设备的下一生产工艺以及对应的下一生产设备;将下一生产设备的最早启动时间修改为与生产设备的预计完成时间相邻的下一时间点。
图3是根据本公开实施例的一种可选的排程计划的示意图,如图3所示,某一检测流程路线包含有多个生产工艺(该生产工艺对应于上述的生产工艺,图3中包含有生产工艺1-生产工艺12),每个生产工艺对应唯一的生产设备(图3中包含有三个设备:设备A、设备B和设备C),其中,生产工艺1对应生产设备A,生产工艺2、生产工艺6、生产工艺7、生产工艺10都对应设备B,其余检测方法都对应设备C。图3中每个生产工艺所需时长不相同,例如,生产工艺1需要使用设备A的时长为40min,生产工艺2需要使用设备B的时长为110min,生产工艺3使用设备C的时长为40min,生产工艺4使用设备C的时长为25min,生产工艺5使用设备C的时长为40min,生产 工艺6需要使用设备B的时长为230min,生产工艺7需要使用设备B的时长为110min,生产工艺8使用设备C的时长为40min,生产工艺9使用设备C的时长为25min,生产工艺10使用设备B的时长为45min,生产工艺11使用设备C的时长为40min,生产工艺12使用设备C的时长为40min。
因此,在对图3中的各生产工艺进行排序时,对每台设备支持的不同工艺和同时执行板数(图3中设备A能够同时支持1板、设备B能够同时支持2板、设备C能够同时支持1板),计算出最优排程计划,掌握设备运行时间段以及每块板的预计生产时间。
另一组可选的,在确定样本板的排序优先级时,采用的排程策略包括:先进先出策略、产品排序策略、生产工艺的允许等待时长、样本板的排程允许时间段。可选的,本实施例可以基于任意一项排序策略或者多项组合排序策略,确定样本板的排序优先级。
为得到最优解,可动态改变组合排序优先级,得到不同的排程计划,根据预计完成时间即可排列出最优解,多种排程要求和排程结果供用户自由选择。例如,对于排序优先级,考虑当前排程优先级是否第一选择先进先出排序,为了保证先来的样本板优先完成生产/检测,每次排程只考虑一次匹配,然后继续下一组排程,依次循环即保证了先进先出规则。如果不是先进先出要求,则将该组所有待排板依次匹配对应的设备,依次循环匹配,当此生产工艺全部排程完后再跳入下一组生产工艺进行排程,依此类推,直到所有待排程板全部排程结束,即可得到完整的排程计划。
若在生产过程中有临时增加任务,为保证已确认的排程得到准确执行调度,新增加的任务会默认自动排列在最后执行,如果有特殊需求,可人工调整所有未开始的工序然后全部重新排程,或依据规则进行人工替换调整等。
通过上述实施例,可以为建库、病毒检测、基因测序等提供严谨的、可行的、优化的、详细的排程计划,使生产安排有序,大幅提升产能和及时交付率。并且,同时实现多产品混合排程检测、多产品的并列排程检测,同时,可以准确评估预测生产时长、所需资源,能够对外确切答复生产交期,缩短交期,精确预测与均衡分配产能负荷,提高生产效率。
下面结合另一种可选地实施例来说明本公开。
实施例二
本实施例中,先构建物理产线数学模型,可以创建多条产线,每条产线支持N台设备,针对每台设备配置其支持的生产工艺,同时设置其生产时间和允许同时生产的 检测板数。同时,可创建多条技术路线,路线划分为若干道工序,设置每道工序默认的生产工艺,如此便能自动计算出产线与支持生产技术路线的对应关系。最后再设置产品与技术路线的关系,如此整个产线数学模型构建完成,样本进入产线时附带的产品属性,即可自动对应到具体产线以及哪些设备可以执行对应的生产工艺。同时该模型支持多产品、多产线、多设备的混合型配置,充分考虑现存业务以及未来的扩展问题。
图4是根据本公开实施例的另一种可选地基于医疗检测的生产排程方法的示意图,如图4所示,该方法包括:
查找需要排程的样本板,按照生产工艺步骤分组并排序;其中,样本进入产线时自动进行排板(包含多个样本,可能有序或者无序,需要进行排板),依据建立的产线数学模型进行拆分到详细的工序生产工艺维度,然后按照生产工艺进行分组并排序。
查找待排程的生产工艺对应的产线里所有需要使用的设备列表;
计算设备列表中所有设备的具体可用时间段,其中,针对设备列表中每个具体设备需要计算出可用时间段;
然后根据排程要求组合排序优先级,其中,进行对应的组排序(排序策略包括但不限于产品优先级、先进先出、工艺等待时间、允许时间,生产业务人员选择),接下来针对每一组生产工艺进行依次排程。
从第N(N>=1,这里N是指待排程的样本板的位置,一般是是从第1个开始)步开始排程,查询是否有需要待排程的样本板,如果该组里没有待排程的样本,则说明该组已经全部排完,执行N=N+1后进行下一步循环,否则根据排程要求和板的最早启动时间(最早启动时间依赖于N-1步的完成时间)进行排序,选择出排在第一块板;
根据选择的第一块板的生产工艺查找能够选择使用的设备列表;
