WO2020007349A1 - 一种智能化敲除策略筛选的方法和一种基于多种敲除类型的敲除策略筛选方法 - Google Patents

一种智能化敲除策略筛选的方法和一种基于多种敲除类型的敲除策略筛选方法 Download PDF

Info

Publication number
WO2020007349A1
WO2020007349A1 PCT/CN2019/094765 CN2019094765W WO2020007349A1 WO 2020007349 A1 WO2020007349 A1 WO 2020007349A1 CN 2019094765 W CN2019094765 W CN 2019094765W WO 2020007349 A1 WO2020007349 A1 WO 2020007349A1
Authority
WO
WIPO (PCT)
Prior art keywords
knockout
strategy
screening
threshold
knockout strategy
Prior art date
Application number
PCT/CN2019/094765
Other languages
English (en)
French (fr)
Inventor
刘嘉惠
黎妃凤
Original Assignee
赛业(广州)生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赛业(广州)生物科技有限公司 filed Critical 赛业(广州)生物科技有限公司
Publication of WO2020007349A1 publication Critical patent/WO2020007349A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/40Network security protocols
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B40/00ICT specially adapted for biostatistics; ICT specially adapted for bioinformatics-related machine learning or data mining, e.g. knowledge discovery or pattern finding
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B50/00ICT programming tools or database systems specially adapted for bioinformatics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the field of biological information, in particular to a method for intelligent knockout strategy screening and a method for screening out knockout strategies based on multiple types of knockout.
  • ES gene targeting technology refers to the technology that uses the property of cellular DNA to undergo homologous recombination with exogenous DNA homologous sequences to specifically modify a gene of an organism.
  • This technology developed from the 1980s, people can fine-tune the genetic genetic information in a pre-designed way. For example, a scientist can target a specific gene to perform a knockout operation to make it inactive, and then study the function of that specific gene. After 30 years of development, these classic technologies have become the irreplaceable gold standard for mouse genetic modification.
  • the manual knockout strategy screening scheme takes a long time, it requires a lot of manpower to meet the demand for a knockout strategy scheme that can obtain many genes in one day.
  • the thinking mode of different experts is different.
  • the scheme selection is performed, if the gene targeting of scheme 1 and scheme 2 have similar results, there may be slight differences in the optimal knockout strategies selected by different experts, which will cause the same gene Inconsistent optimal strategies obtained at different times or by different experts.
  • the report writing specifications and format of the knockout strategy will vary.
  • the invention provides an intelligent knock-out strategy A screening method and a knockout strategy screening method based on a variety of knockout types save time and effort in the selection of knockout strategies, intelligent parallelization of the screening method, low error rate and high efficiency, and generate a unified format plan Knockout strategy report.
  • a method for intelligent knockout strategy screening specifically includes the following steps:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S20 filtering and filtering the raw data information of the knockout strategy
  • Step S30 assign scores to the knockout strategies that have not been removed after filtering
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the filtering strategy and the non-removed knockout strategy perform score assignment as parallelization and score assignment.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • step S20 multiple thresholds are set
  • the step S20 further includes the following steps:
  • Step S201 Set a plurality of thresholds, and compare and determine the knockout strategy with the thresholds;
  • step S202 a knockout strategy exceeding the threshold is eliminated
  • the knockout strategy exceeding the threshold value will no longer participate in comparison determination with other threshold values that have not been compared.
  • the threshold includes: a type threshold, a first length threshold, a first proportional threshold, a second proportional threshold, a position threshold, a second length threshold, an area range threshold, and a sequence complexity valve. value.
  • sequence complexity threshold includes a GC content range threshold, a sequence repeatability threshold, and a sequence homology threshold.
  • step S30 further includes the following steps:
  • Step S301 Obtain knockout policy data information that has not been removed after filtering
  • Step S302 process the knockout policy data information
  • step S303 a corresponding score is assigned according to the analysis and processing result of the knock-out strategy data information.
  • score assignment includes: type score assignment, first length score assignment, first scale score assignment, second scale score assignment, position score assignment, second length score assignment, and area range. Score assignment and sequence complexity score assignment.
  • sequence complexity score assignment includes a GC content score assignment, a sequence repetition score assignment, and a sequence homology score assignment.
  • step S40 further includes the following steps:
  • Step S401 obtaining knockout strategy data information that has been assigned a score
  • Step S402 collating and comparing the knockout strategy data information containing scores
  • step S403 the knockout strategy with the highest score is statistically generated.
  • the present invention also provides a system for intelligent knockout policy screening, which is characterized in that the system includes:
  • a data acquisition unit a filtering unit, a score assigning unit, a score sorting unit, and an information set summary unit;
  • a data obtaining unit configured to obtain raw data information of a knockout strategy
  • a filtering and filtering unit for filtering and filtering the raw data information of the knockout strategy
  • Score assigning unit which is used to assign scores to the knock-out strategy that has not been removed after filtering
  • Score sorting unit which is used to sort out the scores of knockout strategies that have been given scores
  • the information set summary unit is used to summarize and generate a knockout policy data information set.
  • a plurality of thresholds are set in the filtering and screening unit
  • the filtering and screening unit includes: a threshold comparison module and a rejection module;
  • a threshold comparison module configured to set multiple thresholds, and compare and determine a knockout strategy with the thresholds
  • a rejection module for rejecting a knockout strategy that exceeds the threshold is a rejection module for rejecting a knockout strategy that exceeds the threshold.
  • the score assigning unit includes: a first data acquisition module, a data analysis processing module, and a scoring module;
  • a first data obtaining module configured to obtain data of a knockout strategy that has not been removed after filtering
  • a scoring module is used to assign corresponding scores based on the analysis and processing results of the knockout strategy data information.
  • the score sorting unit includes:
  • a second data acquisition module configured to acquire knockout strategy data information that has been assigned a score
  • Score ranking module which is used to sort and compare the knockout strategy data information containing scores
  • the statistics generation module is used to statistically generate a knockout strategy with the highest score.
  • the present invention also provides a platform for intelligent knockout policy screening, including a processor, a memory, and a platform control program for intelligent knockout policy screening;
  • the processor executes the platform control program
  • the intelligent knockout policy screening platform control program is stored in the memory
  • the intelligent knockout policy screening platform control program implements the described Method steps for intelligent knockout strategy screening.
  • the present invention also provides a computer-readable storage medium storing a platform control program for intelligent knockout policy screening, and a platform control for intelligent knockout policy screening.
  • the program implements the method steps of the intelligent knockout strategy screening.
  • the present invention provides a method and system for screening knockout strategies based on multiple types of knockouts. Screening of types of knockout strategies saves time and effort, has a low screening error rate and high efficiency.
  • the present invention also provides a method for screening knockout strategies based on multiple knockout types.
  • the method specifically includes the following steps:
  • knockout strategies corresponding to the knockout type call the calculation formula of the knockout strategy matching the knockout strategy, and perform the screening and calculation in real time;
  • a knockout strategy report is generated in real time.
  • the present invention also provides a knockout strategy screening system based on multiple knockout types.
  • the system specifically includes:
  • Gene acquisition unit for acquiring basic information of a gene
  • a knockout strategy acquisition unit which is used to combine the basic information obtained by the gene acquisition unit to obtain various knockout strategies corresponding to the determined knockout type;
  • the screening calculation unit is configured to retrieve a knockout strategy screening calculation formula corresponding to the knockout strategy according to various knockout strategies corresponding to the knockout type, and perform screening and calculation in real time;
  • Analysis and sorting unit which is used to analyze and sort the data of screening and calculation results and store them in real time
  • a report generation unit is used to organize the results according to data analysis and generate a knockout strategy report in real time.
  • the basic information of the gene specifically includes: basic information such as gene name, length, belonging species, belonging chromosome, etc., as well as all transcript information of the gene, and information of encoded proteins;
  • the knockout strategy report shows detailed information of each knockout strategy, including the strategy map of the knockout strategy, the position of the knockout strategy in the gene, the distribution of the genes adjacent to the knockout strategy, and the knockout The sequential complexity of the strategy.
  • the gene acquisition unit further includes: a transcript information acquisition module and a protein encoding information acquisition module;
  • Transcript information acquisition module which is used to obtain all the transcripts of the gene, as well as the name and length of the transcripts;
  • Encoding protein information acquisition module is used to obtain all the encoded proteins of a gene, as well as the names and lengths of the encoded proteins.
  • the knockout strategy acquisition unit includes a calculation rule database module, a knockout type acquisition module, and a knockout policy type acquisition module;
  • Calculation rule database module which is used to store the rules required for screening and calculation of gene knockout strategies
  • the knockout type acquisition module is used to obtain the knockout type used by the knockout strategy that the user wants to obtain;
  • the knockout strategy type acquisition module is used to obtain various knockout strategies corresponding to the knockout type.
  • the screening calculation unit includes a screening calculation formula database module, a knockout strategy screening calculation formula entry module, a knockout strategy screening calculation formula extraction module, and a knockout strategy screening calculation module;
  • Screening calculation formula database module which is used to store various calculation formulas for knockout strategy screening
  • the knockout strategy screening calculation formula entry module is used to define different types of calculation formulas and enter them into the formula database according to the influencing factors required for the knockout strategy screening.
  • the knockout strategy screening calculation formula extraction module is used to extract the corresponding calculation formula according to the requirements of the knockout strategy screening to complete the screening calculation of the knockout strategy;
  • the knockout strategy screening calculation module is used to select rules based on the knockout strategy and select a suitable knockout strategy calculation formula, and then call this module to calculate each knockout strategy to select a knockout strategy that meets the conditions.
  • analysis and arrangement unit includes:
  • the screening result storage database module is used to store the knockout strategy that satisfies the knockout conditions after calculating the gene knockout strategy, and to store the relevant information of each knockout strategy that meets the conditions;
  • the knockout strategy screening result entry module is used to enter some of the results generated during the knockout strategy screening process
  • the knockout strategy screening result extraction module is used to extract the corresponding information for display according to the requirements of the gene knockout strategy report writing.
  • the report generation unit includes a knockout policy report template storage module, a knockout policy report generation module, a knockout policy final report information storage module, and a knockout policy final report information database.
  • Knockout policy report template storage module used to store knockout policy report templates of different knockout types
  • a knockout strategy report generation module is used to select a suitable report template according to the knockout type, and to retrieve corresponding data from the knockout strategy screening result storage database to generate a gene knockout strategy report;
  • the knockout policy final report information storage module is used to store all the information of the knockout policy report that has been generated
  • the knockout policy final report information database module is used to store all the information of the knockout policy report that has been generated.
  • the present invention also provides a knockout strategy screening platform based on multiple knockout types, including:
  • the processor executes the platform control program, the platform control program filtered based on a plurality of knockout types of knockout strategies is stored in the memory, and the plurality of knockout type-based knockout strategies are stored in the memory.
  • the screening platform control program implements the method steps of the knockout strategy screening based on multiple knockout types as described.
  • the present invention also provides a computer-readable storage medium storing a platform control program based on a plurality of knock-out types of knock-out policy screening, which is based on a variety of knock-outs.
  • the platform control program of the knockout strategy screening of the deletion type realizes the method steps of the knockout strategy screening based on a plurality of knockout types.
  • the present invention has the following beneficial effects:
  • the invention can greatly improve the output and work efficiency. Reports that could be completed in half a day now only take a few minutes; liberate manpower and material resources; implement an intelligent parallelized knockout strategy screening mode and intelligently write a knockout strategy report, thereby reducing Probability of error; Breaking down knowledge barriers, that is to say, researchers who do not have rich experience can quickly obtain gene knockout strategies; it helps to open new sales models and bring greater benefits. Under the bottleneck of the original technology The customer communicates the gene of interest to the strategist through sales. The strategist analyzes and obtains the optimal strategy for the knockout strategy and then sends it back to the customer through sales. The customer usually takes a day or two to understand the knockout strategy of the gene of interest. Analysis, you can get a complete knockout strategy analysis report in minutes, so you can instantly customize the gene targeting service of interest.
  • the system and method provided by the present invention can be flexibly applied to screening of multiple types of knockout strategies such as conditional knockout of ES targeting, extensive knockout of CRISPR / Cas9, and conditional knockout.
  • FIG. 1 is a schematic flowchart of an intelligent knockout policy screening method according to the present invention
  • FIG. 2 is a schematic flowchart of a second preferred embodiment of a method for intelligent knockout policy screening according to the present invention
  • FIG. 3 is a schematic flowchart of a third preferred embodiment of a method for intelligent knockout policy screening according to the present invention.
  • FIG. 4 is a schematic flowchart of a fourth preferred embodiment of a method for intelligent knockout policy screening according to the present invention.
  • FIG. 5 is a schematic flowchart of a fifth preferred embodiment of a method for intelligent knockout policy screening according to the present invention.
  • FIG. 6 is a schematic flowchart of a sixth preferred embodiment of a method for intelligent knockout policy screening according to the present invention.
  • FIG. 7 is a schematic flowchart of a seventh preferred embodiment of a method for intelligent knockout policy screening according to the present invention.
  • FIG. 8 is a schematic flowchart of an eighth preferred embodiment of a method for intelligent knockout policy screening according to the present invention.
  • FIG. 9 is a schematic flowchart of a ninth preferred embodiment of a method for intelligent knockout policy screening according to the present invention.
  • FIG. 10 is a schematic flowchart of a tenth preferred embodiment of a method for intelligent knockout policy screening according to the present invention.
  • FIG. 11 is a schematic flowchart of an eleventh preferred embodiment of a method for intelligent knockout policy screening according to the present invention.
  • FIG. 12 is a schematic diagram of a system architecture for intelligent knockout policy screening according to the present invention.
  • FIG. 13 is a schematic diagram of a module architecture of an intelligent knockout policy screening system according to the present invention.
  • FIG. 14 is a schematic structural diagram of a terminal provided by an embodiment of a method and a system for intelligent knockout policy screening according to the present invention.
  • FIG. 15 is a schematic diagram of a system architecture for screening of knockout strategies based on multiple knockout types according to the present invention.
  • FIG. 16 is a schematic diagram of a module architecture of a system for filtering strategies based on multiple types of knockouts according to the present invention.
  • FIG. 17 is a schematic flowchart of a method for screening a knockout strategy based on multiple knockout types according to the present invention.
  • FIG. 18 is a schematic diagram of a knockout strategy screening platform architecture based on multiple knockout types according to the present invention.
  • FIG. 19 is a schematic diagram of a computer-readable storage medium architecture according to an embodiment of the present invention.
  • the directional indication is only used to explain in a specific posture (as shown in the accompanying drawings) (Shown) the relative positional relationship and movement of each component, etc., if the specific posture changes, the directivity indication will change accordingly.
  • the method for intelligent knockout policy screening of the present invention is applied to one or more terminals or servers.
  • the terminal is a device capable of automatically performing numerical calculations and / or information processing in accordance with an instruction set or stored in advance.
  • Its hardware includes, but is not limited to, a microprocessor, an Application Specific Integrated Circuit (ASIC), Programmable gate array (Field-Programmable Gate Array, FPGA), digital processor (Digital Signal Processor, DSP), embedded equipment, etc.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • DSP Digital Signal Processor
  • the terminal may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal can perform human-computer interaction with a customer through a keyboard, a mouse, a remote control, a touchpad, or a voice-controlled device.
  • the present invention provides a method, a system, a platform, and a storage medium for intelligent knockout policy screening in order to realize intelligent knockout policy screening.
  • FIG. 1 it is a flowchart of a method for intelligent knockout policy screening provided by an embodiment of the present invention.
  • the intelligent knockout policy screening method can be applied to a terminal with a display function or a fixed terminal, and the terminal is not limited to a personal computer, a smart phone, a tablet computer, or a camera with a camera installed. Desktop or all-in-one.
  • the method for intelligent knockout policy screening can also be applied to a hardware environment composed of a terminal and a server connected to the terminal through a network.
  • the network includes, but is not limited to: a wide area network, a metropolitan area network, or a local area network.
  • the intelligent knockout policy screening method of the embodiment of the present invention may be executed by a server, a terminal, or a server and a terminal.
  • the intelligent knockout policy screening function provided by the method of the present invention may be directly integrated on the terminal, or a client for implementing the method of the present invention may be installed.
  • the method provided by the present invention can also be run on a device such as a server in the form of Software Development Kit (SDK), and provide an intelligent knockout policy screening function interface, terminal or other device in the form of SDK.
  • SDK Software Development Kit
  • the function of intelligent knockout policy filtering can be realized through the provided interface.
  • the present invention provides a method for intelligent knockout policy screening.
  • the method specifically includes the following steps. According to different requirements, the order of the steps in the flowchart can be changed, and some steps can be omitted.
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S20 filtering and filtering the raw data information of the knockout strategy
  • Step S30 assign scores to the knockout strategies that have not been removed after filtering
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the original data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the filtering strategy and the non-removed knockout strategy perform score assignment as parallelization and score assignment.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • FIG. 2 it is a second preferred embodiment of the present invention.
  • a plurality of thresholds are set in the step S20;
  • the step S20 further includes the following steps:
  • Step S201 Set a plurality of thresholds, and compare and determine the knockout strategy with the thresholds;
  • step S202 a knockout strategy exceeding the threshold is eliminated
  • the knockout strategy exceeding the threshold value is directly eliminated, and will no longer participate in comparison determination with other threshold values that have not been compared. If the knock-out strategy of the threshold is met, the knock-out strategy is retained, and then it is involved in comparison and determination with other thresholds that have not been judged. Until it is determined that all thresholds are met, it is finally retained and then proceeds to the next step. Steps.
  • the threshold includes: type threshold, first length threshold, first proportional threshold, second proportional threshold, position threshold, second length threshold, area range threshold, and sequence Complexity threshold.
  • step S20 multiple thresholds are set in step S20, and the knockout strategy is compared with the threshold value, including the knockout strategy and the type threshold, the first length threshold, and the first proportional threshold. Compare and determine any threshold of the second proportional threshold, the position threshold, the second length threshold, the area range threshold, and the sequence complexity threshold;
  • the knockout strategy Exceeds any one of the type threshold, the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the area range threshold, and the sequence complexity threshold
  • the knockout strategy will no longer participate in the comparison and determination with other unconfirmed thresholds. If it meets the type threshold, the first length threshold, the first proportional threshold, the second proportional threshold, and the position valve Value, the second length threshold, the regional range threshold, and the sequence complexity threshold, then the corresponding knockout strategy is retained, and then participates in the comparison judgment with other unconfirmed thresholds until the judgment meets all
  • the threshold value is finally retained and then proceeds to the next operation step.
  • the knock-out strategy is not equal to the type threshold, it is deleted, otherwise the knock-out strategy data information is retained, that is, if the knock-out strategy is retained, it continues with the first length threshold and the first proportional valve. Value, the second proportional threshold, the position threshold, the second length threshold, the area range threshold, and the sequence complexity threshold for comparison and determination, until it is determined that all the remaining thresholds are met, then they are finally retained and proceed to the next operation. Step; if the knockout strategy is eliminated, it will no longer participate in the same first length threshold, first proportional threshold, second proportional threshold, position threshold, second length threshold, area range threshold, and sequence Compare the complexity threshold.
  • the knockout strategy is less than the first length threshold, it will be eliminated, otherwise the knockout strategy data information will be retained; that is, if the knockout strategy is retained, it will continue to be associated with the type threshold, the first proportional threshold, and the second proportional valve. Value, position threshold, second length threshold, area range threshold, and sequence complexity threshold for comparison and determination, until it is determined that all the remaining thresholds are met, it will be finally retained and proceed to the next operation step; if the knockout After the strategy is eliminated, it will no longer participate in the comparison and determination of the same type of threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the regional range threshold, and the sequence complexity threshold.
  • the knockout strategy is less than the first proportional threshold, it will be eliminated, otherwise the data of the knockout strategy will be retained; that is, if the knockout strategy is retained, it will continue to match the first length threshold, type threshold, and second proportional valve. Value, position threshold, second length threshold, area range threshold, and sequence complexity threshold for comparison and determination, until it is determined that all the remaining thresholds are met, it will be finally retained and proceed to the next operation step; if the knockout After the strategy is eliminated, it will no longer participate in the comparison and determination with the first length threshold, type threshold, second proportional threshold, position threshold, second length threshold, regional range threshold, and sequence complexity threshold.
  • the knockout strategy is less than the second proportional threshold, it will be deleted, otherwise the data of the knockout strategy will be retained; that is, if the knockout strategy is retained, it will continue to match the first length threshold, the first proportional threshold, and the type valve. Value, position threshold, second length threshold, area range threshold, and sequence complexity threshold for comparison and determination, until it is determined that all the remaining thresholds are met, it will be finally retained and proceed to the next operation step; if the knockout After the strategy is eliminated, it will no longer participate in the comparison and determination with the first length threshold, the first proportional threshold, the type threshold, the position threshold, the second length threshold, the area range threshold, and the sequence complexity threshold.
  • the knockout strategy If the knockout strategy is behind the position threshold, it will be deleted, otherwise the data of the knockout strategy will be retained; that is, if the knockout strategy is retained, it will continue to be compared with the first length threshold, the first proportional threshold, and the second proportional
  • the threshold value, type threshold value, second length threshold value, region range threshold value, and sequence complexity threshold value are compared and judged until it is determined that all the remaining threshold values are met, then they are finally retained, and then the next operation step is performed; After the removal strategy is eliminated, it will no longer participate in the same process as the first length threshold, the first proportional threshold, the second proportional threshold, the type threshold, the second length threshold, the regional range threshold, and the sequence complexity threshold. Contrast judgment.
  • the knockout strategy is greater than the second length threshold, it will be deleted; otherwise, the knockout strategy data information will be retained; that is, if the knockout strategy is retained, it will continue to match the first length threshold, the first proportional threshold, and the second The proportional threshold, position threshold, type threshold, regional range threshold, and sequence complexity threshold are compared and judged until it is determined that all the remaining thresholds are met, then they are finally retained and then proceed to the next operation step; if the knockout After the strategy is eliminated, it will no longer participate in the comparison and determination with the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the type threshold, the regional range threshold, and the sequence complexity threshold.
  • the knockout strategy is within the regional threshold, it will be deleted, otherwise the data of the knockout strategy will be retained; that is, if the knockout strategy is retained, it will continue to be compared with the first length threshold, the first proportional threshold, and the second The proportional threshold, the position threshold, the second length threshold, the type threshold, and the sequence complexity threshold are compared and judged until it is determined that all the remaining thresholds are met, and then they are finally retained, and then the next operation step is performed. After the removal strategy is eliminated, it will no longer participate in the comparison with the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the type threshold, and the sequence complexity threshold. determination.
  • the knockout strategy If the knockout strategy exceeds the sequence complexity threshold, it will be deleted, otherwise the knockout strategy data information will be retained; that is, if the knockout strategy is retained, it will continue to be compared with the first length threshold, the first proportional threshold, and the second The proportional threshold, the position threshold, the second length threshold, the area range threshold, and the type threshold are compared and judged until it is determined that all the remaining thresholds are met, then they are finally retained and then proceed to the next operation step; if the knockout After the strategy is eliminated, it will no longer participate in the comparison and determination with the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the area range threshold, and the type threshold.
  • exon type filtering assuming exons are divided into several types, if the exon in the knockout area does not belong to one of the type thresholds, the knockout strategy is considered to exceed the requirements, and is Elimination will no longer participate in the comparison with the threshold; if the exon in the knockout region does not belong to one of the type thresholds, it will be retained and proceed to the next operation step.
  • the sequence complexity filtering includes: GC content filtering, sequence repetition filtering, and sequence homology filtering.
  • the second preferred embodiment of the present invention specifically includes the following steps:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S201 Set a plurality of thresholds, and compare and determine the knockout strategy with the thresholds;
  • step S202 a knockout strategy exceeding the threshold is eliminated
  • step S20 in the embodiment of the present invention performs filtering and filtering on the raw data information of the knockout strategy
  • Step S30 assign scores to the knockout strategies that have not been removed after filtering
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the filtering strategy and the non-removed knockout strategy perform score assignment as parallelization and score assignment.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • FIG. 3 it is a third preferred embodiment of the present invention.
  • the third preferred embodiment is a further embodiment of the second preferred embodiment.
  • a plurality of thresholds are set, including a GC content range threshold;
  • the step S20 further includes the following steps:
  • Step S201 setting a plurality of thresholds, and comparing and judging a knockout strategy and the threshold value, including comparing and judging a knockout strategy and the GC content range threshold value;
  • step S202 a knockout strategy exceeding the threshold is eliminated
  • the knockout strategy exceeding the threshold value is directly eliminated, and will no longer participate in comparison determination with other threshold values that have not been compared. If the knock-out strategy of the threshold is met, the knock-out strategy is retained, and then it is involved in comparison and determination with other thresholds that have not been judged. Until it is determined that all thresholds are met, it is finally retained and then proceeds to the next step. Steps.
  • the threshold includes: type threshold, first length threshold, first proportional threshold, second proportional threshold, position threshold, second length threshold, area range threshold, and GC Content range threshold.
  • step S20 multiple thresholds are set in step S20, and the knockout strategy is compared with the threshold value, including the knockout strategy and the type threshold, the first length threshold, and the first proportional threshold. Compare and determine any one of the second proportional threshold, position threshold, second length threshold, regional range threshold, and GC content range threshold;
  • the knock-out strategy is related to the type threshold, the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the area range threshold judgment situation, and the second
  • the preferred embodiment is the same, and will not be repeated in the third preferred embodiment.
  • the knockout strategy If the knockout strategy is not within the GC content range threshold, it will be deleted; otherwise, the knockout strategy data information will be retained; that is, if the knockout strategy is retained, it will continue to match the first length threshold, the first proportional threshold, The second proportional threshold value, position threshold value, second length threshold value, area range threshold value, and type threshold value are compared and determined until it is determined that all the remaining threshold values are met, and then they are finally retained, and then proceed to the next operation step; if this After the knockout strategy is eliminated, it will no longer participate in the comparison with the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the area range threshold, and the type threshold. determination.
  • exon type filtering assuming exons are divided into several types, if the exon in the knockout area does not belong to one of the type thresholds, the knockout strategy is considered to exceed the requirements, and is Elimination will no longer participate in the comparison with the threshold; if the exon in the knockout region does not belong to one of the type thresholds, it will be retained and proceed to the next operation step.
  • the third preferred embodiment of the present invention specifically includes the following steps:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S201 setting a plurality of thresholds, and comparing and judging a knockout strategy and the threshold value, including comparing and judging a knockout strategy and the GC content range threshold value;
  • step S202 a knockout strategy exceeding the threshold is eliminated
  • step S20 in the embodiment of the present invention performs filtering and filtering on the raw data information of the knockout strategy
  • Step S30 assign scores to the knockout strategies that have not been removed after filtering, including GC content score assignments;
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the filtering strategy and the non-removed knockout strategy perform score assignment as parallelization and score assignment.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • FIG. 4 it is a fourth preferred embodiment of the present invention.
