WO2024082223A1 - 通信方法、电子设备及存储介质 - Google Patents

通信方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2024082223A1
WO2024082223A1 PCT/CN2022/126501 CN2022126501W WO2024082223A1 WO 2024082223 A1 WO2024082223 A1 WO 2024082223A1 CN 2022126501 W CN2022126501 W CN 2022126501W WO 2024082223 A1 WO2024082223 A1 WO 2024082223A1
Authority
WO
WIPO (PCT)
Prior art keywords
ppdu
identification information
bandwidth
access point
physical layer
Prior art date
Application number
PCT/CN2022/126501
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/126501 priority Critical patent/WO2024082223A1/zh
Publication of WO2024082223A1 publication Critical patent/WO2024082223A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth

Definitions

  • the embodiments of the present disclosure relate to the field of mobile communication technology. Specifically, the embodiments of the present disclosure relate to a communication method, an electronic device and a storage medium.
  • Wi-Fi Wireless Fidelity
  • UHR Ultra High Reliablity
  • WLAN Wireless Local Area Networks
  • SNR signal-to-noise ratio
  • UHR in order to improve the throughput of the system, a method of communicating simultaneously in the sub7GHz (gigahertz) and 45GHz and/or 60GHz frequency bands is proposed.
  • the physical layer protocol data unit (PPDU) transmitted between the Access Point Multi-Link Device (AP MLD) and the Non-Access Point Multi-Link Device (Non-AP MLD) usually has an asymmetric working bandwidth.
  • the aggregated physical layer protocol data unit (A-PPDU) can be transmitted. Therefore, a mechanism to support the transmission of A-PPDU is required.
  • the embodiments of the present disclosure provide a communication method, an electronic device, and a storage medium to provide a mechanism to support A-PPDU transmission.
  • an embodiment of the present disclosure provides a communication method, which is applied to an access point device, and the method includes:
  • the first radio frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU for sending an aggregate physical layer protocol data unit A-PPDU supported by the access point device; the PPDU is allocated by the access point device to the station device;
  • the first radio frame is sent.
  • an embodiment of the present disclosure further provides a communication method, which is applied to a site device, and the method includes:
  • a first wireless frame is received, wherein the first wireless frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU of a sending aggregate physical layer protocol data unit A-PPDU supported by an access point device; the PPDU is allocated by the access point device to each site device.
  • an embodiment of the present disclosure further provides an electronic device, wherein the electronic device is an access point device, and the electronic device includes:
  • a determination module configured to determine a first wireless frame, wherein the first wireless frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU for sending an aggregate physical layer protocol data unit A-PPDU supported by the access point device; the PPDU is allocated by the access point device to the station device;
  • a sending module is used to send the first wireless frame.
  • an embodiment of the present disclosure further provides an electronic device, the electronic device being a site device, and the electronic device comprising:
  • a receiving module is used to receive a first wireless frame, wherein the first wireless frame includes first identification information, and the first identification information indicates the bandwidth information of each physical layer protocol data unit PPDU of the sending aggregate physical layer protocol data unit A-PPDU supported by the access point device; the PPDU is allocated by the access point device to each site device.
  • the embodiments of the present disclosure also provide an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, one or more methods described in the embodiments of the present disclosure are implemented.
  • the embodiments of the present disclosure further provide a computer-readable storage medium, on which a computer program is stored.
  • a computer program is stored.
  • the computer program is executed by a processor, one or more of the methods described in the embodiments of the present disclosure are implemented.
  • a first wireless frame is determined and sent, wherein the first wireless frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU for sending aggregate physical layer protocol data units A-PPDU supported by the access point device; the PPDU is allocated by the access point device to the site device.
  • the embodiment of the present disclosure provides a mechanism to support A-PPDU transmission.
  • FIG1 is a flow chart of a communication method according to an embodiment of the present disclosure.
  • FIG2 is a schematic diagram of a first example of an embodiment of the present disclosure
  • FIG3 is a second schematic diagram of the first example of the embodiment of the present disclosure.
  • FIG4 is a schematic diagram of a second example of an embodiment of the present disclosure.
  • FIG5 is a second flowchart of the communication method provided in an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of a structure of an electronic device provided in an embodiment of the present disclosure.
  • FIG7 is a second structural diagram of an electronic device provided in an embodiment of the present disclosure.
  • FIG. 8 is a third schematic diagram of the structure of the electronic device provided in the embodiment of the present disclosure.
  • the term "and/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B may represent three situations: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" generally indicates that the associated objects before and after are in an "or” relationship.
  • plurality in the embodiments of the present disclosure refers to two or more than two, and other quantifiers are similar thereto.
  • first, second, third, etc. may be used in the present disclosure to describe various information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • word “if” used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • the embodiments of the present disclosure provide a communication method, an electronic device, and a storage medium, so as to provide a mechanism for supporting A-PPDU transmission.
  • the method and the device are based on the same application concept. Since the method and the device solve the problem in a similar principle, the implementation of the device and the method can refer to each other, and the repeated parts will not be repeated.
  • an embodiment of the present disclosure provides a communication method.
  • the method may be applied to an access point (AP) device.
  • the method may include the following steps:
  • Step 101 determine a first wireless frame, wherein the first wireless frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU of a sending aggregate physical layer protocol data unit A-PPDU supported by an access point device; the PPDU is allocated by the access point device to a site device.
  • a Basic Service Set can be composed of an AP and one or more stations (STA) communicating with the AP.
  • a Basic Service Set can be connected to a Distribution System (DS) through its AP, and then connected to another Basic Service Set to form an Extended Service Set (ESS).
  • DS Distribution System
  • ESS Extended Service Set
  • AP is a device with wireless to wired bridging function, and is responsible for extending the services provided by the wired network to the wireless network
  • STA is an electronic device with wireless network access function, and provides frame delivery service to enable information to be transmitted.
  • the AP and the STA may be devices supporting multiple connections, for example, they may be represented as AP MLD and non-AP MLD, respectively.
  • AP MLD AP MLD
  • non-AP MLD non-AP MLD
  • AP MLD may represent an access point supporting a multi-connection communication function
  • non-AP MLD may represent a site supporting a multi-connection communication function
  • the AP MLD may include three subordinate APs, such as AP1, AP2, and AP3 as shown in FIG2 ; each AP may work in connection 1, connection 2, and connection 3, respectively; the non-AP MLD may also include three subordinate STAs, such as STA1, STA2, and STA3 as shown in FIG2 ; STA1 works in connection 1, STA2 works in connection 2, and STA3 works in connection 3.
  • AP1 communicates with STA1 through the corresponding first connection Link 1
  • AP2 communicates with STA2 through the corresponding second connection Link 2
  • the AP communicates with STA3 through the third connection Link 3.
  • Link 1 to Link 3 may be multiple connections at different frequencies, for example, connections at 2.4 GHz, 5 GHz, and 6 GHz, or several connections at 2.4 GHz with the same or different bandwidths.
  • multiple channels may exist under each connection. It is understood that the communication scenario shown in FIG2 is only exemplary, and the present disclosure is not limited thereto.
