WO2024082234A1 - 唤醒收发机的方法、装置、存储介质及芯片 - Google Patents

唤醒收发机的方法、装置、存储介质及芯片 Download PDF

Info

Publication number
WO2024082234A1
WO2024082234A1 PCT/CN2022/126529 CN2022126529W WO2024082234A1 WO 2024082234 A1 WO2024082234 A1 WO 2024082234A1 CN 2022126529 W CN2022126529 W CN 2022126529W WO 2024082234 A1 WO2024082234 A1 WO 2024082234A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
wake
transceiver
frequency domain
terminal device
Prior art date
Application number
PCT/CN2022/126529
Other languages
English (en)
French (fr)
Inventor
李艳华
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/126529 priority Critical patent/WO2024082234A1/zh
Priority to CN202280004320.7A priority patent/CN118235478A/zh
Publication of WO2024082234A1 publication Critical patent/WO2024082234A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method, device, storage medium and chip for waking up a transceiver.
  • WUS Wake-Up Signaling
  • the WUS signal is a low-power detection signal. If the terminal device detects the WUS signal, it can monitor the physical downlink control channel (PDCCH). If the terminal device does not detect the WUS, it can skip monitoring the PDCCH.
  • PDCCH physical downlink control channel
  • the present disclosure provides a method, device, storage medium and chip for waking up a transceiver.
  • a method for waking up a transceiver is provided, which is applied to a terminal device, wherein the terminal device includes a first transceiver and a first receiver; the method includes:
  • a wake-up message sent by a network device is received by the first receiver, where the wake-up message is used to wake up the first transceiver.
  • receiving, by the first receiver, a wake-up message sent by a network device comprises:
  • the wake-up message sent by the network device is received at a first frequency domain position by the first receiver.
  • the first frequency domain position includes a first downlink initial BWP at which the network device sends the wake-up message.
  • the first frequency domain position is determined by:
  • the first preset frequency domain position is used as the first frequency domain position.
  • the method further comprises:
  • the second frequency domain position is determined by any one of the following methods:
  • the second preset frequency domain position is used as the second frequency domain position.
  • the method further comprises:
  • the first transceiver When the first transceiver is in a dormant state, if a target event indication from the terminal device is received, the first transceiver is awakened.
  • the method further comprises:
  • the first transceiver When the first transceiver is in a dormant state, if a target duration is reached and the wake-up message is not received by the first receiver, the first transceiver is woken up.
  • a method for waking up a transceiver is provided, which is applied to a network device, and the method includes:
  • a wake-up message is sent to a terminal device, where the wake-up message is used to instruct the terminal device to wake up a first transceiver when the wake-up message is received through a first receiver.
  • sending a wake-up message to the terminal device includes:
  • the wake-up message is sent to the terminal device via a first frequency domain position.
  • the first frequency domain position includes a first downlink initial BWP at which the network device sends the wake-up message.
  • the method further comprises:
  • a first message is sent to the terminal device, where the first message is used to instruct the terminal device to determine the first frequency domain position.
  • the wake-up message includes auxiliary information, and the auxiliary information is used to instruct the terminal device to determine the second frequency domain position.
  • the method further comprises:
  • a second message is sent to the terminal device, where the second message is used to instruct the terminal device to determine a second frequency domain position.
  • a device for waking up a transceiver which is applied to a terminal device, wherein the terminal device includes a first transceiver and a first receiver; the device includes:
  • the first receiving module is configured to receive a wake-up message sent by a network device through the first receiver when the first transceiver is in a sleep state, where the wake-up message is used to wake up the first transceiver.
  • the first receiving module is configured to receive the wake-up message sent by the network device at a first frequency domain position through the first receiver.
  • the first frequency domain position includes a first downlink initial BWP at which the network device sends the wake-up message.
  • the apparatus further comprises:
  • the first determination module is configured to, in response to receiving a first message sent by the network device, determine the first frequency domain position according to the first message; or, use a first preset frequency domain position as the first frequency domain position.
  • the apparatus further comprises:
  • the wake-up module is configured to wake up the first transceiver in response to receiving the wake-up message; and communicate with the network device at a second frequency domain position through the first transceiver.
  • the first determination module is further configured to, in response to receiving a second message sent by the network device, determine the second frequency domain position according to the second message; determine the second frequency domain position according to the auxiliary information in the wake-up message; and use the second preset frequency domain position as the second frequency domain position.
  • the wake-up module is further configured to wake up the first transceiver if a target event indication from the terminal device is received when the first transceiver is in a sleep state.
  • the wake-up module is configured to wake up the first transceiver when the first transceiver is in a sleep state and a target duration is reached and the wake-up message is not received by the first receiver.
  • a device for waking up a transceiver which is applied to a network device, and the device includes:
  • the second sending module is configured to send a wake-up message to the terminal device, where the wake-up message is used to instruct the terminal device to wake up the first transceiver when the wake-up message is received through the first receiver.
  • the second sending module is configured to send the wake-up message to the terminal device via a first frequency domain position.
  • the first frequency domain position includes a first downlink initial BWP at which the network device sends the wake-up message.
  • the second sending module is further configured to send a first message to the terminal device, where the first message is used to instruct the terminal device to determine the first frequency domain position.
  • the wake-up message includes auxiliary information, and the auxiliary information is used to instruct the terminal device to determine the second frequency domain position.
  • the second sending module is further configured to send a second message to the terminal device, where the second message is used to instruct the terminal device to determine a second frequency domain position.
  • a device for waking up a transceiver including:
  • a memory for storing processor-executable instructions
  • the processor is configured to execute the steps of the method for waking up the transceiver provided in the first aspect of the present disclosure.
  • a device for waking up a transceiver including:
  • a memory for storing processor-executable instructions
  • the processor is configured to execute the steps of the method for waking up the transceiver provided in the second aspect of the present disclosure.
  • a computer-readable storage medium on which computer program instructions are stored.
  • the steps of the method for waking up a transceiver provided in the first aspect of the present disclosure are implemented.
  • a computer-readable storage medium on which computer program instructions are stored.
  • the steps of the method for waking up a transceiver provided in the second aspect of the present disclosure are implemented.
  • a chip comprising: a processor and an interface; the processor is used to read instructions to execute the steps of the method for waking up a transceiver provided in the first aspect of the present disclosure,
  • a chip comprising: a processor and an interface; the processor is used to read instructions to execute the steps of the method for waking up a transceiver provided in the second aspect of the present disclosure.
  • the terminal device includes a first transceiver and a first receiver, and when the first transceiver is in a dormant state, the first receiver receives a wake-up message sent by the network device, and the wake-up message can be used to wake up the first transceiver.
  • the terminal device includes a first transceiver and a first receiver, and when the first transceiver is in a dormant state, the first receiver receives a wake-up message sent by the network device, and the wake-up message can be used to wake up the first transceiver.
  • Fig. 1 is a schematic diagram showing a communication system according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing a method for waking up a transceiver according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing a method for waking up a transceiver according to an exemplary embodiment.
  • Fig. 4 is a flow chart showing a method for waking up a transceiver according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a method for waking up a transceiver according to an exemplary embodiment.
  • Fig. 6 is a flow chart showing a method for waking up a transceiver according to an exemplary embodiment.
  • Fig. 7 is a block diagram showing a device for waking up a transceiver according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing a device for waking up a transceiver according to an exemplary embodiment.
  • Fig. 9 is a block diagram showing a device for waking up a transceiver according to an exemplary embodiment.
  • Fig. 10 is a block diagram showing a device for waking up a transceiver according to an exemplary embodiment.
  • Fig. 11 is a block diagram showing a device for waking up a transceiver according to an exemplary embodiment.
  • multiple means two or more than two, and other quantifiers are similar thereto; “at least one item”, “one or more items” or similar expressions refer to any combination of these items, including any combination of singular or plural items.
  • At least one item can represent any number; for another example, one or more items among a, b and c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple; "and/or" is a kind of association relationship describing the associated objects, indicating that there can be three kinds of relationships, for example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone, where A and B can be singular or plural.
  • the technical solution of the disclosed embodiment can be applied to various communication systems.
  • the communication system may include one or more of a 4G (the 4th Generation) communication system, a 5G (the 5th Generation) communication system, and other future wireless communication systems (such as 6G).
  • the communication system may also include a land public mobile communication network (Public Land Mobile Network, PLMN) network, a device-to-device (D2D) communication system, a machine-to-machine (M2M) communication system, an Internet of Things (IoT) communication system, a vehicle-to-everything (V2X) communication system, or one or more of other communication systems.
  • PLMN Public Land Mobile Network
  • D2D device-to-device
  • M2M machine-to-machine
  • IoT Internet of Things
  • V2X vehicle-to-everything
  • FIG1 is a schematic diagram of a communication system according to an exemplary embodiment.
  • the communication system may include a terminal device 150 and a network device 160.
  • the communication system may be used to support 4G network access technology, such as Long Term Evolution (LTE) access technology, or 5G network access technology, such as New Radio Access Technology (New RAT), or other future wireless communication technologies.
  • 4G network access technology such as Long Term Evolution (LTE) access technology
  • 5G network access technology such as New Radio Access Technology (New RAT)
  • New RAT New Radio Access Technology
  • the network equipment in Figure 1 can be used to support terminal access.
  • the network equipment can be an evolutionary base station (eNB or eNodeB) in LTE; the network equipment can also be the next generation base station (the next Generation Node B, gNB or gNodeB) in a 5G network; the network equipment can also be a wireless access network (NG Radio Access Network, NG-RAN) device in a 5G network; the network equipment can also be a base station, broadband network service gateway (Broadband Network Gateway, BNG), aggregation switch or non-3GPP (3rd Generation Partnership Project) access equipment in the future evolved public land mobile network (Public Land Mobile Network, PLMN), etc.
  • eNB evolutionary base station
  • gNB next Generation Node B
  • gNB next Generation Node B
  • NG-RAN wireless access network
  • BNG broadband network service gateway
  • aggregation switch or non-3GPP (3rd Generation Partnership Project) access equipment in the future evolved public land mobile network (Public Land Mobile Network, PLMN), etc
  • the network devices in the embodiments of the present disclosure may include various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, 5G base stations or future base stations, satellites, transmission points (Transmitting and Receiving Point, TRP), transmission points (Transmitting Point, TP), mobile switching centers, and devices to devices (Device-to-Device, D2D), machines to machines (Machine-to-Machine, M2M), Internet of Things (Internet of Things, IoT), vehicle-to-everything (V2X) or other devices that assume the function of a base station in other communications, etc., and the embodiments of the present disclosure do not specifically limit this.
  • the devices that provide wireless communication functions for terminal devices are collectively referred to as network devices or base stations.
  • the terminal device in FIG. 1 may be an electronic device that provides voice or data connectivity, for example, the terminal device may also be referred to as a user equipment (UE), a subscriber unit (SUBSCRIBER UNIT), a mobile station (MS), a station (STATION), a terminal (TERMINAL), etc.
  • the terminal device may include a smart phone, a smart wearable device, a smart speaker, a smart tablet, a wireless modem (MODEM), a wireless local loop (WLL) station, a PDA (Personal Digital Assistant), a CPE (Customer Premise Equipment), etc.
  • UE user equipment
  • SUBSCRIBER UNIT subscriber unit
  • MS mobile station
  • STATION station
  • TERMINAL terminal
  • the terminal device may include a smart phone, a smart wearable device, a smart speaker, a smart tablet, a wireless modem (MODEM), a wireless local loop (WLL) station, a PDA (Personal Digital Assistant), a CPE (Custom
  • devices that can access a communication system can communicate with a network device of a communication system, can communicate with other objects through a communication system, or two or more devices that can communicate directly with each other may all be terminal devices in the embodiments of the present disclosure; for example, terminals and cars in smart transportation, household devices in smart homes, power meter reading instruments, voltage monitoring instruments, environmental monitoring instruments in smart grids, video monitoring instruments in smart security networks, cash registers, etc.
  • a terminal device may communicate with a network device. Multiple terminal devices may also communicate with each other.
  • the terminal device may be static or mobile, which is not limited in the present disclosure.
  • the terminal device may include a first transceiver and a first receiver, wherein the first transceiver may be used to communicate with a network device, for example, the terminal device may send signals to the network device and receive signals from the network device through the first transceiver, and the first transceiver may be one or more; the first receiver may be a receiver for receiving a wake-up message sent by the network device, and the wake-up message may be a message or signal for waking up the first transceiver, for example, the wake-up message may be a low power saving signal (Low Power Wake-Up Signaling).
  • the first transceiver may be used to communicate with a network device
  • the terminal device may send signals to the network device and receive signals from the network device through the first transceiver, and the first transceiver may be one or more
  • the first receiver may be a receiver for receiving a wake-up message sent by the network device, and the wake-up message may be a message or signal for waking up the first transceiver
  • the first transceiver may include a main transceiver (Mainradio) of the terminal device, and the first receiver may be a separate receiver other than the main transceiver of the terminal device.
  • the first receiver may be a low power WUS signal receiver (Low Power Wake-Up Receiver).
  • the first receiver may be used only to receive signals sent by the network device, for example, may be used only to receive a wake-up message from the network device, so that the power consumption of the terminal device can be reduced to the maximum extent when the first receiver is working.
  • the first receiver may be used for both receiving signals sent by the network device and sending signals to the network device.
  • FIG2 is a flow chart of a method for waking up a transceiver according to an exemplary embodiment.
  • the method can be applied to a terminal device in the above communication system. As shown in FIG2 , the method may include:
  • the terminal device receives a wake-up message sent by the network device through the first receiver.
  • the wake-up message may be used to wake up the first transceiver.
  • the wake-up message may be a wake-up signal.
  • the wake-up signal may use a wake-up signal already specified in the current protocol, such as WUS, DCP (DCI for power saving) or PEI (Paging Early Indication), etc.
  • the wake-up signal may also be a newly defined signal type, for example, the wake-up signal may also be a new low power saving signal LP-WUS.
  • the wake-up message may include a wake-up indication and/or a wake-up parameter
  • the terminal device may wake up the first transceiver according to the wake-up indication and/or the wake-up parameter.
  • the first transceiver of the terminal device may have one or more states. For example, it may include a dormant state and a working state. Among them, the first transceiver being in the working state may indicate that the terminal device can communicate with the network device through the first transceiver.
  • sleep state other states of the first transceiver other than the working state may be referred to as a sleep state. For example:
  • the first transceiver being in a dormant state can be used to represent that the first transceiver is completely shut down, for example, the first transceiver is in a power-off state, and for another example, the first transceiver is powered on but does not receive or send signals at all.
  • the first transceiver being in a dormant state can be used to characterize that the first receiver is partially shut down. For example, only the sending function can be shut down and the receiving function can be retained; for another example, the sending function can be shut down, and only the receiving function can be periodically turned on to receive signals sent by the network device; for another example, the transceiver function can be periodically turned on and off, that is, the transceiver function is turned on within the first time of a preset period, and the transceiver function is turned off at other times within the preset period except the first time.
  • the terminal device includes a first transceiver and a first receiver.
  • the first receiver receives a wake-up message sent by the network device, and the wake-up message can be used to wake up the first transceiver.
  • the management of the terminal working state can be achieved, and the power saving performance of the terminal device can be improved when the first transceiver is in a dormant state.
  • the terminal device may receive a wake-up message sent by the network device through the first receiver when in a non-connected state.
  • the state of the terminal device may include a connected state and a non-connected state, wherein the non-connected state may include an idle state, a deactivated state, or other states that are not in a connected state.
  • the terminal device When the terminal device is in a connected state, it can communicate with the network device through the first transceiver, and at this time, the first receiver may be working or may be different.
  • the first receiver When the terminal device is in a non-connected state, the first receiver may be working, that is, the terminal device may receive a wake-up message through the first receiver.
  • the first transceiver when the terminal device is in a non-connected state, the first transceiver may be in a working state or in a dormant state, which is not limited in the present disclosure.
  • Fig. 3 is a flow chart of a method for waking up a transceiver according to an exemplary embodiment. As shown in Fig. 3, the method may include:
  • the terminal device sets a first transceiver to a sleep state, and receives a wake-up message sent by a network device through a first receiver.
  • setting the first transceiver to the sleep state may include turning off the first transceiver.
  • the preset low power consumption condition may include any one of the following sleep conditions:
  • Sleep condition 1 The terminal device is in a disconnected state.
  • the terminal device can set the first transceiver to a sleep state when it is in a non-connected state or enters a non-connected state from a connected state, and monitor the wake-up message sent by the network device through the first receiver.
  • Sleep condition 2 The terminal device is in a non-connected state and does not detect a target paging message within the target detection time.
  • the terminal device can detect a target paging message sent by a network device when in a non-connected state. If the terminal device does not detect the target paging message within the target detection time, it can actively set the first transceiver to a sleep state and monitor the wake-up message sent by the network device through the first receiver.
  • the target paging message can be used to represent the paging message sent by the network device to the terminal device; the target paging message can also be used to represent any paging message sent by the network device.
  • the target detection time can be any pre-set time, for example, it can be a time agreed upon in the protocol, or a time configured by the terminal device.
  • a low power consumption state can be actively entered to improve the power saving performance of the terminal device.
  • the terminal device when the terminal device sets the first transceiver to a sleep state and receives a wake-up message sent by the network device through the first receiver, it can be considered that the terminal device enters a low-power wake-up signal monitoring state.
  • the terminal device may receive a wake-up message sent by the network device at a first frequency domain position through a first receiver.
  • the first frequency domain position may include a first downlink initial BWP (Bandwidth Part) for the network device to send a wake-up message.
  • the first downlink initial BWP may be a BWP configured by the network device for sending a wake-up message.
  • frequency domain switching can be performed, that is, the first transceiver is set to a sleep state and switched to the first frequency domain position to listen for the wake-up message.
  • the first frequency domain position is the first downlink initial BWP
  • BWP switching can be performed, that is, the first transceiver is set to a sleep state, and at the same time switched to the first downlink initial BWP to listen for the wake-up message.
  • the first frequency domain position is the same as the frequency domain position used before the terminal device enters the low-power wake-up signal monitoring state, there is no need to perform frequency domain switching, that is, the first transceiver is set to a sleep state, and the wake-up message is listened directly at the first frequency domain position.
  • the first frequency domain position may be one or more.
  • the first frequency domain position may be one or more.
  • the first frequency domain position may be one, and the terminal device may directly receive the wake-up message sent by the network device through the first frequency domain position.
  • the terminal device may determine a first frequency domain position from the multiple first frequency domain positions as the target frequency domain position, and receive the wake-up message sent by the network device through the target frequency domain position.
  • the terminal device can determine a first frequency domain position from multiple first frequency domain positions as the target frequency domain position according to the terminal identifier. For example, the terminal device can determine the number of positions of the first frequency domain position, sort the multiple first frequency domain positions, and obtain a first modulus after taking the modulus according to the terminal identifier and the number of positions, and use the first frequency domain position sorted at the first modulus position as the target frequency domain position.
  • the terminal identifier may also be referred to as UEID (User Equipment ID), which may include any one or more of the identifiers such as IMEI (International Mobile Equipment Identity), IMSI (International Mobile Subscriber Identity), TMSI (Temporary Mobile Subscriber Identity), RNTI (Radio Network Temporary Identity) and GUTI (Globally Unique Temporary UE Identity).
  • UEID User Equipment ID
  • IMEI International Mobile Equipment Identity
  • IMSI International Mobile Subscriber Identity
  • TMSI Temporary Mobile Subscriber Identity
  • RNTI Radio Network Temporary Identity
  • GUTI Globally Unique Temporary UE Identity
  • the terminal device can obtain the one or more first frequency domain positions through the broadcast signaling sent by the network device; the terminal device can also obtain the one or more first frequency domain positions through dedicated signaling sent by the network device to the terminal device.
  • the first frequency domain position can be flexibly determined, and the wake-up message can be received through the first frequency domain position.
  • the first frequency domain position (for example, the first downlink initial BWP) may be determined by any one of the following methods:
  • Method 1 for determining the first frequency domain position in response to receiving a first message sent by a network device, determining a first frequency domain position (eg, a first downlink initial BWP) according to the first message.
  • a first frequency domain position eg, a first downlink initial BWP
  • the first message may include the first frequency domain position (eg, the first downlink initial BWP).
  • the first message may be a dedicated message corresponding to the terminal device.
  • the first message may be a preset dedicated signaling corresponding to the terminal device, and the preset dedicated signaling may include an RRC (Radio Resource Control) connection release message or an RRC reconfiguration message.
  • RRC Radio Resource Control
  • the terminal device may receive the first frequency domain position through a preset dedicated signaling.
  • the first message may be a broadcast signaling of a network device.
  • the broadcast signaling may include a MIB (Master Information Block) and/or a SIB (System Information Block).
  • the terminal device may use the wake-up message dedicated downlink initial BWP (e.g., LP-WUS-initial DL BWP) sent by the network device through broadcast signaling as the first downlink initial BWP.
  • the wake-up message dedicated downlink initial BWP e.g., LP-WUS-initial DL BWP
  • the terminal device when the terminal device is a common user, the terminal device may use the downlink initial BWP (such as initial DL BWP) configured for the common user and sent by the network device through broadcast signaling as the first downlink initial BWP.
  • the downlink initial BWP such as initial DL BWP
  • the terminal device when the terminal device is a Redcap (Reduced Capability) user, the terminal device can use the Redcapspecific downlink initial BWP (for example, Redcap specific initial DL BWP) configured by the network device for the Redcap user through broadcast signaling as the first downlink initial BWP.
  • the Redcapspecific downlink initial BWP for example, Redcap specific initial DL BWP
  • Method 2 for determining the first frequency domain position determining the first frequency domain position (eg, the first downlink initial BWP) according to the first preset frequency domain position.
  • the first preset frequency domain position may be a specific frequency domain position agreed upon by a protocol. For example, according to the protocol, the network device sends a wake-up message at the first preset frequency domain position, and the terminal device receives the wake-up message at the first preset comment position.
  • the first preset frequency domain position may be a downlink initial BWP including COSESET0 and/or SSB.
  • the terminal device may use the downlink initial BWP including COSESET0 and/or SSB as the first downlink initial BWP.
  • the COSESET0 can be Control Resource Set 0, which is a set of physical resources in a specific frequency domain position in the downlink resources, and is a PDCCH specifically used to send decoding SIB messages.
  • the SSB can be a synchronization signal and PBCH block (Synchronization Signal and PBCH block, referred to as SSB).
  • the first preset frequency domain position may be a downlink initial BWP for monitoring paging messages.
  • the terminal device may use the downlink initial BWP for monitoring paging messages as the first downlink initial BWP. In this way, the terminal device monitors the wake-up message in the first downlink initial BWP, and can continue to use the first downlink initial BWP after waking up.
  • the above-mentioned first downlink initial BWP is the Redcapspecific downlink initial BWP; otherwise, the above-mentioned first downlink initial BWP is the initialDLBWP configured through broadcast signaling (such as MIB or SIB1).
  • the first preset frequency domain position can be determined through any one of the above methods.
  • Fig. 4 is a flow chart of a method for waking up a transceiver according to an exemplary embodiment. As shown in Fig. 4, the method may include:
  • a terminal device receives a wake-up message sent by a network device at a first frequency domain position via a first receiver.
  • the terminal device may monitor the wake-up message at the first frequency domain position through the first receiver.
  • the terminal device receives the wake-up message
  • the first transceiver if the first transceiver is in a dormant state, the first transceiver can be taken out of the dormant state and enter the working state, so as to receive and send wireless signals through the first transceiver. If the first transceiver is in the working state, the working state can be maintained.
  • the first receiver may be turned off.
  • the first receiver may continue to be kept in an on state, that is, the wake-up message may continue to be monitored through the first receiver.
  • the terminal device communicates with the network device at a second frequency domain location via the first transceiver.
  • the terminal device may communicate with the network device at the second frequency domain location through the first transceiver.
  • one or more of the following communication methods can be performed through the first transceiver at the second frequency domain location: monitoring paging messages, monitoring system messages, performing random access procedures, cell selection, cell reselection, PLMN selection, PLMN reselection (for example, the terminal receives a NAS designation for PLMN reselection), measuring or maintaining synchronization between the terminal device and the network device, performing data services or voice services, etc.
  • the second frequency domain position may include a second uplink/downlink initial BWP.
  • the second frequency domain position may be the same as or different from the first frequency domain position.
  • frequency domain switching can be performed, that is, waking up the first transceiver (for example, turning on the first transceiver) and switching to the second frequency domain position to communicate with the network device.
  • the second frequency domain position includes a second uplink initial BWP and a second downlink initial BWP
  • BWP switching can be performed, that is, waking up the first transceiver) and switching to the second downlink initial BWP to monitor wireless signals.
  • the second frequency domain position when the second frequency domain position is the same as the first frequency domain position, there is no need to perform frequency domain switching, that is, wake up the first transceiver and communicate with the network device directly at the first frequency domain position.
  • the first transceiver in response to receiving the wake-up message, can be awakened, and communication with the network device can be performed through the first transceiver, thereby achieving low power consumption and being able to wake up the terminal device in time for communication.
  • the second frequency domain position may be determined in any of the following ways:
  • Method 1 for determining the second frequency domain position determining the second frequency domain position according to the auxiliary information in the wake-up message.
  • the auxiliary information may be used to indicate the type of data monitored by the terminal device, and the data type may include a first type and/or a second type, wherein:
  • the first type may include a system message or a system message update: upon receiving the first type, the terminal device may use the downlink initial BWP configured with the system message monitoring search space as the second frequency domain position.
  • the first type may be carried in the wake-up message so that the terminal device receives the updated system message according to the first type.
  • all terminal devices under the network device that monitor the wake-up message may be awakened by a wake-up message.
  • the second type may include a paging message: upon receiving the second type, the terminal device may use the downlink initial BWP configured with the paging message monitoring search space as the second frequency domain position.
  • the downlink initial BWP for monitoring system messages is separated from the initial BWP for monitoring paging, and the terminal device can directly determine the second frequency domain position according to the service type monitored subsequently, so as to monitor and communicate efficiently.
  • Method 2 for determining the second frequency domain position in response to receiving a second message sent by the network device, determining the second frequency domain position according to the second message.
  • the second message may include the second frequency domain position, and the second frequency domain position may include a second uplink/downlink initial BWP.
  • the second message may be a dedicated message corresponding to the terminal device.
  • the second message may be an RRC connection release message or an RRC reconfiguration message corresponding to the terminal device.
  • the first message may be a broadcast signaling of the network device.
  • the broadcast signaling may include MIB and/or SIB.
  • the terminal device may use the uplink/downlink initial BWP (such as initial UL/DL BWP) configured by the network device for the common user through broadcast signaling as the second uplink/downlink initial BWP, and determine the second frequency domain position based on the second uplink/downlink initial BWP.
  • the second uplink/downlink initial BWP may be used as the second frequency domain position.
  • the terminal device when the terminal device is a Redcap user, the terminal device can use the uplink/downlink initial BWP (such as Redcap specific initial UL/DL BWP) configured by the network device for the Redcap user through broadcast signaling as the second uplink/downlink initial BWP, and determine the second frequency domain position based on the second uplink/downlink initial BWP.
  • the second uplink/downlink initial BWP can be used as the second frequency domain position.
  • Method three for determining the second frequency domain position using the second preset frequency domain position as the second frequency domain position.
  • the second preset frequency domain position may include a second uplink initial BWP and a second downlink initial BWP.
  • the second preset frequency domain position may be a specific frequency domain position agreed upon by a protocol, for example, a second uplink initial BWP and a second downlink initial BWP agreed upon by a protocol.
  • the second downlink initial BWP in the second preset frequency domain position may be a downlink initial BWP including COSESET0 and/or SSB.
  • the downlink initial BWP including COSESET0 and/or SSB may be used as the second downlink initial BWP.
  • the second downlink initial BWP in the second preset frequency domain position may be a downlink initial BWP for monitoring paging messages.
  • the terminal device may use the downlink initial BWP for monitoring paging messages as the second downlink initial BWP.
  • the second downlink initial BWP in the second preset frequency domain position may be the above-mentioned first downlink initial BWP.
  • the second preset frequency domain position can be determined through any one of the above methods.
  • the first transceiver when a first transceiver of a terminal device is in a dormant state, the first transceiver may be awakened when any one or more of the following awakening conditions are met:
  • Wake-up condition 1 A wake-up message is received through the first receiver.
  • the first transceiver when the first transceiver is in a sleep state, if a wake-up message is received, the first transceiver is woken up.
  • Wake-up condition two receiving a target event indication from the terminal device.
  • the first transceiver when the first transceiver is in a sleep state, if a target event indication from a terminal device is received, the first transceiver is awakened.
  • the target event indication can be used to indicate the occurrence of any one or more of the following events: monitoring paging messages, monitoring system messages, performing random access procedures, cell selection, cell reselection, PLMN selection, PLMN reselection (for example, the terminal receives a NAS layer message specifying PLMN reselection), measuring or maintaining synchronization between the terminal device and the network device, the terminal actively initiating data services or voice services, etc.
  • Wake-up condition three the target duration is reached and no wake-up message is received by the first receiver.
  • the first transceiver when the first transceiver is in a dormant state, if the target duration is reached and no wake-up message is received through the first receiver, the first transceiver is awakened.
  • the target duration may be any preset duration, such as a duration agreed upon in a protocol or a duration configured by a terminal device.
  • the target duration may also be a duration determined based on a message received from a network device.
  • the first transceiver can be awakened when any one or more of the above awakening conditions are met.
  • FIG5 is a flow chart of a method for waking up a transceiver according to an exemplary embodiment.
  • the method can be applied to a network device in the above communication system. As shown in FIG5 , the method may include:
  • S501 The network device sends a wake-up message to the terminal device.
  • the wake-up message is used to instruct the terminal device to wake up the first transceiver when the wake-up message is received through the first receiver.
  • the terminal device may include a first transceiver and a first receiver.
  • the terminal device may monitor the wake-up message through the first receiver when the first transceiver is in a sleep state.
  • the wake-up message may be a wake-up signal.
  • the wake-up signal may use a wake-up signal already specified in the current protocol, such as WUS, DCP (DCI for power saving) or PEI (Paging Early Indication), etc.
  • the wake-up signal may also be a newly defined signal type, for example, the wake-up signal may also be a new low power saving signal LP-WUS that is not defined in the current protocol.
  • the wake-up message may include a wake-up indication and/or a wake-up parameter
  • the terminal device may wake up the first transceiver according to the wake-up indication and/or the wake-up parameter.
  • the network device sends a wake-up message to the terminal device, and the wake-up message can instruct the terminal device to wake up the first transceiver when the wake-up message is received through the first receiver.
  • the terminal device can be supported to set a separate first receiver to receive the wake-up signal, realize the management of the terminal working state, and improve the power saving performance of the terminal device when the first transceiver is in a dormant state.
  • the network device may send a wake-up message to the terminal device via a first frequency domain location.
  • the first frequency domain location may be one or more.
  • the first frequency domain position may include a first downlink initial BWP at which the network device sends a wake-up message.
  • it may be a frequency domain position configured by the network device.
  • the first frequency domain position may be notified to the terminal device by the network device through a first message.
  • the network device may send a first message to the terminal device, and the first message may be used to instruct the terminal device to determine the first frequency domain position.
  • the first message may include the first frequency domain position (e.g., the first downlink initial BWP).
  • the first message may be a dedicated message corresponding to the terminal device.
  • the first message may be a preset dedicated signaling corresponding to the terminal device, and the preset dedicated signaling may include an RRC connection release message or an RRC reconfiguration message.
  • the network device may send the first frequency domain position to the terminal device via a preset dedicated signaling.
  • the network device may send the first frequency domain position to the terminal device via a preset dedicated signaling.
  • the first message may be the first message or a broadcast signaling of the network device.
  • the broadcast signaling may include a MIB (Master Information Block) and/or a SIB (System Information Block).
  • the network device may send a downlink initial BWP (e.g., LP-WUS-initial DL BWP) dedicated to the wake-up message via broadcast signaling to indicate it as the first downlink initial BWP.
  • a downlink initial BWP e.g., LP-WUS-initial DL BWP
  • the network device may determine the first frequency domain position (eg, the first downlink initial BWP) according to the first preset frequency domain position.
