WO2022261900A1 - 参数处理方法及接入点设备、站点设备及存储介质 - Google Patents

参数处理方法及接入点设备、站点设备及存储介质 Download PDF

Info

Publication number
WO2022261900A1
WO2022261900A1 PCT/CN2021/100662 CN2021100662W WO2022261900A1 WO 2022261900 A1 WO2022261900 A1 WO 2022261900A1 CN 2021100662 W CN2021100662 W CN 2021100662W WO 2022261900 A1 WO2022261900 A1 WO 2022261900A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
target
parameter information
parameter
processing method
Prior art date
Application number
PCT/CN2021/100662
Other languages
English (en)
French (fr)
Inventor
董贤东
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/100662 priority Critical patent/WO2022261900A1/zh
Priority to EP21945486.5A priority patent/EP4358564A1/en
Priority to CN202180001808.XA priority patent/CN115918120A/zh
Priority to US18/570,032 priority patent/US20240276230A1/en
Publication of WO2022261900A1 publication Critical patent/WO2022261900A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present disclosure relates to the technical field of mobile communication, and in particular, the present disclosure relates to a parameter processing method, an access point device, a station device, and a storage medium.
  • Wi-Fi Wireless Fidelity
  • the research content of Wi-Fi technology such as 320MHz bandwidth transmission, aggregation and coordination of multiple frequency bands, etc., its main application scenarios such as video transmission, augmented reality (Augmented Reality, AR), virtual reality (Virtual Reality, VR )Wait.
  • augmented reality Augmented Reality, AR
  • virtual reality Virtual Reality, VR
  • the aggregation and coordination of multiple frequency bands refers to the simultaneous communication between devices in 2.4GHz, 5.8GHz, 6GHz and other frequency bands.
  • MAC Media Access Control
  • the aggregation and coordination of multiple frequency bands is expected to support low-latency transmission.
  • the multi-band aggregation and coordination technology will support a maximum bandwidth of 320MHz (160MHz+160MHz). In addition, it may also support 240MHz (160MHz+80MHz) and other bandwidths supported by existing standards.
  • the access point (Access Point, AP) and the station (Station, STA) in the wireless communication system can be a multi-link device (Multi-Link Device, MLD), and MLD supports simultaneous transmission under multiple connections at the same time. and/or receive functionality. Therefore, there may be multiple connections between the AP MLD and the STA MLD for communication.
  • AP Access Point
  • STA station
  • MLD Multi-Link Device
  • SR spatial reuse
  • Embodiments of the present disclosure provide a parameter processing method, an access point device, a station device, and a storage medium, so as to provide an SR mechanism supporting multi-connection communication.
  • an embodiment of the present disclosure provides a parameter processing method, which is applied to an access point device supporting multiple connections, and the method includes:
  • the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device;
  • the SR parameter information includes a station connected to each of the communication connections Corresponding target SR parameter information.
  • an embodiment of the present disclosure also provides a parameter processing method, which is applied to a site, and the method includes:
  • the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information corresponding to each station of the communication connection Target SR parameter information.
  • an embodiment of the present disclosure also provides an access point device, where the access point device is an access point device supporting multiple connections, and the device includes:
  • a sending module configured to send a target wireless frame; wherein, the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each of the The target SR parameter information corresponding to the site of the above-mentioned communication connection.
  • an embodiment of the present disclosure also provides a site device, where the device includes:
  • a receiving module configured to receive a target wireless frame; wherein, the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes Target SR parameter information corresponding to the connected site.
  • An embodiment of the present disclosure also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and operable on the processor. described method.
  • Embodiments of the present disclosure also provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, one or more of the methods described in the embodiments of the present disclosure are implemented. .
  • the target wireless frame is sent through the AP MLD, and the target wireless frame carries the spatial multiplexing SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each Target SR parameter information corresponding to the site of the communication connection described in Article 2; based on the target SR parameter information, spatial multiplexing in a multi-connection communication scenario is realized, and system throughput is improved.
  • Fig. 1 is one of the flowcharts of the parameter processing method provided by the embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a first example of an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a second example of an embodiment of the present disclosure.
  • FIG. 4 is the second flowchart of the parameter processing method provided by the embodiment of the present disclosure.
  • FIG. 5 is the third flowchart of the parameter processing method provided by the embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of an access point device provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a site device provided by an embodiment of the present disclosure.
  • Fig. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a parameter processing method, optionally, the method can be applied to an access point device (AP or AP MLD) supporting multiple connections, and the method may include the following steps :
  • Step 101 sending a target wireless frame; wherein, the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes Target SR parameter information corresponding to the connected site.
  • the target radio frame may be sent in one of the communication connections.
  • a Basic Service Set can consist of an AP and one or more stations (Station, STA) communicating with the AP.
  • a basic service set can be connected to the distribution system (Distribution System, DS) through its AP, and then connected to another basic service set to form an extended service set (Extended Service Set, ESS).
  • Distribution System Distribution System
  • ESS Extended Service Set
  • the AP and the STA may support multi-connection devices, for example, may be represented as AP MLD and non-AP MLD respectively.
  • AP MLD AP MLD
  • non-AP MLD non-AP MLD
  • AP MLD may represent an access point supporting a multi-connection communication function
  • a non-AP MLD may represent a station supporting a multi-connection communication function
  • AP MLD can work under three connections, such as AP1, AP2 and AP3 shown in Figure 2, each AP can work on connection 1, connection 2 and connection 3 respectively; non-AP MLD can also work on Under three connections, STA1, STA2, and STA3 shown in FIG. 2 , STA1 works on connection 1, STA2 works on connection 2, and STA3 works on connection 3.
  • Link 1 to Link 3 can be multiple connections at different frequencies, for example, connections at 2.4GHz, 5GHz, and 6GHz, or several connections at the same or different bandwidths at 2.4GHz. Additionally, multiple channels can exist under each connection. It can be understood that the communication scenario shown in FIG. 2 is only exemplary, and the disclosed concept is not limited thereto.
  • the AP MLD can be connected to multiple non-AP MLDs, or under each connection, the AP can communicate with multiple non-AP MLDs. other types of sites to communicate with.
  • the AP MLD sends target wireless frames to the non-AP MLD, such as Beacon frames, Probe Response frames, and ML Probe Response frames.
  • AP MLD carries the SR parameter information in the ML information element (Information Element), and carries the ML information element in the target wireless frame, and sends the target wireless frame to the corresponding communication link (or communication link) site.
  • the SR parameter information includes parameter information related to spatial multiplexing of multiple connections supported by the AP MLD, and the parameter information is used for spatial multiplexing between the AP MLD and the station during data interaction.
  • the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections with the access point device; that is, the target wireless frame includes SR parameters of multiple connections Information, both AP MLD and STA MLD work in a multi-connection scenario, and carry the SR parameter information of each connection through the target wireless frame to support spatial multiplexing in a multi-connection scenario.
  • the AP MLD may select a connection as a sending channel, and send the target wireless frame to the STA MLD.
  • the SR parameter information includes target SR parameter information corresponding to each station of the communication connection, and as an optional embodiment, the target SR parameter information corresponding to each station of the communication connection is different. That is to say, there are different parameter parts in the SR parameter information corresponding to each communication connection, that is, the target SR parameter information.
  • the APs under each connection of the AP MLD are configured to belong to different basic service sets.
  • BSS1 includes AP1 and STA1
  • BSS2 includes AP2 and STA2.
  • the target SR parameter information is, for example, a spatial multiplexing group basic service set identification bitmap (SRG BSS Color Bitmap).
  • SRG BSS Color Bitmap spatial multiplexing group basic service set identification bitmap
  • the SR parameter information also includes SR parameter information common to all stations (hereinafter referred to as general SR parameter information), such as element identifier and element identifier extension.
  • general SR parameter information SR parameter information common to all stations
  • Each station receives the general SR parameter information and its own target SR parameter information, and performs spatial multiplexing with AP MLD according to the SR parameter information during data interaction.
  • the AP MLD sends the target wireless frame, and the target wireless frame carries the spatial multiplexing SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each The target SR parameter information corresponding to the site of the communication connection; based on the target SR parameter information, spatial multiplexing in a multi-connection communication scenario is realized, and system throughput is improved.
  • the target SR parameter information includes:
  • At least one of the spatial multiplexing group basic service set identification bitmap SRG BSS Color Bitmap information and the spatial multiplexing group partial basic service set identification bitmap SRG Partial BSSID Bitmap information are included in the spatial multiplexing group basic service set identification bitmap SRG BSS Color Bitmap information and the spatial multiplexing group partial basic service set identification bitmap SRG Partial BSSID Bitmap information.
  • the SR parameter information includes the SRG BSS Color Bitmap and SRG Partial BSSID corresponding to each site At least one kind of Bitmap, that is, respectively indicating different SR parameter information under each connection, so as to realize spatial multiplexing in a multi-connection scenario. Furthermore, since each AP subordinate to the same APMLD does not belong to the same BSS, the BSScolor value or BSSID generated by it is also different, and also belongs to different SRGBSScolorbitmap or different SRGpartialBSSIDbitmap.
  • an embodiment of the present disclosure also provides a parameter processing method.
  • the method is applicable to an access point device (AP or AP MLD) that supports multiple connections, and the method may include the following steps:
  • Step 401 determine the target radio frame corresponding to each station.
  • the AP MLD Before sending the target wireless frame, the AP MLD first generates the target wireless frame; the AP MLD determines the general SR parameter information of the station and the target SR parameter information of each station associated with each AP MLD, and generates and sends the target wireless frame.
  • APMLD may be associated with multiple sites under each connection.
  • the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes target SR parameters corresponding to the stations of each of the communication connections information.
  • the SR parameter information in the target radio frame includes general SR parameter information and target SR parameter information, and the general SR parameter information includes element identifiers, element identifier extensions, and the like.
  • Each station receives the general SR parameter information and its own target SR parameter information, and performs spatial multiplexing with AP MLD according to the SR parameter information during data interaction.
  • the station can obtain information such as SRG BSS color information or SRG Partial BSSID through signaling interaction.
  • Step 402 sending the target wireless frame.
  • the target radio frame may be sent in one of the communication connections.
  • the target radio frame includes a multi-connection ML information element
  • the ML information element includes at least one of Multi-Link Control information, site configuration per-STA profile information, and link info Link info.
  • Multi-Link Control information in addition to Multi-Link Control information, per-STA profile information and Link info, other information may also be included in the ML information element; as a third example, other information and the number of bytes of each information such as the element identifier in Table 1, The length, element identifier extension, and general information are shown in:
  • the AP carries SR parameter information under each connection, which is specifically included in the per-STA profile of the ML information element.
  • the format of the per-STA profile information is shown in Table 2:
  • the STA profile field carries SR parameter information.
  • the SR parameter information also includes other information that can provide the station in the space multiplexing operation, such as element identification (Element ID), length (Length), space multiplexing Control (SR Control), spatial multiplexing group OBSS PD minimum transmission power offset value (SRG OBSS PDMin Offset), spatial multiplexing group OBSS PD maximum transmission power offset value (SRG OBSS PD Max Offset), and the aforementioned SRG BSS Color Bitmap, SRG Partial BSSID Bitmap, etc., will not be described here.
  • the ML information element further includes the SR indication information, and the SR indication information indicates whether the SR parameter information exists in the target radio frame; that is, the SR indication information indicates that the spatial multiplexing It is used at the MLD level; the SR indication information is carried in the Multi-Link Control information or STA Control STA Control information.
  • the format of the Multi-Link Control information is shown in Table 3. If the SR indication information is carried in the Multi-Link Control information, for example, it is carried in the Reserved field.