判断是否有可选择的设备列表,如果未找到支持的设备列表,表示暂无可执行的设备,该板无法排程即无法执行生产计划,则删除该板当前及后续步骤的所有待排数据,只能进行前面部分工序的生产排程。
如有可选的设备列表,则根据可选择的设备列表以及执行该设备列表中的各设备的生产工艺的时间,判断各设备空闲时间段是否可满足,且排列出最早的分配时间(预计启动时间)和预计结束时间;
判断是否满足排期要求,若预计完成时间小于或等于排期要求完成时间说明满足排程要求,锁定设备可用时间,对应的设备给下一次可选择的时间区间变小,若预计 完成时间超过排期要求完成时间现有资源不满足排程要求,需要增加设备,此时需要计算出目前已排程的利用率最高的设备,将该设备新增一台,以降低利用率,然后全部重新排程。
为最大化利用设备性能,当分配到对应的设备后,依据该设备支持的最大上板数,在此组生产工艺里依次找到相同生产工艺的等待板(即等待检测的样本板)同时分配到该设备(设备繁忙时间段更新);
更新下一步(N+1)的最早启动时间等于当前步(N)的预计完成时间。
接下来判断当前排程优先级是否首选先进先出排序,为了保证先来的板优先完成生产,每次排程只考虑一次匹配,然后继续下一组排程,依次循环即保证了先进先出规则。如果不是先进先出要求,则将该组所有待排板依次匹配对应的设备,依次循环匹配,当此生产工艺全部排程完后再跳入下一组生产工艺进行排程,依此类推,直到所有待排程板全部排程结束,即可得到完整的排程计划。
本实施例中为得到最优解,可动态改变组合排序优先级,得到不同的排程计划,根据预计结束时间即可排列出最优解,多种排程要求和排程结果供用户自由选择。
若在生产过程中有临时增加任务,为保证已确认的排程得到准确执行调度,新增加的任务会默认自动排列在最后执行,如果有特殊需求,可人工调整所有未开始的工序然后全部重新排程,或依据规则进行人工替换调整等。
通过上述实施例,可以完成基于自动化建库及基因测序的生产过程进行业务逻辑的归纳综合和规则约束的整理,构建自动化检测线生产过程的数学模型;同时以最短生产时间和最大化生产设备利用率为优化目标,构建排程的目标函数,进而准确评估预测生产时长和所需资源,提高生产效率。
根据本公开实施例的另一方面,还提供了一种基于医疗检测的生产排程系统,包括:用户端,提供用户界面,设置为进行产线维护和设备配置,并进行排程计划的调整以及进度监控;产线控制端,与多个生产设备连接,用于实时向应用平台提供心跳状态信息,其中,所述心跳状态信息至少包括:每个生产设备的工作状态和使用率;应用平台,与所述用户端和所述产线控制端连接,执行上述任意一项所述的基于医疗检测的生产排程方法。图5是根据本公开实施例的一种可选的基于医疗检测的生产排程系统的示意图,如图5所示,该生产排程系统包括:用户界面、应用平台、产线设备,
其中,用户界面是由用户进行编排的,该用户可以是指产线业务人员,通过用户界面实现产线维护(产线与设备配置)和设备配置(设备与工艺配置),在配置好设备 或者维护产线后,需要将新的工艺路线更新至应用平台中;
产线设备中包含有至少一台设备,产线设备中将各个设备的序列号、型号等设备信息注册至应用平台中,同时,实时更新设备的状态的心跳信息;
应用平台,可以实现设备维护、生成排程计划、执行排程计划;在生成排程计划过程中,参考用户通过用户界面编辑的排程规则(该排程规则包含有排程策略以及组合排程策略会后得到的排序优先级,排程策略包含多种例如,先进先出、产品排序、工序等待时间、允许时间等),进行排程算法确定,然后在各个样本板入库后,自动触发计算,生成排程计划,并将生成的排程计划发送至用户界面,用户界面显示该排程计划,用户查看到该排程计划后,可能直接确认,也可能会调整排程计划;并将调整或者确认的排程计划发送至应用平台;应用平台只需排程计划,并将执行进度推送至用户界面显示;用户界面会实时展示排程计划的执行情况;应用平台在排程计划执行过程中,会优先使用较为空闲的设备,调度不同的设备执行排程计划。
通过上述的生产排程系统,示意了人机与产线设备的交互方式,用户通过用户界面可以进行排程规则编写,调整排程计划,监控排程计划执行情况;应用平台计算和更新排程计划,同时产线设备实时更新设备的心跳状态信息,与应用平台进行有效交互。
本公开中还提供了一种基于医疗检测的生产排程展示方法,应用于用户端,包括:
响应状态展示请求,展示至少一条产线的产线运行状态和每条产线上各生产设备的设备工作状态,每条产线支持N台生产设备,每台生产设备支持至少一个生产工艺;
接收外部设备的样本录入操作,并基于录入操作将待检测的样本板发送至指定任务模型,其中,样本板上承载有M个待测样本,指定任务模型确定样本板所需的生产工艺集合和生产设备集合,并基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生成排程计划;
将排程计划以及由排程计划更新的产线运行状态和设备工作状态展示在指定用户界面上。
