WO2024082142A1 - 显示面板、显示装置、可穿戴设备 - Google Patents

显示面板、显示装置、可穿戴设备 Download PDF

Info

Publication number
WO2024082142A1
WO2024082142A1 PCT/CN2022/125966 CN2022125966W WO2024082142A1 WO 2024082142 A1 WO2024082142 A1 WO 2024082142A1 CN 2022125966 W CN2022125966 W CN 2022125966W WO 2024082142 A1 WO2024082142 A1 WO 2024082142A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
substrate
peripheral
layer
display panel
Prior art date
Application number
PCT/CN2022/125966
Other languages
English (en)
French (fr)
Inventor
浦超
杨盛际
杨俊彦
陈小川
黄冠达
卢鹏程
李大超
施蓉蓉
魏俊波
白枭
杨波
Original Assignee
京东方科技集团股份有限公司
云南创视界光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 云南创视界光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/125966 priority Critical patent/WO2024082142A1/zh
Priority to US18/278,913 priority patent/US20240130202A1/en
Publication of WO2024082142A1 publication Critical patent/WO2024082142A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape

Definitions

  • the present application relates to the field of display technology, and in particular to a display panel, a display device, and a wearable device.
  • silicon-based OLED Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • an embodiment of the present application provides a display panel, comprising a display area and a peripheral area, wherein the peripheral area surrounds the display area; the display panel further comprises:
  • a conductive layer comprising a cathode ring and a cathode of the light-emitting device; the cathode ring is located in the peripheral area and surrounds the display area;
  • a lens layer located at a side of the light emitting device away from the substrate, the lens layer extending from the display area to the peripheral area;
  • the orthographic projection of the lens layer on the substrate is located within a region defined by an outer contour of the orthographic projection of the cathode ring on the substrate.
  • the orthographic projection of the lens layer on the substrate is located within the area enclosed by the inner contour of the orthographic projection of the cathode ring on the substrate, and the outer contour of the orthographic projection of the lens layer on the substrate is located in the peripheral area.
  • an outer contour of an orthographic projection of the lens layer on the substrate overlaps with an inner contour of an orthographic projection of the cathode ring on the substrate.
  • a dimension of the gap along a direction from the display area to the peripheral area is less than or equal to a width of the cathode ring along a direction from the display area to the peripheral area.
  • a dimension of the gap in a direction from the display area to the peripheral area is greater than or equal to a dimension of one of the light-emitting devices in a direction from the display area to the peripheral area.
  • part of the light-emitting devices are located in the peripheral area, and the light-emitting devices in the peripheral area are arranged in a circle along the edge of the display area; the positive projection of the cathode ring on the substrate is located on a side of the positive projection of each light-emitting device in the peripheral area on the substrate away from the display area;
  • the orthographic projection of each of the light-emitting devices located in the peripheral area on the substrate is located within the orthographic projection of the lens layer on the substrate.
  • the peripheral area includes a first peripheral sub-area, a second peripheral sub-area, a third peripheral sub-area and a fourth peripheral sub-area, the fourth peripheral sub-area and the first peripheral sub-area are arranged opposite to each other, the second peripheral sub-area and the third peripheral sub-area are arranged opposite to each other; the fourth peripheral sub-area includes a binding terminal;
  • the width of the cathode ring located in the fourth peripheral sub-region in the direction from the display region to the peripheral region is less than or equal to the width of the cathode ring located in the peripheral region other than the fourth peripheral sub-region in the direction from the display region to the peripheral region.
  • the width of the cathode ring portion located in the fourth peripheral sub-region in the direction from the display area to the peripheral area is smaller than the width of the cathode ring portion located in the first peripheral sub-region in the direction from the display area to the peripheral area.
  • the orthographic projection pattern of the lens layer on the substrate includes a first side edge and a second side edge that are oppositely disposed
  • the inner contour of the orthographic projection pattern of the cathode ring on the substrate includes a first edge and a second edge that are oppositely disposed, the first side edge and the first edge are both located in the second peripheral sub-region, and the second side edge and the second edge are both located in the third peripheral sub-region;
  • a minimum distance between the first side and the first edge is different from a minimum distance between the second side and the second edge.
  • the orthographic projection pattern of the lens layer on the substrate includes a first side edge and a second side edge that are oppositely disposed
  • the inner contour of the orthographic projection pattern of the cathode ring on the substrate includes a first edge and a second edge that are oppositely disposed, the first side edge and the first edge are both located in the second peripheral sub-region, and the second side edge and the second edge are both located in the third peripheral sub-region;
  • the minimum distance between the first side and the first edge is the same as the minimum distance between the second side and the second edge;
  • the width of the cathode ring portion located in the second peripheral sub-region in the direction from the display region to the peripheral region is different from the width of the cathode ring portion located in the third peripheral sub-region in the direction from the display region to the peripheral region.
  • the orthographic projection pattern of the lens layer on the substrate includes a first side edge and a second side edge that are oppositely disposed
  • the inner contour of the orthographic projection pattern of the cathode ring on the substrate includes a first edge and a second edge that are oppositely disposed, the first side edge and the first edge are both located in the second peripheral sub-region, and the second side edge and the second edge are both located in the third peripheral sub-region;
  • the minimum distance between the first side and the first edge is the same as the minimum distance between the second side and the second edge;
  • the width of the cathode ring portion located in the second peripheral sub-region in the direction from the display region to the peripheral region is the same as the width of the cathode ring portion located in the third peripheral sub-region in the direction from the display region to the peripheral region.
  • the lens layer includes a plurality of first lenses and a plurality of second lenses, each of the first lenses is located in the display area, and each of the second lenses is located in the peripheral area;
  • the height of each of the second lenses along a plane perpendicular to the substrate is less than or equal to the height of each of the first lenses along a plane perpendicular to the substrate.
  • the height of each of the second lenses gradually decreases along a plane perpendicular to the substrate.
  • the shape of the orthographic projection pattern of the second lens on the substrate includes an ellipse, and the extension directions of the major axes of at least a portion of the ellipse in the peripheral area are different.
  • the shape of the orthographic projection pattern of the first lens on the substrate includes an ellipse, and the major axes of at least a portion of the ellipse in the display area extend in the same direction.
  • the first lens located on one side of a boundary line between the display area and the peripheral area and the second lens located on the other side of the boundary line have the same structure and size.
  • shapes of the orthographic projection patterns of the first lens and the second lens on the substrate both include ellipses, and the extension direction of the long axis of the orthographic projection pattern of the first lens located on one side of the intersection line is the same as the extension direction of the long axis of the orthographic projection pattern of the second lens located on the other side of the intersection line.
  • the display panel includes a first encapsulation layer, a color filter layer, and a second encapsulation layer arranged in sequence, the first encapsulation layer covers the light-emitting device and the cathode ring, the second encapsulation layer is located between the color filter layer and the lens layer, and the second encapsulation layer also extends to the peripheral area;
  • the roughness of at least a portion of a surface of the second encapsulation layer away from the substrate is greater than the roughness of a surface of the first encapsulation layer away from the substrate.
  • the roughness of at least a portion of the surface of the second encapsulation layer away from the substrate is greater than or equal to ten times the roughness of the surface of the first encapsulation layer away from the substrate.
  • the display panel also includes a bonding layer and a cover plate, the bonding layer is located on a side of the lens layer away from the substrate, and the cover plate is located on a side of the bonding layer away from the lens layer; the orthographic projection of the bonding layer on the substrate is located within the orthographic projection of the second encapsulation layer on the substrate, and the bonding layer is in direct contact with partial areas of the second encapsulation layer and the lens layer, respectively.
  • the area of the region where the adhesive layer located in the fourth peripheral sub-region directly contacts the second encapsulation layer is greater than or equal to the area of the region where the adhesive layer located in the first peripheral sub-region directly contacts the second encapsulation layer.
  • the display panel further includes a light shielding layer, the light shielding layer is located in the peripheral area and surrounds the display area, and the light shielding layer and the color filter layer are arranged in the same layer;
  • the orthographic projection of the cathode ring on the substrate is located within the orthographic projection of the shading layer on the substrate, the outer contour of the orthographic projection of the lens layer on the substrate falls within the area where the orthographic projection of the shading layer on the substrate is located, and the orthographic projection of the outer contour of the shading layer on the substrate is located within the orthographic projection of the cover plate on the substrate.
  • the shape of the orthographic projection pattern of the cathode ring on the substrate includes a polygon with rounded corners.
  • the display panel also includes a plurality of positive electrodes located in the peripheral area, and the positive electrodes are arranged in the same layer as the anode of the light-emitting device; wherein the positive electrodes are electrically connected to the anode, and the positive electrodes are in direct contact with the cathode ring.
  • an embodiment of the present application provides a display device, comprising a display panel as described in any one of the first aspects.
  • an embodiment of the present application provides a wearable device comprising two display devices as described in the second aspect.
  • 1 to 5 are plan views of five display panels provided by embodiments of the present application.
  • FIG6 is a partial cross-sectional schematic diagram along the M1M2 direction in FIG5 provided by an embodiment of the present application;
  • 7 to 12 and 15 are plan views of seven other display panels provided by the embodiments of the present application.
  • FIG13 is another cross-sectional schematic diagram along the M1M2 direction in FIG5 provided by an embodiment of the present application.
  • FIG14 is another cross-sectional schematic diagram along the M1M2 direction in FIG5 provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of a partial structure of a cathode ring provided in an embodiment of the present application.
  • the term “including” is to be interpreted as an open, inclusive meaning, that is, “including, but not limited to”.
  • the terms “one embodiment”, “some embodiments”, “exemplary embodiment”, “example”, “specific example” or “some examples” and the like are intended to indicate that specific features, structures, materials or characteristics associated with the embodiment or example are included in at least one embodiment or example of the present application.
  • the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
  • the specific features, structures, materials or characteristics may be included in any one or more embodiments or examples in any appropriate manner.
  • electrical connection includes the case where components are connected together through an element having some electrical function.
  • element having some electrical function There is no particular limitation on the “element having some electrical function” as long as it can transmit and receive electrical signals between the connected components. Examples of “element having some electrical function” include not only electrodes and wiring, but also switching elements such as transistors, resistors, inductors, capacitors, and other elements having various functions.
  • the polygon in this specification is not a strict polygon, and can be an approximate triangle, rectangle, trapezoid, pentagon or hexagon, etc. There can be some small deformations caused by tolerances, and there can be chamfers, rounded corners, arc edges and deformations.
  • silicon-based OLED Organic Light Emitting Diode
  • Its backplane is made of mature integrated circuit CMOS (Complementary Metal Oxide Semiconductor) process, which realizes active addressing of pixels, including TCON (Timer Control Register), OCP (Over Current Protection) and other circuits, which can achieve lightweight.
  • CMOS Complementary Metal Oxide Semiconductor
  • TCON Timer Control Register
  • OCP Over Current Protection
  • Silicon-based OLED display products are widely used in near-eye display and virtual reality (VR) and augmented reality (AR) fields.
  • VR virtual reality
  • AR augmented reality
  • the embodiments of the present application provide a newly designed display panel, display device, and wearable device to improve the product reliability of silicon-based display devices, extend their service life, and expand the use scenarios of silicon-based display products, so that they can have deeper applications in wearable devices, industrial security, medical and other high-resolution near-eye display industries.
  • the display panel includes a display area and a peripheral area, and the peripheral area surrounds the display area; the display panel also includes: a substrate and a plurality of light-emitting devices arranged in an array on the substrate, and the light-emitting devices are at least located in the display area; a conductive layer, including a cathode ring and a cathode of the light-emitting device; the cathode ring is located in the peripheral area and the cathode ring surrounds the display area; a lens layer, located on the side of the light-emitting device away from the substrate, and the lens layer extends from the display area to the peripheral area; wherein the orthographic projection of the lens layer on the substrate is located within the area defined by the outer contour of the orthographic projection of the cathode ring on the substrate.
  • the contact area between the bonding material and the lens layer can be reduced, and the contact area between the bonding material and the flat area can be increased, thereby improving the adhesion and bonding stability, improving the quality of the display panel, and extending the service life of the display panel.
  • the embodiment of the present application provides a display panel
  • Figures 1 to 5 are plan schematic diagrams of five display panels provided by the embodiment of the present application
  • Figure 6 is a partial cross-sectional schematic diagram along the M1M2 direction in Figure 5 provided by an embodiment of the present application
  • Figures 7 to 12 and 15 are plan schematic diagrams of another seven display panels provided by the embodiment of the present application
  • Figure 13 is another cross-sectional schematic diagram along the M1M2 direction in Figure 5 provided by an embodiment of the present application
  • Figure 14 is another cross-sectional schematic diagram along the M1M2 direction in Figure 5 provided by an embodiment of the present application.
  • Figures 1 to 5, 7 to 12, and 15 all focus on illustrating the plan distribution of part of the structure of the peripheral area BB of the display panel, and do not illustrate the plan view of the complete display panel; Figures 6, 13, and 14 do not show the complete layer structure of the display panel, and the layer structure not shown can refer to the relevant technology.
  • the display panel includes a display area AA and a peripheral area (not marked), wherein the peripheral area surrounds the display area AA;
  • the display panel also includes: a substrate 1 and a plurality of light-emitting devices Q arranged in an array on the substrate 1, the light-emitting device Q being at least located in the display area AA; a conductive layer 3, including a cathode ring 31 and a cathode of the light-emitting device Q; the cathode ring 31 being located in the peripheral area BB and surrounding the display area AA; a lens layer 2, being located on a side of the light-emitting device Q away from the substrate 1, the lens layer 2 extending from the display area AA to the peripheral area BB; wherein the orthographic projection of the lens layer 2 on the substrate 1 is located within the area defined by the outer contour of the orthographic projection of the cathode ring 31 on the substrate 1.
  • FIG. 6 , FIG. 13 or FIG. 14 only illustrates the left side of the cross-sectional view. Combined with the plan views of FIG. 1 to FIG. 5 , it can be seen that the area enclosed by the outer contour of the positive projection of the cathode ring 31 on the substrate 1 is a closed area.
  • the display panel includes a substrate 1 and a plurality of sub-pixels, the sub-pixels are located on the substrate 1, the sub-pixels include a light-emitting device Q and a color conversion layer, and the color conversion layer is located on the light-emitting side of the light-emitting device Q; each light-emitting device Q includes a light-emitting functional layer 10 and a first electrode and a second electrode located on both sides of the light-emitting functional layer 10; wherein, one of the first electrode and the second electrode is an anode and the other is a cathode; when the first electrode is an anode and the second electrode is a cathode, the first electrode is located between the light-emitting functional layer 10 and the substrate 1, and at least part of the second electrode is located on a side of the light-emitting functional layer 10 away from the first electrode; that is, the first electrode and the second electrode are located on both sides in a direction perpendicular to the
  • the light-emitting functional layers 10 of each light-emitting device Q are drawn together.
  • the light-emitting functional layers 10 of each light-emitting device Q can be connected together; when the light-emitting colors of each light-emitting device Q are not exactly the same, the light-emitting functional layers 10 of each light-emitting device Q can be separated from each other, for example, by a pixel definition layer (not drawn in Figure 6) to avoid color crosstalk of sub-pixels.
  • the second electrode may be shared by a plurality of light emitting devices Q.
  • the cathode may be formed of a material with high conductivity and low work function, for example, the cathode may be made of a metal material.
  • the anode may be formed of a transparent conductive material with a high work function.
  • the material of the substrate 1 may be made of one or more materials selected from the group consisting of glass, polyimide, polycarbonate, polyacrylate, polyetherimide, and polyethersulfone, and the present embodiment includes but is not limited to the foregoing.
  • substrate 1 may be a rigid substrate or a flexible substrate; when substrate 1 is a flexible substrate, substrate 1 may include a single-layer flexible material layer; or, substrate 1 may include a first flexible material layer, a first inorganic non-metallic material layer, a second flexible material layer, and a second inorganic non-metallic material layer stacked in sequence.
  • the first flexible material layer and the second flexible material layer are made of materials such as polyimide (PI), polyethylene terephthalate (PET), or a surface-treated polymer soft film.
  • the first inorganic non-metallic material layer and the second inorganic non-metallic material layer are made of silicon nitride (SiNx) or silicon oxide (SiOx), etc., to improve the water and oxygen resistance of the substrate.
  • the first inorganic non-metallic material layer and the second inorganic non-metallic material layer are also called barrier layers.
  • substrate 1 When substrate 1 is a rigid substrate, substrate 1 may include a glass substrate or a silicon material substrate. When substrate 1 is a silicon material substrate, multiple conductive material layers and multiple insulating material layers may be arranged between substrate 1 and light-emitting device Q to form a driving circuit and a pixel circuit, wherein substrate 1 and the driving circuit and pixel circuit located on substrate 1 may be collectively referred to as a driving backplane, and the driving backplane may be a field effect transistor driving backplane (MOS driving backplane), wherein each metal layer in the MOS driving backplane is separated by an insulating layer (for example, a first insulating layer 8 and a second insulating layer 9), and is electrically connected through tungsten vias (W Via).
  • MOS driving backplane field effect transistor driving backplane
  • the silicon material substrate may be a P-type single crystal silicon substrate, or an N-type single crystal silicon substrate, which may be determined according to the actual product. It should be noted that the embodiment of the present application is described by taking the display panel having a silicon material substrate as an example.
  • other film layers may be provided between the substrate 1 and the light-emitting device Q.
  • These other film layers may include a gate insulating layer, an interlayer insulating layer, various film layers in a pixel circuit (for example, including a thin-film transistor, a storage capacitor, and other structures), a data line, a gate line, a power signal line, a reset power signal line, a reset control signal line, a light-emitting control signal line, and other film layers or structures.
  • the light emitting device Q is at least located in the display area AA, including but not limited to the following cases:
  • the light emitting device Q is located in the display area AA;
  • the light-emitting device Q is not only located in the display area AA, but also extends from the display area AA to a dummy area in the peripheral area BB.
  • the light emitting device Q located in the display area AA can emit light and display, while the light emitting device Q located in the dummy area (Dummy area) in the peripheral area BB cannot emit light and display; wherein, the light emitting device Q located in the dummy area (Dummy area) in the peripheral area BB is used to improve the structural consistency of the display area AA and the peripheral area BB of the display panel, to avoid visible color difference in the boundary area between the display area AA and the peripheral area BB due to the large structural difference of the display panel in a dark state, to make a natural transition between the display area AA and the peripheral area BB, thereby improving the aesthetics of the display panel.
  • the light-emitting functional layer 10 of the light-emitting device Q located in the display area AA is connected to the anode, and an insulating material is provided between the light-emitting functional layer 10 and the anode of the light-emitting device Q located in the dummy area (Dummy area) of the peripheral area BB, and cannot be connected; for example, the anode of the light-emitting device Q located in the dummy area (Dummy area) of the peripheral area BB is covered with insulating material, so that the side surface of the anode and the surface of the anode away from the substrate 1 are wrapped inside, and cannot be connected to other conductive film layers.
  • the insulating material here can be made of the same material as the pixel definition layer.
  • the material of the pixel definition layer may include an organic material, such as polyimide, acrylic or polyethylene terephthalate.
  • the specific setting position and structure of the pixel definition layer can refer to the relevant technology and will not be repeated here.
  • the plane figure of the display area AA may be a rectangle as shown in the drawings of the embodiments of the present application; or, the plane figure of the display area AA may be other polygons, such as pentagons, hexagons, etc., which are determined according to the usage scenario and usage requirements.
  • the plane figure of the peripheral area BB may be a ring.
  • the plane figure of the peripheral area BB is also different.
  • the plane figure of the peripheral area BB can be determined based on the plane figure of the display area AA.
  • the above-mentioned plane figure refers to the figure of the positive projection on the substrate of the display panel.
  • the light-emitting colors of the light-emitting devices Q in the display area AA of the display panel are the same, for example, the light-emitting colors of the light-emitting devices Q are all blue; or the light-emitting colors of the light-emitting devices Q are all white.
  • the color conversion layer may include a first color conversion pattern, a second color conversion pattern, and a third color pattern, wherein the blue light emitted by the light-emitting device Q may emit red light after passing through the first color conversion pattern, the blue light emitted by the light-emitting device Q may emit green light after passing through the second color conversion pattern, and the blue light emitted by the light-emitting device Q may emit blue light after passing through the third color pattern; wherein the first color conversion pattern may be a red quantum dot pattern, the second color conversion pattern may be a green quantum dot pattern, and the third color pattern may be a light-transmitting pattern.