  • the first preset frequency domain position may be a specific frequency domain position agreed upon by a protocol. For example, according to the protocol, the network device sends a wake-up message at the first preset frequency domain position, and the terminal device receives the wake-up message at the first preset comment position.
  • the first preset frequency domain position may be a downlink initial BWP including COSESET0 and/or SSB.
  • the network device may use the downlink initial BWP including COSESET0 and/or SSB as the first downlink initial BWP.
  • the first preset frequency domain position may be a downlink initial BWP used to send a paging message.
  • the network device may use the downlink initial BWP used to send a paging message as the first downlink initial BWP.
  • the first preset frequency domain position can be determined through any one of the above methods.
  • the terminal device upon receiving the wake-up message, can wake up the first transceiver and communicate with the network device at the second frequency domain location through the first transceiver.
  • the second frequency domain position may include a second uplink/downlink initial BWP.
  • the second frequency domain position may be the same as or different from the first frequency domain position.
  • the second frequency domain position may be notified to the terminal device by the network device through a wake-up message.
  • the wake-up message may include auxiliary information, and the auxiliary information may be used to instruct the terminal device to determine the second frequency domain position.
  • the auxiliary information may be used to indicate the type of data monitored by the terminal device, and the data type may include a first type and/or a second type, wherein:
  • the first type may include a system message or a system message update: upon receiving the first type, the terminal device may use the downlink initial BWP configured with the system message monitoring search space as the second frequency domain position.
  • the first type may be carried in the wake-up message so that the terminal device receives the updated system message according to the first type.
  • all terminal devices under the network device that monitor the wake-up message may be awakened by a wake-up message.
  • the second type may include a paging message: upon receiving the second type, the terminal device may use the downlink initial BWP configured with the paging message monitoring search space as the second frequency domain position.
  • the downlink initial BWP for monitoring system messages is separated from the initial BWP for monitoring paging, and the terminal device can directly determine the second frequency domain position according to the service type monitored subsequently, so as to monitor and communicate efficiently.
  • the second frequency domain position may be notified to the terminal device by the network device through a second message.
  • the network device may send the second message to the terminal device.
  • the second message may be used to instruct the terminal device to determine the second frequency domain position.
  • the second message may include the second frequency domain position, and the second frequency domain position may include a second uplink/downlink initial BWP.
  • the second message may be a dedicated message corresponding to the terminal device.
  • the second message may be an RRC connection release message or an RRC reconfiguration message corresponding to the terminal device.
  • the first message may be a broadcast signaling of the network device.
  • the broadcast signaling may include MIB and/or SIB.
  • the network device may use the second preset frequency domain position as the second frequency domain position.
  • the second preset frequency domain position may include a second uplink initial BWP and a second downlink initial BWP.
  • the second preset frequency domain position may be a specific frequency domain position agreed upon by a protocol, for example, a second uplink initial BWP and a second downlink initial BWP agreed upon by a protocol.
  • the second downlink initial BWP in the second preset frequency domain position may be a downlink initial BWP including COSESET0 and/or SSB.
  • the downlink initial BWP including COSESET0 and/or SSB may be used as the second downlink initial BWP.
  • the second downlink initial BWP in the second preset frequency domain position may be a downlink initial BWP for monitoring paging messages.
  • the terminal device may use the downlink initial BWP for monitoring paging messages as the second downlink initial BWP.
  • the second downlink initial BWP in the second preset frequency domain position may be the above-mentioned first downlink initial BWP.
  • the second preset frequency domain position can be determined through any one of the above methods.
  • Fig. 6 is a flow chart of a method for waking up a transceiver according to an exemplary embodiment. As shown in Fig. 6, the method may include:
  • S601 The network device sends a wake-up message to the terminal device.
  • the network device may send a wake-up message to the terminal device via the first frequency domain position.
  • the terminal device receives a wake-up message through a first receiver.
  • the terminal device may monitor the wake-up message at a first frequency domain location via a first receiver.
  • the terminal device may receive a wake-up message sent by the network device through the first receiver when the first transceiver is in a sleep state.
  • the terminal device receives the wake-up message
  • the first transceiver if the first transceiver is in a dormant state, the first transceiver can be taken out of the dormant state and enter the working state, so as to receive and send wireless signals through the first transceiver. If the first transceiver is in the working state, the working state can be maintained.
  • the first receiver may be turned off.
  • the first receiver may continue to be kept in an on state, that is, the wake-up message may continue to be monitored through the first receiver.
  • the terminal device includes a first transceiver and a first receiver.
  • the terminal device can receive a wake-up message sent by the network device through the first receiver, and wake up the first transceiver when the wake-up message is received.
  • the management of the terminal working state can be achieved, and the power saving performance of the terminal device can be improved when the first transceiver is in a dormant state.
  • the first receiver when the terminal device is in a non-connected state, can be used to work, for example, the first receiver can be used to receive a low-power wake-up signal, and the low-power wake-up signal can be used to wake up the first transceiver.
  • the first transceiver can be a main transceiver (e.g., a main wireless receiver) of the terminal device.
  • a terminal device in a non-connected state can receive a low-power wake-up signal (e.g., an LP WUS signal) sent by a network device at a first time-frequency domain position (e.g., a first downlink initial BWP).
  • a low-power wake-up signal e.g., an LP WUS signal
  • a network device can receive a low-power wake-up signal (e.g., an LP WUS signal) sent by a network device at a first time-frequency domain position (e.g., a first downlink initial BWP).
  • the first downlink initial BWP is a downlink initial BWP configured by the network to carry the LP WUS resources.
  • the premise for sending LP WUS resources on the first downlink initial BWP is that it contains COSESET0 and/or SSB.
  • the first downlink initial BWP is different from the initial DL BWP configured in the existing MIB or SIB1, and is also different from the Redcap specific downlink initial BWP).
  • the first downlink initial BWP is the LP-WUS-initial DL BWP.
  • the first downlink initial BWP is the downlink initial BWP configured by the network device (i.e., the initial DL BWP configured by MIB or SIB1).
  • the Redcap specific downlink initial BWP includes COSESET0 and/or SSB
  • the first downlink initial BWP is the Redcap specific downlink initial BWP; otherwise, it is the initial DL BWP configured by MIB or SIB1.
  • the first downlink initial BWP is a downlink initial BWP used by the terminal device to monitor paging messages.
  • the first downlink initial BWP may be obtained according to an instruction issued by a network device or may be obtained by a terminal device according to a protocol agreement.
  • the first downlink initial BWP is notified by the network device through dedicated signaling.
  • the network device sends the first downlink initial BWP to the terminal device when notifying the terminal device to enter a non-connected state.
  • the network device estimates that there will be no paging of the terminal device for a period of time, the first downlink initial BWP can be sent to the terminal device through dedicated signaling.
  • the terminal device turns off the main transceiver at this time
  • the terminal device if the terminal device does not detect paging for a period of time, the main transceiver is turned off and enters the LP WUS monitoring state.
  • the terminal device can select one of the first downlink initial BWPs to enter the LP WUS listening state, for example, it can be but not limited to determining which first downlink initial BWP to enter the LP WUS listening state based on the modulo of UEID.
  • the first downlink initial BWP may be notified to the terminal device in advance via broadcast signaling.
  • the terminal device turns off the main transceiver and switches to the first initial BWP for LP-WUS monitoring.
  • a transceiver switch is required at this time (that is, the terminal device turns off the main transceiver and switches to the first time-frequency domain position for LP-WUS monitoring).
  • the terminal device turns off the main transceiver and performs LP-WUS monitoring at this time.
  • the terminal device after the terminal device leaves the LP-WUS listening state and turns on the main wireless transceiver, it can work in the second uplink/downlink initial BWP to perform subsequent operations:
  • the second downlink initial BWP is different from the first downlink initial BWP used before the terminal device leaves the LP WUS monitoring state, BWP switching is required at this time (that is, the terminal device turns on the main transceiver at this time and switches to the second initial BWP for subsequent data monitoring).
  • the above-mentioned subsequent operations may include one or more of the following: monitoring paging messages/system messages, performing random access procedures, cell selection/reselection/PLMN selection/PLMN reselection (for example, the terminal device receives a NAS-specified PLMN reselection); measuring or maintaining synchronization with the network.
  • the second uplink/downlink initial BWP may be configured by the network device.
  • the uplink/downlink initial BWP configured by the network device in the SIB1 message is used as the second uplink/downlink initial BWP.
  • the second uplink/downlink initial BWP may be a Redcap-specific uplink/downlink initial BWP.
  • the second uplink/downlink initial BWP may be a network device notification or a protocol agreement.
  • the network notification method may carry indication information in a low power consumption wake-up message (LP-WUS).
  • LP-WUS low power consumption wake-up message
  • the terminal device when the terminal device monitors the low-power wake-up signal, it can wake up the main wireless transceiver and monitor subsequent data in the second downlink initial BWP.
  • the low-power wake-up signal may carry auxiliary information, and the auxiliary information may assist the terminal device in waking up the main transceiver and monitoring subsequent data in the second downlink initial BWP.
  • the low power consumption wake-up signal may carry auxiliary information indicating the data type of the subsequent monitored data.
  • the low-power wake-up signal is a wake-up signal for updating a system message, it is necessary to wake up all terminal devices in the cell that monitor the low-power wake-up signal.
  • the data type may include a first type and/or a second type, wherein:
  • the first type may be used to indicate that the monitored data is a system message or a system message update, and may be used to indicate that the second downlink initial BWP is a downlink initial BWP configured with a system message monitoring search space.
  • the second type may be used to indicate that the monitored data is a paging message, and to indicate that the second downlink initial BWP is a downlink initial BWP configured with a paging message monitoring search space.
  • the downlink initial BWP for monitoring system messages and the initial BWP for paging are separated, and the terminal device can directly know which downlink initial BWP needs to be monitored according to the service type monitored subsequently.
  • the second downlink initial BWP may be agreed upon by a protocol, for example, it may be a downlink initial BWP used for monitoring paging messages.
  • the terminal device if the listening mode duration of the terminal device using the first receiver times out, the terminal device operates in a second downlink initial BWP.
  • the second downlink initial BWP may be the first downlink initial BWP used by the terminal device before leaving the LP WUS listening state.
  • FIG7 is a block diagram of a device 2100 for waking up a transceiver according to an exemplary embodiment.
  • the device may be applied to a terminal device, wherein the terminal device includes a first transceiver and a first receiver.
  • the device 2100 may include:
  • the first receiving module 2101 is configured to receive a wake-up message sent by a network device through the first receiver when the first transceiver is in a sleep state, where the wake-up message is used to wake up the first transceiver.
  • the first receiving module 2101 is configured to receive the wake-up message sent by the network device at a first frequency domain position through the first receiver.
  • the first frequency domain position includes a first downlink initial BWP at which the network device sends the wake-up message.
  • the apparatus further comprises:
  • Fig. 8 is a block diagram of a device 2100 for waking up a transceiver according to an exemplary embodiment. As shown in Fig. 8, the device 2100 may further include:
  • the first determination module 2102 is configured to, in response to receiving a first message sent by the network device, determine the first frequency domain position according to the first message; or, use a first preset frequency domain position as the first frequency domain position.
  • Fig. 9 is a block diagram of a device 2100 for waking up a transceiver according to an exemplary embodiment. As shown in Fig. 9, the device 2100 may further include:
  • the wake-up module 2103 is configured to wake up the first transceiver in response to receiving the wake-up message; and communicate with the network device at a second frequency domain position through the first transceiver.
  • the first determination module 2102 is further configured to, in response to receiving a second message sent by the network device, determine the second frequency domain position according to the second message; determine the second frequency domain position according to the auxiliary information in the wake-up message; and use the second preset frequency domain position as the second frequency domain position.
  • the wake-up module 2103 is further configured to wake up the first transceiver if a target event indication from the terminal device is received when the first transceiver is in a sleep state.
  • the wake-up module 2103 is configured to wake up the first transceiver when the first transceiver is in a sleep state and a target duration is reached and the wake-up message is not received by the first receiver.
  • FIG10 is a block diagram of a device 2200 for waking up a transceiver according to an exemplary embodiment.
  • the device may be applied to a network device.
  • the device 2200 may include:
  • the second sending module 2201 is configured to send a wake-up message to the terminal device, where the wake-up message is used to instruct the terminal device to wake up the first transceiver when the wake-up message is received through the first receiver.
  • the second sending module 2201 is configured to send the wake-up message to the terminal device via a first frequency domain position.
  • the first frequency domain position includes a first downlink initial BWP at which the network device sends the wake-up message.
  • the second sending module 2201 is further configured to send a first message to the terminal device, where the first message is used to instruct the terminal device to determine the first frequency domain position.
  • the wake-up message includes auxiliary information, and the auxiliary information is used to instruct the terminal device to determine the second frequency domain position.
  • the second sending module 2201 is further configured to send a second message to the terminal device, where the second message is used to instruct the terminal device to determine a second frequency domain position.
  • FIG11 is a block diagram of a device for waking up a transceiver according to an exemplary embodiment.
  • the device 3000 for waking up a transceiver may be a terminal device in the communication system shown in FIG1 , or may be a network device in the communication system.
  • the device 3000 may include one or more of the following components: a processing component 3002, a memory 3004, and a communication component 3006.
  • the processing component 3002 can be used to control the overall operation of the device 3000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 3002 can include one or more processors 3020 to execute instructions to complete all or part of the steps of the above-mentioned method of waking up the transceiver.
  • the processing component 3002 can include one or more modules to facilitate the interaction between the processing component 3002 and other components.
  • the processing component 3002 can include a multimedia module to facilitate the interaction between the multimedia component and the processing component 3002.
  • the memory 3004 is configured to store various types of data to support operations on the device 3000. Examples of such data include instructions for any application or method operating on the device 3000, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 3004 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the communication component 3006 is configured to facilitate wired or wireless communication between the device 3000 and other devices.
  • the device 3000 can access a wireless network based on a communication standard, such as Wi-Fi, 2G, 3G, 4G, 5G, 6G, NB-IOT, eMTC, etc., or a combination thereof.
  • the communication component 3006 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 3006 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 3000 may be implemented by one or more application-specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components to perform the above-mentioned method of waking up the transceiver.
  • ASICs application-specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components to perform the above-mentioned method of waking up the transceiver.
  • the above-mentioned device 3000 can be an independent electronic device or a part of an independent electronic device.
  • the electronic device can be an integrated circuit (IC) or a chip, wherein the integrated circuit can be an IC or a collection of multiple ICs; the chip can include but is not limited to the following types: GPU (Graphics Processing Unit), CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), SOC (System on Chip, SoC), etc.
  • the above-mentioned integrated circuit or chip can be used to execute executable instructions (or codes) to implement the above-mentioned method of waking up the transceiver.
  • the executable instructions can be stored in the integrated circuit or chip, or can be obtained from other devices or equipment, for example, the integrated circuit or chip includes a processor, a memory, and an interface for communicating with other devices.
  • the executable instruction can be stored in the processor, and when the executable instruction is executed by the processor, the above-mentioned method of waking up the transceiver is implemented; alternatively, the integrated circuit or chip can receive the executable instruction through the interface and transmit it to the processor for execution, so as to implement the above-mentioned method of waking up the transceiver.
  • the present disclosure further provides a computer-readable storage medium having computer program instructions stored thereon, and when the program instructions are executed by a processor, the steps of the method for waking up a transceiver provided by the present disclosure are implemented.
  • the computer-readable storage medium may be a non-temporary computer-readable storage medium including instructions, for example, the above-mentioned memory 3004 including instructions, and the above-mentioned instructions may be executed by the processor 3020 of the device 3000 to complete the above-mentioned method for waking up a transceiver.
  • the non-temporary computer-readable storage medium may be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, and the like.
  • a computer program product includes a computer program executable by a programmable device, and has a code portion for executing the above-mentioned method of waking up a transceiver when the computer program is executed by the programmable device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及一种唤醒收发机的方法、装置、存储介质及芯片。该方法可以应用于终端设备,该终端设备包括第一收发机和第一接收机,该方法包括:在第一收发机处于休眠状态的情况下,通过第一接收机接收网络设备发送的唤醒消息,该唤醒消息可以用于唤醒第一收发机。这样,通过设置单独的第一接收机接收唤醒信号,可以实现终端工作状态的管理,在第一收发机处于休眠状态的情况下可以提高终端设备的省电性能。