  • the AP MLD may be connected to multiple (three) non-AP MLDs, or under each connection, the AP may communicate with multiple other types of stations.
  • an AP MLD may support a maximum working bandwidth of 320MHz or 640MHz, while some non-AP MLDs associated with the AP MLD may only support a maximum working bandwidth of 160MHz or 80MHz, or less.
  • the PPDUs transmitted between the AP MLD and the non-AP MLD have asymmetric working bandwidths.
  • A-PPDU can be transmitted.
  • the first wireless frame includes, for example, a beacon frame and/or a probe response frame.
  • the AP establishes an initial association with the STA through the first wireless frame to transmit the wireless frame to the STA.
  • the AP carries first identification information in the first wireless frame, and the first identification information indicates the bandwidth information of each physical layer protocol data unit PPDU of the sending aggregate physical layer protocol data unit A-PPDU supported by the access point device; wherein, the A-PPDU includes multiple PPDUs, each PPDU may have a different bandwidth, which is equivalent to the A-PPDU as a PPDU combination, and the first identification information indicates the bandwidth of each PPDU in the PPDU combination; as a second example, as shown in Figure 4, the A-PPDU includes 3 PPDUs, and the bandwidths are: PPDU-1 has a bandwidth of 160MHz, and its receiving end can be STA1; PPDU-2 has a bandwidth of 80MHz, and its receiving end can be STA2, and PPDU-3 has a bandwidth of 80MHz, and its receiving end can be STA; the first identification information can identify the bandwidth information of the three PPDUs respectively, and also identify the receiving ends of different PPDUs as different STAs.
  • the bandwidth of each PPDU of the A-PPDU may be determined according to the maximum bandwidth supported by the AP; for example, in the 6 GHz spectrum, when the AP supports a maximum bandwidth of 320 MHz, the combinations of PPDU bandwidths supported by the AP for uplink and downlink reception of the A-PPDU may include: (1) 80 MHz + 80 MHz + 160 MHz; (2) 80 MHz + 80 MHz + 80 MHz + 80 MHz; (3) 160 + 160 MHz.
  • the combinations of PPDU bandwidths supported by the AP for uplink and downlink reception of the A-PPDU may include: (1) 8*80 MHz (2) 4*160 MHz (3) 2*320 MHz (4) 320 + 2*160 (5) 3*160 MHz + 2*80 MHz (6) 2*160 MHz + 4*80 MHz (7) 160 MHz + 3*160 combinations; where “*” represents a multiplication sign. Some of the above combinations may also exist in the 5 GHz spectrum.
  • the PPDU is allocated by the access point device to the station device, for example, a PPDU is allocated to each STA, and the bandwidth of the allocated PPDU is greater than or equal to the maximum working bandwidth of the corresponding STA.
  • Step 102 Send the first wireless frame.
  • the first wireless frame can be sent to the STA through any one of the multiple connections in Figure 3, so that the STA can obtain the bandwidth information of each PPDU of the A-PPDU, for example, determine the target PPDU allocated by the AP to it according to the bandwidth information of each PPDU, receive the target PPDU, and then realize the transmission of the A-PPDU.
  • a first wireless frame is determined and sent, wherein the first wireless frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU for sending aggregate physical layer protocol data units A-PPDU supported by the access point device; the PPDU is allocated by the access point device to the site device.
  • the embodiment of the present disclosure provides a mechanism to support A-PPDU transmission.
  • the embodiment of the present disclosure provides a communication method.
  • the method may be applied to an access point device.
  • the method may include the following steps:
  • the first wireless frame includes first identification information, the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU for sending an aggregate physical layer protocol data unit A-PPDU supported by the access point device; the PPDU is allocated by the access point device to the station device; the first wireless frame also includes bandwidth identification information, the bandwidth identification information indicates the maximum working bandwidth of the access point device;
  • the first radio frame is sent.
  • the first wireless frame also includes bandwidth identification information, and the bandwidth identification information indicates the maximum working bandwidth of the access point device, such as the maximum working bandwidth under different frequency bands, so that the STA can obtain the bandwidth capability information of the AP.
  • the bandwidth identification information is carried in an ultra-high reliability operation (URH) operation capability information element of the first radio frame.
  • UH ultra-high reliability operation
  • the method further includes the following steps:
  • the site device Receiving a second radio frame sent by the site device; wherein the second radio frame includes second identification information, and the second identification information indicates a maximum working bandwidth or an available working bandwidth supported by the site device;
  • the PPDU is allocated to the site device according to the second identification information; wherein the coverage bandwidth of the PPDU allocated to the site device is greater than or equal to the maximum working bandwidth supported by the site device.
  • the second wireless frame includes, for example, an Association Request frame and/or a Probe Request frame.
  • the STA sends a second wireless frame to initially associate with the access point device, and indicates the maximum working bandwidth or available working bandwidth supported by the site device through the second identification information, that is, the bandwidth capability information of the STA is indicated through the second identification information; the bandwidth capability information includes the maximum working bandwidth or the available working bandwidth; for example, the STA supports a maximum working bandwidth of 160 MHz, then it supports configuring the PPDU in the A-PPDU with a bandwidth of 160 MHz, or 2 80 MHz, then the available working bandwidth includes 160 MHz and 80 MHz.
  • the AP allocates PPDU to each STA (or allocates the bandwidth of PPDU) based on its own maximum working bandwidth and the maximum working bandwidth of each STA, ensuring that the sum of the coverage bandwidth of all PPDUs allocated to one STA (the coverage bandwidth is the sum of all PPDU bandwidths allocated to the STA) is greater than or equal to the maximum working bandwidth supported by the site device, so that the PPDU bandwidth allocated to the STA can cover the maximum working bandwidth of the STA.
  • a first radio frame is determined and sent, wherein the first radio frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU of the aggregate physical layer protocol data unit A-PPDU supported by the access point device; the PPDU is allocated by the access point device to the station device.
  • the embodiment of the present disclosure provides a mechanism to support A-PPDU transmission.
  • an embodiment of the present disclosure provides a communication method.
  • the method may be applied to a STA, such as an electronic device having a wireless network access function, such as a device that provides voice and/or data connectivity to a user, a handheld device having a wireless connection function, or other processing devices connected to a wireless modem.
  • a STA such as an electronic device having a wireless network access function, such as a device that provides voice and/or data connectivity to a user, a handheld device having a wireless connection function, or other processing devices connected to a wireless modem.
  • the method may include the following steps:
  • Step 501 receiving a first wireless frame, wherein the first wireless frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU for sending aggregate physical layer protocol data units A-PPDU supported by the access point device; the PPDU is allocated by the access point device to each site device.
  • the architecture of the WLAN applied to the communication method provided in the embodiment of the present disclosure refers to the aforementioned first example and will not be repeated here.
  • an AP MLD may support a maximum working bandwidth of 320MHz or 640MHz, while some non-AP MLDs associated with the AP MLD may only support a maximum working bandwidth of 160MHz or 80MHz, or less.