  • the fourth preferred embodiment is a further embodiment of the second preferred embodiment.
  • a plurality of thresholds are set, including a sequence repetition threshold;
  • the step S20 further includes the following steps:
  • Step S201 setting a plurality of thresholds, and comparing and judging a knockout strategy and the threshold value, including comparing and judging a knockout strategy and the sequence repetition threshold value;
  • step S202 a knockout strategy exceeding the threshold is eliminated
  • the knockout strategy exceeding the threshold value is directly eliminated, and will no longer participate in comparison determination with other threshold values that have not been compared. If the knock-out strategy of the threshold is met, the knock-out strategy is retained, and then it is involved in comparison and determination with other thresholds that have not been compared. Until it is determined that all thresholds are met, it is finally retained and then proceeds to the next Steps.
  • the threshold includes: type threshold, first length threshold, first proportional threshold, second proportional threshold, position threshold, second length threshold, area range threshold, and sequence Repeatability threshold.
  • step S20 multiple thresholds are set in step S20, and the knockout strategy is compared with the threshold value, including the knockout strategy and the type threshold, the first length threshold, and the first proportional threshold. Compare and determine any one of the second proportional threshold, position threshold, second length threshold, region range threshold, and sequence repetition threshold;
  • the knockout strategy Exceeds any one of the type threshold, the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the area range threshold, and the sequence repetition threshold
  • the knockout strategy will no longer participate in the comparison and determination with other unconfirmed thresholds. If it meets the type threshold, the first length threshold, the first proportional threshold, the second proportional threshold, and the position valve Value, the second length threshold, the region range threshold, and the sequence repetition threshold, then the corresponding knock-out strategy is retained, and then participate in the comparison and determination with other unconfirmed thresholds until the judgment meets all
  • the threshold value is finally retained and then proceeds to the next operation step.
  • the knock-out strategy is related to the type threshold, the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the area range threshold judgment situation, and the second
  • the preferred embodiment is the same and will not be described in detail in the fourth preferred embodiment.
  • the knockout strategy If the knockout strategy is greater than the sequence repetition threshold, it will be rejected, otherwise the knockout strategy data information will be retained; that is, if the knockout strategy is retained, it will continue to be compared with the first length threshold, the first proportional threshold, and the second The proportional threshold, the position threshold, the second length threshold, the area range threshold, and the type threshold are compared and judged until it is determined that all the remaining thresholds are met, then they are finally retained and then proceed to the next operation step; if the knockout After the strategy is eliminated, it will no longer participate in the comparison and determination with the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the area range threshold, and the type threshold.
  • exon type filtering assuming exons are divided into several types, if the exon in the knockout area does not belong to one of the type thresholds, the knockout strategy is considered to exceed the requirements, and is Elimination will no longer participate in the comparison with the threshold; if the exon in the knockout region does not belong to one of the type thresholds, it will be retained and proceed to the next operation step.
  • the fourth preferred embodiment of the present invention specifically includes the following steps:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S201 setting a plurality of thresholds, and comparing and judging the knockout strategy with the thresholds, including comparing and determining the raw data information of the knockout strategy with the sequence repetition threshold;
  • step S202 a knockout strategy exceeding the threshold is eliminated
  • step S20 in the embodiment of the present invention performs filtering and filtering on the raw data information of the knockout strategy
  • Step S30 assign scores to the knockout strategies that have not been removed after filtering, including assigning sequence repetition scores;
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the filtering strategy and the non-removed knockout strategy perform score assignment as parallelization and score assignment.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • FIG. 5 it is a fifth preferred embodiment of the present invention.
  • the fifth preferred embodiment is a further embodiment of the second preferred embodiment.
  • multiple thresholds are set, including a sequence homology threshold;
  • the step S20 further includes the following steps:
  • Step S201 setting a plurality of thresholds, and comparing and judging a knockout strategy and the threshold value, including comparing and judging a knockout strategy and the sequence homology threshold value;
  • step S202 a knockout strategy exceeding the threshold is eliminated
  • the knockout strategy that exceeds the threshold value is directly rejected, and will no longer participate in the comparison judgment with other threshold values that have not been compared. If the knock-out strategy of the threshold is met, the knock-out strategy is retained, and then it is involved in comparison and determination with other thresholds that have not been judged. Until it is determined that all thresholds are met, it is finally retained and then proceeds to the next step. Steps.
  • the threshold includes: type threshold, first length threshold, first proportional threshold, second proportional threshold, position threshold, second length threshold, area range threshold, and sequence Threshold of homology.
  • step S20 multiple thresholds are set in step S20, and the knockout strategy is compared with the threshold value, including the knockout strategy and the type threshold, the first length threshold, and the first proportional threshold. Compare and determine any one of the second proportional threshold, position threshold, second length threshold, region range threshold, and sequence homology threshold;
  • the threshold knockout strategy will no longer participate in the comparison and determination with other unconfirmed thresholds. If it meets the type threshold, the first length threshold, the first proportional threshold, the second proportional threshold, and the position One of the thresholds, the second length threshold, the regional range threshold, and the sequence homology threshold will retain the corresponding knockout strategy, and then participate in the comparison and determination with other unconfirmed thresholds until the determination If all the thresholds are met, they are finally retained and then proceed to the next operation step.
  • the knock-out strategy is related to the type threshold, the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the area range threshold judgment situation, and the second
  • the preferred embodiment is the same and will not be described in detail in the fourth preferred embodiment.
  • the knockout strategy is greater than the sequence homology threshold, it will be deleted, otherwise the knockout strategy data information will be retained; that is, if the knockout strategy is retained, it will continue with the first length threshold, the first proportional threshold, the first The two proportional thresholds, position thresholds, second length thresholds, area range thresholds, and type thresholds are compared and judged until it is determined that all the remaining thresholds are met, then they are finally retained and then proceed to the next operation step; After the elimination strategy is eliminated, it will no longer participate in the comparison and determination with the first length threshold, the first proportional threshold, the second proportional threshold, the position threshold, the second length threshold, the area range threshold, and the type threshold. .
  • exon type filtering assuming exons are divided into several types, if the exon in the knockout area does not belong to one of the type thresholds, the knockout strategy is considered to exceed the requirements, and is Elimination will no longer participate in the comparison with the threshold; if the exon in the knockout region does not belong to one of the type thresholds, it will be retained and proceed to the next operation step.
  • the fifth preferred embodiment of the present invention specifically includes the following steps:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S201 setting a plurality of thresholds, and comparing and determining the knockout strategy with the threshold value, including comparing and determining the raw data information of the knockout strategy with the sequence homology threshold value;
  • step S202 a knockout strategy exceeding the threshold is eliminated
  • step S20 in the embodiment of the present invention performs filtering and filtering on the raw data information of the knockout strategy
  • Step S30 assign scores to the knockout strategies that have not been eliminated after filtering, including assigning sequence homology scores;
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the filtering strategy and the non-removed knockout strategy perform score assignment as parallelization and score assignment.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the statistically generating the knockout policy data information set includes generating a report of the knockout policy data information analysis processing results.
  • FIG. 6 it is a sixth preferred embodiment of the present invention.
  • step S30 the following steps are further included:
  • Step S301 Obtain knockout policy data information that has not been removed after filtering
  • Step S302 process the knockout policy data information
  • step S303 a corresponding score is assigned according to the analysis and processing result of the knock-out strategy data information.
  • the remaining knockout strategies are analyzed and processed, such as: analyzing the type of the knockout strategy, analyzing the length type of the knockout strategy, and analyzing the knockout strategy.
  • a series of types that need to be scored such as the proportional relationship of the deletion strategy, the position relationship of the analysis elimination strategy, the type of the area range of the analysis elimination strategy, and the analysis of the sequence complexity of the elimination strategy.
  • the type of score assignment is performed at the same time as the removal strategy, and then a specific score is assigned according to the analysis and processing result of the knockout strategy.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • scores are assigned to the knock-out strategies that have not been removed after filtering, and scores are assigned in parallel.
  • the remaining knockout strategy will be sent to the scoring mechanism, and scores will be assigned at the same time, and scores will be assigned to the types that need to be scored at the same time.
  • the score assignment includes: type score assignment, first length score assignment, first scale score assignment, second scale score assignment, position score assignment, second length score assignment, and area range. Score assignment and sequence complexity score assignment.
  • type scores are assigned to the knockout strategies that have not been removed after filtering (that is, to the remaining knockout strategies), different scores are assigned according to different types of knockout strategies, and then the first Length scores or first scale scores or second scale scores or position scores or second length scores or range scores or sequence complexity scores until all kinds of scores Both assign scores to knockout strategies.
  • the score assignment may assign scores to one or more knockout strategies simultaneously.
  • the scoring mechanism scores the knockout strategy, specifically:
  • each type is assigned a different score (SN 1 , SN 2 ... SN n ).
  • intron scores In the same way, other intron scores, sequence scores, and position size scores are assigned in the same way as exon type scores. The scores for each mode are assigned first, and then The assigned points go to the next step.
  • the sequence complexity score includes a GC content score, a sequence repetition score, and a sequence homology score.
  • the sixth preferred embodiment of the present invention specifically includes the following steps:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S20 filtering and filtering the raw data information of the knockout strategy
  • Step S301 Obtain knockout policy data information that has not been removed after filtering
  • Step S302 process the knockout policy data information
  • step S303 a corresponding score is assigned according to the analysis and processing result of the knock-out strategy data information.
  • step S30 in the embodiment of the present invention assigns scores to the knockout strategies that have not been removed after filtering
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • FIG. 7 it is a seventh preferred embodiment of the present invention.
  • the seventh preferred embodiment is a further embodiment of the sixth preferred embodiment.
  • step S30 the following steps are further included:
  • Step S301 Obtain knockout policy data information that has not been removed after filtering
  • Step S302 process the knockout policy data information
  • step S303 according to the analysis and processing result of the knock-out strategy data information, corresponding scores are assigned, including GC content scores.
  • the remaining knockout strategies are analyzed and processed, such as: analyzing the type of the knockout strategy, analyzing the length type of the knockout strategy, and analyzing the knockout strategy.
  • a series of types that need to be scored such as the proportional relationship of the deletion strategy, the position relationship of the analysis elimination strategy, the type of the area range of the analysis elimination strategy, and the analysis of the sequence complexity of the elimination strategy.
  • the removal strategy is given the type of score assignment at the same time, and then the specific GC content score is assigned according to the analysis result of the knockout strategy.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the score is assigned to the knock-out strategy that has not been removed after filtering, and the score is assigned in parallel.
  • the remaining knockout strategy will be sent to the scoring mechanism, and scores will be assigned at the same time, and scores will be assigned to the types that need to be scored at the same time.
  • the score assignment includes: type score assignment, first length score assignment, first scale score assignment, second scale score assignment, position score assignment, second length score assignment, and area range. Score assignment and GC content score assignment.
  • type scores are assigned to the knockout strategies that have not been removed after filtering (that is, to the remaining knockout strategies), different scores are assigned according to different types of knockout strategies, and then they are firstly assigned.
  • Length score or first scale score or second scale score or position score or second length score or range score or GC content score Points are assigned to knockout strategies.
  • the score assignment may assign scores to one or more knockout strategies simultaneously.
  • the scoring mechanism scores the knockout strategy, specifically:
  • each type is assigned a different score (SN 1 , SN 2 ... SN n ).
  • intron scores In the same way, other intron scores, sequence scores, and position size scores are assigned in the same way as exon type scores. The scores for each mode are assigned first, and then The assigned points go to the next step.
  • the seventh preferred embodiment of the present invention specifically includes the following steps:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S20 filtering and filtering the raw data information of the knockout strategy, including comparing and determining the raw data information of the knockout strategy and the threshold value of the GC content range;
  • Step S301 Obtain knockout policy data information that has not been removed after filtering
  • Step S302 process the knockout policy data information
  • step S303 according to the analysis and processing result of the knock-out strategy data information, corresponding scores are assigned, including GC content scores.
  • step S30 in the embodiment of the present invention assigns scores to the knockout strategies that have not been removed after filtering
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the statistically generating the knockout policy data information set includes generating a report of the knockout policy data information analysis processing results.
  • FIG. 8 it is an eighth preferred embodiment of the present invention.
  • the eighth preferred embodiment is a further embodiment of the sixth preferred embodiment.
  • step S30 the following steps are further included:
  • Step S301 Obtain knockout policy data information that has not been removed after filtering
  • Step S302 process the knockout policy data information
  • step S303 according to the analysis and processing result of the knock-out strategy data information, corresponding scores are assigned, including the sequence repetition score.
  • the remaining knockout strategies are analyzed and processed, such as: analyzing the type of the knockout strategy, analyzing the length type of the knockout strategy, and analyzing the knockout strategy.
  • a series of types that need to be scored such as the proportional relationship of the deletion strategy, the position relationship of the analysis elimination strategy, the type of the area range of the analysis elimination strategy, and the analysis of the sequence complexity of the elimination strategy.
  • the division strategy is given the type of score assignment at the same time, and then the specific sequence repetition score is assigned according to the analysis result of the knockout strategy.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the score is assigned to the knock-out strategy that has not been removed after filtering, and the score is assigned in parallel.
  • the remaining knockout strategy will be sent to the scoring mechanism, and scores will be assigned at the same time, and scores will be assigned to the types that need to be scored at the same time.
  • the score assignment includes: type score assignment, first length score assignment, first scale score assignment, second scale score assignment, position score assignment, second length score assignment, and area range. Score assignment and sequence repetition score assignment.
  • type scores are assigned to the knockout strategies that have not been removed after filtering (that is, to the remaining knockout strategies), different scores are assigned according to different types of knockout strategies, and then they are firstly assigned. Length score or first proportional score or second proportional score or position score or second length score or range score or sequence repetition score until all kinds of scores are assigned Both assign scores to knockout strategies.
  • the score assignment may assign scores to one or more knockout strategies simultaneously.
  • the scoring mechanism scores the knockout strategy, specifically:
  • each type is assigned a different score (SN 1 , SN 2 ... SN n ).
  • intron scores In the same way, other intron scores, sequence scores, and position size scores are assigned in the same way as exon type scores. The scores for each mode are assigned first, and then The assigned points go to the next step.
  • the eighth preferred embodiment of the present invention specifically includes the following steps:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S20 filtering and filtering the raw data information of the knockout strategy, including comparing and determining the raw data information of the knockout strategy and the sequence repetition threshold;
  • Step S301 Obtain knockout policy data information that has not been removed after filtering
  • Step S302 process the knockout policy data information
  • step S303 according to the analysis and processing result of the knock-out strategy data information, corresponding scores are assigned, including the sequence repetition score.
  • step S30 in the embodiment of the present invention assigns scores to the knockout strategies that have not been removed after filtering
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • FIG. 9 it is a ninth preferred embodiment of the present invention.
  • the ninth preferred embodiment is a further embodiment of the sixth preferred embodiment.
  • step S30 the following steps are further included:
  • Step S301 Obtain knockout policy data information that has not been removed after filtering
  • Step S302 process the knockout policy data information
  • step S303 according to the analysis and processing result of the knockout strategy data information, corresponding scores are assigned, including sequence homology scores.
  • the remaining knockout strategies are analyzed and processed, such as: analyzing the type of the knockout strategy, analyzing the length type of the knockout strategy, and analyzing the knockout strategy.
  • a series of types that need to be scored such as the proportional relationship of the deletion strategy, the position relationship of the analysis elimination strategy, the type of the area range of the analysis elimination strategy, and the analysis of the sequence complexity of the elimination strategy.
  • the type of the score assignment is performed at the same time as the removal strategy, and then a specific sequence homology score is assigned according to the analysis result of the knockout strategy.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the score is assigned to the knock-out strategy that has not been removed after filtering, and the score is assigned in parallel.
  • the remaining knockout strategy will be sent to the scoring mechanism, and scores will be assigned at the same time, and scores will be assigned to the types that need to be scored at the same time.
  • the score assignment includes: type score assignment, first length score assignment, first scale score assignment, second scale score assignment, position score assignment, second length score assignment, and area range. Score assignment and sequence homology score assignment.
  • type scores are assigned to the knockout strategies that have not been removed after filtering (that is, to the remaining knockout strategies), different scores are assigned according to different types of knockout strategies, and then they are firstly assigned. Length score or first proportional score or second proportional score or position score or second length score or regional range score or sequence homology score until all kinds of scores Both assign points to the knockout strategy.
  • the score assignment may assign scores to one or more knockout strategies simultaneously.
  • the scoring mechanism scores the knockout strategy, specifically:
  • each type is assigned a different score (SN 1 , SN 2 ... SN n ).
  • intron scores In the same way, other intron scores, sequence scores, and position size scores are assigned in the same way as exon type scores. The scores for each mode are assigned first, and then The assigned points go to the next step.
  • the ninth preferred embodiment of the present invention specifically includes the following steps:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S20 filtering and filtering the raw data information of the knockout strategy, including comparing and determining the raw data information of the knockout strategy and the sequence homology threshold;
  • Step S301 Obtain knockout policy data information that has not been removed after filtering
  • Step S302 process the knockout policy data information
  • step S303 according to the analysis and processing result of the knockout strategy data information, corresponding scores are assigned, including sequence homology scores.
  • step S30 in the embodiment of the present invention assigns scores to the knockout strategies that have not been removed after filtering
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • FIG. 10 it is a tenth preferred embodiment of the present invention.
  • step S40 the following steps are further included:
  • Step S401 obtaining knockout strategy data information that has been assigned a score
  • Step S402 collating and comparing the knockout strategy data information containing scores
  • step S403 the knockout strategy with the highest score is statistically generated.
  • the scores are assigned to the knock-out strategies that have not been removed after filtering.
  • the collation strategy data information containing the scores is sorted and compared, that is, Sort the scores of the knockout strategies, and finally generate the knockout strategy with the highest score.
  • filtering and filtering the raw data information of the knockout strategy are applicable to all the above embodiments.
  • the tenth preferred embodiment of the present invention specifically includes the following steps:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S20 filtering and filtering the raw data information of the knockout strategy
  • Step S30 assign scores to the knockout strategies that have not been removed after filtering
  • Step S401 obtaining knockout strategy data information that has been assigned a score
  • Step S402 collating and comparing the knockout strategy data information containing scores
  • step S403 the knockout strategy with the highest score is statistically generated.
  • step S40 in the embodiment of the present invention sorts out the situation of the knockout strategy points that have been given points
  • step S50 the knockout policy data information set is collected and generated.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the filtering strategy and the non-removed knockout strategy perform score assignment as parallelization and score assignment.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • FIG. 11 it is an eleventh preferred embodiment of the present invention.
  • gene Z has 4 exons, namely Exon1, Exon2, Exon3, and Exon4, and the coding region is Exon1 ⁇ Exon4. Therefore, possible knockout strategies include knockout. Exon1, Exon2, Exon3, Exon4, Exon1 ⁇ Exon2, Exon1 ⁇ Exon3, Exon1 ⁇ Exon4, Exon2 ⁇ Exon3, Exon2 ⁇ Exon4, Exon3 ⁇ Exon4 10 knockout strategies.
  • the knockout strategies that exceed the threshold value are directly rejected, and will no longer participate in the thresholds that have not been compared with other thresholds Contrast judgment. If the knock-out strategy of the threshold is met, the knock-out strategy is retained, and then it is involved in comparison and determination with other thresholds that have not been judged. Until it is determined that all thresholds are met, it is finally retained and then proceeds to the next step. Steps.
  • Exon type filtering assuming exons are divided into several types, if the exon in the knockout area does not belong to one of the type thresholds, the knockout strategy is considered to be beyond the requirements, and then eliminated, and No longer participate in the comparison with the threshold value; if the exon in the knockout region does not belong to one of the type thresholds, it will be retained and proceed to the next operation step.
  • Exon1 completes the filtering process and satisfies all the conditions, and is retained.
  • a candidate knockout strategy it will enter the scoring process (ie, the scoring mechanism and the point assigning mechanism), and score its corresponding knockout strategy, such as the above.
  • Each type of the score is assigned one by one, and scores are assigned (ie, scored) according to the parallelization of various indicators.
  • the remaining knockout strategy will be sent to the scoring mechanism, and points will be assigned at the same time, and points will be assigned at the same time for each type that needs to be scored.
  • intron scores are assigned in the same way as exon-type scores.
  • the scores assigned to all the score modes are SM 2 , SF 3, ... SX N.
  • the strategies that were retained after completing the filtering process included the deletion of Exon1 to Exon2, the deletion of Exon2 to Exon3, the deletion of Exon2 to Exon4, and the deletion of Exon3 to Exon4.
  • the strategy continued into the scoring process, and the final scores were FS2, FS3, and FS4.
  • an intelligent report writing system is used to output a complete ES conditional knockout strategy report of gene z, that is, statistically generating the knockout strategy data information set. For example, a report of the analysis result of the knockout strategy data information is generated.
  • the knockout strategy is all combinations of gene knockout strategies.
  • the filtering and screening performed is a parallelized filtering and screening; the knock-out strategy after the filtering and filtering is not eliminated is given a score as parallelized and the score is given.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the present invention provides an intelligent knockout policy screening system.
  • the system specifically includes:
  • a data acquisition unit a filtering unit, a score assigning unit, a score sorting unit, and an information set summary unit;
  • a data obtaining unit configured to obtain raw data information of a knockout strategy
  • a filtering and filtering unit for filtering and filtering the raw data information of the knockout strategy
  • Score assigning unit which is used to assign scores to the knock-out strategy that has not been removed after filtering
  • Score sorting unit which is used to sort out the scores of knockout strategies that have been given scores
  • the information set summary unit is used to summarize and generate a knockout policy data information set.
  • the raw data information of the knockout strategy is all combinations of the gene knockout strategy.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the filtering strategy and the non-removed knockout strategy perform score assignment as parallelization and score assignment.
  • the remaining knockout strategy will be sent to the scoring mechanism, and points will be assigned at the same time, and points will be assigned at the same time for each type that needs to be scored.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • a plurality of thresholds are set in the filtering and screening unit
  • the filtering and screening unit includes: a threshold comparison module and a rejection module;
  • a threshold comparison module configured to set multiple thresholds, and compare and determine a knockout strategy with the thresholds
  • a rejection module for rejecting a knockout strategy that exceeds the threshold is a rejection module for rejecting a knockout strategy that exceeds the threshold.
  • the knockout strategy exceeding the threshold value is directly eliminated, and will no longer participate in comparison determination with other threshold values that have not been compared. If the knock-out strategy of the threshold is met, the knock-out strategy is retained, and then it is involved in comparison and determination with other thresholds that have not been judged. Until it is determined that all thresholds are met, it is finally retained and then proceeds to the next step. Steps.
  • the threshold comparison module includes: a type threshold determination module, a first length threshold determination module, a first proportional threshold determination module, a second proportional threshold determination module, a position threshold determination module, and a second length threshold. Decision module, regional range threshold decision module and sequence complexity threshold decision module.
  • the type threshold determination module is used to compare and determine the type of the knockout strategy. If the knockout strategy is not equal to the type threshold, it is eliminated, otherwise the data information of the knockout strategy is retained.
  • the first length threshold determination module is used to compare and determine the first length of the knockout strategy. If the knockout strategy is smaller than the first length threshold, it is eliminated, otherwise the data of the knockout strategy is retained.
  • the first ratio threshold determination module is used to compare and determine the first ratio of the knockout strategy. If the knockout strategy is smaller than the first ratio threshold, it is eliminated, otherwise the information of the knockout strategy is retained.
  • the second ratio threshold determination module is used to compare and determine the second ratio of the knockout strategy. If the knockout strategy is smaller than the second ratio threshold, it is eliminated, otherwise the data information of the knockout strategy is retained.
  • the position threshold determination module is used for comparing and judging the position of the knockout strategy. If the knockout strategy is located after the position threshold, it is eliminated, otherwise the information of the knockout strategy is retained.
  • the second length threshold determination module is used to compare and determine the second length of the knockout strategy. If the knockout strategy is greater than the second length threshold, it is eliminated, otherwise the data of the knockout strategy is retained.
  • the region range threshold determination module is used to compare and determine the region range of the knockout strategy. If the knockout strategy is within the region range threshold, it is eliminated, otherwise the data information of the knockout strategy is retained.
  • the sequence complexity threshold determination module is used to compare and determine the sequence complexity of the knockout strategy. If the knockout strategy exceeds the sequence complexity threshold, it is eliminated, otherwise the data information of the knockout strategy is retained.
  • sequence complexity threshold determination module further includes a GC content range threshold determination module, a sequence repetition threshold determination module, and a sequence homology threshold determination module.
  • the GC content range threshold determination module is used to compare and determine the GC content range of the knockout strategy. If the knockout strategy is not within the GC content range threshold, it will be rejected, otherwise the data of the knockout strategy will be retained.
  • the sequence repetition threshold determination module is used to compare and determine the sequence repetition of the knockout strategy. If the knockout strategy is greater than the sequence repetition threshold, it is eliminated, otherwise the data information of the knockout strategy is retained.
  • the sequence homology threshold determination module is used to compare and determine the sequence homology of the knockout strategy. If the knockout strategy is greater than the sequence homology threshold, it is eliminated, otherwise the data of the knockout strategy is retained.
  • the score assigning unit includes: a first data acquisition module, a data analysis processing module, and a scoring module;
  • a first data obtaining module configured to obtain data of a knockout strategy that has not been removed after filtering
  • a scoring module is used to assign corresponding scores based on the analysis and processing results of the knockout strategy data information.
  • the scoring module includes a type score assigning module, a first length score assigning module, a first proportional score assigning module, a second proportional score assigning module, and a position score assigning.
  • the type score assigning module is used to assign type scores to the knock-out strategies that have not been removed after filtering (that is, to the remaining knock-out strategies), and assign corresponding scores according to different types of knock-out strategies. .
  • a first length score assigning module is used to assign a first length score to a knockout strategy that has not been removed after filtering (that is, a retained knockout strategy), and according to different first length knockout strategies. Assign different scores accordingly.
  • the first proportion score assigning module is used to assign a first proportion score to a knockout strategy that has not been removed after filtering (that is, a retained elimination strategy), according to a different first proportion elimination strategy. Assign different scores accordingly.
  • a second scale score assigning module is used to assign a second scale score to a knockout strategy that has not been removed after filtering (that is, to a retained knockout strategy), according to a different second scale strikeout strategy Assign different scores accordingly.
  • the position score assigning module is used to assign position scores to the knock-out strategies that have not been removed after filtering (that is, to the remaining knock-out strategies), and assign corresponding scores according to the knock-out strategies of different positions. .
  • a second length score assigning module is used to assign a second length score to a knockout strategy that has not been removed after filtering (that is, to a retained knockout strategy), and according to a different second length knockout strategy Assign different scores accordingly.