Description

唤醒收发机的方法、装置、存储介质及芯片 技术领域
本公开涉及通信技术领域,具体地,涉及一种唤醒收发机的方法、装置、存储介质及芯片。
背景技术
在无线通信系统中,为了降低终端设备的功耗,3GPP(3rd Generation Partnership Project,第三代合作伙伴项目)引入了省电信号,比如:唤醒信号(Wake-UpSignaling,WUS)。其中,WUS信号是一种低功耗的检测信号,若终端设备检测到WUS信号,则可以进行物理下行控制信道(physical downlink control channel,PDCCH)的监听,若终端设备没有检测到WUS,则可以跳过(skip)对PDCCH的监听。
但是,在相关技术中,通过收发机采用上述方案对WUS和PDCCH的监听虽然能够一定程度上降低终端设备的功耗,但是仍然存在进一步提升终端设备省电性能的需求。
发明内容
为克服相关技术中存在的上述问题,本公开提供一种唤醒收发机的方法、装置、存储介质及芯片。
根据本公开实施例的第一方面,提供一种唤醒收发机的方法,应用于终端设备,所述终端设备包括第一收发机和第一接收机;所述方法包括:
在所述第一收发机处于休眠状态的情况下,通过所述第一接收机接收网络设备发送的唤醒消息,所述唤醒消息用于唤醒所述第一收发机。
在一些实施例中,所述通过所述第一接收机接收网络设备发送的唤醒消息包括:
通过所述第一接收机在第一频域位置接收所述网络设备发送的所述唤醒消息。
在一些实施例中,所述第一频域位置包括所述网络设备发送所述唤醒消息的第一下行初始BWP。
在一些实施例中,所述第一频域位置通过以下方式确定:
响应于接收到所述网络设备发送的第一消息,根据所述第一消息确定所述第一频域位置;或者,
将第一预设频域位置作为所述第一频域位置。
在一些实施例中,所述方法还包括:
响应于接收到所述唤醒消息,唤醒所述第一收发机;
通过所述第一收发机在第二频域位置与所述网络设备进行通信。
在一些实施例中,所述第二频域位置通过以下方式中的任意一种方式确定:
响应于接收到所述网络设备发送的第二消息,根据所述第二消息确定所述第二频域位置;
根据所述唤醒消息中的辅助信息,确定所述第二频域位置;
将第二预设频域位置作为所述第二频域位置。
在一些实施例中,所述方法还包括:
在所述第一收发机处于休眠状态的情况下,若接收到所述终端设备的目标事件指示,则唤醒所述第一收发机。
在一些实施例中,所述方法还包括:
在所述第一收发机处于休眠状态的情况下,若达到目标时长,且通过所述第一接收机未接收到所述唤醒消息,则唤醒所述第一收发机。
根据本公开实施例的第二方面,提供一种唤醒收发机的方法,应用于网络设备,所述方法包括:
向终端设备发送唤醒消息,所述唤醒消息用于指示所述终端设备在通过第一接收机接收到所述唤醒消息的情况下唤醒第一收发机。
在一些实施例中,所述向终端设备发送唤醒消息包括:
通过第一频域位置向所述终端设备发送所述唤醒消息。
在一些实施例中,所述第一频域位置包括所述网络设备发送所述唤醒消息的第一下行初始BWP。
在一些实施例中,所述方法还包括:
向所述终端设备发送第一消息,所述第一消息用于指示所述终端设备确定所述第一频域位置。
在一些实施例中,所述唤醒消息中包括辅助信息,所述辅助信息用于指示所述终端设备确定第二频域位置。
在一些实施例中,所述方法还包括:
向所述终端设备发送第二消息,所述第二消息用于指示所述终端设备确定第二频域位置。
根据本公开实施例的第三方面,提供一种唤醒收发机的装置,应用于终端设备,所述终端设备包括第一收发机和第一接收机;所述装置包括:
第一接收模块,被配置为在所述第一收发机处于休眠状态的情况下,通过所述第一接收机接收网络设备发送的唤醒消息,所述唤醒消息用于唤醒所述第一收发机。
在一些实施例中,所述第一接收模块,被配置为通过所述第一接收机在第一频域位置接收所述网络设备发送的所述唤醒消息。
在一些实施例中,所述第一频域位置包括所述网络设备发送所述唤醒消息的第一下行初始BWP。
在一些实施例中,所述装置还包括:
第一确定模块,被配置为响应于接收到所述网络设备发送的第一消息,根据所述第一消息确定所述第一频域位置;或者,将第一预设频域位置作为所述第一频域位置。
在一些实施例中,所述装置还包括:
唤醒模块,被配置为响应于接收到所述唤醒消息,唤醒所述第一收发机;通过所述第一收发机在第二频域位置与所述网络设备进行通信。
在一些实施例中,所述第一确定模块,还被配置为响应于接收到所述网络设备发送的第二消息,根据所述第二消息确定所述第二频域位置;根据所述唤醒消息中的辅助信息,确定所述第二频域位置;将第二预设频域位置作为所述第二频域位置。
在一些实施例中,所述唤醒模块,还被配置为在所述第一收发机处于休眠状态的情况下,若接收到所述终端设备的目标事件指示,则唤醒所述第一收发机。
在一些实施例中,所述唤醒模块,被配置为在所述第一收发机处于休眠状态的情况下,若达到目标时长,且通过所述第一接收机未接收到所述唤醒消息,则唤醒所述第一收发机。
根据本公开实施例的第四方面,提供一种唤醒收发机的装置,应用于网络设备,所述装置包括:
第二发送模块,被配置为向终端设备发送唤醒消息,所述唤醒消息用于指示所述终端设备在通过第一接收机接收到所述唤醒消息的情况下唤醒第一收发机。
在一些实施例中,所述第二发送模块,被配置为通过第一频域位置向所述终端设备发送所述唤醒消息。
在一些实施例中,所述第一频域位置包括所述网络设备发送所述唤醒消息的第一下行初始BWP。
在一些实施例中,所述第二发送模块,还被配置为向所述终端设备发送第一消息,所述第一消息用于指示所述终端设备确定所述第一频域位置。
在一些实施例中,所述唤醒消息中包括辅助信息,所述辅助信息用于指示所述终端设备确定第二频域位置。
在一些实施例中,所述第二发送模块,还被配置为向所述终端设备发送第二消息,所述第二消息用于指示所述终端设备确定第二频域位置。
根据本公开实施例的第五方面,提供一种唤醒收发机的装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行本公开第一方面所提供的唤醒收发机的方法的步骤。
根据本公开实施例的第六方面,提供一种唤醒收发机的装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为执行本公开第二方面所提供的唤醒收发机的方法的步骤。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该计算机程序指令被处理器执行时实现本公开第一方面所提供的唤醒收发机的方法的步骤。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该计算机程序指令被处理器执行时实现本公开第二方面所提供的唤醒收发机的方法的步骤。
根据本公开实施例的第九方面,提供一种芯片,包括:处理器和接口;所述处理器用于读取指令以执行本公开第一方面所提供的唤醒收发机的方法的步骤,
根据本公开实施例的第十方面,提供一种芯片,包括:处理器和接口;所述处理器用于读取指令以执行本公开第二方面所提供的唤醒收发机的方法的步骤。
本公开的实施例提供的技术方案可以包括以下有益效果:采用上述方法,终端设备包括第一收发机和第一接收机,在第一收发机处于休眠状态的情况下,通过第一接收机接收网络设备发送的唤醒消息,该唤醒消息可以用于唤醒第一收发机。这样,通过设置单独的第一接收机接收唤醒信号,可以实现终端工作状态的管理,在第一收发机处于休眠状态的情况下可以提高终端设备的省电性能。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种通信系统的示意图。
图2是根据一示例性实施例示出的一种唤醒收发机的方法的流程图。
图3是根据一示例性实施例示出的一种唤醒收发机的方法的流程图。
图4是根据一示例性实施例示出的一种唤醒收发机的方法的流程图。
图5是根据一示例性实施例示出的一种唤醒收发机的方法的流程图。
图6是根据一示例性实施例示出的一种唤醒收发机的方法的流程图。
图7是根据一示例性实施例示出的一种唤醒收发机的装置的框图。
图8是根据一示例性实施例示出的一种唤醒收发机的装置的框图。
图9是根据一示例性实施例示出的一种唤醒收发机的装置的框图。
图10是根据一示例性实施例示出的一种唤醒收发机的装置的框图。
图11是根据一示例性实施例示出的一种唤醒收发机的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本公开中所有获取信号、信息或数据的动作都是在遵照所在地国家相应的数据保护法规政策的前提下,并获得由相应装置所有者给予授权的情况下进行的。
在本公开的描述中,使用的术语如“第一”、“第二”等是用于区别类似的对象,而不必理解为特定的顺序或先后次序。另外,在未作相反说明的情况下,在参考附图的描述中,不同附图中的同一标记表示相同的要素。
在本公开的描述中,除非另有说明,“多个”是指两个或多于两个,其它量词与之类似;“至少一项(个)”、“一项(个)或多项(个)”或其类似表达,是指的这些项(个)中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,至少一项(个)可以表示任意数目;再例如,a,b和c中的一项(个)或多项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个;“和/或”是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。
在本公开实施例中尽管在附图中以特定的顺序描述操作或步骤,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作或步骤,或是要求执行全部所示的操作或步骤以得到期望的结果。在本公开的实施例中,可以串行执行这些操作或步骤;也可以并行执行这些操作或步骤;也可以执行这些操作或步骤中的一部分。
下面首先介绍本公开实施例的实施环境。
本公开实施例的技术方案可以应用于各种通信系统。该通信系统可以包括4G(the 4th  Generation,第四代)通信系统、5G(the 5th Generation,第五代)通信系统、和其他未来的无线通信系统(比如6G)中的一种或多种。该通信系统也可以包括陆上公用移动通信网(Public Land Mobile Network,PLMN)网络、设备到设备(Device-to-Device,D2D)通信系统、机器到机器(Machine to Machine,M2M)通信系统、物联网(Internet of Things,IoT)通信系统、车联网(Vehicle-to-Everything,V2X)通信系统或者其他通信系统中的一种或多种。
图1是根据一示例性实施例示出的一种通信系统的示意图,如图1所示,该通信系统可以包括终端设备150和网络设备160。该通信系统可以用于支持4G网络接入技术,例如长期演进(Long Term Evolution,LTE)接入技术,或者,5G网络接入技术,如新型无线入技术(New Radio Access Technology,New RAT),或者,其他未来的无线通信技术。需要说明的是,在该通信系统中,网络设备与终端设备的数量均可以为一个或多个,图1所示通信系统的网络设备与终端设备的数量仅为适应性举例,本公开对此不做限定。
图1中的网络设备可用于支持终端接入,例如,该网络设备可以是LTE中的演进型基站(evolutional Node B,eNB或eNodeB);该网络设备也可以是5G网络中的下一代基站(the next Generation Node B,gNB或gNodeB);该网络设备也可以是5G网络中的无线接入网(NG Radio Access Network,NG-RAN)设备;该网络设备也可以是未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的基站、宽带网络业务网关(Broadband Network Gateway,BNG)、汇聚交换机或非3GPP(3rd Generation Partnership Project,第三代合作伙伴项目)接入设备等。可选地,本公开实施例中的网络设备可以包括各种形式的基站,例如:宏基站、微基站(也称为小站)、中继站、接入点、5G基站或未来的基站、卫星、传输点(Transmitting and Receiving Point,TRP)、发射点(Transmitting Point,TP)、移动交换中心以及设备到设备(Device-to-Device,D2D)、机器到机器(Machine-to-Machine,M2M)、物联网(Internet of Things,IoT)、车联网(Vehicle-to-Everything,V2X)或其他通信中承担基站功能的设备等,本公开实施例对此不作具体限定。为方便描述,本公开所有实施例中,为终端设备提供无线通信功能的装置统称为网络设备或基站。
图1中的终端设备可以是一种提供语音或者数据连通性的电子设备,例如,该终端设备也可以称为用户设备(User Equipment,UE),用户单元(Subscriber Unit),移动台(Mobile Station),站台(Station),终端(Terminal)等。示例地,该终端设备可以包括智能手机、智能可穿戴设备、智能音箱、智能平板、无线调制解调器(modem)、无线本地环路(Wireless Local Loop,WLL)台、PDA(Personal Digital Assistant,个人数字助理)、CPE(Customer Premise Equipment,客户终端设备)等。随着无线通信技术的发展,可以接入通信系统、可以与通信系统的网络设备进行通信、可以通过通信系统与其它物体进行通信的设备、或者、两个或多 个设备之间可以直接通信的设备都可以是本公开实施例中的终端设备;例如,智能交通中的终端和汽车、智能家居中的家用设备、智能电网中的电力抄表仪器、电压监测仪器、环境监测仪器、智能安全网络中的视频监测仪器、收款机等。在本公开实施例中,终端设备可以与网络设备进行通信。多个终端设备之间也可以进行通信。终端设备可以是静态固定的,也可以是移动的,本公开对此不作限定。
在本公开的一些实施例中,上述终端设备可以包括第一收发机和第一接收机,其中,第一收发机可以用于与网络设备进行通信,例如,终端设备可以通过该第一收发机向网络设备发送信号以及接收网络设备的信号,该第一收发机可以是一个或多个;第一接收机可以是用于接收网络设备发送的唤醒消息的接收机,该唤醒消息可以是用于唤醒第一收发机的消息或信号,例如,该唤醒消息可以是低功耗省电信号(Low Power Wake-Up Signaling)。
示例地,上述第一收发机可以包括该终端设备的主收发机(Mainradio),上述第一接收机可以是该终端设备的主收发机之外的单独的接收机,例如该第一接收机可以是低功耗WUS信号接收机(Low Power Wake-Up Receiver)。
在一些实施例中,该第一接收机可以只用于接收网络设备发送的信号。例如,可以只用于接收网络设备的唤醒消息,这样,在第一接收机工作时可以最大限度的降低终端设备的功耗。
在另一些实施例中,该第一接收机可以既用于接收网络设备发送的信号,也用于向网络设备发送信号。
图2是根据一示例性实施例示出的一种唤醒收发机的方法的流程图。该方法可以应用于上述通信系统中的终端设备。如图2所示,该方法可以包括:
S201、终端设备在第一收发机处于休眠状态的情况下,通过第一接收机接收网络设备发送的唤醒消息。
其中,该唤醒消息可以用于唤醒第一收发机。
在一些实施例中,该唤醒消息可以是唤醒信号。该唤醒信号可以使用当前协议中已经规定的唤醒信号,例如WUS、DCP(DCI for powersaving)或PEI(Paging Early Indication,寻呼提前指示)等,该唤醒信号也可以是新定义的一种信号类型,例如,该唤醒信号也可以是一种新的低功耗省电信号LP-WUS。
在另一些实施例中,该唤醒消息可以包括唤醒指示和/或唤醒参数,终端设备可以根据该唤醒指示和/或唤醒参数,唤醒第一收发机。
需要说明的是,终端设备的第一收发机可以具有一种或多种状态。例如,可以包括休眠状态和工作状态等。其中,第一收发机处于工作状态可以表征该终端设备可以通过第一收发 机与网络设备进行通信。
在一些实施例中,该第一收发机的工作状态以外的其他状态均可以称为休眠状态。示例地:
在一些实现方式中,该第一收发机处于休眠状态可以用于表征第一接收机完全关闭,例如,该第一收发机处于断电状态,再例如,该第一收发机虽然上电,但是完全不进行接收信号和发送信号的工作。
在另一些实现方式中,该第一收发机处于休眠状态可以用于表征第一接收机部分关闭,例如,可以只关闭发送功能,保留接收功能;再例如,可以关闭发送功能,只是周期性开启接收功能用于接收网络设备发送的信号;又例如,可以周期性开启和关闭收发功能,也就是在预设周期的第一时间内开启收发功能,在该预设周期内除第一时间之外的其他时间均关闭收发功能。
采用上述方法,终端设备包括第一收发机和第一接收机,在第一收发机处于休眠状态的情况下,通过第一接收机接收网络设备发送的唤醒消息,该唤醒消息可以用于唤醒第一收发机。这样,通过设置单独的第一接收机接收唤醒信号,可以实现终端工作状态的管理,在第一收发机处于休眠状态的情况下可以提高终端设备的省电性能。
在本公开的一些实施例中,终端设备可以在处于非连接态的情况下,通过第一接收机接收网络设备发送的唤醒消息。
示例地,终端设备的状态可以包括连接态和非连接,其中,非连接态可以包括空闲态、去激活态或其他未处于连接态的状态。终端设备在处于连接态的情况下,可以通过第一收发机与网络设备进行通信,此时,第一接收机可以工作,也可以不同。终端设备在非连接态的情况下,第一接收机可以工作,也就是,终端设备可以通过第一接收机接收唤醒消息。