通过上述的生产排程展示方法,能够向工作人员在用户端的界面上实时展示产线运行状态和每条产线上各生产设备的设备工作状态,让工作人员能够实时知道各设备的利用情况,及时调整录入的样本板,提高排程计划的实施完成度,提高排程效率。
下面结合另一种可选的实施例来说明本公开。
实施例三
本实施例提供了一种基于医疗检测的生产排程装置,该生产排程装置中包含的各个实施单元对应于上述实施例一的各个实施步骤。
图6是根据本公开实施例的一种可选地基于医疗检测的生产排程装置的示意图,如图6所示,该生产排程装置可以包括:分析单元61,查找单元63,生成单元65,其中,
分析单元61,设置为采用指定任务模型确定样本板所需的生产工艺集合,其中,指定任务模型包含有至少一条产线,每条产线支持N台生产设备,每台生产设备支持至少一个生产工艺,样本板上承载有M个待测样本,N与M均为大于等于1的正整数;
查找单元63,设置为查找生产工艺集合中每个生产工艺对应的产线所需的所有生产设备,得到生产设备集合;
生成单元65,设置为基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生成排程计划,其中,排程要求中至少包括:样本板的排序优先级,排程计划至少包括:每台生产设备的启动时间、预计完成时间和利用率,利用率用于筛选可用生产设备,调整排程计划。
上述基于医疗检测的生产排程装置,可以通过分析单元61采用指定任务模型确定样本板所需的生产工艺集合,其中,指定任务模型包含有至少一条产线,每条产线支持N台生产设备,每台生产设备支持至少一个生产工艺,样本板上承载有M个待测样本,N与M均为大于等于1的正整数;通过查找单元63查找生产工艺集合中每个生产工艺对应的产线所需的所有生产设备,得到生产设备集合;通过生成单元65基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生成排程计划,其中,排程要求中至少包括:样本板的排序优先级,排程计划至少包括:每台生产设备的启动时间、预计完成时间和利用率,利用率用于筛选可用生产设备,调整排程计划。在该实施例中,可以通过自动化检测线生产过程中使用的指定任务模型分析所需的生产工艺,然后对生产设备的可用时间段进行排程,从而计算出最适合的生产排程模式,提高提高生产效率,在排程过程中,兼顾了各样本板的排序优先顺序,能够对检测过程中的排程计划进行灵活调整,从而解决相关技术中医疗检测的排程方式,灵活性较差,无法满足检测需求的技术问题。
可选地,基于医疗检测的生产排程装置还包括:第一创建单元,设置为创建多条产线,并配置每条产线支持的生产设备以及每台生产设备支持的生产工艺;第一配置单元,设置为配置每台生产设备的工作时间段以及允许并列工作的检测板数,其中,工作时间段包括生产设备的剩余可用时间段,检测板数为可检测所述样本板的总数量; 第二创建单元,设置为创建多条检测流程路线,并配置每条检测流程路线的多道工序,设置每道工序的生产工艺;确定产线与支持的检测流程路线的对应关系;第二配置单元,设置为配置多个待测产品与每个待测产品所需的检测流程路线的关联关系,其中,待测产品为样本板中待测样本所需检测的产品;第一生成单元,设置为基于所述多条产线、所述每台所述生产设备的工作时间段以及允许并列工作的检测板数、所述检测流程路线和所述每道工序的生产工艺、所述产线与支持的所述检测流程路线的对应关系、多个待测产品与每个所述待测产品所需的所述检测流程路线的关联关系,生成所述指定任务模型。
可选地,分析单元包括:第一提取模块,设置为采用指定任务模型提取样本板中每个待测样本所需的待测产品的产品属性,其中,产品属性表征所述待测产品的所属类别;第一确定模块,设置为基于产品属性,确定样本板中每个待测样本所需的检测流程路线;第一获取模块,设置为获取检测流程路线中每道工序的生产工艺,得到生产工艺集合。
可选地,查找单元包括:第一分析模块,设置为分析生产工艺集合中每个生产工艺是否存在可用的生产设备;第一生成模块,设置为在生产工艺集合中所有生产工艺都存在可用的生产设备时,进行设备去重处理后,生成生产设备集合。
可选地,生成单元包括:第一查找模块,设置为查找每台生产设备的剩余可用时间段;第一排列模块,设置为排列出每台生产设备的最早启动时间和预计完成时长;第三确定模块,设置为基于预计完成时长小于或者等于排期要求完成时长的情况下,确认满足排程要求,锁定生产设备的剩余可用时间段,生成排程计划,并修改生产设备的可用时间区间。
可选地,基于医疗检测的生产排程装置还包括:第四确定模块,设置为在排列出每台生产设备的最早启动时间和预计完成时长之后,基于预计完成时长大于排期要求完成时长的情况下,确认不满足排程要求;第一计算模块,设置为基于不满足排程要求,计算当前时间点已排程的利用率最高的目标生产设备,并基于目标生产设备发出设备申请指令,其中,设备申请指令设置为申请增加与目标生产设备相同型号的新设备;重新排程模块,设置为在增加新设备后,重新安排排程计划。