  • the SR indication information is carried in the per-STA profile information, as a fifth example, the format of the per-STA profile information is as shown in Table 4, wherein the STA Control field includes a Reserved field whose number of bytes is 6 , the SR indication information can be carried here.
  • DTIM Delivery Traffic Indication Map
  • NSTR Non Simultaneous Transmit And Receive.
  • the target SR parameter information is carried in the Link info, that is, the target SR parameter information of each site is carried in the Presence Bitmap field.
  • the target SR parameter information of each site is carried in the Presence Bitmap field.
  • target SR parameter information can be carried in the Reserved field.
  • the target wireless frame includes at least one of a Beacon frame, a probe response Probe Response frame, a multi-connection probe response ML Probe Response frame, an association request Association Response frame, and a reassociation request Reassociation Response frame
  • the target radio frame may also include other forms, which are not specifically limited in this embodiment of the present disclosure.
  • the AP MLD sends the target wireless frame, and the target wireless frame carries the spatial multiplexing SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each The target SR parameter information corresponding to the site of the communication connection; based on the target SR parameter information, spatial multiplexing in a multi-connection communication scenario is realized, and system throughput is improved.
  • an embodiment of the present disclosure also provides a parameter processing method, which is applied to a station STA.
  • the STA may be a device that provides voice and/or data connectivity to the user, a handheld device with a wireless connection function, or a device connected to Other processing equipment of wireless modem etc., described method comprises:
  • Step 501 receiving a target wireless frame; wherein, the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information about each of the communication connections Target SR parameter information corresponding to the site.
  • a BSS may consist of an AP and one or more STAs communicating with the AP.
  • a BSS can connect to DS through its AP, and then access to another base BSS to form an extended service set ESS.
  • the AP and the STA may support multi-connection devices, for example, may be represented as AP MLD and non-AP MLD respectively.
  • AP MLD AP MLD
  • non-AP MLD non-AP MLD
  • AP MLD may represent an access point supporting a multi-connection communication function
  • a non-AP MLD may represent a station supporting a multi-connection communication function
  • AP MLD can work under three connections, such as AP1, AP2 and AP3 shown in Figure 2, each AP can work on connection 1, connection 2 and connection 3 respectively; non-AP MLD can also work on Under three connections, STA1, STA2, and STA3 shown in FIG. 2 , STA1 works on connection 1, STA2 works on connection 2, and STA3 works on connection 3.
  • Link 1 to Link 3 can be multiple connections at different frequencies, for example, connections at 2.4GHz, 5GHz, and 6GHz, or several connections at the same or different bandwidths at 2.4GHz. Additionally, multiple channels can exist under each connection. It can be understood that the communication scenario shown in FIG. 2 is only exemplary, and the disclosed concept is not limited thereto.
  • the AP MLD can be connected to multiple non-AP MLDs, or under each connection, the AP can communicate with multiple non-AP MLDs. other types of sites to communicate with.
  • non-AP MLD receives target wireless frames sent by AP MLD, such as Beacon frames, Probe Response frames, ML Probe Response frames, etc.
  • the AP MLD carries the SR parameter information in the MLInformation Element, and carries the ML information element in the target wireless frame, and sends the target wireless frame to the corresponding STA under the communication connection (or communication link), then the STA is in After receiving the target radio frame, acquire SR parameter information from the target radio frame.
  • the SR parameter information includes parameter information related to spatial multiplexing of multiple connections supported by the AP MLD, and the parameter information is used for spatial multiplexing between the AP MLD and the station during data interaction.
  • the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections with the access point device; that is, the target wireless frame includes SR parameters of multiple connections Information, both AP MLD and STA MLD work in a multi-connection scenario, and carry the SR parameter information of each connection through the target wireless frame to support spatial multiplexing in a multi-connection scenario.
  • the AP MLD may select a connection as a sending channel, and send the target wireless frame to the STA MLD.
  • the SR parameter information includes target SR parameter information corresponding to each station of the communication connection, and as an optional embodiment, the target SR parameter information corresponding to each station of the communication connection is different. That is to say, there are different parameter parts in the SR parameter information corresponding to each communication connection, that is, target SR parameter information.
  • the AP under each connection of the AP MLD is configured to belong to different basic service sets, and for each site, it corresponds to a different BSS, so it corresponds to different target SR parameter information.
  • the target SR parameter information is, for example, SRG BSS Color Bitmap. In this way, the SR parameter information includes the SRG BSS Color Bitmap corresponding to each site.
  • the SR parameter information also includes general SR parameter information, such as element identifiers, element identifier extensions, and the like.
  • Each station receives the general SR parameter information and its own target SR parameter information, and performs spatial multiplexing with AP MLD according to the SR parameter information during data interaction.
  • the station receives the target wireless frame, and the target wireless frame carries the spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each of the communication Target SR parameter information corresponding to the connected site; based on the target SR parameter information, spatial multiplexing in a multi-connection communication scenario is realized, and system throughput is improved.
  • the target SR parameter information includes:
  • At least one of the spatial multiplexing group basic service set identification bitmap SRG BSS Color Bitmap information and the spatial multiplexing group partial basic service set identification bitmap SRG Partial BSSID Bitmap information are included in the spatial multiplexing group basic service set identification bitmap SRG BSS Color Bitmap information and the spatial multiplexing group partial basic service set identification bitmap SRG Partial BSSID Bitmap information.
  • the SR parameter information includes the SRG BSS Color Bitmap and SRG Partial BSSID corresponding to each site At least one kind of Bitmap, that is, respectively indicating different SR parameter information under each connection, so as to realize spatial multiplexing in a multi-connection scenario. Furthermore, since each AP subordinate to the same APMLD does not belong to the same BSS, the BSScolor value or BSSID generated by it is also different, and also belongs to different SRGBSScolorbitmap or different SRGpartialBSSIDbitmap.
  • the target radio frame includes a multi-connection ML information element
  • the ML information element includes at least one of Multi-Link Control information, site configuration per-STA profile information, and link info Link info.
  • the SR parameter information also includes other information that can provide the site in the space multiplexing operation, such as Element ID, Length, SR Control, SRG OBSS PDMin Offset, SRG OBSS PD Max Offset and the aforementioned SRG BSS Color Bitmap, SRG Partial BSSID Bitmap, etc., will not be described here.
  • the AP carries SR parameter information under each connection, which is specifically included in the per-STA profile of the ML information element.
  • the format of the per-STA profile information is shown in the aforementioned Table 2, and will not be described here.
  • the ML information element further includes the SR indication information, and the SR indication information indicates whether the SR parameter information exists in the target radio frame; that is, the SR indication information indicates spatial multiplexing It is MLD level; the SR indication information is carried in the Multi-Link Control information or per-STA profile information.
  • the format of the Multi-Link Control information is as shown in the foregoing Table 3. If the SR indication information is carried in the Multi-Link Control information, for example, it is carried in the Reserved field. If the SR indication information is carried in the per-STA profile information, refer to the aforementioned fifth example, the format of the per-STA profile information is as shown in the aforementioned Table 4, wherein the number of bytes included in the per-STA profile field can be The SR indication information can be carried here.
  • the target SR parameter information is carried in the Link info, that is, the target SR parameter information of each site is carried in the Presence Bitmap field.
  • the target SR parameter information is carried in the Link info, that is, the target SR parameter information of each site is carried in the Presence Bitmap field.
  • the target SR parameter information of each site is carried in the Presence Bitmap field.
  • target SR parameter information can be carried in the Reserved field.
  • the target wireless frame includes at least one of a Beacon frame, a probe response Probe Response frame, a multi-connection probe response ML Probe Response frame, an association request Association Response frame, and a reassociation request Reassociation Response frame . It can be understood that, besides this, the target wireless frame may also include other forms, which are not specifically limited in this embodiment of the present disclosure.
  • the station receives the target wireless frame, and the target wireless frame carries the spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each of the communication Target SR parameter information corresponding to the connected site; based on the target SR parameter information, spatial multiplexing in a multi-connection communication scenario is realized, and system throughput is improved.
  • an embodiment of the present disclosure also provides an access point device, the access point device is an access point device supporting multiple connections, and the device includes:
  • the sending module 601 is configured to send a target wireless frame; wherein, the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each Target SR parameter information corresponding to the site of the communication connection.
  • a BSS may consist of an AP and one or more stations communicating with the AP.
  • a basic service set can be connected to a DS through its AP, and then connected to another basic service set to form an ESS.
  • the AP and the STA may support multi-connection devices, for example, may be represented as AP MLD and non-AP MLD respectively.
  • AP MLD AP MLD
  • non-AP MLD non-AP MLD
  • AP MLD may represent an access point supporting a multi-connection communication function
  • a non-AP MLD may represent a station supporting a multi-connection communication function
  • AP MLD can work under three connections, such as AP1, AP2 and AP3 shown in Figure 2, each AP can work on connection 1, connection 2 and connection 3 respectively; non-AP MLD can also work on Under three connections, STA1, STA2, and STA3 shown in FIG. 2 , STA1 works on connection 1, STA2 works on connection 2, and STA3 works on connection 3.
  • Link 1 to Link 3 can be multiple connections at different frequencies, for example, connections at 2.4GHz, 5GHz, and 6GHz, or several connections at the same or different bandwidths at 2.4GHz. Additionally, multiple channels can exist under each connection. It can be understood that the communication scenario shown in FIG. 2 is only exemplary, and the disclosed concept is not limited thereto.
  • the AP MLD can be connected to multiple non-AP MLDs, or under each connection, the AP can communicate with multiple non-AP MLDs. other types of sites to communicate with.
  • AP MLD sends target wireless frames to non-AP MLD, such as Beacon frames, Probe Response frames, ML Probe Response frames, etc.
  • the AP MLD carries the SR parameter information in the MLInformation Element, and carries the ML information element in the target wireless frame, and sends the target wireless frame to the corresponding station under the communication connection (or communication link).
  • the SR parameter information includes parameter information related to spatial multiplexing of multiple connections supported by the AP MLD, and the parameter information is used for spatial multiplexing between the AP MLD and the station during data interaction.
  • the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections with the access point device; that is, the target wireless frame includes SR parameters of multiple connections Information, both AP MLD and STA MLD work in a multi-connection scenario, and carry the SR parameter information of each connection through the target wireless frame to support spatial multiplexing in a multi-connection scenario.
  • the AP MLD may select a connection as a sending channel, and send the target wireless frame to the STA MLD.
  • the SR parameter information includes target SR parameter information corresponding to each station of the communication connection, and as an optional embodiment, the target SR parameter information corresponding to each station of the communication connection is different. That is to say, there are different parameter parts in the SR parameter information corresponding to each communication connection, that is, the target SR parameter information.
  • the APs under each connection of the AP MLD are configured to belong to different basic service sets.
  • BSS1 includes AP1 and STA1
  • BSS2 includes AP2 and STA2.
  • the target SR parameter information is, for example, SRG BSS Color Bitmap. In this way, the SR parameter information includes the SRG BSS Color Bitmap corresponding to each site.
  • the SR parameter information also includes SR parameter information common to all sites (hereinafter referred to as general SR parameter information), such as element identification and element identification extension.
  • general SR parameter information SR parameter information common to all sites
  • Each station receives the general SR parameter information and its own target SR parameter information, and performs spatial multiplexing with AP MLD according to the SR parameter information during data interaction.
  • the target SR parameter information corresponding to the stations of each communication connection is different.
  • the target SR parameter information includes:
  • At least one of the spatial multiplexing group basic service set identification bitmap SRG BSS Color Bitmap information and the spatial multiplexing group partial basic service set identification bitmap SRG Partial BSSID Bitmap information are included in the spatial multiplexing group basic service set identification bitmap SRG BSS Color Bitmap information and the spatial multiplexing group partial basic service set identification bitmap SRG Partial BSSID Bitmap information.
  • the device includes:
  • a wireless frame determining module configured to determine the target wireless frame corresponding to each of the stations.
  • the target radio frame includes a multi-connection ML information element
  • the ML information element includes at least one of Multi-Link Control information, site configuration per-STA profile information, and link info Link info.
  • the ML information element further includes the SR indication information, and the SR indication information indicates whether the SR parameter information exists in the target radio frame;
  • the SR indication information is carried in the Multi-Link Control information or in the STA Control information.
  • the target SR parameter information is carried in the Link info.
  • the target wireless frame includes at least one of a Beacon frame, a probe response Probe Response frame, a multi-connection probe response ML Probe Response frame, an association request Association Response frame, and a reassociation request Reassociation Response frame kind.
  • the sending module 601 sends a target wireless frame, and the target wireless frame carries the spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each Target SR parameter information corresponding to the site of the communication connection described in Article 2; based on the target SR parameter information, spatial multiplexing in a multi-connection communication scenario is realized, and system throughput is improved.
  • An embodiment of the present disclosure also provides a parameter processing device, which is applied to an access point device supporting multiple connections, and the device includes:
  • a wireless frame sending module configured to send a target wireless frame; wherein, the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each The target SR parameter information corresponding to the site of the communication connection.
  • the apparatus also includes other modules of the access point device in the foregoing embodiments, which will not be repeated here.
  • an embodiment of the present disclosure also provides a site device, the device includes:
  • the receiving module 701 is configured to receive a target wireless frame; wherein, the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each of the Target SR parameter information corresponding to the communication connected station.
  • a BSS may consist of an AP and one or more STAs communicating with the AP.
  • a BSS can connect to DS through its AP, and then access to another base BSS to form an extended service set ESS.
  • the AP and the STA may support multi-connection devices, for example, may be represented as AP MLD and non-AP MLD respectively.
  • AP MLD AP MLD
  • non-AP MLD non-AP MLD
  • the non-AP MLD receives the target wireless frames sent by the AP MLD, such as Beacon frames, Probe Response frames, ML Probe Response frames, etc.
  • the AP MLD carries the SR parameter information in the MLInformation Element, and carries the ML information element in the target wireless frame, and sends the target wireless frame to the corresponding STA under the communication connection (or communication link), then the STA in After receiving the target radio frame, acquire SR parameter information from the target radio frame.
  • the SR parameter information includes parameter information related to spatial multiplexing of multiple connections supported by the AP MLD, and the parameter information is used for spatial multiplexing between the AP MLD and the station during data interaction.
  • the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections with the access point device; that is, the target wireless frame includes SR parameters of multiple connections Information, both AP MLD and STA MLD work in a multi-connection scenario, and carry the SR parameter information of each connection through the target wireless frame to support spatial multiplexing in a multi-connection scenario.
  • the AP MLD may select a connection as a sending channel, and send the target wireless frame to the STA MLD.
  • the SR parameter information includes target SR parameter information corresponding to each station of the communication connection, and as an optional embodiment, the target SR parameter information corresponding to each station of the communication connection is different. That is to say, there are different parameter parts in the SR parameter information corresponding to each communication connection, that is, the target SR parameter information.
  • the AP under each connection of the AP MLD is configured to belong to different basic service sets, and for each site, it corresponds to a different BSS, so it corresponds to different target SR parameter information.
  • the target SR parameter information is, for example, SRG BSS Color Bitmap. In this way, the SR parameter information includes the SRG BSS Color Bitmap corresponding to each site.
  • the SR parameter information also includes general SR parameter information, such as element identifiers, element identifier extensions, and the like.
  • Each station receives the general SR parameter information and its own target SR parameter information, and performs spatial multiplexing with AP MLD according to the SR parameter information during data interaction.
  • the target SR parameter information corresponding to the stations of each communication connection is different.
  • the target SR parameter information includes:
  • At least one of the spatial multiplexing group basic service set identification bitmap SRG BSS Color Bitmap information and the spatial multiplexing group partial basic service set identification bitmap SRG Partial BSSID Bitmap information are included in the spatial multiplexing group basic service set identification bitmap SRG BSS Color Bitmap information and the spatial multiplexing group partial basic service set identification bitmap SRG Partial BSSID Bitmap information.
  • the target radio frame includes a multi-connection ML information element
  • the ML information element includes at least one of Multi-Link Control information, site configuration per-STA profile information, and link info Link info.
  • the ML information element further includes the SR indication information, and the SR indication information indicates whether the SR parameter information exists in the target radio frame;
  • the SR indication information is carried in the Multi-Link Control information or per-STA profile information.
  • the target SR parameter information is carried in the Link info.
  • the target wireless frame includes at least one of a Beacon frame, a probe response Probe Response frame, a multi-connection probe response ML Probe Response frame, an association request Association Response frame, and a reassociation request Reassociation Response frame kind.
  • the receiving module 701 receives the target wireless frame, and the target wireless frame carries the spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes Target SR parameter information corresponding to the site of the communication connection; based on the target SR parameter information, spatial multiplexing in a multi-connection communication scenario is realized, and system throughput is improved.
  • An embodiment of the present disclosure also provides a parameter processing device, which is applied to a site device, and the device includes:
  • a wireless frame receiving module configured to receive a target wireless frame; wherein, the target wireless frame carries spatially multiplexed SR parameter information of at least two communication connections of the access point device; the SR parameter information includes information related to each of the The target SR parameter information corresponding to the site of the above-mentioned communication connection.
  • the apparatus also includes other modules of the access point device in the foregoing embodiments, which will not be repeated here.
  • the method and the device are based on the same idea. Since the principles of the method and the device to solve problems are similar, the implementation of the device and the method can be referred to each other, and repeated descriptions will not be repeated.
  • the embodiments of the present disclosure also disclose an electronic device, which may include but not limited to: a processor and a memory; a memory for storing computer programs; A processor, configured to execute the parameter processing method shown in any optional embodiment of the present disclosure by invoking a computer program.
  • an electronic device is also disclosed.
  • the electronic device 8000 shown in FIG. 8 may be a server, and includes: a processor 8001 and a memory 8003 .
  • the processor 8001 is connected to the memory 8003 , such as through a bus 8002 .
  • the electronic device 8000 may further include a transceiver 8004 . It should be noted that in practical applications, the transceiver 8004 is not limited to one, and the structure of the electronic device 8000 does not limit the embodiment of the present disclosure.
  • Processor 8001 can be CPU (Central Processing Unit, central processing unit), general purpose processor, DSP (Digital Signal Processor, data signal processor), ASIC (Application Specific Integrated Circuit, application specific integrated circuit), FPGA (Field Programmable Gate Array , Field Programmable Gate Array) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor 8001 may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and the like.
  • Bus 8002 may include a path for carrying information between the components described above.
  • the bus 8002 may be a PCI (Peripheral Component Interconnect, Peripheral Component Interconnect Standard) bus or an EISA (Extended Industry Standard Architecture, Extended Industry Standard Architecture) bus, etc.
  • the bus 8002 can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 8 , but it does not mean that there is only one bus or one type of bus.
  • Memory 8003 can be ROM (Read Only Memory, read-only memory) or other types of static storage devices that can store static information and instructions, RAM (Random Access Memory, random access memory) or other types of memory that can store information and instructions Dynamic storage devices can also be EEPROM (Electrically Erasable Programmable Read Only Memory, Electrically Erasable Programmable Read Only Memory), CD-ROM (Compact Disc Read Only Memory, CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, blu-ray disc, etc.), magnetic disk storage medium or other magnetic storage device, or a computer that can be used to carry or store desired program code in the form of instructions or data structures and can be accessed by a computer Any other medium, but not limited to it.
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • optical disc storage including compressed optical disc, laser disc, optical disc, digital versatile disc, blu
  • the memory 8003 is used to store application program codes for implementing the solutions of the present disclosure, and the execution is controlled by the processor 8001 .
  • the processor 8001 is configured to execute the application program codes stored in the memory 8003, so as to implement the contents shown in the foregoing method embodiments.
  • electronic devices include but are not limited to: mobile phones, notebook computers, digital broadcast receivers, PDA (personal digital assistants), PAD (tablet computers), PMP (portable multimedia players), vehicle-mounted terminals (such as vehicle-mounted navigation terminals), etc.
  • Mobile terminals such as digital TVs, desktop computers, etc. and fixed terminals.
  • the electronic device shown in FIG. 8 is only an example, and should not limit the functions and scope of use of the embodiments of the present disclosure.
  • the server provided in this disclosure may be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or provide cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network services, Cloud servers for basic cloud computing services such as cloud communications, middleware services, domain name services, security services, CDN, and big data and artificial intelligence platforms.
  • the terminal may be a smart phone, a tablet computer, a laptop computer, a desktop computer, a smart speaker, a smart watch, etc., but is not limited thereto.
  • the terminal and the server may be connected directly or indirectly through wired or wireless communication, which is not limited in the present disclosure.
  • the embodiment of the present disclosure discloses a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • the computer program When the computer program is run on a computer, the computer can execute the corresponding content in the foregoing method embodiments.
  • the above-mentioned computer-readable medium in the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the above two.
  • a computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof. More specific examples of computer-readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer diskettes, hard disks, random access memory (RAM), read-only memory (ROM), erasable Programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave carrying computer-readable program code therein. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can transmit, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted by any appropriate medium, including but not limited to wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device, or may exist independently without being incorporated into the electronic device.
  • the above-mentioned computer-readable medium carries one or more programs, and when the above-mentioned one or more programs are executed by the electronic device, the electronic device is made to execute the methods shown in the above-mentioned embodiments.
  • a computer program product or computer program comprising computer instructions stored in a computer readable storage medium.
  • the processor of the computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the parameter configuration method and the parameter determination method provided in the above various optional implementation modes.
  • Computer program code for carrying out the operations of the present disclosure can be written in one or more programming languages, or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional Procedural Programming Language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider). Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider such as AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each block in a flowchart or block diagram may represent a module, program segment, or portion of code that contains one or more logical functions for implementing specified executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by a dedicated hardware-based system that performs the specified functions or operations , or may be implemented by a combination of dedicated hardware and computer instructions.
  • the modules involved in the embodiments described in the present disclosure may be implemented by software or by hardware. Wherein, the name of the module does not constitute a limitation of the module itself under certain circumstances, for example, the A module may also be described as "the A module for performing the B operation".