  • the regional range score assigning module is used to assign regional range scores to the knock-out strategies that have not been removed after filtering (that is, to the retained knock-out strategies), and assign corresponding differences according to different regional-range knock-out strategies. Score.
  • the sequence complexity score assignment module is used to assign sequence complexity scores to the knockout strategies that have not been removed after filtering (that is, to the remaining knockout strategies), and to perform knockout strategies based on different sequence complexity. Assign different scores accordingly.
  • the sequence complexity score assignment module includes a GC content score assignment module, a sequence repetition score assignment module, and a sequence homology score assignment module.
  • the GC content score assignment module is used to assign a GC content score to a knockout strategy that has not been removed after filtering (that is, to a retained knockout strategy), and to assign a corresponding difference according to different GC content knockout strategies. Score.
  • the sequence repetition score assigning module is used to assign sequence repetition scores to the knockout strategies that have not been removed after filtering (that is, to the retained knockout strategies), and to perform knockout strategies based on different sequence repetitions. Assign different scores accordingly.
  • the sequence homology score assigning module is used to assign sequence homology scores to the knockout strategies that have not been removed after filtering (that is, to the remaining knockout strategies).
  • the knockout strategy assigns different scores accordingly.
  • the score sorting unit includes:
  • a second data acquisition module configured to acquire knockout strategy data information that has been assigned a score
  • Score ranking module which is used to sort and compare the knockout strategy data information containing scores
  • the statistics generation module is used to statistically generate a knockout strategy with the highest score.
  • the terminal 3 includes a memory 31, at least one processor 32, at least one communication bus 33, and a display screen 34.
  • the structure of the terminal shown in FIG. 14 does not constitute a limitation of the embodiment of the present invention, and may be a bus structure or a star structure.
  • the terminal 3 may further include More or less other hardware or software, or different component arrangements.
  • the terminal 3 includes a terminal capable of automatically performing numerical calculations and / or information processing in accordance with an instruction set or stored in advance.
  • the hardware includes, but is not limited to, a microprocessor, an application specific integrated circuit, a Programming gate arrays, digital processors, embedded devices, etc.
  • the terminal 3 may further include a client device, and the client device includes, but is not limited to, any electronic product that can perform human-computer interaction with a customer through a keyboard, a mouse, a remote control, a touchpad, or a voice-activated device, for example, a personal device.
  • terminal 3 is only an example. If other existing or future electronic products can be adapted to the present invention, they should also be included in the protection scope of the present invention and are included herein by reference.
  • the memory 31 is used to store program code and various data, such as an intelligent knockout policy screening system installed in the terminal 3, and implement high-speed and automatic operation during the operation of the terminal 3. Complete program or data access.
  • the memory 31 includes Read-Only Memory (ROM), Random Access Memory (RAM), Programmable Read-Only Memory (PROM), and Erasable Programmable Read-Only Memory (Erasable Programmable Read-Only Memory (EPROM)), One-time Programmable Read-Only Memory (OTPROM), Electronically-Erasable Programmable Read-Only Memory (EEPROM) ), Compact Disc-Read-Only Memory (CD-ROM) or other optical disk storage, magnetic disk storage, magnetic tape storage, or any other computer-readable medium that can be used to carry or store data.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM Electronically-Era
  • the at least one processor 32 may be composed of integrated circuits, for example, may be composed of a single packaged integrated circuit, or may be composed of multiple integrated circuits with the same function or different function packages, including one Or a combination of multiple central processing units (CPUs), microprocessors, digital processing chips, graphics processors, and various control chips.
  • the at least one processor 32 is a control core (Control Unit) of the terminal 3, and uses various interfaces and lines to connect various components of the entire terminal 3. By running or executing a program or module stored in the memory 31, And calling the data stored in the memory 31 to perform various functions of the terminal 3 and process data, such as a function of intelligent knockout policy screening.
  • the at least one communication bus 33 is configured to implement connection and communication between the memory 31, the at least one processor 32, the display screen 34, and the like.
  • the display screen 34 may be used to display information input by the viewer or information provided to the viewer and various graphical viewer interfaces of the terminal 3. These graphical viewer interfaces may include graphics, text, and icons. , Video, and any combination thereof.
  • the display screen 34 may include a display panel.
  • the display panel may be configured with a liquid crystal display (Liquid Crystal Display, LCD), an organic light emitting diode (Organic Light-Emitting Diode, OLED), and the like.
  • the display screen 34 may further include a touch panel. If the display screen 34 includes a touch panel, the display screen 34 may be implemented as a touch screen to receive an input signal from a viewer.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel.
  • the above-mentioned touch sensor may not only sense a boundary of a touch or sliding action, but also detect duration and pressure related to the above-mentioned touch or sliding operation.
  • the display panel and the touch panel can be used as two separate components to implement input and input functions, but in some embodiments, the display panel and the touch panel can be integrated to implement input and output functions .
  • the terminal 3 may further include a power source (such as a battery) for supplying power to various components.
  • the power source may be logically connected to the at least one processor 32 through a power management device, so as to implement management through the power management device. Charge, discharge, and power management functions.
  • the power source may also include one or more DC or AC power sources, recharging devices, power failure detection circuits, power converters or inverters, power source status indicators, and other arbitrary components.
  • the terminal 3 may further include various sensors, a Bluetooth module, a Wi-Fi module, and the like, and details are not described herein again.
  • the integrated unit implemented in the form of a software functional module may be stored in a computer-readable storage medium.
  • the software function module is stored in a storage medium, and includes several instructions for causing a computer device (which may be a personal computer, a terminal, or a network device) or a processor to execute the methods described in the embodiments of the present invention. section.
  • the at least one processor 32 may execute the operating device of the terminal 3 and various types of application programs (such as the intelligent knock-out policy screening system) and program codes installed. And so on, for example, each module described above.
  • the memory 31 stores program code, and the at least one processor 32 can call the program code stored in the memory 31 to perform related functions.
  • each module in the system is program code stored in the memory 31 and executed by the at least one processor 32, so as to implement the functions of the various modules to achieve intelligent knockout policy screening. purpose.
  • the memory 31 stores multiple instructions, and the multiple instructions are executed by the at least one processor 32 to implement a method for intelligent knockout policy screening.
  • the execution of the plurality of instructions by the processor 32 includes:
  • Step S10 Obtain raw data information of the knockout strategy
  • Step S20 filtering and filtering the raw data information of the knockout strategy
  • Step S30 assign scores to the knockout strategies that have not been removed after filtering
  • Step S40 sort out the scores of the knockout strategies that have been given scores
  • step S50 the knockout policy data information set is collected and generated.
  • the knockout strategy raw data information is all combinations of gene knockout strategies.
  • the filtering and filtering performed on the raw data information of the knockout strategy is a parallel filtering and filtering
  • the filtering strategy and the non-removed knockout strategy perform score assignment as parallelization and score assignment.
  • the score is a binary score, a decimal score, or a hexadecimal score.
  • the statistically generating the knockout strategy data information set includes generating a knockout strategy data information analysis processing result report.
  • the modules described as separate components may or may not be physically separated, and the components displayed as modules may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional module in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the integrated unit can be implemented in the form of hardware, or in the form of hardware plus software functional modules.
  • the present invention can solve the dependence on experienced experts, and can also select knockout strategies for ordinary personnel without rich experience. .
  • a knockout strategy report can be obtained within minutes of the method and system of the present invention.
  • knockout strategy selection also addresses the dependence of knockout strategy selection on different experts at different times. For the same gene, as long as the information of the gene has not changed (with the deepening of research, information such as the function of genes may change, affecting the knockout strategy ), The optimal knockout strategy of the gene is consistent, and the report content and format are also consistent, and the knockout strategy is selected without being disturbed by external factors.
  • the gene knockout strategy of the original technology needs to be completed by experts with rich experience.
  • the present invention summarizes the years of practical experience of experts, and develops a method and system for intelligent knockout strategy screening.
  • Platform, and storage medium users will not need to have knowledge about the knockout strategy, they only need to input their genes of interest, and within a few minutes, they can get a detailed analysis and complete results of the knockout strategy report.
  • Use artificial intelligence algorithms instead of manual knockout strategy selection, and hand off highly professional, tedious, time-consuming and error-prone tasks to artificial intelligence systems, thereby solving a bottleneck in the field, allowing global scientists to be free, real-time and free To get a variety of gene targeting programs.
  • the method, system, platform, and storage medium for screening intelligent knockout strategies of the present invention can currently complete conditional knockout of mouse ES targeting, extensive knockout of CRISPR / Cas9, and conditional knockout.
  • strategy filtering In addition to strategy filtering.
  • the three types of overall implementation methods are the same, that is, the knockout strategy is arranged and combined first, and then a series of parallel analysis is performed to select the optimal knockout strategy. This implementation process is consistent.
  • the method and system of the present invention can greatly improve output and work efficiency. Reports that could be completed in half a day now only take a few minutes; liberate manpower and material resources; and implement an intelligent parallelization knockout strategy screening mode And intelligently write knock-out strategy reports, thereby reducing the probability of errors; breaking down barriers to knowledge background, that is, researchers who do not have extensive experience can also quickly obtain gene knock-out strategies; help to open new sales models, bring For greater benefits, under the bottleneck of the original technology, the customer transmits the gene of interest to the strategist through sales. The strategist analyzes and obtains the optimal strategy for the knockout strategy, and then sends the feedback to the customer through sales. Strategies often take a day or two, and now through online analysis, you can get a complete knockout strategy analysis report in minutes, so you can instantly customize the gene targeting service of interest.
  • the method of screening for a knockout policy based on multiple knockout types in the present invention is applied to one or more terminals or servers.
  • the terminal is a device capable of automatically performing numerical calculations and / or information processing in accordance with an instruction set or stored in advance.
  • Its hardware includes, but is not limited to, a microprocessor, an Application Specific Integrated Circuit (ASIC), Programmable gate array (Field-Programmable Gate Array, FPGA), digital processor (Digital Signal Processor, DSP), embedded equipment, etc.
  • the terminal may be a computing device such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the terminal can perform human-computer interaction with a customer through a keyboard, a mouse, a remote control, a touchpad, or a voice-controlled device.
  • the present invention provides a method and system for screening knockout strategies based on multiple knockout types in order to realize the screening of knockout strategies based on multiple knockout types.
  • FIG. 17 it is a flowchart of a method for screening knockout policies based on multiple knockout types according to an embodiment of the present invention.
  • the method for filtering strategies based on multiple types of knockouts may be applied to a terminal having a display function or a fixed terminal, and the terminal is not limited to a personal computer, a smart phone, or a tablet computer. , Desktop or all-in-one with camera installed.
  • the method for filtering strategies based on multiple types of knockouts can also be applied to a hardware environment composed of a terminal and a server connected to the terminal through a network.
  • the network includes, but is not limited to: a wide area network, a metropolitan area network, or a local area network.
  • the method for screening knockout policies based on multiple knockout types in the embodiment of the present invention may be performed by a server, a terminal, or a server and a terminal.
  • the terminal can be directly integrated with the knockout policy screening function based on multiple knockout types provided by the method of the present invention, or installed for implementing Client of the method of the invention.
  • the method provided by the present invention can also be run on a device such as a server in the form of a Software Development Kit (SDK), and provide an interface based on a variety of knock-out types of knock-out policy screening functions in the form of an SDK.
  • SDK Software Development Kit
  • the terminal or other devices can implement the function of filtering strategies based on multiple knockout types through the provided interface.
  • the present invention provides a system for screening based on a plurality of types of knockout strategies.
  • the system specifically includes:
  • Gene acquisition unit for acquiring basic information of a gene
  • a knockout strategy acquisition unit which is used to combine the basic information obtained by the gene acquisition unit to obtain various knockout strategies corresponding to the determined knockout type;
  • the screening calculation unit is configured to retrieve a knockout strategy screening calculation formula corresponding to the knockout strategy according to various knockout strategies corresponding to the knockout type, and perform screening and calculation in real time;
  • Analysis and sorting unit which is used to analyze and sort the data of screening and calculation results and store them in real time
  • a report generation unit is used to organize the results according to data analysis and generate a knockout strategy report in real time.
  • the basic information of the gene specifically includes: basic information such as a gene name, a length, a belonging species, and a chromosome, as well as all transcript information of the gene and information of encoded proteins;
  • the knockout strategy report shows detailed information of each knockout strategy, including the strategy map of the knockout strategy, the position of the knockout strategy in the gene, the distribution of the genes adjacent to the knockout strategy, and the knockout The sequential complexity of the strategy.
  • the gene acquisition unit further includes: a transcript information acquisition module and a protein information acquisition module;
  • Transcript information acquisition module used to obtain all transcripts of a gene, as well as the name and length of transcripts;
  • Encoding protein information acquisition module is used to obtain all the encoded proteins of a gene, as well as the names and lengths of the encoded proteins.
  • transcript and protein information of genes include all introns, exons, and so on.
  • the present invention further includes a gene basic information acquisition module for acquiring basic information of a gene, which mainly includes a gene name, a gene alias, a length, a belonging species, a belonging chromosome, and a starting position of the chromosome.
  • the data obtained by the basic gene information acquisition module, the transcript information acquisition module and the encoded protein information acquisition module are all stored in the gene information database. That is, the gene information database stores the gene-related data obtained by the above modules.
  • the current genetic information, transcript information, and protein coding information of human, mouse, and rat have been obtained and stored, reducing the calculation time of the knockout strategy screening.
  • the transcript basic information acquisition module obtains, for each transcript, the start position of the relative gene of the transcript, the relationship of all introns and exons of the transcript, and the start position and length of each intron. , The starting position and length of each exon, and so on.
  • the basic information acquisition module obtains the starting position of the encoded protein relative to the gene, all intron exon relationships of the encoded protein, the start position and length information of each intron, and each exon Exon start position and length information, etc.
  • the knockout strategy acquisition unit includes a calculation rule database module, a knockout type acquisition module, and a knockout policy type acquisition module;
  • Calculation rule database module which is used to store the rules required for screening and calculation of gene knockout strategies
  • the knockout type acquisition module is used to obtain the knockout type used by the knockout strategy that the user wants to obtain;
  • the knockout strategy type acquisition module is used to obtain various knockout strategies corresponding to the knockout type.
  • the calculation rule database module that is, the knockout strategy screening calculation rule database, is used to store the rules required for the gene knockout strategy screening calculation.
  • Knock-out type acquisition module It is used to obtain the knock-out type used by the knockout strategy that the user wants to obtain, such as conditional knockout of ES target, extensive knockout of CRISPR / Cas9 or conditional knockout. Types of.
  • the knockout strategy type acquisition module is used to obtain each possible knockout strategy, and what type it belongs to determines the rules of which knockout strategy calculation formula it uses. There may be multiple appropriate knockout strategies for a gene. Each knockout strategy determines the use of different knockout strategies based on different exon types, different intron lengths, and different proportions of coding regions. the way.
  • the screening calculation unit includes a screening calculation formula database module, a knockout strategy screening calculation formula entry module, a knockout strategy screening calculation formula extraction module, and a knockout strategy screening calculation module;
  • Screening calculation formula database module which is used to store various calculation formulas for knockout strategy screening
  • the knockout strategy screening calculation formula entry module is used to define different types of calculation formulas and enter them into the formula database according to the influencing factors required for the knockout strategy screening.
  • the knockout strategy screening calculation formula extraction module is used to extract the corresponding calculation formula according to the requirements of the knockout strategy screening to complete the screening calculation of the knockout strategy;
  • the knockout strategy screening calculation module is used to select rules based on the knockout strategy and select a suitable knockout strategy calculation formula, and then call this module to calculate each knockout strategy to select a knockout strategy that meets the conditions.
  • the screening calculation unit stores various calculation formulas for the knockout strategy screening, and specifically includes a screening calculation formula database module (ie, a knockout strategy screening calculation formula database), a knockout strategy screening calculation formula entry module, and a knockout strategy. Filter calculation formula extraction module.
  • analysis and arrangement unit includes:
  • the screening result storage database module is used to store the knockout strategy that satisfies the knockout conditions after calculating the gene knockout strategy, and to store the relevant information of each knockout strategy that meets the conditions;
  • the knockout strategy screening result entry module is used to enter some of the results generated during the knockout strategy screening process
  • the knockout strategy screening result extraction module is used to extract the corresponding information for display according to the requirements of the gene knockout strategy report writing.
  • the analysis and finishing unit includes a screening result storage database module (ie, a knockout policy screening result storage database), a knockout policy screening result entry module, and a knockout policy screening result extraction module.
  • a screening result storage database module ie, a knockout policy screening result storage database
  • a knockout policy screening result entry module ie, a knockout policy screening result entry module
  • a knockout policy screening result extraction module ie, a knockout policy screening result extraction module.
  • the knockout strategy screening result storage database is mainly used for the user to store which knockout strategies satisfy the knockout conditions after the gene knockout strategy is calculated. As well as storing information about each knockout policy that meets the conditions, it is convenient for subsequent calls when writing the knockout strategy scheme.
  • the knockout strategy screening result entry module is used for users to enter part of the results generated during the knockout strategy screening process. This module is connected to the knockout strategy screening calculation module. After the calculation is completed, the results are transmitted to this entry module for data storage.
  • the knockout strategy screening result extraction module is used to extract the useful information from the calculation results for display according to the requirements of the gene knockout strategy report writing.
  • the report generation unit includes a knockout policy report template storage module, a knockout policy report generation module, a knockout policy final report information storage module, and a knockout policy final report information database.
  • Knockout policy report template storage module used to store knockout policy report templates of different knockout types
  • a knockout strategy report generation module is used to select a suitable report template according to the knockout type, and to retrieve corresponding data from the knockout strategy screening result storage database to generate a gene knockout strategy report;
  • the knockout policy final report information storage module is used to store all the information of the knockout policy report that has been generated
  • the knockout policy final report information database module is used to store all the information of the knockout policy report that has been generated.
  • the report generation unit will be called to generate a knockout strategy report for the gene.
  • the report shows detailed information of each knockout strategy, including the strategy map of the knockout strategy, the location of the knockout strategy in the gene, the distribution of genes adjacent to the knockout strategy, the sequence complexity of the knockout strategy, and so on.
  • the report generating unit includes a knockout policy report template storage module, a knockout policy report template database, a knockout policy report generation module, a knockout policy final report information storage module, and a knockout policy final report information database.
  • the knockout strategy report template storage module is used for different types of knockout, and the information to be displayed in the knockout strategy report is different. Therefore, this module is used to store different knockout type report templates for generation. The module is called on demand.
  • the knockout strategy report template database is used to store the knockout strategy report templates of different knockout types.
  • the knockout strategy report generation module is used to select a suitable report template according to the knockout type, and retrieve corresponding data from the knockout strategy screening result storage database to generate a gene knockout strategy report.
  • the knockout strategy final report information storage module is used to store all the information of the knockout strategy report that has been generated to avoid the repeated calculation and storage of the knockout strategy of the same gene. For the genes that have been calculated, the knockout strategy report will be stored in the library, and subsequent reports can be retrieved directly, saving time and effort.
  • the knockout policy final report information database is used to store all the information of the knockout policy report that has been generated.
  • examples of the present invention are as follows:
  • the longest transcript NM_010921, protein NP_035051 and related exons were obtained through the gene information acquisition module.
  • This gene has 2 exon, so there are 3 choices of possible knockout strategies: exon1, exon2, exon1 and exon2.
  • the knockout strategy is calculated in real time through the knockout strategy screening calculation module.
  • the calculated knockout exon2, the exon1 and exon2 can be used as a reasonable knockout strategy for the conditional knockout of ES of the gene Nkx3-1.
  • the calculation results are then stored and managed, and a complete knockout strategy report is generated for the two knockout strategies of exon2, exon1, and exon2 through the knockout strategy report management module.
  • the report includes the following contents: 1. Text and graphic display of genes and related information.
  • the basic information of the knockout strategy including the starting position of the knockout strategy, the size of the knockout area, whether the knockout area and its upstream and downstream have affected other genes, and so on.
  • the present invention provides a knockout strategy screening method based on multiple knockout types. As shown in FIG. 17, the method specifically includes the following steps. According to different requirements, the order of the steps in the flowchart can be changed. Steps can be omitted.
  • knockout strategies corresponding to the knockout type call the calculation formula of the knockout strategy matching the knockout strategy, and perform the screening and calculation in real time;
  • a knockout strategy report is generated in real time.
  • the user obtains the relevant information of the gene of interest to the user through the gene information acquisition and storage module.
  • the user selects a knockout type and combines the obtained gene-related information to obtain various knockout strategies for the gene.
  • the knockout strategy screening calculation rule storage module calls each knockout strategy under the knockout type.
  • the type of calculation rule determines which knockout strategy is used to filter the calculation formula.
  • the user filters the calculation formula type according to the obtained knockout strategy, and retrieves the detailed calculation method of the formula through the knockout strategy filtering calculation formula storage module.
  • the user calls the knockout strategy screening calculation module for calculation and screening.
  • the calculation result management module analyzes, organizes, and stores the calculation process of the knockout strategy screening calculation module and the results obtained, and then calls it for the subsequent report writing module.
  • the knockout strategy report management module combines the calculation result of the knockout strategy of the gene with a report template to write and store the knockout strategy report, and finally outputs a detailed knockout strategy report of the gene of interest selected by the user.
  • the present invention also proposes a knockout strategy screening platform based on multiple knockout types, as shown in FIG. 18, including:
  • the processor executes the platform control program
  • the platform control program filtered based on a plurality of knockout types of knockout strategies is stored in the memory
  • the plurality of knockout type-based knockout strategies are stored in the memory.
  • the screening platform control program implements the method steps of the knockout strategy screening based on multiple knockout types as described, for example:
  • knockout strategies corresponding to the knockout type call the calculation formula of the knockout strategy matching the knockout strategy, and perform the screening and calculation in real time;
  • a knockout strategy report is generated in real time.
  • the platform built-in processor based on the selection strategy of multiple types of knockouts may be composed of integrated circuits, for example, may be composed of a single packaged integrated circuit, or may be composed of multiple identical It is composed of integrated circuits with functions or different function packages, including one or more central processing units (CPUs), microprocessors, digital processing chips, graphics processors, and various control chip combinations.
  • the processor uses various interfaces and line connections to take various components, and runs or executes the program or unit stored in the memory, and calls the data stored in the memory to perform each of the screening based on a variety of knockout type knockout strategies. Functions and processing data;
  • the memory is used to store program code and various data, and is installed in a platform based on a variety of knockout type knockout strategy screenings, and achieves high-speed and automatic completion of program or data access during operation.
  • the memory includes Read-Only Memory (ROM), Random Access Memory (RAM), Programmable Read-Only Memory (PROM), and Erasable Programmable Read-Only Memory (PROM) Erasable Programmable Read-Only Memory (EPROM), One-time Programmable Read-Only Memory (OTPROM), Electronically-Erasable Programmable Read-Only Memory (EEPROM) , Read-Only Memory (CD-ROM) or other optical disk storage, magnetic disk storage, magnetic tape storage, or any other computer-readable medium that can be used to carry or store data.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • PROM Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • OTPROM One-time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Read-Only Memory
  • the present invention also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a platform control program that is filtered based on a plurality of knock-out types of knock-out strategies.
  • the platform control program for the knockout type screening of the knockout type realizes the method steps of the knockout policy screening based on multiple knockout types, for example,
  • knockout strategies corresponding to the knockout type call the calculation formula of the knockout strategy matching the knockout strategy, and perform the screening and calculation in real time;
  • a knockout strategy report is generated in real time.
  • any process or method description described in the flowchart or otherwise described herein can be understood as meaning that it includes one or more for implementing a specific logical function or A module, fragment, or portion of the code of an executable instruction of a step of a process, and the scope of a preferred embodiment of the present invention includes additional implementations, which may not be in the order shown or discussed, including by basic according to the functions involved Functions are performed simultaneously or in the reverse order, which should be understood by those skilled in the art to which the embodiments of the present invention pertain.
  • a sequenced list of executable instructions that can be considered to implement a logical function can be embodied in any computer-readable medium, For use by instruction execution systems, devices, or devices (such as computer-based systems, systems including processing modules, or other systems that can fetch and execute instructions from instruction execution systems, devices, or devices), or in combination with these instruction execution systems, devices, or devices Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device. .
  • computer readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable media may even be paper or other suitable media on which the program can be printed, because, for example, by optically scanning the paper or other media and then editing, interpreting or otherwise Processing is performed in a suitable manner to obtain the program electronically and then store it in a computer memory.
  • the system and method provided by the present invention can be flexibly applied to screening of multiple types of knockout strategies such as conditional knockout of ES targeting, extensive knockout of CRISPR / Cas9, and conditional knockout.
  • the present invention can solve the dependence on experienced experts, and realize the selection of knockout strategies for ordinary people without rich experience.
  • the invention also solves the time problem of the knockout strategy. If a gene knockout strategy report takes half a day to obtain, it will severely restrict the commercial and basic research development related to gene targeting.
  • the invention requires a knockout strategy report to be obtained within a few minutes of research and development; it also solves the dependence of knockout strategy selection on different experts at different times, that is, the same gene is developed for as long as the information of the gene has not changed (With the deepening of research, the function and other information of the gene may change and affect the knockout strategy.)
  • the optimal knockout strategy of the gene is the same, and the report content and format are also the same.
  • the method and system for selecting a changed knockout strategy can be flexibly applied to conditional knockout of ES targeting, extensive knockout of CRISPR / Cas9, and conditions. Screening of sexual knockout strategies.
  • the present invention greatly improves output; improves work efficiency; reports that could be completed in half a day now only take a few minutes; liberates manpower and material resources, implements an intelligent parallelized knockout strategy screening mode, and implements intelligent writing of knockout strategies Report; reducing the probability of errors, while breaking down the barriers to knowledge background, students and researchers without rich experience can quickly obtain gene knockout strategies; help to open new sales models, bring greater benefits, and under the bottleneck of the original technology,
  • the customer conveys the gene of interest to the strategist through sales.
  • the strategist analyzes and obtains the optimal strategy for the knockout strategy and then sends it back to the customer through sales.
  • the customer knows the knockout strategy of the gene of interest often takes a day or two, but now online Analysis, you can get a complete knockout strategy analysis report in minutes, so you can instantly customize the gene targeting service of interest.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biotechnology (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioethics (AREA)
  • Databases & Information Systems (AREA)
  • Genetics & Genomics (AREA)
  • Evolutionary Computation (AREA)
  • Molecular Biology (AREA)
  • Artificial Intelligence (AREA)
  • Analytical Chemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Public Health (AREA)
  • Software Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Stored Programmes (AREA)