  • the PPDUs transmitted between the AP MLD and the non-AP MLD have asymmetric working bandwidths.
  • A-PPDU can be transmitted.
  • the first wireless frame includes, for example, a beacon frame and/or a probe response frame.
  • the AP establishes an initial association with the STA through the first wireless frame to transmit the wireless frame to the STA.
  • the STA obtains the first identification information carried in the first wireless frame, and determines the bandwidth information of each physical layer protocol data unit PPDU of the sending aggregate physical layer protocol data unit A-PPDU supported by the access point device according to the first identification information; wherein, the A-PPDU includes multiple PPDUs, each PPDU may have a different bandwidth, which is equivalent to the A-PPDU as a PPDU combination, and the first identification information indicates the bandwidth of each PPDU in the PPDU combination; referring to the second example, as shown in Figure 4, the A-PPDU includes 3 PPDUs, and the bandwidths are: PPDU-1 bandwidth is 160MHz, PPDU-2 bandwidth is 80MHz, and PPDU-3 bandwidth is 80MHz, then the first identification information can identify the bandwidth information of the 3 PPDUs respectively.
  • the bandwidth of each PPDU of the A-PPDU may be determined according to the maximum bandwidth supported by the AP; for example, when the AP supports a maximum bandwidth of 320 MHz, the combinations of PPDU bandwidths supported by the AP for uplink and downlink reception of the A-PPDU may include: (1) 80 MHz + 80 MHz + 160 MHz; (2) 80 MHz + 80 MHz + 80 MHz + 80 MHz; (3) 160 + 160 MHz.
  • the combinations of PPDU bandwidths supported by the AP for uplink and downlink reception of the A-PPDU may include: (1) 8*80 MHz (2) 4*160 MHz (3) 2*320 MHz (4) 320 + 2*160 (5) 3*160 MHz + 2*80 MHz (6) 2*160 MHz + 4*80 MHz (7) 160 MHz + 3*160 combinations; wherein "*" represents a multiplication sign.
  • the PPDU is allocated by the access point device to the station device, for example, a PPDU is allocated to each STA, and the bandwidth of the allocated PPDU is greater than or equal to the maximum working bandwidth of the corresponding STA.
  • the STA can receive the first wireless frame sent by the AP through any connection in the multiple connections in Figure 3, obtain the bandwidth information of each PPDU of the A-PPDU, for example, determine the target PPDU allocated by the AP for it according to the bandwidth information of each PPDU, receive the target PPDU, and then realize the transmission of the A-PPDU.
  • a STA receives a first radio frame, wherein the first radio frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU for sending an aggregate physical layer protocol data unit A-PPDU supported by an access point device; the PPDU is allocated by the access point device to each station device.
  • An embodiment of the present disclosure provides a mechanism to support A-PPDU transmission.
  • the method further includes the following steps:
  • the second radio frame includes second identification information, and the second identification information indicates a maximum working bandwidth or an available working bandwidth supported by the site device;
  • the second radio frame is sent.
  • the second wireless frame includes, for example, an Association Request frame and/or a Probe Request frame.
  • the STA sends a second wireless frame to initially associate with the access point device, and indicates the maximum working bandwidth or available working bandwidth supported by the station device through the second identification information, that is, the bandwidth capability information of the STA is indicated through the second identification information; the bandwidth capability information includes the maximum working bandwidth or the available working bandwidth; for example, the STA supports a maximum working bandwidth of 160 MHz, then it supports configuring the PPDU in the A-PPDU with a bandwidth of 160 MHz, or 2 80 MHz, then the available working bandwidth includes 160 MHz and 80 MHz.
  • the AP allocates PPDU to each STA (or allocates the bandwidth of PPDU) according to its own maximum working bandwidth and the maximum working bandwidth of each STA, ensuring that the sum of the coverage bandwidth of all PPDUs allocated to one STA (the coverage bandwidth is the sum of all PPDU bandwidths allocated to the STA) is greater than or equal to the maximum working bandwidth supported by the site device, so that the PPDU bandwidth allocated to the STA can cover the maximum working bandwidth of the STA.
  • the method further includes the following steps:
  • the second radio frame includes second identification information, the second identification information indicates an available working bandwidth supported by the site device;
  • the second identification information includes identification sub-information corresponding to each preset working bandwidth, the identification sub-information indicates whether the preset working bandwidth is available, and the working bandwidth available to the site device is the available working bandwidth;
  • the second radio frame is sent.
  • the second wireless frame includes, for example, an Association Request frame and/or a Probe Request frame.
  • the STA sends the second wireless frame to initially associate with the access point device, and indicates the available working bandwidth supported by the station device through the second identification information, that is, the bandwidth capability information of the STA is indicated through the second identification information.
  • the second identification information includes identification sub-information corresponding to each preset working bandwidth, and the identification sub-information indicates whether the preset working bandwidth is available, and the working bandwidth available to the site device is the available working bandwidth.
  • the site device may include multiple preset working bandwidths, such as 80MHz, 160MHz, 320MHz, etc.; an identification sub-information may be set for each preset working bandwidth, and the identification sub-information is used to identify whether the corresponding preset working bandwidth is the working bandwidth available to the site device.
  • the identification sub-information is a bit, and setting it to "1" indicates that the corresponding bandwidth is available, and setting it to "0" indicates that the corresponding bandwidth is unavailable.
  • the second identification information is carried in an ultra-high reliability operation (URH) operation capability information element of the second radio frame.
  • UH ultra-high reliability operation
  • the method further includes the following steps:
  • the second wireless frame includes second identification information, and the second identification information indicates the maximum working bandwidth or available working bandwidth supported by the site device; the second wireless frame also includes capability identification information, and the capability identification information indicates that the site device supports receiving aggregate physical layer protocol data units A-PPDU.
  • the second radio frame is sent.
  • the second wireless frame includes, for example, an Association Request frame and/or a Probe Request frame.
  • the STA sends the second wireless frame to initially associate with the access point device, and indicates through capability identification information that the station device supports receiving A-PPDU, so that the AP learns the capability information of the STA supporting receiving A-PPDU, and allocates PPDU (or allocates bandwidth of PPDU) to the STA according to the capability information of the STA.
  • a STA receives a first radio frame, wherein the first radio frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU for sending an aggregate physical layer protocol data unit A-PPDU supported by an access point device; the PPDU is allocated by the access point device to each station device.
  • An embodiment of the present disclosure provides a mechanism to support A-PPDU transmission.
  • the embodiment of the present disclosure further provides an electronic device, the electronic device is an access point device, and the electronic device includes:
  • the determining module 601 is configured to determine a first radio frame, wherein the first radio frame includes first identification information, and the first identification information indicates bandwidth information of each physical layer protocol data unit PPDU for sending an aggregate physical layer protocol data unit A-PPDU supported by the access point device; the PPDU is allocated by the access point device to the station device;
  • the sending module 602 is configured to send the first wireless frame.
  • the first wireless frame also includes bandwidth identification information, and the bandwidth identification information indicates a maximum working bandwidth of the access point device.