需要说明的是,终端设备处于非连接态的情况下,该第一收发机可以处于工作状态,也可以处于休眠状态。本公开对此不作限定。
图3是根据一示例性实施例示出的一种唤醒收发机的方法的流程图。如图3所示,该方法可以包括:
S301、终端设备在满足预设低功耗条件的情况下,将第一收发机设置为休眠状态,并通过第一接收机接收网络设备发送的唤醒消息。
示例地,将第一收发机设置为休眠状态可以包括关闭该第一收发机。
其中,该预设低功耗条件可以包括以下休眠条件中的任意一种:
休眠条件一、终端设备处于非连接态。
示例地,终端设备可以在处于非连接态或者从连接态进入非连接态的情况下,将第一收 发机设置为休眠状态,并通过第一接收机监听网络设备发送的唤醒消息。
休眠条件二、终端设备处于非连接态,且在目标检测时间内未检测到目标寻呼消息。
示例地,终端设备可以在处于非连接状态的情况下检测网络设备发送的目标寻呼消息,若终端设备在目标检测时间内未检测到该目标寻呼消息,则可以主动将第一收发机设置为休眠状态,并通过第一接收机监听网络设备发送的唤醒消息。
需要说明的是,该目标寻呼消息可以用于表征网络设备发送至该终端设备的寻呼消息;该目标寻呼消息也可以用于表征网络设备发送的任意寻呼消息。该目标检测时间可以是预先设置的任意时间,例如,可以是协议约定的时间,或者是终端设备配置的时间。
这样,通过检测寻呼消息,可以主动进入低功耗状态,提升终端设备的省电性能。
需要说明的是,终端设备将第一收发机设置为休眠状态,并通过第一接收机接收网络设备发送的唤醒消息的情况下,可以认为终端设备进入低功耗唤醒信号监听状态。
在本公开的一些实施例中,终端设备可以通过第一接收机在第一频域位置接收网络设备发送的唤醒消息。
在一些实现方式中,该第一频域位置可以包括网络设备发送唤醒消息的第一下行初始BWP(Bandwidth Part,部分带宽)。例如,该第一下行初始BWP可以是网络设备配置的用于发送唤醒消息的BWP。
在一些实现方式中,在该第一频域位置与终端设备进入低功耗唤醒信号监听状态之前使用的频域位置不同的情况下,可以进行频域切换,也就是将第一收发机设置为休眠状态,同时切换到该第一频域位置监听唤醒消息。
示例地,若该第一频域位置为第一下行初始BWP,则在该第一下行初始BWP与终端设备进入低功耗唤醒信号监听状态之前使用的初始BWP不同的情况下,可以进行BWP切换,也就是将第一收发机设置为休眠状态,同时切换到该第一下行初始BWP监听唤醒消息。
在另一些实现方式中,在该第一频域位置与终端设备进入低功耗唤醒信号监听状态之前使用的频域位置相同的情况下,则无需进行频域切换,也就是将第一收发机设置为休眠状态,直接在该第一频域位置监听唤醒消息。
在本公开的一些实施例中,上述第一频域位置可以为一个或多个。示例地:
在一些实现方式中,上述第一频域位置可以为一个,终端设备可以直接通过该第一频域位置接收网络设备发送的唤醒消息。
在另一些实现方式中,上述第一频域位置可以为多个,终端设备可以从多个第一频域位置中确定一个第一频域位置作为目标频域位置,并通过该目标频域位置接收网络设备发送的唤醒消息。
示例地,终端设备可以根据终端标识从多个第一频域位置中确定一个第一频域位置作为目标频域位置。例如,终端设备可以确定第一频域位置的位置数目,对多个第一频域位置进行排序,并根据终端标识和位置数目取模后得到第一模数,将排序位于第一模数位置的第一频域位置作为目标频域位置。
需要说明的是,该终端标识也可以称为UEID(User Equipment ID,用户设备标识),该UEID可以包括IMEI(International Mobile Equipment Identity,国际移动设备识别码)、IMSI(International Mobile Subscriber Identity,国际移动用户识别码)、TMSI(Temporary Mobile Subscriber Identity,临时移动用户识别码)、RNTI(Radio Network Temporary Identity,无线网络临时标识)和GUTI(Globally Unique Temporary UE Identity,全球唯一临时UE标识)等标识中的任意一种或多种。
需要说明的是,终端设备可以通过网络设备发送的广播信令获取该一个或多个第一频域位置;终端设备也可以通过网络设备向该终端设备发送的专用信令获取该一个或多个第一频域位置。
这样,可以灵活确定第一频域位置,并通过该第一频域位置接收唤醒消息。
在本公开的一些实施例中,上述第一频域位置(例如第一下行初始BWP)可以通过以下方式中的任意一种确定:
第一频域位置确定方式一、响应于接收到网络设备发送的第一消息,根据第一消息确定第一频域位置(例如第一下行初始BWP)。
其中,该第一消息中可以包括该第一频域位置(例如第一下行初始BWP)。
在一些实施例中,该第一消息可以是该终端设备对应的专用消息。示例地,该第一消息可以是该终端设备对应的预设专用信令,该预设专用信令可以包括RRC(Radio Resource Control,无线资源控制)连接释放消息或RRC重配置消息。例如,在终端设备从连接态进入非连接态的情况下(例如连接释放时),终端设备可以通过预设专用信令接收该第一频域位置。
在另一些实施例中,该第一消息可以是网络设备的广播信令。示例地,该广播信令可以包括MIB(Master Information Block,主信息块)和/或SIB(System Information Block,系统信息块)。
例如,终端设备可以将网络设备通过广播信令发送的唤醒消息专用下行初始BWP(例如LP-WUS-initial DL BWP)作为该第一下行初始BWP。
再例如,在该终端设备为普通用户的情况下,终端设备可以将网络设备通过广播信令发送的为普通用户配置的下行初始BWP(例如initial DL BWP)作为该第一下行初始BWP。
又例如,在该终端设备为Redcap(Reduced Capability,降低能力)用户的情况下,终端设备可以将网络设备通过广播信令为Redcap用户配置的Redcapspecific下行初始BWP(例如Redcap specificinitial DL BWP)作为该第一下行初始BWP。
第一频域位置确定方式二、根据第一预设频域位置确定第一频域位置(例如第一下行初始BWP)。
在一些实施例中,该第一预设频域位置可以是协议约定的具体频域位置。例如,根据协议约定,网络设备在该第一预设频域位置发送唤醒消息,终端设备在该第一预设评语位置接收唤醒消息。
在另一些实施例中,该第一预设频域位置可以是包含COSESET0和/或SSB的下行初始BWP。例如,终端设备可以将包含COSESET0和/或SSB的下行初始BWP作为上述第一下行初始BWP。
需要说明的是,该COSESET0可以是控制资源集0(Control Resource Set 0),它是下行资源中特定频域位置内的一组物理资源,是专门用来发送解码SIB消息的PDCCH。该SSB可以是同步信号和PBCH块(Synchronization Signal and PBCH block,简称SSB)。
在另外一些实施例中,该第一预设频域位置可以是用于监听寻呼消息的下行初始BWP。例如,终端设备可以将用于监听寻呼消息的下行初始BWP作为上述第一下行初始BWP。这样,终端设备在该第一下行初始BWP监听唤醒消息,醒来后可以继续在该第一下行初始BWP。
在又一些实施例中,对于Redcap用户:若Redcapspecific下行初始BWP包含COSESET0和/或SSB,则上述第一下行初始BWP为Redcapspecific下行初始BWP;否则上述第一下行初始BWP为通过广播信令(例如MIB或者SIB1)配置的initialDLBWP。
这样,通过上述方式中的任意一种,可以确定第一预设频域位置。
图4是根据一示例性实施例示出的一种唤醒收发机的方法的流程图。如图4所示,该方法可以包括:
S401、终端设备通过第一接收机在第一频域位置接收网络设备发送的唤醒消息。
示例地,在本步骤中,终端设备可以通过第一接收机在第一频域位置接监听唤醒消息。
S402、终端设备响应于接收到唤醒消息,唤醒第一收发机。
示例地,终端设备在接收到唤醒消息的情况下,若第一收发机处于休眠状态,可以将第一收发机退出休眠状态,进入工作状态,以便通过该第一收发机进行无线信号的收发。若第一收发机处于工作状态,则可以继续保持工作状态。
在一些实施例中,在终端设备唤醒第一收发机后,可以将第一接收机关闭。
在另一些实施例中,在终端设备唤醒第一收发机后,也可以继续保持第一接收机处于开 启状态,也就是可以通过第一接收机继续监听唤醒消息。
S403、终端设备通过第一收发机在第二频域位置与网络设备进行通信。
需要说明的是,终端设备通过第一收发机在第二频域位置与网络设备进行通信的方式有多种,示例地,可以通过第一收发机在第二频域位置进行以下通信方式中的一种或多种:监听寻呼消息、监听系统消息、进行随机接入过程、小区选择、小区重选、PLMN选择、PLMN重选(比如终端收到NAS指定进行PLMN重选)、测量或维持终端设备和网络设备的同步、进行数据业务或语音业务等。
在一些实施例中,该第二频域位置可以包括第二上行/下行初始BWP。
需要说明的是,该第二频域位置与第一频域位置可以相同,也可以不同。
在一些实现方式中,在该第二频域位置与第一频域位置不同的情况下,可以进行频域切换,也就是唤醒第一收发机(例如打开该第一收发机),并切换到该第二频域位置与网络设备进行通信。
示例地,若该第二频域位置包括第二上行初始BWP和第二下行初始BWP,则在该第二下行初始BWP与第一下行初始BWP不同的情况下,可以进行BWP切换,也就是唤醒第一收发机),并切换到该第二下行初始BWP监听无线信号。
在另一些实现方式中,在该第二频域位置与第一频域位置相同的情况下,则无需进行频域切换,也就是唤醒第一收发机,直接在该第一频域位置与网络设备进行通信。
这样,可以响应于接收到唤醒消息,唤醒第一收发机,并通过第一收发机与网络设备进行通信,从而在实现了低功耗的同时,也能够及时唤醒终端设备进行通信。
在本公开的一些实施例中,上述第二频域位置可以通过以下方式中的任意一种方式确定:
第二频域位置确定方式一、根据唤醒消息中的辅助信息,确定第二频域位置。
该辅助信息可以用于指示终端设备监听的数据类型,该数据类型可以包括第一类型和/或第二类型,其中:
该第一类型可以包括系统消息或者系统消息更新:终端设备可以在接收到该第一类型的情况下,将配置了系统消息监听搜索空间的下行初始BWP作为该第二频域位置。
示例地,在网络设备进行了系统消息更新的情况下,可以在唤醒消息中携带该第一类型,以便终端设备根据该第一类型接收更新后的系统消息。
在一些实施例中,在网络设备进行了系统消息更新的情况下,可以通过唤醒消息唤醒该网络设备下的所有监听唤醒消息的终端设备。
第二类型可以包括寻呼消息:终端设备可以在接收到该第二类型的情况下,将配置了寻呼消息监听搜索空间的下行初始BWP作为该第二频域位置。
这样,监听系统消息的下行初始BWP和监听寻呼的初始BWP分离,终端设备可以直接根据后续监听的业务类型确定第二频域位置,以便高效的进行监听并进行通信。
第二频域位置确定方式二、响应于接收到网络设备发送的第二消息,根据第二消息确定第二频域位置。
其中,该第二消息中可以包括该第二频域位置,该第二频域位置可以包括第二上行/下行初始BWP。
在一些实施例中,该第二消息可以是该终端设备对应的专用消息。示例地,该第二消息可以是该终端设备对应的RRC连接释放消息或RRC重配置消息。
在另一些实施例中,该第一消息可以是网络设备的广播信令。示例地,该广播信令可以包括MIB和/或SIB。
例如,在该终端设备为普通用户的情况下,终端设备可以将网络设备通过广播信令为普通用户配置的上行/下行初始BWP(例如initial UL/DL BWP)作为第二上行/下行初始BWP,并根据第二上行/下行初始BWP确定第二频域位置,例如,可以将第二上行/下行初始BWP作为该第二频域位置。
再例如,在该终端设备为Redcap用户的情况下,终端设备可以将网络设备通过广播信令为Redcap用户配置的上行/下行初始BWP(例如Redcap specific initial UL/DL BWP)作为第二上行/下行初始BWP,并根据第二上行/下行初始BWP确定第二频域位置,例如,可以将第二上行/下行初始BWP作为该第二频域位置。
第二频域位置确定方式三、将第二预设频域位置作为第二频域位置。
第二预设频域位置可以包括第二上行初始BWP和第二下行初始BWP。
在一些实施例中,该第二预设频域位置可以是协议约定的具体频域位置。例如,协议约定第二上行初始BWP和第二下行初始BWP。
在另一些实施例中,该第二预设频域位置中的第二下行初始BWP可以是包含COSESET0和/或SSB的下行初始BWP。例如,可以将包含COSESET0和/或SSB的下行初始BWP作为上述第二下行初始BWP。
在另外一些实施例中,该第二预设频域位置中的第二下行初始BWP可以是用于监听寻呼消息的下行初始BWP。例如,终端设备可以将用于监听寻呼消息的下行初始BWP作为上述第二下行初始BWP。
在又一些实施例中,该第二预设频域位置中的第二下行初始BWP可以是上述第一下行初始BWP。
这样,通过上述方式中的任意一种,可以确定第二预设频域位置。
在本公开的一些实施例中,在终端设备的第一收发机处于休眠状态的情况下,可以在满足以下唤醒条件中的任意一种或多种的情况下,唤醒该第一收发机:
唤醒条件一、通过第一接收机接收到唤醒消息。
在一些实施例中,在第一收发机处于休眠状态的情况下,若接收到唤醒消,则唤醒第一收发机。
唤醒条件二、接收到终端设备的目标事件指示。
在一些实施例中,在第一收发机处于休眠状态的情况下,若接收到终端设备的目标事件指示,则唤醒第一收发机。
其中,该目标事件指示可以用于指示以下任意一种或多种事件的发生:监听寻呼消息、监听系统消息、进行随机接入过程、小区选择、小区重选、PLMN选择、PLMN重选(比如终端收到NAS层消息指定进行PLMN重选)、测量或维持终端设备和网络设备的同步、终端主动发起数据业务或语音业务等。
唤醒条件三、达到目标时长,且通过第一接收机未接收到唤醒消息。
在一些实施例中,在第一收发机处于休眠状态的情况下,若达到目标时长,且通过第一接收机未接收到唤醒消息,则唤醒第一收发机。
该目标时长可以是预先设置的任意时长,例如可以是协议约定的时长,也可以是终端设备配置的时长。该目标时长也可以根据从网络设备接收到的消息确定的时长。
这样,在满足上述唤醒条件中的任意一种或多种的情况下,可以唤醒该第一收发机。
图5是根据一示例性实施例示出的一种唤醒收发机的方法的流程图。该方法可以应用于上述通信系统中的网络设备。如图5所示,该方法可以包括:
S501、网络设备向终端设备发送唤醒消息。
其中,该唤醒消息用于指示终端设备在通过第一接收机接收到唤醒消息的情况下唤醒第一收发机。
在一些实施例中,该终端设备可以包括第一收发机和第一接收机,该终端设备可以在第一收发机处于休眠状态的情况下,通过第一接收机监听该唤醒消息。
在一些实施例中,该唤醒消息可以是唤醒信号。该唤醒信号可以使用当前协议中已经规定的唤醒信号,例如WUS、DCP(DCI for powersaving)或PEI(Paging Early Indication,寻呼提前指示)等,该唤醒信号也可以是新定义的一种信号类型,例如,该唤醒信号也可以是当前协议中未定义的一种新的低功耗省电信号LP-WUS。
在另一些实施例中,该唤醒消息可以包括唤醒指示和/或唤醒参数,终端设备可以根据该唤醒指示和/或唤醒参数,唤醒第一收发机。
采用上述方法,网络设备向终端设备发送唤醒消息,通过该唤醒消息可以指示终端设备在通过第一接收机接收到唤醒消息的情况下唤醒第一收发机。这样,可以支持终端设备设置单独的第一接收机接收唤醒信号,实现终端工作状态的管理,在第一收发机处于休眠状态的情况下可以提高终端设备的省电性能。
在一些实施例中,网络设备可以通过第一频域位置向终端设备发送唤醒消息。该第一频域位置可以为一个或多个。
示例地,该第一频域位置可以包括网络设备发送唤醒消息的第一下行初始BWP。例如,可以是网络设备配置的频域位置。
在一些实施例中,该第一频域位置可以是网络设备通过第一消息通知终端设备的。示例地,网络设备可以向终端设备发送第一消息,该第一消息可以用于指示终端设备确定第一频域位置。该第一消息中可以包括该第一频域位置(例如第一下行初始BWP)。
在一些实现方式中,该第一消息可以是该终端设备对应的专用消息。示例地,该第一消息可以是该终端设备对应的预设专用信令,该预设专用信令可以包括RRC连接释放消息或RRC重配置消息。例如,在终端设备从连接态进入非连接态的情况下(例如连接释放时),网络设备可以通过预设专用信令向终端设备发送该第一频域位置。再例如,在终端设备从连接态进入非连接态且网络设备预估该终端设备在第一预设时间内接收到寻呼消息的概率低于预设概率的情况下,网络设备可以通过预设专用信令向终端设备发送该第一频域位置。
在另一些实现方式中,该第一消息可以是该第一消息也可以是该网络设备的广播信令。示例地,该广播信令可以包括MIB(Master Information Block,主信息块)和/或SIB(System Information Block,系统信息块)。
例如,网络设备可以通过广播信令发送唤醒消息专用的下行初始BWP(例如LP-WUS-initial DL BWP),以指示作为该第一下行初始BWP。
在另一些实施例中,网络设备可以根据第一预设频域位置确定第一频域位置(例如第一下行初始BWP)。