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例涉及移动通信技术领域,提供了一种参数处理方法及接入点设备、站点设备及存储介质。所述方法应用于支持多连接的接入点设备,所述方法包括:发送目标无线帧;其中,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。本公开实施例实现了多连接通信场景下的空间复用,提升了系统吞吐量。

Description

参数处理方法及接入点设备、站点设备及存储介质 技术领域
本公开涉及移动通信技术领域,具体而言,本公开涉及一种参数处理方法及接入点设备、站点设备及存储介质。
背景技术
随着移动通信技术的迅速发展,无线保真(Wireless Fidelity,Wi-Fi)技术在传输速率以及吞吐量等方面已经取得了巨大的进步。目前,Wi-Fi技术所研究的内容例如320MHz的带宽传输、多个频段的聚合及协同等,其主要的应用场景例如视频传输、增强现实(Augmented Reality,AR)、虚拟现实(Virtual Reality,VR)等。
具体地,多个频段的聚合及协同是指设备之间同时在2.4GHz、5.8GHz、6GHz及其他频段下进行通信,对于设备之间同时在多个频段下通信的场景,还需要定义新的介质访问控制(Media Access Control,MAC)机制来进行管理。此外,多频段的聚合及协同有望能够支持低时延传输。
目前,多频段的聚合及协同技术中,将支持的最大带宽为320MHz(160MHz+160MHz),此外,还可能会支持240MHz(160MHz+80MHz)及现有标准支持的其它带宽。
在目前所研究的Wi-Fi技术中,会支持多连接通信。例如,在无线通信系统中的接入点(Access Point,AP)和站点(Station,STA)可以是多连接设备(Multi-Link Device,MLD),MLD支持在同一时刻能够在多连接下同时发送和/或接收的功能。因此,AP MLD与STA MLD之间可以存在多个连接进行通信。
此外,为了提高频谱利用率及适应高密集通信环境,引入了空间复用(Spatial Reuse,SR)技术,然而,现有的SR机制仅支持单连接应用, 而不适用于多连接通信。
发明内容
本公开实施例提供了一种参数处理方法及接入点设备、站点设备及存储介质,以提供一种支持多连接通信的SR机制。
一方面,本公开实施例提供了一种参数处理方法,应用于支持多连接的接入点设备,所述方法包括:
发送目标无线帧;其中,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
另一方面,本公开实施例还提供了一种参数处理方法,应用于站点,所述方法包括:
接收目标无线帧;其中,所述目标无线帧中携带接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
另一方面,本公开实施例还提供了一种接入点设备,所述接入点设备为支持多连接的接入点设备,所述设备包括:
发送模块,用于发送目标无线帧;其中,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
另一方面,本公开实施例还提供了一种站点设备,所述设备包括:
接收模块,用于接收目标无线帧;其中,所述目标无线帧中携带接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
本公开实施例还提供了一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,处理器执行程序时实现如本公开实施例中一个或多个所述的方法。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本公开实施例中一个或多个所述的方法。
本公开实施例中,通过AP MLD发送目标无线帧,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息;基于所述目标SR参数信息,实现多连接通信场景下的空间复用,提升系统吞吐量。
本公开实施例附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的参数处理方法的流程图之一;
图2为本公开实施例的第一示例的示意图;
图3为本公开实施例的第二示例的示意图;
图4为本公开实施例提供的参数处理方法的流程图之二;
图5为本公开实施例提供的参数处理方法的流程图之三;
图6为本公开实施例提供的一种接入点设备结构示意图;
图7为本公开一个实施例提供的一种站点设备的结构示意图;
图8为本公开一个实施例提供的一种电子设备的结构示意图。
具体实施方式
本公开实施例中术语“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本公开实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,并不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1中所示,本公开实施例提供了一种参数处理方法,可选地,所述方法可应用于支持多连接的接入点设备(AP或AP MLD),该方法可以包括以下步骤:
步骤101,发送目标无线帧;其中,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。可选地,可以在一个所述通信连接中发送所述目标无线帧。
在无线局域网中,一个基本服务集(Basic Service Set,BSS)可以由AP以及与AP通信的一个或多个站点(Station,STA)构成。一个基本服务集可以通过其AP连接到分配系统(Distribution System,DS),然后再接入到另一个基本服务集,构成扩展的服务集(Extended Service Set,ESS)。
在本公开实施例中,AP和STA可以支持多连接的设备,例如,可以被分别表示为AP MLD和non-AP MLD。为了便于描述,在下文中,主要 描述一个AP与一个STA在多连接下进行通信的示例,然而,本公开的示例实施例不限于此。
作为第一示例,参见图2,AP MLD可以表示支持多连接通信功能的接入点,non-AP MLD可以表示支持多连接通信功能的站点。参照图2,AP MLD可以工作在三个连接下,如图2所示的AP1、AP2和AP3,每个AP可以分别工作在连接1、连接2以及连接3;non-AP MLD也可以工作在三个连接下,如图2所示的STA1、STA2和STA3,STA1工作在连接1、STA2工作在连接2以及STA3工作在连接3。在图2的示例中,假设AP1与STA1通过对应的第一连接Link 1进行通信,类似地,AP2与STA2通过对应的第二连接Link 2进行通信,AP通过第三连接Link 3与STA3进行通信。此外,Link 1至Link 3可以分别是不同频率下的多个连接,例如,2.4GHz、5GHz、6GHz下的连接,或2.4GHz下的几个相同或不同带宽的连接。此外,在每个连接下可以存在多个信道。可以理解的是,图2所示的通信场景仅是示例性的,本公开构思不限于此,例如,AP MLD可以连接到多个non-AP MLD,或者在每个连接下,AP可以与多个其他类型的站点进行通信。
在多连接的场景中,AP MLD向non-AP MLD发送目标无线帧,目标无线帧例如信标(Beacon)帧、探测响应(Probe Response)帧、多连接探测响应(ML Probe Response)帧等。例如AP MLD将SR参数信息携带在ML信息元素(Information Element)中,并将ML信息元素携带在目标无线帧中,并在所述通信连接(或通信链路)下发送目标无线帧至对应的站点。
其中,SR参数信息包括所述AP MLD支持的多个连接的空间复用相关的参数信息,所述参数信息用于所述AP MLD与站点在数据交互时进行空间复用。本公开实施例中,所述目标无线帧中携带有与所述接入点设备的至少两条通信连接的空间复用SR参数信息;也就是说,目标无线帧中包括多个连接的SR参数信息,AP MLD与STA MLD均工作在多连接场景下,通过目标无线帧携带每个连接的SR参数信息,以支持多连接场景 的进行空间复用。可选地,AP MLD可选择一个连接作为发送通道,将目标无线帧发送至STA MLD。
所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息,作为一个可选实施例,每条所述通信连接的站点对应的所述目标SR参数信息不同。也就是说,每个通信连接所对应的SR参数信息中存在不同的参数部分,即目标SR参数信息。通常情况下,AP MLD的每个连接下的AP被配置成分属于不同的基本服务集,作为第二示例,结合图3,BSS1包括AP1以及STA1,BSS2包括AP2以及STA2。而针对每个站点,其对应的不同的BSS,因此对应不同的目标SR参数信息。目标SR参数信息例如空间复用组基本服务集标识位图(SRG BSS Color Bitmap),这样,在SR参数信息中,包括与每个站点分别对应的SRG BSS Color Bitmap。
可以理解的是,SR参数信息中还包括所有站点通用的SR参数信息(后续简称通用SR参数信息),通用SR参数信息例如元素标识、元素标识扩展等。每个站点在接收到通用SR参数信息以及各自的目标SR参数信息,根据SR参数信息与AP MLD在数据交互时进行空间复用。
本公开实施例中,AP MLD发送目标无线帧,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息;基于所述目标SR参数信息,实现多连接通信场景下的空间复用,提升系统吞吐量。
作为一个可选实施例,所述目标SR参数信息包括:
空间复用组基本服务集标识位图SRG BSS Color Bitmap信息以及空间复用组部分基本服务集标识位图SRG Partial BSSID Bitmap信息中的至少一种。
针对每个站点,其对应的不同的BSS,因此对应不同的SRG BSS Color Bitmap以及SRG Partial BSSID Bitmap,这样,在SR参数信息中,包括与每个站点分别对应的SRG BSS Color Bitmap以及SRG Partial BSSID  Bitmap的至少一种,即分别指示每个连接下的不同SR参数信息,以实现多连接场景下的空间复用。更进一步地,由于从属于同一个APMLD的每个AP不属于同一个BSS,所以其所生成的BSScolor值或BSSID也不一样,也属于不同的SRGBSScolorbitmap或不同的SRGpartialBSSIDbitmap。
参见图4,本公开实施例还提供了一种参数处理方法,可选地,所述方法可应用于支持多连接的接入点设备(AP或AP MLD),该方法可以包括以下步骤:
步骤401,确定与每个站点对应的所述目标无线帧。
AP MLD在发送目标无线帧之前,首先生成目标无线帧;AP MLD确定站点的通用SR参数信息以及每个AP MLD所关联的站点各自的目标SR参数信息,生成并发送目标无线帧。其中,APMLD在每个连接下可能关联多个站点。
所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的所述站点对应的目标SR参数信息。
目标无线帧中的SR参数信息中包括通用SR参数信息以及目标SR参数信息,通用SR参数信息例如元素标识、元素标识扩展等。每个站点在接收到通用SR参数信息以及各自的目标SR参数信息,根据SR参数信息与AP MLD在数据交互时进行空间复用。此外,在接收SR参数信息之前,站点可通过信令交互获知SRG BSS color信息或SRG Partial BSSID等信息。
步骤402,发送所述目标无线帧。
可选地,可以在一个所述通信连接中发送所述目标无线帧。
在一个可选实施例中,所述目标无线帧包括多连接ML信息元素;
所述ML信息元素包括多连接控制Multi-Link Control信息、站点配置per-STA profile信息以及连接信息Link info中的至少一种。
其中,除了Multi-Link Control信息、per-STA profile信息以及Link info,ML信息元素中还可包括其他信息;作为第三示例,其他信息以及各信息的字节数目例如表1中的元素标识、长度、元素标识扩展以及通用信息所 示:
表1:
Figure PCTCN2021100662-appb-000001
此外,AP在每个连接下携带SR参数信息,具体为包含在ML信息元素的per-STA profile中,per-STA profile信息的格式如表2所示:
表2:
Figure PCTCN2021100662-appb-000002
在表2中,STA profile域中携带SR参数信息。
可以理解的是,除了表1中公开的信息内容,SR参数信息还包括可 以提供站点在空间复用操作中所需的其他信息,例如,元素标识(Element ID)、长度(Length)、空间复用控制(SR Control)、空间复用组OBSS PD最小发射功率偏置值(SRG OBSS PDMin Offset)、空间复用组OBSS PD最大发射功率偏置值(SRG OBSS PD Max Offset),以及前述SRG BSS Color Bitmap、SRG Partial BSSID Bitmap等,在此不在赘述。