Abstract

一种智能化敲除策略筛选的方法和一种基于多种敲除类型的敲除策略筛选方法。本发明通过获取敲除策略原始数据信息;对敲除策略原始数据信息进行过滤筛选;针对过滤筛选后且未被剔除的敲除策略进行分值赋予;整理已赋予分值的敲除策略分值情况;汇总生成敲除策略数据信息集。相对传统敲除策略可以大大提高产出和工作效率,原本半天才能完成的报告,现在只需要几分钟,解放了人力物力;实现了规范的敲除策略报告,降低出错概率、打破知识背景壁垒,利用人工智能算法来代替人工的敲除策略选取,把专业性强、繁琐、耗时且容易出错的工作交给人工智能系统,从而解决领域内一个瓶颈问题,实现了随时、实时和免费地拿到各种基因打靶方案。

Description

一种智能化敲除策略筛选的方法和一种基于多种敲除类型的敲除策略筛选方法 技术领域
本发明涉及生物信息领域,具体涉及一种智能化敲除策略筛选的方法和一种基于多种敲除类型的敲除策略筛选方法。
背景技术
2007年,美国科学家MarioCapecchi、OliverSmith与英国科学家MartinEvans,凭借基因打靶技术共同分享了诺贝尔生理学奖或医学奖,奖励他们对小鼠ES胚胎细胞进行基因靶向操作也就是“基因打靶”的工作,评委会认为他们的研究成果“开创了全新的研究领域”,为人类攻克某些疾病提供了药物试验的动物模型。
ES基因打靶技术是指利用细胞DNA可与外源性DNA同源序列发生同源重组的性质,定向改造生物某一基因的技术。借助这一从上世纪80年代发展起来的技术,人们得以按照预先设计的方式对生物遗传信息进行精细改造。比如科学家可以瞄准某一特定基因进行敲除操作,使其失去活性,进而研究该特定基因的功能。经过30年的发展,这些经典的技术已经成为小鼠基因改造无可替代的金标准。
但随着生物技术的发展,传统的基于ES的基因打靶技术已经远不能满足科学家们对工作效率的追求,我们需要更加高效便捷的基因编辑器。人工核酸内切酶技术的兴起为基因编辑提供新的可行性。科技界和生物产业界已经形成共识:CRISPR基因编辑将给基础研究和转化医学研究带来革命性变革,是下一代生物技术的核心。
当前并没有一款可以在线进行基因敲除策略分析,获得敲除策略报告的软 件,传统操作中,获取一个基因的最优敲除策略需要一个具有多年丰富经验的策略专家进行纯手工的分析操作,将所有可能性结果进行排列组合,然后进行一系列策略分析,最终筛选出合适的基因敲除策略,并撰写详细的策略报告。完成所有分析,并获得一份敲除策略报告往往需要半天时间。如此操作既耗时又耗力。
而且,由于人工敲除策略筛选方案用时很长,因此需要投入很多人力才能满足一天内获得许多基因的敲除策略方案的需求。而不同专家间的思维模式不一样,在进行方案筛选的时候,倘若方案一与方案二的基因打靶成效相近,不同专家间筛选所得的最优敲除策略可能存在细微差异,会造成同一个基因在不同时期或者不同专家筛选所得最优策略不一致的情况。此外,敲除策略的报告撰写规范和格式等也会参差不齐。
所以,传统意义上的对敲除策略的筛选耗时耗力耗人才,而且筛选方式单一、出错率高和效率效益低下,敲除策略的报告也不规范。
而且,传统意义上的技术获得基因的敲除策略,需要丰富经验的专家来完成,无法快速的实现条件性敲除以及广泛敲除等多种敲除类型的敲除策略筛选,而且传统筛选出错率高和效率效益低下。
发明内容
针对以上对敲除策略的筛选耗时耗力耗人才,而且筛选方式单一、出错率高和效率效益低下,敲除策略的报告也不规范的问题缺陷,本发明提供一种智能化敲除策略筛选的方法和一种基于多种敲除类型的敲除策略筛选方法,使对敲除策略的筛选省时省力,筛选方式智能并行化、出错率低和效率效益高,而且生成统一格式的规划的敲除策略报告。
本发明具体通过以下技术方案实现:
一种智能化敲除策略筛选的方法,所述方法具体包括如下步骤:
步骤S10,获取敲除策略原始数据信息;
步骤S20,对敲除策略原始数据信息进行过滤筛选;
步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
进一步地,所述敲除策略原始数据信息为基因敲除策略的所有组合。
进一步地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
进一步地,所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
进一步地,所述步骤S20中,设置有多个阀值;
所述步骤S20中,还包括如下步骤:
步骤S201,设置多个阀值,将敲除策略与所述阀值进行对比判定;
步骤S202,剔除超出所述阀值的敲除策略;
所述超出所述阀值的敲除策略,将不再参与同其他未对比判定过的阀值进行对比判定。
进一步地,所述阀值包括:类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值。
进一步地,所述序列复杂性阀值包括GC含量范围阀值、序列重复度阀值和序列同源性阀值。
进一步地,所述步骤S30中,还包括如下步骤:
步骤S301,获取过滤筛选后且未被剔除的敲除策略数据信息;
步骤S302,对敲除策略数据信息进行处理;
步骤S303,根据敲除策略数据信息的分析处理结果,进行相应的分值赋予。
进一步地,所述分值赋予包括:类型分值赋予、第一长度分值赋予、第一比例分值赋予、第二比例分值赋予、位置分值赋予、第二长度分值赋予、区域范围分值赋予和序列复杂性分值赋予。
进一步地,所述序列复杂性分值赋予包括GC含量分值赋予、序列重复度分值赋予和序列同源性分值赋予。
进一步地,所述步骤S40中,还包括如下步骤:
步骤S401,获取已赋予分值的敲除策略数据信息;
步骤S402,对含有分值的敲除策略数据信息进行整理对比;
步骤S403,统计生成分值最高的敲除策略。
为达到上述目的,本发明还提供一种智能化敲除策略筛选的系统,其特征在于,所述系统包括:
数据获取单元、过滤筛选单元、分值赋予单元、分值整理单元和信息集汇总单元;
数据获取单元,用于获取敲除策略原始数据信息;
过滤筛选单元,用于对敲除策略原始数据信息进行过滤筛选;
分值赋予单元,用于针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
分值整理单元,用于整理已赋予分值的敲除策略分值情况;
信息集汇总单元,用于汇总生成敲除策略数据信息集。
进一步地,所述过滤筛选单元中设置有多个阀值;
所述过滤筛选单元包括:阈值对比模块和剔除模块;
阈值对比模块,用于设置多个阀值,将敲除策略与所述阀值进行对比判定;
剔除模块,用于剔除超出所述阀值的敲除策略。
进一步地,所述分值赋予单元包括:第一数据获取模块、数据分析处理模块和打分模块;
第一数据获取模块,用于获取过滤筛选后且未被剔除的敲除策略数据信息;
数据分析处理模块,用于对敲除策略数据信息进行处理;
打分模块,用于根据敲除策略数据信息的分析处理结果,进行相应的分值赋予。
进一步地,所述分值整理单元包括:
第二数据获取模块,用于获取已赋予分值的敲除策略数据信息;
分值排比模块,用于对含有分值的敲除策略数据信息进行整理对比;
统计生成模块,用于统计生成分值最高的敲除策略。
为实现上述目的,本发明还提供一种智能化敲除策略筛选的平台,包括处理器、存储器以及智能化敲除策略筛选的平台控制程序;
其中在所述处理器执行所述平台控制程序,所述智能化敲除策略筛选的平台控制程序被存储在所述存储器中,所述智能化敲除策略筛选的平台控制程序,实现所述的智能化敲除策略筛选的方法步骤。
为实现上述目的,本发明还提供一种计算机可读取存储介质,所述计算机可读取存储介质存储有智能化敲除策略筛选的平台控制程序,所述智能化敲除策略筛选的平台控制程序,实现所述的智能化敲除策略筛选的方法步骤。
针对以上对敲除策略的筛选耗时耗力耗人才,而且筛选出错率高和效率效益低下,本发明提供一种基于多种敲除类型的敲除策略筛选的方法及系统,使对多种类型的敲除策略的筛选省时省力,筛选出错率低和效率效益高。
为达到上述目的,本发明还提供一种基于多种敲除类型的敲除策略筛选方法,所述的方法具体包括如下步骤:
获取基因的基本信息;
结合基因获取单元获取到的基因基本信息,根据确定的敲除类型,获得相对应的各种敲除策略;
根据与敲除类型相对应的各种敲除策略,调取与敲除策略相符的敲除策略筛选计算公式,实时进行筛选和计算;
对筛选和计算结果,进行数据分析和整理,并实时存储;
根据数据分析整理结果,实时生成敲除策略报告。
为实现上述目的,本发明还提供一种基于多种敲除类型的敲除策略筛选系统,所述的系统具体包括:
基因获取单元,用于获取基因的基本信息;
敲除策略获取单元,用于结合基因获取单元获取到的基因基本信息,根据确定的敲除类型,获得相对应的各种敲除策略;
筛选计算单元,用于根据与敲除类型相对应的各种敲除策略,调取与敲除策略相符的敲除策略筛选计算公式,实时进行筛选和计算;
分析整理单元,用于对筛选和计算结果,进行数据分析和整理,并实时存储;
报告生成单元,用于根据数据分析整理结果,实时生成敲除策略报告。
更进一步地,所述的基因的基本信息具体包括:基因名称、长度、所属物种、所属染色体等基本信息,以及基因的所有转录本信息、编码蛋白信息;
相应地,所述的敲除策略报告展示了每一个敲除策略的详细信息,具体包括敲除策略的策略图、敲除策略在该基因的位置、敲除策略临近基因的分布情况和敲除策略的序列复杂性。
更进一步地,所述的基因获取单元中还包括:转录本信息获取模块和编码蛋白信息获取模块;
转录本信息获取模块,用于获取基因的所有转录本以及转录本的名称、长度 等信息;
编码蛋白信息获取模块,用于获取基因的所有编码蛋白以及编码蛋白的名称、长度等信息。
更进一步地,所述的敲除策略获取单元包括计算规则数据库模块、敲除类型获取模块和敲除策略类型获取模块;
计算规则数据库模块,用于存储基因敲除策略筛选计算所需的规则;
敲除类型获取模块,用于获取用户所想获得的敲除策略所采用何种敲除类型;
敲除策略类型获取模块,用于获取与敲除类型相对应的各种敲除策略。
更进一步地,所述的筛选计算单元包括筛选计算公式数据库模块、敲除策略筛选计算公式录入模块、敲除策略筛选计算公式提取模块和敲除策略筛选计算模块;
筛选计算公式数据库模块,用于存储敲除策略筛选的各种不同计算公式;
敲除策略筛选计算公式录入模块,用于根据敲除策略筛选所需的影响因素,定义出不同类型的计算公式并录入存储到公式数据库中;
敲除策略筛选计算公式提取模块,用于根据敲除策略筛选的需求提取相应的计算公式,完成敲除策略的筛选计算;
敲除策略筛选计算模块,用于根据敲除策略筛选的规则,并选取合适的敲除策略计算公式之后,调用此模块对每一个敲除策略进行计算,筛选出满足条件的敲除策略。
更进一步地,所述的分析整理单元包括;
筛选结果存储数据库模块,用于存储进行基因敲除策略计算后,满足敲除条件的敲除策略,以及存储每一个满足条件的敲除策略的相关信息;
敲除策略筛选结果录入模块,用于录入敲除策略筛选过程中产生的部分结 果;
敲除策略筛选结果提取模块,用于根据基因敲除策略报告撰写要求,提取相应的信息进行展示。
更进一步地,所述的报告生成单元包括敲除策略报告模板存储模块、敲除策略报告生成模块、敲除策略最终报告信息存储模块以及敲除策略最终报告信息数据库。
敲除策略报告模板存储模块,用于存储不同敲除类型的敲除策略报告模板;
敲除策略报告生成模块,用于根据敲除类型选取合适的报告模板,并从敲除策略筛选结果存储数据库中调取相应的数据,生成基因的敲除策略报告;
敲除策略最终报告信息存储模块,用于存储已经生成的敲除策略报告的所有信息;
敲除策略最终报告信息数据库模块,用于存储已经生成的敲除策略报告的所有信息。
为达到上述目的,本发明还提供一种基于多种敲除类型的敲除策略筛选平台,包括:
处理器、存储器以及基于多种敲除类型的敲除策略筛选的平台控制程序;
其中在所述处理器执行所述平台控制程序,所述基于多种敲除类型的敲除策略筛选的平台控制程序被存储在所述存储器中,所述基于多种敲除类型的敲除策略筛选的平台控制程序,实现如所述的基于多种敲除类型的敲除策略筛选的方法步骤。
为达到上述目的,本发明还提供一种计算机可读取存储介质,所述计算机可读取存储介质存储有基于多种敲除类型的敲除策略筛选的平台控制程序,所述基于多种敲除类型的敲除策略筛选的平台控制程序,实现所述的基于多种敲除类型的敲除策略筛选的方法步骤。
与现有技术相比,本发明具有以下有益效果:
本发明可以大大提高产出和工作效率,原本半天才能完成的报告,现在只需要几分钟;解放人力物力;实现了智能化并行化敲除策略筛选模式和智能化撰写敲除策略报告,从而降低出错概率;打破知识背景壁垒,也就是说,针对没有丰富经验的学生研究者也可以快速获得基因的敲除策略;有助开启新的销售模式,带来更大的收益,原技术的瓶颈下,客户通过销售传达感兴趣基因到策略专家处,策略专家分析获得敲除策略优选方案再通过销售反馈给客户,客户了解感兴趣的基因的敲除策略往往需要一两天,而现在通过线上分析,几分钟即可获得完整的敲除策略分析报告,因此可即时定制感兴趣的基因打靶服务。
利用人工智能算法来代替人工的敲除策略选取,把专业性强、繁琐、耗时且容易出错的工作交给人工智能系统,从而解决领域内一个瓶颈问题,让全球科学家能随时、实时和免费地拿到各种基因打靶方案。
使用者将不需要具备敲除策略相关知识,只需要输入其感兴趣的基因,几分钟内即可得到一份分析详尽,结果完善的敲除策略报告。而且,利用人工智能算法来代替人工的敲除策略选取,把专业性强、繁琐、耗时且容易出错的工作交给人工智能系统,从而解决领域内一个瓶颈问题,让全球科学家能随时、实时地拿到各种基因打靶方案,省时省力,错误率低且效率高。
同时,本发明提供的系统及方法可灵活适用于ES打靶的条件性敲除、CRISPR/Cas9的广泛敲除及条件性敲除等多种敲除类型的敲除策略筛选。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可 以根据这些附图获得其他的附图。
图1为本发明一种智能化敲除策略筛选的方法架构流程示意图;
图2为本发明一种智能化敲除策略筛选的方法之第二优选实施例架构流程示意图;
图3为本发明一种智能化敲除策略筛选的方法之第三优选实施例架构流程示意图;
图4为本发明一种智能化敲除策略筛选的方法之第四优选实施例架构流程示意图;
图5为本发明一种智能化敲除策略筛选的方法之第五优选实施例架构流程示意图;
图6为本发明一种智能化敲除策略筛选的方法之第六优选实施例架构流程示意图;
图7为本发明一种智能化敲除策略筛选的方法之第七优选实施例架构流程示意图;
图8为本发明一种智能化敲除策略筛选的方法之第八优选实施例架构流程示意图;
图9为本发明一种智能化敲除策略筛选的方法之第九优选实施例架构流程示意图;
图10为本发明一种智能化敲除策略筛选的方法之第十优选实施例架构流程示意图;
图11为本发明一种智能化敲除策略筛选的方法之第十一优选实施例架构流程示意图;
图12为本发明一种智能化敲除策略筛选的系统架构示意图;
图13为本发明一种智能化敲除策略筛选的系统之模块架构示意图;
图14为本发明一种智能化敲除策略筛选的方法及系统实施例提供的终端的架构示意图;
图15为本发明一种基于多种敲除类型的敲除策略筛选的系统架构示意图;
图16为本发明一种基于多种敲除类型的敲除策略筛选的系统之模块架构示意图;
图17为本发明一种基于多种敲除类型的敲除策略筛选的方法架构流程示意图;
图18为本发明一种基于多种敲除类型的敲除策略筛选平台架构示意图;
图19为本发明一种实施例中计算机可读取存储介质架构示意图;
附图标记说明:
3-终端;31-存储器;32-处理器;33-通信总线;34-显示屏幕;
本发明目的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
为便于更好的理解本发明的目的、技术方案和优点更加清楚,下面结合附图和具体的实施方式对本发明作进一步说明,本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其它优点与功效。
本发明亦可通过其它不同的具体实例加以施行或应用,本说明书中的各项细节亦可基于不同观点与应用,在不背离本发明的精神下进行各种修饰与变更。
需要说明,若本发明实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、 “第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。其次,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时,应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
优选地,本发明智能化敲除策略筛选的方法应用在一个或者多个终端或者服务器中。所述终端是一种能够按照事先设定或存储的指令,自动进行数值计算和/或信息处理的设备,其硬件包括但不限于微处理器、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程门阵列(Field-Programmable Gate Array,FPGA)、数字处理器(Digital Signal Processor,DSP)、嵌入式设备等。
所述终端可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端可以与客户通过键盘、鼠标、遥控器、触摸板或声控设备等方式进行人机交互。
本发明为实现智能化敲除策略筛选,提供的一种智能化敲除策略筛选的方法、系统、平台及存储介质。
如图1所示,是本发明实施例提供的一种智能化敲除策略筛选的方法的流程图。
在本实施例中,所述智能化敲除策略筛选的方法,可以应用于具备显示功能的终端或者固定终端中,所述终端并不限定于个人电脑、智能手机、平板电脑、安装有摄像头的台式机或一体机等。
所述智能化敲除策略筛选的方法也可以应用于由终端和通过网络与所述终端进行连接的服务器所构成的硬件环境中。网络包括但不限于:广域网、城域网或局域网。本发明实施例的智能化敲除策略筛选的方法可以由服务器来执行,也 可以由终端来执行,还可以是由服务器和终端共同执行。
例如,对于需要进行智能化敲除策略筛选的终端,可以直接在终端上集成本发明的方法所提供的智能化敲除策略筛选功能,或者安装用于实现本发明的方法的客户端。再如,本发明所提供的方法还可以软件开发工具包(Software Development Kit,SDK)的形式运行在服务器等设备上,以SDK的形式提供智能化敲除策略筛选功能的接口,终端或其他设备通过所提供的接口即可实现智能化敲除策略筛选的功能。
如图1所示,本发明提供了一种智能化敲除策略筛选的方法,所述方法具体包括如下步骤,根据不同的需求,该流程图中步骤的顺序可以改变,某些步骤可以省略。
步骤S10,获取敲除策略原始数据信息;
步骤S20,对敲除策略原始数据信息进行过滤筛选;
步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
在本发明实施例中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
如图2所示,为本发明第二优选实施例。
较佳地,在本实施例中,于所述步骤S20之中,设置有多个阀值;
所述步骤S20中,还包括如下步骤:
步骤S201,设置多个阀值,将敲除策略与所述阀值进行对比判定;
步骤S202,剔除超出所述阀值的敲除策略;
所述超出所述阀值的敲除策略,直接被剔除,将不再参与同其他未对比判定过的阀值进行对比判定。若符合所述阀值的敲除策略,则保留该敲除策略,进而再参与同其他未对比判定过的阀值进行对比判定,直到判定符合所有阈值,则最终被保留下来,进而进入下一操作步骤。
在本实施例中,所述阀值包括:类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值。
也就是说,于步骤S20中设置多个阀值,将敲除策略与所述阀值进行对比判定,包括将敲除策略与所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值中的任意一个阈值进行对比判定;
超出所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值中的任意一个阈值的敲除策略,将不再参与同其他未对比判定过的阀值进行对比判定,如果符合所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值中一个阈值,则保留相应的该敲除策略,进而参与同其他未对比判定过的阀值进行对比判定,直到判定符合所有阈值,则最终被保留下来,进而进入下一操作步骤。
具体地,若敲除策略不等于所述类型阀值,则被剔除,否则保留该敲除策略数据信息,即如果该敲除策略被保留,则继续与第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值进行 对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值进行对比判定。
若敲除策略小于第一长度阀值,则被剔除,否则保留该敲除策略数据信息;即如果该敲除策略被保留,则继续与类型阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值进行对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同类型阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值进行对比判定。
若敲除策略小于第一比例阀值,则被剔除,否则保留该敲除策略数据信息;即如果该敲除策略被保留,则继续与第一长度阀值、类型阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值进行对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同第一长度阀值、类型阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值进行对比判定。
若敲除策略小于第二比例阀值,则被剔除,否则保留该敲除策略数据信息;即如果该敲除策略被保留,则继续与第一长度阀值、第一比例阀值、类型阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值进行对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同第一长度阀值、第一比例阀值、类型阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值进行对比判定。
若敲除策略位于位置阀值之后,则被剔除,否则保留该敲除策略数据信息;即如果该敲除策略被保留,则继续与第一长度阀值、第一比例阀值、第二比例阀 值、类型阀值、第二长度阀值、区域范围阀值和序列复杂性阀值进行对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同第一长度阀值、第一比例阀值、第二比例阀值、类型阀值、第二长度阀值、区域范围阀值和序列复杂性阀值进行对比判定。
若敲除策略大于第二长度阀值,则被剔除,否则保留该敲除策略数据信息;即如果该敲除策略被保留,则继续与第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、类型阀值、区域范围阀值和序列复杂性阀值进行对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、类型阀值、区域范围阀值和序列复杂性阀值进行对比判定。
若敲除策略位于区域范围阀值内,则被剔除,否则保留该敲除策略数据信息;即如果该敲除策略被保留,则继续与第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、类型阀值和序列复杂性阀值进行对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、类型阀值和序列复杂性阀值进行对比判定。
若敲除策略超出序列复杂性阀值,则被剔除,否则保留该敲除策略数据信息;即如果该敲除策略被保留,则继续与第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和类型阀值进行对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和类型阀值进行对比判定。
比如说,对外显子类型过滤,假设外显子分为若干种类型,若敲除区域的外显子不属于类型阀值中的一种,则该敲除策略则认为是超出要求,进而被剔除, 将不再参与同阀值进行对比判定;若敲除区域的外显子不属于类型阀值中的一种,则被保留下来,进而进入下一操作步骤。
同理,其它内含子的过滤、序列的过滤以及位置大小的过滤等过滤模式都与对外显子类型过滤一样,先判定与阀值的关系,再确定该敲除策略是否被剔除抑或被保留。
在本实施例中,序列复杂性过滤包括:GC含量过滤、序列重复度过滤和序列同源性过滤。
也就是说,本发明第二优选实施例,具体包括如下步骤:
步骤S10,获取敲除策略原始数据信息;
步骤S201,设置多个阀值,将敲除策略与所述阀值进行对比判定;
步骤S202,剔除超出所述阀值的敲除策略;
即本发明实施例的步骤S20,对敲除策略原始数据信息进行过滤筛选;
步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
在本实施例中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
如图3所示,为本发明第三优选实施例。
较佳地,第三优选实施例为第二优选实施例更进一步的实施例,于所述步骤 S20之中,设置有多个阀值,包括GC含量范围阀值;
所述步骤S20中,还包括如下步骤:
步骤S201,设置多个阀值,将敲除策略与所述阀值进行对比判定,包括将敲除策略与所述GC含量范围阀值进行对比判定;
步骤S202,剔除超出所述阀值的敲除策略;
所述超出所述阀值的敲除策略,直接被剔除,将不再参与同其他未对比判定过的阀值进行对比判定。若符合所述阀值的敲除策略,则保留该敲除策略,进而再参与同其他未对比判定过的阀值进行对比判定,直到判定符合所有阈值,则最终被保留下来,进而进入下一操作步骤。
在本实施例中,所述阀值包括:类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和GC含量范围阀值。
也就是说,于步骤S20中设置多个阀值,将敲除策略与所述阀值进行对比判定,包括将敲除策略与所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和GC含量范围阀值中的任意一个阈值进行对比判定;
超出所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和GC含量范围阀值中的任意一个阈值的敲除策略,将不再参与同其他未对比判定过的阀值进行对比判定,如果符合所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和GC含量范围阀值中一个阈值,则保留相应的该敲除策略,进而参与同其他未对比判定过的阀值进行对比判定,直到判定符合所有阈值,则最终被保留下来,进而进入下一操作步骤。
具体地,敲除策略与所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值判定情况和第二优选实施例相 同,在第三优选实施例中不再赘述。
若敲除策略不在GC含量范围阀值范围内,则被剔除,否则保留该敲除策略数据信息;即如果该敲除策略被保留,则继续与第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和类型阀值进行对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和类型阀值进行对比判定。
比如说,对外显子类型过滤,假设外显子分为若干种类型,若敲除区域的外显子不属于类型阀值中的一种,则该敲除策略则认为是超出要求,进而被剔除,将不再参与同阀值进行对比判定;若敲除区域的外显子不属于类型阀值中的一种,则被保留下来,进而进入下一操作步骤。
同理,其它内含子的过滤、序列的过滤以及位置大小的过滤等过滤模式都与对外显子类型过滤一样,先判定与阀值的关系,再确定该敲除策略是否被剔除抑或被保留。
也就是说,本发明第三优选实施例,具体包括如下步骤:
步骤S10,获取敲除策略原始数据信息;
步骤S201,设置多个阀值,将敲除策略与所述阀值进行对比判定,包括将敲除策略与所述GC含量范围阀值进行对比判定;
步骤S202,剔除超出所述阀值的敲除策略;
即本发明实施例的步骤S20,对敲除策略原始数据信息进行过滤筛选;
步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予,包括GC含量分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