  • each light-emitting device Q in the display area AA of the display panel includes a first color light-emitting device, a second color light-emitting device and a third color light-emitting device, and the first color light-emitting device, the second color light-emitting device and the third color light-emitting device are arranged in an array according to a certain rule, wherein the light emitted by the first color light-emitting device is red light, the light emitted by the second color light-emitting device is green light, and the light emitted by the third color light-emitting device is blue light; at this time, the color conversion layer may include a first filter pattern, a second filter pattern and a third filter pattern, the first filter pattern may be a red color resistance pattern, the second filter pattern may be a green color resistance pattern, and the third filter pattern may be a blue color resistance pattern; such a color conversion layer may also be referred to as a color film layer or a color filter layer (CF),
  • the display panel includes a conductive layer 3, and the conductive layer 3 includes a cathode ring 31 and a cathode of the light-emitting device Q.
  • the cathode ring 31 and the cathode of the light-emitting device Q can be an integrated structure; the integrated structure means that the cathode ring 31 and the cathode of the light-emitting device Q are connected, and can be prepared using the same material in a single patterning process.
  • the cathode ring 31 is electrically connected to the cathode of each light-emitting device Q, and the area where the cathode ring 31 is located is marked as R area, wherein each anode located in the area R area where the cathode ring 31 is located is connected to the cathode ring 31 to form a closed-loop circuit between the light-emitting device Q and the driving circuit of the display panel.
  • the anodes located in the area R area where the cathode ring 31 is located are also referred to as positive electrodes 7, and the positive electrodes 7 can be connected to the anodes of each light-emitting device Q.
  • the conductive layer 3 may be formed of a material with high conductivity and low work function.
  • the conductive layer 3 may be made of a metal material.
  • the conductive layer 3 can be made of metal materials, such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo), or alloy materials of the above metals, such as aluminum-neodymium alloy (AlNd) or molybdenum-niobium alloy (MoNb). It can be a single-layer structure, or a multi-layer structure, such as Ti/Al/Ti, or a stacked structure formed by metal and transparent conductive materials, such as ITO/Ag/ITO, Mo/AlNd/ITO and other materials.
  • metal materials such as any one or more of magnesium (Mg), silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo), or alloy materials of the above metals, such as aluminum-neodymium alloy (AlNd) or molybdenum-niobium alloy (MoNb). It can be
  • the above-mentioned lens layer 2 includes multiple lens structures, wherein the lens layer 2 is at least located on the side of each light-emitting device Q away from the substrate 1, that is, the lens layer 2 is at least located on the light-emitting side of each light-emitting device Q to adjust the optical path of the display light emitted by the light-emitting device Q and improve the light-emitting efficiency.
  • the orthographic projection of the lens layer 2 on the substrate 1 is located within the area defined by the outer contour of the orthographic projection of the cathode ring 31 on the substrate 1, including but not limited to the following cases:
  • the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 overlaps with the outer contour of the orthographic projection of the cathode ring 31 on the substrate 1;
  • the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 is located within the area defined by the outer contour of the orthographic projection of the cathode ring 31 on the substrate 1 ; wherein the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 is located within the area defined by the outer contour of the orthographic projection of the cathode ring 31 on the substrate 1 , which may include the following situations:
  • the orthographic projection of the lens layer 2 on the substrate 1 is located within the area defined by the inner contour of the orthographic projection of the cathode ring 31 on the substrate 1 , and the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 is located in the peripheral area BB;
  • the orthographic projection of the lens layer 2 on the substrate 1 is located within the area defined by the inner contour of the orthographic projection of the cathode ring 31 on the substrate 1, and the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 is located at the junction of the display area AA and the peripheral area BB;
  • the orthographic projection of the lens layer 2 on the substrate 1 is located within the area defined by the inner contour of the orthographic projection of the cathode ring 31 on the substrate 1, and the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 is located in the display area AA.
  • the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 is set in the display area AA only in very rare cases.
  • orthographic projection of the lens layer 2 on the substrate 1 refers to the projection of the lens layer 2 on the substrate 1 in a direction perpendicular to the plane where the substrate 1 is located.
  • the description related to "orthographic projection" in the embodiments of the present application is similar to the meaning here and will not be repeated herein.
  • the material of the lens layer 2 may include an organic material, such as a resin.
  • the lens layer 2 of the organic material may be prepared by a high-temperature hot-melt process.
  • the material of the lens layer 2 may include one of silicon nitride, silicon oxide, and silicon oxynitride.
  • a lens layer of organic material may be prepared by a high-temperature hot-melt process, and then an inorganic material layer may be formed on the lens layer of the organic material, and the lens layer of the organic material may be etched away by a dry etching process, thereby obtaining a lens layer 2 of inorganic material.
  • the refractive index of the material of the lens layer 2 is greater than the refractive index of the material of the film layer located at the light exit side of the lens layer 2 and in direct contact with the lens layer 2 .
  • the contour shape of the upper surface of the lens layer 2 along the cross section perpendicular to the plane where the substrate 1 is located is not limited.
  • the upper surface of the lens layer 2 refers to the surface of the lens layer 2 from which the light is emitted.
  • the upper surface of the lens layer 2 along the cross section perpendicular to the plane where the substrate 1 is located is a line.
  • the contour shape of the upper surface of the lens layer 2 along the cross section perpendicular to the plane where the substrate 1 is located is a broken line; in some embodiments, the contour shape of the upper surface of the lens layer 2 along the cross section perpendicular to the plane where the substrate 1 is located is a curved line; in some embodiments, in some embodiments, the contour shape of the upper surface of the lens layer 2 along the cross section perpendicular to the plane where the substrate 1 is located is a combination of a broken line and a curved line.
  • the contact area between the bonding material and the lens layer 2 can be reduced, and the contact area between the bonding material and the flat area can be increased, thereby improving the adhesion and bonding stability, improving the quality of the display panel, and extending the service life of the display panel.
  • the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 overlaps with the inner contour of the orthographic projection of the cathode ring 31 on the substrate 1 .
  • the inner contour of the cathode ring 31 overlaps with the outer contour of the cathode of each light-emitting device Q, and the outer contour of the cathode ring 31 is the outer contour of the conductive layer 3 .
  • the meaning of there being a gap between the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 and the inner contour of the orthographic projection of the cathode ring 31 on the substrate is: in combination with Figures 4, 5 and 6, the orthographic projection of the lens layer 2 on the substrate 1 and the orthographic projection of the cathode ring 31 on the substrate 1 do not overlap, the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 is located within the inner contour of the orthographic projection of the cathode ring 31 on the substrate, and there is a certain distance between the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 and the inner contour of the orthographic projection of the cathode ring 31 on the substrate.
  • a gap is provided between the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 and the inner contour of the orthographic projection of the cathode ring 31 on the substrate 1, and the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 falls into the peripheral area BB; in this way, while ensuring that the lens layer 2 can improve the light output rate of each light-emitting device Q in the display panel, in the subsequent process of bonding the cover plate 12, the contact area between the bonding material and the lens layer 2 can be further reduced, and the contact area between the bonding material and the flat area can be increased, thereby improving the adhesion and bonding stability, improving the quality of the display panel, and extending the service life of the display panel.
  • the dimension dx of the gap along the direction from the display area AA to the peripheral area BB is less than or equal to the width d1 of the cathode ring 31 along the direction from the display area AA to the peripheral area BB.
  • the dimension dx of the gap in the direction from the display area AA to the peripheral area BB is smaller than the width d1 of the cathode ring 31 in the direction from the display area AA to the peripheral area BB;
  • a dimension dx of the gap along the direction from the display area AA to the peripheral area BB is equal to a width d1 of the cathode ring 31 along the direction from the display area AA to the peripheral area BB.
  • the direction from the display area AA to the peripheral area BB can be the direction from the geometric center of the display area AA to the upper side of the display panel; or, it can be the direction from the geometric center of the display area AA to the lower side of the display panel; or, it can be the direction from the geometric center of the display area AA to the left side of the display panel; or, it can be the direction from the geometric center of the display area AA to the right side of the display panel.
  • a dimension dx of the gap in a direction from the display area AA to the peripheral area BB is greater than or equal to a dimension of a light emitting device Q in a direction from the display area AA to the peripheral area BB.
  • a dimension dx of the gap in a direction from the display area AA to the peripheral area BB is greater than a dimension of one light emitting device Q in a direction from the display area AA to the peripheral area BB.
  • a dimension dx of the gap in a direction from the display area AA to the peripheral area BB is equal to a dimension of one light emitting device Q in a direction from the display area AA to the peripheral area BB.
  • the graphic shape of the orthographic projection of the light-emitting device Q on the substrate 1 is not limited here.
  • the following description assumes that the graphic shape of the orthographic projection of the light-emitting device Q on the substrate 1 is a rectangle.
  • the size of the light-emitting device Q along the direction from the display area AA to the peripheral area BB may be the size of the long side of the rectangle; or, the size of the light-emitting device Q along the direction from the display area AA to the peripheral area BB may be the size of the short side of the rectangle; or, the size of the light-emitting device Q along the direction from the display area AA to the peripheral area BB may be the size of the diagonal of the rectangle.
  • a gap is provided between the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 and the inner contour of the orthographic projection of the cathode ring 31 on the substrate, and the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 falls into the peripheral area; in this way, while ensuring that the lens layer 2 can improve the light output rate of each light-emitting device Q in the display panel, in the subsequent process of bonding the cover plate 12, the contact area between the bonding material and the lens layer 2 can be further reduced, and the contact area between the bonding material and the flat area can be increased, thereby improving the adhesion and bonding stability, improving the quality of the display panel, and extending the service life of the display panel.
  • part of the light-emitting devices Q are located in the peripheral area BB, and the light-emitting devices Q located in the peripheral area BB are arranged in a circle along the edge of the display area AA; the orthographic projection of the cathode ring 31 on the substrate 1 is located on the side of the orthographic projection of each light-emitting device Q in the peripheral area BB on the substrate 1 away from the display area AA; wherein the orthographic projection of each light-emitting device Q located in the peripheral area BB on the substrate 1 is located within the orthographic projection of the lens layer 2 on the substrate 1.
  • each light-emitting device Q located in the peripheral area BB does not emit light.
  • the anode of the light-emitting device Q located in the dummy area (Dummy area) of the peripheral area BB is covered with an insulating material, so that the side of the anode and the surface of the anode away from the substrate 1 are wrapped inside, and cannot be connected with other conductive film layers, so it cannot emit light.
  • the light-emitting device Q located in the dummy area (Dummy area) of the peripheral area BB is used to improve the structural consistency of the display area AA and the peripheral area BB of the display panel, avoid the color difference visible to the naked eye in the boundary area of the display area AA and the peripheral area BB due to the large structural difference of the display panel in the dark state, and make a natural transition between the display area AA and the peripheral area BB, thereby improving the aesthetics of the display panel.
  • the orthographic projection of the cathode ring 31 on the substrate 1 is located on the side of the orthographic projection of each light-emitting device Q in the peripheral area BB on the substrate 1 away from the display area AA, which can be understood as: the area where the cathode ring 31 is located is located outside the area (Dummy area) where the light-emitting device Q in the peripheral area BB is located, wherein the outside refers to the side away from the display area AA and close to the edge of the display panel.
  • each light emitting device Q in the peripheral area BB on the substrate 1 is within the orthographic projection of the lens layer 2 on the substrate 1, including but not limited to the following situations:
  • the outer contour of the orthographic projection of each light emitting device Q in the peripheral area BB on the substrate 1 falls within the area defined by the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 ;
  • the outer contour of the orthographic projection of each light emitting device Q located in the peripheral area BB on the substrate 1 overlaps with the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 .
  • some light-emitting devices Q are arranged in the peripheral area BB, and the light-emitting devices Q in the peripheral area BB are arranged in a circle along the edge of the display area AA, and the orthographic projection of each light-emitting device Q in the peripheral area BB on the substrate 1 is located within the orthographic projection of the lens layer 2 on the substrate 1.
  • the structural consistency of the display area AA and the peripheral area BB of the display panel can be further improved, and the display panel can avoid visible color difference in the boundary area between the display area AA and the peripheral area BB due to the large structural difference in the dark state, so that the display area AA and the peripheral area BB have a natural transition, thereby further improving the aesthetics of the display panel.
  • the peripheral area BB includes a first peripheral sub-area B1, a second peripheral sub-area B2, a third peripheral sub-area B3 and a fourth peripheral sub-area B4, the fourth peripheral sub-area B4 and the first peripheral sub-area B1 are arranged oppositely, and the second peripheral sub-area B2 and the third peripheral sub-area B3 are arranged oppositely; the fourth peripheral sub-area B4 includes a binding terminal 5;
  • the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB is less than or equal to the width of the portion of the cathode ring 31 located in the peripheral area BB except the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB (for example, width H2, width H3 and width H4).
  • the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB is smaller than the width of the portion of the cathode ring 31 located in the peripheral area BB except the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB (for example, the width H2, the width H3 and the width H4).
  • the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction toward the peripheral area BB from the display area AA is smaller than the width of the portion of the cathode ring 31 located in the peripheral area BB except the fourth peripheral sub-area B4 in the direction toward the peripheral area BB from the display area AA (for example, the width H2, the width H3 and the width H4)
  • the widths of the portion of the peripheral area BB except the fourth peripheral sub-area B4 in the direction toward the peripheral area BB from the display area AA are the same, that is, there is no limitation on whether the width H2 of the portion of the cathode ring 31 located in the first peripheral sub-area B1 in the direction toward the peripheral area BB from the display area AA, the width H4 of the portion of the cathode ring 31 located in the second peripheral sub-area B2 in the direction toward the peripheral area BB from the display area AA, and the width H3
  • the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction pointing from the display area AA to the peripheral area BB is smaller than the width H2 of the portion of the cathode ring 31 located in the first peripheral sub-area B1 in the direction pointing from the display area AA to the peripheral area BB
  • the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction pointing from the display area AA to the peripheral area BB is smaller than the width H4 of the portion of the cathode ring 31 located in the second peripheral sub-area B2 in the direction pointing from the display area AA to the peripheral area BB
  • the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction pointing from the display area AA to the peripheral area BB is smaller than the width H3 of the portion of the cathode ring 31 located in the third peripheral sub-area
  • the width H2 of the cathode ring 31 located in the first peripheral sub-area B1 in the direction from the display area AA to the peripheral area BB, the width H4 of the cathode ring 31 located in the second peripheral sub-area B2 in the direction from the display area AA to the peripheral area BB, and the width H3 of the cathode ring 31 located in the third peripheral sub-area B3 in the direction from the display area AA to the peripheral area BB are all equal.
  • the width H2 of the portion of the cathode ring 31 located in the first peripheral sub-area B1 in the direction from the display area AA to the peripheral area BB, the width H4 of the portion of the cathode ring 31 located in the second peripheral sub-area B2 in the direction from the display area AA to the peripheral area BB, and the width H3 of the portion of the cathode ring 31 located in the third peripheral sub-area B3 in the direction from the display area AA to the peripheral area BB are not completely equal. Incomplete equality includes the situation where the three are partially the same or unequal, which will not be repeated here.
  • the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB is equal to the width of the portion of the cathode ring 31 located in the peripheral area BB except the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB (for example, the width H2, the width H3 and the width H4).
  • the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction toward the peripheral area BB from the display area AA is equal to the width of the portion of the cathode ring 31 located in the peripheral area BB except the fourth peripheral sub-area B4 in the direction toward the peripheral area BB from the display area AA (for example, the width H2, the width H3 and the width H4)
  • the width H3 of the portion of the cathode ring 31 located in the third peripheral sub-area B3 in the direction toward the peripheral area BB from the display area AA are all equal.
  • the fourth peripheral sub-area B4 includes the binding terminal 5, it can be understood that at least one driving chip can be set in a local area in the fourth peripheral area B4, and the driving chip is electrically connected to the display panel through the binding terminal 5 to provide a driving signal to the display panel.
  • a gap is provided between the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 and the inner contour of the orthographic projection of the cathode ring 31 on the substrate, and the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB is smaller than the width of the portion of the cathode ring 31 located in the peripheral area BB other than the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB (for example, the width H2, the width H3 and the width H4); in this way, the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB is narrower, and a larger bonding space is reserved in the fourth peripheral sub-area B4 for the bonding material and the film layer in the flat area, which greatly improves the bonding area between the bonding
  • the width H1 of the portion of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB is smaller than the width H2 of the portion of the cathode ring 31 located in the first peripheral sub-area B1 in the direction from the display area AA to the peripheral area BB.
  • the width H1 of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB is smaller than the width H2 of the cathode ring 31 located in the first peripheral sub-area B1 in the direction from the display area AA to the peripheral area BB, the width H1 of the cathode ring 31 located in the fourth peripheral sub-area B4 in the direction from the display area AA to the peripheral area BB is narrower, and a larger bonding space is reserved in the fourth peripheral sub-area B4 for the bonding material and the film layer in the flat area, which greatly improves the bonding area between the bonding material and the underlying film layer, improves the adhesion and bonding stability, improves the quality of the display panel, and extends the service life of the display panel.
  • the orthographic projection pattern of the lens layer 2 on the substrate 1 includes a first side and a second side that are relatively set
  • the inner contour of the orthographic projection pattern of the cathode ring 31 on the substrate 1 includes a first edge and a second edge that are relatively set, the first side and the first edge are both located in the second peripheral sub-area B2, and the second side and the second edge are both located in the third peripheral sub-area B3; the minimum distance L1 between the first side and the first edge is different from the minimum distance L2 between the second side and the second edge.
  • the minimum distance L1 between the first side and the first edge refers to the distance from the first side to the first edge in the direction from the display area AA to the peripheral area BB; the meaning of the minimum distance L2 between the second side and the second edge is similar to that of this time, and will not be repeated for the sake of brevity.
  • a minimum distance L1 from the first side to the first edge is greater than a minimum distance L2 from the second side to the second edge.
  • a minimum distance L1 from the first side to the first edge is smaller than a minimum distance L2 from the second side to the second edge.
  • the second peripheral sub-area B2 and the third peripheral sub-area B3 on both sides of the display area AA in the display panel are asymmetric, and the part of the lens layer 2 located in the second peripheral sub-area B2 is asymmetric to the part of the lens layer 2 located in the third peripheral sub-area B3, so that when the display panel is used in an AR or VR display device, it can meet the viewing angle requirements of the AR or VR display device, so that the display panel can be more widely used in AR or VR display devices.
  • the orthographic projection pattern of the lens layer 2 on the substrate 1 includes a first side edge and a second side edge that are oppositely disposed
  • the inner contour of the orthographic projection pattern of the cathode ring 31 on the substrate includes a first edge and a second edge that are oppositely disposed, the first side edge and the first edge are both located in the second peripheral sub-area B2, and the second side edge and the second edge are both located in the third peripheral sub-area B3;
  • the minimum distance L1 between the first side and the first edge is the same as the minimum distance L2 between the second side and the second edge; the width H4 of the portion of the cathode ring 31 located in the second peripheral sub-area B2 in the direction from the display area AA to the peripheral area BB is different from the width H3 of the portion of the cathode ring 31 located in the third peripheral sub-area B3 in the direction from the display area AA to the peripheral area BB.
  • the width H4 of the cathode ring 31 located in the second peripheral sub-area B2 in the direction from the display area AA to the peripheral area BB is smaller than the width H3 of the cathode ring 31 located in the third peripheral sub-area B3 in the same direction.
  • the width H4 of the cathode ring 31 located in the second peripheral sub-area B2 in the direction from the display area AA to the peripheral area BB is greater than the width H3 of the cathode ring 31 located in the third peripheral sub-area B3 in the same direction.