在一个可选实施例中,所述ML信息元素中还包括所述SR指示信息,所述SR指示信息指示所述目标无线帧中是否存在所述SR参数信息;也即SR指示信息指示空间复用为MLD级;所述SR指示信息携带在所述Multi-Link Control信息中或STA控制STA Control信息中。
作为第四示例,Multi-Link Control信息格式如表3所示,若所述SR指示信息携带在所述Multi-Link Control信息中,例如携带在Reserved域中。
表3:
Figure PCTCN2021100662-appb-000003
若所述SR指示信息携带在所述per-STA profile信息中,作为第五示例,per-STA profile信息格式如表4所示,其中,STA Control域中包括的字节数目为6的Reserved域中,可在此处携带SR指示信息。
表4:
Figure PCTCN2021100662-appb-000004
Figure PCTCN2021100662-appb-000005
其中,DTIM表示传输指示映射(Delivery Traffic Indication Map),NSTR表示非同时发送和接收(NonSimultaneous Transmit And Receive)。
作为一个可选实施例,所述目标SR参数信息携带在所述Link info中,即每个站点各自的目标SR参数信息,携带在Presence Bitmap域中。作为第六示例,如表5所示,Presence Bitmap格式中,可在Reserved域中携带目标SR参数信息。
表5:
Figure PCTCN2021100662-appb-000006
Figure PCTCN2021100662-appb-000007
作为一个可选实施例,所述目标无线帧包括信标Beacon帧、探测响应Probe Response帧、多连接探测响应ML Probe Response帧、关联请求Association Response帧以及重关联请求Reassociation Response帧中的至少一种;可以理解的是,除此之外,目标无线帧还可能包括其他形式,本公开实施例在此不做具体限定。
本公开实施例中,AP MLD发送目标无线帧,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息;基于所述目标SR参数信息,实现多连接通信场景下的空间复用,提升系统吞吐量。
参见图5,本公开实施例还提供了一种参数处理方法,应用于站点STA,STA可以是指向用户提供语音和/或数据连通性的设备、具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备等,所述方法包括:
步骤501,接收目标无线帧;其中,所述目标无线帧中携带接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
在无线局域网中,一个BSS可以由AP以及与AP通信的一个或多个STA构成。一个BSS可以通过其AP连接到DS,然后再接入到另一个基BSS,构成扩展的服务集ESS。
在本公开实施例中,AP和STA可以支持多连接的设备,例如,可以被分别表示为AP MLD和non-AP MLD。为了便于描述,在下文中,主要描述一个AP与一个STA在多连接下进行通信的示例,然而,本公开的示例实施例不限于此。
作为第一示例,参见图2,AP MLD可以表示支持多连接通信功能的接入点,non-AP MLD可以表示支持多连接通信功能的站点。参照图2,AP MLD可以工作在三个连接下,如图2所示的AP1、AP2和AP3,每个 AP可以分别工作在连接1、连接2以及连接3;non-AP MLD也可以工作在三个连接下,如图2所示的STA1、STA2和STA3,STA1工作在连接1、STA2工作在连接2以及STA3工作在连接3。在图2的示例中,假设AP1与STA1通过对应的第一连接Link 1进行通信,类似地,AP2与STA2通过对应的第二连接Link 2进行通信,AP通过第三连接Link 3与STA3进行通信。此外,Link 1至Link 3可以分别是不同频率下的多个连接,例如,2.4GHz、5GHz、6GHz下的连接,或2.4GHz下的几个相同或不同带宽的连接。此外,在每个连接下可以存在多个信道。可以理解的是,图2所示的通信场景仅是示例性的,本公开构思不限于此,例如,AP MLD可以连接到多个non-AP MLD,或者在每个连接下,AP可以与多个其他类型的站点进行通信。
在多连接的场景中,non-AP MLD接收AP MLD发送的目标无线帧,目标无线帧例如Beacon帧、Probe Response帧、ML Probe Response帧等。例如AP MLD将SR参数信息携带在MLInformation Element中,并将ML信息元素携带在目标无线帧中,并在所述通信连接(或通信链路)下发送目标无线帧至对应的STA,则STA在接收到目标无线帧之后,从目标无线帧中获取SR参数信息。
其中,SR参数信息包括所述AP MLD支持的多个连接的空间复用相关的参数信息,所述参数信息用于所述AP MLD与站点在数据交互时进行空间复用。本公开实施例中,所述目标无线帧中携带有与所述接入点设备的至少两条通信连接的空间复用SR参数信息;也就是说,目标无线帧中包括多个连接的SR参数信息,AP MLD与STA MLD均工作在多连接场景下,通过目标无线帧携带每个连接的SR参数信息,以支持多连接场景的进行空间复用。可选地,AP MLD可选择一个连接作为发送通道,将目标无线帧发送至STA MLD。
所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息,作为一个可选实施例,每条所述通信连接的站点对应的所述目标SR参数信息不同。也就是说,每个通信连接所对应的SR参数信息中 存在不同的参数部分,即目标SR参数信息。通常情况下,AP MLD的每个连接下的AP被配置成分属于不同的基本服务集,而针对每个站点,其对应的不同的BSS,因此对应不同的目标SR参数信息。目标SR参数信息例如SRG BSS Color Bitmap,这样,在SR参数信息中,包括与每个站点分别对应的SRG BSS Color Bitmap。
可以理解的是,SR参数信息中还包括通用SR参数信息,通用SR参数信息例如元素标识、元素标识扩展等。每个站点在接收到通用SR参数信息以及各自的目标SR参数信息,根据SR参数信息与AP MLD在数据交互时进行空间复用。
本公开实施例中,站点接收目标无线帧,所述目标无线帧中携带接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息;基于所述目标SR参数信息,实现多连接通信场景下的空间复用,提升系统吞吐量。
作为一个可选实施例,所述目标SR参数信息包括:
空间复用组基本服务集标识位图SRG BSS Color Bitmap信息以及空间复用组部分基本服务集标识位图SRG Partial BSSID Bitmap信息中的至少一种。
针对每个站点,其对应的不同的BSS,因此对应不同的SRG BSS Color Bitmap以及SRG Partial BSSID Bitmap,这样,在SR参数信息中,包括与每个站点分别对应的SRG BSS Color Bitmap以及SRG Partial BSSID Bitmap的至少一种,即分别指示每个连接下的不同SR参数信息,以实现多连接场景下的空间复用。更进一步地,由于从属于同一个APMLD的每个AP不属于同一个BSS,所以其所生成的BSScolor值或BSSID也不一样,也属于不同的SRGBSScolorbitmap或不同的SRGpartialBSSIDbitmap。
作为一个可选实施例,所述目标无线帧包括多连接ML信息元素;
所述ML信息元素包括多连接控制Multi-Link Control信息、站点配置per-STA profile信息以及连接信息Link info中的至少一种。
其中,除了Multi-Link Control信息、per-STA profile信息以及Link info, ML信息元素中还可包括其他信息;参见前述第三示例,其他信息以及各信息的字节数目例如前述表1中的元素标识、长度、元素标识扩展以及通用信息。除了表1中公开的信息内容,SR参数信息还包括可以提供站点在空间复用操作中所需的其他信息,例如Element ID、Length、SR Control、SRG OBSS PDMin Offset、SRG OBSS PD Max Offset以及前述SRG BSS Color Bitmap、SRG Partial BSSID Bitmap等,在此不在赘述。
此外,AP在每个连接下携带SR参数信息,具体为包含在ML信息元素的per-STA profile中,per-STA profile信息的格式如前述表2所示,在此不在赘述。
作为一个可选实施例,所述ML信息元素中还包括所述SR指示信息,所述SR指示信息指示所述目标无线帧中是否存在所述SR参数信息;也即SR指示信息指示空间复用为MLD级;所述SR指示信息携带在所述Multi-Link Control信息中或per-STA profile信息中。
参见前述第四示例,Multi-Link Control信息格式如前述表3所示,若所述SR指示信息携带在所述Multi-Link Control信息中,例如携带在Reserved域中。若所述SR指示信息携带在所述per-STA profile信息中,参见前述第五示例,per-STA profile信息格式如前述表4所示,其中,per-STA profile域中包括的字节数目可变,可在此处携带SR指示信息。
作为一个可选实施例,所述目标SR参数信息携带在所述Link info中,即每个站点各自的目标SR参数信息,携带在Presence Bitmap域中。
作为一个可选实施例,所述目标SR参数信息携带在所述Link info中,即每个站点各自的目标SR参数信息,携带在Presence Bitmap域中。参见前述第六示例,如前述表5所示,Presence Bitmap格式中,可在Reserved域中携带目标SR参数信息。
作为一个可选实施例,所述目标无线帧包括信标Beacon帧、探测响应Probe Response帧、多连接探测响应ML Probe Response帧、关联请求Association Response帧以及重关联请求Reassociation Response帧中的至少一种。可以理解的是,除此之外,目标无线帧还可能包括其他形式,本 公开实施例在此不做具体限定。
本公开实施例中,站点接收目标无线帧,所述目标无线帧中携带接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息;基于所述目标SR参数信息,实现多连接通信场景下的空间复用,提升系统吞吐量。
参见图6,本公开实施例还提供了一种接入点设备,所述接入点设备为支持多连接的接入点设备,所述设备包括:
发送模块601,用于发送目标无线帧;其中,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
在无线局域网中,一个BSS可以由AP以及与AP通信的一个或多个站点构成。一个基本服务集可以通过其AP连接到DS,然后再接入到另一个基本服务集,构成ESS。
在本公开实施例中,AP和STA可以支持多连接的设备,例如,可以被分别表示为AP MLD和non-AP MLD。为了便于描述,在下文中,主要描述一个AP与一个STA在多连接下进行通信的示例,然而,本公开的示例实施例不限于此。
作为第一示例,参见图2,AP MLD可以表示支持多连接通信功能的接入点,non-AP MLD可以表示支持多连接通信功能的站点。参照图2,AP MLD可以工作在三个连接下,如图2所示的AP1、AP2和AP3,每个AP可以分别工作在连接1、连接2以及连接3;non-AP MLD也可以工作在三个连接下,如图2所示的STA1、STA2和STA3,STA1工作在连接1、STA2工作在连接2以及STA3工作在连接3。在图2的示例中,假设AP1与STA1通过对应的第一连接Link 1进行通信,类似地,AP2与STA2通过对应的第二连接Link 2进行通信,AP通过第三连接Link 3与STA3进行通信。此外,Link 1至Link 3可以分别是不同频率下的多个连接,例如,2.4GHz、5GHz、6GHz下的连接,或2.4GHz下的几个相同或不同带宽的 连接。此外,在每个连接下可以存在多个信道。可以理解的是,图2所示的通信场景仅是示例性的,本公开构思不限于此,例如,AP MLD可以连接到多个non-AP MLD,或者在每个连接下,AP可以与多个其他类型的站点进行通信。
在多连接的场景中,AP MLD向non-AP MLD发送目标无线帧,目标无线帧例如Beacon帧、Probe Response帧、ML Probe Response帧等。例如AP MLD将SR参数信息携带在MLInformation Element中,并将ML信息元素携带在目标无线帧中,并在所述通信连接(或通信链路)下发送目标无线帧至对应的站点。
其中,SR参数信息包括所述AP MLD支持的多个连接的空间复用相关的参数信息,所述参数信息用于所述AP MLD与站点在数据交互时进行空间复用。本公开实施例中,所述目标无线帧中携带有与所述接入点设备的至少两条通信连接的空间复用SR参数信息;也就是说,目标无线帧中包括多个连接的SR参数信息,AP MLD与STA MLD均工作在多连接场景下,通过目标无线帧携带每个连接的SR参数信息,以支持多连接场景的进行空间复用。可选地,AP MLD可选择一个连接作为发送通道,将目标无线帧发送至STA MLD。