在本实施例中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
如图4所示,为本发明第四优选实施例。
较佳地,第四优选实施例为第二优选实施例更进一步的实施例,于所述步骤S20之中,设置有多个阀值,包括序列重复度阀值;
所述步骤S20中,还包括如下步骤:
步骤S201,设置多个阀值,将敲除策略与所述阀值进行对比判定,包括将敲除策略与所述序列重复度阀值进行对比判定;
步骤S202,剔除超出所述阀值的敲除策略;
所述超出所述阀值的敲除策略,直接被剔除,将不再参与同其他未对比判定过的阀值进行对比判定。若符合所述阀值的敲除策略,则保留该敲除策略,进而再参与同其他未对比判定过的阀值进行对比判定,直到判定符合所有阈值,则最终被保留下来,进而进入下一操作步骤。
在本实施例中,所述阀值包括:类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列重复度阀值。
也就是说,于步骤S20中设置多个阀值,将敲除策略与所述阀值进行对比判定,包括将敲除策略与所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列重复度阀值中的任意一个阈值进行对比判定;
超出所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列重复度阀值中的任意一个阈值的敲除策略,将不再参与同其他未对比判定过的阀值进行对比判定,如果符合所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列重复度阀值中一个阈值,则保留相应的该敲除策略,进而参与同其他未对比判定过的阀值进行对比判定,直到判定符合所有阈值,则最终被保留下来,进而进入下一操作步骤。
具体地,敲除策略与所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值判定情况和第二优选实施例相同,在第四优选实施例中不再赘述。
若敲除策略大于序列重复度阀值,则被剔除,否则保留该敲除策略数据信息;即如果该敲除策略被保留,则继续与第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和类型阀值进行对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和类型阀值进行对比判定。
比如说,对外显子类型过滤,假设外显子分为若干种类型,若敲除区域的外显子不属于类型阀值中的一种,则该敲除策略则认为是超出要求,进而被剔除,将不再参与同阀值进行对比判定;若敲除区域的外显子不属于类型阀值中的一种,则被保留下来,进而进入下一操作步骤。
同理,其它内含子的过滤、序列的过滤以及位置大小的过滤等过滤模式都与对外显子类型过滤一样,先判定与阀值的关系,再确定该敲除策略是否被剔除抑或被保留。
也就是说,本发明第四优选实施例,具体包括如下步骤:
步骤S10,获取敲除策略原始数据信息;
步骤S201,设置多个阀值,将敲除策略与所述阀值进行对比判定,包括将敲除策略原始数据信息与所述序列重复度阀值进行对比判定;
步骤S202,剔除超出所述阀值的敲除策略;
即本发明实施例的步骤S20,对敲除策略原始数据信息进行过滤筛选;
步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予,包括序列重复度分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
在本实施例中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
如图5所示,为本发明第五优选实施例。
较佳地,第五优选实施例为第二优选实施例更进一步的实施例,于所述步骤S20之中,设置有多个阀值,包括序列同源性阀值;
所述步骤S20中,还包括如下步骤:
步骤S201,设置多个阀值,将敲除策略与所述阀值进行对比判定,包括将敲除策略与所述序列同源性阀值进行对比判定;
步骤S202,剔除超出所述阀值的敲除策略;
所述超出所述阀值的敲除策略,直接被剔除,将不再参与同其他未对比判定 过的阀值进行对比判定。若符合所述阀值的敲除策略,则保留该敲除策略,进而再参与同其他未对比判定过的阀值进行对比判定,直到判定符合所有阈值,则最终被保留下来,进而进入下一操作步骤。
在本实施例中,所述阀值包括:类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列同源性阀值。
也就是说,于步骤S20中设置多个阀值,将敲除策略与所述阀值进行对比判定,包括将敲除策略与所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列同源性阀值中的任意一个阈值进行对比判定;
超出所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列同源性阀值中的任意一个阈值的敲除策略,将不再参与同其他未对比判定过的阀值进行对比判定,如果符合所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列同源性阀值中一个阈值,则保留相应的该敲除策略,进而参与同其他未对比判定过的阀值进行对比判定,直到判定符合所有阈值,则最终被保留下来,进而进入下一操作步骤。
具体地,敲除策略与所述类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值判定情况和第二优选实施例相同,在第四优选实施例中不再赘述。
若敲除策略大于序列同源性阀值,则被剔除,否则保留该敲除策略数据信息;即如果该敲除策略被保留,则继续与第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和类型阀值进行对比判定,直到判定符合剩余所有阈值,则最终被保留下来,进而进入下一操作步骤;如果该敲除策略被剔除后,将不再参与同第一长度阀值、第一比例阀值、第二比例阀值、位 置阀值、第二长度阀值、区域范围阀值和类型阀值进行对比判定。
比如说,对外显子类型过滤,假设外显子分为若干种类型,若敲除区域的外显子不属于类型阀值中的一种,则该敲除策略则认为是超出要求,进而被剔除,将不再参与同阀值进行对比判定;若敲除区域的外显子不属于类型阀值中的一种,则被保留下来,进而进入下一操作步骤。
同理,其它内含子的过滤、序列的过滤以及位置大小的过滤等过滤模式都与对外显子类型过滤一样,先判定与阀值的关系,再确定该敲除策略是否被剔除抑或被保留。
也就是说,本发明第五优选实施例,具体包括如下步骤:
步骤S10,获取敲除策略原始数据信息;
步骤S201,设置多个阀值,将敲除策略与所述阀值进行对比判定,包括将敲除策略原始数据信息与所述序列同源性阀值进行对比判定;
步骤S202,剔除超出所述阀值的敲除策略;
即本发明实施例的步骤S20,对敲除策略原始数据信息进行过滤筛选;
步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予,包括序列同源性分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
在本实施例中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结 果报告。
如图6所示,为本发明第六优选实施例。
较佳地,在本实施例中,于步骤S30之中,还包括如下步骤:
步骤S301,获取过滤筛选后且未被剔除的敲除策略数据信息;
步骤S302,对敲除策略数据信息进行处理;
步骤S303,根据敲除策略数据信息的分析处理结果,进行相应的分值赋予。
也就是说,经过步骤S20对敲除策略原始数据信息进行过滤筛选后,对保留下来的敲除策略进行分析处理,比如:分析敲除策略的种类类型、分析敲除策略的长度类型、分析敲除策略的比例关系、分析敲除策略的位置关系、分析敲除策略的区域范围类型、分析敲除策略的序列复杂性等一系列需要分值赋予的类型分析处理,即对一个或多个敲除策略同时进行分值赋予的类型,然后按照对敲除策略分析处理结果进行具体分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
较佳地,过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
也就是说,在本实施例中,保留下来的敲除策略将送入到打分机制中,同时进行分值赋予,而且对其各个需要打分的类型同时进行分值赋予。
具体地,所述分值赋予包括:类型分值赋予、第一长度分值赋予、第一比例分值赋予、第二比例分值赋予、位置分值赋予、第二长度分值赋予、区域范围分值赋予和序列复杂性分值赋予。
若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行类型分值赋予,则根据不同类型的敲除策略赋予相应不同的分值,进而对其进行第一长度分值赋予或第一比例分值赋予或第二比例分值赋予或位置分值赋予或第二长度分值赋予或区域范围分值赋予或序列复杂性分值赋予,直至所有种类分值 赋予都对敲除策略都赋予了分值。
所述分值赋予可以对一个或多个敲除策略同时进行分值赋予。
打分机制对敲除策略进行打分,具体地:
比如说,对外显子类型打分,假设外显子分为若干种类型(N 1、N 2……N n),则对每一种类型赋予不同的分值(SN 1、SN 2……SN n)。
同理,其它内含子的分值赋予、序列的分值赋予以及位置大小的分值赋予等分值赋予模式都与对外显子类型分值赋予一样,先对各模式分值赋予,再针对所赋予的分值进行下一步操作。
在本实施例中,序列复杂性打分包括GC含量打分、序列重复度打分和序列同源性打分。
也就是说,本发明第六优选实施例,具体包括如下步骤:
步骤S10,获取敲除策略原始数据信息;
步骤S20,对敲除策略原始数据信息进行过滤筛选;
步骤S301,获取过滤筛选后且未被剔除的敲除策略数据信息;
步骤S302,对敲除策略数据信息进行处理;
步骤S303,根据敲除策略数据信息的分析处理结果,进行相应的分值赋予。
即本发明实施例的步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
在本实施例中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
如图7所示,为本发明第七优选实施例。
较佳地,第七优选实施例为第六优选实施例更进一步的实施例,在本实施例中,于步骤S30之中,还包括如下步骤:
步骤S301,获取过滤筛选后且未被剔除的敲除策略数据信息;
步骤S302,对敲除策略数据信息进行处理;
步骤S303,根据敲除策略数据信息的分析处理结果,进行相应的分值赋予,包括GC含量分值赋予。
也就是说,经过步骤S20对敲除策略原始数据信息进行过滤筛选后,对保留下来的敲除策略进行分析处理,比如:分析敲除策略的种类类型、分析敲除策略的长度类型、分析敲除策略的比例关系、分析敲除策略的位置关系、分析敲除策略的区域范围类型、分析敲除策略的序列复杂性等一系列需要分值赋予的类型分析处理,即对一个或多个敲除策略同时进行分值赋予的类型,然后按照对敲除策略分析处理结果进行具体的GC含量分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
较佳地,过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予,
也就是说,在本实施例中,保留下来的敲除策略将送入到打分机制中,同时进行分值赋予,而且对其各个需要打分的类型同时进行分值赋予。
具体地,所述分值赋予包括:类型分值赋予、第一长度分值赋予、第一比例分值赋予、第二比例分值赋予、位置分值赋予、第二长度分值赋予、区域范围分值赋予和GC含量分值赋予。
若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行类型分值赋予,则根据不同类型的敲除策略赋予相应不同的分值,进而对其进行第一长度分值赋予或第一比例分值赋予或第二比例分值赋予或位置分值赋予或第 二长度分值赋予或区域范围分值赋予或GC含量分值赋予,直至所有种类分值赋予都对敲除策略都赋予了分值。
所述分值赋予可以对一个或多个敲除策略同时进行分值赋予。
打分机制对敲除策略进行打分,具体地:
比如说,对外显子类型打分,假设外显子分为若干种类型(N 1、N 2……N n),则对每一种类型赋予不同的分值(SN 1、SN 2……SN n)。
同理,其它内含子的分值赋予、序列的分值赋予以及位置大小的分值赋予等分值赋予模式都与对外显子类型分值赋予一样,先对各模式分值赋予,再针对所赋予的分值进行下一步操作。
也就是说,本发明第七优选实施例,具体包括如下步骤:
步骤S10,获取敲除策略原始数据信息;
步骤S20,对敲除策略原始数据信息进行过滤筛选,包括将敲除策略原始数据信息与所述GC含量范围阀值进行对比判定;
步骤S301,获取过滤筛选后且未被剔除的敲除策略数据信息;
步骤S302,对敲除策略数据信息进行处理;
步骤S303,根据敲除策略数据信息的分析处理结果,进行相应的分值赋予,包括GC含量分值赋予。
即本发明实施例的步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
在本实施例中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结 果报告。
如图8所示,为本发明第八优选实施例。
较佳地,第八优选实施例为第六优选实施例更进一步的实施例,在本实施例中,于步骤S30之中,还包括如下步骤:
步骤S301,获取过滤筛选后且未被剔除的敲除策略数据信息;
步骤S302,对敲除策略数据信息进行处理;
步骤S303,根据敲除策略数据信息的分析处理结果,进行相应的分值赋予,包括序列重复度分值赋予。
也就是说,经过步骤S20对敲除策略原始数据信息进行过滤筛选后,对保留下来的敲除策略进行分析处理,比如:分析敲除策略的种类类型、分析敲除策略的长度类型、分析敲除策略的比例关系、分析敲除策略的位置关系、分析敲除策略的区域范围类型、分析敲除策略的序列复杂性等一系列需要分值赋予的类型分析处理,即对一个或多个敲除策略同时进行分值赋予的类型,然后按照对敲除策略分析处理结果进行具体的序列重复度分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
较佳地,过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予,
也就是说,在本实施例中,保留下来的敲除策略将送入到打分机制中,同时进行分值赋予,而且对其各个需要打分的类型同时进行分值赋予。
具体地,所述分值赋予包括:类型分值赋予、第一长度分值赋予、第一比例分值赋予、第二比例分值赋予、位置分值赋予、第二长度分值赋予、区域范围分值赋予和序列重复度分值赋予。
若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行类型分值赋予,则根据不同类型的敲除策略赋予相应不同的分值,进而对其进行第 一长度分值赋予或第一比例分值赋予或第二比例分值赋予或位置分值赋予或第二长度分值赋予或区域范围分值赋予或序列重复度分值赋予,直至所有种类分值赋予都对敲除策略都赋予了分值。
所述分值赋予可以对一个或多个敲除策略同时进行分值赋予。
打分机制对敲除策略进行打分,具体地:
比如说,对外显子类型打分,假设外显子分为若干种类型(N 1、N 2……N n),则对每一种类型赋予不同的分值(SN 1、SN 2……SN n)。
同理,其它内含子的分值赋予、序列的分值赋予以及位置大小的分值赋予等分值赋予模式都与对外显子类型分值赋予一样,先对各模式分值赋予,再针对所赋予的分值进行下一步操作。
也就是说,本发明第八优选实施例,具体包括如下步骤:
步骤S10,获取敲除策略原始数据信息;
步骤S20,对敲除策略原始数据信息进行过滤筛选,包括将敲除策略原始数据信息与所述序列重复度阀值进行对比判定;
步骤S301,获取过滤筛选后且未被剔除的敲除策略数据信息;
步骤S302,对敲除策略数据信息进行处理;
步骤S303,根据敲除策略数据信息的分析处理结果,进行相应的分值赋予,包括序列重复度分值赋予。
即本发明实施例的步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
在本实施例中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
如图9所示,为本发明第九优选实施例。
较佳地,第九优选实施例为第六优选实施例更进一步的实施例,在本实施例中,于步骤S30之中,还包括如下步骤:
步骤S301,获取过滤筛选后且未被剔除的敲除策略数据信息;
步骤S302,对敲除策略数据信息进行处理;
步骤S303,根据敲除策略数据信息的分析处理结果,进行相应的分值赋予,包括序列同源性分值赋予。
也就是说,经过步骤S20对敲除策略原始数据信息进行过滤筛选后,对保留下来的敲除策略进行分析处理,比如:分析敲除策略的种类类型、分析敲除策略的长度类型、分析敲除策略的比例关系、分析敲除策略的位置关系、分析敲除策略的区域范围类型、分析敲除策略的序列复杂性等一系列需要分值赋予的类型分析处理,即对一个或多个敲除策略同时进行分值赋予的类型,然后按照对敲除策略分析处理结果进行具体的序列同源性分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
较佳地,过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予,
也就是说,在本实施例中,保留下来的敲除策略将送入到打分机制中,同时进行分值赋予,而且对其各个需要打分的类型同时进行分值赋予。
具体地,所述分值赋予包括:类型分值赋予、第一长度分值赋予、第一比例分值赋予、第二比例分值赋予、位置分值赋予、第二长度分值赋予、区域范围分值赋予和序列同源性分值赋予。
若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行类 型分值赋予,则根据不同类型的敲除策略赋予相应不同的分值,进而对其进行第一长度分值赋予或第一比例分值赋予或第二比例分值赋予或位置分值赋予或第二长度分值赋予或区域范围分值赋予或序列同源性分值赋予,直至所有种类分值赋予都对敲除策略都赋予了分值。
所述分值赋予可以对一个或多个敲除策略同时进行分值赋予。
打分机制对敲除策略进行打分,具体地:
比如说,对外显子类型打分,假设外显子分为若干种类型(N 1、N 2……N n),则对每一种类型赋予不同的分值(SN 1、SN 2……SN n)。
同理,其它内含子的分值赋予、序列的分值赋予以及位置大小的分值赋予等分值赋予模式都与对外显子类型分值赋予一样,先对各模式分值赋予,再针对所赋予的分值进行下一步操作。
也就是说,本发明第九优选实施例,具体包括如下步骤:
步骤S10,获取敲除策略原始数据信息;
步骤S20,对敲除策略原始数据信息进行过滤筛选,包括将敲除策略原始数据信息与所述序列同源性阀值进行对比判定;
步骤S301,获取过滤筛选后且未被剔除的敲除策略数据信息;
步骤S302,对敲除策略数据信息进行处理;
步骤S303,根据敲除策略数据信息的分析处理结果,进行相应的分值赋予,包括序列同源性分值赋予。
即本发明实施例的步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
在本实施例中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
如图10所示,为本发明第十优选实施例。
在本实施例中,于步骤S40之中,还包括如下步骤:
步骤S401,获取已赋予分值的敲除策略数据信息;
步骤S402,对含有分值的敲除策略数据信息进行整理对比;
步骤S403,统计生成分值最高的敲除策略。
具体地,经过步骤S30针对过滤筛选后且未被剔除的敲除策略进行分值赋予,对相应各种类型赋予相应的分值后,针对含有分值的敲除策略数据信息进行整理对比,即进行对敲除策略分值高低排序,最终统计生成分值最高的敲除策略;
相应地,本实施例中的,对敲除策略原始数据信息进行过滤筛选,以及针对过滤筛选后且未被剔除的敲除策略进行分值赋予,适用于上述所有的实施例,在本实施例中就不再赘述。
也就是说,本发明第十优选实施例,具体包括如下步骤:
步骤S10,获取敲除策略原始数据信息;
步骤S20,对敲除策略原始数据信息进行过滤筛选;
步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
步骤S401,获取已赋予分值的敲除策略数据信息;
步骤S402,对含有分值的敲除策略数据信息进行整理对比;
步骤S403,统计生成分值最高的敲除策略。
即本发明实施例的步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
在本实施例中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
如图11所示,为本发明第十一优选实施例。
以筛选基因Z的ES条件性敲除最优敲除策略为例,具体阐述一种智能化敲除策略筛选的方法,相应操作过程如下:
首先列举基因Z的所有可能的敲除策略,例如:基因Z有4个外显子,分别为Exon1、Exon2、Exon3、Exon4,其中编码区域是Exon1~Exon4,因此可能的敲除策略有敲除Exon1、敲除Exon2、敲除Exon3、敲除Exon4、敲除Exon1~Exon2、敲除Exon1~Exon3、敲除Exon1~Exon4、敲除Exon2~Exon3、敲除Exon2~Exon4、敲除Exon3~Exon4共10个敲除策略。
根据以上10个敲除策略并行化分析,同时进入敲除策略筛选总流程,也就是说超出所述阀值的敲除策略,直接被剔除,将不再参与同其他未对比判定过的阀值进行对比判定。若符合所述阀值的敲除策略,则保留该敲除策略,进而再参与同其他未对比判定过的阀值进行对比判定,直到判定符合所有阈值,则最终被保留下来,进而进入下一操作步骤。
以上述策略为例,阐述敲除策略总流程的分析过程,策略1,敲除Exon1,因此需要分析敲除Exon1是否能满足使基因Z失去活性。Exon1首先进入过滤流程,对其进行所有类型过滤,具体过滤分析如下:
对外显子类型过滤,假设外显子分为若干种类型,若敲除区域的外显子不属于类型阀值中的一种,则该敲除策略则认为是超出要求,进而被剔除,将不再参 与同阀值进行对比判定;若敲除区域的外显子不属于类型阀值中的一种,则被保留下来,进而进入下一操作步骤。
同理,其它内含子的过滤、序列的过滤以及位置大小的过滤等过滤模式都与对外显子类型过滤一样,先判定与阀值的关系,再确定该敲除策略是否被剔除抑或被保留。
Exon1完成过滤流程,并满足所有条件,被保留下来,作为待选的敲除策略,将进入打分流程(即打分机制,分值赋予机制),对其相应的敲除策略进行打分,比如对以上的各类型进行逐一赋予分值,而且按照各项指标并行化进行分值赋予(即打分)。
也就是说,保留下来的敲除策略将送入到打分机制中,同时进行分值赋予,而且对其各个需要打分的类型同时进行分值赋予。
例如,对敲除Exon1的策略外显子类型打分,假设外显子类型为若干种类型(N 1、N 2……N n)中的N 1,则其相对应的分值为SN 1
同理,其它内含子的分值赋予、序列的分值赋予以及位置大小的分值赋予等分值赋予模式都与对外显子类型分值赋予一样,对各模式分值赋予,比如说,所有分值模式分别被赋予的分值为SM 2、SF 3……SX N
综上所述,因此敲除Exon1的策略的综合得分为:
N 1+SM 2+SF 3+……+SX N=FS1分
同时进行筛选策略总流程分析的其他9个策略中,完成过过滤流程被保留下来的策略包含敲除Exon1~Exon2、敲除Exon2~Exon3、敲除Exon2~Exon4、敲除Exon3~Exon4。4个策略继续进入打分流程,分别最终得分为FS2、FS3、FS4。
若其中分值排序为FS2>FS1>FS3>FS4,因此敲除Exon1~Exon2的策略最优,作为基因Z的优选策略。
最终,以敲除Exon1~Exon2的策略的分析过程和结果作为数据基础,采用 智能报告撰写系统,输出完整的基因z的ES条件性敲除策略报告,即是统计生成敲除策略数据信息集,比如生成敲除策略数据信息分析处理结果报告。
在本实施例中,所述敲除策略为基因敲除策略的所有组合。
较佳地,进行的过滤筛选为并行化过滤筛选;过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
如图12所示,本发明提供了一种智能化敲除策略筛选的系统,所述系统具体包括:
数据获取单元、过滤筛选单元、分值赋予单元、分值整理单元和信息集汇总单元;
数据获取单元,用于获取敲除策略原始数据信息;
过滤筛选单元,用于对敲除策略原始数据信息进行过滤筛选;
分值赋予单元,用于针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
分值整理单元,用于整理已赋予分值的敲除策略分值情况;
信息集汇总单元,用于汇总生成敲除策略数据信息集。
在本系统中,所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。也就是说,保留下来的敲除策略将送入到打分机制中,同时进行分值赋予,而且对其各个需要打分的类型同时进行分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
具体地,所述过滤筛选单元中设置有多个阀值;
所述过滤筛选单元包括:阈值对比模块和剔除模块;
阈值对比模块,用于设置多个阀值,将敲除策略与所述阀值进行对比判定;
剔除模块,用于剔除超出所述阀值的敲除策略。
所述超出所述阀值的敲除策略,直接被剔除,将不再参与同其他未对比判定过的阀值进行对比判定。若符合所述阀值的敲除策略,则保留该敲除策略,进而再参与同其他未对比判定过的阀值进行对比判定,直到判定符合所有阈值,则最终被保留下来,进而进入下一操作步骤。
较佳地,阈值对比模块包括:类型阀值判定模块、第一长度阀值判定模块、第一比例阀值判定模块、第二比例阀值判定模块、位置阀值判定模块、第二长度阀值判定模块、区域范围阀值判定模块和序列复杂性阀值判定模块。
类型阀值判定模块,用于对敲除策略的类型进行对比判定,若敲除策略不等于所述类型阀值,则被剔除,否则保留该敲除策略数据信息。
第一长度阀值判定模块,用于对敲除策略的第一长度进行对比判定,若敲除策略小于第一长度阀值,则被剔除,否则保留该敲除策略数据信息。
第一比例阀值判定模块,用于对敲除策略的第一比例进行对比判定,若敲除策略小于第一比例阀值,则被剔除,否则保留该敲除策略数据信息。
第二比例阀值判定模块,用于对敲除策略的第二比例进行对比判定,若敲除策略小于第二比例阀值,则被剔除,否则保留该敲除策略数据信息。
位置阀值判定模块,用于对敲除策略的位置进行对比判定,若敲除策略位于位置阀值之后,则被剔除,否则保留该敲除策略数据信息。
第二长度阀值判定模块,用于对敲除策略的第二长度进行对比判定,若敲除策略大于第二长度阀值,则被剔除,否则保留该敲除策略数据信息。
区域范围阀值判定模块,用于对敲除策略的区域范围进行对比判定,若敲除策略位于区域范围阀值内,则被剔除,否则保留该敲除策略数据信息。
序列复杂性阀值判定模块,用于对敲除策略的序列复杂性进行对比判定,若敲除策略超出序列复杂性阀值,则被剔除,否则保留该敲除策略数据信息。
更进一步地,所述序列复杂性阀值判定模块还包括:GC含量范围阀值判定模块、序列重复度阀值判定模块和序列同源性阀值判定模块。
GC含量范围阀值判定模块,用于对敲除策略的GC含量范围进行对比判定,若敲除策略不在GC含量范围阀值范围内,则被剔除,否则保留该敲除策略数据信息。
序列重复度阀值判定模块,用于对敲除策略的序列重复度进行对比判定,若敲除策略大于序列重复度阀值,则被剔除,否则保留该敲除策略数据信息。
序列同源性阀值判定模块,用于对敲除策略的序列同源性进行对比判定,若敲除策略大于序列同源性阀值,则被剔除,否则保留该敲除策略数据信息。
具体地,如图13所示,所述分值赋予单元包括:第一数据获取模块、数据分析处理模块和打分模块;
第一数据获取模块,用于获取过滤筛选后且未被剔除的敲除策略数据信息;
数据分析处理模块,用于对敲除策略数据信息进行处理;
打分模块,用于根据敲除策略数据信息的分析处理结果,进行相应的分值赋予。
较佳地,如图13所示,所述打分模块包括:类型分值赋予模块、第一长度分值赋予模块、第一比例分值赋予模块、第二比例分值赋予模块、位置分值赋予模块、第二长度分值赋予模块、区域范围分值赋予模块和序列复杂性分值赋予模块。
类型分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行类型分值赋予,根据不同类型的敲除策略赋予相应不同的分值。
第一长度分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行第一长度分值赋予,根据不同第一长度的敲除策略赋予相应不同的分值。