  • the bandwidth identification information is carried in an ultra-high reliability operation (URH) operation capability information element of the first radio frame.
  • UH ultra-high reliability operation
  • the electronic device further includes:
  • An allocation module configured to receive a second radio frame sent by the site device; wherein the second radio frame includes second identification information, and the second identification information indicates a maximum working bandwidth or an available working bandwidth supported by the site device;
  • the PPDU is allocated to the site device according to the second identification information; wherein the coverage bandwidth of the PPDU allocated to the site device is greater than or equal to the maximum working bandwidth supported by the site device.
  • the first wireless frame includes a beacon frame and/or a probe response frame.
  • the present disclosure also provides a communication device, which is applied to an access point device.
  • the device includes:
  • a radio frame determination module configured to determine a first radio frame, wherein the first radio frame includes first identification information, the first identification information indicating bandwidth information of each physical layer protocol data unit PPDU for sending an aggregate physical layer protocol data unit A-PPDU supported by the access point device; the PPDU is allocated by the access point device to the station device;
  • a wireless frame sending module is used to send the first wireless frame.
  • the device also includes other modules of the electronic device in the aforementioned embodiment, which will not be described in detail here.
  • the embodiment of the present disclosure further provides an electronic device, the electronic device is an access point device, and the electronic device includes:
  • a receiving module is used to receive a first wireless frame, wherein the first wireless frame includes first identification information, and the first identification information indicates the bandwidth information of each physical layer protocol data unit PPDU of the sending aggregate physical layer protocol data unit A-PPDU supported by the access point device; the PPDU is allocated by the access point device to each site device.
  • the electronic device further includes:
  • a processing module configured to determine a second radio frame; wherein the second radio frame includes second identification information, and the second identification information indicates a maximum working bandwidth or an available working bandwidth supported by the site device;
  • the second radio frame is sent.
  • the second identification information includes identification sub-information corresponding to each preset working bandwidth, the identification sub-information indicates whether the preset working bandwidth is available, and the working bandwidth available to the site device is the available working bandwidth.
  • the second identification information is carried in an ultra-high reliability operation URH operation capability information element of the second radio frame.
  • the second radio frame also includes capability identification information, and the capability identification information indicates that the site device supports receiving aggregate physical layer protocol data units A-PPDU.
  • the second wireless frame includes an association request frame and/or a probe request frame.
  • the present disclosure also provides a communication device, which is applied to a site device.
  • the device includes:
  • a wireless frame receiving module is used to receive a first wireless frame, wherein the first wireless frame includes first identification information, and the first identification information indicates the bandwidth information of each physical layer protocol data unit PPDU of the sending aggregate physical layer protocol data unit A-PPDU supported by the access point device; the PPDU is allocated by the access point device to each site device.
  • the device also includes other modules of the electronic device in the aforementioned embodiment, which will not be described in detail here.
  • the embodiment of the present disclosure further provides an electronic device, as shown in FIG8 , the electronic device 800 shown in FIG8 may be a server, including: a processor 801 and a memory 803. The processor 801 and the memory 803 are connected, such as through a bus 802.
  • the electronic device 800 may further include a transceiver 804. It should be noted that in actual applications, the transceiver 804 is not limited to one, and the structure of the electronic device 800 does not constitute a limitation on the embodiment of the present disclosure.
  • Processor 801 can be a CPU (Central Processing Unit), a general-purpose processor, a DSP (Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It can implement or execute various exemplary logic blocks, modules and circuits described in conjunction with the disclosure of the present invention. Processor 801 can also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, etc.
  • the bus 802 may include a path for transmitting information between the above components.
  • the bus 802 may be a PCI (Peripheral Component Interconnect) bus or an EISA (Extended Industry Standard Architecture) bus, etc.
  • the bus 802 may be divided into an address bus, a data bus, a control bus, etc.
  • FIG8 is represented by only one thick line, but it does not mean that there is only one bus or one type of bus.
  • the memory 803 can be a ROM (Read Only Memory) or other types of static storage devices that can store static information and instructions, a RAM (Random Access Memory) or other types of dynamic storage devices that can store information and instructions, or an EEPROM (Electrically Erasable Programmable Read Only Memory), a CD-ROM (Compact Disc Read Only Memory) or other optical disk storage, optical disk storage (including compressed optical disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.), magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited to these.
  • ROM Read Only Memory
  • RAM Random Access Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • optical disk storage including compressed optical disk, laser disk, optical disk, digital versatile disk, Blu-ray disk, etc.
  • magnetic disk storage medium or other magnetic storage device or any other medium
  • the memory 803 is used to store application code for executing the solution of the present disclosure, and the execution is controlled by the processor 801.
  • the processor 801 is used to execute the application code stored in the memory 803 to implement the content shown in the above method embodiment.
  • the electronic devices include, but are not limited to, mobile phones, laptop computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), vehicle-mounted terminals (such as vehicle-mounted navigation terminals), etc., and fixed terminals such as digital TVs, desktop computers, etc.
  • PDAs personal digital assistants
  • PADs tablet computers
  • PMPs portable multimedia players
  • vehicle-mounted terminals such as vehicle-mounted navigation terminals
  • fixed terminals such as digital TVs, desktop computers, etc.
  • the electronic device shown in FIG8 is only an example and should not bring any limitation to the functions and scope of use of the embodiments of the present disclosure.
  • the server provided by the present disclosure may be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or a cloud server that provides basic cloud computing services such as cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms.
  • the terminal may be a smart phone, tablet computer, laptop computer, desktop computer, smart speaker, smart watch, etc., but is not limited thereto.
  • the terminal and the server may be directly or indirectly connected via wired or wireless communication, which is not limited by the present disclosure.
  • An embodiment of the present disclosure provides a computer-readable storage medium, on which a computer program is stored.
  • the computer-readable storage medium is run on a computer, the computer can execute the corresponding contents of the aforementioned method embodiment.
  • the computer-readable medium disclosed above may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above.
  • Computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium containing or storing a program that may be used by or in combination with an instruction execution system, device or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, in which a computer-readable program code is carried.
  • This propagated data signal may take a variety of forms, including but not limited to an electromagnetic signal, an optical signal, or any suitable combination of the above.
  • the computer readable signal medium may also be any computer readable medium other than a computer readable storage medium, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device.
  • the program code contained on the computer readable medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the computer-readable medium may be included in the electronic device, or may exist independently without being installed in the electronic device.
  • the computer-readable medium carries one or more programs.
  • the electronic device executes the method shown in the above embodiment.
  • a computer program product or a computer program comprising computer instructions, the computer instructions being stored in a computer-readable storage medium.
  • a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the methods provided in the above-mentioned various optional implementations.
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages, or a combination thereof, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural programming languages, such as "C" or similar programming languages.
  • the program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., through the Internet using an Internet service provider).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function.
  • the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved.
  • each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
  • modules involved in the embodiments described in the present disclosure may be implemented by software or hardware.
  • the name of a module does not limit the module itself in some cases.
  • module A may also be described as "module A for performing operation B".