在一些实现方式中,该第一预设频域位置可以是协议约定的具体频域位置。例如,根据协议约定,网络设备在该第一预设频域位置发送唤醒消息,终端设备在该第一预设评语位置接收唤醒消息。
在另一些实现方式中,该第一预设频域位置可以是包含COSESET0和/或SSB的下行初始BWP。例如,网络设备可以将包含COSESET0和/或SSB的下行初始BWP作为上述第一下行初始BWP。
在另外一些实现方式中,该第一预设频域位置可以是用于发送寻呼消息的下行初始BWP。 例如,网络设备可以将用于发送寻呼消息的下行初始BWP作为上述第一下行初始BWP。
这样,通过上述方式中的任意一种,可以确定第一预设频域位置。
需要说明的是,终端设备在接收到唤醒消息的情况下,可以唤醒第一收发机后,并通过第一收发机在第二频域位置与网络设备进行通信。
在一些实施例中,该第二频域位置可以包括第二上行/下行初始BWP。
需要说明的是,该第二频域位置与第一频域位置可以相同,也可以不同。
在一些实施例中,该第二频域位置可以是网络设备通过唤醒消息通知终端设备的。示例地,该唤醒消息中可以包括辅助信息,该辅助信息可以用于指示终端设备确定第二频域位置。
该辅助信息可以用于指示终端设备监听的数据类型,该数据类型可以包括第一类型和/或第二类型,其中:
该第一类型可以包括系统消息或者系统消息更新:终端设备可以在接收到该第一类型的情况下,将配置了系统消息监听搜索空间的下行初始BWP作为该第二频域位置。
示例地,在网络设备进行了系统消息更新的情况下,可以在唤醒消息中携带该第一类型,以便终端设备根据该第一类型接收更新后的系统消息。
在一些实施例中,在网络设备进行了系统消息更新的情况下,可以通过唤醒消息唤醒该网络设备下的所有监听唤醒消息的终端设备。
第二类型可以包括寻呼消息:终端设备可以在接收到该第二类型的情况下,将配置了寻呼消息监听搜索空间的下行初始BWP作为该第二频域位置。
这样,监听系统消息的下行初始BWP和监听寻呼的初始BWP分离,终端设备可以直接根据后续监听的业务类型确定第二频域位置,以便高效的进行监听并进行通信。
在另一些实施例中,该第二频域位置可以是网络设备通过第二消息通知终端设备的。示例地,网络设备可以向终端设备发送第二消息。该第二消息可以用于指示终端设备确定第二频域位置。
其中,该第二消息中可以包括该第二频域位置,该第二频域位置可以包括第二上行/下行初始BWP。
在一些实施例中,该第二消息可以是该终端设备对应的专用消息。示例地,该第二消息可以是该终端设备对应的RRC连接释放消息或RRC重配置消息。
在另一些实施例中,该第一消息可以是网络设备的广播信令。示例地,该广播信令可以包括MIB和/或SIB。
在另外一些实施例中,网络设备可以将第二预设频域位置作为第二频域位置。
第二预设频域位置可以包括第二上行初始BWP和第二下行初始BWP。
在一些实施例中,该第二预设频域位置可以是协议约定的具体频域位置。例如,协议约定第二上行初始BWP和第二下行初始BWP。
在另一些实施例中,该第二预设频域位置中的第二下行初始BWP可以是包含COSESET0和/或SSB的下行初始BWP。例如,可以将包含COSESET0和/或SSB的下行初始BWP作为上述第二下行初始BWP。
在另外一些实施例中,该第二预设频域位置中的第二下行初始BWP可以是用于监听寻呼消息的下行初始BWP。例如,终端设备可以将用于监听寻呼消息的下行初始BWP作为上述第二下行初始BWP。
在又一些实施例中,该第二预设频域位置中的第二下行初始BWP可以是上述第一下行初始BWP。
这样,通过上述方式中的任意一种,可以确定第二预设频域位置。
图6是根据一示例性实施例示出的一种唤醒收发机的方法的流程图。如图6所示,该方法可以包括:
S601、网络设备向终端设备发送唤醒消息。
在一些实施例中,网络设备可以通过第一频域位置向终端设备发送唤醒消息。
S602、终端设备通过第一接收机接收唤醒消息。
在一些实施例中,终端设备可以通过第一接收机在第一频域位置监听唤醒消息。
在一些实施例中,终端设备可以在第一收发机处于休眠状态的情况下,通过第一接收机接收网络设备发送的唤醒消息。
S603、终端设备响应于接收到唤醒消息,唤醒第一收发机。
示例地,终端设备在接收到唤醒消息的情况下,若第一收发机处于休眠状态,可以将第一收发机退出休眠状态,进入工作状态,以便通过该第一收发机进行无线信号的收发。若第一收发机处于工作状态,则可以继续保持工作状态。
在一些实施例中,在终端设备唤醒第一收发机后,可以将第一接收机关闭。
在另一些实施例中,在终端设备唤醒第一收发机后,也可以继续保持第一接收机处于开启状态,也就是可以通过第一接收机继续监听唤醒消息。
需要说明的是,本实施例中上述步骤的具体实现方式可以参考本公开前述实施例中的说明,此处不再赘述。
采用上述方法,终端设备包括第一收发机和第一接收机,终端设备可以通过第一接收机接收网络设备发送的唤醒消息,并在接收到该唤醒消息的情况下唤醒第一收发机。这样,通过设置单独的第一接收机接收唤醒信号,可以实现终端工作状态的管理,在第一收发机处于 休眠状态的情况下可以提高终端设备的省电性能。
在本公开的一些实施例中,终端设备处于非连接态的情况下,可以使用上述第一接收机进行工作,例如,在该第一接收机可以用于接收低功率唤醒信号,该低功率唤醒信号可以用于唤醒第一收发机。其中,该第一收发机可以是终端设备的主收发机(例如主无线接收机)。
示例地,非连接态的终端设备可以在第一时频域位置(例如第一下行初始BWP)接收网络设备发送的低功率唤醒信号(例如LP WUS信号)。
作为一种实施例,该第一下行初始BWP为网络配置的承载用于发送LP WUS资源的下行初始BWP。
作为一种实施例,该第一下行初始BWP上发送LP WUS资源的前提是其上包含COSESET0和/或SSB。
作为一种实施例,该第一下行初始BWP不同于现有的MIB或者SIB1配置的initial DL BWP,也不同于Redcap specific下行初始BWP),该第一下行初始BWP为LP-WUS-initial DL BWP。
作为一种实施例,对于Normal用户,第一下行初始BWP为网络设备配置的下行初始BWP(即MIB或者SIB1配置的initial DL BWP)。
作为一种实施例,对于redcap用户:若Redcap specific下行初始BWP包含COSESET0和/或SSB,则该第一下行初始BWP为Redcap specific下行初始BWP;否则为MIB或者SIB1配置的initial DL BWP。
作为一种实施例,该第一下行初始BWP为终端设备用于监听寻呼消息的下行初始BWP。
上述第一下行初始BWP可以根据网络设备下发的指示获得或者终端设备根据协议约定获得。
作为一种实施例,第一下行初始BWP为网络设备通过专用信令通知,例如,网络设备在通知终端设备进入非连接态时将该第一下行初始BWP下发给终端设备。再例如,若网络设备预估一段时间都没有该终端设备的寻呼,则可以通过专用信令将该第一下行初始BWP下发给终端设备。
作为一种实施例,若仅有一个第一下行初始BWP配置LP WUS(仅有一个下行初始BWP配置了LP-WUS资源)监听时使用(此时终端设备关闭了主收发机),终端设备若一段时间内没有检测到寻呼,则关闭主收发机,进入LP WUS监听状态。
作为一种实施例,若有大于一个第一下行初始BWP为终端设备进入LP WUS监听时使用(多个下行初始BWP配置了LP-WUS资源);终端设备可以选择其中一个第一下行初始BWP进入LP WUS监听状态,例如可以但不限于是按照UEID取模决定在哪个第一下行初始 BWP进入LP WUS监听状态。
需要说明的是,该第一下行初始BWP可以预先通过广播信令通知终端设备。
作为一种实施例,若第一下行初始BWP若不同于终端设备进入LP WUS监听之前使用的初始BWP,则此时需要BWP切换(即此时终端设备关闭了主收发机,同时切换到第一初始BWP进行LP-WUS监听)。
作为一种实施例,若第一时频域位置不同于终端设备进入LP WUS监听之前使用的第二时频域位置,则此时需要收发机切换(即此时终端设备关闭了主收发机,同时切换到第一时频域位置进行LP-WUS监听)。
作为一种实施例,若第一下行初始BWP与终端设备进入LP WUS监听之前使用的初始BWP相同,则此时无需要BWP切换(即此时终端设备关闭了主收发机,进行LP-WUS监听)。
在本公开的一些实施例中,终端设备离开LP-WUS监听状态,打开主无线收发机后,可以工作在第二上行/下行初始BWP进行后续操作:
作为一种实施例,若第二下行初始BWP不同于终端设备离开LP WUS监听状态之前使用的第一下行初始BWP,则此时需要BWP切换(即此时终端设备打开主收发机,同时切换到第二初始BWP进行后续数据监听)。
上述后续操作可以包括以下一项或多项:监听寻呼消息/系统消息,进行随机接入过程,小区选择/重选/PLMN选择/PLMN重选(比如终端设备收到NAS指定进行PLMN重选);测量或者维持和网络的同步。
作为一种实施例,第二上/下行初始BWP可以是网络设备配置的。
例如,将网络设备通过SIB1消息中配置的上行/下行初始BWP作为第二上/下行初始BWP。
再例如,针对Redcap用户,该第二上/下行初始BWP可以是Redcap特定的上行/下行初始BWP。
作为一种实施例,该第二上行/下行初始BWP可以是网络设备通知或者协议约定。其中,网络通知方式可以在低功耗唤醒消息(LP-WUS)中携带指示信息。
在本公开的一些实施例中,终端设备监听到低功耗唤醒信号的情况下,可以唤醒主无线收发机,在第二下行初始BWP进行后续数据的监听。
作为一种实施例,低功耗唤醒信号中可以携带辅助信息,该辅助信息可以辅助终端设备唤醒主收发机,并在第二下行初始BWP进行后续数据的监听。
示例地,低功耗唤醒信号中可以携带辅助信息表明后续监听数据的数据类型。
需要说明的是,若低功耗唤醒信号为用于系统消息更新的唤醒信号,则需要唤醒该小区中所有监听该低功耗唤醒信号的终端设备。
该数据类型可以包括第一类型和/或第二类型,其中:
第一类型可以用于指示监听数据为系统消息或者系统消息更新,用于指示第二下行初始BWP为配置了系统消息监听搜索空间的下行初始BWP。
第二类型可以用于指示监听数据为寻呼消息,并用于指示第二下行初始BWP为配置了寻呼消息监听搜索空间的下行初始BWP。
这样,对系统消息监听的下行初始BWP和寻呼的初始BWP分离,则终端设备可以直接根据后续监听的业务类型知晓需要在哪个下行初始BWP进行监听。
作为一种实施例,第二下行初始BWP可以是协议约定的,比如可以是用于寻呼消息监听的下行初始BWP。
在本公开的一些实施例中,若终端设备使用上述第一接收机的监听模式时长超时,则终端设备工作在第二下行初始BWP。示例地,该第二下行初始BWP可以是终端设备离开LP WUS监听状态之前使用的第一下行初始BWP。
图7是根据一示例性实施例示出的一种唤醒收发机的装置2100的框图。该装置可以应用于终端设备,所述终端设备包括第一收发机和第一接收机。如图7所示,该装置2100可以包括:
第一接收模块2101,被配置为在所述第一收发机处于休眠状态的情况下,通过所述第一接收机接收网络设备发送的唤醒消息,所述唤醒消息用于唤醒所述第一收发机。
在一些实施例中,所述第一接收模块2101,被配置为通过所述第一接收机在第一频域位置接收所述网络设备发送的所述唤醒消息。
在一些实施例中,所述第一频域位置包括所述网络设备发送所述唤醒消息的第一下行初始BWP。
在一些实施例中,所述装置还包括:
图8是根据一示例性实施例示出的一种唤醒收发机的装置2100的框图。如图8所示,该装置2100还可以包括:
第一确定模块2102,被配置为响应于接收到所述网络设备发送的第一消息,根据所述第一消息确定所述第一频域位置;或者,将第一预设频域位置作为所述第一频域位置。
图9是根据一示例性实施例示出的一种唤醒收发机的装置2100的框图。如图9所示,该装置2100还可以包括:
唤醒模块2103,被配置为响应于接收到所述唤醒消息,唤醒所述第一收发机;通过所述第一收发机在第二频域位置与所述网络设备进行通信。
在一些实施例中,所述第一确定模块2102,还被配置为响应于接收到所述网络设备发送 的第二消息,根据所述第二消息确定所述第二频域位置;根据所述唤醒消息中的辅助信息,确定所述第二频域位置;将第二预设频域位置作为所述第二频域位置。
在一些实施例中,所述唤醒模块2103,还被配置为在所述第一收发机处于休眠状态的情况下,若接收到所述终端设备的目标事件指示,则唤醒所述第一收发机。
在一些实施例中,所述唤醒模块2103,被配置为在所述第一收发机处于休眠状态的情况下,若达到目标时长,且通过所述第一接收机未接收到所述唤醒消息,则唤醒所述第一收发机。
图10是根据一示例性实施例示出的一种唤醒收发机的装置2200的框图。该装置可以应用于网络设备。如图10所示,该装置2200可以包括:
第二发送模块2201,被配置为向终端设备发送唤醒消息,所述唤醒消息用于指示所述终端设备在通过第一接收机接收到所述唤醒消息的情况下唤醒第一收发机。
在一些实施例中,所述第二发送模块2201,被配置为通过第一频域位置向所述终端设备发送所述唤醒消息。
在一些实施例中,所述第一频域位置包括所述网络设备发送所述唤醒消息的第一下行初始BWP。
在一些实施例中,所述第二发送模块2201,还被配置为向所述终端设备发送第一消息,所述第一消息用于指示所述终端设备确定所述第一频域位置。
在一些实施例中,所述唤醒消息中包括辅助信息,所述辅助信息用于指示所述终端设备确定第二频域位置。
在一些实施例中,所述第二发送模块2201,还被配置为向所述终端设备发送第二消息,所述第二消息用于指示所述终端设备确定第二频域位置。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图11是根据一示例性实施例示出的一种唤醒收发机的装置的框图。该唤醒收发机的装置3000可以是图1所示通信系统中的终端设备,也可以是该通信系统中的网络设备。参照图11,该装置3000可以包括以下一个或多个组件:处理组件3002,存储器3004,以及通信组件3006。
处理组件3002可以用于控制该装置3000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件3002可以包括一个或多个处理器3020来执行指令,以完成上述的唤醒收发机的方法的全部或部分步骤。此外,处理组件3002可以包括一个或多个模块,便于处理组件3002和其他组件之间的交互。例如,处理组件3002可以包括多媒体模块,以方便多媒体组件和处理组件3002之间的交互。
存储器3004被配置为存储各种类型的数据以支持在装置3000的操作。这些数据的示例包括用于在装置3000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器3004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
通信组件3006被配置为便于装置3000和其他设备之间有线或无线方式的通信。装置3000可以接入基于通信标准的无线网络,例如Wi-Fi,2G、3G、4G、5G、6G、NB-IOT、eMTC等,或它们的组合。在一个示例性实施例中,通信组件3006经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件3006还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置3000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述唤醒收发机的方法。
上述装置3000可以是独立的电子设备,也可以是独立电子设备的一部分,例如在一种实施例中,该电子设备可以是集成电路(Integrated Circuit,IC)或芯片,其中该集成电路可以是一个IC,也可以是多个IC的集合;该芯片可以包括但不限于以下种类:GPU(Graphics Processing Unit,图形处理器)、CPU(Central Processing Unit,中央处理器)、FPGA(Field Programmable Gate Array,可编程逻辑阵列)、DSP(Digital Signal Processor,数字信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、SOC(System on Chip,SoC,片上系统或系统级芯片)等。上述的集成电路或芯片中可以用于执行可执行指令(或代码),以实现上述唤醒收发机的方法。其中该可执行指令可以存储在该集成电路或芯片中,也可以从其他的装置或设备获取,例如该集成电路或芯片中包括处理器、存储器,以及用于与其他的装置通信的接口。该可执行指令可以存储于该处理器中,当该可执行指令被处理器执行时实现上述唤醒收发机的方法;或者,该集成电路或芯片可以通过该接口接收可执行指令并传输给该处理器执行,以实现上述唤醒收发机的方法。
在示例性实施例中,本公开还提供了一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开提供的唤醒收发机的方法的步骤。示例地,该计算机可读存储介质可以是一种包括指令的非临时性计算机可读存储介质,例如,可以是包 括指令的上述存储器3004,上述指令可由装置3000的处理器3020执行以完成上述唤醒收发机的方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述唤醒收发机的方法的代码部分。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (19)