可选地,基于医疗检测的生产排程装置还包括:查询模块,设置为在锁定生产设备的剩余可用时间段,生成排程计划之后,依据生产设备允许并列工作的检测板数,查询与生产设备使用相同生产工艺的其他样本板;分配模块,设置为将查询到的其他样本板分配至生产设备。
可选地,基于医疗检测的生产排程装置还包括:第二提取模块,设置为在锁定生产设备的剩余可用时间段,生成排程计划之后,提取生产设备的预计完成时间;第二获取模块,设置为获取生产工艺集合中关联生产设备的下一生产工艺以及对应的下一生产设备;修改模块,设置为将下一生产设备的最早启动时间修改为与生产设备的预计完成时间相邻的下一时间点。
可选地,在确定样本板的排序优先级时,在确定所述样本板的排序优先级时,基于下述任意一项所述排序策略或者多项组合排序策略,确定所述样本板的排序优先级:先进先出策略、产品排序策略、生产工艺的允许等待时长、样本板的排程允许时间段。
上述的基于医疗检测的生产排程装置还可以包括处理器和存储器,上述分析单元61,查找单元63,生成单元65等均作为程序单元存储在存储器中,由处理器执行存储在存储器中的上述程序单元来实现相应的功能。
上述处理器中包含内核,由内核去存储器中调取相应的程序单元。内核可以设置一个或以上,通过调整内核参数来基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生成排程计划。
上述存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM),存储器包括至少一个存储芯片。
根据本公开实施例的另一方面,还提供了一种电子设备,包括:处理器;以及存储器,设置为存储处理器的可执行指令;其中,处理器配置为经由执行可执行指令来执行上述任意一项的基于医疗检测的生产排程方法。
图7是根据本公开实施例的一种基于医疗检测的生产排程方法的电子设备(或移动设备)的硬件结构框图。如图7所示,电子设备可以包括一个或多个(图中采用702a、702b,……,702n来示出)处理器702(处理器702可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、设置为存储数据的存储器704。除此以外,还可以包括:显示器、输入/输出接口(I/O接口)、通用串行总线(USB)端口(可以作为I/O接口的端口中的一个端口被包括)、网络接口、键盘、电源和/或相机。本领域普通技术人员可以理解,图7所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,电子设备还可包括比图7中所示更多或者更少的组件,或者具有与图7所示不同的配置。
根据本公开实施例的另一方面,还提供了一种计算机可读存储介质,计算机可读存储介质包括存储的计算机程序,其中,在计算机程序运行时控制计算机可读存储介 质所在设备执行上述任意一项的基于医疗检测的生产排程方法。
本申请还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有如下方法步骤的程序:采用指定任务模型确定样本板所需的生产工艺集合,其中,指定任务模型包含有至少一条产线,每条产线支持N台生产设备,每台生产设备支持至少一个生产工艺,样本板上承载有M个待测样本,N与M均为大于等于1的正整数;查找生产工艺集合中每个生产工艺对应的产线所需的所有生产设备,得到生产设备集合;基于排程要求以及生产设备集合中每台生产设备的剩余可用时间段,生成排程计划,其中,排程要求中至少包括:样本板的排序优先级,排程计划至少包括:每台生产设备的启动时间、预计完成时间和利用率,利用率用于筛选可用生产设备,调整排程计划。
上述本公开实施例序号仅仅为了描述,不代表实施例的优劣。
在本公开的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本公开各个实施例所 述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (13)

  1. 一种基于医疗检测的生产排程方法,包括:
    采用指定任务模型确定样本板所需的生产工艺集合,其中,所述指定任务模型包含有至少一条产线,每条所述产线支持N台生产设备,每台所述生产设备支持至少一个生产工艺,所述样本板上承载有M个待测样本,N与M均为大于等于1的正整数;
    查找所述生产工艺集合中每个所述生产工艺对应的产线所需的所有生产设备,得到生产设备集合;
    基于排程要求以及所述生产设备集合中每台所述生产设备的剩余可用时间段,生成排程计划,其中,所述排程要求中至少包括:所述样本板的排序优先级,所述排程计划至少包括:每台所述生产设备的启动时间、预计完成时间和利用率,所述利用率用于筛选可用生产设备,调整所述排程计划。
  2. 根据权利要求1所述的方法,还包括:
    创建多条产线,并配置每条所述产线支持的生产设备以及每台所述生产设备支持的所述生产工艺;
    配置每台所述生产设备的工作时间段以及允许并列工作的检测板数,其中,所述工作时间段包括所述生产设备的剩余可用时间段,所述检测板数为可检测所述样本板的总数量;
    创建多条检测流程路线,并配置每条所述检测流程路线的多道工序,设置每道工序的生产工艺;
    确定所述产线与支持的所述检测流程路线的对应关系;
    配置多个待测产品与每个所述待测产品所需的所述检测流程路线的关联关系,其中,所述待测产品为所述样本板中待测样本所需检测的产品;
    基于所述多条产线、所述每台所述生产设备的工作时间段以及允许并列工作的检测板数、所述检测流程路线和所述每道工序的生产工艺、所述产线与支持的所述检测流程路线的对应关系、多个所述待测产品与每个所述待测产品所需的所述检测流程路线的关联关系,生成所述指定任务模型。
  3. 根据权利要求1所述的方法,其中,采用指定任务模型确定样本板所需的生产工 艺集合,包括:
    采用所述指定任务模型提取所述样本板中每个所述待测样本所需的待测产品的产品属性,其中,所述产品属性表征所述待测产品的所属类别;
    基于所述产品属性,确定所述样本板中每个所述待测样本所需的检测流程路线;
    获取所述检测流程路线中每道工序的生产工艺,得到所述生产工艺集合。
  4. 根据权利要求1所述的方法,其中,查找所述生产工艺集合中每个所述生产工艺对应的产线所需的所有生产设备,得到生产设备集合,包括:
    分析所述生产工艺集合中每个所述生产工艺是否存在可用的所述生产设备;
    若所述生产工艺集合中所有所述生产工艺都存在可用的所述生产设备,进行设备去重处理后,生成所述生产设备集合。
  5. 根据权利要求1所述的方法,其中,基于排程要求以及所述生产设备集合中每台所述生产设备的剩余可用时间段,生成排程计划,包括:
    查找每台所述生产设备的剩余可用时间段;
    排列出每台所述生产设备的最早启动时间和预计完成时长;
    基于所述预计完成时长小于或者等于排期要求完成时长的情况下,确认满足所述排程要求,锁定所述生产设备的剩余可用时间段,生成所述排程计划,并修改所述生产设备的可用时间区间。
  6. 根据权利要求5所述的方法,其中,在排列出每台所述生产设备的最早启动时间和预计完成时长之后,还包括:
    基于所述预计完成时长大于排期要求完成时长的情况下,确认不满足所述排程要求;
    基于所述不满足所述排程要求,计算当前时间点已排程的利用率最高的目标生产设备,并基于所述目标生产设备发出设备申请指令,其中,所述设备申请指令设置为申请增加与所述目标生产设备相同型号的新设备;
    在增加所述新设备后,重新安排所述排程计划。
  7. 根据权利要求5所述的方法,其中,在锁定所述生产设备的剩余可用时间段,生成所述排程计划之后,还包括:
    依据所述生产设备允许并列工作的检测板数,查询与所述生产设备使用相同生产工艺的其他样本板;
    将查询到的所述其他样本板分配至所述生产设备。
  8. 根据权利要求1至7中任意一项所述的方法,其中,在确定所述样本板的排序优先级时,基于下述任意一项排序策略或者多项组合排序策略,确定所述样本板的排序优先级:先进先出策略、产品排序策略、所述生产工艺的允许等待时长、所述样本板的排程允许时间段。
  9. 一种基于医疗检测的生产排程系统,包括:
    用户端,提供用户界面,设置为进行产线维护和设备配置,并进行排程计划的调整以及进度监控;
    产线控制端,与多个生产设备连接,用于实时向应用平台提供心跳状态信息,其中,所述心跳状态信息至少包括:每个生产设备的工作状态和使用率;
    应用平台,与所述用户端和所述产线控制端连接,执行权利要求1至8中任意一项所述的基于医疗检测的生产排程方法。
  10. 一种基于医疗检测的生产排程展示方法,应用于用户端,包括:
    响应状态展示请求,展示至少一条产线的产线运行状态和每条所述产线上各生产设备的设备工作状态,每条所述产线支持N台生产设备,每台所述生产设备支持至少一个生产工艺;
    接收外部设备的样本录入操作,并基于所述录入操作将待检测的样本板发送至指定任务模型,其中,所述样本板上承载有M个待测样本,所述指定任务模型确定所述样本板所需的生产工艺集合和生产设备集合,并基于排程要求以及所述生产设备集合中每台所述生产设备的剩余可用时间段,生成排程计划;
    将所述排程计划以及由所述排程计划更新的所述产线运行状态和所述设备工作状态展示在指定用户界面上。
  11. 一种基于医疗检测的生产排程装置,包括:
    分析单元,设置为采用指定任务模型确定样本板所需的生产工艺集合,其中,所述指定任务模型包含有至少一条产线,每条所述产线支持N台生产设备,每台所述生产设备支持至少一个生产工艺,所述样本板上承载有M个待测样本,N与M均为大于等于1的正整数;