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例涉及移动通信技术领域,提供了一种通信方法、电子设备及存储介质。所述通信方法应用于接入点设备,所述方法包括:确定第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的;发送所述第一无线帧。本公开实施例提供了一种支持A-PPDU传输的机制。

Description

通信方法、电子设备及存储介质 技术领域
本公开实施例涉及移动通信技术领域,具体而言,本公开实施例涉及一种通信方法、电子设备及存储介质。
背景技术
随着移动通信技术的迅速发展,无线保真(Wireless Fidelity,Wi-Fi)技术在传输速率以及吞吐量等方面已经取得了巨大的进步。目前,Wi-Fi技术所研究的内容例如超高可靠性(Ultra High Reliablity,UHR),其愿景为提高无线局域网(Wireless Local Area Networks,WLAN)连接的可靠性、减少延迟、提高可管理性、在不同信噪比(Signal to Noise Ratio,SNR)级别下增加吞吐量并降低设备级功耗等。并且,在UHR中,为了提高系统的吞吐量,提出了在sub7GHz(吉赫兹)与45GHz和/或60GHz频段下同时进行通信的方式。
在多连接场景中,在多连接入点(Access Point Multi-Link Device,AP MLD)设备和多连接站点(Non-Access Point Multi-Link Device,Non-AP MLD)设备传输的物理层协议数据单元(Physical Layer Protocol Data Unit,PPDU)通常具有不对称的工作带宽。在此情况下,为了更大化的利用AP MLD的能力,可以传输聚合物理层协议数据单元(Aggregated PHY Protocol Data Unit,A-PPDU)。因此,需要提供一种支持A-PPDU传输的机制。
发明内容
本公开实施例提供了一种通信方法、电子设备及存储介质,以提供一种支持A-PPDU传输的机制。
一方面,本公开实施例提供了一种通信方法,应用于接入点设备,所述方法包括:
确定第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的;
发送所述第一无线帧。
另一方面,本公开实施例还提供了一种通信方法,应用于站点设备,所述方法包括:
接收第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为每个站点设备分配的。
另一方面,本公开实施例还提供了一种电子设备,所述电子设备为接入点设备,所述电子设备包括:
确定模块,用于确定第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的;
发送模块,用于发送所述第一无线帧。
另一方面,本公开实施例还提供了一种电子设备,所述电子设备为站点设备,所述电子设备包括:
接收模块,用于接收第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为每个站点设备分配的。
本公开实施例还提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如本 公开实施例中一个或多个所述的方法。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本公开实施例中一个或多个所述的方法。
本公开实施例中,确定并发送第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的。本公开实施例提供了一种支持A-PPDU传输的机制。
本公开实施例附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的通信方法的流程图之一;
图2为本公开实施例的第一示例的示意图之一;
图3为本公开实施例的第一示例的示意图之二;
图4为本公开实施例的第二示例的示意图;
图5为本公开实施例提供的通信方法的流程图之二;
图6为本公开实施例提供的电子设备的结构示意图之一;
图7为本公开实施例提供的电子设备的结构示意图之二;
图8为本公开实施例提供的电子设备的结构示意图之三。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
在本公开使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也是旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,例如,在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开实施例提供了一种通信方法、电子设备及存储介质,用以提供一种支持A-PPDU传输的机制。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
如图1中所示,本公开实施例提供了一种通信方法,可选地,所述方法可应用于接入点(Access Point,AP)设备;该方法可以包括以下步骤:
步骤101,确定第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的。
在无线局域网中,一个基本服务集(Basic Service Set,BSS)可以由AP以及与AP通信的一个或多个站点(Station,STA)构成。一个基本服务集可以通过其AP连接到分配系统(Distribution System,DS),然后再接入到另一个基本服务集,构成扩展的服务集(Extended Service Set,ESS)。
可选地,AP例如具有无线至有线桥接(Bridging)功能的设备,AP负责将有线网络所提供的服务延伸至无线网络;STA例如具有无线网络接入功能的电子设备,提供帧传递(Frame Delivery)服务让信息得以传递。
在本公开实施例中,AP和STA可以为支持多连接的设备,例如,可以被分别表示为AP MLD和non-AP MLD。为了便于描述,在下文中,主要描述一个AP与一个STA在多连接下进行通信的示例,然而,本公开的示例实施例不限于此。
作为第一示例,参见图2以及图3,AP MLD可以表示支持多连接通信功能的接入点,non-AP MLD可以表示支持多连接通信功能的站点。
参照图2,AP MLD可以包括三个附属AP,如图2所示的AP1、AP2和AP3;每个AP可以分别工作在连接1、连接2以及连接3;non-AP MLD也可以工包括三个附属STA,如图2所示的STA1、STA2和STA3;STA1工作在连接1、STA2工作在连接2以及STA3工作在连接3。在图3的示例中,假设AP1与STA1通过对应的第一连接Link 1进行通信,类似地,AP2与STA2通过对应的第二连接Link 2进行通信,AP通过第三连接Link  3与STA3进行通信。此外,Link 1至Link 3可以分别是不同频率下的多个连接,例如,2.4GHz、5GHz、6GHz下的连接,或2.4GHz下的几个相同或不同带宽的连接。此外,在每个连接下可以存在多个信道。可以理解的是,图2所示的通信场景仅是示例性的,本公开构思不限于此,例如,AP MLD可以连接到多个(三个)non-AP MLD,或者在每个连接下,AP可以与多个其他类型的站点进行通信。
通常情况下,AP MLD和与其建立关联连接的non-AP MLD中的一些non-AP MLD能够支持的最大工作带宽不同。例如,AP MLD可能支持最大工作带宽320MHz或640MHz,而与AP MLD建立关联的一些non-AP MLD可能只支持最大工作带宽160MHz或80MHz,或者更小。也就是说,在AP MLD和non-AP MLD传输的PPDU具有不对称的工作带宽。在此情况下,为了更大化的利用AP MLD的能力,提高系统的吞吐量,可以传输A-PPDU。
本公开实施例中,第一无线帧例如包括信标(Beacon)帧和/或探测响应(Probe Response)帧,AP通过第一无线帧与STA建立初始关联(Association),以实现将无线帧传输给STA。
AP在第一无线帧中携带第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;其中,A-PPDU包括多个PPDU,每个PPDU可能具有不同的带宽,相当于A-PPDU作为一个PPDU组合,而第一标识信息指示该PPDU组合里每个PPDU的带宽;作为第二示例,如图4所示,A-PPDU包括3个PPDU,带宽分别为:PPDU-1带宽为160MHz,其接收端可以为STA1;PPDU-2带宽为80MHz,其接收端可以为STA2,PPDU-3带宽为80MHz,其接收端可以为STA;第一标识信息可分别标识3个PPDU的带宽信息,同时也标识不同的PPDU的接收端为不同的STA。