  • the second peripheral sub-area B2 and the third peripheral sub-area B3 located on both sides of the display area AA in the display panel are asymmetrical, so that when the display panel is used in an AR or VR display device, it can meet the viewing angle requirements of the AR or VR display device, so that the display panel can be more widely used in AR or VR display devices.
  • the orthographic projection pattern of the lens layer 2 on the substrate 1 includes a first side and a second side that are relatively arranged
  • the inner contour of the orthographic projection pattern of the cathode ring 31 on the substrate 1 includes a first edge and a second edge that are relatively arranged, the first side and the first edge are both located in the second peripheral sub-area B2, and the second side and the second edge are both located in the third peripheral sub-area B3;
  • the minimum distance L1 between the first side and the first edge is the same as the minimum distance L2 between the second side and the second edge;
  • the width H4 of the portion of the cathode ring 31 located in the second peripheral sub-area B2 in the direction pointing from the display area AA to the peripheral area BB is the same as the width H3 of the portion of the cathode ring 31 located in the third peripheral sub-area B3 along the same direction.
  • the design can be simplified, the difficulty of the manufacturing process can be reduced, and the cost can be reduced.
  • the lens layer 2 includes a plurality of first lenses 22 and a plurality of second lenses 21, each first lens 22 is located in the display area AA, and each second lens 21 is located in the peripheral area BB; the height of each second lens 21 along a plane perpendicular to the substrate 1 is less than or equal to the height of each first lens 22 along a plane perpendicular to the substrate 1.
  • the height of each second lens 21 along the plane perpendicular to the substrate 1 may be set to be equal to the height of each first lens 22 along the plane perpendicular to the substrate 1 .
  • the height of each second lens 21 along the plane perpendicular to the substrate 1 may be set to be smaller than the height of each first lens 22 along the plane perpendicular to the substrate 1 .
  • the first lens 22 can converge the display light emitted from the display area AA and improve the light extraction efficiency; the second lens 21 can also serve as a transition structure.
  • the second lens 21 near the junction of the display area AA and the peripheral area BB can converge the light to a certain extent to avoid uneven brightness in the local area of the display area AA near the peripheral area BB; on the other hand, it can further improve the structural consistency of the display area AA and the peripheral area BB of the display panel, avoid the display panel in the dark state due to the large structural difference in the junction area of the display area AA and the peripheral area BB visible to the naked eye Color difference occurs, so that the area between the display area AA and the peripheral area BB can be naturally transitioned, thereby further improving the aesthetics of the display panel.
  • each second lens 21 is gradually reduced along a plane perpendicular to the substrate 1 .
  • the edge area of the lens layer 2 tends to be flat, that is, the flatness is higher.
  • the contact area between the bonding material and the lens layer 2 can be further reduced, and the contact area between the bonding material and the flat area can be increased, thereby improving the adhesion and bonding stability, improving the quality of the display panel, and extending the service life of the display panel.
  • the structural transition between the display area AA and the peripheral area BB of the display panel is more natural, avoiding uneven brightness in the edge area of the display area AA close to the peripheral area BB in the bright state of the display panel, and avoiding visible color difference in the interface area of the display area AA and the peripheral area BB in the dark state of the display panel due to large structural differences, thereby further improving the aesthetics of the display panel.
  • the shape of the orthographic projection pattern of the second lens 21 on the substrate 1 includes an ellipse, and the major axis of at least part of the ellipse in the peripheral area BB extends in different directions.
  • the extending directions of the major axes of at least a portion of the ellipse in the peripheral area BB are different, including but not limited to the following:
  • the major axes of some ellipses (projection patterns of the second lens 21 ) in the peripheral area BB extend in different directions, and the major axes of some ellipses (projection patterns of the second lens 21 ) extend in the same direction;
  • the major axes of the ellipses (projection patterns of the second lenses 21 ) in the peripheral area BB extend in different directions.
  • the display panel provided in the embodiment of the present application, by setting the extension direction of the long axis of at least part of the ellipse in the peripheral area BB to be different, the light entering the second lens 21 due to scattering or refraction can be scattered and then emitted from the display panel, so that the display brightness of the display panel gradually decreases from the display area AA to the junction of the peripheral area BB in the bright state, and the junction of the display area AA and the peripheral area BB will not have an obvious black seam due to the sudden decrease in brightness, thereby improving the display effect of the display panel.
  • the shape of the orthographic projection pattern of the first lens 22 on the substrate 1 includes an ellipse, and the major axes of at least a portion of the ellipse in the display area AA extend in the same direction.
  • the display panel provided in the embodiment of the present application, by setting the shape of the orthographic projection figure of the first lens 22 on the substrate 1 to include an ellipse, while the first lens 22 has a convergence effect on the light emitted by the light-emitting device Q, the ability of the first lens 22 to converge the light along the major axis direction of the ellipse is different from the ability to converge the light along the minor axis direction of the ellipse. In this way, the positive viewing angle brightness of the display panel can be improved, and the light in the large viewing angle direction can be regulated to different degrees, thereby meeting the demand for more large viewing angle brightness regulation of the display panel.
  • the extending directions of the major axes of at least a portion of the ellipses in the display area AA are the same, including but not limited to the following cases:
  • the major axes of the partial ellipse (the projection pattern of the first lens 22 ) in the display area AA extend in the same direction;
  • the major axes of the ellipses (projection patterns of the first lenses 22 ) in the display area AA extend in the same direction.
  • the ability of each first lens 22 in the display area AA to converge light along the long axis direction of the ellipse is as consistent as possible, and the ability of each first lens 22 to converge light along the short axis direction of the ellipse is as consistent as possible, thereby improving the degree of focusing of each first lens 22 on each light-emitting device Q, improving the light output brightness of the display panel, and improving the display effect.
  • the first lens 22 located on one side of the boundary line between the display area AA and the peripheral area BB has the same structure and size as the second lens 21 located on the other side of the boundary line.
  • two circles of lenses are respectively arranged on both sides of the boundary line between the display area AA and the peripheral area BB.
  • the first lens 22 located on one side of the boundary line between the display area AA and the peripheral area BB to have the same structure and size as the second lens 21 located on the other side of the boundary line, the amount of light incident on the second lens 21 on one side of the boundary line due to scattering or refraction can be made close to the amount of light incident on the first lens 22 by the light-emitting device Q, so that the display brightness of the display panel gradually decreases from the display area AA to the boundary of the peripheral area BB in the bright state, and no obvious black seam will appear at the boundary between the display area AA and the peripheral area BB due to the sudden decrease in brightness, thereby improving the display effect of the display panel.
  • the shapes of the orthographic projection patterns of the first lens 22 and the second lens 21 on the substrate 1 both include ellipses, and the extension direction of the long axis of the orthographic projection pattern of the first lens 22 located on one side of the intersection line is the same as the extension direction of the long axis of the orthographic projection pattern of the second lens 21 located on the other side of the intersection line.
  • the display panel provided in the embodiment of the present application, by setting the shape of the orthographic projection figures of the first lens 22 located on one side of the boundary line between the display area AA and the peripheral area BB and the second lens 21 located on the other side of the boundary line to be elliptical, and the extension direction of the major axes of the two ellipses is the same, in this way, the amount of light entering the second lens 21 on one side of the boundary line due to scattering or refraction can be further made close to the amount of light entering the first lens 22 by the light-emitting device Q, so that the display brightness of the display panel gradually decreases from the display area AA to the junction of the peripheral area BB in the bright state, and the junction of the display area AA and the peripheral area BB will not have an obvious black seam due to the sudden decrease in brightness, thereby improving the display effect of the display panel.
  • the display panel includes a first encapsulation layer F1, a color filter layer CF and a second encapsulation layer F2 arranged in sequence, the first encapsulation layer F1 covers the light-emitting device Q and the cathode ring 21 and extends to the peripheral area of the display panel, the second encapsulation layer F2 is located between the color filter layer CF and the lens layer 2, and the second encapsulation layer F2 also extends to the peripheral area BB; the roughness of at least a portion of the surface of the second encapsulation layer F2 away from the substrate 1 is greater than the roughness of the surface of the first encapsulation layer F1 away from the substrate 1.
  • the first encapsulation layer F1 and the second encapsulation layer F2 may both be single-layer structures, and the materials thereof are both inorganic materials.
  • the material of the first encapsulation layer F1 and the second encapsulation layer F2 may be one of silicon nitride, silicon oxide and silicon oxynitride.
  • the materials of the first encapsulation layer F1 and the second encapsulation layer F2 may be the same.
  • the roughness of at least a part of the surface of the second encapsulation layer F2 away from the substrate 1 is greater than the roughness of the surface of the first encapsulation layer F1 away from the substrate 1, including but not limited to the following situations:
  • the roughness of partial areas of the surfaces of the first and second encapsulation layers F2 away from the substrate 1 is greater than the roughness of the surface of the first encapsulation layer F1 away from the substrate 1;
  • the roughness of all regions of the surface of the second encapsulation layer F2 away from the substrate 1 is greater than the roughness of the surface of the first encapsulation layer F1 away from the substrate 1 .
  • the roughness of at least a portion of the surface of the second encapsulation layer F2 away from the substrate 1 is greater than or equal to ten times the roughness of the surface of the first encapsulation layer F1 away from the substrate 1.
  • the preparation process parameters of the first encapsulation layer F1 and the second encapsulation layer F2 may be adjusted, and the surface roughness of the first encapsulation layer F1 and the second encapsulation layer F2 may be controlled by controlling the uniformity of their thicknesses.
  • the difference between the minimum distance between the surface of the second encapsulation layer F2 away from the substrate 1 in the direction perpendicular to the substrate 1 and the maximum distance between the surface of the second encapsulation layer F2 away from the substrate 1 in the direction perpendicular to the substrate 1 can be controlled to be
  • the difference between the minimum distance between the surface of the first encapsulation layer F1 away from the substrate 1 in the direction perpendicular to the substrate 1 and the maximum distance between the surface of the first encapsulation layer F1 away from the substrate 1 in the direction perpendicular to the substrate 1 can be controlled to be It can be understood that the flatness of the surface of the second encapsulation layer F2 away from the substrate 1 is smaller than the flatness of the surface of the first encapsulation layer F1 away from the substrate 1 .
  • the color filter layer CF may include a first filter pattern, a second filter pattern and a third filter pattern, one of the first filter pattern, the second filter pattern and the third filter pattern is a red color resist pattern, another is a green color resist pattern, and the other is a blue color resist pattern; in addition, the color filter layer CF may further include a black matrix, and a black matrix may be arranged between any two adjacent filter patterns to prevent different colors of light from cross-coloring. For example, a black matrix is arranged between the first filter pattern and the second filter pattern, a black matrix is arranged between the second filter pattern and the third filter pattern, and a black matrix is arranged between the first filter pattern and the third filter pattern.
  • the bonding material has better bonding with the second encapsulation layer F2 with greater roughness, thereby improving the adhesion and bonding stability of the cover plate 12, improving the quality of the display panel, and extending the service life of the display panel.
  • the display panel also includes an adhesive layer 11 and a cover plate 12, the adhesive layer 11 is located on the side of the lens layer 2 away from the substrate 1, and the cover plate 12 is located on the side of the adhesive layer 11 away from the lens layer 2; the orthographic projection of the adhesive layer 11 on the substrate 1 is located within the orthographic projection of the second encapsulation layer F2 on the substrate 1, and the adhesive layer 11 is in direct contact with partial areas of the second encapsulation layer F and the lens layer 2, respectively.
  • the material of the bonding layer 11 includes bonding material, such as optical adhesive (OCA) or light-transmitting resin.
  • bonding material such as optical adhesive (OCA) or light-transmitting resin.
  • the bonding layer 11 is in direct contact with a partial area of the second packaging layer F and the lens layer 2 respectively, and the surface of the second packaging layer F away from the substrate 1 has a large roughness.
  • the inward contraction of the boundary of the lens layer can reduce the contact area between the bonding material and the lens layer 2, and increase the contact area between the bonding material and the flat area.
  • the surface of the second packaging layer F2 away from the substrate 1 has a large roughness, which can greatly improve the adhesion of the bonding layer 11, thereby improving the bonding stability, improving the quality of the display panel, and extending the service life of the display panel.
  • the area of the region where the adhesive layer 11 located in the fourth peripheral sub-area B4 directly contacts the second encapsulation layer F2 is greater than or equal to the area of the region where the adhesive layer 11 located in the first peripheral sub-area B1 directly contacts the second encapsulation layer F2.
  • the area of the adhesive layer 11 in the fourth peripheral sub-area B4 directly contacting the second encapsulation layer F2 is equal to the area of the adhesive layer 11 in the first peripheral sub-area B1 directly contacting the second encapsulation layer F2.
  • the area of the adhesive layer 11 in the fourth peripheral sub-area B4 directly contacting the second encapsulation layer F2 is greater than the area of the adhesive layer 11 in the first peripheral sub-area B1 directly contacting the second encapsulation layer F2.
  • the area of the region where the portion of the adhesive layer 11 located in the fourth peripheral sub-area B4 directly contacts the second encapsulation layer F2 is greater than or equal to the area of the region where the portion of the adhesive layer 11 located in the first peripheral sub-area B1 directly contacts the second encapsulation layer F2, in the subsequent binding process, when pressure and heat are applied to a local area in the fourth peripheral sub-area B4 in the binding process, due to the larger area of the region where the portion of the adhesive layer 11 located in the fourth peripheral sub-area B4 directly contacts the second encapsulation layer F2, even if the heat in the binding process causes the adhesive material to expand thermally, due to the larger bonding area of the adhesive layer 11, after the effects of the two factors are superimposed, the adhesion between the cover plate 12 and the adhesive layer 11, and between the adhesive layer 11 and the underlying film layer is not reduced, thereby further improving the bonding stability, improving the quality of the display panel, and extending the service life of the display panel.
  • the display panel also includes a shading layer ZG, the shading layer ZG is located in the peripheral area BB and surrounds the display area AA, and the shading layer ZG and the color filter layer CF are arranged on the same layer; the orthographic projection of the cathode ring 31 on the substrate 1 is located within the orthographic projection of the shading layer ZG on the substrate 1, the outer contour of the orthographic projection of the lens layer 2 on the substrate 1 falls within the area where the orthographic projection of the shading layer ZG on the substrate 1 is located, and the orthographic projection of the outer contour of the shading layer ZG on the substrate 1 is located within the orthographic projection of the cover plate 12 on the substrate 1.
  • the light shielding layer ZG may include a single-layer structure.
  • the light shielding layer ZG is made of the same material as the black matrix.
  • the light shielding layer ZG may include a multi-layer structure.
  • the light shielding layer ZG may include a plurality of sub-layers.
  • the light shielding layer ZG may include: a first sub-layer made of the same material as the red filter pattern, a second sub-layer made of the same material as the green filter pattern, and a third sub-layer made of the same material as the blue filter pattern; wherein the arrangement order of the first sub-layer, the second sub-layer and the third sub-layer is not limited here, for example, the first sub-layer, the second sub-layer and the third sub-layer may be arranged in sequence in the direction away from the substrate; for another example, the first sub-layer, the third sub-layer and the second sub-layer may be arranged in sequence in the direction away from the substrate; for another example, the second sub-layer, the first sub-layer and the third sub-layer may be arranged in sequence in the direction away from the substrate; of course, other situations may also be included, which may be specifically determined
  • the light shielding layer ZG may include: a first sublayer made of the same material as the red filter pattern and a second sublayer made of the same material as the blue filter pattern, which are stacked.
  • the light shielding layer ZG and the color filter layer CF being disposed on the same layer means that the light shielding layer ZG and the color filter layer CF are formed in the same patterning process, and does not mean that the light shielding layer ZG and the color filter layer CF have the same thickness.
  • the light shielding layer ZG located in the peripheral area BB surrounds the display area AA.
  • the projection of the light shielding layer ZG can be in the shape of a ring.
  • the specific shape of the ring is not limited here.
  • the ring can include a circular ring, an elliptical ring, a polygonal ring, etc.
  • the light shielding layer ZG can shield at least part of the circuits and wirings in the peripheral area BB to prevent them from generating reflections that reduce the display effect.
  • the orthographic projection of the cathode ring 31 on the substrate 1 is within the orthographic projection of the light shielding layer ZG on the substrate 1, including but not limited to the following situations:
  • the outer contour of the positive projection of the cathode ring 31 on the substrate 1 is located within the outer contour of the positive projection of the light shielding layer ZG on the substrate 1;
  • the outer contour of the orthographic projection of the cathode ring 31 on the substrate 1 overlaps with the outer contour of the orthographic projection of the light shielding layer ZG on the substrate 1 .
  • the light shielding layer ZG can shield the cathode ring 31 , thereby preventing the cathode ring 31 from reflecting light and reducing the display effect.
  • the shape of the positive projection pattern of the cathode ring 31 on the substrate 1 includes a polygon with rounded corners.
  • the cathode ring 31 by setting the shape of the positive projection pattern of the cathode ring 31 on the substrate 1 to include a polygon with rounded corners, it is avoided that the cathode ring 31 has a sharp conductive pattern that increases the probability of electrostatic breakdown, thereby improving the signal transmission stability in the display panel and improving the product reliability of the display panel.
  • the display panel also includes a plurality of positive electrodes 7 located in the peripheral area BB, and the positive electrode 7 is arranged in the same layer as the anode of the light-emitting device Q; wherein the positive electrode 7 is electrically connected to the anode, and the positive electrode 7 is in direct contact with the cathode ring 31.
  • the cathode ring 31 is electrically connected to the cathode of each light-emitting device Q, and the area where the cathode ring 31 is located is marked as R area, wherein the positive electrode 7 is directly in contact with the cathode ring 31, so that the positive electrode 7 is connected to the cathode ring 31, so as to form a closed loop circuit between the light-emitting device Q and the driving circuit of the display panel.
  • the positive electrode 7 can be connected to the anode of each light-emitting device Q.
  • the display panel provided in the embodiments of the present application may also include other structures such as an alignment mark pattern 4 of the cover plate, a GOA circuit, etc.
  • This specification only introduces structures and components related to the invention point.
  • the other structures and components included in the display panel can refer to the introduction in the relevant technology.
  • An embodiment of the present application provides a display device, comprising the display panel as described above.
  • the structure of the display panel can be referred to in the above description and will not be described again here.
  • the display device also includes a flexible circuit board FPC and a driving chip IC;
  • the display panel includes a display control unit, and the display device further includes a flexible circuit board FPC.
  • the array substrate of the silicon substrate in the display device can integrate the pixel driving circuit array, Source Driver, Gate Driver, Emission Control Driver, OSC (Oscillator), Gamma Register and display control unit integrated circuit on the same chip.
  • OSC Organic Driver
  • Gamma Register and display control unit integrated circuit on the same chip.
  • the display panel is directly electrically connected to the flexible circuit board FPC, which is called One Chip technology.
  • the display device prepared by One Chip technology has a higher degree of integration, but a smaller size, and can be applied to high-resolution display products, such as virtual reality or augmented reality near-eye display fields.
  • the array substrate of the silicon substrate can also separate analog circuit parts such as the pixel driving circuit array, Source driver, Gate driver, Emission driver (i.e., the EOA unit of the present application) from the OSC, Gamma register, Interface and display control unit, changing from One Chip technology to Two Chip technology.
  • the display panel needs to be electrically connected to the flexible circuit board FPC and the driver chip IC respectively.
  • this type of product has low manufacturing process requirements and can use low process technology to reduce production costs.
  • the display device may be a flexible display device (also known as a flexible screen) or a rigid display device (i.e., a display device that cannot be bent), which is not limited here.
  • the display device may be an OLED display device, or any product or component with a display function such as a TV, a digital camera, a mobile phone, a tablet computer, etc. that includes an OLED.
  • the display device has the advantages of good display effect, long life, high stability, etc.
  • An embodiment of the present application provides a wearable device, comprising two display devices as described above.
  • the wearable device sets the orthographic projection of the lens layer 2 on the substrate 1 to be within the area defined by the outer contour of the orthographic projection of the cathode ring 31 on the substrate 1.
  • the contact area between the bonding material and the lens layer 2 can be reduced, and the contact area between the bonding material and the flat area can be increased, thereby improving the adhesion and bonding stability, improving the quality of the wearable device, and extending the service life of the wearable device.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供了一种显示面板、显示装置、可穿戴设备,涉及显示技术领域,显示面板包括显示区(AA)和周边区(BB),周边区(BB)围绕显示区(AA);显示面板还包括:衬底(1)以及位于衬底(1)上阵列排布的多个发光器件(Q),发光器件(Q)至少位于显示区(AA);导电层(3),包括阴极环(31)和发光器件(Q)的阴极;阴极环(31)位于周边区(BB)且阴极环(31)围绕显示区(AA);透镜层(2),位于发光器件(Q)远离衬底(1)的一侧,透镜层(2)从显示区(AA)延伸至周边区(BB);其中,透镜层(2)在衬底(1)上的正投影位于阴极环(31)在衬底(1)上的正投影的外轮廓圈定的区域以内,显示面板的显示效果佳、产品质量高、可靠性好。