  1. 一种唤醒收发机的方法,其特征在于,应用于终端设备,所述终端设备包括第一收发机和第一接收机;所述方法包括:
    在所述第一收发机处于休眠状态的情况下,通过所述第一接收机接收网络设备发送的唤醒消息,所述唤醒消息用于唤醒所述第一收发机。
  2. 根据权利要求1所述的方法,其特征在于,所述通过所述第一接收机接收网络设备发送的唤醒消息包括:
    通过所述第一接收机在第一频域位置接收所述网络设备发送的所述唤醒消息。
  3. 根据权利要求2所述的方法,其特征在于,所述第一频域位置包括所述网络设备发送所述唤醒消息的第一下行初始BWP。
  4. 根据权利要求2所述的方法,其特征在于,所述第一频域位置通过以下方式确定:
    响应于接收到所述网络设备发送的第一消息,根据所述第一消息确定所述第一频域位置;或者,
    将第一预设频域位置作为所述第一频域位置。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于接收到所述唤醒消息,唤醒所述第一收发机;
    通过所述第一收发机在第二频域位置与所述网络设备进行通信。
  6. 根据权利要求5所述的方法,其特征在于,所述第二频域位置通过以下方式中的任意一种方式确定:
    响应于接收到所述网络设备发送的第二消息,根据所述第二消息确定所述第二频域位置;
    根据所述唤醒消息中的辅助信息,确定所述第二频域位置;
    将第二预设频域位置作为所述第二频域位置。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一收发机处于休眠状态的情况下,若接收到目标事件指示,则唤醒所述第一收发机。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    在所述第一收发机处于休眠状态的情况下,若达到目标时长,且通过所述第一接收机未接收到所述唤醒消息,则唤醒所述第一收发机。
  9. 一种唤醒收发机的方法,其特征在于,应用于网络设备,所述方法包括:
    向终端设备发送唤醒消息,所述唤醒消息用于指示所述终端设备在通过第一接收机接收到所述唤醒消息的情况下唤醒第一收发机。
  10. 根据权利要求9所述的方法,其特征在于,所述向终端设备发送唤醒消息包括:
    通过第一频域位置向所述终端设备发送所述唤醒消息。
  11. 根据权利要求10所述的方法,其特征在于,所述第一频域位置包括所述网络设备发送所述唤醒消息的第一下行初始BWP。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一消息,所述第一消息用于指示所述终端设备确定所述第一频域位置。
  13. 根据权利要求9所述的方法,其特征在于,所述唤醒消息中包括辅助信息,所述辅助信息用于指示所述终端设备确定第二频域位置。
  14. 根据权利要求9至13中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二消息,所述第二消息用于指示所述终端设备确定第二频域位置。
  15. 一种唤醒收发机的装置,其特征在于,应用于终端设备,所述终端设备包括第一收发机和第一接收机;所述装置包括:
    第一接收模块,被配置为在所述第一收发机处于休眠状态的情况下,通过所述第一接收机接收网络设备发送的唤醒消息,所述唤醒消息用于唤醒所述第一收发机。
  16. 一种唤醒收发机的装置,其特征在于,应用于网络设备,所述装置包括:
    第二发送模块,被配置为向终端设备发送唤醒消息,所述唤醒消息用于指示所述终端设 备在通过第一接收机接收到所述唤醒消息的情况下唤醒第一收发机。
  17. 一种唤醒收发机的装置,其特征在于,所述装置包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为执行权利要求1至8中任一项所述方法的步骤,或者,所述处理器被配置为执行权利要求9至14中任一项所述方法的步骤。
  18. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,所述计算机程序指令被处理器执行时实现权利要求1至8中任一项所述方法的步骤,或者,所述计算机程序指令被处理器执行时实现权利要求9至14中任一项所述方法的步骤。
  19. 一种芯片,其特征在于,包括处理器和接口;所述处理器用于读取指令以执行权利要求1至8中任一项所述方法的步骤,或者,所述处理器用于读取指令以执行权利要求9至14中任一项所述方法的步骤。
PCT/CN2022/126529 2022-10-20 2022-10-20 唤醒收发机的方法、装置、存储介质及芯片 WO2024082234A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/126529 WO2024082234A1 (zh) 2022-10-20 2022-10-20 唤醒收发机的方法、装置、存储介质及芯片
CN202280004320.7A CN118235478A (zh) 2022-10-20 2022-10-20 唤醒收发机的方法、装置、存储介质及芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126529 WO2024082234A1 (zh) 2022-10-20 2022-10-20 唤醒收发机的方法、装置、存储介质及芯片