    查找单元,设置为查找所述生产工艺集合中每个所述生产工艺对应的产线所需的所有生产设备,得到生产设备集合;
    生成单元,设置为基于排程要求以及所述生产设备集合中每台所述生产设备的剩余可用时间段,生成排程计划,其中,所述排程要求中至少包括:所述样本板的排序优先级,所述排程计划至少包括:每台所述生产设备的启动时间、预计完成时间和利用率,所述利用率用于筛选可用生产设备,调整所述排程计划。
  12. 一种电子设备,包括:
    处理器;以及
    存储器,设置为存储所述处理器的可执行指令;
    其中,所述处理器配置为经由执行所述可执行指令来执行权利要求1至8中任意一项所述的基于医疗检测的生产排程方法。
  13. 一种计算机可读存储介质,计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在设备执行权利要求1至8中任意一项所述的基于医疗检测的生产排程方法。
PCT/CN2022/126782 2022-10-21 2022-10-21 基于医疗检测的生产排程方法及装置、电子设备、介质 WO2024082282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126782 WO2024082282A1 (zh) 2022-10-21 2022-10-21 基于医疗检测的生产排程方法及装置、电子设备、介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126782 WO2024082282A1 (zh) 2022-10-21 2022-10-21 基于医疗检测的生产排程方法及装置、电子设备、介质

Publications (1)

Publication Number Publication Date
WO2024082282A1 true WO2024082282A1 (zh) 2024-04-25

Family

ID=90736642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126782 WO2024082282A1 (zh) 2022-10-21 2022-10-21 基于医疗检测的生产排程方法及装置、电子设备、介质

Country Status (1)

Country Link
WO (1) WO2024082282A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150154528A1 (en) * 2013-12-02 2015-06-04 ZocDoc, Inc. Task manager for healthcare providers
CN107491873A (zh) * 2017-08-16 2017-12-19 浙江力太科技有限公司 一种最大化多个关键设备利用率的生产排程方法
CN110738413A (zh) * 2019-10-15 2020-01-31 中国航空制造技术研究院 航空零件加工自动化生产线的多约束排产计算方法及装置
CN114037269A (zh) * 2021-11-08 2022-02-11 佛山技研智联科技有限公司 基于云平台的染色排程处理系统、方法和计算机设备
CN114707874A (zh) * 2022-04-12 2022-07-05 中亿丰罗普斯金材料科技股份有限公司 应用于铝合金生产的排程方法、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150154528A1 (en) * 2013-12-02 2015-06-04 ZocDoc, Inc. Task manager for healthcare providers
CN107491873A (zh) * 2017-08-16 2017-12-19 浙江力太科技有限公司 一种最大化多个关键设备利用率的生产排程方法
CN110738413A (zh) * 2019-10-15 2020-01-31 中国航空制造技术研究院 航空零件加工自动化生产线的多约束排产计算方法及装置
CN114037269A (zh) * 2021-11-08 2022-02-11 佛山技研智联科技有限公司 基于云平台的染色排程处理系统、方法和计算机设备
CN114707874A (zh) * 2022-04-12 2022-07-05 中亿丰罗普斯金材料科技股份有限公司 应用于铝合金生产的排程方法、设备及存储介质

Similar Documents

Publication Publication Date Title
US11954614B2 (en) Systems and methods for visualizing a pattern in a dataset