Description

显示面板、显示装置、可穿戴设备 技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板、显示装置、可穿戴设备。
背景技术
随着显示技术的不断发展,硅基OLED(Organic Light Emitting Diode,有机发光二极管)显示产品由于其具有高分辨率、低功耗、体积小、重量轻等优势,引起人们的广泛关注。其在可穿戴设备、工业安防、医疗等高分辨率的近眼显示行业具有很好的应用前景。
发明内容
本申请的实施例采用如下技术方案:
第一方面,本申请的实施例提供了一种显示面板,包括显示区和周边区,所述周边区围绕所述显示区;所述显示面板还包括:
衬底以及位于所述衬底上阵列排布的多个发光器件,所述发光器件至少位于所述显示区;
导电层,包括阴极环和所述发光器件的阴极;所述阴极环位于所述周边区且所述阴极环围绕所述显示区;
透镜层,位于所述发光器件远离所述衬底的一侧,所述透镜层从所述显示区延伸至所述周边区;
其中,所述透镜层在所述衬底上的正投影位于所述阴极环在所述衬底上的正投影的外轮廓圈定的区域以内。
在本申请的实施例提供的一显示面板中,所述透镜层在所述衬底上的正投影位于所述阴极环在所述衬底上的正投影的内轮廓圈定的区域以内,且所述透镜层在所述衬底上的正投影的外轮廓位于所述周边区。
在本申请的实施例提供的一显示面板中,所述透镜层在所述衬底上的正投影的外轮廓与所述阴极环在所述衬底上的正投影的内轮廓重叠。
在本申请的实施例提供的一显示面板中,所述透镜层在所述衬底上 的正投影的外轮廓与所述阴极环在所述衬底上的正投影的内轮廓之间具有间隙。
在本申请的实施例提供的一显示面板中,所述间隙沿所述显示区指向所述周边区方向上的尺寸小于或等于所述阴极环沿所述显示区指向所述周边区方向上的宽度。
在本申请的实施例提供的一显示面板中,所述间隙沿所述显示区指向所述周边区方向上的尺寸大于或等于一个所述发光器件沿所述显示区指向所述周边区方向上的尺寸。
在本申请的实施例提供的一显示面板中,部分所述发光器件位于所述周边区,且位于所述周边区中的各所述发光器件沿所述显示区的边缘设置一圈;所述阴极环在所述衬底上的正投影位于所述周边区中的各所述发光器件在所述衬底上的正投影远离所述显示区的一侧;
其中,位于所述周边区中的各所述发光器件在所述衬底上的正投影位于所述透镜层在所述衬底上的正投影以内。
在本申请的实施例提供的一显示面板中,所述周边区包括第一周边子区、第二周边子区、第三周边子区和第四周边子区,所述第四周边子区和所述第一周边子区相对设置,所述第二周边子区和所述第三周边子区相对设置;所述第四周边子区包括绑定端子;
所述阴极环位于所述第四周边子区的部分沿所述显示区指向所述周边区方向上的宽度小于或等于所述阴极环位于所述周边区中除所述第四周边子区之外的部分沿所述显示区指向所述周边区方向上的宽度。
在本申请的实施例提供的一显示面板中,所述阴极环位于所述第四周边子区的部分沿所述显示区指向所述周边区方向上的宽度小于所述阴极环位于所述第一周边子区的部分沿所述显示区指向所述周边区方向上的宽度。
在本申请的实施例提供的一显示面板中,所述透镜层在所述衬底上的正投影图形包括相对设置的第一侧边和第二侧边,所述阴极环在所述衬底上的正投影图形的内轮廓包括相对设置的第一边缘和第二边缘,所述第一侧边和所述第一边缘均位于所述第二周边子区,所述第二侧边和 所述第二边缘均位于所述第三周边子区;
所述第一侧边到所述第一边缘之间的最小距离与所述第二侧边到所述第二边缘之间的最小距离不同。
在本申请的实施例提供的一显示面板中,所述透镜层在所述衬底上的正投影图形包括相对设置的第一侧边和第二侧边,所述阴极环在所述衬底上的正投影图形的内轮廓包括相对设置的第一边缘和第二边缘,所述第一侧边和所述第一边缘均位于所述第二周边子区,所述第二侧边和所述第二边缘均位于所述第三周边子区;
所述第一侧边到所述第一边缘之间的最小距离与所述第二侧边到所述第二边缘之间的最小距离相同;
所述阴极环位于所述第二周边子区的部分沿所述显示区指向所述周边区方向上的宽度与所述阴极环位于所述第三周边子区的部分沿所述显示区指向所述周边区方向上的宽度不同。
在本申请的实施例提供的一显示面板中,所述透镜层在所述衬底上的正投影图形包括相对设置的第一侧边和第二侧边,所述阴极环在所述衬底上的正投影图形的内轮廓包括相对设置的第一边缘和第二边缘,所述第一侧边和所述第一边缘均位于所述第二周边子区,所述第二侧边和所述第二边缘均位于所述第三周边子区;
所述第一侧边到所述第一边缘之间的最小距离与所述第二侧边到所述第二边缘之间的最小距离相同;
所述阴极环位于所述第二周边子区的部分沿所述显示区指向所述周边区方向上的宽度与所述阴极环位于所述第三周边子区的部分沿所述显示区指向所述周边区方向上的宽度相同。
在本申请的实施例提供的一显示面板中,所述透镜层包括多个第一透镜和多个第二透镜,各所述第一透镜位于所述显示区,各所述第二透镜位于所述周边区;
各所述第二透镜沿垂直于所述衬底所在平面上的高度小于或等于各所述第一透镜沿垂直于所述衬底所在平面上的高度。
在本申请的实施例提供的一显示面板中,沿所述显示区指向所述周 边区的方向上,各所述第二透镜沿垂直于所述衬底所在平面上的高度逐渐降低。
在本申请的实施例提供的一显示面板中,所述第二透镜在所述衬底上的正投影图形的形状包括椭圆形,所述周边区中至少部分所述椭圆形的长轴的延伸方向不同。
在本申请的实施例提供的一显示面板中,所述第一透镜在所述衬底上的正投影图形的形状包括椭圆形,所述显示区中至少部分所述椭圆形的长轴的延伸方向相同。
在本申请的实施例提供的一显示面板中,位于所述显示区和所述周边区的交界线一侧的所述第一透镜与位于所述交界线另一侧的所述第二透镜的结构和尺寸相同。
在本申请的实施例提供的一显示面板中,所述第一透镜和所述第二透镜在所述衬底上的正投影图形的形状均包括椭圆形,位于所述交界线一侧的所述第一透镜的正投影图形的长轴的延伸方向与位于所述交界线另一侧的所述第二透镜的正投影图形的长轴的延伸方向相同。
在本申请的实施例提供的一显示面板中,所述显示面板包括依次设置的第一封装层、彩色滤光层和第二封装层,所述第一封装层覆盖所述发光器件和所述阴极环,所述第二封装层位于所述彩色滤光层和所述透镜层之间、且所述第二封装层还延伸至所述周边区;
所述第二封装层远离所述衬底的表面的至少部分区域的粗糙度大于所述第一封装层远离所述衬底的表面的粗糙度。
在本申请的实施例提供的一显示面板中,所述第二封装层远离所述衬底的表面的至少部分区域的粗糙度大于或等于十倍的所述第一封装层远离所述衬底的表面的粗糙度。
在本申请的实施例提供的一显示面板中,所述显示面板还包括粘结层和盖板,所述粘结层位于所述透镜层远离所述衬底的一侧,所述盖板位于所述粘结层远离所述透镜层的一侧;所述粘结层在所述衬底上的正投影位于所述第二封装层在所述衬底上的正投影以内,且所述粘结层分别与所述第二封装层的部分区域和所述透镜层直接接触。
在本申请的实施例提供的一显示面板中,所述粘结层位于所述第四周边子区的部分与所述第二封装层直接接触的区域的面积大于或等于所述粘结层位于所述第一周边子区的部分与所述第二封装层直接接触的区域的面积。
在本申请的实施例提供的一显示面板中,所述显示面板还包括遮光层,所述遮光层位于所述周边区且围绕所述显示区,所述遮光层和所述彩色滤光层同层设置;
所述阴极环在所述衬底上的正投影位于所述遮光层在所述衬底上的正投影以内,所述透镜层在所述衬底上的正投影的外轮廓落入所述遮光层在所述衬底上的正投影所在的区域内,所述遮光层的外轮廓在所述衬底上的正投影位于所述盖板在所述衬底上的正投影以内。
在本申请的实施例提供的一显示面板中,所述阴极环在所述衬底上的正投影图形的形状包括具有圆角的多边形。
在本申请的实施例提供的一显示面板中,所述显示面板还包括位于所述周边区中的多个正电极,所述正电极与所述发光器件的阳极同层设置;其中,所述正电极与所述阳极电连接,且所述正电极与所述阴极环直接接触。
第二方面,本申请的实施例提供了一种显示装置,包括如第一方面中任一项所述的显示面板。
第三方面,本申请的实施例提供了一种可穿戴设备,包括两个如第二方面中所述的显示装置。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见 地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1-图5为本申请的实施例提供的五种显示面板的平面示意图;
图6为本申请的实施例提供的一种沿图5中M1M2方向的剖面示意图的局部;
图7-图12、图15为本申请的实施例提供的另外七种显示面板的平面示意图;
图13为本申请的实施例提供的另一种沿图5中M1M2方向的剖面示意图;
图14为本申请的实施例提供的又一种沿图5中M1M2方向的剖面示意图;
图16为本申请的实施例提供的一种阴极环的局部结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本申请的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
另外,还需要说明的是,当介绍本申请的元素及其实施例时,冠词 “一”、“一个”、“该”和“所述”旨在表示存在一个或者多个要素;除非另有说明,“多个”的含义是两个或两个以上;用语“包含”、“包括”、“含有”和“具有”旨在包括性的并且表示可以存在除所列要素之外的另外的要素;术语“第一”、“第二”、“第三”等仅用于描述的目的,而不能理解为指示或暗示相对重要性及形成顺序。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
本说明书中多边形并非严格意义上的,可以是近似的三角形、矩形、梯形、五边形或六边形等,可以存在公差导致的一些小变形,可以存在倒角、圆角、弧边以及变形等。
随着显示技术的不断发展,硅基OLED(Organic Light Emitting Diode,有机发光二极管)显示产品由于其具有体积小,分辨率高的特点。其背板采用成熟的集成电路CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)工艺制成,实现了像素的有源寻址,包括TCON(Timer Control Register,计数器控制寄存器)、OCP(Over Current Protection,过流保护)等多种电路,能够实现轻量化。硅基OLED显示产品广泛应用于近眼显示与虚拟现实(Virtual Reality,简称VR)、增强现实(Augmented Reality,简称AR)领域中。
为此,本申请的实施例提供了一种新设计的显示面板、显示装置、可穿戴设备,以提高硅基显示装置的产品可靠性、延长其使用寿命,扩大硅基显示产品的使用场景,使其能够在可穿戴设备、工业安防、医疗等高分辨率的近眼显示行业具有更深入的应用。该显示面板包括显示区和周边区,周边区围绕显示区;显示面板还包括:衬底以及位于衬底上阵列排布的多个发光器件,发光器件至少位于显示区;导电层,包括阴极环和发光器件的阴极;阴极环位于周边区且阴极环围绕显示区;透镜层,位于发光器件远离衬底的一侧,透镜层从显示区延伸至周边区;其 中,透镜层在衬底上的正投影位于阴极环在衬底上的正投影的外轮廓圈定的区域以内。由于透镜层的表面不平坦,在后续粘结盖板的工艺过程中,通过设置透镜层在衬底上的正投影位于阴极环在衬底上的正投影的外轮廓圈定的区域以内,能够减小粘结材料与透镜层的接触面积,增大粘结材料与平坦区域的接触面积,从而提高粘附力和粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。
现将参照附图更全面地描述示例性的实施例。
本申请的实施例提供了一种显示面板,图1-图5为本申请的实施例提供的五种显示面板的平面示意图;图6为本申请的一实施例提供的一种沿图5中M1M2方向的剖面示意图的局部;图7-图12、图15为本申请的实施例提供的另外七种显示面板的平面示意图;图13为本申请的一实施例提供的另一种沿图5中M1M2方向的剖面示意图;图14为本申请的一实施例提供的又一种沿图5中M1M2方向的剖面示意图。需要说明的是,图1-图5、图7-图12、图15中均重点示意出了显示面板的周边区BB的部分结构的平面分布,未示意出完整的显示面板的平面图;图6、图13和图14未示出显示面板的完整层结构,未示出的层结构可参见相关技术。
如图1-图5所示,该显示面板包括显示区AA和周边区(未标记),周边区围绕显示区AA;
如图6、图13或图14所示,该显示面板还包括:衬底1以及位于衬底1上阵列排布的多个发光器件Q,发光器件Q至少位于显示区AA;导电层3,包括阴极环31和发光器件Q的阴极;阴极环31位于周边区BB且阴极环31围绕显示区AA;透镜层2,位于发光器件Q远离衬底1的一侧,透镜层2从显示区AA延伸至周边区BB;其中,透镜层2在衬底1上的正投影位于阴极环31在衬底1上的正投影的外轮廓圈定的区域以内。
需要说明的是,图6、图13或图14仅示意出了剖面图的左侧,结合如图1-图5的平面图可知,阴极环31在衬底1上的正投影的外轮廓圈定的区域为一个封闭的区域。
在图6、图13或图14中,显示面板包括衬底1和多个子像素,子像素位于衬底1上,子像素包括发光器件Q和颜色转换层,颜色转换层位于发光器件Q的出光侧;各发光器件Q包括发光功能层10以及位于发光功能层10两侧的第一电极和第二电极;其中,第一电极和第二电极中的一个为阳极,另一个为阴极;在第一电极为阳极,第二电极为阴极的情况下,第一电极位于发光功能层10与衬底1之间,第二电极的至少部分位于发光功能层10远离第一电极的一侧;也就是说,第一电极和第二电极位于在垂直于发光功能层10的方向上的两侧。发光功能层10并非仅包括直接进行发光的膜层,还包括用于辅助发光的功能膜层,例如:空穴传输层、电子传输层等。
需要说明的是,在本申请的实施例提供的附图中,为了简洁,将各发光器件Q的发光功能层10连在一起绘制,在实际应用中,当各发光器件Q的发光颜色相同时,各发光器件Q的发光功能层10可以连接在一起;当各发光器件Q的发光颜色不完全相同时,各发光器件Q的发光功能层10之间可以隔开设置,例如通过像素定义层隔开(图6中未绘制),避免子像素的颜色串扰。
在第一电极为阳极,第二电极为阴极的情况下,多个发光器件Q可以共用第二电极。例如,阴极可由高导电性和低功函数的材料形成,例如,阴极可采用金属材料制成。例如,阳极可由具有高功函数的透明导电材料形成。
在一些示例中,衬底1的材料可以由玻璃、聚酰亚胺、聚碳酸酯、聚丙烯酸酯、聚醚酰亚胺、聚醚砜中的一种或多种材料制成,本实施例包括但不限于此。
在一些示例中,衬底1可为刚性衬底或者柔性衬底;当衬底1为柔性衬底时,衬底1可以包括单层的柔性材料层;或者,衬底1可以包括依次层叠设置的第一柔性材料层、第一无机非金属材料层、第二柔性材料层和第二无机非金属材料层。第一柔性材料层、第二柔性材料层的材料采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料。第一无机非金属材料层、第二无机非金属材料层的 材料采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高衬底基板的抗水氧能力,第一无机非金属材料层、第二无机非金属材料层也称之为阻挡(Barrier)层。
当衬底1为刚性衬底时,衬底1可以包括玻璃衬底或硅材料衬底,在衬底1为硅材料衬底的情况下,衬底1与发光器件Q之间可以设置多层导电材料层、多层绝缘材料层,用以形成驱动电路和像素电路,其中,衬底1以及位于衬底1上的驱动电路和像素电路可以统称为驱动背板,驱动背板可以场效应晶体管驱动背板(MOS驱动背板),其中,MOS驱动背板中各层金属层之间通过绝缘层间隔(例如第一绝缘层8和第二绝缘层9),并通过钨孔电连接(W Via)。
其中,硅材料衬底可以为P型单晶硅衬底,或者,也可以为N型单晶硅衬底,具体可以根据实际产品进行确定。需要说明的是,本申请的实施例以上述显示面板为硅材料衬底的显示面板为例进行说明。
在一些示例中,衬底1和发光器件Q之间还可以设置有其他膜层,这些其他膜层可以包括栅极绝缘层、层间绝缘层、像素电路(例如包括薄膜晶体管、存储电容等结构)中的各膜层、数据线、栅线、电源信号线、复位电源信号线、复位控制信号线、发光控制信号线等膜层或者结构。
在一些示例中,发光器件Q至少位于显示区AA包括但不限于如下情况:
第一、发光器件Q位于显示区AA中;
第二、如图6、图13或图14所示,发光器件Q不仅位于显示区AA中,还从显示区AA向周边区BB中的虚设区域(Dummy area)延伸。
需要说明的是,位于显示区AA中的发光器件Q可以发光和显示,位于周边区BB中的虚设区域(Dummy area)的发光器件Q不能进行发光和显示;其中,位于周边区BB中的虚设区域(Dummy area)的发光器件Q用于提高显示面板的显示区AA和周边区BB的结构一致性,避免显示面板在暗态下由于结构差异性较大在显示区AA和周边区BB 的交界区域出现肉眼可见的色差,使得显示区AA与周边区BB之间自然过渡,从而提高显示面板的美观性。