第一比例分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行第一比例分值赋予,根据不同第一比例的敲除策略赋予相应不同的分值。
第二比例分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行第二比例分值赋予,根据不同第二比例的敲除策略赋予相应不同的分值。
位置分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行位置分值赋予,根据不同位置的敲除策略赋予相应不同的分值。
第二长度分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行第二长度分值赋予,根据不同第二长度的敲除策略赋予相应不同的分值。
区域范围分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行区域范围分值赋予,根据不同区域范围的敲除策略赋予相应不同的分值。
序列复杂性分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行序列复杂性分值赋予,根据不同序列复杂性的敲除策略赋予相应不同的分值。
更进一步地,如图13所示,所述序列复杂性分值赋予模块包括GC含量分值赋予模块、序列重复度分值赋予模块和序列同源性分值赋予模块
GC含量分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保 留下来的敲除策略)进行GC含量分值赋予,根据不同GC含量的敲除策略赋予相应不同的分值。
序列重复度分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行序列重复度分值赋予,根据不同序列重复度的敲除策略赋予相应不同的分值。
序列同源性分值赋予模块,用于若对过滤筛选后且未被剔除的敲除策略(即对保留下来的敲除策略)进行序列同源性分值赋予,根据不同序列同源性的敲除策略赋予相应不同的分值。
具体地,如图13所示,所述分值整理单元包括:
第二数据获取模块,用于获取已赋予分值的敲除策略数据信息;
分值排比模块,用于对含有分值的敲除策略数据信息进行整理对比;
统计生成模块,用于统计生成分值最高的敲除策略。
如图14所示,为本发明实施例提供的终端的结构示意图。在本发明较佳实施例中,所述终端3包括存储器31、至少一个处理器32、至少一条通信总线33及显示屏幕34。
本领域技术人员应该了解,图14示出的终端的结构并不构成本发明实施例的限定,既可以是总线型结构,也可以是星形结构,所述终端3还可以包括比图示更多或更少的其他硬件或者软件,或者不同的部件布置。
在一些实施例中,所述终端3包括一种能够按照事先设定或存储的指令,自动进行数值计算和/或信息处理的终端,其硬件包括但不限于微处理器、专用集成电路、可编程门阵列、数字处理器、嵌入式设备等。所述终端3还可包括客户设备,所述客户设备包括但不限于任何一种可与客户通过键盘、鼠标、遥控器、触摸板或声控设备等方式进行人机交互的电子产品,例如,个人计算机、平板电脑、智能手机、数码相机等。
需要说明的是,所述终端3仅为举例,其他现有的或今后可能出现的电子产品如可适应于本发明,也应包含在本发明的保护范围以内,并以引用方式包含于此。
在一些实施例中,所述存储器31用于存储程序代码和各种数据,例如安装在所述终端3中的智能化敲除策略筛选系统,并在终端3的运行过程中实现高速、自动地完成程序或数据的存取。所述存储器31包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子擦除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
在一些实施例中,所述至少一个处理器32可以由集成电路组成,例如可以由单个封装的集成电路所组成,也可以是由多个相同功能或不同功能封装的集成电路所组成,包括一个或者多个中央处理器(Central Processing unit,CPU)、微处理器、数字处理芯片、图形处理器及各种控制芯片的组合等。所述至少一个处理器32是所述终端3的控制核心(Control Unit),利用各种接口和线路连接整个终端3的各个部件,通过运行或执行存储在所述存储器31内的程序或者模块,以及调用存储在所述存储器31内的数据,以执行终端3的各种功能和处理数据,例如执行智能化敲除策略筛选的功能。
在一些实施例中,所述至少一条通信总线33被设置为实现所述存储器31、所述至少一个处理器32以及所述显示屏幕34等之间的连接通信。
在一些实施例中,所述显示屏幕34可用于显示由观看者输入的信息或提供 给观看者的信息以及终端3的各种图形观看者接口,这些图形观看者接口可以由图形、文本、图标、视频和其任意组合来构成。所述显示屏幕34可包括显示面板,可选的,可以采用液晶显示屏幕(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板。
所述显示屏幕34还可以包括触摸面板。如果所述显示屏幕34包括触摸面板,所述显示屏幕34可以被实现为触摸屏,以接收来自观看者的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。上述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与上述触摸或滑动操作相关的持续时间和压力。所述显示面板与所述触摸面板可以作为两个独立的部件来实现输入和输入功能,但是在某些实施例中,可以将所述显示面板与所述触摸面板进行集成而实现输入和输出功能。
尽管未示出,所述终端3还可以包括给各个部件供电的电源(比如电池),优选的,电源可以通过电源管理装置与所述至少一个处理器32逻辑相连,从而通过电源管理装置实现管理充电、放电、以及功耗管理等功能。电源还可以包括一个或一个以上的直流或交流电源、再充电装置、电源故障检测电路、电源转换器或者逆变器、电源状态指示器等任意组件。所述终端3还可以包括多种传感器、蓝牙模块、Wi-Fi模块等,在此不再赘述。
应该了解,所述实施例仅为说明之用,在专利申请范围上并不受此结构的限制。
上述以软件功能模块的形式实现的集成的单元,可以存储在一个计算机可读取存储介质中。上述软件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,终端,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的部分。
在进一步的实施例中,结合图14,所述至少一个处理器32可执行所述终端 3的操作装置以及安装的各类应用程序(如所述的智能化敲除策略筛选系统)、程序代码等,例如,上述的各个模块。
所述存储器31中存储有程序代码,且所述至少一个处理器32可调用所述存储器31中存储的程序代码以执行相关的功能。例如,系统中所述的各个模块是存储在所述存储器31中的程序代码,并由所述至少一个处理器32所执行,从而实现所述各个模块的功能以达到智能化敲除策略筛选的目的。
在本发明的一个实施例中,所述存储器31存储多个指令,所述多个指令被所述至少一个处理器32所执行以实现智能化敲除策略筛选的方法。
在本发明的一个实施例中,所述处理器32对所述多个指令的执行包括:
步骤S10,获取敲除策略原始数据信息;
步骤S20,对敲除策略原始数据信息进行过滤筛选;
步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
步骤S40,整理已赋予分值的敲除策略分值情况;
步骤S50,汇总生成敲除策略数据信息集。
所述敲除策略原始数据信息为基因敲除策略的所有组合。
较佳地,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
所述过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
更进一步地,所述分值为二进制分值、十进制分值或十六进制分值。
所述统计生成敲除策略数据信息集包括生成敲除策略数据信息分析处理结果报告。
具体地,所述至少一个处理器32对上述指令的具体实现方法可参考图1对应实施例中相关步骤的描述,在此不赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的装置,装置和方法, 可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或,单数不排除复数。装置权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。
本发明通过一种智能化敲除策略筛选的方法各个步骤,及系统的各功能单元与功能模块,可以解决对经验丰富的专家的依赖,针对没有丰富经验的普通人员也可以进行敲除策略选取。
而且还解决敲除策略的时间问题,倘若一个基因的敲除策略报告需要半天时间才能获得,将严重制约基因打靶相关的商业及基础研究发展。通过本发明的步 骤方法和系统几分钟内即可获得一份敲除策略报告。
更进一步地,还解决敲除策略选取对不同时间不同专家的依赖,针对同一个基因,只要基因的信息没有发生变化(随着研究深入,基因的功能等信息可能会发生变化,影响敲除策略),该基因的最优敲除策略都是一致的,报告内容及格式也一致,不受外在因素的干扰而发生改变的敲除策略选取。
也就是说,原有技术获得基因的敲除策略,需要丰富经验的专家来完成,而本发明将专家多年以来的实践经验进行梳理总结,研发所得一种智能化敲除策略筛选的方法、系统、平台及存储介质,使用者将不需要具备敲除策略相关知识,只需要输入其感兴趣的基因,几分钟内即可得到一份分析详尽,结果完善的敲除策略报告。利用人工智能算法来代替人工的敲除策略选取,把专业性强、繁琐、耗时且容易出错的工作交给人工智能系统,从而解决领域内一个瓶颈问题,让全球科学家能随时、实时和免费地拿到各种基因打靶方案。
比如说,通过本发明一种智能化敲除策略筛选的方法、系统、平台及存储介质目前可以完成小鼠ES打靶的条件性敲除、CRISPR/Cas9的广泛敲除及条件性敲除的敲除策略筛选。3种类型的整体实现方法一样,也就是说先进行敲除策略排列组合,随后进行一系列并行分析,筛选出最优的敲除策略这个实现流程一致。
总的来说,通过本发明的方法及系统,可以大大提高产出和工作效率,原本半天才能完成的报告,现在只需要几分钟;解放人力物力;实现了智能化并行化敲除策略筛选模式和智能化撰写敲除策略报告,从而降低出错概率;打破知识背景壁垒,也就是说,针对没有丰富经验的学生研究者也可以快速获得基因的敲除策略;有助开启新的销售模式,带来更大的收益,原技术的瓶颈下,通过客户通过销售传达感兴趣基因到策略专家处,策略专家分析获得敲除策略优选方案再通过销售反馈给客户,客户了解感兴趣的基因的敲除策略往往需要一两天,而现在通过线上分析,几分钟即可获得完整的敲除策略分析报告,因此可即时定制感兴 趣的基因打靶服务。
优选地,本发明中基于多种敲除类型的敲除策略筛选的方法应用在一个或者多个终端或者服务器中。所述终端是一种能够按照事先设定或存储的指令,自动进行数值计算和/或信息处理的设备,其硬件包括但不限于微处理器、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程门阵列(Field-Programmable Gate Array,FPGA)、数字处理器(Digital Signal Processor,DSP)、嵌入式设备等。
所述终端可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端可以与客户通过键盘、鼠标、遥控器、触摸板或声控设备等方式进行人机交互。
本发明为实现基于多种敲除类型的敲除策略筛选,提供的一种基于多种敲除类型的敲除策略筛选的方法及系统。
如图17所示,是本发明实施例提供的一种基于多种敲除类型的敲除策略筛选的方法的流程图。
在本实施例中,所述基于多种敲除类型的敲除策略筛选的方法,可以应用于具备显示功能的终端或者固定终端中,所述终端并不限定于个人电脑、智能手机、平板电脑、安装有摄像头的台式机或一体机等。
所述基于多种敲除类型的敲除策略筛选的方法也可以应用于由终端和通过网络与所述终端进行连接的服务器所构成的硬件环境中。网络包括但不限于:广域网、城域网或局域网。本发明实施例的基于多种敲除类型的敲除策略筛选的方法可以由服务器来执行,也可以由终端来执行,还可以是由服务器和终端共同执行。
例如,对于需要进行基于多种敲除类型的敲除策略筛选的终端,可以直接在终端上集成本发明的方法所提供的基于多种敲除类型的敲除策略筛选功能,或者 安装用于实现本发明的方法的客户端。再如,本发明所提供的方法还可以软件开发工具包(Software Development Kit,SDK)的形式运行在服务器等设备上,以SDK的形式提供基于多种敲除类型的敲除策略筛选功能的接口,终端或其他设备通过所提供的接口即可实现基于多种敲除类型的敲除策略筛选的功能。
在本发明实施例中,如图15所示,本发明提供了一种基于多种敲除类型的敲除策略筛选的系统,所述系统具体包括:
基因获取单元,用于获取基因的基本信息;
敲除策略获取单元,用于结合基因获取单元获取到的基因基本信息,根据确定的敲除类型,获得相对应的各种敲除策略;
筛选计算单元,用于根据与敲除类型相对应的各种敲除策略,调取与敲除策略相符的敲除策略筛选计算公式,实时进行筛选和计算;
分析整理单元,用于对筛选和计算结果,进行数据分析和整理,并实时存储;
报告生成单元,用于根据数据分析整理结果,实时生成敲除策略报告。
具体地,所述的基因的基本信息具体包括:基因名称、长度、所属物种、所属染色体等基本信息,以及基因的所有转录本信息、编码蛋白信息;
相应地,所述的敲除策略报告展示了每一个敲除策略的详细信息,具体包括敲除策略的策略图、敲除策略在该基因的位置、敲除策略临近基因的分布情况和敲除策略的序列复杂性。
较佳地,如图16所示,所述的基因获取单元中还包括:转录本信息获取模块和编码蛋白信息获取模块;
转录本信息获取模块,用于获取基因的所有转录本以及转录本的名称、长度等信息;
编码蛋白信息获取模块,用于获取基因的所有编码蛋白以及编码蛋白的名称、长度等信息。
也就是说,获取并存储基因敲除策略筛选计算所需的基因详细信息,主要包含基因名称、长度、所属物种、所属染色体等基本信息,以及基因的所有转录本信息、编码蛋白信息。其中转录本及编码蛋白信息包含其下的所有内含子、外显子等等信息。
具体地,本发明还包括基因基本信息获取模块,用于获取基因的基本信息,主要包含基因名称、基因别名、长度、所属物种、所属染色体、在染色体的起始位置等。
本发明实施例中,基因基本信息获取模块,转录本信息获取模块和编码蛋白信息获取模块获取所得数据均存储到基因信息数据库中。也就是说,基因信息数据库存储以上模块获取的基因相关数据。为便于打靶基因敲除策略筛选系统计算使用,当前人源、小鼠以及大鼠的基因信息、转录本信息以及蛋白编码信息均已获取存储完成,减少敲除策略筛选的计算用时。
较佳地,转录本基本信息获取模块针对每一个转录本,获取转录本相对基因的起始位置、转录本的所有内含子外显子关系、每一个内含子的起始位置及长度信息、每一个外显子的起始位置及长度信息等等。
编码蛋白基本信息获取模块针对每一个编码蛋白,获取编码蛋白相对基因的起始位置、编码蛋白的所有内含子外显子关系、每一个内含子的起始位置及长度信息、每一个外显子的起始位置及长度信息等等。
更进一步地,所述的敲除策略获取单元包括计算规则数据库模块、敲除类型获取模块和敲除策略类型获取模块;
计算规则数据库模块,用于存储基因敲除策略筛选计算所需的规则;
敲除类型获取模块,用于获取用户所想获得的敲除策略所采用何种敲除类型;
敲除策略类型获取模块,用于获取与敲除类型相对应的各种敲除策略。
也就是说,在获得基因及其相关信息之后,就需要根据信息详情确定该基因的敲除策略筛选计算所需要的规则,以确定后续计算使用何种计算公式。在本发明实例中,计算规则数据库模块,即敲除策略筛选计算规则数据库,用于存储基因敲除策略筛选计算所需的规则。而敲除类型获取模块:用于获取用户所想获得的敲除策略所采用何种敲除类型,例如ES打靶的条件性敲除、CRISPR/Cas9的广泛敲除或者条件性敲除等敲除类型。
敲除策略类型获取模块,用于获取每一种可能的敲除策略,属于何种类型因而决定其采用何种敲除策略计算公式的规则。一个基因可能存在多种合适的敲除策略,每一种敲除策略根据其外显子类型不同、内含子长度不同、占编码区的比例不同等等决定了其采用不同的敲除策略计算方式。
相应地,本发明中,所述的筛选计算单元包括筛选计算公式数据库模块、敲除策略筛选计算公式录入模块、敲除策略筛选计算公式提取模块和敲除策略筛选计算模块;
筛选计算公式数据库模块,用于存储敲除策略筛选的各种不同计算公式;
敲除策略筛选计算公式录入模块,用于根据敲除策略筛选所需的影响因素,定义出不同类型的计算公式并录入存储到公式数据库中;
敲除策略筛选计算公式提取模块,用于根据敲除策略筛选的需求提取相应的计算公式,完成敲除策略的筛选计算;
敲除策略筛选计算模块,用于根据敲除策略筛选的规则,并选取合适的敲除策略计算公式之后,调用此模块对每一个敲除策略进行计算,筛选出满足条件的敲除策略。
也就是说,根据基因及其相关数据并确定敲除策略筛选规则后,还需要相应的计算公式,才能完成敲除策略的筛选工作。所述的筛选计算单元存储敲除策略筛选的各种不同计算公式,具体地,包含筛选计算公式数据库模块(即敲除策略 筛选计算公式数据库)、敲除策略筛选计算公式录入模块以及敲除策略筛选计算公式提取模块。
更进一步地,所述的分析整理单元包括;
筛选结果存储数据库模块,用于存储进行基因敲除策略计算后,满足敲除条件的敲除策略,以及存储每一个满足条件的敲除策略的相关信息;
敲除策略筛选结果录入模块,用于录入敲除策略筛选过程中产生的部分结果;
敲除策略筛选结果提取模块,用于根据基因敲除策略报告撰写要求,提取相应的信息进行展示。
也就是说,敲除策略筛选计算过程会产生许多计算的中间结果,譬如该敲除策略的编码区长度、该敲除策略占编码区的比例等等,类似的关键点信息后续将会于敲除策略报告中进行展示。因此需要计算结果管理模块对计算过程产生的结果进行统一的管理,便于后续的调用。所述的分析整理单元包括筛选结果存储数据库模块(即敲除策略筛选结果存储数据库)、敲除策略筛选结果录入模块以及敲除策略筛选结果提取模块。
本发明实施例中,敲除策略筛选结果存储数据库,主要用于用户存储进行基因敲除策略计算后,满足敲除条件的敲除策略有哪些。以及存储每一个满足条件的敲除策略的相关信息便于后续进行敲除策略方案撰写的时候调用。
敲除策略筛选结果录入模块,用于用户录入敲除策略筛选过程中产生的部分结果,该模块与敲除策略筛选计算模块相连接,计算完成同时将结果传输到此录入模块,进行数据存储。
敲除策略筛选结果提取模块,用于根据基因敲除策略报告撰写要求,采用此模块从计算结果中提取有用信息进行展示。
较佳地,所述的报告生成单元包括敲除策略报告模板存储模块、敲除策略报 告生成模块、敲除策略最终报告信息存储模块以及敲除策略最终报告信息数据库。
敲除策略报告模板存储模块,用于存储不同敲除类型的敲除策略报告模板;
敲除策略报告生成模块,用于根据敲除类型选取合适的报告模板,并从敲除策略筛选结果存储数据库中调取相应的数据,生成基因的敲除策略报告;
敲除策略最终报告信息存储模块,用于存储已经生成的敲除策略报告的所有信息;
敲除策略最终报告信息数据库模块,用于存储已经生成的敲除策略报告的所有信息。
也就是说,进行敲除策略筛选计算后获取满足条件的敲除策略,将调用所述的报告生成单元生成该基因的敲除策略报告。报告中展示了每一个敲除策略的详细信息,主要包含敲除策略的策略图、敲除策略在该基因的位置、敲除策略临近基因的分布情况、敲除策略的序列复杂性等等。
换言之,所述的报告生成单元包括:敲除策略报告模板存储模块、敲除策略报告模板数据库、敲除策略报告生成模块、敲除策略最终报告信息存储模块以及敲除策略最终报告信息数据库。
其中,敲除策略报告模板存储模块,用于敲除类型不同,敲除策略报告中需要展示的信息不尽相同,因此本模块用于存储不同敲除类型的敲除策略报告模板,以供生成模块根据需求调用。
敲除策略报告模板数据库,用于存储不同敲除类型的敲除策略报告模板。
敲除策略报告生成模块,用于根据敲除类型选取合适的报告模板,并从敲除策略筛选结果存储数据库中调取相应的数据,生成基因的敲除策略报告。
敲除策略最终报告信息存储模块,用于存储已经生成的敲除策略报告的所有信息,避免同一基因的敲除策略重复计算和存储。已经计算过的基因,其敲除策 略报告将存库,后续直接调取报告即可,省时省力。
敲除策略最终报告信息数据库用于存储已经生成的敲除策略报告的所有信息。
具体地,本发明实例例如下:
以基因Nkx3-1的ES打靶的条件性敲除为例,通过基因信息获取模块获取最长转录本NM_010921,蛋白NP_035051及其相关的exons等。该基因有2个exon,所以可能的敲除策略有敲除exon1、敲除exon2、敲除exon1和exon2共3种选择。
再根据ES打靶的条件性敲除类型以及以上3种可能的敲除策略信息从敲除策略筛选计算规则中获知各敲除策略采用哪一条公式,后通过敲除策略筛选计算公式存储模块调出相应的计算公式。再通过敲除策略筛选计算模块对敲除策略进行实时计算,计算所得敲除exon2、敲除exon1和exon2可以作为基因Nkx3-1的ES打靶的条件性敲除合理的敲除策略。随后将计算结果进行存储和管理,再通过敲除策略报告管理模块针对敲除exon2、敲除exon1和exon2两种敲除策略生成出完整的敲除策略报告。
所述的报告中,包括如下内容:1、包含对基因及其相关信息的文字和图形展示。
2、敲除策略的基本信息,主要包含敲除策略的起始位置,敲除区域的大小,敲除区域内及其上下游是否有影响其他基因等等。
3、敲除策略图。
4、敲除策略计算过程中重要结果展示。
本发明提供了一种基于多种敲除类型的敲除策略筛选方法,如图17所示,所述方法具体包括如下步骤,根据不同的需求,该流程图中步骤的顺序可以改变,某些步骤可以省略。
获取基因的基本信息;
结合基因获取单元获取到的基因基本信息,根据确定的敲除类型,获得相对应的各种敲除策略;
根据与敲除类型相对应的各种敲除策略,调取与敲除策略相符的敲除策略筛选计算公式,实时进行筛选和计算;
对筛选和计算结果,进行数据分析和整理,并实时存储;
根据数据分析整理结果,实时生成敲除策略报告。
也就是说,用户通过基因信息获取及存储模块获取用户感兴趣的基因的相关信息。
用户选定敲除类型,结合获取所得的基因相关信息,获得该基因可能存在的各种敲除策略,通过敲除策略筛选计算规则存储模块调取该敲除类型下的每一种敲除策略类型的计算规则,确定采用何种敲除策略筛选计算公式。
用户根据以获取的敲除策略筛选计算公式类型,通过敲除策略筛选计算公式存储模块调取该公式的详细计算方式。
用户根据以获得的每一种敲除策略的计算公式详细计算方式,调用敲除策略筛选计算模块,进行计算和筛选。
计算结果管理模块将敲除策略筛选计算模块计算过程以及所得的结果进行分析、整理以及存储,并供后续报告撰写模块调用。
敲除策略报告管理模块将该基因的敲除策略计算结果结合报告模板进行敲除策略报告撰写并存储,最终输出用户选定的感兴趣的基因的详细敲除策略报告。
本发明还提出一种基于多种敲除类型的敲除策略筛选平台,如图18所示,包括:
处理器、存储器以及基于多种敲除类型的敲除策略筛选的平台控制程序;
其中在所述处理器执行所述平台控制程序,所述基于多种敲除类型的敲除策略筛选的平台控制程序被存储在所述存储器中,所述基于多种敲除类型的敲除策略筛选的平台控制程序,实现如所述的基于多种敲除类型的敲除策略筛选的方法步骤,例如:
获取基因的基本信息;
结合基因获取单元获取到的基因基本信息,根据确定的敲除类型,获得相对应的各种敲除策略;
根据与敲除类型相对应的各种敲除策略,调取与敲除策略相符的敲除策略筛选计算公式,实时进行筛选和计算;
对筛选和计算结果,进行数据分析和整理,并实时存储;
根据数据分析整理结果,实时生成敲除策略报告。
步骤具体细节已在上文阐述,此处不再赘述;
本发明实施例中,所述的基于多种敲除类型的敲除策略筛选的平台内置处理器,可以由集成电路组成,例如可以由单个封装的集成电路所组成,也可以是由多个相同功能或不同功能封装的集成电路所组成,包括一个或者多个中央处理器(Central Processingunit,CPU)、微处理器、数字处理芯片、图形处理器及各种控制芯片的组合等。处理器利用各种接口和线路连接取各个部件,通过运行或执行存储在存储器内的程序或者单元,以及调用存储在存储器内的数据,以执行基于多种敲除类型的敲除策略筛选的各种功能和处理数据;
存储器用于存储程序代码和各种数据,安装在基于多种敲除类型的敲除策略筛选的平台中,并在运行过程中实现高速、自动地完成程序或数据的存取。
所述存储器包括只读存储器(Read-Only Memory,ROM),随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-Only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read-Only Memory, EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子擦除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
本发明还提出一种计算机可读取存储介质,如图19所示,所述计算机可读取存储介质存储有基于多种敲除类型的敲除策略筛选的平台控制程序,所述基于多种敲除类型的敲除策略筛选的平台控制程序,实现所述的基于多种敲除类型的敲除策略筛选的方法步骤,例如,
获取基因的基本信息;
结合基因获取单元获取到的基因基本信息,根据确定的敲除类型,获得相对应的各种敲除策略;
根据与敲除类型相对应的各种敲除策略,调取与敲除策略相符的敲除策略筛选计算公式,实时进行筛选和计算;
对筛选和计算结果,进行数据分析和整理,并实时存储;
根据数据分析整理结果,实时生成敲除策略报告。
步骤具体细节已在上文阐述,此处不再赘述;
在本发明的实施方式的描述中,需要说明的是,流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认 为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理模块的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,“计算机可读取介质”可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读取介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
通过本发明的步骤、系统、平台及存储介质,使用者将不需要具备敲除策略相关知识,只需要输入其感兴趣的基因,几分钟内即可得到一份分析详尽,结果完善的敲除策略报告。而且,利用人工智能算法来代替人工的敲除策略选取,把专业性强、繁琐、耗时且容易出错的工作交给人工智能系统,从而解决领域内一个瓶颈问题,让全球科学家能随时、实时地拿到各种基因打靶方案,省时省力,错误率低且效率高。
同时,本发明提供的系统及方法可灵活适用于ES打靶的条件性敲除、CRISPR/Cas9的广泛敲除及条件性敲除等多种敲除类型的敲除策略筛选。
也就是说,本发明可以解决对经验丰富的专家的依赖,实现对没有丰富经验的普通人员也可以进行敲除策略选取。同时本发明也解决了敲除策略的时间问题,倘若一个基因的敲除策略报告需要半天时间才能获得,将严重制约基因打靶 相关的商业及基础研究发展。而本发明则需要研发出几分钟内即可获得一份敲除策略报告;也解决了敲除策略选取对不同时间不同专家的依赖,即研发出针对同一个基因,只要基因的信息没有发生变化(随着研究深入,基因的功能等信息可能会发生变化,影响敲除策略),该基因的最优敲除策略都是一致的,报告内容及格式也一致,不受外在因素的干扰而发生改变的敲除策略选取的方法和系统,较佳地,本发明提供的打靶基因敲除策略选取方法及系统可灵活适用于ES打靶的条件性敲除、CRISPR/Cas9的广泛敲除及条件性敲除的敲除策略筛选。
换言之,本发明大大提高了产出;提高了工作效率,原本半天才能完成的报告,现在只需要几分钟;解放人力物力,实现智能化并行化敲除策略筛选模式和实现智能化撰写敲除策略报告;降低出错概率,同时打破知识背景壁垒,没有丰富经验的学生研究者也可以快速获得基因的敲除策略;有助开启新的销售模式,带来更大的收益,原技术的瓶颈下,通过客户通过销售传达感兴趣基因到策略专家处,策略专家分析获得敲除策略优选方案再通过销售反馈给客户,客户了解感兴趣的基因的敲除策略往往需要一两天,而现在通过线上分析,几分钟即可获得完整的敲除策略分析报告,因此可即时定制感兴趣的基因打靶服务。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (28)