其中,A-PPDU的每个PPDU的带宽可根据AP所支持的最大带宽确定;例如,在6GHz频谱下,AP支持最大320MHz带宽时,AP支持上下行接收A-PPDU中PPDU带宽的组合可以包括:(1) 80MHz+80MHz+160MHz;(2)80MHz+80MHz+80MHz+80MHz;(3)160+160MHz。又或者,在6GHz频谱下,当AP支持最大640MHz时,AP支持上下行接收A-PPDU中PPDU带宽的组合可以包括:(1)8*80MHz(2)4*160MHz(3)2*320MHz(4)320+2*160(5)3*160MHz+2*80MHz(6)2*160MHz+4*80MHz(7)160MHz+3*160组合;其中,“*”表示乘号。如上述某些组合也可能存在5GHz频谱下。
其中,所述PPDU为所述接入点设备为站点设备分配的,例如,为每个STA分配PPDU,而所分配的PPDU的带宽大于或等于对应的STA的最大工作带宽。
步骤102,发送所述第一无线帧。
例如,可以通过图3中多个连接中的任一连接向STA发送第一无线帧,使得STA可以获得关于A-PPDU的每个PPDU的带宽信息,例如根据每个PPDU的带宽信息确定AP为其分配的目标PPDU,接收所述目标PPDU,进而实现A-PPDU的传输。
本公开实施例中,确定并发送第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的。本公开实施例提供了一种支持A-PPDU传输的机制。
本公开实施例提供了一种通信方法,可选地,所述方法可应用于接入点设备;该方法可以包括以下步骤:
确定第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的;所述第一无线帧中还包括带宽标识信息,所述带宽标识信息指示所述接入点设备的最大工作带宽;
发送所述第一无线帧。
其中,所述第一无线帧中还包括带宽标识信息,所述带宽标识信息指示所述接入点设备的最大工作带宽,例如在不同频段下的最大工作带宽,以便STA获知AP的带宽能力信息。
可选地,所述带宽标识信息携带在所述第一无线帧的超高可靠性操作URH operation能力信息元素中。
本公开实施例中,所述方法还包括以下步骤:
接收所述站点设备发送的第二无线帧;其中,所述第二无线帧包括第二标识信息,所述第二标识信息指示所述站点设备所支持的最大工作带宽或可用工作带宽;
根据所述第二标识信息为所述站点设备分配所述PPDU;其中,为所述站点设备分配所述PPDU的覆盖带宽大于或等于所述站点设备所支持的最大工作带宽。
可选地,所述第二无线帧例如包括关联请求(Association Request)帧和/或探测请求(Probe Request)帧。例如,STA发送第二无线帧与接入点设备进行初始关联,且通过第二标识信息指示在所述站点设备所支持的最大工作带宽或可用工作带宽,即通过第二标识信息指示STA的带宽能力信息;带宽能力信息包括最大工作带宽或可用工作带宽;例如,STA支持最大工作带宽为160MHz,则其支持A-PPDU中为其配置PPDU为带宽为160MHz,或2个80MHz,则可用工作带宽包括160MHz以及80MHz。
AP根据其自身的最大工作带宽以及每个STA的最大工作带宽,为每个STA分配PPDU(或分配PPDU的带宽),确保为一个STA分配的所有PPDU的覆盖带宽(覆盖带宽即为该STA分配的所有PPDU带宽之和)之和大于或等于所述站点设备所支持的最大工作带宽,以使得为该STA分配的PPDU带宽能覆盖该STA的最大工作带宽。
本公开实施例中,确定并发送第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物 理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的。本公开实施例提供了一种支持A-PPDU传输的机制。
参见图5,本公开实施例提供了一种通信方法,可选地,所述方法可应用于STA,STA例如具有无线网络接入功能的电子设备,例如向用户提供语音和/或数据连通性的设备、具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等。
该方法可以包括以下步骤:
步骤501,接收第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为每个站点设备分配的。
其中,本公开实施例提供的通信方法的所应用WLAN的架构参考前述第一示例,在此不再赘述。
通常情况下,AP MLD和与其建立关联连接的non-AP MLD中的一些non-AP MLD能够支持的最大工作带宽不同。例如,AP MLD可能支持最大工作带宽320MHz或640MHz,而与AP MLD建立关联的一些non-AP MLD可能只支持最大工作带宽160MHz或80MHz,或者更小。也就是说,在AP MLD和non-AP MLD传输的PPDU具有不对称的工作带宽。在此情况下,为了更大化的利用AP MLD的能力,提高系统的吞吐量,可以传输A-PPDU。
本公开实施例中,第一无线帧例如包括信标(Beacon)帧和/或探测响应(Probe Response)帧,AP通过第一无线帧与STA建立初始关联(Association),以实现将无线帧传输给STA。
STA获取第一无线帧中携带的第一标识信息,根据所述第一标识信息确定接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;其中,A-PPDU包括多个PPDU,每个PPDU可能具有不同的带宽,相当于A-PPDU作为一个PPDU组合, 而第一标识信息指示该PPDU组合里每个PPDU的带宽;参见第二示例,如图4所示,A-PPDU包括3个PPDU,带宽分别为:PPDU-1带宽为160MHz,PPDU-2带宽为80MHz,PPDU-3带宽为80MHz,则第一标识信息可分别标识3个PPDU的带宽信息。
其中,A-PPDU的每个PPDU的带宽可根据AP所支持的最大带宽确定;例如,在AP支持最大320MHz带宽时,AP支持上下行接收A-PPDU中PPDU带宽的组合可以包括:(1)80MHz+80MHz+160MHz;(2)80MHz+80MHz+80MHz+80MHz;(3)160+160MHz。又或者,当AP支持最大640MHz时,AP支持上下行接收A-PPDU中PPDU带宽的组合可以包括:(1)8*80MHz(2)4*160MHz(3)2*320MHz(4)320+2*160(5)3*160MHz+2*80MHz(6)2*160MHz+4*80MHz(7)160MHz+3*160组合;其中,“*”表示乘号。
其中,所述PPDU为所述接入点设备为站点设备分配的,例如,为每个STA分配PPDU,而所分配的PPDU的带宽大于或等于对应的STA的最大工作带宽。
例如,STA可以通过图3中多个连接中的任一连接接收AP发送的第一无线帧,获得关于A-PPDU的每个PPDU的带宽信息,例如根据每个PPDU的带宽信息确定AP为其分配的目标PPDU,接收所述目标PPDU,进而实现A-PPDU的传输
本公开实施例中,STA接收第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为每个站点设备分配的。本公开实施例提供了一种支持A-PPDU传输的机制。
本公开实施例中,所述方法还包括以下步骤:
确定第二无线帧;其中,所述第二无线帧包括第二标识信息,所述第二标识信息指示所述站点设备所支持的最大工作带宽或可用工作带宽;
发送所述第二无线帧。
可选地,所述第二无线帧例如包括关联请求(Association Request)帧和/或探测请求(Probe Request)帧。例如,STA发送第二无线帧与接入点设备进行初始关联,且通过第二标识信息指示所述站点设备所支持的最大工作带宽或可用工作带宽,即通过第二标识信息指示STA的带宽能力信息;带宽能力信息包括最大工作带宽或可用工作带宽;例如,STA支持最大工作带宽为160MHz,则其支持A-PPDU中为其配置PPDU为带宽为160MHz,或2个80MHz,则可用工作带宽包括160MHz以及80MHz。
这样,使得AP根据其自身的最大工作带宽以及每个STA的最大工作带宽,为每个STA分配PPDU(或分配PPDU的带宽),确保为一个STA分配的所有PPDU的覆盖带宽(覆盖带宽即为该STA分配的所有PPDU带宽之和)之和大于或等于所述站点设备所支持的最大工作带宽,以使得为该STA分配的PPDU带宽能覆盖该STA的最大工作带宽。
本公开实施例中,所述方法还包括以下步骤:
确定第二无线帧;其中,所述第二无线帧包括第二标识信息,所述第二标识信息指示所述站点设备所支持的可用工作带宽;所述第二标识信息包括与每个预设工作带宽对应的标识子信息,所述标识子信息指示所述预设工作带宽是否可用,所述站点设备可用的工作带宽为所述可用工作带宽;
发送所述第二无线帧。
可选地,所述第二无线帧例如包括关联请求(Association Request)帧和/或探测请求(Probe Request)帧。例如,STA发送第二无线帧与接入点设备进行初始关联,且通过第二标识信息指示所述站点设备所支持的可用工作带宽,即通过第二标识信息指示STA的带宽能力信息。