所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息,作为一个可选实施例,每条所述通信连接的站点对应的所述目标SR参数信息不同。也就是说,每个通信连接所对应的SR参数信息中存在不同的参数部分,即目标SR参数信息。通常情况下,AP MLD的每个连接下的AP被配置成分属于不同的基本服务集,作为第二示例,结合图3,BSS1包括AP1以及STA1,BSS2包括AP2以及STA2。而针对每个站点,其对应的不同的BSS,因此对应不同的目标SR参数信息。目标SR参数信息例如SRG BSS Color Bitmap,这样,在SR参数信息中,包括与每个站点分别对应的SRG BSS Color Bitmap。
可以理解的是,SR参数信息中还包括所有站点通用的SR参数信息(后续简称通用SR参数信息),通用SR参数信息例如元素标识、元素 标识扩展等。每个站点在接收到通用SR参数信息以及各自的目标SR参数信息,根据SR参数信息与AP MLD在数据交互时进行空间复用。
在一个可选实施例中,每条所述通信连接的站点对应的所述目标SR参数信息不同。
在一个可选实施例中,所述目标SR参数信息包括:
空间复用组基本服务集标识位图SRG BSS Color Bitmap信息以及空间复用组部分基本服务集标识位图SRG Partial BSSID Bitmap信息中的至少一种。
在一个可选实施例中,所述设备包括:
无线帧确定模块,用于确定与每个所述站点对应的所述目标无线帧。
在一个可选实施例中,所述目标无线帧包括多连接ML信息元素;
所述ML信息元素包括多连接控制Multi-Link Control信息、站点配置per-STA profile信息以及连接信息Link info中的至少一种。
在一个可选实施例中,所述ML信息元素中还包括所述SR指示信息,所述SR指示信息指示所述目标无线帧中是否存在所述SR参数信息;
所述SR指示信息携带在所述Multi-Link Control信息中或STA控制STA Control信息中。
在一个可选实施例中,所述目标SR参数信息携带在所述Link info中。
在一个可选实施例中,所述目标无线帧包括信标Beacon帧、探测响应Probe Response帧、多连接探测响应ML Probe Response帧、关联请求Association Response帧以及重关联请求Reassociation Response帧中的至少一种。
本公开实施例中,发送模块601发送目标无线帧,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息;基于所述目标SR参数信息,实现多连接通信场景下的空间复用,提升系统吞吐量。
本公开实施例还提供了一种参数处理装置,应用于支持多连接的接入 点设备,所述装置包括:
无线帧发送模块,用于发送目标无线帧;其中,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
所述装置还包括前述实施例中接入点设备的其他模块,在此不再赘述。
参见图7,本公开实施例还提供了一种站点设备,所述设备包括:
接收模块701,用于接收目标无线帧;其中,所述目标无线帧中携带接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
在无线局域网中,一个BSS可以由AP以及与AP通信的一个或多个STA构成。一个BSS可以通过其AP连接到DS,然后再接入到另一个基BSS,构成扩展的服务集ESS。
在本公开实施例中,AP和STA可以支持多连接的设备,例如,可以被分别表示为AP MLD和non-AP MLD。为了便于描述,在下文中,主要描述一个AP与一个STA在多连接下进行通信的示例,然而,本公开的示例实施例不限于此。
在多连接的场景中,non-AP MLD接收AP MLD发送的目标无线帧,目标无线帧例如Beacon帧、Probe Response帧、ML Probe Response帧等。例如AP MLD将SR参数信息携带在MLInformation Element中,并将ML信息元素携带在目标无线帧中,并在所述通信连接(或通信链路)下发送目标无线帧至对应的STA,则STA在接收到目标无线帧之后,从目标无线帧中获取SR参数信息。
其中,SR参数信息包括所述AP MLD支持的多个连接的空间复用相关的参数信息,所述参数信息用于所述AP MLD与站点在数据交互时进行空间复用。本公开实施例中,所述目标无线帧中携带有与所述接入点设备的至少两条通信连接的空间复用SR参数信息;也就是说,目标无线帧中包括多个连接的SR参数信息,AP MLD与STA MLD均工作在多连接场 景下,通过目标无线帧携带每个连接的SR参数信息,以支持多连接场景的进行空间复用。可选地,AP MLD可选择一个连接作为发送通道,将目标无线帧发送至STA MLD。
所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息,作为一个可选实施例,每条所述通信连接的站点对应的所述目标SR参数信息不同。也就是说,每个通信连接所对应的SR参数信息中存在不同的参数部分,即目标SR参数信息。通常情况下,AP MLD的每个连接下的AP被配置成分属于不同的基本服务集,而针对每个站点,其对应的不同的BSS,因此对应不同的目标SR参数信息。目标SR参数信息例如SRG BSS Color Bitmap,这样,在SR参数信息中,包括与每个站点分别对应的SRG BSS Color Bitmap。
可以理解的是,SR参数信息中还包括通用SR参数信息,通用SR参数信息例如元素标识、元素标识扩展等。每个站点在接收到通用SR参数信息以及各自的目标SR参数信息,根据SR参数信息与AP MLD在数据交互时进行空间复用。
在一个可选实施例中,每条所述通信连接的站点对应的所述目标SR参数信息不同。
在一个可选实施例中,所述目标SR参数信息包括:
空间复用组基本服务集标识位图SRG BSS Color Bitmap信息以及空间复用组部分基本服务集标识位图SRG Partial BSSID Bitmap信息中的至少一种。
在一个可选实施例中,所述目标无线帧包括多连接ML信息元素;
所述ML信息元素包括多连接控制Multi-Link Control信息、站点配置per-STA profile信息以及连接信息Link info中的至少一种。
在一个可选实施例中,所述ML信息元素中还包括所述SR指示信息,所述SR指示信息指示所述目标无线帧中是否存在所述SR参数信息;
所述SR指示信息携带在所述Multi-Link Control信息中或per-STA profile信息中。
在一个可选实施例中,所述目标SR参数信息携带在所述Link info中。
在一个可选实施例中,所述目标无线帧包括信标Beacon帧、探测响应Probe Response帧、多连接探测响应ML Probe Response帧、关联请求Association Response帧以及重关联请求Reassociation Response帧中的至少一种。
本公开实施例中,接收模块701接收目标无线帧,所述目标无线帧中携带接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息;基于所述目标SR参数信息,实现多连接通信场景下的空间复用,提升系统吞吐量。
本公开实施例还提供了一种参数处理装置,应用于站点设备,所述装置包括:
无线帧接收模块,用于接收目标无线帧;其中,所述目标无线帧中携带接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
所述装置还包括前述实施例中接入点设备的其他模块,在此不再赘述。
可以理解的是,本公开实施例中,方法和装置是基于同一构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
基于与本公开的实施例中所示的方法相同的原理,本公开实施例还公开了一种电子设备,该电子设备可以包括但不限于:处理器和存储器;存储器,用于存储计算机程序;处理器,用于通过调用计算机程序执行本公开任一可选实施例所示的参数处理方法。
在一个可选实施例中,还公开了一种电子设备,如图8所示,图8所示的电子设备8000可以为服务器,包括:处理器8001和存储器8003。 其中,处理器8001和存储器8003相连,如通过总线8002相连。可选地,电子设备8000还可以包括收发器8004。需要说明的是,实际应用中收发器8004不限于一个,该电子设备8000的结构并不构成对本公开实施例的限定。
处理器8001可以是CPU(Central Processing Unit,中央处理器),通用处理器,DSP(Digital Signal Processor,数据信号处理器),ASIC(Application Specific Integrated Circuit,专用集成电路),FPGA(Field Programmable Gate Array,现场可编程门阵列)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本公开公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器8001也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等。
总线8002可包括一通路,在上述组件之间传送信息。总线8002可以是PCI(Peripheral Component Interconnect,外设部件互连标准)总线或EISA(Extended Industry Standard Architecture,扩展工业标准结构)总线等。总线8002可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器8003可以是ROM(Read Only Memory,只读存储器)或可存储静态信息和指令的其他类型的静态存储设备,RAM(Random Access Memory,随机存取存储器)或者可存储信息和指令的其他类型的动态存储设备,也可以是EEPROM(Electrically Erasable Programmable Read Only Memory,电可擦可编程只读存储器)、CD-ROM(Compact Disc Read Only Memory,只读光盘)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。
存储器8003用于存储执行本公开方案的应用程序代码,并由处理器8001来控制执行。处理器8001用于执行存储器8003中存储的应用程序代码,以实现前述方法实施例所示的内容。
其中,电子设备包括但不限于:移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图8示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
本公开提供的服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务、云通信、中间件服务、域名服务、安全服务、CDN、以及大数据和人工智能平台等基础云计算服务的云服务器。终端可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能手表等,但并不局限于此。终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本公开在此不做限制。
本公开实施例公开了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,当其在计算机上运行时,使得计算机可以执行前述方法实施例中相应内容。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可 擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备执行上述实施例所示的方法。
根据本公开的一个方面,公开了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述各种可选实现方式中提供的参数配置方法、参数确定方法。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以 连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的模块可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,模块的名称在某种情况下并不构成对该模块本身的限定,例如,A模块还可以被描述为“用于执行B操作的A模块”。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的公开范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述公开构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (19)