  1. 一种智能化敲除策略筛选的方法,其特征在于,所述方法具体包括如下步骤:
    步骤S10,获取敲除策略原始数据信息;
    步骤S20,对敲除策略原始数据信息进行过滤筛选;
    步骤S30,针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
    步骤S40,整理已赋予分值的敲除策略分值情况;
    步骤S50,汇总生成敲除策略数据信息集。
  2. 根据权利要求1所述的一种智能化敲除策略筛选的方法,其特征在于,所述敲除策略原始数据信息为基因敲除策略的所有组合。
  3. 根据权利要求1所述的一种智能化敲除策略筛选的方法,其特征在于,所述对敲除策略原始数据信息进行的过滤筛选为并行化过滤筛选;
    所述过滤筛选后且未被剔除的敲除策略进行分值赋予为并行化进行分值赋予。
  4. 根据权利要求3所述的一种智能化敲除策略筛选的方法,其特征在于,所述分值为二进制分值、十进制分值或十六进制分值。
  5. 根据权利要求1所述的一种智能化敲除策略筛选的方法,其特征在于,所述汇总生成敲除策略数据信息集,包括生成敲除策略数据信息分析处理结果报告。
  6. 根据权利要求1所述的一种智能化敲除策略筛选的方法,其特征在于,所述步骤S20中,设置有多个阀值;
    所述步骤S20中,还包括如下步骤:
    步骤S201,设置多个阀值,将敲除策略与所述阀值进行对比判定;
    步骤S202,剔除超出所述阀值的敲除策略;
    所述超出所述阀值的敲除策略,将不再参与同其他未对比判定过的阀值进行对比判定。
  7. 根据权利要求6所述的一种智能化敲除策略筛选的方法,其特征在于,所述阀值包括:类型阀值、第一长度阀值、第一比例阀值、第二比例阀值、位置阀值、第二长度阀值、区域范围阀值和序列复杂性阀值。
  8. 根据权利要求7所述的一种智能化敲除策略筛选的方法,其特征在于,所述序列复杂性阀值包括GC含量范围阀值、序列重复度阀值和序列同源性阀值。
  9. 根据权利要求1所述的一种智能化敲除策略筛选的方法,其特征在于,所述步骤S30中,还包括如下步骤:
    步骤S301,获取过滤筛选后且未被剔除的敲除策略数据信息;
    步骤S302,对敲除策略数据信息进行处理;
    步骤S303,根据敲除策略数据信息的分析处理结果,进行相应的分值赋予。
  10. 根据权利要求9所述的一种智能化敲除策略筛选的方法,其特征在于,所述分值赋予包括:类型分值赋予、第一长度分值赋予、第一比例分值赋予、第二比例分值赋予、位置分值赋予、第二长度分值赋予、区域范围分值赋予和序列复杂性分值赋予。
  11. 根据权利要求10所述的一种智能化敲除策略筛选的方法,其特征在于,所述序列复杂性分值赋予包括GC含量分值赋予、序列重复度分值赋予和序列同源性分值赋予。
  12. 根据权利要求1所述的一种智能化敲除策略筛选的方法,其特征在于,所述步骤S40中,还包括如下步骤:
    步骤S401,获取已赋予分值的敲除策略数据信息;
    步骤S402,对含有分值的敲除策略数据信息进行整理对比;
    步骤S403,统计生成分值最高的敲除策略。
  13. 一种智能化敲除策略筛选的系统,其特征在于,所述系统包括:
    数据获取单元、过滤筛选单元、分值赋予单元、分值整理单元和信息集汇总单元;
    数据获取单元,用于获取敲除策略原始数据信息;
    过滤筛选单元,用于对敲除策略原始数据信息进行过滤筛选;
    分值赋予单元,用于针对过滤筛选后且未被剔除的敲除策略进行分值赋予;
    分值整理单元,用于整理已赋予分值的敲除策略分值情况;
    信息集汇总单元,用于汇总生成敲除策略数据信息集。
  14. 根据权利要求13所述的一种智能化敲除策略筛选的系统,其特征在于,所述过滤筛选单元中设置有多个阀值;
    所述过滤筛选单元包括:阈值对比模块和剔除模块;
    阈值对比模块,用于设置多个阀值,将敲除策略与所述阀值进行对比判定;
    剔除模块,用于剔除超出所述阀值的敲除策略。
  15. 根据权利要求13所述的一种智能化敲除策略筛选的系统,其特征在于,所述分值赋予单元包括:第一数据获取模块、数据分析处理模块和打分模块;
    第一数据获取模块,用于获取过滤筛选后且未被剔除的敲除策略数据信息;
    数据分析处理模块,用于对敲除策略数据信息进行处理;
    打分模块,用于根据敲除策略数据信息的分析处理结果,进行相应的分值赋予。
  16. 根据权利要求13所述的一种智能化敲除策略筛选的系统,其特征在于,所述分值整理单元包括:
    第二数据获取模块,用于获取已赋予分值的敲除策略数据信息;
    分值排比模块,用于对含有分值的敲除策略数据信息进行整理对比;
    统计生成模块,用于统计生成分值最高的敲除策略。
  17. 一种智能化敲除策略筛选的平台,其特征在于,包括:
    处理器、存储器以及智能化敲除策略筛选的平台控制程序;
    其中在所述处理器执行所述平台控制程序,所述智能化敲除策略筛选的平台控制程序被存储在所述存储器中,所述智能化敲除策略筛选的平台控制程序, 实现如权利要求1至12中任一项所述的智能化敲除策略筛选的方法步骤。
  18. 一种计算机可读取存储介质,其特征在于,所述计算机可读取存储介质存储有智能化敲除策略筛选的平台控制程序,所述智能化敲除策略筛选的平台控制程序,实现如权利要求1至12中任一项所述的智能化敲除策略筛选的方法步骤。
  19. 一种基于多种敲除类型的敲除策略筛选方法,其特征在于,所述的方法具体包括如下步骤:
    获取基因的基本信息;
    结合基因获取单元获取到的基因基本信息,根据确定的敲除类型,获得相对应的各种敲除策略;
    根据与敲除类型相对应的各种敲除策略,调取与敲除策略相符的敲除策略筛选计算公式,实时进行筛选和计算;
    对筛选和计算结果,进行数据分析和整理,并实时存储;
    根据数据分析整理结果,实时生成敲除策略报告。
  20. 一种基于多种敲除类型的敲除策略筛选系统,其特征在于,所述的系统具体包括:
    基因获取单元,用于获取基因的基本信息;
    敲除策略获取单元,用于结合基因获取单元获取到的基因基本信息,根据确定的敲除类型,获得相对应的各种敲除策略;
    筛选计算单元,用于根据与敲除类型相对应的各种敲除策略,调取与敲除策略相符的敲除策略筛选计算公式,实时进行筛选和计算;
    分析整理单元,用于对筛选和计算结果,进行数据分析和整理,并实时存储;
    报告生成单元,用于根据数据分析整理结果,实时生成敲除策略报告。
  21. 根据权利要求20所述的一种基于多种敲除类型的敲除策略筛选系统, 其特征在于,所述的基因的基本信息具体包括:基因名称、长度、所属物种、所属染色体等基本信息,以及基因的所有转录本信息、编码蛋白信息;
    相应地,所述的敲除策略报告展示了每一个敲除策略的详细信息,具体包括敲除策略的策略图、敲除策略在该基因的位置、敲除策略临近基因的分布情况和敲除策略的序列复杂性。
  22. 根据权利要求20所述的一种基于多种敲除类型的敲除策略筛选系统,其特征在于,所述的基因获取单元中还包括:转录本信息获取模块和编码蛋白信息获取模块;
    转录本信息获取模块,用于获取基因的所有转录本以及转录本的名称、长度信息;
    编码蛋白信息获取模块,用于获取基因的所有编码蛋白以及编码蛋白的名称、长度信息。
  23. 根据权利要求20所述的一种基于多种敲除类型的敲除策略筛选系统,其特征在于,所述的敲除策略获取单元包括计算规则数据库模块、敲除类型获取模块和敲除策略类型获取模块;
    计算规则数据库模块,用于存储基因敲除策略筛选计算所需的规则;
    敲除类型获取模块,用于获取用户所想获得的敲除策略所采用何种敲除类型;
    敲除策略类型获取模块,用于获取与敲除类型相对应的各种敲除策略。
  24. 根据权利要求20所述的一种基于多种敲除类型的敲除策略筛选系统,其特征在于,所述的筛选计算单元包括筛选计算公式数据库模块、敲除策略筛选计算公式录入模块、敲除策略筛选计算公式提取模块和敲除策略筛选计算模块;
    筛选计算公式数据库模块,用于存储敲除策略筛选的各种不同计算公式;
    敲除策略筛选计算公式录入模块,用于根据敲除策略筛选所需的影响因素, 定义出不同类型的计算公式并录入存储到公式数据库中;
    敲除策略筛选计算公式提取模块,用于根据敲除策略筛选的需求提取相应的计算公式,完成敲除策略的筛选计算;
    敲除策略筛选计算模块,用于根据敲除策略筛选的规则,并选取合适的敲除策略计算公式之后,调用此模块对每一个敲除策略进行计算,筛选出满足条件的敲除策略。
  25. 根据权利要求20所述的一种基于多种敲除类型的敲除策略筛选系统,其特征在于,所述的分析整理单元包括:
    筛选结果存储数据库模块,用于存储进行基因敲除策略计算后,满足敲除条件的敲除策略,以及存储每一个满足条件的敲除策略的相关信息;
    敲除策略筛选结果录入模块,用于录入敲除策略筛选过程中产生的部分结果;
    敲除策略筛选结果提取模块,用于根据基因敲除策略报告撰写要求,提取相应的信息进行展示。
  26. 根据权利要求20所述的一种基于多种敲除类型的敲除策略筛选系统,其特征在于,所述的报告生成单元包括敲除策略报告模板存储模块、敲除策略报告生成模块、敲除策略最终报告信息存储模块以及敲除策略最终报告信息数据库。
    敲除策略报告模板存储模块,用于存储不同敲除类型的敲除策略报告模板;
    敲除策略报告生成模块,用于根据敲除类型选取合适的报告模板,并从敲除策略筛选结果存储数据库中调取相应的数据,生成基因的敲除策略报告;
    敲除策略最终报告信息存储模块,用于存储已经生成的敲除策略报告的所有信息;
    敲除策略最终报告信息数据库模块,用于存储已经生成的敲除策略报告的所有信息。
  27. 一种基于多种敲除类型的敲除策略筛选平台,其特征在于,包括:
    处理器、存储器以及基于多种敲除类型的敲除策略筛选的平台控制程序;
    其中在所述处理器执行所述平台控制程序,所述基于多种敲除类型的敲除策略筛选的平台控制程序被存储在所述存储器中,所述基于多种敲除类型的敲除策略筛选的平台控制程序,实现如权利要求26中任一项所述的基于多种敲除类型的敲除策略筛选的方法步骤。
  28. 一种计算机可读取存储介质,其特征在于,所述计算机可读取存储介质存储有基于多种敲除类型的敲除策略筛选的平台控制程序,所述基于多种敲除类型的敲除策略筛选的平台控制程序,实现如权利要求26中任一项所述的基于多种敲除类型的敲除策略筛选的方法步骤。
PCT/CN2019/094765 2018-07-04 2019-07-04 一种智能化敲除策略筛选的方法和一种基于多种敲除类型的敲除策略筛选方法 WO2020007349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810722034.X 2018-07-04
CN201810722034 2018-07-04