如图6、图13或图14所示,位于显示区AA中的发光器件Q的发光功能层10与阳极导通,位于周边区BB的虚设区域(Dummy area)的发光器件Q的发光功能层10与阳极之间设置有绝缘材料,不能导通;例如,位于周边区BB的虚设区域(Dummy area)的发光器件Q的阳极上覆盖有绝缘材料,使得阳极的侧面以及阳极远离衬底1一侧的表面包裹在内,无法与其它导电膜层导通。
在一些实施例中,此处的绝缘材料可以采用与像素定义层相同的材料制备。示例性的,像素定义层的材料可包括有机材料,例如聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等。像素定义层的具体设置位置和结构可以参考相关技术,这里不再赘述。
这里对于上述显示区AA的平面图形不进行限定。示例性的,显示区AA的平面图形可以为本申请的实施例的附图中所示的矩形;或者,显示区AA的平面图形也可以为其它多边形,例如,五边形、六边形等,具体根据使用场景和使用需求确定。示例性的,周边区BB的平面图形可为环形,随着显示区AA的平面图形的不同,周边区BB的平面图形也不同,周边区BB的平面图形可以根据显示区AA的平面图形确定。上述平面图形指的是在显示面板的衬底上的正投影的图形。
在一些实施例中,显示面板的显示区AA中的各发光器件Q的发光颜色均相同,例如,各发光器件Q的发光颜色均为蓝色;或者各发光器件Q的发光颜色均为白色。当各发光器件Q的发光颜色均为蓝色时,颜色转换层可以包括第一颜色转换图案、第二颜色转换图案和第三颜色图案,其中,发光器件Q发出的蓝光经过第一颜色转换图案之后可以射出红光,发光器件Q发出的蓝光经过第二颜色转换图案之后可以射出绿光,发光器件Q发出的蓝光经过第三颜色图案之后可以射出蓝光;其中,第一颜色转换图案可以为红色量子点图案,第二颜色转换图案可以为绿色量子点图案,第三颜色图案可以为透光图案。
在一些实施例中,显示面板的显示区AA中的各发光器件Q包括 第一颜色发光器件、第二颜色发光器件和第三颜色发光器件,第一颜色发光器件、第二颜色发光器件和第三颜色发光器件按照一定规律阵列排布,其中,第一颜色发光器件发出的光为红光,第二颜色发光器件发出的光为绿光,第三颜色发光器件发出的光为蓝光;此时,颜色转换层可以包括第一滤光图案、第二滤光图案和第三滤光图案,第一滤光图案可以为红色色阻图案,第二滤光图案可以为绿色色阻图案,第三滤光图案可以为蓝色色阻图案;这种颜色转换层又可以称作为彩膜层或彩色滤光层(CF),其中,第一滤光图案在衬底1上的正投影与第一颜色发光器件在衬底1上的正投影交叠,第二滤光图案在衬底1上的正投影与第二颜色发光器件在衬底1上的正投影交叠,第三滤光图案在衬底1上的正投影与第三颜色发光器件在衬底1上的正投影交叠。
如图6、图13或图14所示,显示面板包括导电层3,导电层3包括阴极环31和发光器件Q的阴极,例如,阴极环31和发光器件Q的阴极可以为一体化结构;一体化结构指的是阴极环31和发光器件Q的阴极相连,且可以采用相同的材料在一次构图工艺中制备。
在本申请的实施例提供的显示面板中,阴极环31与各发光器件Q的阴极电连接,阴极环31所在的区域标记为R area,其中,位于阴极环31所在的区域R area中的各阳极与阴极环31导通,以实现将发光器件Q与显示面板的驱动电路之间形成闭环电路。为了区分发光器件Q的阳极以及位于阴极环31所在的区域R area中的各阳极,将位于阴极环31所在的区域R area中的各阳极又称作正电极7,该正电极7可以与各发光器件Q的阳极导通。
示例性的,上述导电层3可由高导电性和低功函数的材料形成,例如,导电层3可采用金属材料制成。
在一些示例中,导电层3可以采用金属材料,如镁(Mg)、银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层结构,如Ti/Al/Ti等,或者,是金属和透明导电材料形成的堆叠结构,如ITO/Ag/ITO、Mo/AlNd/ITO等材料。
上述透镜层2包括多个透镜结构,其中,透镜层2至少位于各发光器件Q远离衬底1的一侧,也就是说,透镜层2至少位于各发光器件Q的出光侧,以对发光器件Q发出的显示光线进行光路调整,提高出光效率。
在示例性的实施例中,透镜层2在衬底1上的正投影位于阴极环31在衬底1上的正投影的外轮廓圈定的区域以内包括但不限于如下情况:
第一、如图2所示,透镜层2在衬底1上的正投影的外轮廓与阴极环31在衬底1上的正投影的外轮廓重叠;
第二、如图3、图4和图5所示,透镜层2在衬底1上的正投影的外轮廓位于阴极环31在衬底1上的正投影的外轮廓圈定的区域以内;其中,透镜层2在衬底1上的正投影的外轮廓位于阴极环31在衬底1上的正投影的外轮廓圈定的区域以内可以包括如下情况:
1)如图3、图4和图5所示,透镜层2在衬底1上的正投影位于阴极环31在衬底1上的正投影的内轮廓圈定的区域以内,且透镜层2在衬底1上的正投影的外轮廓位于周边区BB;
2)透镜层2在衬底1上的正投影位于阴极环31在衬底1上的正投影的内轮廓圈定的区域以内,且透镜层2在衬底1上的正投影的外轮廓位于显示区AA与周边区BB的交界处;
3)透镜层2在衬底1上的正投影位于阴极环31在衬底1上的正投影的内轮廓圈定的区域以内,且透镜层2在衬底1上的正投影的外轮廓位于显示区AA。在实际应用中,由于透镜层2用于提高出光效果,为了尽可能提高显示面板的光效,避免部分发光器件Q的出光侧未设置透镜层2,故而在极个别情况下,才将透镜层2在衬底1上的正投影的外轮廓设置在显示区AA中。
上述透镜层2在衬底1上的正投影指的是透镜层2沿垂直于衬底1所在平面的方向上在衬底1上的投影,本申请的实施例中“正投影”相关的描述与此处的含义类似,后文不再赘述。
在一些实施例中,上述透镜层2的材料可以包括有机材料,例如, 树脂。在实际应用中,可以通过高温热熔的工艺制备有机材料的透镜层2。
在另一些实施例中,上述透镜层2的材料可以包括氮化硅、氧化硅和氮氧化硅中的一个。在实际应用中,可以通过高温热熔的工艺制备有机材料的透镜层,再在有机材料的透镜层上形成无机材料层,通过干刻工艺将有机材料的透镜层刻蚀掉,从而得到无机材料的透镜层2。
另外,透镜层2的材料的折射率大于位于透镜层2的出光侧且与透镜层2直接接触的膜层的材料的折射率。
这里对于透镜层2的上表面沿垂直于衬底1所在平面上的截面的轮廓形状不进行限定。透镜层2的上表面指的是透镜层2中光线射出的表面。透镜层2的上表面沿垂直于衬底1所在平面上的截面为线。在一些实施例中,透镜层2的上表面沿垂直于衬底1所在平面上的截面的轮廓形状为折线形;在一些实施例中,透镜层2的上表面沿垂直于衬底1所在平面上的截面的轮廓形状为曲线形;在一些实施例中,在一些实施例中,透镜层2的上表面沿垂直于衬底1所在平面上的截面的轮廓形状为折线形与曲线形的组合。
在本申请的实施例提供的显示面板中,通过设置透镜层2在衬底1上的正投影位于阴极环31在衬底1上的正投影的外轮廓圈定的区域以内,在后续粘结盖板12的工艺过程中,由于透镜层2的表面不平坦,能够减小粘结材料与透镜层2的接触面积,增大粘结材料与平坦区域的接触面积,从而提高粘附力和粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。
在本申请的实施例提供的一显示面板中,如图1所示,透镜层2在衬底1上的正投影的外轮廓与阴极环31在衬底1上的正投影的内轮廓重叠。
需要说明的是,阴极环31的内轮廓与各发光器件Q阴极的外轮廓重叠,阴极环31的外轮廓为导电层3的外轮廓。
在本申请的实施例提供的一显示面板中,如图4或图5所示,透镜层2在衬底1上的正投影的外轮廓与阴极环31在衬底1上的正投影的 内轮廓之间具有间隙,且透镜层2在衬底1上的正投影的外轮廓落入周边区BB。
透镜层2在衬底1上的正投影的外轮廓与阴极环31在衬底上的正投影的内轮廓之间具有间隙的含义为:结合图4、图5和图6所示,透镜层2在衬底1上的正投影与阴极环31在衬底1上的正投影不交叠,透镜层2在衬底1上的正投影的外轮廓位于阴极环31在衬底上的正投影的内轮廓以内,且透镜层2在衬底1上的正投影的外轮廓与阴极环31在衬底上的正投影的内轮廓之间间隔一定距离。在图4和图5中,透镜层2在衬底1上的正投影的外轮廓与阴极环31在衬底上的正投影的内轮廓之间的间隙沿显示区AA指向周边区BB方向的尺寸标记为dx。
在本申请的实施例中,通过设置透镜层2在衬底1上的正投影的外轮廓与阴极环31在衬底1上的正投影的内轮廓之间具有间隙,且透镜层2在衬底1上的正投影的外轮廓落入周边区BB;这样,在确保透镜层2能够提高显示面板中各发光器件Q的出光率的情况下,在后续粘结盖板12的工艺过程中,能够进一步减小粘结材料与透镜层2的接触面积,增大粘结材料与平坦区域的接触面积,从而提高粘附力和粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。
在本申请的实施例提供的一显示面板中,如图4和图5所示,间隙沿显示区AA指向周边区BB方向上的尺寸dx小于或等于阴极环31沿显示区AA指向周边区BB方向上的宽度d1。
在一些实施例中,间隙沿显示区AA指向周边区BB方向上的尺寸dx小于阴极环31沿显示区AA指向周边区BB方向上的宽度d1;
在一些实施例中,间隙沿显示区AA指向周边区BB方向上的尺寸dx等于阴极环31沿显示区AA指向周边区BB方向上的宽度d1。
在图4或图5中,显示区AA指向周边区BB方向可以是显示区AA的几何中心指向显示面板的上侧边的方向;或者,也可以是显示区AA的几何中心指向显示面板的下侧边的方向;或者,也可以是显示区AA的几何中心指向显示面板的左侧边的方向;或者,也可以是显示区AA的几何中心指向显示面板的右侧边的方向。
在本申请的实施例提供的一显示面板中,间隙沿显示区AA指向周边区BB方向上的尺寸dx大于或等于一个发光器件Q沿显示区AA指向周边区BB方向上的尺寸。
在一些实施例中,间隙沿显示区AA指向周边区BB方向上的尺寸dx大于一个发光器件Q沿显示区AA指向周边区BB方向上的尺寸。
在一些实施例中,间隙沿显示区AA指向周边区BB方向上的尺寸dx等于一个发光器件Q沿显示区AA指向周边区BB方向上的尺寸。
这里对于发光器件Q在衬底1上的正投影的图形形状不进行限定。下面以发光器件Q在衬底1上的正投影的图形形状为矩形进行说明,根据发光器件Q在显示面板中的排布方向的不同,发光器件Q沿显示区AA指向周边区BB方向上的尺寸可以为矩形的长边的尺寸;或者,发光器件Q沿显示区AA指向周边区BB方向上的尺寸可以为矩形的短边的尺寸;或者,发光器件Q沿显示区AA指向周边区BB方向上的尺寸可以为矩形的对角线的尺寸。在发光器件Q在衬底1上的正投影的图形形状为其它图形时,发光器件Q沿显示区AA指向周边区BB方向上的尺寸的含义与上述说明的情况类似,为了简洁,这里不再赘述。
在本申请的实施例中,通过设置透镜层2在衬底1上的正投影的外轮廓与阴极环31在衬底上的正投影的内轮廓之间具有间隙,且透镜层2在衬底1上的正投影的外轮廓落入周边区;这样,在确保透镜层2能够提高显示面板中各发光器件Q的出光率的情况下,在后续粘结盖板12的工艺过程中,能够进一步减小粘结材料与透镜层2的接触面积,增大粘结材料与平坦区域的接触面积,从而提高粘附力和粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。
在本申请的实施例提供的一显示面板中,如图6所示,部分发光器件Q位于周边区BB,且位于周边区BB中的各发光器件Q沿显示区AA的边缘设置一圈;阴极环31在衬底1上的正投影位于周边区BB中的各发光器件Q在衬底1上的正投影远离显示区AA的一侧;其中,位于周边区BB中的各发光器件Q在衬底1上的正投影位于透镜层2在衬底1上的正投影以内。
其中,位于周边区BB中的各发光器件Q不发光。例如,位于周边区BB的虚设区域(Dummy area)的发光器件Q的阳极上覆盖有绝缘材料,使得阳极的侧面以及阳极远离衬底1一侧的表面包裹在内,无法与其它导电膜层导通,从而不能发光。位于周边区BB中的虚设区域(Dummy area)的发光器件Q用于提高显示面板的显示区AA和周边区BB的结构一致性,避免显示面板在暗态下由于结构差异性较大在显示区AA和周边区BB的交界区域出现肉眼可见的色差,使得显示区AA与周边区BB之间自然过渡,从而提高显示面板的美观性。
阴极环31在衬底1上的正投影位于周边区BB中的各发光器件Q在衬底1上的正投影远离显示区AA的一侧可以理解为:阴极环31所在的区域位于周边区BB中的发光器件Q所在的区域(Dummy area)的外侧,其中,外侧指的是远离显示区AA、且靠近显示面板的边缘的一侧。
另外,位于周边区BB中的各发光器件Q在衬底1上的正投影位于透镜层2在衬底1上的正投影以内包括但不限于如下情况:
第一、如图6所示,位于周边区BB中的各发光器件Q在衬底1上的正投影的外轮廓落入透镜层2在衬底1上的正投影的外轮廓圈定的区域以内;
第二、位于周边区BB中的各发光器件Q在衬底1上的正投影的外轮廓与透镜层2在衬底1上的正投影的外轮廓重叠。
在本申请的实施例提供的显示面板中,通过设置部分发光器件Q位于周边区BB,位于周边区BB中的各发光器件Q沿显示区AA的边缘设置一圈,且位于周边区BB中的各发光器件Q在衬底1上的正投影位于透镜层2在衬底1上的正投影以内,这样,能够进一步提高显示面板的显示区AA和周边区BB的结构一致性,避免显示面板在暗态下由于结构差异性较大在显示区AA和周边区BB的交界区域出现肉眼可见的色差,使得显示区AA与周边区BB之间自然过渡,进一步从而提高显示面板的美观性。
在本申请的实施例提供的一显示面板中,如图7-图12所示,周边 区BB包括第一周边子区B1、第二周边子区B2、第三周边子区B3和第四周边子区B4,第四周边子区B4和第一周边子区B1相对设置,第二周边子区B2和第三周边子区B3相对设置;第四周边子区B4包括绑定端子5;
如图7和图8所示,阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1小于或等于阴极环31位于周边区BB中除第四周边子区B4之外的部分沿显示区AA指向周边区BB方向上的宽度(例如宽度H2、宽度H3和宽度H4)。
在一些实施例中,阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1小于阴极环31位于周边区BB中除第四周边子区B4之外的部分沿显示区AA指向周边区BB方向上的宽度(例如宽度H2、宽度H3和宽度H4)。
在阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1小于阴极环31位于周边区BB中除第四周边子区B4之外的部分沿显示区AA指向周边区BB方向上的宽度(例如宽度H2、宽度H3和宽度H4)的情况下,这里对于周边区BB中除第四周边子区B4之外的部分沿显示区AA指向周边区BB方向上的宽度是否相同不进行限定,也就是说,对于阴极环31位于第一周边子区B1的部分沿显示区AA指向周边区BB方向上的宽度H2、阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4、阴极环31位于第三周边子区B3的部分沿显示区AA指向周边区BB方向上的宽度H3是否相同不进行限定。
例如,阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1小于阴极环31位于第一周边子区B1的部分沿显示区AA指向周边区BB方向上的宽度H2、且阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1小于阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4、且阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1小于阴极环31位于第三周边子区B3 的部分沿显示区AA指向周边区BB方向上的宽度H3。
在一些实施例中,阴极环31位于第一周边子区B1的部分沿显示区AA指向周边区BB方向上的宽度H2、阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4、阴极环31位于第三周边子区B3的部分沿显示区AA指向周边区BB方向上的宽度H3均相等。
在一些实施例中,阴极环31位于第一周边子区B1的部分沿显示区AA指向周边区BB方向上的宽度H2、阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4、阴极环31位于第三周边子区B3的部分沿显示区AA指向周边区BB方向上的宽度H3不完全相等。其中,不完全相等包括部分相同或者三者各不相等的情况,这里不再赘述。
在一些实施例中,阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1等于阴极环31位于周边区BB中除第四周边子区B4之外的部分沿显示区AA指向周边区BB方向上的宽度(例如宽度H2、宽度H3和宽度H4)。
在阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1等于阴极环31位于周边区BB中除第四周边子区B4之外的部分沿显示区AA指向周边区BB方向上的宽度(例如宽度H2、宽度H3和宽度H4)的情况下,阴极环31位于第一周边子区B1的部分沿显示区AA指向周边区BB方向上的宽度H2、阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4、以及阴极环31位于第三周边子区B3的部分沿显示区AA指向周边区BB方向上的宽度H3均相等。
由于第四周边子区B4包括绑定端子5,可以理解,第四周边区B4中的局部区域上可以设置至少一个驱动芯片,该驱动芯片通过绑定端子5与显示面板电连接,以向显示面板提供驱动信号。
如图7和图8所示,通过设置透镜层2在衬底1上的正投影的外轮廓与阴极环31在衬底上的正投影的内轮廓之间具有间隙,且使得阴极 环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1小于阴极环31位于周边区BB中除第四周边子区B4之外的部分沿显示区AA指向周边区BB方向上的宽度(例如宽度H2、宽度H3和宽度H4);这样,阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1较窄,在第四周边区子区B4中为粘结材料与平坦区域的膜层预留了较大的粘结空间,很大程度上提高了粘结材料与下层膜层的贴合面积,提高了粘附力和粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。
另外,在后续的绑定工艺过程中,当绑定工艺中对第四周边子区B4中的局部区域施加压力和加热时,由于第四周边子区B4中阴极环31所占的区域的面积较小,粘结材料与相对平坦的区域贴合的面积相对较大,即使绑定工艺中的热量使得粘结材料发生热膨胀,由于粘结材料的贴合区域较大,两个因素产生的影响叠加之后,盖板12与粘结材料之间的粘附力并未减小,从而进一步提高了盖板12的粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。
在本申请的实施例提供的一显示面板中,如图7或图8所示,阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1小于阴极环31位于第一周边子区B1的部分沿显示区AA指向周边区BB方向上的宽度H2。
在本申请的实施例中,通过设置阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1小于阴极环31位于第一周边子区B1的部分沿显示区AA指向周边区BB方向上的宽度H2,这样,阴极环31位于第四周边子区B4的部分沿显示区AA指向周边区BB方向上的宽度H1较窄,在第四周边区子区B4中为粘结材料与平坦区域的膜层预留了较大的粘结空间,很大程度上提高了粘结材料与下层膜层的贴合面积,提高了粘附力和粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。另外,在后续的绑定工艺过程中,当绑定工艺中对第四周边子区B4中的局部区域施加压力和加热时,由于第四周边子区B4中阴极环31所占的区域的面积较小,粘结材料与 相对平坦的区域贴合的面积相对较大,即使绑定工艺中的热量使得粘结材料发生热膨胀,由于粘结材料的贴合区域较大,两个因素产生的影响叠加之后,盖板12与粘结材料之间的粘附力并未减小,从而进一步提高了盖板12的粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。
在本申请的实施例提供的一显示面板中,如图9和图10所示,透镜层2在衬底1上的正投影图形包括相对设置的第一侧边和第二侧边,阴极环31在衬底1上的正投影图形的内轮廓包括相对设置的第一边缘和第二边缘,第一侧边和第一边缘均位于第二周边子区B2,第二侧边和第二边缘均位于第三周边子区B3;第一侧边到第一边缘之间的最小距离L1与第二侧边到第二边缘之间的最小距离L2不同。
需要说明的是,上述第一侧边到第一边缘之间的最小距离L1指的是第一侧边沿显示区AA指向周边区BB方向上到第一边缘之间的距离;第二侧边到第二边缘之间的最小距离L2的含义与此次的含义类似,为了简洁,不再赘述。
在一些实施例中,如图9所示,第一侧边到第一边缘之间的最小距离L1大于第二侧边到第二边缘之间的最小距离L2。
在一些实施例中,如图10所示,第一侧边到第一边缘之间的最小距离L1小于第二侧边到第二边缘之间的最小距离L2。
本申请的实施例提供的显示面板中,通过设置透镜层2的第一侧边到阴极环31的第一边缘之间的最小距离L1与透镜层2第二侧边到阴极环31的第二边缘之间的最小距离L2不同,这样,使得显示面板中位于显示区AA两侧的第二周边子区B2和第三周边子区B3不对称,且使得透镜层2位于第二周边子区B2中的部分与透镜层2位于第三周边子区B3中的部分不对称,使得该显示面板在应用与AR或VR显示装置时,能够满足AR或VR显示装置对视角的使用需求,使得该显示面板能够更广泛的应用于AR或VR显示装置中。
在本申请的实施例提供的一显示面板中,如图11和图12所示,透镜层2在衬底1上的正投影图形包括相对设置的第一侧边和第二侧边, 阴极环31在衬底上的正投影图形的内轮廓包括相对设置的第一边缘和第二边缘,第一侧边和第一边缘均位于第二周边子区B2,第二侧边和第二边缘均位于第三周边子区B3;
如图11和图12所示,第一侧边到第一边缘之间的最小距离L1与第二侧边到第二边缘之间的最小距离L2相同;阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4与阴极环31位于第三周边子区B3的部分沿显示区AA指向周边区BB方向上的宽度H3不同。
在一些实施例中,如图11所示,阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4小于阴极环31位于第三周边子区B3的部分沿同一方向上的宽度H3。
在另一些实施例中,如图12所示,阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4大于阴极环31位于第三周边子区B3的部分沿同一方向上的宽度H3。
本申请的实施例提供的显示面板中,通过设置阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4与阴极环31位于第三周边子区B3的部分沿显示区AA指向周边区BB方向上的宽度H3不同,这样,使得显示面板中位于显示区AA两侧的第二周边子区B2和第三周边子区B3不对称,使得该显示面板在应用与AR或VR显示装置时,能够满足AR或VR显示装置对视角的使用需求,使得该显示面板能够更广泛的应用于AR或VR显示装置中。
在本申请的实施例提供的一显示面板中,如图15所示,透镜层2在衬底1上的正投影图形包括相对设置的第一侧边和第二侧边,阴极环31在衬底1上的正投影图形的内轮廓包括相对设置的第一边缘和第二边缘,第一侧边和第一边缘均位于第二周边子区B2,第二侧边和第二边缘均位于第三周边子区B3;第一侧边到第一边缘之间的最小距离L1与第二侧边到第二边缘之间的最小距离L2相同;阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4与阴极环31位于第三周边子区B3的部分沿同一方向上的宽度H3相同。
在本申请的实施例提供的显示面板中,通过设置第一侧边到第一边缘之间的最小距离L1与第二侧边到第二边缘之间的最小距离L2相同、阴极环31位于第二周边子区B2的部分沿显示区AA指向周边区BB方向上的宽度H4与阴极环31位于第三周边子区B3的部分沿同一方向上的宽度H3相同,可以简化设计,降制备工艺难度,降低成本。
在本申请的实施例提供的一显示面板中,如图6、图13和图14所示,透镜层2包括多个第一透镜22和多个第二透镜21,各第一透镜22位于显示区AA,各第二透镜21位于周边区BB;各第二透镜21沿垂直于衬底1所在平面上的高度小于或等于各第一透镜22沿垂直于衬底1所在平面上的高度。
在一些实施例中,可以设置各第二透镜21沿垂直于衬底1所在平面上的高度等于各第一透镜22沿垂直于衬底1所在平面上的高度。
在另一些实施例中,可以设置各第二透镜21沿垂直于衬底1所在平面上的高度小于各第一透镜22沿垂直于衬底1所在平面上的高度。
在本申请的实施例提供的显示面板中,通过设置位于显示区AA中的第一透镜22的高度大于或等于位于周边区BB中的第二透镜21的高度,在第一透镜22能够汇聚显示区AA中射出的显示光线、提高出光效率的同时;第二透镜21还能够作为过渡结构,一方面,靠近显示区AA和周边区BB交界处的第二透镜21能够一定程度上汇聚光线,避免显示区AA靠近周边区BB的局部区域亮度不均;另一方面,能够进一步提高显示面板的显示区AA和周边区BB的结构一致性,避免显示面板在暗态下由于结构差异性较大在显示区AA和周边区BB的交界区域出现肉眼可见的色差,使得显示区AA与周边区BB之间的区域能够自然过渡,进一步从而提高显示面板的美观性。
在本申请的实施例提供的一显示面板中,如图6、图13和图14所示,沿显示区AA指向周边区BB的方向上,各第二透镜21沿垂直于衬底1所在平面上的高度逐渐降低。
在本申请的实施例提供的显示面板中,通过设置沿显示区AA指向周边区BB的方向上,各第二透镜21沿垂直于衬底1所在平面上的高 度逐渐降低,这样,透镜层2的边缘区域趋于平坦,即平坦度更高,在后续粘结盖板12的工艺过程中,能够进一步减小粘结材料与透镜层2的接触面积,增大粘结材料与平坦区域的接触面积,从而提高粘附力和粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。另外,显示面板的显示区AA和周边区BB的结构过渡更加自然,避免显示面板在亮态下显示区AA靠近周边区BB的边缘区域出现亮度不均,避免显示面板在暗态下由于结构差异性较大在显示区AA和周边区BB的交界区域出现肉眼可见的色差,从而进一步提高显示面板的美观性。
在本申请的实施例提供的一显示面板中,第二透镜21在衬底1上的正投影图形的形状包括椭圆形,周边区BB中至少部分椭圆形的长轴的延伸方向不同。
在示例性的实施例中,周边区BB中至少部分椭圆形的长轴的延伸方向不同包括但不限于如下情况:
第一、如图6和图13所示,周边区BB中部分椭圆形(第二透镜21的投影图形)的长轴的延伸方向不同,部分椭圆形(第二透镜21的投影图形)的长轴的延伸方向相同;
第二、如图14所示,周边区BB中各椭圆形(第二透镜21的投影图形)的长轴的延伸方向均不同。
在本申请的实施例提供的显示面板中,通过设置周边区BB中至少部分椭圆形的长轴的延伸方向不同,能将由于散射作用或者折射作用射入第二透镜21中的光线打散后射出显示面板,使得显示面板在亮态下由显示区AA到周边区BB交界处的显示亮度逐渐降低,显示区AA与周边区BB的交界处不会由于亮度突然降低而出现明显的黑缝,从而提高显示面板的显示效果。
在本申请的实施例提供的一显示面板中,第一透镜22在衬底1上的正投影图形的形状包括椭圆形,显示区AA中至少部分椭圆形的长轴的延伸方向相同。
在本申请的实施例提供的显示面板中,通过设置第一透镜22在衬底1上的正投影图形的形状包括椭圆形,在第一透镜22对发光器件Q 发出的光线起到汇聚作用的同时,使得第一透镜22对沿椭圆形的长轴方向的汇聚光线的能力与沿椭圆形短轴方向的汇聚光线的能力不同,这样,能够提高显示面板的正视角亮度的同时,还能够对大视角方向的光线进行不同程度的调控,满足对显示面板更多的大视角亮度调控的需求。
在示例性的实施例中,显示区AA中至少部分椭圆形的长轴的延伸方向相同包括但不限于如下情况:
第一、如图14所示,显示区AA中部分椭圆形(第一透镜22的投影图形)的长轴的延伸方向相同;
第二、如图6和图13所示,显示区AA中各椭圆形(第一透镜22的投影图形)的长轴的延伸方向均相同。
在本申请的实施例提供的显示面板中,通过设置显示区AA中至少部分椭圆形的长轴的延伸方向相同,使得显示区AA中各第一透镜22对沿椭圆形的长轴方向的汇聚光线的能力尽可能一致,各第一透镜22沿椭圆形的短轴方向的汇聚光线的能力尽可能一致,从而提高各第一透镜22对各发光器件Q的聚光程度,提高显示面板的出光亮度,提高显示效果。
在本申请的实施例提供的一显示面板中,如图13所示,位于显示区AA和周边区BB的交界线一侧的第一透镜22与位于交界线另一侧的第二透镜21的结构和尺寸相同。
在图13中,显示区AA和周边区BB的交界线的两侧分别设置有两圈透镜,通过设置位于显示区AA和周边区BB的交界线一侧的第一透镜22与位于交界线另一侧的第二透镜21的结构和尺寸相同,能使得由于散射作用或者折射作用射入边界线一侧的第二透镜21中的光线量与发光器件Q射入第一透镜22中的光线量趋近,使得显示面板在亮态下由显示区AA到周边区BB交界处的显示亮度逐渐降低,显示区AA与周边区BB的交界处不会由于亮度突然降低而出现明显的黑缝,从而提高显示面板的显示效果。
在本申请的实施例提供的一显示面板中,第一透镜22和第二透镜21在衬底1上的正投影图形的形状均包括椭圆形,位于交界线一侧的 第一透镜22的正投影图形的长轴的延伸方向与位于交界线另一侧的第二透镜21的正投影图形的长轴的延伸方向相同。
在本申请的实施例提供的显示面板中,通过设置位于显示区AA和周边区BB的交界线一侧的第一透镜22与位于交界线另一侧的第二透镜21的正投影图形的形状为椭圆形,且两者的椭圆形的长轴的延伸方向相同,这样,能够进一步使得由于散射作用或者折射作用射入边界线一侧的第二透镜21中的光线量与发光器件Q射入第一透镜22中的光线量趋近,使得显示面板在亮态下由显示区AA到周边区BB交界处的显示亮度逐渐降低,显示区AA与周边区BB的交界处不会由于亮度突然降低而出现明显的黑缝,从而提高显示面板的显示效果。
在本申请的实施例提供的一显示面板中,如图6、图13和图14所示,显示面板包括依次设置的第一封装层F1、彩色滤光层CF和第二封装层F2,第一封装层F1覆盖发光器件Q和阴极环21且延伸至显示面板的周边区,第二封装层F2位于彩色滤光层CF和透镜层2之间、且第二封装层F2还延伸至周边区BB;第二封装层F2远离衬底1的表面的至少部分区域的粗糙度大于第一封装层F1远离衬底1的表面的粗糙度。
在示例性的实施例中,第一封装层F1和第二封装层F2可以均为单层结构,且其材料均为无机材料。
示例性的,第一封装层F1和第二封装层F2的材料可以为氮化硅、氧化硅和氮氧化硅中的其中一种。
示例性的,第一封装层F1和第二封装层F2的材料可以相同。
其中,第二封装层F2远离衬底1的表面的至少部分区域的粗糙度大于第一封装层F1远离衬底1的表面的粗糙度包括但不限于如下情况:
第一、第二封装层F2远离衬底1的表面的部分区域的粗糙度大于第一封装层F1远离衬底1的表面的粗糙度;
第二、第二封装层F2远离衬底1的表面的所有区域的粗糙度大于第一封装层F1远离衬底1的表面的粗糙度。
在本申请的实施例提供的一显示面板中,第二封装层F2远离衬底 1的表面的至少部分区域的粗糙度大于或等于十倍的第一封装层F1远离衬底1的表面的粗糙度。
在一些实施例中,可以调控第一封装层F1和第二封装层F2的制备工艺参数,通过控制第一封装层F1和第二封装层F2的厚度的均一性来控制其表面的粗糙度。
例如,可以控制第二封装层F2远离衬底1的表面沿垂直于衬底1的方向上到衬底1之间的最小距离与第二封装层F2远离衬底1的表面沿垂直于衬底1的方向上到衬底1之间的最大距离之间的差值为
Figure PCTCN2022125966-appb-000001
可以控制第一封装层F1远离衬底1的表面沿垂直于衬底1的方向上到衬底1之间的最小距离与第一封装层F1远离衬底1的表面沿垂直于衬底1的方向上到衬底1之间的最大距离之间的差值为
Figure PCTCN2022125966-appb-000002
可以理解,第二封装层F2远离衬底1的表面的平坦度小于第一封装层F1远离衬底1的表面的平坦度。
在示例性的实施例中,彩色滤光层CF可以包括第一滤光图案、第二滤光图案和第三滤光图案,第一滤光图案、第二滤光图案和第三滤光图案其中的一个为红色色阻图案、另一个为绿色色阻图案、再一个为蓝色色阻图案;另外,彩色滤光层CF还可以包括黑色矩阵,任意相邻的两个滤光图案之间都可以设置黑色矩阵,以防止不同颜色光线发生串色,例如,第一滤光图案和第二滤光图案之间设置有黑色矩阵,第二滤光图案和第三滤光图案之间设置有黑色矩阵,第一滤光图案和第三滤光图案之间设置有黑色矩阵。
在本申请的实施例中,通过设置第二封装层F2远离衬底1的表面的至少部分区域的粗糙度大于第一封装层F1远离衬底1的表面的粗糙度,在后续的粘结工艺中,粘结材料与粗糙度较大的第二封装层F2有更好的粘结力,从而提高了盖板12的粘附力和粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。
在本申请的实施例提供的一显示面板中,如图6、图13和图14所示,该显示面板还包括粘结层11和盖板12,粘结层11位于透镜层2远离衬底1的一侧,盖板12位于粘结层11远离透镜层2的一侧;粘结 层11在衬底1上的正投影位于第二封装层F2在衬底1上的正投影以内,且粘结层11分别与第二封装层F的部分区域和透镜层2直接接触。