所述第二标识信息包括与每个预设工作带宽对应的标识子信息,所述标识子信息指示所述预设工作带宽是否可用,所述站点设备可用的工作带宽为所述可用工作带宽。其中,站点设备可以包括多个预设工作带宽,例如80MHz、160MHz、320MHz等;可以为每个预设工作带宽设定一个 标识子信息,该标识子信息用于标识对应的预设工作带宽是否为站点设备可用的工作带宽。例如,标识子信息为一个比特位,设置为“1”表示对应的带宽可用,设置为“0”表示对应的带宽不可用。
可选地,所述第二标识信息携带在所述第二无线帧的超高可靠性操作URH operation能力信息元素中。
本公开实施例中,所述方法还包括以下步骤:
确定第二无线帧;其中,所述第二无线帧包括第二标识信息,所述第二标识信息指示所述站点设备所支持的最大工作带宽或可用工作带宽;第二无线帧中还包括能力标识信息,所述能力标识信息指示所述站点设备支持接收聚合物理层协议数据单元A-PPDU。
发送所述第二无线帧。
可选地,所述第二无线帧例如包括关联请求(Association Request)帧和/或探测请求(Probe Request)帧。例如,STA发送第二无线帧与接入点设备进行初始关联,且通过能力标识信息指示所述站点设备支持接收A-PPDU,使得AP获知STA支持接收A-PPDU的能力信息,根据STA的该能力信息为STA分配PPDU(或分配PPDU的带宽)。
本公开实施例中,STA接收第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为每个站点设备分配的。本公开实施例提供了一种支持A-PPDU传输的机制。
参见图6,基于与本公开实施例所提供的方法相同的原理,本公开实施例还提供了一种电子设备,所述电子设备为接入点设备,所述电子设备包括:
确定模块601,用于确定第一无线帧,其中,所述第一无线帧包括第 一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的;
发送模块602,用于发送所述第一无线帧。
可选地,本公开实施例中,所述第一无线帧中还包括带宽标识信息,所述带宽标识信息指示所述接入点设备的最大工作带宽。
可选地,本公开实施例中,所述带宽标识信息携带在所述第一无线帧的超高可靠性操作URH operation能力信息元素中。
可选地,本公开实施例中,所述电子设备还包括:
分配模块,用于接收所述站点设备发送的第二无线帧;其中,所述第二无线帧包括第二标识信息,所述第二标识信息指示所述站点设备所支持的最大工作带宽或可用工作带宽;
根据所述第二标识信息为所述站点设备分配所述PPDU;其中,为所述站点设备分配所述PPDU的覆盖带宽大于或等于所述站点设备所支持的最大工作带宽。
可选地,本公开实施例中,所述第一无线帧包括信标帧和/或探测响应帧。
本公开实施例还提供了一种通信装置,应用于接入点设备,所述装置包括:
无线帧确定模块,用于确定第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的;
无线帧发送模块,用于发送所述第一无线帧。
所述装置还包括前述实施例中电子设备的其他模块,在此不再赘述。
参见图7,基于与本公开实施例所提供的方法相同的原理,本公开实施例还提供了一种电子设备,所述电子设备为接入点设备,所述电子设备 包括:
接收模块,用于接收第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为每个站点设备分配的。
可选地,本公开实施例中,所述电子设备还包括:
处理模块,用于确定第二无线帧;其中,所述第二无线帧包括第二标识信息,所述第二标识信息指示所述站点设备所支持的最大工作带宽或可用工作带宽;
发送所述第二无线帧。
可选地,本公开实施例中,所述第二标识信息包括与每个预设工作带宽对应的标识子信息,所述标识子信息指示所述预设工作带宽是否可用,所述站点设备可用的工作带宽为所述可用工作带宽。
可选地,本公开实施例中,所述第二标识信息携带在所述第二无线帧的超高可靠性操作URH operation能力信息元素中。
可选地,本公开实施例中,所述第二无线帧中还包括能力标识信息,所述能力标识信息指示所述站点设备支持接收聚合物理层协议数据单元A-PPDU。
可选地,本公开实施例中,所述第二无线帧包括关联请求帧和/或探测请求帧。
本公开实施例还提供了一种通信装置,应用于站点设备,所述装置包括:
无线帧接收模块,用于接收第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为每个站点设备分配的。
所述装置还包括前述实施例中电子设备的其他模块,在此不再赘述。
在一个可选实施例中,本公开实施例还提供了一种电子设备,如图8所示,图8所示的电子设备800可以为服务器,包括:处理器801和存储器803。其中,处理器801和存储器803相连,如通过总线802相连。可选地,电子设备800还可以包括收发器804。需要说明的是,实际应用中收发器804不限于一个,该电子设备800的结构并不构成对本公开实施例的限定。
处理器801可以是CPU(Central Processing Unit,中央处理器),通用处理器,DSP(Digital Signal Processor,数据信号处理器),ASIC(Application Specific Integrated Circuit,专用集成电路),FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器801也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
总线802可包括一通路,在上述组件之间传送信息。总线802可以是PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA(Extended Industry Standard Architecture,扩展工业标准结构)总线等。总线802可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器803可以是ROM(Read Only Memory,只读存储器)或可存储静态信息和指令的其他类型的静态存储设备,RAM(Random Access Memory,随机存取存储器)或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器803用于存储执行本公开方案的应用程序代码,并由处理器 801来控制执行。处理器801用于执行存储器803中存储的应用程序代码,以实现前述方法实施例所示的内容。
其中,电子设备包括但不限于:移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图8示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
本公开提供的服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN、以及大数据和人工智能平台等基础云计算服务的云服务器。终端可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能手表等,但并不局限于此。终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本公开在此不做限制。
本公开实施例提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当其在计算机上运行时,使得计算机可以执行前述方法实施例中相应内容。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更 具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备执行上述实施例所示的方法。
根据本公开的一个方面,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各种可选实现方式中提供的方法。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。 在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,模块的名称在某种情况下并不构成对该模块本身的限定,例如,A模块还可以被描述为“用于执行B操作的A模块”。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (15)

  1. 一种通信方法,应用于接入点设备,其特征在于,所述方法包括:
    确定第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的;
    发送所述第一无线帧。