Publications (1)

Publication Number Publication Date
WO2020007349A1 true WO2020007349A1 (zh) 2020-01-09

Family

ID=69060610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094765 WO2020007349A1 (zh) 2018-07-04 2019-07-04 一种智能化敲除策略筛选的方法和一种基于多种敲除类型的敲除策略筛选方法

Country Status (2)

Country Link
CN (4) CN110751982B (zh)
WO (1) WO2020007349A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614541A (zh) * 2020-12-16 2021-04-06 广州源井生物科技有限公司 基因编辑位点的自动筛选方法、系统、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106484844A (zh) * 2016-09-30 2017-03-08 广州特道信息科技有限公司 大数据挖掘方法及系统
CN106713341A (zh) * 2017-01-04 2017-05-24 成都四方伟业软件股份有限公司 一种基于大数据的网络安全预警方法与系统
CN106893739A (zh) * 2015-11-17 2017-06-27 香港中文大学 用于靶向基因操作的新方法和系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2031068A1 (en) * 1999-07-14 2009-03-04 Transgenic Inc. Trap vector and gene trapping method by using the same
JP3711367B2 (ja) * 2001-05-25 2005-11-02 独立行政法人科学技術振興機構 ノックアウト動物
JP3713513B2 (ja) * 2001-05-25 2005-11-09 独立行政法人科学技術振興機構 ノックアウト動物
EP1654371A4 (en) * 2001-06-21 2010-02-10 Verenium Corp METHOD FOR PRODUCING PURE ENANTIOMERIC PURELY COMPOUNDS AND SELECTION OF ENANTIOSELECTIVE ENZYMES
US20050220781A1 (en) * 2003-09-04 2005-10-06 Duen-Hwa Yan IFIX, a novel HIN-200 protein, for cancer therapy
US7948988B2 (en) * 2006-07-27 2011-05-24 Sourcefire, Inc. Device, system and method for analysis of fragments in a fragment train
US9617557B2 (en) * 2007-09-14 2017-04-11 Basf Plant Science Gmbh Plants having increased yield-related traits by expressing a growth-regulating factor (GRF) polypeptide and method for making the same
CN102229940B (zh) * 2010-12-20 2013-05-08 中国热带农业科学院热带生物技术研究所 一种莱茵衣藻目标基因敲除方法
CN102521528A (zh) * 2011-12-05 2012-06-27 中国科学院计算机网络信息中心 一种基因序列数据的筛选方法
JP2014223067A (ja) * 2013-04-18 2014-12-04 学校法人 岩手医科大学 PSD−Zip70遺伝子ノックアウト非ヒト動物、およびその用途
CN104598769A (zh) * 2015-02-10 2015-05-06 上海丰核信息科技有限公司 自动化DNase-seq数据处理分析系统
CN105400810B (zh) * 2015-09-06 2019-05-07 吉林大学 采用敲除技术建立低磷性佝偻病模型的方法
CN106845151B (zh) * 2015-12-07 2019-03-26 中国农业大学 CRISPR-Cas9系统sgRNA作用靶点的筛选方法及装置
US20190134227A1 (en) * 2016-04-18 2019-05-09 The Board Of Regents Of The University Of Texas System Generation of genetically engineered animals by crispr/cas9 genome editing in spermatogonial stem cells
CN105886616B (zh) * 2016-04-20 2020-08-07 广东省农业科学院农业生物基因研究中心 一种用于猪基因编辑的高效特异性sgRNA识别位点引导序列及其筛选方法
CN106446600B (zh) * 2016-05-20 2019-10-18 同济大学 一种基于CRISPR/Cas9的sgRNA的设计方法
CN107513538A (zh) * 2016-06-17 2017-12-26 北京大学 基因敲除方法
CN106119283A (zh) * 2016-06-24 2016-11-16 广西壮族自治区水牛研究所 一种利用CRISPR‑Cas9靶向敲除MSTN基因的方法
CN106191114B (zh) * 2016-07-29 2020-02-11 中国科学院重庆绿色智能技术研究院 利用CRISPR-Cas9系统敲除鱼类MC4R基因的育种方法
CN106222177B (zh) * 2016-08-13 2018-06-26 江苏集萃药康生物科技有限公司 一种靶向人STAT6的CRISPR-Cas9系统及其用于治疗过敏性疾病的应用
CN107868798A (zh) * 2017-03-31 2018-04-03 上海市公共卫生临床中心 一种基于基因敲除细胞的阳性筛选体系的建立方法
CN107937445B (zh) * 2017-07-25 2021-05-04 北京希诺谷生物科技有限公司 利用体细胞克隆技术制备基因敲除犬的方法
CN108055272B (zh) * 2017-12-21 2021-05-18 广州科瑞工程信息咨询有限公司 基于远程授权的投标文件筛选方法和系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106893739A (zh) * 2015-11-17 2017-06-27 香港中文大学 用于靶向基因操作的新方法和系统
CN106484844A (zh) * 2016-09-30 2017-03-08 广州特道信息科技有限公司 大数据挖掘方法及系统
CN106713341A (zh) * 2017-01-04 2017-05-24 成都四方伟业软件股份有限公司 一种基于大数据的网络安全预警方法与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YU HUIMIN ET AL: "Gene Knockout Strategies for Metabolic pathway Regulation in Industrial Microbes", CHINESE JOURNAL OF BIOTECHNOLOGY, vol. 26, no. 9, 25 September 2010 (2010-09-25), pages 1999 - 1208, XP055674133, ISSN: 1000-3061 *

Also Published As

Publication number Publication date
CN110689923B (zh) 2022-05-17
CN110689923A (zh) 2020-01-14
CN110689922B (zh) 2023-07-14
CN110689924A (zh) 2020-01-14
CN110751982A (zh) 2020-02-04
CN110751982B (zh) 2023-11-10
CN110689924B (zh) 2023-07-14
CN110689922A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
Fischer et al. Impulse model-based differential expression analysis of time course sequencing data
US11043284B2 (en) Methods and systems for biological data analysis
Sikkema et al. An integrated cell atlas of the human lung in health and disease
RU2764557C1 (ru) Способы и системы для трансформаций матриц, основанных на разреженных векторах
Martin et al. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture
Faure et al. scFates: a scalable python package for advanced pseudotime and bifurcation analysis from single-cell data
CN109885452A (zh) 性能监控方法、装置及终端设备
CN109376873B (zh) 运维方法、装置、电子设备及计算机可读存储介质
CN109978619B (zh) 机票定价策略筛选的方法、系统、设备以及介质
Yuan et al. Deep learning of gene relationships from single cell time-course expression data
Li et al. Foster thy young: enhanced prediction of orphan genes in assembled genomes
EP3420485A1 (en) Method and system for quantifying the likelihood that a gene is casually linked to a disease
Kim et al. Uncovering cell identity through differential stability with Cepo
D’Agaro Artificial intelligence used in genome analysis studies
Kiourtis et al. An autoscaling platform supporting graph data modelling big data analytics
WO2020007349A1 (zh) 一种智能化敲除策略筛选的方法和一种基于多种敲除类型的敲除策略筛选方法
Srivas et al. Assembling global maps of cellular function through integrative analysis of physical and genetic networks
CN111178701A (zh) 一种基于特征衍生技术的风险控制方法方法、装置和电子设备
CN110782128A (zh) 一种用户职业标签生成方法、装置和电子设备
CN111931034A (zh) 数据搜索方法、装置、设备及存储介质
CN116485019A (zh) 一种数据处理方法及装置
García et al. A bioinformatics workflow to decipher transcriptomic data from vitamin D studies
Malladi et al. Total functional score of enhancer elements identifies lineage-specific enhancers that drive differentiation of pancreatic cells
CN113377765A (zh) 一种多组学数据分析系统及其数据转换方法
CN104243201A (zh) 网络设备测试用例对应拓扑图的存储方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19830909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19830909

Country of ref document: EP

Kind code of ref document: A1