Publications (1)

Publication Number Publication Date
WO2024082234A1 true WO2024082234A1 (zh) 2024-04-25

Family

ID=90736595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126529 WO2024082234A1 (zh) 2022-10-20 2022-10-20 唤醒收发机的方法、装置、存储介质及芯片

Country Status (2)

Country Link
CN (1) CN118235478A (zh)
WO (1) WO2024082234A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112229A1 (en) * 2012-10-24 2014-04-24 Qualcomm Incorporated Method and apparatus using an ultra low power signal with scheduled power save modes
US20160150474A1 (en) * 2014-11-21 2016-05-26 Qualcomm Incorporated Low power synchronization in a wireless communication network
CN109155973A (zh) * 2018-08-13 2019-01-04 北京小米移动软件有限公司 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
CN109429318A (zh) * 2017-08-22 2019-03-05 华为技术有限公司 一种唤醒终端设备的方法及装置
US20210051589A1 (en) * 2019-08-16 2021-02-18 Qualcomm Incorporated Wake-up behavior indication for power saving

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140112229A1 (en) * 2012-10-24 2014-04-24 Qualcomm Incorporated Method and apparatus using an ultra low power signal with scheduled power save modes
US20160150474A1 (en) * 2014-11-21 2016-05-26 Qualcomm Incorporated Low power synchronization in a wireless communication network
CN109429318A (zh) * 2017-08-22 2019-03-05 华为技术有限公司 一种唤醒终端设备的方法及装置
CN109155973A (zh) * 2018-08-13 2019-01-04 北京小米移动软件有限公司 唤醒方法、唤醒装置、电子设备和计算机可读存储介质
US20210051589A1 (en) * 2019-08-16 2021-02-18 Qualcomm Incorporated Wake-up behavior indication for power saving

Also Published As

Publication number Publication date
CN118235478A (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
US11963132B2 (en) Paging method, base station and user equipment
RU2491778C2 (ru) Способ и устройство в системе радиосвязи для поддержки dtx
JP7222052B2 (ja) 端末、通信方法及び無線通信システム
US9369961B2 (en) User equipment, cellular communication network node and method of controlling operation of a user equipment
CN110089159B (zh) 用于非连续接收的方法和装置
GB2480163A (en) Method and Apparatus for Communicating Neighbor Cell Information
JP7053802B2 (ja) 非連続受信の方法、端末デバイス及びネットワークデバイス
CN113242592B (zh) 一种分布式基站节能的方法、装置及存储介质
CN111954231A (zh) 一种信息确定、指示方法及装置
WO2018177431A1 (zh) 一种用户终端省电方法、装置
WO2012127279A1 (en) Switching cells on and off on a need basis in a wireless communications system
EP4412315A1 (en) Terminal device wake-up method and apparatus in communication network, and readable storage medium
US20230337186A1 (en) Energy efficient paging procedure for dual-mode user equipment
WO2018226645A1 (en) Area update procedure(s) for radio system
JPWO2018030290A1 (ja) 無線通信システム
US10660023B2 (en) Apparatus and method for acquisition of on-demand system information in wireless communications
Lin et al. SES: A novel yet simple energy saving scheme for small cells
WO2023098212A1 (zh) 一种通信方法及设备
WO2023020482A1 (zh) 通信方法与装置、终端和网络设备
WO2024082234A1 (zh) 唤醒收发机的方法、装置、存储介质及芯片
CN117204052A (zh) 一种监听方法、装置、通信设备及存储介质
WO2024092807A1 (zh) 确定终端设备睡眠状态的方法及装置
WO2024092806A1 (zh) 发送和接收唤醒响应消息的方法及装置
WO2023071389A1 (zh) 一种通信方法及设备
WO2024164334A1 (zh) 信息确定方法、装置和存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280004320.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962421

Country of ref document: EP

Kind code of ref document: A1