  2. 根据权利要求1所述的通信方法,其特征在于,所述第一无线帧中还包括带宽标识信息,所述带宽标识信息指示所述接入点设备的最大工作带宽。
  3. 根据权利要求2所述的通信方法,其特征在于,所述带宽标识信息携带在所述第一无线帧的超高可靠性操作URH operation能力信息元素中。
  4. 根据权利要求3所述的通信方法,其特征在于,所述方法还包括:
    接收所述站点设备发送的第二无线帧;其中,所述第二无线帧包括第二标识信息,所述第二标识信息指示所述站点设备所支持的最大工作带宽或可用工作带宽;
    根据所述第二标识信息为所述站点设备分配所述PPDU;其中,为所述站点设备分配所述PPDU的覆盖带宽大于或等于所述站点设备所支持的最大工作带宽。
  5. 根据权利要求1至4任一项所述的通信方法,其特征在于,所述第一无线帧包括信标帧和/或探测响应帧。
  6. 一种通信方法,应用于站点设备,其特征在于,所述方法包括:
    接收第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为每个站点设备分配的。
  7. 根据权利要求6所述的通信方法,其特征在于,所述方法还包括:
    确定第二无线帧;其中,所述第二无线帧包括第二标识信息,所述第二标识信息指示所述站点设备所支持的最大工作带宽或可用工作带宽;
    发送所述第二无线帧。
  8. 根据权利要求7所述的通信方法,其特征在于,所述方法还包括:
    所述第二标识信息包括与每个预设工作带宽对应的标识子信息,所述标识子信息指示所述预设工作带宽是否可用,所述站点设备可用的工作带宽为所述可用工作带宽。
  9. 根据权利要求7所述的通信方法,其特征在于,所述第二标识信息携带在所述第二无线帧的超高可靠性操作URH operation能力信息元素中。
  10. 根据权利要求7所述的通信方法,其特征在于,所述第二无线帧中还包括能力标识信息,所述能力标识信息指示所述站点设备支持接收聚合物理层协议数据单元A-PPDU。
  11. 根据权利要求7至10任一项所述的通信方法,其特征在于,所述第二无线帧包括关联请求帧和/或探测请求帧。
  12. 一种电子设备,所述电子设备为接入点设备,其特征在于,所述电子设备包括:
    确定模块,用于确定第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为站点设备分配的;
    发送模块,用于发送所述第一无线帧。
  13. 一种电子设备,所述电子设备为站点设备,其特征在于,所述电子设备包括:
    接收模块,用于接收第一无线帧,其中,所述第一无线帧包括第一标识信息,所述第一标识信息指示接入点设备所支持的发送聚合物理层协议数据单元A-PPDU的每个物理层协议数据单元PPDU的带宽信息;所述PPDU为所述接入点设备为每个站点设备分配的。
  14. 一种电子设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至5中任一项所述的方法或实现权利要求6至11中任一项所述的方法。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至5中任一项所述的方法或实现权利要求6至11中任一项所述的方法。
PCT/CN2022/126501 2022-10-20 2022-10-20 通信方法、电子设备及存储介质 WO2024082223A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126501 WO2024082223A1 (zh) 2022-10-20 2022-10-20 通信方法、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/126501 WO2024082223A1 (zh) 2022-10-20 2022-10-20 通信方法、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024082223A1 true WO2024082223A1 (zh) 2024-04-25

Family

ID=90736553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126501 WO2024082223A1 (zh) 2022-10-20 2022-10-20 通信方法、电子设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024082223A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质
CN112469088A (zh) * 2019-09-09 2021-03-09 华为技术有限公司 正交频分多址接入ofdma混合传输方法和装置
US20210266905A1 (en) * 2021-05-12 2021-08-26 Intel Corporation Configuration of fa ppdu for tb ppdu
WO2022089553A1 (zh) * 2020-10-28 2022-05-05 华为技术有限公司 Ppdu的上行带宽指示方法及相关装置
WO2022147691A1 (zh) * 2021-01-06 2022-07-14 北京小米移动软件有限公司 通信方法和通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768757A (zh) * 2018-07-25 2020-02-07 华为技术有限公司 资源单元指示方法、装置及存储介质
CN112469088A (zh) * 2019-09-09 2021-03-09 华为技术有限公司 正交频分多址接入ofdma混合传输方法和装置
WO2022089553A1 (zh) * 2020-10-28 2022-05-05 华为技术有限公司 Ppdu的上行带宽指示方法及相关装置
WO2022147691A1 (zh) * 2021-01-06 2022-07-14 北京小米移动软件有限公司 通信方法和通信设备
US20210266905A1 (en) * 2021-05-12 2021-08-26 Intel Corporation Configuration of fa ppdu for tb ppdu

Similar Documents

Publication Publication Date Title
US20160309481A1 (en) Reduction of channel access delay in wireless systems
WO2020010880A1 (zh) 数据传输方法及相关装置
CN115715026B (zh) 多链路设备的关联标识符aid分配方法及相关装置
WO2024082223A1 (zh) 通信方法、电子设备及存储介质
WO2023056652A1 (zh) 通信连接控制方法及装置、电子设备及存储介质
WO2024092465A1 (zh) 关联标识分配方法、接收方法、电子设备及存储介质
WO2024108451A1 (zh) 通信方法、电子设备及存储介质
WO2024082245A1 (zh) 通信方法、电子设备及存储介质
WO2024108440A1 (zh) Tdls通信方法、电子设备及存储介质
WO2024103229A1 (zh) 通信方法、电子设备及存储介质
WO2024108340A1 (zh) 通信方法、电子设备及存储介质
WO2022261900A1 (zh) 参数处理方法及接入点设备、站点设备及存储介质
WO2024103226A1 (zh) 通信方法、电子设备及存储介质
WO2024077558A1 (zh) 通信方法、电子设备及存储介质
WO2024082099A1 (zh) 通信方法、电子设备及存储介质
WO2023060584A1 (zh) 网络分配矢量nav定时器的处理方法及相关装置
WO2024108441A1 (zh) 通信方法、装置、设备以及存储介质
WO2024092466A1 (zh) 通信方法、装置、设备以及存储介质
WO2023279293A1 (zh) 信号处理方法及装置、电子设备及存储介质
WO2024007161A1 (zh) 通信方法及装置、电子设备及存储介质
WO2023283949A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024077563A1 (zh) 通信方法、装置、设备以及存储介质
WO2024007163A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024082244A1 (zh) 通信方法、装置、设备以及存储介质
WO2023077520A1 (zh) 无线通信方法、装置、设备以及存储介质