Nikolayeva et al. edgeR for differential RNA-seq and ChIP-seq analysis: an application to stem cell biology
Sikkema et al. An integrated cell atlas of the human lung in health and disease
Guo et al. SeqMule: automated pipeline for analysis of human exome/genome sequencing data
RU2764557C1 (ru) Способы и системы для трансформаций матриц, основанных на разреженных векторах
Chalmel et al. The Annotation, Mapping, Expression and Network (AMEN) suite of tools for molecular systems biology
CN104484582B (zh) 通过模块化选择实现的生物信息项目自动分析方法及系统
WO2022267867A1 (zh) 基因测序分析方法、装置、存储介质和计算机设备
Guzzi et al. coresnp: Parallel processing of microarray data
US20030004612A1 (en) Methods and computer program products for automated experimental design
WO2024082282A1 (zh) 基于医疗检测的生产排程方法及装置、电子设备、介质
Sebastian-Leon et al. Transcriptional changes through menstrual cycle reveal a global transcriptional derepression underlying the molecular mechanism involved in the window of implantation
Lubatti et al. CIARA: a cluster-independent algorithm for identifying markers of rare cell types from single-cell sequencing data
Petti et al. Mutation detection in thousands of acute myeloid leukemia cells using single cell RNA-sequencing
Mehta et al. Enabling data and compute intensive workflows in bioinformatics
Zhang et al. iSeq: web-based RNA-seq data analysis and visualization
García et al. A bioinformatics workflow to decipher transcriptomic data from vitamin D studies
Rodriguez et al. A scalable, flexible workflow for MethylCap-seq data analysis
CN104484581B (zh) 生物信息项目的自动化分析方法及系统
WO2020007349A1 (zh) 一种智能化敲除策略筛选的方法和一种基于多种敲除类型的敲除策略筛选方法
Van Der Byl et al. Single-cell transcriptome analysis of T cells
CN118072828B (zh) 一种多组学实验过程数据的管理方法、系统和存储介质
CN109448789A (zh) 一种基于perl语言的种群特异SNP位点的自动化分析方法
De Simone et al. Comparative Analysis of Commercial Single-Cell RNA Sequencing Technologies
US20240354607A1 (en) Systems and methods for visualizing a pattern in a dataset

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962465

Country of ref document: EP

Kind code of ref document: A1