  1. 一种参数处理方法,应用于支持多连接的接入点设备,其特征在于,所述方法包括:
    发送目标无线帧;其中,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
  2. 根据权利要求1所述的参数处理方法,其特征在于,每条所述通信连接的站点对应的所述目标SR参数信息不同。
  3. 根据权利要求1所述的参数处理方法,其特征在于,所述目标SR参数信息包括:
    空间复用组基本服务集标识位图SRG BSS Color Bitmap信息以及空间复用组部分基本服务集标识位图SRG Partial BSSID Bitmap信息中的至少一种。
  4. 根据权利要求1所述的参数处理方法,其特征在于,所述发送目标无线帧之前,所述方法包括:
    确定与每个所述站点对应的所述目标无线帧。
  5. 根据权利要求4所述的参数处理方法,其特征在于,所述目标无线帧包括多连接ML信息元素;
    所述ML信息元素包括多连接控制Multi-Link Control信息、站点配置per-STA profile信息以及连接信息Link info中的至少一种。
  6. 根据权利要求5所述的参数处理方法,其特征在于,所述ML信息元素中还包括所述SR指示信息,所述SR指示信息指示所述目标无线帧中是否存在所述SR参数信息;
    所述SR指示信息携带在所述Multi-Link Control信息中或STA控制STA Control信息中。
  7. 根据权利要求5所述的参数处理方法,其特征在于,所述目标SR参数信息携带在所述Link info中。
  8. 根据权利要求1至7中任一项所述的参数处理方法,其特征在于,所述目标无线帧包括信标Beacon帧、探测响应Probe Response帧、多连接探测响应ML Probe Response帧、关联请求Association Response帧以及重关联请求Reassociation Response帧中的至少一种。
  9. 一种参数处理方法,应用于站点,其特征在于,所述方法包括:
    接收目标无线帧;其中,所述目标无线帧中携带接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
  10. 根据权利要求9所述的参数处理方法,其特征在于,每条所述通信连接的站点对应的所述目标SR参数信息不同。
  11. 根据权利要求9所述的参数处理方法,其特征在于,所述目标SR参数信息包括:
    空间复用组基本服务集标识位图SRG BSS Color Bitmap信息以及空间复用组部分基本服务集标识位图SRG Partial BSSID Bitmap信息中的至少一种。
  12. 根据权利要求11所述的参数处理方法,其特征在于,所述目标无线帧包括多连接ML信息元素;
    所述ML信息元素包括多连接控制Multi-Link Control信息、站点配置per-STA profile信息以及连接信息Link info中的至少一种。
  13. 根据权利要求12所述的参数处理方法,其特征在于,所述ML信息元素中还包括所述SR指示信息,所述SR指示信息指示所述目标无线帧中是否存在所述SR参数信息;
    所述SR指示信息携带在所述Multi-Link Control信息中或per-STA profile信息中。
  14. 根据权利要求12所述的参数处理方法,其特征在于,所述目标SR参数信息携带在所述Link info中。
  15. 根据权利要求9至14中任一项所述的参数处理方法,其特征在于,所述目标无线帧包括信标Beacon帧、探测响应Probe Response帧、 多连接探测响应ML Probe Response帧、关联请求Association Response帧以及重关联请求Reassociation Response帧中的至少一种。
  16. 一种接入点设备,所述接入点设备为支持多连接的接入点设备,其特征在于,所述设备包括:
    发送模块,用于发送目标无线帧;其中,所述目标无线帧中携带所述接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
  17. 一种站点设备,其特征在于,所述设备包括:
    接收模块,用于接收目标无线帧;其中,所述目标无线帧中携带接入点设备的至少两条通信连接的空间复用SR参数信息;所述SR参数信息中包括与每条所述通信连接的站点对应的目标SR参数信息。
  18. 一种电子设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利要求1至15中任一项所述的方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现权利要求1至15中任一项所述的方法。
PCT/CN2021/100662 2021-06-17 2021-06-17 参数处理方法及接入点设备、站点设备及存储介质 WO2022261900A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/100662 WO2022261900A1 (zh) 2021-06-17 2021-06-17 参数处理方法及接入点设备、站点设备及存储介质
EP21945486.5A EP4358564A1 (en) 2021-06-17 2021-06-17 Parameter processing method, and access point device, station device and storage medium
CN202180001808.XA CN115918120A (zh) 2021-06-17 2021-06-17 参数处理方法及接入点设备、站点设备及存储介质
US18/570,032 US20240276230A1 (en) 2021-06-17 2021-06-17 Parameter processing method, and access point device, station device and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100662 WO2022261900A1 (zh) 2021-06-17 2021-06-17 参数处理方法及接入点设备、站点设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022261900A1 true WO2022261900A1 (zh) 2022-12-22