在示例性的实施例中,粘结层11的材料包括粘结材料,例如光学胶(OCA)或者透光树脂。
在本申请的实施例中,通过设置透镜层2在衬底1上的正投影位于阴极环31在衬底1上的正投影的外轮廓圈定的区域以内,粘结层11分别与第二封装层F的部分区域和透镜层2直接接触,且第二封装层F远离衬底1的表面具有较大的粗糙度,这样,在后续粘结盖板12的工艺过程中,由于透镜层2的表面不平坦,透镜层的边界内缩能够减小粘结材料与透镜层2的接触面积,增大粘结材料与平坦区域的接触面积,另外,第二封装层F2远离衬底1的表面具有较大的粗糙度,能够很大程度上提高粘结层11的粘附力,从而提高粘结稳固性,提高显示面板的质量,延长显示面板的使用寿命。
在本申请的实施例提供的一显示面板中,粘结层11位于第四周边子区B4的部分与第二封装层F2直接接触的区域的面积大于或等于粘结层11位于第一周边子区B1的部分与第二封装层F2直接接触的区域的面积。
在一些实施例中,粘结层11位于第四周边子区B4的部分与第二封装层F2直接接触的区域的面积等于粘结层11位于第一周边子区B1的部分与第二封装层F2直接接触的区域的面积。
在一些实施例中,粘结层11位于第四周边子区B4的部分与第二封装层F2直接接触的区域的面积大于粘结层11位于第一周边子区B1的部分与第二封装层F2直接接触的区域的面积。
在本申请的实施例中,通过设置粘结层11位于第四周边子区B4的部分与第二封装层F2直接接触的区域的面积大于或等于粘结层11位于第一周边子区B1的部分与第二封装层F2直接接触的区域的面积,在后续的绑定工艺过程中,当绑定工艺中对第四周边子区B4中的局部区域施加压力和加热时,由于粘结层11位于第四周边子区B4的部分与第二封装层F2直接接触的区域的面积较大,即使绑定工艺中的热量 使得粘结材料发生热膨胀,由于粘结层11的贴合区域较大,两个因素产生的影响叠加之后,盖板12与粘结层11之间、以及粘结层11与底层膜层之间的粘附力并未减小,从而进一步提高了粘结稳固性,提高了显示面板的质量,延长了显示面板的使用寿命。
在本申请的实施例提供的一显示面板中,如图6、图13和图14所示显示面板还包括遮光层ZG,遮光层ZG位于周边区BB且围绕显示区AA,遮光层ZG和彩色滤光层CF同层设置;阴极环31在衬底1上的正投影位于遮光层ZG在衬底1上的正投影以内,透镜层2在衬底1上的正投影的外轮廓落入遮光层ZG在衬底1上的正投影所在的区域内,遮光层ZG的外轮廓在衬底1上的正投影位于盖板12在衬底1上的正投影以内。
在一些实施例中,遮光层ZG可以包括单层的结构,例如,遮光层ZG采用与黑色矩阵相同的材料制备。
在另一些实施例中,遮光层ZG可以包括多层的结构,示例性的,遮光层ZG可以包括多个子层。例如,遮光层ZG可以包括:采用与红色滤光图案相同的材料制备的第一子层,采用与绿色滤光图案相同的材料制备的第二子层,以及采用与蓝色滤光图案相同的材料制备的第三子层叠层设置得到;其中,这里对于第一子层、第二子层和第三子层的设置顺序不进行限定,例如,在沿远离衬底的方向上可以依次设置第一子层、第二子层和第三子层;再例如,在沿远离衬底的方向上可以依次设置第一子层、第三子层和第二子层;又例如,在沿远离衬底的方向上可以依次设置第二子层、第一子层和第三子层;当然,还可以包括其它情况,具体可以根据红色滤光图案、绿色滤光图案与蓝色滤光图案的制备工艺顺序确定。再例如,如图6、图13或图14所示,遮光层ZG可以包括:采用与红色滤光图案相同的材料制备的第一子层以及采用与蓝色滤光图案相同的材料制备的第二子层叠层设置得到。
需要说明的是,上述遮光层ZG和彩色滤光层CF同层设置指的是遮光层ZG和彩色滤光层CF在同一构图工艺中形成,并不代表遮光层ZG和彩色滤光层CF的厚度相同。
在示例性的实施例中,位于周边区BB的遮光层ZG围绕显示区AA,可以理解,遮光层ZG的投影的形状可以为环形。这里对于上述环形的具体形状不进行限定,示例性的,环形可以包括圆环形、椭圆环形、多边环形等。
在本申请的实施例中,通过设置遮光层ZG,这样,遮光层ZG能够遮挡周边区BB的至少部分电路和走线,避免其产生反光降低显示效果。
其中,阴极环31在衬底1上的正投影位于遮光层ZG在衬底1上的正投影以内包括但不限于如下情况:
第一、阴极环31在衬底1上的正投影的外轮廓位于遮光层ZG在衬底1上的正投影的外轮廓以内;
第二、阴极环31在衬底1上的正投影的外轮廓位于遮光层ZG在衬底1上的正投影的外轮廓重叠。
通过设置阴极环31在衬底1上的正投影位于遮光层ZG在衬底1上的正投影以内,可以使得遮光层ZG能够遮挡阴极环31,避免阴极环31产生反光降低显示效果。
在本申请的实施例提供的一显示面板中,如图16所示,阴极环31在衬底1上的正投影图形的形状包括具有圆角的多边形。
在本申请的实施例中,通过设置阴极环31在衬底1上的正投影图形的形状包括具有圆角的多边形,避免阴极环31上具有尖锐的导电图形增大发生静电击穿的概率,提高了显示面板中信号传输稳定性,提高了显示面板的产品可靠性。
在本申请的实施例提供的一显示面板中,显示面板还包括位于周边区BB中的多个正电极7,正电极7与发光器件Q的阳极同层设置;其中,正电极7与阳极电连接,且正电极7与阴极环31直接接触。
在本申请的实施例提供的显示面板中,阴极环31与各发光器件Q的阴极电连接,阴极环31所在的区域标记为R area,其中,通过正电极7与阴极环31直接接触,使得正电极7与阴极环31导通,以实现将发光器件Q与显示面板的驱动电路之间形成闭环电路。另外,该正电 极7可以与各发光器件Q的阳极导通。
除上述描述的内容之外,本申请的实施例提供的显示面板还可以包括诸如盖板的对位标记图案4、GOA电路等其它结构,本说明书仅介绍与发明点相关的结构和部件,显示面板包括的其它结构和部件可以参考相关技术中的介绍。
本申请的实施例提供了一种显示装置,包括如前文中所述的显示面板。
该显示面板包括的结构可以参考前文中的描述,这里不再赘述。
该显示装置还包括柔性电路板FPC和驱动芯片IC;
或者,显示面板包括显示控制单元,显示装置还包括柔性电路板FPC。
在示例性的实施例中,在显示面板的衬底1为硅衬底的情况下,显示装置中硅衬底的阵列基板能够将像素驱动电路阵列、Source Driver(源极驱动)、Gate Driver(栅极驱动)、Emission Control Driver(发光控制驱动)、OSC(Oscillator,振荡器)、Gamma Register(Gamma寄存器)以及显示控制单元集成电路集成在同一芯片上,此时,不需要设置额外的驱动芯片,将显示面板直接与柔性电路板FPC进行电连接,这称作One Chip技术。One Chip技术制备的显示装置的集成度更高,然而尺寸较小,可以适用于高分辨率的显示产品,例如虚拟现实或增强现实近眼显示领域中。
在示例性的实施例中,在显示面板的衬底为硅衬底的情况下,硅衬底的阵列基板还能够将像素驱动电路阵列、Source driver、Gate driver、Emission driver(即本申请的EOA单元)等模拟电路部分与OSC、Gamma register、Interface以及显示控制单元分开,由One Chip技术变为Two Chip技术,此时,显示面板需要分别与柔性电路板FPC和驱动芯片IC进行电连接,相较于One Chip技术的产品,这类产品制造工艺要求低,可使用低工艺制程以降低生产成本。
该显示装置可以是柔性显示装置(又称柔性屏),也可以是刚性显 示装置(即不能折弯的显示装置),这里不做限定。该显示装置可以是OLED显示装置,还可以是包括OLED的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。该显示装置具有显示效果好、寿命长、稳定性高等优点。
本申请的实施例提供了一种可穿戴设备,包括两个如前文中所述的显示装置。
该可穿戴设备通过设置透镜层2在衬底1上的正投影位于阴极环31在衬底1上的正投影的外轮廓圈定的区域以内,在后续粘结盖板12的工艺过程中,由于透镜层2的表面不平坦,能够减小粘结材料与透镜层2的接触面积,增大粘结材料与平坦区域的接触面积,从而提高粘附力和粘结稳固性,提高可穿戴设备的质量,延长可穿戴设备的使用寿命。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种显示面板,其中,包括显示区和周边区,所述周边区围绕所述显示区;所述显示面板还包括:
    衬底以及位于所述衬底上阵列排布的多个发光器件,所述发光器件至少位于所述显示区;
    导电层,包括阴极环和所述发光器件的阴极;所述阴极环位于所述周边区且所述阴极环围绕所述显示区;
    透镜层,位于所述发光器件远离所述衬底的一侧,所述透镜层从所述显示区延伸至所述周边区;
    其中,所述透镜层在所述衬底上的正投影位于所述阴极环在所述衬底上的正投影的外轮廓圈定的区域以内。
  2. 根据权利要求1所述的显示面板,其中,所述透镜层在所述衬底上的正投影位于所述阴极环在所述衬底上的正投影的内轮廓圈定的区域以内,且所述透镜层在所述衬底上的正投影的外轮廓位于所述周边区。
  3. 根据权利要求2所述的显示面板,其中,所述透镜层在所述衬底上的正投影的外轮廓与所述阴极环在所述衬底上的正投影的内轮廓重叠。
  4. 根据权利要求2所述的显示面板,其中,所述透镜层在所述衬底上的正投影的外轮廓与所述阴极环在所述衬底上的正投影的内轮廓之间具有间隙。
  5. 根据权利要求4所述的显示面板,其中,所述间隙沿所述显示区指向所述周边区方向上的尺寸小于或等于所述阴极环沿所述显示区指向所述周边区方向上的宽度。
  6. 根据权利要求5所述的显示面板,其中,所述间隙沿所述显示区指向所述周边区方向上的尺寸大于或等于一个所述发光器件沿所述显示区指向所述周边区方向上的尺寸。
  7. 根据权利要求4所述的显示面板,其中,部分所述发光器件位于所述周边区,且位于所述周边区中的各所述发光器件沿所述显示区的 边缘设置一圈;所述阴极环在所述衬底上的正投影位于所述周边区中的各所述发光器件在所述衬底上的正投影远离所述显示区的一侧;
    其中,位于所述周边区中的各所述发光器件在所述衬底上的正投影位于所述透镜层在所述衬底上的正投影以内。
  8. 根据权利要求4所述的显示面板,其中,所述周边区包括第一周边子区、第二周边子区、第三周边子区和第四周边子区,所述第四周边子区和所述第一周边子区相对设置,所述第二周边子区和所述第三周边子区相对设置;所述第四周边子区包括绑定端子;
    所述阴极环位于所述第四周边子区的部分沿所述显示区指向所述周边区方向上的宽度小于或等于所述阴极环位于所述周边区中除所述第四周边子区之外的部分沿所述显示区指向所述周边区方向上的宽度。
  9. 根据权利要求8所述的显示面板,其中,所述阴极环位于所述第四周边子区的部分沿所述显示区指向所述周边区方向上的宽度小于所述阴极环位于所述第一周边子区的部分沿所述显示区指向所述周边区方向上的宽度。
  10. 根据权利要求8所述的显示面板,其中,所述透镜层在所述衬底上的正投影图形包括相对设置的第一侧边和第二侧边,所述阴极环在所述衬底上的正投影图形的内轮廓包括相对设置的第一边缘和第二边缘,所述第一侧边和所述第一边缘均位于所述第二周边子区,所述第二侧边和所述第二边缘均位于所述第三周边子区;
    所述第一侧边到所述第一边缘之间的最小距离与所述第二侧边到所述第二边缘之间的最小距离不同。
  11. 根据权利要求8所述的显示面板,其中,所述透镜层在所述衬底上的正投影图形包括相对设置的第一侧边和第二侧边,所述阴极环在所述衬底上的正投影图形的内轮廓包括相对设置的第一边缘和第二边缘,所述第一侧边和所述第一边缘均位于所述第二周边子区,所述第二侧边和所述第二边缘均位于所述第三周边子区;
    所述第一侧边到所述第一边缘之间的最小距离与所述第二侧边到所述第二边缘之间的最小距离相同;
    所述阴极环位于所述第二周边子区的部分沿所述显示区指向所述周边区方向上的宽度与所述阴极环位于所述第三周边子区的部分沿所述显示区指向所述周边区方向上的宽度不同。
  12. 根据权利要求8所述的显示面板,其中,所述透镜层在所述衬底上的正投影图形包括相对设置的第一侧边和第二侧边,所述阴极环在所述衬底上的正投影图形的内轮廓包括相对设置的第一边缘和第二边缘,所述第一侧边和所述第一边缘均位于所述第二周边子区,所述第二侧边和所述第二边缘均位于所述第三周边子区;
    所述第一侧边到所述第一边缘之间的最小距离与所述第二侧边到所述第二边缘之间的最小距离相同;
    所述阴极环位于所述第二周边子区的部分沿所述显示区指向所述周边区方向上的宽度与所述阴极环位于所述第三周边子区的部分沿所述显示区指向所述周边区方向上的宽度相同。
  13. 根据权利要求4所述的显示面板,其中,所述透镜层包括多个第一透镜和多个第二透镜,各所述第一透镜位于所述显示区,各所述第二透镜位于所述周边区;
    各所述第二透镜沿垂直于所述衬底所在平面上的高度小于或等于各所述第一透镜沿垂直于所述衬底所在平面上的高度。
  14. 根据权利要求13所述的显示面板,其中,沿所述显示区指向所述周边区的方向上,各所述第二透镜沿垂直于所述衬底所在平面上的高度逐渐降低。
  15. 根据权利要求13所述的显示面板,其中,所述第二透镜在所述衬底上的正投影图形的形状包括椭圆形,所述周边区中至少部分所述椭圆形的长轴的延伸方向不同。
  16. 根据权利要求13所述的显示面板,其中,所述第一透镜在所述衬底上的正投影图形的形状包括椭圆形,所述显示区中至少部分所述椭圆形的长轴的延伸方向相同。
  17. 根据权利要求13所述的显示面板,其中,位于所述显示区和所述周边区的交界线一侧的所述第一透镜与位于所述交界线另一侧的 所述第二透镜的结构和尺寸相同。
  18. 根据权利要求17所述的显示面板,其中,所述第一透镜和所述第二透镜在所述衬底上的正投影图形的形状均包括椭圆形,位于所述交界线一侧的所述第一透镜的正投影图形的长轴的延伸方向与位于所述交界线另一侧的所述第二透镜的正投影图形的长轴的延伸方向相同。
  19. 根据权利要求4所述的显示面板,其中,所述显示面板包括依次设置的第一封装层、彩色滤光层和第二封装层,所述第一封装层覆盖所述发光器件和所述阴极环并延伸至所述周边区,所述第二封装层位于所述彩色滤光层和所述透镜层之间、且所述第二封装层还延伸至所述周边区;
    所述第二封装层远离所述衬底的表面的至少部分区域的粗糙度大于所述第一封装层远离所述衬底的表面的粗糙度。
  20. 根据权利要求19所述的显示面板,其中,所述第二封装层远离所述衬底的表面的至少部分区域的粗糙度大于或等于十倍的所述第一封装层远离所述衬底的表面的粗糙度。
  21. 根据权利要求19所述的显示面板,其中,所述显示面板还包括粘结层和盖板,所述粘结层位于所述透镜层远离所述衬底的一侧,所述盖板位于所述粘结层远离所述透镜层的一侧;所述粘结层在所述衬底上的正投影位于所述第二封装层在所述衬底上的正投影以内,且所述粘结层分别与所述第二封装层的部分区域和所述透镜层直接接触。
  22. 根据权利要求21所述的显示面板,其中,所述粘结层位于所述第四周边子区的部分与所述第二封装层直接接触的区域的面积大于或等于所述粘结层位于所述第一周边子区的部分与所述第二封装层直接接触的区域的面积。
  23. 根据权利要求21所述的显示面板,其中,所述显示面板还包括遮光层,所述遮光层位于所述周边区且围绕所述显示区,所述遮光层和所述彩色滤光层同层设置;
    所述阴极环在所述衬底上的正投影位于所述遮光层在所述衬底上的正投影以内,所述透镜层在所述衬底上的正投影的外轮廓落入所述遮 光层在所述衬底上的正投影所在的区域内,所述遮光层的外轮廓在所述衬底上的正投影位于所述盖板在所述衬底上的正投影以内。
  24. 根据权利要求23所述的显示面板,其中,所述阴极环在所述衬底上的正投影图形的形状包括具有圆角的多边形。
  25. 根据权利要求1所述的显示面板,其中,所述显示面板还包括位于所述周边区中的多个正电极,所述正电极与所述发光器件的阳极同层设置;
    其中,所述正电极与所述阳极电连接,且所述正电极与所述阴极环直接接触。
  26. 一种显示装置,其中,包括如权利要求1-25中任一项所述的显示面板。
  27. 一种可穿戴设备,其中,包括两个如权利要求26所述的显示装置。
PCT/CN2022/125966 2022-10-18 2022-10-18 显示面板、显示装置、可穿戴设备 WO2024082142A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/125966 WO2024082142A1 (zh) 2022-10-18 2022-10-18 显示面板、显示装置、可穿戴设备
US18/278,913 US20240130202A1 (en) 2022-10-18 2022-10-18 Display panel, display device and wearable device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/125966 WO2024082142A1 (zh) 2022-10-18 2022-10-18 显示面板、显示装置、可穿戴设备