Family

ID=84525900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100662 WO2022261900A1 (zh) 2021-06-17 2021-06-17 参数处理方法及接入点设备、站点设备及存储介质

Country Status (4)

Country Link
US (1) US20240276230A1 (zh)
EP (1) EP4358564A1 (zh)
CN (1) CN115918120A (zh)
WO (1) WO2022261900A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106341898A (zh) * 2015-07-09 2017-01-18 中兴通讯股份有限公司 多站点的传输指示、触发、执行方法及装置
CN108471614A (zh) * 2017-02-23 2018-08-31 中兴通讯股份有限公司 一种信息发送方法及装置
CN110536469A (zh) * 2018-05-23 2019-12-03 华为技术有限公司 基于多接入点ap协作的空间复用的方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106341898A (zh) * 2015-07-09 2017-01-18 中兴通讯股份有限公司 多站点的传输指示、触发、执行方法及装置
CN108471614A (zh) * 2017-02-23 2018-08-31 中兴通讯股份有限公司 一种信息发送方法及装置
CN110536469A (zh) * 2018-05-23 2019-12-03 华为技术有限公司 基于多接入点ap协作的空间复用的方法和装置

Also Published As

Publication number Publication date
US20240276230A1 (en) 2024-08-15
CN115918120A (zh) 2023-04-04
EP4358564A1 (en) 2024-04-24

Similar Documents

Publication Publication Date Title
WO2023279291A1 (zh) 信号处理方法及装置、电子设备及存储介质
WO2023056652A1 (zh) 通信连接控制方法及装置、电子设备及存储介质
WO2022261900A1 (zh) 参数处理方法及接入点设备、站点设备及存储介质
WO2023279293A1 (zh) 信号处理方法及装置、电子设备及存储介质
WO2023283949A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024092465A1 (zh) 关联标识分配方法、接收方法、电子设备及存储介质
EP4432768A1 (en) Wireless communication method and apparatus, device, and storage medium
WO2024007161A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024082223A1 (zh) 通信方法、电子设备及存储介质
WO2023056653A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024103229A1 (zh) 通信方法、电子设备及存储介质
WO2023240414A1 (zh) 通信方法及网络设备、电子设备、存储介质
WO2024148482A1 (zh) 通信方法、电子设备及存储介质
WO2024152218A1 (zh) 通信方法、电子设备及存储介质
WO2024007163A1 (zh) 通信方法及装置、电子设备及存储介质
WO2024103226A1 (zh) 通信方法、电子设备及存储介质
WO2023065079A1 (zh) 通信连接处理方法及装置、电子设备及存储介质
WO2024016123A1 (zh) 通信方法及电子设备、存储介质
WO2024082245A1 (zh) 通信方法、电子设备及存储介质
WO2024108451A1 (zh) 通信方法、电子设备及存储介质
WO2024159536A1 (zh) 通信方法、电子设备及存储介质
WO2024145777A1 (zh) 通信方法、电子设备及存储介质
WO2024082244A1 (zh) 通信方法、装置、设备以及存储介质
WO2022256985A1 (zh) 通信方法和通信装置
WO2023060584A1 (zh) 网络分配矢量nav定时器的处理方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945486

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18570032

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202447002904

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021945486

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021945486

Country of ref document: EP

Effective date: 20240117