Publications (1)

Publication Number Publication Date
WO2024082142A1 true WO2024082142A1 (zh) 2024-04-25

Family

ID=90626149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125966 WO2024082142A1 (zh) 2022-10-18 2022-10-18 显示面板、显示装置、可穿戴设备

Country Status (2)

Country Link
US (1) US20240130202A1 (zh)
WO (1) WO2024082142A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006828A1 (zh) * 2017-07-07 2019-01-10 惠科股份有限公司 显示面板及应用的显示装置
CN110544714A (zh) * 2019-09-27 2019-12-06 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN110928016A (zh) * 2019-12-13 2020-03-27 武汉华星光电技术有限公司 一种显示面板、显示装置及显示装置的制作方法
CN111341808A (zh) * 2020-03-05 2020-06-26 京东方科技集团股份有限公司 一种显示基板及其制备方法、可见光通信装置
CN113972336A (zh) * 2020-07-24 2022-01-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN114497134A (zh) * 2020-10-28 2022-05-13 佳能株式会社 发光装置、显示装置、摄像装置、电子装置和发光装置的制造方法
CN115064567A (zh) * 2022-06-13 2022-09-16 京东方科技集团股份有限公司 一种显示面板、显示面板的制作方法及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006828A1 (zh) * 2017-07-07 2019-01-10 惠科股份有限公司 显示面板及应用的显示装置
CN110544714A (zh) * 2019-09-27 2019-12-06 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN110928016A (zh) * 2019-12-13 2020-03-27 武汉华星光电技术有限公司 一种显示面板、显示装置及显示装置的制作方法
CN111341808A (zh) * 2020-03-05 2020-06-26 京东方科技集团股份有限公司 一种显示基板及其制备方法、可见光通信装置
CN113972336A (zh) * 2020-07-24 2022-01-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
CN114497134A (zh) * 2020-10-28 2022-05-13 佳能株式会社 发光装置、显示装置、摄像装置、电子装置和发光装置的制造方法
CN115064567A (zh) * 2022-06-13 2022-09-16 京东方科技集团股份有限公司 一种显示面板、显示面板的制作方法及显示装置

Also Published As

Publication number Publication date
US20240130202A1 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
US11456346B2 (en) Display panel and display device
US11770958B2 (en) OLED display substrate exhibiting improved brightness and including white sub-pixel unit overlapping plurality of signal lines
WO2020133964A1 (zh) 阵列基板、显示面板及显示装置
WO2020259021A1 (zh) 显示装置及其显示面板、透明显示面板
US20210028404A1 (en) Display device and electronic apparatus
US11107372B2 (en) Display device and electronic apparatus
WO2021027104A1 (zh) 一种显示面板及显示装置
CN114068843B (zh) 显示面板和显示装置
CN111554727A (zh) 显示面板和显示装置
US20220376029A1 (en) Display substrate and display device
US11966529B2 (en) Touch detection device, display device including the same, and method for manufacturing the same
US20230200161A1 (en) Display apparatus and multi-screen display apparatus including the same
WO2024082142A1 (zh) 显示面板、显示装置、可穿戴设备
CN218158982U (zh) 触控结构、触控显示面板以及显示装置
KR20240048033A (ko) 표시 장치 및 이의 제조 방법
WO2023231802A1 (zh) 触控结构、触控显示面板以及显示装置
EP4020582A2 (en) Light emitting display device
WO2023141892A1 (zh) 显示面板和显示装置
CN217933802U (zh) 显示基板和显示装置
US20240099061A1 (en) Transparent display apparatus
WO2023216040A1 (zh) 显示基板及其驱动方法、显示装置
CN118284237A (zh) 显示装置
KR20240102779A (ko) 표시 장치 및 이의 제조 방법
KR20240093187A (ko) 발광 표시 장치
KR20240091630A (ko) 발광 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22962334

Country of ref document: EP

Kind code of ref document: A1